WO2023078594A1 - Package containing water-soluble capsules - Google Patents

Package containing water-soluble capsules Download PDF

Info

Publication number
WO2023078594A1
WO2023078594A1 PCT/EP2022/072924 EP2022072924W WO2023078594A1 WO 2023078594 A1 WO2023078594 A1 WO 2023078594A1 EP 2022072924 W EP2022072924 W EP 2022072924W WO 2023078594 A1 WO2023078594 A1 WO 2023078594A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
package according
water
containers
unit dose
Prior art date
Application number
PCT/EP2022/072924
Other languages
French (fr)
Inventor
Ross David Ashton
Original Assignee
Unilever Ip Holdings B.V.
Unilever Global Ip Limited
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Ip Holdings B.V., Unilever Global Ip Limited, Conopco, Inc., D/B/A Unilever filed Critical Unilever Ip Holdings B.V.
Publication of WO2023078594A1 publication Critical patent/WO2023078594A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/64Lids
    • B65D5/68Telescope flanged lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/046Insoluble free body dispenser
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • This invention relates to a product comprising bulk quantities of laundry or machine dish wash water-soluble capsules made from water-soluble film, contained in biodegradable packaging.
  • WO 02/20361 discloses an article of manufacture or package for containing and dispensing unitized doses of a laundry additive in article form.
  • the package comprises a plurality of laundry additive articles, means for preventing exposure of the laundry articles to moisture prior to dispensing or use, and a container having a compartment and closure for enclosing the plurality of articles in the container.
  • the container can be a tub, tray, jar, bottle, pouch, bag, box or some combination thereof and will preferably be made from polymeric materials.
  • the container may have dividing means for subdividing the container compartment into subcompartments so that the container can accommodate a variety of different additives in separate compartments.
  • the container closure will have child resistant features as well as a window or other means for viewing the contents of the package when the closure is in a closed position.
  • the means for preventing exposure of the articles to moisture may simply be a seal about the container closure or it may comprise separate a seal for each laundry additive article.
  • Seals for the individual articles will preferably be a tray with a recess formed therein for receiving the laundry additive article and a polymeric film adhered to the tray over the recess to seal the article within.
  • WO 2016/198978 discloses a child-proof container comprising: a housing made of sheet material defining an inner volume and exhibiting a passage opening delimited by a free edge, a closing system made of sheet material configured for defining a closed and opened conditions of the housing, the closing system comprises a tab having a closing portion movable with respect to the housing free edge.
  • the container comprises a safety device made of sheet material exhibiting: a first hooking portion carried by the tab, a second hooking portion engaged with the housing.
  • the first and second hooking portions are configured for stably engaging with each other in the closed condition of the closing system and for defining a safety condition: the first and second hooking portions, in the safety condition, are configured for preventing the closing system from switching from the closed to the opened condition.
  • EP-A1-3 778412 discloses consumer product that includes a container and at least one water-soluble unit dose article.
  • DE 100 18 003 discloses a package for tablets of washing or cleaning composition in a box in which the tablets are packed as flat layers.
  • the box is sufficiently compact to protect the tablets from shock.
  • the top of the package may be fitted with a lid made from thin material or have a paper of plastic outer wrapper.
  • WO 2020/109079 discloses a laundry or machine dish wash or machine dishwash product comprising a tray containing a plurality of water-soluble capsules, each capsule containing at least two compartments, said compartments containing a substrate treatment composition and being located side-by-side extending transversely across the capsule, and the tray package comprising a substantially level base whereby the capsules are located side-by-side on the base.
  • Water soluble capsules are highly convenient, however, certain compositions are required to have printing thereon to indicate directions and other information to the consumer.
  • a package comprising a first container having an average length (L1), an average depth (D1) and an average height (H1) and comprising at least 50% wt. biodegradable material and, contained within said first container, a plurality of second containers each having an average length (L2), an average depth (D2) and an average height (H2) and comprising at least 50% wt. biodegradable material, at least one of each said second containers comprising a plurality of unit dose detergent pouches, and wherein said unit dose detergent pouches comprise from 1 to 25% wt. pouch water, and a fragrance.
  • an average when referring to length, height and depth is meant the average for any one container. It is possible for the length, height or depth to be variable depending on the shape of the containers and the manufacturing accuracy. However, it is preferred that the first container is substantially cuboid in shape and so the length, height or depth is substantially uniform and so the average has a small standard deviation. Similarly, it is preferred that the second container is substantially cuboid in shape for the same reason.
  • the material forming the container comprises at least 50% wt. of a material which is biodegradable. This is not meant to include any contents of either of the containers.
  • the detergent pouches in the second container is noit included in calculating the biodegradable material content of the second container.
  • the effect is particulary suitable to containers comprising biodegradable materials such as cellulose based materials, e.g. paper, pulp and paperboard and for where the pouches comprise from 1 to 25% wt. water.
  • biodegradable materials such as cellulose based materials, e.g. paper, pulp and paperboard and for where the pouches comprise from 1 to 25% wt. water.
  • ambient-active in the context of enzymatic compositions, is intended to mean active at temperature no more than 40°C, preferably no more than 30°C, more preferably no more than 25°C most preferably no more than 15 °C but always greater than 1 degree Celcius and “active” means effective in achieving stain removal, also defined herein.
  • Biodegradable means the complete breakdown of a substance by microorganisms to carbon dioxide water biomass, and inorganic materials.
  • Child resistant closure mechanism refers to any mechanism whereby access to the water soluble capsules is reduced so that the water soluble cannot be readily removed, by infants and children. This preferably comprises any suitable arrangement that requires individuals to perform multiple cognitive and manipulative steps to open so as to prevent a child from inadvertently accessing the capsules.
  • Compostable means a material that meets the following three requirements: (1) is capable of being processed in a composting facility for solid waste; (2) if so processed will end up in the final compost; and (3) if the compost is used in the soil the material will ultimately biodegrade in the soil.
  • Enzyme includes enzyme variants (produced, for example, by recombinant techniques). Examples of such enzyme variants are disclosed, e.g., in EP 251 ,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist- Brocades NV).
  • Essentially free of a component means that no amount of that component is deliberately incorporated into the composition.
  • Frm refers to a water soluble material and may be be sheet-like material. The length and width of the material may far exceed the thickness of the material, however the film may be of any thickness.
  • Renewable refers to a material that can be produced or is derivable from a natural source which is periodically (e.g., annually or perennially) replenished through the actions of plants of terrestrial, aquatic or oceanic ecosystems (e.g., agricultural crops, edible and non-edible grasses, forest products, seaweed, or algae), or microorganisms (e.g., bacteria, fungi, or yeast).
  • terrestrial, aquatic or oceanic ecosystems e.g., agricultural crops, edible and non-edible grasses, forest products, seaweed, or algae
  • microorganisms e.g., bacteria, fungi, or yeast
  • Renewable resource refers to a natural resource that can be replenished within a 100 year time frame.
  • the resource may be replenished naturally, or via agricultural techniques.
  • Renewable resources include plants, animals, fish, bacteria, fungi, and forestry products. They may be naturally occurring, hybrids, or genetically engineered organisms. Natural resources such as crude oil, coal, and peat which take longer than 100 years to form are not considered to be renewable resources.
  • “Thermoforming” means a process in which the film is deformed by heat, and in particular it may involve the following: a first sheet of film is subjected to a moulding process to form an enclosure in the film e.g. forming a recess in the film. Preferably this involves heating prior to deformation.
  • the deformation step is preferably enabled by laying the film over a cavity and applying a vacuum or an under pressure inside the cavity (to hold the film in the cavity).
  • the recesses may then be filled.
  • the process may then include overlaying a second sheet over the filled recesses and sealing it to the first sheet of film around the edges of the recesses to form a flat sealing web, thus forming a capsule which may be a unit dose product.
  • the second film may be thermoformed during manufacture. Alternatively the second film may not be thermoformed during manufacture.
  • the first water-soluble film is thermoformed during manufacture of the unit dose article and the second water-soluble film is not thermoformed during manufacture of the unit dose article.
  • Unit dose means an amount of composition suitable to treat one load of laundry, such as, for example, from about 0.05 g to about 100 g, or from 10 g to about 60 g, or from about 20 g to about 40 g.
  • Water-soluble means the article (film or package) dissolves in water at 20°C.
  • component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
  • the containers comprises a biodegradable material.
  • the biodegradable material may comprise a biodegradable polymer.
  • the containers may comprise entirely biodegradable material such that the package in its entirety can be completely broken down of a substance by microorganisms such as bacteria, fungi, yeasts, and algae; environmental heat, moisture, or other environmental factors to carbon dioxide water biomass, and inorganic material.
  • microorganisms such as bacteria, fungi, yeasts, and algae
  • environmental heat, moisture, or other environmental factors to carbon dioxide water biomass, and inorganic material Preferably from 90-99.9% wt. of each container, more preferably from 96-99.9% wt. consists of pulp or fibrous materials such as paper, card or board.
  • the remainder comprising barrier materials and/or information labels.
  • any label also comprises biodegradable materials as described herein preferably paper or other fibrous or pulp based material.
  • the extent of biodegradability may be determined according to e.g. ASTM Test Method 5338.92.
  • Suitable biodegradable materials comprises paper, card or board from cellulose or derivatves; and may optionally comprise lignin or derivatives; biodegradable plastics, such as bioplastics which are preferably oxo-biodegradable plastics wherein biodegradation results from oxidative and cell-mediated phenomena, either simultaneously or successively (as distinct from oxo-degradation which is degradation resulting from "oxidative cleavage of macromolecules" such that the plastic fragments but does not biodegrade except over a very long time).
  • the material may also be compostable.
  • the biodegradable material comprises a bio polymer such as polylactic acid (PLA) which may be from e.g. corn starch, cassava, sugarcan etc; polyhydroxyalkanoate (PHA) including include poly-3-hydroxybutyrate (PHB or PH3B), polyhydroxyvalerate (PHV), and polyhydroxyhexanoate (PHH).
  • PHA poly(3-hydroxybutyrate-co-3- hydroxyvalerate) (PHBV); biodegradable polyesters e.g. polycaprolactone (PCL), Polybutylensuccinat (PBS) polyvinylalcohol (PVA); polybutylenadipate-terephthalate (PBAT); cellulose based materials e.g.
  • ethyl cellulose cellulose acetate (true) cellophane (made from wood, cotton or hemp); starch or starch based materials (from potato, rice, corn etc); sugar cane bagasse, and any combination or mixture thereof.
  • PCL may be mixed with starch to improve biodegradability of the PCL.
  • the biodegradable material may comprise any biodegradable polyolefin.
  • Biodegradable petroleum based plastics inlcude polyglycolic acid (PGA), a thermoplastic polymer and an aliphatic polyester; polybutylene succinate (PBS), which is a thermoplastic polymer resin that has properties comparable to propylene; polycaprolactone (PCL), as this has hydrolysable ester linkages offering biodegradable properties. It has been shown that firmicutes and proteobacteria can degrade PCL. Penicillium sp. strain 26-1 can degrade high density PCL; though not as quickly as thermotolerant Aspergillus sp. strain ST-01. Species of Clostridium can degrade PCL under anaerobic conditions; Polybutylene adipate terephthalate (PBAT) which is a biodegradable random copolymer.
  • PBAT polybutylene adipate terephthalate
  • biodegradable materials include paper, card or board from cellulose or derivatves.
  • the biodegradable material is bio-based according to 14 C or radiocarbon method (EU: EN 16640 or CEN/TS 16137, International: ISO 16620-2, US: ASTM 6866).
  • the biodegradable material is made from a renewable resource.
  • the container material may comprise an outer layer to provide additional protection or sheen (for biodegradable materials with a matt finish such as paper board).
  • This layer preferably comprises a biodegradable polymer coating or varnish or film.
  • the outer layer comprises any of the bio polymers described above.
  • the outer layer is at least present on some or all of the internal surfaces of the receptable.
  • fibrous or pulp material includes paper or paperboard: specifically.
  • the fibrous or pulp material is in the form of a sheet and is formed as a blank which is folded to form a closeable container.
  • the closeable container can be formed from a one- piece blank or may contain multiple pieces.
  • the material useable for making the container can exhibit a grammage from 100 and 500 g/m 2 , preferably from 200 and 400 g/m 2 .
  • the sheet paper material used for making the container can, in an embodiment variant thereof, be covered, for at least part of the first and/or second prevalent development surfaces, by a coating, for example a film, whose aim is to balance water transfer between the interior and the exterior of the container with leakage protection.
  • the coating could comprise and extrusion coating on one or both sides (inner side and/or outer side) of the paper material defining the container, with values which can for example range between 10 and 50 micrometer of the coating material.
  • the coating plastic material can be for example selected among the following materials: LDPE, HDPE, PP, PE.
  • Preferred barrier materials include polymeric materials selected from polylactic acid, polyhydroxyalkanoate, a polyester, polybutylenadipate terephthalate, a cellulose based material, a starch based material, a sugare cane based material and mixtures thereof.
  • the biodegradable material comprises at least two layers, more preferably at least three.
  • the biodegradable material preferably comprises a bleached layer and which bleached layer comprises an outer layer of the biodegradable material.
  • outer layer is meant that the bleached layer is physically outermost.
  • a second layer comprises a non-bleached layer which is also exterior but opposite the bleached layer.
  • the biodegradable material thus preferably comprises a bleached and un-bleached layer on opposing sides. Between the bleached and unbleached layer is preferably a filler layer comprised of post-consumer recycled material and which is preferably paper-based also.
  • the biodegradable material used in the present invention is paper-based.
  • paper-based is meant that it derives from cellulose-containing natural sources such as trees.
  • the physical properties of the paper, or pulp-based product depend largely on the nature of the cellulose fibres which are separated from lignin during processing. This may be influenced by the cellulose source, i.e. which type of tree is the original source, and also what processing has been carried out. There is a common tendency to characterise paper as being either recycled or virgin, non-recycled, however, this is misleading since it is the physicality of the cellulose fibre which is key to its performance in the context of this invention.
  • hardwood fibres are typically good for smoothness and formation and have short fibres. Typical hardwood sources include eucalyptus, birch, maple, beech and oak. In contrast softwood fibres are good for strength and stiffness and include those sourced from pine, spruce and fir.
  • the weight average fibre length of the cellulose in the paper is at least 2 mm, more preferably from 3 to 5mm.
  • Cellulose fibre length is characterised according to the test referred to by TAPPI (Technical Association of the Pulp and Paper Industry) as T 271 om-18 which is a method designed to measure the fibre length of pulp and paper by automated optical analyser using polarised light.
  • TAPPI Technical Association of the Pulp and Paper Industry
  • T 271 om-18 which is a method designed to measure the fibre length of pulp and paper by automated optical analyser using polarised light.
  • the test is an Approved Americal National Standard (ANSI).
  • the base contains a paper-based layer with a weight average fibre length of at least 2mm, more preferably from 3 to 5mm.
  • a weight average fibre length of at least 2mm, more preferably from 3 to 5mm.
  • the lid comprises paper with a weight average cellulose fibre length of from 1 to 5mm.
  • the lid comprises from 80%, more preferably from 95% wt. of the lid paper with a weight average cellulose fibre length of from 1 to 5mm.
  • the base comprises from 80%, more preferably from 95% wt. of the base paper with a weight average cellulose fibre length of at least 2mm.
  • the unit dosed product is printed to provide useful information to the consumer.
  • the printing is essentially on an interior of the capsule or product when formed.
  • the printing is carried out on a roll of film before the product is manufactured and such that the printed surface is the surface which faces the detergent composition when the final product is formed.
  • the area of print may cover the entire film or part thereof.
  • the area of print may comprise a single colour or maybe comprise multiple colours, even three colours.
  • the area of print may comprise white, black and red colours.
  • the area of print may comprise pigments, dyes, bluing agents or mixtures thereof.
  • the print may be present as a layer on the surface of the film or may at least partially penetrate into the film.
  • the area of print may be present on the outside of the unit dose article in addition to the inner surface of the film, i.e. in contact with the liquid laundry detergent composition.
  • the film comprises a phthalocyanine based pigment.
  • a phthalocyanine based pigment is used to print on to the film.
  • a preferred pigment inlcudes SpectraRAY® F UVDB354 commercially available from Sun Chemical and is a phthalocyanine based pigment. It is referred to as CAS 147-14-8.
  • the unit dose article may comprise at least two films, or even at least three films, wherein the films are sealed together.
  • the area of print may be present on one film, or on more than film, e.g. on two films, or even on three films.
  • the area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing.
  • the area of print is achieved via flexographic printing, in which a film is printed, then moulded into a unit dose article.
  • the container contains a plurality of water-soluble capsules, each water-soluble capsule comprising a detergent composition within a sealed compartment which is preferably filled to at least 60% of the volume of the compartment.
  • the container comprises 10 or more of said unit dosed products and a closure.
  • water soluble capsules with performance levels of substrate treatment liquid can be filled at speed and packaged in large quantities to reduce manufacturing costs but can be packaged using biodegradable materials and still minimizing deleterious effects leaking capsules. This is suprising considering the similarity in the compositions forming the capsule film and also the polymers used in the biodegradable packaging.
  • the selected range of viscosity is ensures filling times do not slow manufacturing times so as to render the capsules too costly.
  • the applicants have found if the liquid is thickened to a viscosity as specified in the first aspect of the invention, this minimizes splashing of the capsule seal areas and also minimizes the formation of waves (in the formulation) which might also affect the seal integrity, as the capsules are filled at high speed.
  • the container preferably has a minimum compression strength of 300N.
  • the thickness (or caliper) of material will be chosen to provide the necessary structural rigidity to the package.
  • the container may comprise any suitable rigid structure, such as a tub or carton or box, tubular structure, or bottle.
  • suitable containers will be formed from a blank which is formed into a container.
  • the container will comprise a base, opposing pairs of walls and a closable lid.
  • the lid is integral with the base or formed from a separate component.
  • the walls of such structures may be foamed or moulded. It may comprise laminate structures (e.g. built up in layers ). It may comprise fibrous material such as fibres/pulp which is glued, compressed and/or enclosed in stiff walls. Fluting may be incorporated e.g. corrugated paper board.
  • the grammage is preferably at least 200gsm (grams per square meter) preferably at least 225 gsm.
  • the first container comprises corrugated cardboard material.
  • the structure may be foldable between an erected structure to provide a functioning receptacle and a flattened structure which assists in transporation and ease of disposal later so that mulitple packs could be flattened and stacked ready for transport to a biodegradation site.
  • the biodegradable container may comprise a combination of a fibrous and/or pulp material and a polymeric material.
  • a material comprises one or more fibrous and/or pulp layers in combination with one or more polymeric materials (all materials being biodegradable).
  • There may be one or more layers of fibre and/or pulp sandwiched between layers of polymeric material.
  • the material may be virgin or recycled.
  • the package comprises a first and second container.
  • a plurality of second containers is contained within the first container.
  • the first container preferably comprises from 2 to 10 second containers and more preferably from 2 to 6 second containers. Most preferably, the first container contains 4 or 4 second containers.
  • the second containers are disposed in the first container such that their respective lengths are orthogonal to one another.
  • the length of the second container is along the depth of the first container.
  • the average L2 is from 80 to 99% of D1.
  • the first container contains a plurality of second containers arranged horizontally.
  • this is meant that there is only one layer of second containers and that no second container is disposed on top or underneath another second container.
  • the average H2 is from 80 to 99% of the average H1.
  • the second containers are disposed within the first container such that there is a headspace of from 2 to 10 mm.
  • headspace is meant that the space between the uppermost part of the plurality of second containers (the uppermost surface defined by the depth and length) and the opposing surface of the first container.
  • the space between the inner side surface of the first container and the nearest second container is from 1 to 3mm.
  • the first container is preferably cuboidal in shape. This means that it has a substantially uniform length, depth and height.
  • the length is longer than the depth so that it is formed by alternating two opposing small side walls and two opposing longer side walls.
  • the bottom edges of these two sets of opposing side walls are attached to a base to form a container which is open at the top.
  • the top may be closed by any regular lid such as a hinged lid or separate lid.
  • the second container is preferably cuboidal in shape. This means that it has a substantially uniform length, depth and height. Preferably, the length is longer than the depth so that it is formed by alternating two opposing small side walls and two opposing longer side walls. The bottom edges of these two sets of opposing side walls are attached to a base to form a container which is open at the top. The top may be closed by any regular lid such as a hinged lid or separate lid.
  • the second container comprises a top surface which, when in a closed configuration, is from 9 to 15 cm deep. This depth is an average across the full length of the top surface. This depth is preferred because the biodegradable containers tends to flex more easily than the more rigid plastic packaging containers and we have found that this dimension correlates with the optimal consumer behaviour when opening the container to access the contents by using appropriate force and so not damaging the biodegradable container or the contents within. This is particular the case when the child resistant closure requires simultaneous pressing of unlocking zones on opposing side walls. Such opposing pressures may damage the contents of the second containers by pressurising capsules which are already under water transmission stress.
  • the lid comprises a top sheet and depending pairs of opposing walls such that it resembles five sides of a cube.
  • the base comprises a bottom sheet and upstanding pairs of opposing walls such that it also resembles five sides of a cube.
  • the lid and the base co-operate to form a closed second container with the pairs of opposing walls for each of the lid and the base providing double protection against the exterior as the lid and base co-operate telescopically.
  • the lid provides the outermost surface when the base and lid are telescopically engaged to close the package.
  • the lid of the second container comprises a bleached layer on the outermost layer and an unbleached layer on the innermost layer.
  • the bleached layer presents the outermost surface of the package for the five sides that the lid makes up.
  • this outermost layer comprises printed parts.
  • the bleached layer also comprises a barrier material as described below. More preferably, the innermost surface comprises an unbleached layer and most preferably is not treated with a barrier material.
  • the base of the second container comprises a bleached layer on the innermost layer and an unbleached layer on the outermost layer.
  • the bleached layer presents the innermost surface of the package for the five sides that the base makes up.
  • Such an innermost layer is physically in contact with at least some of the laundry unit dosed products.
  • the bleached layer also comprises a barrier material as described below. More preferably, the innermost surface of the base comprises an unbleached layer and most preferably is also treated with a barrier material.
  • the lid of the second container comprises at least one aperture through which air from the exterior of the container can enter the container during separation of the lid and the base, and wherein fragrance inside the container can exit the container.
  • the aperture is preferably nearer the top surface of the lid on the side wall than the bottom edges of the side wall. This permits more air to enter the headspace in the container and therefore generates more air flow into the container when the lid is drawn from the base. Further, more air is expelled from the space between the base and the lid when the container is closed. This similarly expels more air from inside the container through the apertures on closing. The result is a greater expulsion of fragrance cloud from the container on opening and closing of the container.
  • the lid has a top sheet and two pairs of opposing walls attached thereto, and at least one of the opposing side walls comprises a pair apertures.
  • the lid and base of the second container are preferably telescopically engaging. This means that the dimensions of each are such that one slides within the other when the two are drawn apart or pressed towards one another. Preferably, the lid slides exterior to the base when the two are engaged.
  • the base and the lid of the second container comprise side walls which extend for a substantially similar distance such that when in a closed configuration, the lid forms the top and sides to the container with the base visible only at its bottom, the side walls to the base being inside the side walls to the lid and so being, for the most part, not visible.
  • the side walls to the base of the second container extend further than the distance between the aperture(s) on the side wall(s) of the lid such that when in a closed configuration the side wall(s) of the base close the aperture(s).
  • the aperture is located such that the lid and base can be partly pulled apart and the aperture remains closed by the base side wall.
  • the base side wall extends further that the uppermost part of the aperture and the distance beyond the uppermost part of the aperture determines the amount the base and lid can be pulled apart before the aperture is exposed by appearing above the edge of the base side wall.
  • the second container and first container are preferably stored at from 50 to 55% relative humidity and preferably at a temperature of from 20 to 23 C when used in the manufacture of a completed package.
  • the second container is preferably formed from a blank into a closeable container as described above.
  • the second container is filled with unit dose detergent pouches and then closed.
  • the humidity and temperature conditions are important for the control of water migration both into and out of the containers and pouches during storage after manufacture of the package. If the conditions are not right, too much water may leave or enter the pouches resulting in pouch failure. However, we have found that using a biodegradable first and second container, product failure, in particular sticking of pouches is reduced.
  • the first container is also formed from a blank and maintained ready for use as appropriate.
  • the first container is presented such that second containers filled with a plurality of pouches may be placed inside the first container. When the first container is filled it can be closed to form a single package.
  • Multiple packages may be stacked onto a pallet and preferably shrink wrapped for transport and storage.
  • the second containers preferably comprise a barrier material for improved performance. More preferably the barrier material is on the exterior of the second container and not on the interior.
  • Barrier materials are preferably employed to provide humidity control and are usually applied on the board surface on one or both sides, depending on the end use.
  • Dispersion is a new barrier option without the traditional coating layers.
  • the surface is finished with water-based dispersion technology. That makes the board liquid and grease resistant during its use while it breaks down in a recycling process like paper, providing high yield of recovered fiber when products are recycled.
  • PE Green is a fully renewable option to traditional PE (polyethylene) and provides excellent humidity protection.
  • PE Green is made of renewable, plant-based raw material, so you get a barrier packaging that is 100% renewable as well as recyclable. In converting, it performs the same way as PE and is therefore easy to introduce to production by customers.
  • PE polyethylene
  • barrier coating Polyolefin barriers, such as LDPE and HDPE polymers, provide excellent humidity protection.
  • Biodegradable coatings are tailor-made polymers offering humidity, oxygen and grease barriers and sealability. Our biodegradable coatings are compostable. However, the biopolymer-coated paperboard can be easily recycled, too, which is usually the preferred end-of-life option.
  • Biopolymers can be produced from natural crops or from fossil raw materials. But the key is that in the end the biopolymer-coated paperboard breaks down to humus and CO2. If you choose our biopolymer-coated paperboard, you get a product that is recyclable or it can be collected among other compostable waste that goes into industrial composting.
  • PET provides a barrier and performs other functions.
  • Black or white PET coatings that provide heat resistance act as an excellent grease barrier and possess solid WVTR (water vapour transmission rate) properties.
  • PP or polypropylene coating offers heat resistance for microwave oven and is also suitable for deep freezing. Good sealing properties secure performance in use.
  • the barrier material comprises less than 5% wt. more preferably less than 1% and preferably substantially zero PE, PP or PET.
  • the barrier comprises a water-based dispersion.
  • Water-based barrier coatings seal the substrate surface and protect the packaging from external and internal influences.
  • the packaging remains attractive and can fulfil its functionality without restrictions.
  • our barrier coatings offer adequate protection against fat, water, water vapor, dairy products, alcohol, oil or alkali for the lifetime of the packaging. Due to their versatility, they are used for a wide range of applications. Barrier coatings are available for packaging converters and printers or the paper industry.
  • the base of the package comprises a layer of water-based dispersion barrier.
  • the barrier material on the base is applied to an inner surface.
  • the lid component comprises less than 1 % wt. of the barrier material, more preferably a water-based dispersion barrier.
  • the dispersion barrier component comprises a thermoplastic elastomer (TPE). Said TPE is preferably dispersed in the barrier component.
  • TPE thermoplastic elastomer
  • TPE containing barrier material is that it is dispersed in the barrier component such that layers are not required. The dispersion is applied in one go.
  • An alternative barrier component may comprise a multi-layer approach.
  • Such barriers include those commercially available from Weilburger under the Senolith® brand. Examples are described in WO 2018/069413. Preferably, these would be applied by digital print, ink duct damping unit, flexo printing, inline - offline coating unit, and web offset as well as gravure.
  • the dispersion is preferably an aqueous dispersion, in particular a PTFE dispersion, perfluoroalkoxy (PFA) polymer dispersion, and/or fluorinated ethylene-propylene (FEP), copolymer of hexafluoropropylene.
  • PFA perfluoroalkoxy
  • FEP fluorinated ethylene-propylene
  • a first layer can have a resin in order to improve adhesion to a substrate.
  • suitable resins are, without limitation, polyamideimide, polyphenylene sulfide (PPS), polyether sulfone (PES), polyether ether ketone (PEEK), silicone resin and I or polysulfone.
  • PPS polyphenylene sulfide
  • PES polyether sulfone
  • PEEK polyether ether ketone
  • silicone resin I or polysulfone.
  • the proportion of such a resin in a moist composition to be applied as a layer, in particular a dispersion is preferably about 3 to 8 percent by weight of the composition.
  • the second polymer is applied to the first layer in a liquid.
  • the dispersion can contain further constituents mentioned herein.
  • the dispersion is preferably an aqueous dispersion, in particular a PTFE dispersion, perfluoroalkoxy (PFA) polymer dispersion, and I or fluorinated ethylene-propylene (FEP, copolymer of hexafluoropropylene and tetrafluoroethylene) dispersion.
  • the proportion of the second polymer in a moist composition to be applied as a layer, in particular a dispersion is preferably about 40-60 percent by weight.
  • the first layer may have been dried, partially dried or not dried prior to application of the second layer.
  • the second layer is applied to the first layer as long as the first layer is still moist, in particular as long as the first layer is still moist.
  • both the lid and the base of the second container comprise multi-layer barrier material such as those described above.
  • the barrier material is applied to the exterior of lid and/or base. More preferably, the barrier material is applied to at least 50%, more preferably, from 70%, especially preferably from 90% and most preferably from 95% of the exterior surface of the lid.
  • the barrier material is applied to at least 50%, more preferably, from 70%, especially preferably from 90% and most preferably from 95% of the exterior surface of the base.
  • the base comprises barrier material on the exterior and the interior surface.
  • the sedcond container is folded into shape and maintained in shape with the help of adhesives.
  • Adhesives are common in the art but preferably we mean hot melt adhesive, reactive hot melt adhesive, thermosetting adhesive, pressure sensitive adhesive, contact glue adhesive.
  • the adhesive is a hot melt pressure sensitive adhesive.
  • the hot melt pressure sensitive adhesive is suitable to tackify and bond to a range of materials making up the packaging.
  • the barrier material and adhesive comprises from 0.1 to 5% wt. of the total second container plus adhesive and barrier material, i.e. without the unit dose pouches. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total container plus adhesive and barrier material.
  • the barrier material and adhesive comprises from 0.1 to 5% wt. of the lid plus adhesive and barrier material. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 0.9 to 1.4% wt. of the lid plus adhesive and barrier material.
  • the barrier material and adhesive comprises from 0.1 to 5% wt. of the base plus adhesive and barrier material. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.6% wt. of the base plus adhesive and barrier material.
  • the barrier material comprises from 0.1 to 5% wt. of the total second container plus barrier material and adhesive, minus the pouches. More preferably, the barrier material comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total second container plus barrier material and adhesive.
  • the barrier material comprises from 0.1 to 5% wt. of the lid plus barrier material and adhesive. More preferably, the barrier material comprises from 1 to 3% wt. and most preferably from 1.4 to 2.2% wt. of the lid plus barrier material and adhesive. Preferably, the barrier material comprises from 0.1 to 5% wt. of the base plus barrier material and adhesive. More preferably, the barrier material comprises from 0.3 to 3% wt. and most preferably from 0.5 to 1.5% wt. of the base plus barrier material and adhesive.
  • the adhesive comprises from 0.1 to 5% wt. of the total package plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total package plus adhesive and the barrier material.
  • the adhesive comprises from 0.1 to 5% wt. of the lid plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.2 to 2.1% wt. of the lid plus adhesive and the barrier material.
  • the adhesive comprises from 0.1 to 5% wt. of the base plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.6% wt. of the base plus adhesive and the barrier material.
  • the lid plus base comprises from 0 to 5% wt. polyolefin selected from PP, PE and PET. More preferably, the base plus lid comprises from 0 to 1% and most preferably zero PP, PE and PET.
  • the lid of the second container having a bleached outersurface and the base having a bleached inner surface means that the two unbleached surfaces are in contact with one another when the lid and base are cooperatively engaged. This facilitates sliding between the two, particularly in humid environments.
  • the COBB test (T441 om-20, TAPPI) measures water absorptiveness of sized and corrugated fiberboard.
  • the ‘Cobb value’ is the mass of water absorbed in a specific time by 1 m 2 of substrate under 1 cm of water.
  • the Cobb60 for the lid of the second container without barrier materials added is from 5 to 80 g/m 2 , more preferably from 6 to 50 g/m 2 for the bleached surface and is from 5 to 100 g/m 2 , more preferably from 10 to 30 g/m 2 for the unbleached surface.
  • the Cobb60 for the lid of the second container with barrier materials added is from 0.1 to 1.5 g/m 2 , more preferably from 0.3 to 1.0 g/m 2 for the bleached surface.
  • the Cobb1800 for the lid of the second container without barrier materials added is from 80 to 200 g/m 2 , more preferably from 90 to 150 g/m 2 for the bleached surface and is from 8 to 200 g/m 2 , more preferably from 100 to 130 g/m 2 for the unbleached surface.
  • the Cobb1800 for the lid of the second container with barrier materials added is from 80 to 200 g/m 2 , more preferably from 90 to 150 g/m 2 for the bleached surface.
  • the Cobb60 for the base of the second container without barrier materials added is from 0.5 to 15 g/m 2 , more preferably from 1 to 10 g/m 2 for the bleached surface and is from 5 to 80 g/m 2 , more preferably from 10 to 30 g/m 2 for the unbleached surface.
  • the Cobb60 for the base of the second container with barrier materials added is from 0.1 to 1.5 g/m 2 , more preferably from 0.3 to 1.0 g/m 2 for the bleached surface.
  • the Cobb1800 for the base of the second container without barrier materials added is from 80 to 200 g/m 2 , more preferably from 90 to 150 g/m 2 for the bleached surface and is from 8 to 200 g/m 2 , more preferably from 80 to 120 g/m 2 for the unbleached surface.
  • the Cobb1800 for the base of the second container with barrier materials added is from 0.5 to 20 g/m 2 , more preferably from 2 to 15 g/m 2 for the bleached surface.
  • this superior fibre length provides improved performance when the package is designed for storing liquid detergent capsules, particularly in the context of water containment in the event of leaking. This is particularly important when the package design is required to have child safety features since poor water containment may lead to package weakness and hence easier access to contents.
  • the depth of the cartonboard for both lid and base of the second container is from 200 to 800 micrometers.
  • the second container comprises an absorbent pad.
  • such an absorbent pad is placed at the bottom of the package in the base and before the unit dose articles are placed inside the package.
  • the second container preferably includes a child resistent closure mechanism.
  • the child resistant closure mechanism comprises a first locking member on the receptacle (or base) and a second locking member present on the closure (or lid) whereby the members interlock.
  • the child resistent closure is obtained by specific structures to secure the closure in place (closing the receptacle) until a specific operation is carried out to disengage the closure.
  • Closures may include tops and lids with respective locking members that must be lined up in a certain orientation before they will release from locking members on the receptacle, or that require the performance of a certain sequence of steps or actions to actuate their release as described below.
  • the receptacle (or base) and closure may each incorporate at least one, and preferably at least two such locking members, and the package closed by the locking of mulitple pairs of locking members, each pair comprising one locking member on the closure interengaging with one locking member from the receptacle.
  • each pair of locking members are operable independent of any at least one other pair of locking members, such that unlocking of one pair does not automatically unlock the other pair.
  • at least one pair are spaced apart from another pair at locations on the package, so for example, they may be located at diagonally opposed positions e.g. at or adjacent diagonally opposed edges/corners of a generally square/rectangular closure and/or at diametrically opposed positions on the edge of a circular closure.
  • each locking member comprises a resilient part so that it springs into and/or out of a locking engagement with a respective locking member.
  • Locking members may be selected from any projection and corresponding recess, catches, clips, latches, flaps, straps, hook and loop fastnerers, ratchet arrangements or lugs (on screw-threads), sliding arrangements, buttons, pull-tabs, keys, magnets or other locking component.
  • Locking members may be biased e.g. spring loaded in the locking position (engaged with a respective locking member) so that pressure must be used to release them from each other.
  • the receptacle and closure may be attached to each other by a hinge or they may slide relative to each other and may even be unitary (e.g. with a living hinge) so that the closure is integral with the receptacle.
  • the invention is particular preferred for such arrangements as softening the receptacle may result in mis-shaping and place stresses on the closure.
  • the specific operation may comprise a double and/or coordinated action on the closure.
  • the child resistant closure is comprises locking members requiring double and/or co-ordinated action to open said closure.
  • the action required may be press-and-turn or press-and-pull mechanisms as are known by the person skilled in the art.
  • the closure may be opened only when the closure or a part thereof, is both squeezed (radially) and rotated, or pushed (axially of the package) and rotated.
  • Child resistent closures may comprise gripping or squeezing both sides of the closure and rotating at the same time to remove the closure.
  • the closure may be retained on the receptable by respective internal threads carrying ratchets or wedge shaped lugs as locking members, and prevent the closure from being unscrewed from the neck opening unless the closure and/or neck is flexed diametrically whereby the locking members move apart in a radial direction and allow the closure being unscrewed.
  • Locking members may require a double and/or coodinated action to be unlocked.
  • the packaging for example, press and slide, or press and pull.
  • a removable locking key may be required to lock and/or unlock said interlocking members.
  • the package may comprises a sliding mechanism whereby the closure or at part thereof slides relative to the receptable or the receptacle slides within a closure (e.g. as a tray pack arrangement whereby capsules are stacked on the tray part) and there is provided at least one locking mechanism configured to lock the inner sliding part relative to an outer part of the packaging.
  • the locking mechanism may be biased so that pressure must be exerted to release the tray.
  • the inner sleeve includes a pull tab for removal of the inner sleeve from inside the outer sleeve.
  • Locking members may be arranged spatially to prevent child access. For example at least 2 pairs may be separated from each other by a distance corresponding to the average span between a thumb and forefinger of the hand of an adult. Only when all both pairs are released simultaneously it is possible to open the lid of the packaging container.
  • the locking members are located at diagonally opposed corners of the box.
  • the child resistent closure may produce audible feedback such as a ‘click’ to signal to the user that the closure is in place.
  • the pack comprises a dimensionally stable tear-resistent planar material (e.g. laminate) such a dimensionally stable tear-resistant paperboard laminate for making a tear-resistant packaging structure.
  • the dimensionally stable tear-resistant paperboard laminate may include includes a tear-resistant biodegradable polymer core layer having first and second opposite sides.
  • the dimensionally stable tear-resistant paperboard laminate further includes a first paperboard layer bonded to the first side of said tearresistant polymer core layer, with a first bonding medium.
  • the dimensionally stable tearresistant paperboard laminate further includes a second paperboard layer bonded to the second side of the tear-resistant polymer core layer, with a second bonding medium.
  • the tear-resistant polymer core layer has a thickness of at least 1 mil and a tear resistance of at least 350 grams of force in machine direction and of at least 400 grams of force in cross direction, as measured by the Elmendorf tear propagation test, as measured by the Elmendorf tear propagation test.
  • the first and second paperboard layers are substantially structurally identical.
  • the tear-resistant polymer core layer has a thickness of approximately 3 mils and a tear resistance of about 1700 grams of force in machine direction and about 400 grams of force in cross direction, as measured by the Elmendorf tear propagation test.
  • the water-soluble unit dose article comprises at least two water-soluble films and at least one internal compartment, wherein the compartment is enclosed by the films and has an internal space and wherein the compartment comprises a cleaning composition within the internal space.
  • the unit dose article has a height, a width and a length.
  • the maximum of any of these dimensions is meant to mean the greatest distance between two points on opposite sides of the unit dose article.
  • the unit dose article may not have straight sides and so may have variable lengths, widths and heights depending on where the measurement is taken. Therefore, the maximum should be measured at any two points that are the furthest apart from each other.
  • the maximum length is between 2cm and 8 cm, or even between 3cm and 7cm, or even between 3.5cm and 7cm.
  • the maximum width is between 2cm and 8cm, or even between 3cm and 7cm.
  • the maximum height is between 1cm and 5cm or even between 2cm and 4.5cm.
  • the unit dose article may have a weight of less than 35 g, or even between 10 g and 33 g, or even between 10 g and 30 g.
  • the unit dose article may have a weight of between 10 g and 31 g, or even between 15g and 30g.
  • the unit dose article may comprise a gas, and wherein the ratio of the volume of said gas to the volume of the liquid laundry detergent composition is between 1:4 and 1:20, or even between 1 :5 and 1: 15, or even between 1 :5 and 1:9. Alternatively, the ratio of the volume of said gas to the volume of the liquid laundry detergent composition is between 1 :25 and 1 : 10, or even between 1 :20 and 15: 1 Without wishing to be bound by theory, it was found that by carefully regulating the volume of gas to volume of liquid the dissolution of the film and dispersion of the liquid laundry detergent composition in the wash liquor could be maximised.
  • the unit dose article ruptures between 10 seconds and 5 minutes once the unit dose article has been added to 950ml of deionised water at 20-21 degrees centigrade in a 1L beaker, wherein the water is stirred at 350rpm with a 5cm magnetic stirrer bar.
  • rupture we herein mean the film is seen to visibly break or split. Shortly after the film breaks or splits the internal liquid detergent composition may be seen to exit the unit dose article into the surrounding water.
  • the film of the unit dose article is soluble or dispersible in water, and preferably has a water-solubility of at least 50 percent, preferably at least 75 percent or even at least 95 percent, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns:
  • Preferred film materials are preferably polymeric materials.
  • the film material can, for example, be obtained by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art.
  • Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
  • More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.
  • the level of polymer in the pouch material for example a PVA polymer, is at least 60 percent.
  • the polymer can have any weight average molecular weight, preferably from about 1000 to 1 ,000,000, more preferably from about 10,000 to 300,000 yet more preferably from about 20,000 to 150,000.
  • Mixtures of polymers can also be used as the film material. This can be beneficial to control the mechanical and/or dissolution properties of the compartments or pouch, depending on the application thereof and the required needs.
  • Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer.
  • mixtures of polymers having different weight average molecular weights for example a mixture of PVA or a copolymer thereof of a weight average molecular weight of about 10,000-40,000, preferably around 20,000, and of PVA or copolymer thereof, with a weight average molecular weight of about 100,000 to 300,000, preferably around 150,000.
  • polymer blend compositions for example comprising hydrolytically degradable and water-soluble polymer blends such as polylactide and polyvinyl alcohol, obtained by mixing polylactide and polyvinyl alcohol, typically comprising about 1-35 percent by weight polylactide and about 65 percent to 99 percent by weight polyvinyl alcohol.
  • polymers which are from about 60 percent to about 98 percent hydrolysed, preferably about 80 percent to about 90 percent hydrolysed, to improve the dissolution characteristics of the material.
  • Preferred film materials are polymeric materials. The film material can be obtained, for example, by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art.
  • Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
  • More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.
  • the level of polymer in the pouch material for example a PVA polymer, is at least 60 percent.
  • the polymer can have any weight average molecular weight, preferably from about 1000 to 1 ,000,000, more preferably from about 10,000 to 300,000 yet more preferably from about 20,000 to 150,000.
  • Mixtures of polymers can also be used as the pouch material. This can be beneficial to control the mechanical and/or dissolution properties of the compartments or pouch, depending on the application thereof and the required needs.
  • Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer.
  • mixtures of polymers having different weight average molecular weights for example a mixture of PVA or a copolymer thereof of a weight average molecular weight of about 10,000-40,000, preferably around 20,000, and of PVA or copolymer thereof, with a weight average molecular weight of about 100,000 to 300,000, preferably around 150,000.
  • polymer blend compositions for example comprising hydrolytically degradable and water-soluble polymer blends such as polylactide and polyvinyl alcohol, obtained by mixing polylactide and polyvinyl alcohol, typically comprising about 1-35 percent by weight polylactide and about 65 percent to 99 percent by weight polyvinyl alcohol.
  • polymers which are from about 60 percent to about 98 percent hydrolysed, preferably about 80 percent to about 90 percent hydrolysed, to improve the dissolution characteristics of the material.
  • Preferred films exhibit good dissolution in cold water, meaning unheated water straight from the tap.
  • such films exhibit good dissolution at temperatures below 25 degrees centigrade, more preferably below 21 degrees centigrade, more preferably below 15 degrees centigrade
  • good dissolution it is meant that the film exhibits water-solubility of at least 50 percent, preferably at least 75 percent or even at least 95 percent, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns, described above.
  • Preferred films are those supplied by Monosol under the trade references M8630, M8900, M8779, M8310.
  • the film material herein can also comprise one or more additive ingredients.
  • plasticisers for example glycerol, ethylene glycol, diethyleneglycol, propylene glycol, sorbitol and mixtures thereof.
  • Other additives may include water and functional detergent additives, including water, to be delivered to the wash water, for example organic polymeric dispersants, etc.
  • the film may comprise an area of print.
  • the area of print may cover the entire film or part thereof.
  • the area of print may comprise a single colour or maybe comprise multiple colours, even three colours.
  • the area of print may comprise pigments, dyes, bluing agents or mixtures thereof.
  • the print may be present as a layer on the surface of the film or may at least partially penetrate into the film.
  • the unit dose article may comprise at least two films, or even at least three films, wherein the films are sealed together.
  • the area of print may be present on one film, or on more than film, e.g. on two films, or even on three films.
  • the area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing.
  • the area of print is achieved via flexographic printing, in which a film is printed, then moulded into the shape of an open compartment. This compartment is then filled with a detergent composition and a second film placed over the compartment and sealed to the first film.
  • the area of print may be on either side of the film.
  • the area of print may be purely aesthetic or may provide useful information to the consumer.
  • the area of print may be opaque, translucent or transparent.
  • the unit dose pouch or capsule comprises a laundry detergent composition, preferably a liquid or powdered detergent composition and most preferabyl a liquid detergent composition.
  • the liquid composition may be opaque, transparent or translucent. Each compartment may comprise the same or a different composition.
  • the unit dose article comprises a liquid composition, however, it may also comprise different compositions in different compartments.
  • the composition may be any suitable composition.
  • the composition may be in the form of a solid, a liquid, a dispersion, a gel, a paste, a fluid or a mixture thereof.
  • the composition may be in different forms in the different compartments.
  • Non-limiting examples of compositions include cleaning compositions, fabric care compositions, automatic dishwashing compositions and hard surface cleaners. More particularly, the compositions may be a laundry, fabric care or dish washing composition including, pre-treatment or soaking compositions and other rinse additive compositions.
  • the laundry detergent composition may be used during the main wash process or could be used as pre-treatment or soaking compositions.
  • Laundry detergent compositions include fabric detergents, fabric softeners, 2-in- 1 detergent and softening, pre-treatment compositions and the like.
  • Laundry detergent compositions may comprise surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, additional perfume and perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments and mixtures thereof.
  • the composition may be a laundry detergent composition comprising an ingredient selected from the group comprising a shading dye, surfactant, polymers, perfumes, encapsulated perfume materials, structurant and mixtures thereof.
  • the liquid laundry detergent composition may comprise an ingredient selected from, bleach, bleach catalyst, dye, hueing dye, cleaning polymers including alkoxylated polyamines and polyethyleneimines, soil release polymer, surfactant, solvent, dye transfer inhibitors, chelant, enzyme, perfume, encapsulated perfume, polycarboxylates, structurant and mixtures thereof.
  • Surfactants can be selected from anionic, cationic, zwitterionic, non-ionic, amphoteric or mixtures thereof.
  • the fabric care composition comprises anionic, non-ionic or mixtures thereof.
  • the anionic surfactant may be selected from linear alkyl benzene sulfonate, alkyl ethoxylate sulphate and combinations thereof.
  • Suitable anionic surfactants useful herein can comprise any of the conventional anionic surfactant types typically used in liquid detergent products. These include the alkyl benzene sulfonic acids and their salts as well as alkoxylated or non-alkoxylated alkyl sulfate materials.
  • Suitable nonionic surfactants for use herein include the alcohol alkoxylate nonionic surfactants.
  • Alcohol alkoxylates are materials which correspond to the general formula: R 1 (C m H2mO)nOH wherein R 1 is a Cs-Ci6 alkyl group, m is from 2 to 4, and n ranges from about 2 to 12.
  • R 1 is an alkyl group, which may be primary or secondary, that comprises from about 9 to 15 carbon atoms, or from about 10 to 14 carbon atoms.
  • the alkoxylated fatty alcohols will also be ethoxylated materials that contain on average from about 2 to 12 ethylene oxide moieties per molecule, or from about 3 to 10 ethylene oxide moieties per molecule.
  • the shading dyes employed in the present laundry detergent compositions may comprise polymeric or non-polymeric dyes, pigments, or mixtures thereof.
  • the shading dye comprises a polymeric dye, comprising a chromophore constituent and a polymeric constituent.
  • the chromophore constituent is characterized in that it absorbs light in the wavelength range of blue, red, violet, purple, or combinations thereof upon exposure to light.
  • the chromophore constituent exhibits an absorbance spectrum maximum from about 520 nanometers to about 640 nanometers in water and/or methanol, and in another aspect, from about 560 nanometers to about 610 nanometers in water and/or methanol.
  • the dye chromophore is preferably selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone, azo, oxazine, azine, xanthene, triphenodioxazine and phthalocyanine dye chromophores. Mono and di-azo dye chromophores are preferred.
  • the shading dye may comprise a dye polymer comprising a chromophore covalently bound to one or more of at least three consecutive repeat units. It should be understood that the repeat units themselves do not need to comprise a chromophore.
  • the dye polymer may comprise at least 5, or at least 10, or even at least 20 consecutive repeat units.
  • the repeat unit can be derived from an organic ester such as phenyl dicarboxylate in combination with an oxyalkyleneoxy and a polyoxyalkyleneoxy.
  • Repeat units can be derived from alkenes, epoxides, aziridine, carbohydrate including the units that comprise modified celluloses such as hydroxyalkylcellulose; hydroxypropyl cellulose; hydroxypropyl methylcellulose; hydroxybutyl cellulose; and, hydroxybutyl methylcellulose or mixtures thereof.
  • the repeat units may be derived from alkenes, or epoxides or mixtures thereof.
  • the repeat units may be C2-C4 alkyleneoxy groups, sometimes called alkoxy groups, preferably derived from C2-C4 alkylene oxide.
  • the repeat units may be C2-C4 alkoxy groups, preferably ethoxy groups.
  • the at least three consecutive repeat units form a polymeric constituent.
  • the polymeric constituent may be covalently bound to the chromophore group, directly or indirectly via a linking group.
  • suitable polymeric constituents include polyoxyalkylene chains having multiple repeating units.
  • the polymeric constituents include polyoxyalkylene chains having from 2 to about 30 repeating units, from 2 to about 20 repeating units, from 2 to about 10 repeating units or even from about 3 or 4 to about 6 repeating units.
  • Non-limiting examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
  • the dye may be introduced into the detergent composition in the form of the unpurified mixture that is the direct result of an organic synthesis route.
  • the dye polymer therefore, there may also be present minor amounts of un-reacted starting materials, products of side reactions and mixtures of the dye polymers comprising different chain lengths of the repeating units, as would be expected to result from any polymerisation step.
  • compositions can comprise one or more detergent enzymes which provide cleaning performance and/or fabric care benefits.
  • suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, beta -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
  • a typical combination is a cocktail of conventional applicable enzymes like protease, lipase, cutinase and/or cellulase in conjunction with amylase.
  • the laundry detergent compositions of the present invention may comprise one or more bleaching agents. Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids and mixtures thereof. In general, when a bleaching agent is used, the compositions of the present invention may comprise from about 0.1 percent to about 50 percent or even from about 0.1 percent to about 25 percent bleaching agent by weight of the subject cleaning composition.
  • the composition may comprise a brightener.
  • Suitable brighteners are stilbenes, such as brightener 15.
  • Other suitable brighteners are hydrophobic brighteners, and brightener 49.
  • the brightener may be in micronized particulate form, having a weight average particle size in the range of from 3 to 30 micrometers, or from 3 micrometers to 20 micrometers, or from 3 to 10 micrometers.
  • the brightener can be alpha or beta crystalline form.
  • compositions herein may also optionally contain one or more copper, iron and/or manganese chelating agents. If utilized, chelating agents will generally comprise from about 0.1 percent by weight of the compositions herein to about 15 percent, or even from about 3.0 percent to about 15 percent by weight of the compositions herein.
  • the composition may comprise a calcium carbonate crystal growth inhibitor, such as one selected from the group consisting of: 1-hydroxyethanediphosphonic acid (HEDP) and salts thereof; N,N-dicarboxymethyl-2-aminopentane-1, 5-dioic acid and salts thereof; 2- phosphonobutane-1,2,4-tricarboxylic acid and salts thereof; and any combination thereof.
  • HEDP 1-hydroxyethanediphosphonic acid
  • HEDP 1-hydroxyethanediphosphonic acid
  • N,N-dicarboxymethyl-2-aminopentane-1, 5-dioic acid and salts thereof 2- phosphonobutane-1,2,4-tricarboxylic acid and salts thereof; and any combination thereof.
  • compositions of the present invention may also include one or more dye transfer inhibiting agents.
  • Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • the dye transfer inhibiting agents are present at levels from about 0.0001 percent, from about 0.01 percent, from about 0.05 percent by weight of the cleaning compositions to about 10 percent, about 2 percent, or even about 1 percent by weight of the cleaning compositions.
  • the laundry detergent composition may comprise one or more polymers.
  • Suitable polymers include carboxylate polymers, polyethylene glycol polymers, polyester soil release polymers such as terephthalate polymers, amine polymers, cellulosic polymers, dye transfer inhibition polymers, dye lock polymers such as a condensation oligomer produced by condensation of imidazole and epichlorhydrin, optionally in ratio of 1 :4:1, hexamethylenediamine derivative polymers, and any combination thereof.
  • suitable cellulosic polymers may have a degree of substitution (DS) of from 0.01 to 0.99 and a degree of blockiness (DB) such that either DS+DB is of at least 1.00 or DB+2DS-DS 2 is at least 1.20.
  • the substituted cellulosic polymer can have a degree of substitution (DS) of at least 0.55.
  • the substituted cellulosic polymer can have a degree of blockiness (DB) of at least 0.35.
  • the substituted cellulosic polymer can have a DS+DB, of from 1.05 to 2.00.
  • a suitable substituted cellulosic polymer is carboxymethylcellulose.
  • Another suitable cellulosic polymer is cationically modified hydroxyethyl cellulose.
  • Suitable perfumes include perfume microcapsules, polymer assisted perfume delivery systems including Schiff base perfume/polymer complexes, starch-encapsulated perfume accords, perfume-loaded zeolites, blooming perfume accords, and any combination thereof.
  • a suitable perfume microcapsule is melamine formaldehyde based, typically comprising perfume that is encapsulated by a shell comprising melamine formaldehyde. It may be highly suitable for such perfume microcapsules to comprise cationic and/or cationic precursor material in the shell, such as polyvinyl formamide (PVF) and/or cationically modified hydroxyethyl cellulose (catHEC).
  • PVF polyvinyl formamide
  • catHEC cationically modified hydroxyethyl cellulose
  • Suitable suds suppressors include silicone and/or fatty acid such as stearic acid.
  • the liquid laundry detergent composition maybe coloured.
  • the colour of the liquid laundry detergent composition may be the same or different to any printed area on the film of the article.
  • Each compartment of the unit dose article may have a different colour.
  • the liquid laundry detergent composition comprises a non-substantive dye having an average degree of alkoxylation of at least 16.
  • At least one compartment of the unit dose article may comprise a solid. If present, the solid may be present at a concentration of at least 5 percent by weight of the unit dose article.
  • a second water-soluble film may comprise at least one open or closed compartment.
  • a first web of open pouches is combined with a second web of closed pouches preferably wherein the first and second webs are brought together and sealed together via a suitable means, and preferably wherein the second web is a rotating drum set-up.
  • pouches are filled at the top of the drum and preferably sealed afterwards with a layer of film, the closed pouches come down to meet the first web of pouches, preferably open pouches, formed preferably on a horizontal forming surface. It has been found especially suitable to place the rotating drum unit above the horizontal forming surface unit.
  • the resultant web of closed pouches are cut to produce individual unit dose articles.
  • packages contain sufficient numbers of capsules, which is 10 or more capsules, more preferably 20 or more capsules, even more preferably 30 or more capsules, even more preferably 40 or more capsules and more preferably 50 or more capsules.
  • capsules which is 10 or more capsules, more preferably 20 or more capsules, even more preferably 30 or more capsules, even more preferably 40 or more capsules and more preferably 50 or more capsules.
  • Capsules are stacked or piled in packaging. Higher numbers of capsules per pack lowers manufacturing costs and price for the consumer, but increases the weight of the pack and the weight force experienced by each capsule which is not at the top of any stack or pile within the pack.
  • the invention is particularly advantageous for such capsules, by minimizing leakage.
  • each capsule is in the range 5g ⁇ m ⁇ 30g preferably 10g ⁇ m ⁇ 30g.
  • the package comprises at least 20 capsules, preferably at least 30 capsules, more preferably at least 40, even more preferably at least 50 and up to 100 capsules in one package. As the weight of each capsule increases, so will the force exerted by the capsules on the package also increases. Thus maintained rigidtiy is more and more important.
  • Each capsule may comprise at least two sheets of water-soluble film, the at least two sheets of film being sealed together by a seal (known as a sealing web) extending around the periphery of the capsule.
  • the capsule further comprises an internal seal which partitions the capsule to provide said at least two compartments. This can increase the sealing area for each capsule, and in turn increases the risk of seal contamination during filling.
  • the invention is particular advantageous for such capsules.
  • compartments are filled with a liquid or gel.
  • additional compartments may also be filled with gels, powders or any combination thereof.
  • some capsules may have a liquid-containing compartment and a powder-containing compartment, or there may be liquid-gel, gel-powder combinations (each form e.g. liquid, gel, powder in a different compartment).
  • the mulitple compartment capsules may comprise different parts of a treatment composition which, when combined, make up the full treatment composition.
  • a treatment composition which, when combined, make up the full treatment composition.
  • the formulation of each of the parts of the treatment composition is different either in its physical form (e.g. viscosity), its composition or, preferably its colour/opacity.
  • capsules are manufactured by forming, more preferably thermoforming a sheet or sheets of water-soluble film. During forming or thermoforming recesses in the film. The recesses are then filled and a second often thinner sheet superposed over the filled recesses and sealed it to the first sheet of film around the edges of the recesses to form a flat sealing web. Substrate treatment compositions of a viscosity above the range of the invention take longer to settle into the capsule recess after filling. If they have not settled by the time the second sheet is superposed and sealed, the second thinner sheet may be stretched over the piled up formulation which may comprise the film. This stretching can create leaks by exacerbating pin holes in the thin film.
  • the viscosity range of the invention is thus particularly advantageous for such capsules.
  • the product will comprise at least three films wherein one chamber is slead by another chamber being formed over the top of the first chamber.
  • relaxation of the first film typically then causes the applied second sheet to bulge out when the vacuum is released from the first sheet of film in the mould.
  • a multi-compartment capsule is produced by a process of thermoforming. Such a process may advantageously comprise the following steps to form the capsule:
  • Sealing can be done by any suitable method for example heat-sealing, solvent sealing or UV sealing or ultra-sound sealing or any combination thereof. Particularly preferred is water-sealing. Water sealing may be carried out by applying moisture to the second sheet of film before it is sealed to the first sheet of film to form the seal areas.
  • thermoforming process uses a rotary drum on which the forming cavities are mounted.
  • a vacuum thermoforming machine that uses such a drum is available from Cloud LLC.
  • the capsules according to the invention could also be made by thermoforming on a linear array of cavity sections. Machines suitable for that type of process are available from Hoefliger. The following example description is focussed onto the rotary process. A skilled person will appreciate how this would be adapted without inventive effort to use a linear array process.
  • the pouch of the present invention preferably includes a bittering agent.
  • Bittering agents are generally known.
  • the bittering agents may be any of those described for the packaging.
  • the bittering agent is typically incorporated within or film-coated on the exterior surface of the water-soluble package. Additionally or alternatively, the bitter agent is included in the water-soluble package as a powdered bittering agent in a powder coating applied to the exterior surface of the water-soluble package.
  • the bittering agent is incorporated within (included in) the water-soluble substrate.
  • the bittering agent may be incorporated into the matrix of a water-soluble polymer included in the water-soluble substrate by dissolving the bittering agent in a water-soluble polymer solution before the water-soluble substrate is formed.
  • the bittering agent may be present in water-soluble substrate material in a range of 100 to 5000 ppm, preferably 200 to 3000 ppm, more preferably 500 to 2000 ppm, based on the weights of the bittering agent and water-soluble substrate.
  • 1 mg of bittering agent may be incorporated into 1 g of water-soluble substrate to provide the bittering agent at 1000 ppm.
  • Film-coating of a bittering agent on the surface of the water-soluble substrate can be performed by known techniques, such as spraying or printing of a bittering agent solution onto the surface of the water-soluble substrate.
  • the bittering agent can be included in, film coated on and/or included in a powder coating on the exterior surface of the water-soluble substrate in one or more of the printed regions. There may be no adverse effects on the quality of UV-cured ink printed matter when the bittering agent is included in, film coated on and/or included in a powder coating on the exterior surface of the water-soluble substrate in the printed regions. In particular, there may be no adverse effects on the quality of UV-cured ink printed matter when the bittering agent is incorporated within the water-soluble substrate in the printed regions. In some embodiments, the bittering agent is incorporated within the water-soluble substrate homogenously. In this way, the inclusion of the bittering agent into the water-soluble substrate and printing of the water-soluble substrate can be simplified.
  • the unit dose detergent composition comprises a fragrance.
  • the fragrance is selected from the groups consisting of ethyl-2-methyl valerate (manzanate), limonene, dihyro myrcenol, dimethyl benzyl carbonate acetate, benzyl acetate, geraniol, methyl nonyl acetaldehyde, cyclacet (verdyl acetate), cyclamal, beta ionone, hexyl salicylate, tonalid, phenafleur, octahydrotetramethyl acetophenone (OTNE) and mixtures thereof.
  • ethyl-2-methyl valerate manzanate
  • limonene dihyro myrcenol
  • dimethyl benzyl carbonate acetate benzyl acetate
  • geraniol methyl nonyl acetaldehyde
  • cyclacet verdyl acetate
  • cyclamal beta ionone
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance ethyl-2-methyl valerate (manzanate).
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance limonene.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance dihyro myrcenol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance dimethyl benzyl carbonate acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance benzyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance geraniol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance methyl nonyl acetaldehyde.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance cyclacet (verdyl acetate).
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance cyclamal.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance beta ionone.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance hexyl salicylate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance tonalid.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance phenafleur.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance octahydrotetramethyl acetophenone (OTNE).
  • OTN octahydrotetramethyl acetophenone
  • the fragrance preferably comprises a sesquiterpene or sesquiterpenoid component selected from the group consisting of longicyclene, farnesol, 2,3-dihydrofarnesol, a - farnescene, p-farnescene, valencene, a -eudesmol, a -muurolene, epi- a-cardinol, p- selinene, a-selinene, germacrene D, germacrene B, lanceol, p-sesquiphellandrene, a- curcumene, a-bisabolene, a-bisabolol, p-santalol, viridifloral, cyperene, longifolene, cubenol, aristolene, aromadendrene, humulene epoxide, hydroxycalamenene, guaiol, quinanol E, quinanol D
  • the unit dosed products described herein are suitable for use in a substrate treatment method, suitably a laundry or machine dish washing method.
  • a further aspect of the present invention provides use of unit dose products or capsules as described herein in a method of cleaning, suitably a laundry or machine dish washing method.
  • the method includes opening the packaging by unlocking the child resistent closure, retrieving one or more capsules from the packaging, placing the capsule/s in the drum or dosing drawer or any dosing device of a washing machine prior to commencement of a wash cycle.
  • the capsules are particularly suitable for use in (substrate) washing machines and in dishwashing machines amongst other applications. They can also be used in manual laundry or dishwashing operations.
  • the capsules according to the invention are preferably, and conveniently, placed directly into the liquid which will form the wash liquor or into the area where this liquid will be introduced. The capsule dissolves on contact with the liquid, thereby releasing the detergent composition from the separate compartments and allowing them to form the desired wash liquor.
  • the capsule ruptures between 10 seconds, preferably between 30 seconds and 5 minutes once the unit dose article has been added to 950ml of deionised water at 20-21 °C in a 1L beaker, wherein the water is stirred at 350rpm with a 5cm magnetic stirrer bar.
  • rupture we herein mean the film is seen to visibly break or split. Shortly after the film breaks or splits the internal liquid substrate composition may be seen to exit the article into the surrounding water.
  • packaging according to the invention is shown. Twenty (20) multi-compartment water soluble capsules (not shown) produced by a process of thermoforming as described above are stacked in. 20 of these capsules are packed into a rigid carton 1 having a box construction and providing a receptacle 3 and hinged closure 5.
  • the carton comprises a stiff cellulose based, biodegradable paperboard having grammage 225 or above to achieve a minimum compression strength of 300N. This is tested by compressing the box between two plates until the box is crushed. The maximum load (before crushing is recorded).
  • the packaging design has 4 pairs of locking members 7, 9, 11 ,13 each comprising a tab on the receptacle 3 and a recess on the lid 5. Pair 7 is arranged separated from pairs 11 and 13 by a distance corresponding to the average span between a thumb and forefinger of the hand of an adult. Likewise each pair is separated from 2 of the other pairs by such a distance. Only when all both pairs are released simultaneously it is possible to open the lid of the packaging container.
  • each pair of locking elements and arrangement on the corners is such that it is impossible for a child can press all four locking elements simultaneously.
  • the rigidity of the packaging ensures that the locking members of each pair are aligned during closure to render the packaging unaccessible to children.
  • the rigidity is protected by the capsules which are as follows.
  • the water soluble capsules comprise laundry treatment compositions dispensed to each of the three compartments is as follows:
  • the unit dosed products comprise water soluble film printed on the inside.
  • Figure 1 is a perspective view of a lid
  • Figure 2 is a perspective view of a base
  • Figure 3 is a cross-section of a biodegradable package
  • Figure 4 is a schematic side elevation of a biodegradable package.
  • figure 1 shows a lid (1) for a biodegradable package.
  • the lid comprises a top (2) and depending from each edge of the top (2) a top side wall (3).
  • the shown side walls end at a bottom edge (4).
  • Figure 2 shows a base (8) which has a bottom (7) and upstanding from the edges of the base (7) are base side walls (5) which end at a top edge (6).
  • the lid (1) and base (8) are such that they slidingly co-operate to close the package and maintain the contents.
  • Figure 3 is a cross section along A-A and shows a lid (1) and a base (8) engaged to close the package.
  • the package also has an absorbent pad (9) for improving the leak protection of the package.
  • the pad (9) is maintained at the bottom of the package on the base and under any contents of the package. Any leakage from the unit dose capsules is thereby minimised or controlled by the absorbent pad (9).
  • the lid side walls (3) are shown to have an inner surface (3A) and an outer surface (3B).
  • the outer surface (3B) is a bleached surface and has water-based barrier material coated thereto.
  • the inner surface (3A) is an unbleached surface and does not have barrier material applied thereto.
  • the base side walls (5) are shown to have an inner surface (5A) and an outer surface (5B).
  • the outer surface (5B) is an unbleached surface and does not have water-based barrier material coated thereto.
  • the inner surface (5A) is a bleached surface and has barrier material applied thereto.
  • the inner surface of the base (5B) also has a thermoplastic elastomer-based barrier material applied thereto.
  • Figure 4 is a schematic to show the relationship between the dimensions of the lid and the child proof closure.
  • the depth is the lid is shown to be 11cm. This is the depth at the point along the length that the user activates the child proof closure mechanism.
  • the user uses fingers and thumb to activate the child proof mechanism activation zones (10) on either side of the lid.
  • the actual mechanism is not shown but activation of the zone permits separation of the lid from the base as the user depresses the zones and pulls the lid away from the base.
  • FIGS 5 and 6 show show a lid (1) for a biodegradable package.
  • the lid comprises a top (2) and depending from each edge of the top (2) a top side wall (3).
  • the shown side walls end at a bottom edge (4).
  • Figure 5 has a series of four apertures (11) on the top side wall (3) through which air enters and leaves the container as the lid (1) and base (not shown) are pulled apart.
  • Figure 6 has one large aperture (11) instead of the four smaller apertures in figure 5.
  • Figures 7a, 7b and 7c are schematics to demonstrate how the lid (1) and base (8) are pulled apart and how air inside the container is momentarily under rapid pressure change as the lid and base are pulled apart and then puished together.
  • the resulting air pressure changes cause air inside the container (I), and which contains concentrated fragrance from the unit dose products (14), to be agitated such that air passes out through the apertures (11) and into the ambient air (E) where the enhanced fragrant effect is perceived by the consumer.
  • the apertures are open when the lid and base are fully separated and are fully closed when the lid and base are fully engaged.
  • the aperture and the top edge of the base (12) are such that there remains a possibility that the aperture remains closed but the base and lid are partly apart.
  • Figure 8 shows a box (20) comprising a number of unit dose detergent pouches (21) and with a closing lid (22).
  • Figure 9 shows a series of three boxes (20) inside a case (23).
  • Figure 10 shows a load of layers of cases (23) on a pallet (24). Each layer consists of twenty cases (23) and the load consists of six layers.

Abstract

A package comprising a first container having an average length (L1), an average depth (D1) and an average height (H1) and comprising at least 50% wt. biodegradable material and, contained within said first container, a plurality of second containers each having an average length (L2), an average depth (D2) and an average height (H2) and comprising at least 50% wt. biodegradable material, at least one of each said second containers comprising a plurality of unit dose detergent pouches, and wherein said unit dose detergent pouches comprise from 1 to 25% wt. pouch water, and a fragrance.

Description

PACKAGE CONTAINING WATER-SOLUBLE CAPSULES
This invention relates to a product comprising bulk quantities of laundry or machine dish wash water-soluble capsules made from water-soluble film, contained in biodegradable packaging.
WO 02/20361 discloses an article of manufacture or package for containing and dispensing unitized doses of a laundry additive in article form. The package comprises a plurality of laundry additive articles, means for preventing exposure of the laundry articles to moisture prior to dispensing or use, and a container having a compartment and closure for enclosing the plurality of articles in the container. The container can be a tub, tray, jar, bottle, pouch, bag, box or some combination thereof and will preferably be made from polymeric materials. Optionally, the container may have dividing means for subdividing the container compartment into subcompartments so that the container can accommodate a variety of different additives in separate compartments. Optionally, but preferably, the container closure will have child resistant features as well as a window or other means for viewing the contents of the package when the closure is in a closed position. The means for preventing exposure of the articles to moisture may simply be a seal about the container closure or it may comprise separate a seal for each laundry additive article. Seals for the individual articles will preferably be a tray with a recess formed therein for receiving the laundry additive article and a polymeric film adhered to the tray over the recess to seal the article within.
WO 2016/198978 discloses a child-proof container comprising: a housing made of sheet material defining an inner volume and exhibiting a passage opening delimited by a free edge, a closing system made of sheet material configured for defining a closed and opened conditions of the housing, the closing system comprises a tab having a closing portion movable with respect to the housing free edge. The container comprises a safety device made of sheet material exhibiting: a first hooking portion carried by the tab, a second hooking portion engaged with the housing. The first and second hooking portions are configured for stably engaging with each other in the closed condition of the closing system and for defining a safety condition: the first and second hooking portions, in the safety condition, are configured for preventing the closing system from switching from the closed to the opened condition.
EP-A1-3 778412 (P&G) discloses consumer product that includes a container and at least one water-soluble unit dose article.
DE 297 05 829 (Oro Producket) discloses packaging for cleaning tablets.
DE 100 18 003 (Henkel) discloses a package for tablets of washing or cleaning composition in a box in which the tablets are packed as flat layers. The box is sufficiently compact to protect the tablets from shock. The top of the package may be fitted with a lid made from thin material or have a paper of plastic outer wrapper.
WO 2020/109079 (Unilever) discloses a laundry or machine dish wash or machine dishwash product comprising a tray containing a plurality of water-soluble capsules, each capsule containing at least two compartments, said compartments containing a substrate treatment composition and being located side-by-side extending transversely across the capsule, and the tray package comprising a substantially level base whereby the capsules are located side-by-side on the base.
Water soluble capsules are highly convenient, however, certain compositions are required to have printing thereon to indicate directions and other information to the consumer.
It is also desirable to limit access to the capsules particularly with respect to children, by incorporating child resistent features into the packaging. Current capsules are generally packaged in plastic tubs or plastic bags. It is impervious to water and the contained formulations. Rigid packacing may currently be recycled, however there is an environmental need to reduce the use of plastic. Compostable or biodegradable material offers environmental advantages, however due to its very nature (is tendancy to biodegrade) the use of such materials is problematic. If capsules leak from e.g. an imperfect seal, the packaging can become weakened by premature degradation of the biodegradable material if this comes into direct contact with leaked formulation. The mechanical properties of the pack are compromised. Under the weight of bulk quantities of capsules, and the likely egress of moisture from the capsules, the integrity of any child resistent closures can be compromised. The pack may thus become more accessible to children which is undesirable.
Further, whereas plastic containers are typicaly sealed tightly and so exhibit very low moisture vapour transmission rates pulp or fibrous containers are prone to high water transmission properties. This means that that the likelihood of water ingress and/or egress is much higher and so there is an impact on the physical performance of the uinit dosed products inside such a fibre or pulp based container. A particular characteristic is that unit dose products containing detergent compositions having from 5 to 15% water tend to stick to the inside surface of such containers on storage. This sticking is caused by the exterior surface being negatively affected by the water transmission when stored in a paper-based container. By printing on the inside we have found that this characteristic is markedly reduced. That the loation of the print is instrumental in the perfdormance of a unit dosed product in a biodegradable pack such as pulp or fibre is unexpected but welcome.
Accordingly, and in a first aspect there is provided a package comprising a first container having an average length (L1), an average depth (D1) and an average height (H1) and comprising at least 50% wt. biodegradable material and, contained within said first container, a plurality of second containers each having an average length (L2), an average depth (D2) and an average height (H2) and comprising at least 50% wt. biodegradable material, at least one of each said second containers comprising a plurality of unit dose detergent pouches, and wherein said unit dose detergent pouches comprise from 1 to 25% wt. pouch water, and a fragrance.
We have surprisingly found that it is possible to provide a more stable liquid unit dose detergent product by storing it in not just one but two biodegradable containers.
By ‘an average’ when referring to length, height and depth is meant the average for any one container. It is possible for the length, height or depth to be variable depending on the shape of the containers and the manufacturing accuracy. However, it is preferred that the first container is substantially cuboid in shape and so the length, height or depth is substantially uniform and so the average has a small standard deviation. Similarly, it is preferred that the second container is substantially cuboid in shape for the same reason.
By ‘comprising at least 50% wt. biodegradable material’ is mean that the material forming the container comprises at least 50% wt. of a material which is biodegradable. This is not meant to include any contents of either of the containers. For example, the detergent pouches in the second container is noit included in calculating the biodegradable material content of the second container.
The effect is particulary suitable to containers comprising biodegradable materials such as cellulose based materials, e.g. paper, pulp and paperboard and for where the pouches comprise from 1 to 25% wt. water.
As used throughout this specification including the claims, the folowing terms are defined: articles “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
“ambient-active” in the context of enzymatic compositions, is intended to mean active at temperature no more than 40°C, preferably no more than 30°C, more preferably no more than 25°C most preferably no more than 15 °C but always greater than 1 degree Celcius and “active” means effective in achieving stain removal, also defined herein.
"Biodegradable" means the complete breakdown of a substance by microorganisms to carbon dioxide water biomass, and inorganic materials.
"Child resistant closure mechanism" refers to any mechanism whereby access to the water soluble capsules is reduced so that the water soluble cannot be readily removed, by infants and children. This preferably comprises any suitable arrangement that requires individuals to perform multiple cognitive and manipulative steps to open so as to prevent a child from inadvertently accessing the capsules.
“Compostable” means a material that meets the following three requirements: (1) is capable of being processed in a composting facility for solid waste; (2) if so processed will end up in the final compost; and (3) if the compost is used in the soil the material will ultimately biodegrade in the soil.
“Enzyme” includes enzyme variants (produced, for example, by recombinant techniques). Examples of such enzyme variants are disclosed, e.g., in EP 251 ,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist- Brocades NV).
“Essentially free of a component” means that no amount of that component is deliberately incorporated into the composition.
"Film" refers to a water soluble material and may be be sheet-like material. The length and width of the material may far exceed the thickness of the material, however the film may be of any thickness.
"Renewable" refers to a material that can be produced or is derivable from a natural source which is periodically (e.g., annually or perennially) replenished through the actions of plants of terrestrial, aquatic or oceanic ecosystems (e.g., agricultural crops, edible and non-edible grasses, forest products, seaweed, or algae), or microorganisms (e.g., bacteria, fungi, or yeast).
"Renewable resource" refers to a natural resource that can be replenished within a 100 year time frame. The resource may be replenished naturally, or via agricultural techniques. Renewable resources include plants, animals, fish, bacteria, fungi, and forestry products. They may be naturally occurring, hybrids, or genetically engineered organisms. Natural resources such as crude oil, coal, and peat which take longer than 100 years to form are not considered to be renewable resources.
“Thermoforming” means a process in which the film is deformed by heat, and in particular it may involve the following: a first sheet of film is subjected to a moulding process to form an enclosure in the film e.g. forming a recess in the film. Preferably this involves heating prior to deformation. The deformation step is preferably enabled by laying the film over a cavity and applying a vacuum or an under pressure inside the cavity (to hold the film in the cavity). The recesses may then be filled. The process may then include overlaying a second sheet over the filled recesses and sealing it to the first sheet of film around the edges of the recesses to form a flat sealing web, thus forming a capsule which may be a unit dose product. The second film may be thermoformed during manufacture. Alternatively the second film may not be thermoformed during manufacture. Preferably, the first water-soluble film is thermoformed during manufacture of the unit dose article and the second water-soluble film is not thermoformed during manufacture of the unit dose article.
“Unit dose” means an amount of composition suitable to treat one load of laundry, such as, for example, from about 0.05 g to about 100 g, or from 10 g to about 60 g, or from about 20 g to about 40 g.
“Water-soluble” means the article (film or package) dissolves in water at 20°C.
Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
Except in the examples and comparative experiments, or where otherwise explicitly indicated, all numbers are to be understood as modified by the word “about”.
All percentages ( expressed as “%”) and ratios contained herein are calculated by weight unless otherwise indicated. All conditions herein are at 20°C and under the atmospheric pressure, unless otherwise specifically stated. All polymer molecular weights are determined by weight average number molecular weight unless otherwise specifically noted.
Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated. In specifying any range of values or amounts, any particular upper value or amount can be associated with any particular lower value or amount. The first and second container material
The containers comprises a biodegradable material. The biodegradable material may comprise a biodegradable polymer. The containers may comprise entirely biodegradable material such that the package in its entirety can be completely broken down of a substance by microorganisms such as bacteria, fungi, yeasts, and algae; environmental heat, moisture, or other environmental factors to carbon dioxide water biomass, and inorganic material. Preferably from 90-99.9% wt. of each container, more preferably from 96-99.9% wt. consists of pulp or fibrous materials such as paper, card or board. The remainder comprising barrier materials and/or information labels. However, it is preferred that any label also comprises biodegradable materials as described herein preferably paper or other fibrous or pulp based material.
If desired, the extent of biodegradability may be determined according to e.g. ASTM Test Method 5338.92.
Suitable biodegradable materials comprises paper, card or board from cellulose or derivatves; and may optionally comprise lignin or derivatives; biodegradable plastics, such as bioplastics which are preferably oxo-biodegradable plastics wherein biodegradation results from oxidative and cell-mediated phenomena, either simultaneously or successively (as distinct from oxo-degradation which is degradation resulting from "oxidative cleavage of macromolecules" such that the plastic fragments but does not biodegrade except over a very long time). The material may also be compostable.
The biodegradable material comprises a bio polymer such as polylactic acid (PLA) which may be from e.g. corn starch, cassava, sugarcan etc; polyhydroxyalkanoate (PHA) including include poly-3-hydroxybutyrate (PHB or PH3B), polyhydroxyvalerate (PHV), and polyhydroxyhexanoate (PHH). A PHA copolymer called poly(3-hydroxybutyrate-co-3- hydroxyvalerate) (PHBV); biodegradable polyesters e.g. polycaprolactone (PCL), Polybutylensuccinat (PBS) polyvinylalcohol (PVA); polybutylenadipate-terephthalate (PBAT); cellulose based materials e.g. ethyl cellulose, cellulose acetate (true) cellophane (made from wood, cotton or hemp); starch or starch based materials (from potato, rice, corn etc); sugar cane bagasse, and any combination or mixture thereof. For example PCL may be mixed with starch to improve biodegradability of the PCL. The biodegradable material may comprise any biodegradable polyolefin.
Biodegradable petroleum based plastics inlcude: polyglycolic acid (PGA), a thermoplastic polymer and an aliphatic polyester; polybutylene succinate (PBS), which is a thermoplastic polymer resin that has properties comparable to propylene; polycaprolactone (PCL), as this has hydrolysable ester linkages offering biodegradable properties. It has been shown that firmicutes and proteobacteria can degrade PCL. Penicillium sp. strain 26-1 can degrade high density PCL; though not as quickly as thermotolerant Aspergillus sp. strain ST-01. Species of Clostridium can degrade PCL under anaerobic conditions; Polybutylene adipate terephthalate (PBAT) which is a biodegradable random copolymer.
The most preferred biodegradable materials include paper, card or board from cellulose or derivatves.
Preferably the biodegradable material is bio-based according to 14C or radiocarbon method (EU: EN 16640 or CEN/TS 16137, International: ISO 16620-2, US: ASTM 6866). Preferably the biodegradable material is made from a renewable resource.
The container material may comprise an outer layer to provide additional protection or sheen (for biodegradable materials with a matt finish such as paper board). This layer preferably comprises a biodegradable polymer coating or varnish or film. Preferably the outer layer comprises any of the bio polymers described above. Preferaby the outer layer is at least present on some or all of the internal surfaces of the receptable.
The term fibrous or pulp material includes paper or paperboard: specifically. Preferably, the fibrous or pulp material is in the form of a sheet and is formed as a blank which is folded to form a closeable container. The closeable container can be formed from a one- piece blank or may contain multiple pieces.
The material useable for making the container can exhibit a grammage from 100 and 500 g/m2, preferably from 200 and 400 g/m2. The sheet paper material used for making the container can, in an embodiment variant thereof, be covered, for at least part of the first and/or second prevalent development surfaces, by a coating, for example a film, whose aim is to balance water transfer between the interior and the exterior of the container with leakage protection. Advantageously but not in a limiting way, the coating could comprise and extrusion coating on one or both sides (inner side and/or outer side) of the paper material defining the container, with values which can for example range between 10 and 50 micrometer of the coating material. The coating plastic material can be for example selected among the following materials: LDPE, HDPE, PP, PE.
Preferred barrier materials include polymeric materials selected from polylactic acid, polyhydroxyalkanoate, a polyester, polybutylenadipate terephthalate, a cellulose based material, a starch based material, a sugare cane based material and mixtures thereof.
In a preferred embodiment the biodegradable material comprises at least two layers, more preferably at least three.
The biodegradable material preferably comprises a bleached layer and which bleached layer comprises an outer layer of the biodegradable material. By outer layer is meant that the bleached layer is physically outermost. A second layer comprises a non-bleached layer which is also exterior but opposite the bleached layer. The biodegradable material thus preferably comprises a bleached and un-bleached layer on opposing sides. Between the bleached and unbleached layer is preferably a filler layer comprised of post-consumer recycled material and which is preferably paper-based also.
Cellulose fibre length
Preferably, the biodegradable material used in the present invention is paper-based. By paper-based is meant that it derives from cellulose-containing natural sources such as trees. The physical properties of the paper, or pulp-based product depend largely on the nature of the cellulose fibres which are separated from lignin during processing. This may be influenced by the cellulose source, i.e. which type of tree is the original source, and also what processing has been carried out. There is a common tendency to characterise paper as being either recycled or virgin, non-recycled, however, this is misleading since it is the physicality of the cellulose fibre which is key to its performance in the context of this invention. For example, hardwood fibres are typically good for smoothness and formation and have short fibres. Typical hardwood sources include eucalyptus, birch, maple, beech and oak. In contrast softwood fibres are good for strength and stiffness and include those sourced from pine, spruce and fir.
Accordingly, where the at least one layer of biodegradable material is paper-based, it is preferred that the weight average fibre length of the cellulose in the paper is at least 2 mm, more preferably from 3 to 5mm.
Cellulose fibre length is characterised according to the test referred to by TAPPI (Technical Association of the Pulp and Paper Industry) as T 271 om-18 which is a method designed to measure the fibre length of pulp and paper by automated optical analyser using polarised light. The test is an Approved Americal National Standard (ANSI).
Where the package comprises co-operating base and lid members it is preferred that the base contains a paper-based layer with a weight average fibre length of at least 2mm, more preferably from 3 to 5mm. We have surprisingly found that this superior fibre length provides improved performance when the package is designed for storing liquid detergent capsules, particularly in the context of water containment in the event of leaking. This is particularly important when the package design is required to have child safety features since poor water containment may lead to package weakness and hence easier access to contents.
Where the package comprises a separate lid part, it is preferred that the lid comprises paper with a weight average cellulose fibre length of from 1 to 5mm.
In a preferred embodiment, the lid comprises from 80%, more preferably from 95% wt. of the lid paper with a weight average cellulose fibre length of from 1 to 5mm.
In a preferred embodiment, the base comprises from 80%, more preferably from 95% wt. of the base paper with a weight average cellulose fibre length of at least 2mm.
Printing
The unit dosed product is printed to provide useful information to the consumer. The printing is essentially on an interior of the capsule or product when formed. Typically, the printing is carried out on a roll of film before the product is manufactured and such that the printed surface is the surface which faces the detergent composition when the final product is formed.
The area of print may cover the entire film or part thereof. The area of print may comprise a single colour or maybe comprise multiple colours, even three colours. The area of print may comprise white, black and red colours. The area of print may comprise pigments, dyes, bluing agents or mixtures thereof. The print may be present as a layer on the surface of the film or may at least partially penetrate into the film. The area of print may be present on the outside of the unit dose article in addition to the inner surface of the film, i.e. in contact with the liquid laundry detergent composition.
Preferably, the film comprises a phthalocyanine based pigment. Such a pigment is used to print on to the film. A preferred pigment inlcudes SpectraRAY® F UVDB354 commercially available from Sun Chemical and is a phthalocyanine based pigment. It is referred to as CAS 147-14-8.
The unit dose article may comprise at least two films, or even at least three films, wherein the films are sealed together. The area of print may be present on one film, or on more than film, e.g. on two films, or even on three films.
The area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing. Preferably, the area of print is achieved via flexographic printing, in which a film is printed, then moulded into a unit dose article.
The container contains a plurality of water-soluble capsules, each water-soluble capsule comprising a detergent composition within a sealed compartment which is preferably filled to at least 60% of the volume of the compartment.
Preferably, the container comprises 10 or more of said unit dosed products and a closure.
With this arrangement, water soluble capsules with performance levels of substrate treatment liquid can be filled at speed and packaged in large quantities to reduce manufacturing costs but can be packaged using biodegradable materials and still minimizing deleterious effects leaking capsules. This is suprising considering the similarity in the compositions forming the capsule film and also the polymers used in the biodegradable packaging.
The selected range of viscosity is ensures filling times do not slow manufacturing times so as to render the capsules too costly. At the same time, the applicants have found if the liquid is thickened to a viscosity as specified in the first aspect of the invention, this minimizes splashing of the capsule seal areas and also minimizes the formation of waves (in the formulation) which might also affect the seal integrity, as the capsules are filled at high speed.
The container
The container preferably has a minimum compression strength of 300N. The thickness (or caliper) of material will be chosen to provide the necessary structural rigidity to the package.
The container may comprise any suitable rigid structure, such as a tub or carton or box, tubular structure, or bottle. However, preferred containers will be formed from a blank which is formed into a container. Preferably, the container will comprise a base, opposing pairs of walls and a closable lid. Preferably, the lid is integral with the base or formed from a separate component.
The walls of such structures may be foamed or moulded. It may comprise laminate structures (e.g. built up in layers ). It may comprise fibrous material such as fibres/pulp which is glued, compressed and/or enclosed in stiff walls. Fluting may be incorporated e.g. corrugated paper board. For paperboard, the grammage is preferably at least 200gsm (grams per square meter) preferably at least 225 gsm.
Preferably, the first container comprises corrugated cardboard material.
The structure may be foldable between an erected structure to provide a functioning receptacle and a flattened structure which assists in transporation and ease of disposal later so that mulitple packs could be flattened and stacked ready for transport to a biodegradation site. The biodegradable container may comprise a combination of a fibrous and/or pulp material and a polymeric material. One example may be a material comprises one or more fibrous and/or pulp layers in combination with one or more polymeric materials (all materials being biodegradable). There may be one or more layers of fibre and/or pulp sandwiched between layers of polymeric material. The material may be virgin or recycled.
The package comprises a first and second container. A plurality of second containers is contained within the first container.
The first container preferably comprises from 2 to 10 second containers and more preferably from 2 to 6 second containers. Most preferably, the first container contains 4 or 4 second containers.
Preferably the second containers are disposed in the first container such that their respective lengths are orthogonal to one another. In other words, the length of the second container is along the depth of the first container.
Accordingly, it is preferred that in one first container, the average L2 is from 80 to 99% of D1.
Preferably, the first container contains a plurality of second containers arranged horizontally. By this is meant that there is only one layer of second containers and that no second container is disposed on top or underneath another second container.
Accordingly, it is preferred that in one first container, the average H2 is from 80 to 99% of the average H1.
Preferably, the second containers are disposed within the first container such that there is a headspace of from 2 to 10 mm. By headspace is meant that the space between the uppermost part of the plurality of second containers (the uppermost surface defined by the depth and length) and the opposing surface of the first container. Preferably the space between the inner side surface of the first container and the nearest second container is from 1 to 3mm. The first container is preferably cuboidal in shape. This means that it has a substantially uniform length, depth and height. Preferably, the length is longer than the depth so that it is formed by alternating two opposing small side walls and two opposing longer side walls. The bottom edges of these two sets of opposing side walls are attached to a base to form a container which is open at the top. The top may be closed by any regular lid such as a hinged lid or separate lid.
The second container is preferably cuboidal in shape. This means that it has a substantially uniform length, depth and height. Preferably, the length is longer than the depth so that it is formed by alternating two opposing small side walls and two opposing longer side walls. The bottom edges of these two sets of opposing side walls are attached to a base to form a container which is open at the top. The top may be closed by any regular lid such as a hinged lid or separate lid.
Dimensionally, it is preferred that the second container comprises a top surface which, when in a closed configuration, is from 9 to 15 cm deep. This depth is an average across the full length of the top surface. This depth is preferred because the biodegradable containers tends to flex more easily than the more rigid plastic packaging containers and we have found that this dimension correlates with the optimal consumer behaviour when opening the container to access the contents by using appropriate force and so not damaging the biodegradable container or the contents within. This is particular the case when the child resistant closure requires simultaneous pressing of unlocking zones on opposing side walls. Such opposing pressures may damage the contents of the second containers by pressurising capsules which are already under water transmission stress.
Where the second container comprises a separate lid and base it is preferred that the lid comprises a top sheet and depending pairs of opposing walls such that it resembles five sides of a cube. Similarly, it is preferred that the base comprises a bottom sheet and upstanding pairs of opposing walls such that it also resembles five sides of a cube.
In this way, the lid and the base co-operate to form a closed second container with the pairs of opposing walls for each of the lid and the base providing double protection against the exterior as the lid and base co-operate telescopically. Preferably, the lid provides the outermost surface when the base and lid are telescopically engaged to close the package.
Preferably, the lid of the second container comprises a bleached layer on the outermost layer and an unbleached layer on the innermost layer. In such a configuration the bleached layer presents the outermost surface of the package for the five sides that the lid makes up. Preferably, this outermost layer comprises printed parts.
Preferably, the bleached layer also comprises a barrier material as described below. More preferably, the innermost surface comprises an unbleached layer and most preferably is not treated with a barrier material.
Preferably, the base of the second container comprises a bleached layer on the innermost layer and an unbleached layer on the outermost layer. In such a configuration the bleached layer presents the innermost surface of the package for the five sides that the base makes up. Such an innermost layer is physically in contact with at least some of the laundry unit dosed products.
Preferably, the bleached layer also comprises a barrier material as described below. More preferably, the innermost surface of the base comprises an unbleached layer and most preferably is also treated with a barrier material.
Preferably, the lid of the second container comprises at least one aperture through which air from the exterior of the container can enter the container during separation of the lid and the base, and wherein fragrance inside the container can exit the container.
The aperture is preferably nearer the top surface of the lid on the side wall than the bottom edges of the side wall. This permits more air to enter the headspace in the container and therefore generates more air flow into the container when the lid is drawn from the base. Further, more air is expelled from the space between the base and the lid when the container is closed. This similarly expels more air from inside the container through the apertures on closing. The result is a greater expulsion of fragrance cloud from the container on opening and closing of the container. Preferably, the lid has a top sheet and two pairs of opposing walls attached thereto, and at least one of the opposing side walls comprises a pair apertures.
The lid and base of the second container are preferably telescopically engaging. This means that the dimensions of each are such that one slides within the other when the two are drawn apart or pressed towards one another. Preferably, the lid slides exterior to the base when the two are engaged.
Preferably, the base and the lid of the second container comprise side walls which extend for a substantially similar distance such that when in a closed configuration, the lid forms the top and sides to the container with the base visible only at its bottom, the side walls to the base being inside the side walls to the lid and so being, for the most part, not visible.
Preferably, the side walls to the base of the second container extend further than the distance between the aperture(s) on the side wall(s) of the lid such that when in a closed configuration the side wall(s) of the base close the aperture(s).
More preferably, the aperture is located such that the lid and base can be partly pulled apart and the aperture remains closed by the base side wall. This means that the base side wall extends further that the uppermost part of the aperture and the distance beyond the uppermost part of the aperture determines the amount the base and lid can be pulled apart before the aperture is exposed by appearing above the edge of the base side wall.
The second container and first container are preferably stored at from 50 to 55% relative humidity and preferably at a temperature of from 20 to 23 C when used in the manufacture of a completed package.
During manufacture of the package the second container is preferably formed from a blank into a closeable container as described above. The second container is filled with unit dose detergent pouches and then closed. The humidity and temperature conditions are important for the control of water migration both into and out of the containers and pouches during storage after manufacture of the package. If the conditions are not right, too much water may leave or enter the pouches resulting in pouch failure. However, we have found that using a biodegradable first and second container, product failure, in particular sticking of pouches is reduced.
Separately, the first container is also formed from a blank and maintained ready for use as appropriate.
The first container is presented such that second containers filled with a plurality of pouches may be placed inside the first container. When the first container is filled it can be closed to form a single package.
Multiple packages may be stacked onto a pallet and preferably shrink wrapped for transport and storage.
Barrier Materials
The second containers preferably comprise a barrier material for improved performance. More preferably the barrier material is on the exterior of the second container and not on the interior.
Barrier materials are preferably employed to provide humidity control and are usually applied on the board surface on one or both sides, depending on the end use.
Dispersion barrier
Dispersion is a new barrier option without the traditional coating layers. The surface is finished with water-based dispersion technology. That makes the board liquid and grease resistant during its use while it breaks down in a recycling process like paper, providing high yield of recovered fiber when products are recycled.
Green PE coating
PE Green is a fully renewable option to traditional PE (polyethylene) and provides excellent humidity protection. PE Green is made of renewable, plant-based raw material, so you get a barrier packaging that is 100% renewable as well as recyclable. In converting, it performs the same way as PE and is therefore easy to introduce to production by customers. PE coating
PE, or polyethylene, is the most commonly used barrier coating. Polyolefin barriers, such as LDPE and HDPE polymers, provide excellent humidity protection.
Biodegradable coating
Biodegradable coatings are tailor-made polymers offering humidity, oxygen and grease barriers and sealability. Our biodegradable coatings are compostable. However, the biopolymer-coated paperboard can be easily recycled, too, which is usually the preferred end-of-life option.
Biopolymers can be produced from natural crops or from fossil raw materials. But the key is that in the end the biopolymer-coated paperboard breaks down to humus and CO2. If you choose our biopolymer-coated paperboard, you get a product that is recyclable or it can be collected among other compostable waste that goes into industrial composting.
PET coating
PET provides a barrier and performs other functions. Black or white PET coatings that provide heat resistance act as an excellent grease barrier and possess solid WVTR (water vapour transmission rate) properties.
PP coating
PP or polypropylene coating offers heat resistance for microwave oven and is also suitable for deep freezing. Good sealing properties secure performance in use.
However, it is preferred that the barrier material comprises less than 5% wt. more preferably less than 1% and preferably substantially zero PE, PP or PET.
In a preferred embodiment the barrier comprises a water-based dispersion.
Water-based barrier coatings seal the substrate surface and protect the packaging from external and internal influences. The packaging remains attractive and can fulfil its functionality without restrictions. Depending on the product, our barrier coatings offer adequate protection against fat, water, water vapor, dairy products, alcohol, oil or alkali for the lifetime of the packaging. Due to their versatility, they are used for a wide range of applications. Barrier coatings are available for packaging converters and printers or the paper industry.
Preferably, the base of the package comprises a layer of water-based dispersion barrier.
Preferably, the barrier material on the base is applied to an inner surface.
Preferably, the lid component comprises less than 1 % wt. of the barrier material, more preferably a water-based dispersion barrier.
More preferably, the dispersion barrier component comprises a thermoplastic elastomer (TPE). Said TPE is preferably dispersed in the barrier component.
The advantage of a TPE containing barrier material is that it is dispersed in the barrier component such that layers are not required. The dispersion is applied in one go.
An alternative barrier component may comprise a multi-layer approach. Such barriers include those commercially available from Weilburger under the Senolith® brand. Examples are described in WO 2018/069413. Preferably, these would be applied by digital print, ink duct damping unit, flexo printing, inline - offline coating unit, and web offset as well as gravure.
Such barrier materials might be applied as a wet layer primarily. The dispersion is preferably an aqueous dispersion, in particular a PTFE dispersion, perfluoroalkoxy (PFA) polymer dispersion, and/or fluorinated ethylene-propylene (FEP), copolymer of hexafluoropropylene.
When a layer is applied in a moist form, a surface film is formed which can then be cured. A first layer can have a resin in order to improve adhesion to a substrate. Exemplary suitable resins are, without limitation, polyamideimide, polyphenylene sulfide (PPS), polyether sulfone (PES), polyether ether ketone (PEEK), silicone resin and I or polysulfone. The proportion of such a resin in a moist composition to be applied as a layer, in particular a dispersion, is preferably about 3 to 8 percent by weight of the composition. The second polymer is applied to the first layer in a liquid. The dispersion can contain further constituents mentioned herein. The dispersion is preferably an aqueous dispersion, in particular a PTFE dispersion, perfluoroalkoxy (PFA) polymer dispersion, and I or fluorinated ethylene-propylene (FEP, copolymer of hexafluoropropylene and tetrafluoroethylene) dispersion. The proportion of the second polymer in a moist composition to be applied as a layer, in particular a dispersion, is preferably about 40-60 percent by weight. The first layer may have been dried, partially dried or not dried prior to application of the second layer. In an advantageous variant, the second layer is applied to the first layer as long as the first layer is still moist, in particular as long as the first layer is still moist.
Preferably, both the lid and the base of the second container comprise multi-layer barrier material such as those described above.
Preferably, the barrier material is applied to the exterior of lid and/or base. More preferably, the barrier material is applied to at least 50%, more preferably, from 70%, especially preferably from 90% and most preferably from 95% of the exterior surface of the lid.
More preferably, the barrier material is applied to at least 50%, more preferably, from 70%, especially preferably from 90% and most preferably from 95% of the exterior surface of the base.
More preferably, the base comprises barrier material on the exterior and the interior surface.
Adhesive
Preferably, the sedcond container is folded into shape and maintained in shape with the help of adhesives. Adhesives are common in the art but preferably we mean hot melt adhesive, reactive hot melt adhesive, thermosetting adhesive, pressure sensitive adhesive, contact glue adhesive. Preferably, the adhesive is a hot melt pressure sensitive adhesive. Preferably, the hot melt pressure sensitive adhesive is suitable to tackify and bond to a range of materials making up the packaging.
Total Content
Preferably, the barrier material and adhesive comprises from 0.1 to 5% wt. of the total second container plus adhesive and barrier material, i.e. without the unit dose pouches. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total container plus adhesive and barrier material.
Preferably, the barrier material and adhesive comprises from 0.1 to 5% wt. of the lid plus adhesive and barrier material. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 0.9 to 1.4% wt. of the lid plus adhesive and barrier material.
Preferably, the barrier material and adhesive comprises from 0.1 to 5% wt. of the base plus adhesive and barrier material. More preferably, the barrier material and adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.6% wt. of the base plus adhesive and barrier material.
Preferably, the barrier material comprises from 0.1 to 5% wt. of the total second container plus barrier material and adhesive, minus the pouches. More preferably, the barrier material comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total second container plus barrier material and adhesive.
Preferably, the barrier material comprises from 0.1 to 5% wt. of the lid plus barrier material and adhesive. More preferably, the barrier material comprises from 1 to 3% wt. and most preferably from 1.4 to 2.2% wt. of the lid plus barrier material and adhesive. Preferably, the barrier material comprises from 0.1 to 5% wt. of the base plus barrier material and adhesive. More preferably, the barrier material comprises from 0.3 to 3% wt. and most preferably from 0.5 to 1.5% wt. of the base plus barrier material and adhesive.
Preferably, the adhesive comprises from 0.1 to 5% wt. of the total package plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.5% wt. of the total package plus adhesive and the barrier material.
Preferably, the adhesive comprises from 0.1 to 5% wt. of the lid plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.2 to 2.1% wt. of the lid plus adhesive and the barrier material.
Preferably, the adhesive comprises from 0.1 to 5% wt. of the base plus adhesive and the barrier material. More preferably, the adhesive comprises from 1 to 3% wt. and most preferably from 1.5 to 2.6% wt. of the base plus adhesive and the barrier material.
Preferably, the lid plus base comprises from 0 to 5% wt. polyolefin selected from PP, PE and PET. More preferably, the base plus lid comprises from 0 to 1% and most preferably zero PP, PE and PET.
The lid of the second container having a bleached outersurface and the base having a bleached inner surface means that the two unbleached surfaces are in contact with one another when the lid and base are cooperatively engaged. This facilitates sliding between the two, particularly in humid environments.
COBB values
The COBB test (T441 om-20, TAPPI) measures water absorptiveness of sized and corrugated fiberboard. The ‘Cobb value’ is the mass of water absorbed in a specific time by 1 m2 of substrate under 1 cm of water.
Preferably, the Cobb60 for the lid of the second container without barrier materials added is from 5 to 80 g/m2, more preferably from 6 to 50 g/m2 for the bleached surface and is from 5 to 100 g/m2, more preferably from 10 to 30 g/m2 for the unbleached surface.
Preferably, the Cobb60 for the lid of the second container with barrier materials added is from 0.1 to 1.5 g/m2, more preferably from 0.3 to 1.0 g/m2 for the bleached surface.
Preferably, the Cobb1800 for the lid of the second container without barrier materials added is from 80 to 200 g/m2, more preferably from 90 to 150 g/m2 for the bleached surface and is from 8 to 200 g/m2, more preferably from 100 to 130 g/m2 for the unbleached surface.
Preferably, the Cobb1800 for the lid of the second container with barrier materials added is from 80 to 200 g/m2, more preferably from 90 to 150 g/m2 for the bleached surface.
Preferably, the Cobb60 for the base of the second container without barrier materials added is from 0.5 to 15 g/m2, more preferably from 1 to 10 g/m2 for the bleached surface and is from 5 to 80 g/m2, more preferably from 10 to 30 g/m2 for the unbleached surface.
Preferably, the Cobb60 for the base of the second container with barrier materials added is from 0.1 to 1.5 g/m2, more preferably from 0.3 to 1.0 g/m2 for the bleached surface.
Preferably, the Cobb1800 for the base of the second container without barrier materials added is from 80 to 200 g/m2, more preferably from 90 to 150 g/m2 for the bleached surface and is from 8 to 200 g/m2, more preferably from 80 to 120 g/m2 for the unbleached surface.
Preferably, the Cobb1800 for the base of the second container with barrier materials added is from 0.5 to 20 g/m2, more preferably from 2 to 15 g/m2 for the bleached surface. We have surprisingly found that this superior fibre length provides improved performance when the package is designed for storing liquid detergent capsules, particularly in the context of water containment in the event of leaking. This is particularly important when the package design is required to have child safety features since poor water containment may lead to package weakness and hence easier access to contents.
Preferably the depth of the cartonboard for both lid and base of the second container is from 200 to 800 micrometers.
Preferably, the second container comprises an absorbent pad. Preferably, such an absorbent pad is placed at the bottom of the package in the base and before the unit dose articles are placed inside the package. The child resistant closure
The second container preferably includes a child resistent closure mechanism. Preferably, the child resistant closure mechanism comprises a first locking member on the receptacle (or base) and a second locking member present on the closure (or lid) whereby the members interlock.
The child resistent closure is obtained by specific structures to secure the closure in place (closing the receptacle) until a specific operation is carried out to disengage the closure.
Closures may include tops and lids with respective locking members that must be lined up in a certain orientation before they will release from locking members on the receptacle, or that require the performance of a certain sequence of steps or actions to actuate their release as described below.
The receptacle (or base) and closure may each incorporate at least one, and preferably at least two such locking members, and the package closed by the locking of mulitple pairs of locking members, each pair comprising one locking member on the closure interengaging with one locking member from the receptacle. Preferably each pair of locking members are operable independent of any at least one other pair of locking members, such that unlocking of one pair does not automatically unlock the other pair. Preferably, at least one pair are spaced apart from another pair at locations on the package, so for example, they may be located at diagonally opposed positions e.g. at or adjacent diagonally opposed edges/corners of a generally square/rectangular closure and/or at diametrically opposed positions on the edge of a circular closure.
Preferably the or each locking member comprises a resilient part so that it springs into and/or out of a locking engagement with a respective locking member.
Locking members may be selected from any projection and corresponding recess, catches, clips, latches, flaps, straps, hook and loop fastnerers, ratchet arrangements or lugs (on screw-threads), sliding arrangements, buttons, pull-tabs, keys, magnets or other locking component. Locking members may be biased e.g. spring loaded in the locking position (engaged with a respective locking member) so that pressure must be used to release them from each other. The receptacle and closure (or base and lid) may be attached to each other by a hinge or they may slide relative to each other and may even be unitary (e.g. with a living hinge) so that the closure is integral with the receptacle. The invention is particular preferred for such arrangements as softening the receptacle may result in mis-shaping and place stresses on the closure.
The specific operation may comprise a double and/or coordinated action on the closure. Preferably the child resistant closure is comprises locking members requiring double and/or co-ordinated action to open said closure. So for example the action required may be press-and-turn or press-and-pull mechanisms as are known by the person skilled in the art. For example the closure may be opened only when the closure or a part thereof, is both squeezed (radially) and rotated, or pushed (axially of the package) and rotated. Child resistent closures may comprise gripping or squeezing both sides of the closure and rotating at the same time to remove the closure. The closure may be retained on the receptable by respective internal threads carrying ratchets or wedge shaped lugs as locking members, and prevent the closure from being unscrewed from the neck opening unless the closure and/or neck is flexed diametrically whereby the locking members move apart in a radial direction and allow the closure being unscrewed.
Locking members may require a double and/or coodinated action to be unlocked. For example the packaging for example, press and slide, or press and pull. A removable locking key may be required to lock and/or unlock said interlocking members.
The package may comprises a sliding mechanism whereby the closure or at part thereof slides relative to the receptable or the receptacle slides within a closure (e.g. as a tray pack arrangement whereby capsules are stacked on the tray part) and there is provided at least one locking mechanism configured to lock the inner sliding part relative to an outer part of the packaging. The locking mechanism may be biased so that pressure must be exerted to release the tray. In some implementations, the inner sleeve includes a pull tab for removal of the inner sleeve from inside the outer sleeve.
Locking members may be arranged spatially to prevent child access. For example at least 2 pairs may be separated from each other by a distance corresponding to the average span between a thumb and forefinger of the hand of an adult. Only when all both pairs are released simultaneously it is possible to open the lid of the packaging container.
For box constructions, preferably the locking members are located at diagonally opposed corners of the box.
The child resistent closure may produce audible feedback such as a ‘click’ to signal to the user that the closure is in place.
Tear-resistant part
Preferably the pack comprises a dimensionally stable tear-resistent planar material (e.g. laminate) such a dimensionally stable tear-resistant paperboard laminate for making a tear-resistant packaging structure. The dimensionally stable tear-resistant paperboard laminate may include includes a tear-resistant biodegradable polymer core layer having first and second opposite sides. The dimensionally stable tear-resistant paperboard laminate further includes a first paperboard layer bonded to the first side of said tearresistant polymer core layer, with a first bonding medium. The dimensionally stable tearresistant paperboard laminate further includes a second paperboard layer bonded to the second side of the tear-resistant polymer core layer, with a second bonding medium. The tear-resistant polymer core layer has a thickness of at least 1 mil and a tear resistance of at least 350 grams of force in machine direction and of at least 400 grams of force in cross direction, as measured by the Elmendorf tear propagation test, as measured by the Elmendorf tear propagation test. Moreover, the first and second paperboard layers are substantially structurally identical.
Preferably, the tear-resistant polymer core layer has a thickness of approximately 3 mils and a tear resistance of about 1700 grams of force in machine direction and about 400 grams of force in cross direction, as measured by the Elmendorf tear propagation test.
Unit Dosed Product
A preferred unit dose pouch, its constituent parts and its manufacturing method are all described in WO 2015/153157. In detail, the water-soluble unit dose article comprises at least two water-soluble films and at least one internal compartment, wherein the compartment is enclosed by the films and has an internal space and wherein the compartment comprises a cleaning composition within the internal space.
The unit dose article has a height, a width and a length. The maximum of any of these dimensions is meant to mean the greatest distance between two points on opposite sides of the unit dose article. In other words, the unit dose article may not have straight sides and so may have variable lengths, widths and heights depending on where the measurement is taken. Therefore, the maximum should be measured at any two points that are the furthest apart from each other.
The maximum length is between 2cm and 8 cm, or even between 3cm and 7cm, or even between 3.5cm and 7cm.
The maximum width is between 2cm and 8cm, or even between 3cm and 7cm.
The maximum height is between 1cm and 5cm or even between 2cm and 4.5cm.
The unit dose article may have a weight of less than 35 g, or even between 10 g and 33 g, or even between 10 g and 30 g. The unit dose article may have a weight of between 10 g and 31 g, or even between 15g and 30g.
The unit dose article may comprise a gas, and wherein the ratio of the volume of said gas to the volume of the liquid laundry detergent composition is between 1:4 and 1:20, or even between 1 :5 and 1: 15, or even between 1 :5 and 1:9. Alternatively, the ratio of the volume of said gas to the volume of the liquid laundry detergent composition is between 1 :25 and 1 : 10, or even between 1 :20 and 15: 1 Without wishing to be bound by theory, it was found that by carefully regulating the volume of gas to volume of liquid the dissolution of the film and dispersion of the liquid laundry detergent composition in the wash liquor could be maximised.
Preferably, the unit dose article ruptures between 10 seconds and 5 minutes once the unit dose article has been added to 950ml of deionised water at 20-21 degrees centigrade in a 1L beaker, wherein the water is stirred at 350rpm with a 5cm magnetic stirrer bar. By rupture, we herein mean the film is seen to visibly break or split. Shortly after the film breaks or splits the internal liquid detergent composition may be seen to exit the unit dose article into the surrounding water.
Water-Soluble Film
The film of the unit dose article is soluble or dispersible in water, and preferably has a water-solubility of at least 50 percent, preferably at least 75 percent or even at least 95 percent, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns:
50 grams plus or minus 0.1 gram of film material is added in a pre-weighed 400 ml beaker and 245 ml plus or minus 1 ml of distilled water is added. This is stirred vigorously on a magnetic stirrer set at 600 rpm, for 30 minutes. Then, the mixture is filtered through a folded qualitative sintered-glass filter with a pore size as defined above (max. 20 micron). The water is dried off from the collected filtrate by any conventional method, and the weight of the remaining material is determined (which is the dissolved or dispersed fraction). Then, the percentage solubility or dispersibility can be calculated.
Preferred film materials are preferably polymeric materials. The film material can, for example, be obtained by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art.
Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum. More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof. Preferably, the level of polymer in the pouch material, for example a PVA polymer, is at least 60 percent. The polymer can have any weight average molecular weight, preferably from about 1000 to 1 ,000,000, more preferably from about 10,000 to 300,000 yet more preferably from about 20,000 to 150,000.
Mixtures of polymers can also be used as the film material. This can be beneficial to control the mechanical and/or dissolution properties of the compartments or pouch, depending on the application thereof and the required needs. Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer. Also suitable are mixtures of polymers having different weight average molecular weights, for example a mixture of PVA or a copolymer thereof of a weight average molecular weight of about 10,000-40,000, preferably around 20,000, and of PVA or copolymer thereof, with a weight average molecular weight of about 100,000 to 300,000, preferably around 150,000. Also suitable herein are polymer blend compositions, for example comprising hydrolytically degradable and water-soluble polymer blends such as polylactide and polyvinyl alcohol, obtained by mixing polylactide and polyvinyl alcohol, typically comprising about 1-35 percent by weight polylactide and about 65 percent to 99 percent by weight polyvinyl alcohol. Preferred for use herein are polymers which are from about 60 percent to about 98 percent hydrolysed, preferably about 80 percent to about 90 percent hydrolysed, to improve the dissolution characteristics of the material. Preferred film materials are polymeric materials. The film material can be obtained, for example, by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art. Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum. More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof. Preferably, the level of polymer in the pouch material, for example a PVA polymer, is at least 60 percent. The polymer can have any weight average molecular weight, preferably from about 1000 to 1 ,000,000, more preferably from about 10,000 to 300,000 yet more preferably from about 20,000 to 150,000. Mixtures of polymers can also be used as the pouch material. This can be beneficial to control the mechanical and/or dissolution properties of the compartments or pouch, depending on the application thereof and the required needs. Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer. Also suitable are mixtures of polymers having different weight average molecular weights, for example a mixture of PVA or a copolymer thereof of a weight average molecular weight of about 10,000-40,000, preferably around 20,000, and of PVA or copolymer thereof, with a weight average molecular weight of about 100,000 to 300,000, preferably around 150,000. Also suitable herein are polymer blend compositions, for example comprising hydrolytically degradable and water-soluble polymer blends such as polylactide and polyvinyl alcohol, obtained by mixing polylactide and polyvinyl alcohol, typically comprising about 1-35 percent by weight polylactide and about 65 percent to 99 percent by weight polyvinyl alcohol. Preferred for use herein are polymers which are from about 60 percent to about 98 percent hydrolysed, preferably about 80 percent to about 90 percent hydrolysed, to improve the dissolution characteristics of the material. Preferred films exhibit good dissolution in cold water, meaning unheated water straight from the tap. Preferably such films exhibit good dissolution at temperatures below 25 degrees centigrade, more preferably below 21 degrees centigrade, more preferably below 15 degrees centigrade By good dissolution it is meant that the film exhibits water-solubility of at least 50 percent, preferably at least 75 percent or even at least 95 percent, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns, described above.
Preferred films are those supplied by Monosol under the trade references M8630, M8900, M8779, M8310.
Naturally, different film material and/or films of different thickness may be employed in making the compartments of the present invention. A benefit in selecting different films is that the resulting compartments may exhibit different solubility or release characteristics. The film material herein can also comprise one or more additive ingredients. For example, it can be beneficial to add plasticisers, for example glycerol, ethylene glycol, diethyleneglycol, propylene glycol, sorbitol and mixtures thereof. Other additives may include water and functional detergent additives, including water, to be delivered to the wash water, for example organic polymeric dispersants, etc.
The film may comprise an area of print. The area of print may cover the entire film or part thereof. The area of print may comprise a single colour or maybe comprise multiple colours, even three colours. The area of print may comprise pigments, dyes, bluing agents or mixtures thereof. The print may be present as a layer on the surface of the film or may at least partially penetrate into the film. The unit dose article may comprise at least two films, or even at least three films, wherein the films are sealed together. The area of print may be present on one film, or on more than film, e.g. on two films, or even on three films.
The area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing. Preferably, the area of print is achieved via flexographic printing, in which a film is printed, then moulded into the shape of an open compartment. This compartment is then filled with a detergent composition and a second film placed over the compartment and sealed to the first film. The area of print may be on either side of the film.
The area of print may be purely aesthetic or may provide useful information to the consumer.
The area of print may be opaque, translucent or transparent.
Liquid Laundry Detergent Composition
The unit dose pouch or capsule comprises a laundry detergent composition, preferably a liquid or powdered detergent composition and most preferabyl a liquid detergent composition. The liquid composition may be opaque, transparent or translucent. Each compartment may comprise the same or a different composition. The unit dose article comprises a liquid composition, however, it may also comprise different compositions in different compartments. The composition may be any suitable composition. The composition may be in the form of a solid, a liquid, a dispersion, a gel, a paste, a fluid or a mixture thereof. The composition may be in different forms in the different compartments. Non-limiting examples of compositions include cleaning compositions, fabric care compositions, automatic dishwashing compositions and hard surface cleaners. More particularly, the compositions may be a laundry, fabric care or dish washing composition including, pre-treatment or soaking compositions and other rinse additive compositions. The laundry detergent composition may be used during the main wash process or could be used as pre-treatment or soaking compositions.
Laundry detergent compositions include fabric detergents, fabric softeners, 2-in- 1 detergent and softening, pre-treatment compositions and the like. Laundry detergent compositions may comprise surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, additional perfume and perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments and mixtures thereof. The composition may be a laundry detergent composition comprising an ingredient selected from the group comprising a shading dye, surfactant, polymers, perfumes, encapsulated perfume materials, structurant and mixtures thereof.
The liquid laundry detergent composition may comprise an ingredient selected from, bleach, bleach catalyst, dye, hueing dye, cleaning polymers including alkoxylated polyamines and polyethyleneimines, soil release polymer, surfactant, solvent, dye transfer inhibitors, chelant, enzyme, perfume, encapsulated perfume, polycarboxylates, structurant and mixtures thereof.
Surfactants can be selected from anionic, cationic, zwitterionic, non-ionic, amphoteric or mixtures thereof. Preferably, the fabric care composition comprises anionic, non-ionic or mixtures thereof.
The anionic surfactant may be selected from linear alkyl benzene sulfonate, alkyl ethoxylate sulphate and combinations thereof.
Suitable anionic surfactants useful herein can comprise any of the conventional anionic surfactant types typically used in liquid detergent products. These include the alkyl benzene sulfonic acids and their salts as well as alkoxylated or non-alkoxylated alkyl sulfate materials.
Suitable nonionic surfactants for use herein include the alcohol alkoxylate nonionic surfactants. Alcohol alkoxylates are materials which correspond to the general formula: R1 (CmH2mO)nOH wherein R1 is a Cs-Ci6 alkyl group, m is from 2 to 4, and n ranges from about 2 to 12. In one aspect, R1 is an alkyl group, which may be primary or secondary, that comprises from about 9 to 15 carbon atoms, or from about 10 to 14 carbon atoms. In one aspect, the alkoxylated fatty alcohols will also be ethoxylated materials that contain on average from about 2 to 12 ethylene oxide moieties per molecule, or from about 3 to 10 ethylene oxide moieties per molecule.
The shading dyes employed in the present laundry detergent compositions may comprise polymeric or non-polymeric dyes, pigments, or mixtures thereof. Preferably the shading dye comprises a polymeric dye, comprising a chromophore constituent and a polymeric constituent. The chromophore constituent is characterized in that it absorbs light in the wavelength range of blue, red, violet, purple, or combinations thereof upon exposure to light. In one aspect, the chromophore constituent exhibits an absorbance spectrum maximum from about 520 nanometers to about 640 nanometers in water and/or methanol, and in another aspect, from about 560 nanometers to about 610 nanometers in water and/or methanol.
Although any suitable chromophore may be used, the dye chromophore is preferably selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone, azo, oxazine, azine, xanthene, triphenodioxazine and phthalocyanine dye chromophores. Mono and di-azo dye chromophores are preferred. The shading dye may comprise a dye polymer comprising a chromophore covalently bound to one or more of at least three consecutive repeat units. It should be understood that the repeat units themselves do not need to comprise a chromophore. The dye polymer may comprise at least 5, or at least 10, or even at least 20 consecutive repeat units.
The repeat unit can be derived from an organic ester such as phenyl dicarboxylate in combination with an oxyalkyleneoxy and a polyoxyalkyleneoxy. Repeat units can be derived from alkenes, epoxides, aziridine, carbohydrate including the units that comprise modified celluloses such as hydroxyalkylcellulose; hydroxypropyl cellulose; hydroxypropyl methylcellulose; hydroxybutyl cellulose; and, hydroxybutyl methylcellulose or mixtures thereof. The repeat units may be derived from alkenes, or epoxides or mixtures thereof. The repeat units may be C2-C4 alkyleneoxy groups, sometimes called alkoxy groups, preferably derived from C2-C4 alkylene oxide. The repeat units may be C2-C4 alkoxy groups, preferably ethoxy groups.
For the purposes of the present invention, the at least three consecutive repeat units form a polymeric constituent. The polymeric constituent may be covalently bound to the chromophore group, directly or indirectly via a linking group. Examples of suitable polymeric constituents include polyoxyalkylene chains having multiple repeating units. In one aspect, the polymeric constituents include polyoxyalkylene chains having from 2 to about 30 repeating units, from 2 to about 20 repeating units, from 2 to about 10 repeating units or even from about 3 or 4 to about 6 repeating units. Non-limiting examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
The dye may be introduced into the detergent composition in the form of the unpurified mixture that is the direct result of an organic synthesis route. In addition to the dye polymer therefore, there may also be present minor amounts of un-reacted starting materials, products of side reactions and mixtures of the dye polymers comprising different chain lengths of the repeating units, as would be expected to result from any polymerisation step.
The compositions can comprise one or more detergent enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, beta -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof. A typical combination is a cocktail of conventional applicable enzymes like protease, lipase, cutinase and/or cellulase in conjunction with amylase. The laundry detergent compositions of the present invention may comprise one or more bleaching agents. Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids and mixtures thereof. In general, when a bleaching agent is used, the compositions of the present invention may comprise from about 0.1 percent to about 50 percent or even from about 0.1 percent to about 25 percent bleaching agent by weight of the subject cleaning composition.
The composition may comprise a brightener. Suitable brighteners are stilbenes, such as brightener 15. Other suitable brighteners are hydrophobic brighteners, and brightener 49. The brightener may be in micronized particulate form, having a weight average particle size in the range of from 3 to 30 micrometers, or from 3 micrometers to 20 micrometers, or from 3 to 10 micrometers. The brightener can be alpha or beta crystalline form.
The compositions herein may also optionally contain one or more copper, iron and/or manganese chelating agents. If utilized, chelating agents will generally comprise from about 0.1 percent by weight of the compositions herein to about 15 percent, or even from about 3.0 percent to about 15 percent by weight of the compositions herein.
The composition may comprise a calcium carbonate crystal growth inhibitor, such as one selected from the group consisting of: 1-hydroxyethanediphosphonic acid (HEDP) and salts thereof; N,N-dicarboxymethyl-2-aminopentane-1, 5-dioic acid and salts thereof; 2- phosphonobutane-1,2,4-tricarboxylic acid and salts thereof; and any combination thereof.
The compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in the compositions herein, the dye transfer inhibiting agents are present at levels from about 0.0001 percent, from about 0.01 percent, from about 0.05 percent by weight of the cleaning compositions to about 10 percent, about 2 percent, or even about 1 percent by weight of the cleaning compositions. The laundry detergent composition may comprise one or more polymers. Suitable polymers include carboxylate polymers, polyethylene glycol polymers, polyester soil release polymers such as terephthalate polymers, amine polymers, cellulosic polymers, dye transfer inhibition polymers, dye lock polymers such as a condensation oligomer produced by condensation of imidazole and epichlorhydrin, optionally in ratio of 1 :4:1, hexamethylenediamine derivative polymers, and any combination thereof.
Other suitable cellulosic polymers may have a degree of substitution (DS) of from 0.01 to 0.99 and a degree of blockiness (DB) such that either DS+DB is of at least 1.00 or DB+2DS-DS2 is at least 1.20. The substituted cellulosic polymer can have a degree of substitution (DS) of at least 0.55. The substituted cellulosic polymer can have a degree of blockiness (DB) of at least 0.35. The substituted cellulosic polymer can have a DS+DB, of from 1.05 to 2.00. A suitable substituted cellulosic polymer is carboxymethylcellulose.
Another suitable cellulosic polymer is cationically modified hydroxyethyl cellulose.
Suitable perfumes include perfume microcapsules, polymer assisted perfume delivery systems including Schiff base perfume/polymer complexes, starch-encapsulated perfume accords, perfume-loaded zeolites, blooming perfume accords, and any combination thereof. A suitable perfume microcapsule is melamine formaldehyde based, typically comprising perfume that is encapsulated by a shell comprising melamine formaldehyde. It may be highly suitable for such perfume microcapsules to comprise cationic and/or cationic precursor material in the shell, such as polyvinyl formamide (PVF) and/or cationically modified hydroxyethyl cellulose (catHEC).
Suitable suds suppressors include silicone and/or fatty acid such as stearic acid.
The liquid laundry detergent composition maybe coloured. The colour of the liquid laundry detergent composition may be the same or different to any printed area on the film of the article. Each compartment of the unit dose article may have a different colour. Preferably, the liquid laundry detergent composition comprises a non-substantive dye having an average degree of alkoxylation of at least 16.
At least one compartment of the unit dose article may comprise a solid. If present, the solid may be present at a concentration of at least 5 percent by weight of the unit dose article. A second water-soluble film may comprise at least one open or closed compartment. In one embodiment, a first web of open pouches is combined with a second web of closed pouches preferably wherein the first and second webs are brought together and sealed together via a suitable means, and preferably wherein the second web is a rotating drum set-up. In such a set-up, pouches are filled at the top of the drum and preferably sealed afterwards with a layer of film, the closed pouches come down to meet the first web of pouches, preferably open pouches, formed preferably on a horizontal forming surface. It has been found especially suitable to place the rotating drum unit above the horizontal forming surface unit.
Preferably, the resultant web of closed pouches are cut to produce individual unit dose articles.
Those skilled in the art would recognize the appropriate size of mould needed in order to make a unit dose article according to the present invention.
Preferably, for consumer value and convenience, packages contain sufficient numbers of capsules, which is 10 or more capsules, more preferably 20 or more capsules, even more preferably 30 or more capsules, even more preferably 40 or more capsules and more preferably 50 or more capsules. There may be no more than 70 capsules in the container, preferably no more than 60 capsules.
Capsules are stacked or piled in packaging. Higher numbers of capsules per pack lowers manufacturing costs and price for the consumer, but increases the weight of the pack and the weight force experienced by each capsule which is not at the top of any stack or pile within the pack. The invention is particularly advantageous for such capsules, by minimizing leakage.
Preferably the mass (m) of each capsule is in the range 5g < m < 30g preferably 10g < m < 30g. The package comprises at least 20 capsules, preferably at least 30 capsules, more preferably at least 40, even more preferably at least 50 and up to 100 capsules in one package. As the weight of each capsule increases, so will the force exerted by the capsules on the package also increases. Thus maintained rigidtiy is more and more important. Each capsule may comprise at least two sheets of water-soluble film, the at least two sheets of film being sealed together by a seal (known as a sealing web) extending around the periphery of the capsule.
Preferably the capsule further comprises an internal seal which partitions the capsule to provide said at least two compartments. This can increase the sealing area for each capsule, and in turn increases the risk of seal contamination during filling. The invention is particular advantageous for such capsules.
All compartments are filled with a liquid or gel. However, additional compartments may also be filled with gels, powders or any combination thereof. So, for example, some capsules may have a liquid-containing compartment and a powder-containing compartment, or there may be liquid-gel, gel-powder combinations (each form e.g. liquid, gel, powder in a different compartment).
Suitable compositions that may be split into different components for use in the present invention include those intended for laundry (substrate cleaning, softening and/or treatment) or machine dish washing.
The mulitple compartment capsules may comprise different parts of a treatment composition which, when combined, make up the full treatment composition. By that is meant that the formulation of each of the parts of the treatment composition is different either in its physical form (e.g. viscosity), its composition or, preferably its colour/opacity.
Preferably capsules are manufactured by forming, more preferably thermoforming a sheet or sheets of water-soluble film. During forming or thermoforming recesses in the film. The recesses are then filled and a second often thinner sheet superposed over the filled recesses and sealed it to the first sheet of film around the edges of the recesses to form a flat sealing web. Substrate treatment compositions of a viscosity above the range of the invention take longer to settle into the capsule recess after filling. If they have not settled by the time the second sheet is superposed and sealed, the second thinner sheet may be stretched over the piled up formulation which may comprise the film. This stretching can create leaks by exacerbating pin holes in the thin film. The viscosity range of the invention is thus particularly advantageous for such capsules. Where the chambers of the unit dosed product or capsule are stacked, i.e. they are not side by side but placed on top of another chamber, the product will comprise at least three films wherein one chamber is slead by another chamber being formed over the top of the first chamber.
Further more, relaxation of the first film typically then causes the applied second sheet to bulge out when the vacuum is released from the first sheet of film in the mould.
A multi-compartment capsule is produced by a process of thermoforming. Such a process may advantageously comprise the following steps to form the capsule:
(a) placing a first sheet of water-soluble polyvinyl alcohol film over a mould having sets of cavities, each set comprising at least two cavities arranged side-by-side;
(b) heating and applying vacuum to the film to mould the film into the cavities and hold it in place to form corresponding recesses in the film;
(c) filling the different parts of a substrate treatment composition, each of which may have a different colour/opacity (as well as different treatment function) into the side and central recesses, the parts together forming a full detergent composition;
(d) sealing a second sheet of film to the first sheet of film across the formed recesses to produce a multi-compartment capsule having compartments located on opposite connected to each other and separated by a continuous internal sealing web;
(e) cutting between the capsules so that a series of multi-compartment compartment capsules are formed, each capsule containing a part of a treatment composition in multiple compartments (one central and two side compartments).
Sealing can be done by any suitable method for example heat-sealing, solvent sealing or UV sealing or ultra-sound sealing or any combination thereof. Particularly preferred is water-sealing. Water sealing may be carried out by applying moisture to the second sheet of film before it is sealed to the first sheet of film to form the seal areas.
A preferred thermoforming process uses a rotary drum on which the forming cavities are mounted. A vacuum thermoforming machine that uses such a drum is available from Cloud LLC. The capsules according to the invention could also be made by thermoforming on a linear array of cavity sections. Machines suitable for that type of process are available from Hoefliger. The following example description is focussed onto the rotary process. A skilled person will appreciate how this would be adapted without inventive effort to use a linear array process.
Bittering agent
The pouch of the present invention preferably includes a bittering agent. Bittering agents are generally known. The bittering agents may be any of those described for the packaging.
The bittering agent is typically incorporated within or film-coated on the exterior surface of the water-soluble package. Additionally or alternatively, the bitter agent is included in the water-soluble package as a powdered bittering agent in a powder coating applied to the exterior surface of the water-soluble package.
In particular embodiments, the bittering agent is incorporated within (included in) the water-soluble substrate. For example, the bittering agent may be incorporated into the matrix of a water-soluble polymer included in the water-soluble substrate by dissolving the bittering agent in a water-soluble polymer solution before the water-soluble substrate is formed. The bittering agent may be present in water-soluble substrate material in a range of 100 to 5000 ppm, preferably 200 to 3000 ppm, more preferably 500 to 2000 ppm, based on the weights of the bittering agent and water-soluble substrate. For example, 1 mg of bittering agent may be incorporated into 1 g of water-soluble substrate to provide the bittering agent at 1000 ppm.
Film-coating of a bittering agent on the surface of the water-soluble substrate can be performed by known techniques, such as spraying or printing of a bittering agent solution onto the surface of the water-soluble substrate.
The bittering agent can be included in, film coated on and/or included in a powder coating on the exterior surface of the water-soluble substrate in one or more of the printed regions. There may be no adverse effects on the quality of UV-cured ink printed matter when the bittering agent is included in, film coated on and/or included in a powder coating on the exterior surface of the water-soluble substrate in the printed regions. In particular, there may be no adverse effects on the quality of UV-cured ink printed matter when the bittering agent is incorporated within the water-soluble substrate in the printed regions. In some embodiments, the bittering agent is incorporated within the water-soluble substrate homogenously. In this way, the inclusion of the bittering agent into the water-soluble substrate and printing of the water-soluble substrate can be simplified.
The unit dose detergent composition comprises a fragrance.
Preferably, the fragrance is selected from the groups consisting of ethyl-2-methyl valerate (manzanate), limonene, dihyro myrcenol, dimethyl benzyl carbonate acetate, benzyl acetate, geraniol, methyl nonyl acetaldehyde, cyclacet (verdyl acetate), cyclamal, beta ionone, hexyl salicylate, tonalid, phenafleur, octahydrotetramethyl acetophenone (OTNE) and mixtures thereof.
However, preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance ethyl-2-methyl valerate (manzanate).
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance limonene.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance dihyro myrcenol.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance dimethyl benzyl carbonate acetate.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance benzyl acetate.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance geraniol. Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance methyl nonyl acetaldehyde.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance cyclacet (verdyl acetate).
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance cyclamal.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance beta ionone.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance hexyl salicylate.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance tonalid.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance phenafleur.
Preferably, the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance octahydrotetramethyl acetophenone (OTNE).
Such fragrances are known and described in EP-A-1 407 754.
The fragrance preferably comprises a sesquiterpene or sesquiterpenoid component selected from the group consisting of longicyclene, farnesol, 2,3-dihydrofarnesol, a - farnescene, p-farnescene, valencene, a -eudesmol, a -muurolene, epi- a-cardinol, p- selinene, a-selinene, germacrene D, germacrene B, lanceol, p-sesquiphellandrene, a- curcumene, a-bisabolene, a-bisabolol, p-santalol, viridifloral, cyperene, longifolene, cubenol, aristolene, aromadendrene, humulene epoxide, hydroxycalamenene, guaiol, quinanol E, quinanol D, quinanol C, quinanol B, quinanol A, dehydro-jinkoh-eremol, 7p-H- 9(10)-ene-11,12-epoxy-8-oxoeremophilane, nookatone, a-humulene, 8,12- epoxyeremophila-9,11(13)-diene, neopetasane, p-agarofuran, a-agarofuran, a-cedrol, patchouli alcohol, elemol, (+)-(4S,5R)-karanone, agarospirol, (+)-(4S,5R)- dihydrokaranone, 4,15-dihydroxydihydro-p-agarofuran, E-nerolidol, 10-epi-eudesmol, selina-3,11-dien-14-ol, (5S,7S,10S)-(-)-selina-3,11-dien-9-one and mixtures thereof.
Miscellaneous
The unit dosed products described herein are suitable for use in a substrate treatment method, suitably a laundry or machine dish washing method. Thus, a further aspect of the present invention provides use of unit dose products or capsules as described herein in a method of cleaning, suitably a laundry or machine dish washing method. Suitably the method includes opening the packaging by unlocking the child resistent closure, retrieving one or more capsules from the packaging, placing the capsule/s in the drum or dosing drawer or any dosing device of a washing machine prior to commencement of a wash cycle.
The capsules are particularly suitable for use in (substrate) washing machines and in dishwashing machines amongst other applications. They can also be used in manual laundry or dishwashing operations. In use the capsules according to the invention are preferably, and conveniently, placed directly into the liquid which will form the wash liquor or into the area where this liquid will be introduced. The capsule dissolves on contact with the liquid, thereby releasing the detergent composition from the separate compartments and allowing them to form the desired wash liquor.
Preferably, the capsule ruptures between 10 seconds, preferably between 30 seconds and 5 minutes once the unit dose article has been added to 950ml of deionised water at 20-21 °C in a 1L beaker, wherein the water is stirred at 350rpm with a 5cm magnetic stirrer bar. By rupture, we herein mean the film is seen to visibly break or split. Shortly after the film breaks or splits the internal liquid substrate composition may be seen to exit the article into the surrounding water.
A number of proposals and aspects are described herein, which proposals and aspects are intended to be combined to achieve improved or cumulative benefits. Thus, any one aspect may be combined with any other aspect. Similarly the optional features associated with any one of the aspects may apply to any one of the other aspects. Referring to the drawings, packaging according to the invention is shown. Twenty (20) multi-compartment water soluble capsules (not shown) produced by a process of thermoforming as described above are stacked in. 20 of these capsules are packed into a rigid carton 1 having a box construction and providing a receptacle 3 and hinged closure 5.
The carton comprises a stiff cellulose based, biodegradable paperboard having grammage 225 or above to achieve a minimum compression strength of 300N. This is tested by compressing the box between two plates until the box is crushed. The maximum load (before crushing is recorded). The packaging design has 4 pairs of locking members 7, 9, 11 ,13 each comprising a tab on the receptacle 3 and a recess on the lid 5. Pair 7 is arranged separated from pairs 11 and 13 by a distance corresponding to the average span between a thumb and forefinger of the hand of an adult. Likewise each pair is separated from 2 of the other pairs by such a distance. Only when all both pairs are released simultaneously it is possible to open the lid of the packaging container. The distance of each pair of locking elements and arrangement on the corners is such that it is impossible for a child can press all four locking elements simultaneously. The rigidity of the packaging ensures that the locking members of each pair are aligned during closure to render the packaging unaccessible to children. The rigidity is protected by the capsules which are as follows.
The water soluble capsules comprise laundry treatment compositions dispensed to each of the three compartments is as follows:
Compartment #1 Compartment 2 Side compartment #2
Surfactant Surfactants Surfactants
Polymer cleaning Polymer cleaning Polymer cleaning
Sequestrant Sequestrant Sequestrant
Water Enzyme -cellulase Enzyme - protease
Hydroptrope Fluorescer Water 8%wt.
Opacifier Water 8%wt Hydrotrope
Hydrotrope Dyes
Dyes
Perfume The unit dosed products comprise water soluble film printed on the inside.
Embodiments of the inventrion will now be described with reference to the following nonlimiting drawings in which:
Figure 1 is a perspective view of a lid,
Figure 2 is a perspective view of a base,
Figure 3 is a cross-section of a biodegradable package, and
Figure 4 is a schematic side elevation of a biodegradable package.
In detail, figure 1 shows a lid (1) for a biodegradable package. The lid comprises a top (2) and depending from each edge of the top (2) a top side wall (3). The shown side walls end at a bottom edge (4).
Figure 2 shows a base (8) which has a bottom (7) and upstanding from the edges of the base (7) are base side walls (5) which end at a top edge (6).
Dimensionally, the lid (1) and base (8) are such that they slidingly co-operate to close the package and maintain the contents.
Figure 3 is a cross section along A-A and shows a lid (1) and a base (8) engaged to close the package.
The package also has an absorbent pad (9) for improving the leak protection of the package. The pad (9) is maintained at the bottom of the package on the base and under any contents of the package. Any leakage from the unit dose capsules is thereby minimised or controlled by the absorbent pad (9).
The lid side walls (3) are shown to have an inner surface (3A) and an outer surface (3B). The outer surface (3B) is a bleached surface and has water-based barrier material coated thereto. The inner surface (3A) is an unbleached surface and does not have barrier material applied thereto. The base side walls (5) are shown to have an inner surface (5A) and an outer surface (5B). The outer surface (5B) is an unbleached surface and does not have water-based barrier material coated thereto. The inner surface (5A) is a bleached surface and has barrier material applied thereto. The inner surface of the base (5B) also has a thermoplastic elastomer-based barrier material applied thereto.
Figure 4 is a schematic to show the relationship between the dimensions of the lid and the child proof closure.
In side view, the depth is the lid is shown to be 11cm. This is the depth at the point along the length that the user activates the child proof closure mechanism. The user uses fingers and thumb to activate the child proof mechanism activation zones (10) on either side of the lid. The actual mechanism is not shown but activation of the zone permits separation of the lid from the base as the user depresses the zones and pulls the lid away from the base.
Figures 5 and 6 show show a lid (1) for a biodegradable package. The lid comprises a top (2) and depending from each edge of the top (2) a top side wall (3). The shown side walls end at a bottom edge (4).
Figure 5 has a series of four apertures (11) on the top side wall (3) through which air enters and leaves the container as the lid (1) and base (not shown) are pulled apart.
Figure 6 has one large aperture (11) instead of the four smaller apertures in figure 5.
Figures 7a, 7b and 7c are schematics to demonstrate how the lid (1) and base (8) are pulled apart and how air inside the container is momentarily under rapid pressure change as the lid and base are pulled apart and then puished together. In both cases the resulting air pressure changes cause air inside the container (I), and which contains concentrated fragrance from the unit dose products (14), to be agitated such that air passes out through the apertures (11) and into the ambient air (E) where the enhanced fragrant effect is perceived by the consumer. The apertures are open when the lid and base are fully separated and are fully closed when the lid and base are fully engaged. However, the aperture and the top edge of the base (12) are such that there remains a possibility that the aperture remains closed but the base and lid are partly apart. This is seen in Figure 7b where the lid (1) and base (8) are in the process of being pulled apart but, the aperture (11) is not yet above the top edge (12) of the base. This means that the air pressure in the container (I) drops dramatically and is only released when the apertures are exposed above the top edge of the base (12).
Figure 8 shows a box (20) comprising a number of unit dose detergent pouches (21) and with a closing lid (22). Figure 9 shows a series of three boxes (20) inside a case (23).
Figure 10 shows a load of layers of cases (23) on a pallet (24). Each layer consists of twenty cases (23) and the load consists of six layers.

Claims

- 48 - CLAIMS
1. A package comprising a first container having an average length (L1), an average depth (D1) and an average height (H1) and comprising at least 50% wt. biodegradable material and, contained within said first container, a plurality of second containers each having an average length (L2), an average depth (D2) and an average height (H2) and comprising at least 50% wt. biodegradable material, at least one of each said second containers comprising a plurality of unit dose detergent pouches, and wherein said unit dose detergent pouches comprise from 1 to 25% wt. pouch water, and a fragrance.
2. A package according to claim 1 wherein the first container comprises from 2 to 10 second containers.
3. A package according to claim 1 wherein the first container comprises from 2 to 6 second containers.
4. A package according to any preceding claim wherein the first container comprises horizontally spaced second containers.
5. A package according to any preceding claim wherein L2 is from 80 to 99% of D1.
6. A package according to any preceding claim wherein H2 is from 80 to 99% of H1.
7. A package according to any preceding claim wherein the second container is disposed within the first container such that the length of the second container (L2) is orthogonal to the length direction of the first container (L1).
8. A package according to any preceding claim wherein said biodegradable material comprises a barrier coating. - 49 - A package according to any preceding claim wherein the barrier coating comprises a water-based barrier coating. A package according to any of claims 1-8 wherein the barrier coating comprises a thermoplastic elastomer. A package according to any preceding claim wherein the volume of the second containers comprise from 85 to 99% the volume within the first container. A package according to any preceding claim wherein the volume of the plurality of detergent pouches is from 50 to 80% the volume of the plurality of second containers. A package according to any preceding claim wherein said average (W2) is from 9 to 15 cm. A package according to any preceding claim wherein the unit dose detergent pouch comprises from 5 to 15% wt. water. A package according to any preceding claim wherein the unit dose detergent pouch comprises a bittering agent. A package according to any preceding claim wherein the unit dose detergent pouch comprises a phthalocyanine based pigment. A package according to any preceding claim wherein the unit dose detergent pouch contains a phosphonic acid based sequestrant. A package according to any preceding claim wherein the fragrance comprises a component selected from the groups consisting of ethyl-2-methyl valerate (manzanate), limonene, dihyro myrcenol, dimethyl benzyl carbonate acetate, benzyl acetate, geraniol, methyl nonyl acetaldehyde, cyclacet (verdyl acetate), cyclamal, beta ionone, hexyl salicylate, tonalid, phenafleur, octahydrotetramethyl acetophenone (OTNE) and mixtures thereof.
PCT/EP2022/072924 2021-11-05 2022-08-17 Package containing water-soluble capsules WO2023078594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21206615 2021-11-05
EP21206615.3 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078594A1 true WO2023078594A1 (en) 2023-05-11

Family

ID=78528804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/072924 WO2023078594A1 (en) 2021-11-05 2022-08-17 Package containing water-soluble capsules

Country Status (1)

Country Link
WO (1) WO2023078594A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251446A2 (en) 1986-04-30 1988-01-07 Genencor International, Inc. Non-human Carbonyl hydrolase mutants, DNA sequences and vectors encoding same and hosts transformed with said vectors
WO1991000345A1 (en) 1989-06-26 1991-01-10 Novo Nordisk A/S A mutated subtilisin protease
EP0525610A2 (en) 1991-07-27 1993-02-03 Solvay Enzymes GmbH &amp; Co. KG Process for increasing the stability of enzymes and stabilized enzymes
WO1994002618A1 (en) 1992-07-17 1994-02-03 Gist-Brocades N.V. High alkaline serine proteases
DE29705829U1 (en) 1997-04-03 1997-07-24 Oro Produkte Marketing Interna Packaging for cleaning tablets
DE10018003A1 (en) 2000-04-11 2001-10-18 Henkel Kgaa Package for tablets of washing or cleaning composition comprises box in which tablets are packed as flat layers which is sufficiently compact to protect tablets from shock
WO2002020361A1 (en) 2000-09-06 2002-03-14 The Procter & Gamble Company Container for a laundry treatment agent
EP1407754A1 (en) 2002-10-10 2004-04-14 INTERNATIONAL FLAVORS &amp; FRAGRANCES INC. Encapsulated fragrance chemicals
WO2015153157A1 (en) 2014-03-31 2015-10-08 The Procter & Gamble Company Laundry unit dose article
WO2016198978A1 (en) 2015-06-12 2016-12-15 I.G.B. S.R.L. Child-proof container and process for making the same
WO2018069413A1 (en) 2016-10-12 2018-04-19 Weilburger Coatings Gmbh Method for producing a coating having markings on a surface or a part of a surface of an object
WO2020109079A1 (en) 2018-11-26 2020-06-04 Unilever Plc Customised unit dose products
EP3778412A1 (en) 2019-08-14 2021-02-17 The Procter & Gamble Company Consumer product

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251446A2 (en) 1986-04-30 1988-01-07 Genencor International, Inc. Non-human Carbonyl hydrolase mutants, DNA sequences and vectors encoding same and hosts transformed with said vectors
WO1991000345A1 (en) 1989-06-26 1991-01-10 Novo Nordisk A/S A mutated subtilisin protease
EP0525610A2 (en) 1991-07-27 1993-02-03 Solvay Enzymes GmbH &amp; Co. KG Process for increasing the stability of enzymes and stabilized enzymes
WO1994002618A1 (en) 1992-07-17 1994-02-03 Gist-Brocades N.V. High alkaline serine proteases
DE29705829U1 (en) 1997-04-03 1997-07-24 Oro Produkte Marketing Interna Packaging for cleaning tablets
DE10018003A1 (en) 2000-04-11 2001-10-18 Henkel Kgaa Package for tablets of washing or cleaning composition comprises box in which tablets are packed as flat layers which is sufficiently compact to protect tablets from shock
WO2002020361A1 (en) 2000-09-06 2002-03-14 The Procter & Gamble Company Container for a laundry treatment agent
EP1407754A1 (en) 2002-10-10 2004-04-14 INTERNATIONAL FLAVORS &amp; FRAGRANCES INC. Encapsulated fragrance chemicals
WO2015153157A1 (en) 2014-03-31 2015-10-08 The Procter & Gamble Company Laundry unit dose article
WO2016198978A1 (en) 2015-06-12 2016-12-15 I.G.B. S.R.L. Child-proof container and process for making the same
WO2018069413A1 (en) 2016-10-12 2018-04-19 Weilburger Coatings Gmbh Method for producing a coating having markings on a surface or a part of a surface of an object
WO2020109079A1 (en) 2018-11-26 2020-06-04 Unilever Plc Customised unit dose products
EP3778412A1 (en) 2019-08-14 2021-02-17 The Procter & Gamble Company Consumer product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAS, no. 147-14-8

Similar Documents

Publication Publication Date Title
WO2022238449A1 (en) Package containing water-soluble capsules
US20160017264A1 (en) Flexible water-soluble articles
US20220089342A1 (en) Package containing water-soluble capsules
EP4069813B1 (en) Biodegradable package containing water-soluble capsules
GB2606639A (en) Package containing water-soluble capsules
US20200240068A1 (en) Recycleable, renewable, or biodegradable package
WO2023078594A1 (en) Package containing water-soluble capsules
CN219545389U (en) Container for unit dose detergent pouch
WO2023104646A1 (en) Package containing water-soluble capsules
WO2022238442A1 (en) Package containing water-soluble capsules
WO2022238495A1 (en) Package containing water-soluble capsules
WO2022238179A1 (en) Package containing water-soluble capsules
EP4337553A1 (en) Package containing water-soluble capsules
WO2022248466A1 (en) Package containing water-soluble capsules
CN117320969A (en) Packaging containing water-soluble capsules
CN117295665A (en) Packaging comprising water-soluble capsules
DE202022102650U1 (en) Pack containing water-soluble capsules
DE202022102651U1 (en) Pack containing water-soluble capsules
CA3218714A1 (en) Array of packages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22765132

Country of ref document: EP

Kind code of ref document: A1