WO2023078250A1 - 颜色调整方法及装置、显示设备 - Google Patents

颜色调整方法及装置、显示设备 Download PDF

Info

Publication number
WO2023078250A1
WO2023078250A1 PCT/CN2022/129028 CN2022129028W WO2023078250A1 WO 2023078250 A1 WO2023078250 A1 WO 2023078250A1 CN 2022129028 W CN2022129028 W CN 2022129028W WO 2023078250 A1 WO2023078250 A1 WO 2023078250A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
lookup table
color
system time
blue light
Prior art date
Application number
PCT/CN2022/129028
Other languages
English (en)
French (fr)
Inventor
王天生
Original Assignee
合肥杰发科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥杰发科技有限公司 filed Critical 合肥杰发科技有限公司
Publication of WO2023078250A1 publication Critical patent/WO2023078250A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the present application relates to the field of display technology, in particular to a color adjustment method and device, and a display device.
  • the light intensity of the electronic product screen is usually adjusted according to the ambient light intensity.
  • this method can improve the convenience of users, it is not conducive to human health, such as inhibiting melatonin and blue light damage to the eyes.
  • the main technical problem to be solved by this application is to provide a color adjustment method, device, and display device to reduce the intensity of blue light in the night time period, thereby protecting eyesight and improving sleep quality, improving the protective effect on the human body, and ensuring that the night time period light intensity within.
  • the present application provides a color adjustment method.
  • the color adjustment method includes: obtaining the blue light component of the current screen pixel and the current system time; if the current system time is in the night time period, using the first color lookup table function to perform gamma correction on the blue light component; if the current system time is not in the night time period , then use the second color lookup table function to perform gamma correction on the blue light component; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • the present application provides a color adjustment device.
  • the color adjustment device includes: a video signal generator, which is used to obtain the blue light component of the current screen pixel and the current system time, and is used to generate the first color lookup table function and the second color lookup table function; a gamma correction module, and the video signal Generator connection for gamma correcting the blue light component using a first color lookup table function when the current system time is in the nighttime period, and for using a second color lookup table when the current system time is not in the nighttime period
  • the function performs gamma correction on the blue light component; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • the display device includes: the above-mentioned color adjustment device; a memory, connected with the color adjustment device, for storing pixels; a display panel, connected with the color adjustment device, for displaying gamma-corrected pixels.
  • the beneficial effect of the present application is that: the color adjustment method of the embodiment of the present application can use the first color lookup table with a smaller slope to perform gamma correction on the blue light component when the current system time is in the night time period, It can reduce the intensity of blue light during night time, thereby protecting eyesight and improving sleep quality; and when the current system time is not at night, that is, during day time, the blue light component is gamma corrected by using the second color lookup table with a larger slope. It can guarantee the light intensity during the daytime.
  • this application can adjust the screen light intensity according to the system time, so that the change of the screen light intensity meets the needs of human health and improves the protection effect on the human body.
  • Fig. 1 is a schematic flow chart of an embodiment of the color adjustment method of the present application
  • Fig. 2 is a specific flow diagram of step S12 in the color adjustment method of the embodiment of Fig. 1;
  • FIG. 3 is a schematic diagram of an embodiment of the preset slope curve of the present application.
  • Fig. 4 is a schematic flow chart of step S13 in the color adjustment method of the embodiment of Fig. 1;
  • FIG. 5 is a schematic diagram of an embodiment of a preset slope curve in the present application.
  • FIG. 6 is a schematic diagram of an embodiment of a preset slope curve in the present application.
  • Fig. 7 is a schematic flow chart of an embodiment of the color adjustment method of the present application.
  • Fig. 8 is a schematic flow chart of an embodiment of the color adjustment method of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of the color adjustment device of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of the color adjustment device of the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a display device of the present application.
  • the present application first proposes a color adjustment method, as shown in FIG. 1 , which is a schematic flowchart of an embodiment of the color adjustment method of the present application.
  • the color adjustment method of this embodiment specifically includes the following steps:
  • Step S11 Obtain the blue light component of the current screen pixel and the current system time.
  • the display device uses the video signal generator module to generate RGB data signals, and can obtain the blue light component of the current screen pixel from the RGB data signals.
  • the current system time can be obtained by calling a time system function such as the Get System Time() function.
  • the current system time can be world time or Beijing time.
  • the current system time used in this embodiment is a part of the time output by the time system function, for example, the time output by the time system function is 11:45:35, then the current system time used in this embodiment is 11, that is, the clock time , can avoid frequent repeated execution of the following steps S12 and S13, save computing resources, and improve the stability of color adjustment.
  • the current system time can be accurate to minutes, such as 11:45; at the same time, the clock data and minute data of the current system time can be converted into one data, for example, 11:45 is converted into 11.75.
  • the blue light component of the current screen pixel and the current system time can be acquired periodically at preset time intervals.
  • the preset interval may be 1 minute, which may be realized by a timer with a timing duration of 1 minute.
  • Step S12 If the current system time is in the night time period, perform gamma correction on the blue light component by using the first color lookup table function.
  • the current system time is compared with the night time period. If the current system time is within the night time period, it is determined that the user is in a night scene, and the first color lookup table function is used to perform gamma correction on the blue light component.
  • the night period and non-night period in this embodiment can be set according to the sunrise time and sunset time; for example, 6 o'clock is the sunrise time, 18 o'clock is the sunset time, then 6 o'clock-18 o'clock is During the daytime, 18:00-24:00 and 0:00-6:00 are night time periods; the sunrise time and sunset time can be set by the user, which can simplify calculations, save calculation costs, and increase the speed of color adjustment.
  • Sunrise time and sunset time are related to latitude and longitude and date, and the calculation formula is as follows:
  • the night time period and the day time period can be set according to actual needs (such as weather, seasons, work and rest habits, etc.).
  • the method shown in FIG. 2 may be used to implement step S12.
  • Step S21 If the current system time is within the night time period, obtain a slope corresponding to the current system time from a preset slope curve, and generate a first color lookup table function based on the slope.
  • the color look-up table (Look-Up-Table) corresponds to a mapping relationship.
  • LUT is a mathematical conversion model. Through color sampling and difference calculation, the color input value is converted into a specific numerical output; the result of its action on the image is that the color of the image changes, so LUT can be understood as a kind of Presets for color effects.
  • the LUT of this embodiment is used for color correction of a display device.
  • the preset slope curve of this embodiment is a gamma LUT curve, including a first slope curve 31, wherein the first slope curve 31 is a linear function curve, and the time axis of the first slope curve 31 (abscissa axis) corresponds to the night time period.
  • the first color lookup table function is a linear function between the input color value x and the output color value y; of course, in other embodiments, the first color lookup table function can also be a linear function between the input color value x and the output color value y
  • the first color lookup table function can also be a linear function between the input color value x and the output color value y
  • Step S22 Generate a blue-ray mapping table based on the first color table lookup function.
  • the value of x ranges from 0 to 255, and x takes 0, 1, 2, 3, 4, ... 255 in turn, uses the first color lookup table function to calculate the value of y, and stores x, y and the mapping relationship between them on the Blu-ray map.
  • Step S23 Perform gamma correction on the blue light component using the blue light mapping table.
  • the generated blue light mapping table is configured to the corresponding gamma correction module, so as to perform gamma correction on the acquired blue light components by using the blue light mapping table.
  • Step S13 If the current system time is not in the night time period, use the second color lookup table function to perform gamma correction on the blue light component; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • gamma correction is further performed on the red light component and the green light component of the pixel.
  • the color adjustment method of this embodiment can use the first color lookup table with a smaller slope to perform gamma correction on the blue light component when the current system time is in the night time period, and can reduce the blue light intensity in the night time period.
  • the second color lookup table with a larger slope is used to perform gamma correction on the blue light component, which can ensure the light intensity in non-night time periods.
  • this application can adjust the screen light intensity according to the system time, so that the change of the screen light intensity meets the needs of human health and improves the protection of the human body.
  • the method shown in FIG. 4 may be used to implement step S13.
  • Step S41 Obtain the slope corresponding to the current system time from the preset slope curve, and generate a first color look-up table function based on the slope.
  • the preset slope curve of the present embodiment further includes a second slope curve 32, wherein the slope of the second slope curve 32 is 1, and the time axis (abscissa axis) of the second slope curve 32 is related to the non-night time axis.
  • the period corresponds to the daytime period.
  • the slope 1 corresponding to the current system time is obtained from the second slope curve 32, and the second color lookup table is generated based on the slope 1.
  • a slope of 1 can ensure light intensity and display with the most restored color.
  • the second color lookup table function is a linear function between the input color value x and the output color value y; certainly, in other embodiments, the second color lookup table function can also be a linear function between the input color value x and the output color value y
  • the prior art for details.
  • Step S42 Generate another blue-ray mapping table based on the second color look-up table function.
  • the value of x ranges from 0 to 255, and x takes 0, 1, 2, 3, 4, ... 255 in turn, uses the first color lookup table function to calculate the value of y, and stores x, y and the mapping relationship between them on another Blu-ray map.
  • Step S43 Perform gamma correction on the blue light component by using another blue light mapping table.
  • the generated another blue light mapping table is configured to a corresponding gamma correction module, so as to use the another blue light mapping table to perform gamma correction on the acquired blue light components in the daytime period.
  • the first slope curve 31 of the present embodiment includes a first sub-slope curve 311 and a second sub-slope curve 321
  • the slope of the first sub-slope curve 311 increases with the increase of the system time
  • the second The slope of the sub-slope curve 321 decreases with the increase of the system time
  • the two ends of the second slope curve 32 are respectively connected with the first sub-slope curve 311 and the second sub-slope curve 321
  • the system time corresponding to the first sub-slope curve 311 is is less than the system time corresponding to the second sub-slope curve 321 . That is to say, the closer to the daytime period, the greater the slope of the first slope curve 31 .
  • the above-mentioned preset curve in this embodiment is very consistent with the environment and sleep characteristics, and can further improve the comfort of the user.
  • the preset slope curve in this embodiment can be a piecewise function, as shown in the following formula:
  • K is the slope of the preset slope curve, that is, the ordinate value of the preset slope curve
  • t is the system time, for example, 6 is the sunrise time, and 18 is the sunset time.
  • FIG. 5 is a schematic diagram of an embodiment of a preset slope curve in the present application.
  • the first sub-slope curve 511 and the first sub-slope curve 521 in the preset slope curve are quadratic function curves, and the slope of the second slope curve 52 is 1; the slope of the first sub-slope curve 511 varies with the system time.
  • the slope of the second sub-slope curve 521 decreases with the increase of the system time, and the two ends of the second slope curve 52 are respectively connected with the first sub-slope curve 511 and the second sub-slope curve 521, and the first sub-slope curve
  • the system time corresponding to the curve 511 is earlier than the system time corresponding to the second sub-slope curve 521 . That is to say, the closer to the daytime period, the greater the slope of the first slope curve 51 .
  • a slope of 1 can ensure light intensity and display with the most restored color. Because the closer to the daytime, the stronger the light intensity of the environment and the shallower the user's sleep, so the above-mentioned preset curve in this embodiment is very consistent with the environment and sleep characteristics, and can further improve the comfort of the user.
  • the preset slope curve in this embodiment can be a piecewise function, as shown in the following formula:
  • K is the slope of the preset slope curve, that is, the ordinate value of the preset slope curve
  • t is the system time, for example, 6 is the sunrise time, and 18 is the sunset time.
  • FIG. 6 is a schematic diagram of an embodiment of a preset slope curve in the present application.
  • the first sub-slope curve 611 and the first sub-slope curve 621 in the preset slope curve are 0.5 power function curves, and the slope of the second slope curve 62 is 1; the slope of the first sub-slope curve 611 varies with the system time increases, the slope of the second sub-slope curve 621 decreases with the increase of the system time, the two ends of the second slope curve 62 are respectively connected with the first sub-slope curve 611 and the second sub-slope curve 621, the first sub-slope curve 621
  • the system time corresponding to the slope 611 curve is smaller than the system time corresponding to the second sub-slope curve 621 . That is to say, the closer to the non-night time period, the greater the slope of the first slope curve 61 .
  • a slope of 1 can ensure light intensity and display with the most restored color. Because the closer to the non-night time period, the stronger the light intensity of the environment and the shallower the user's sleep, so the above-mentioned preset curve in this embodiment is very consistent with the environment and sleep characteristics, and can further improve the user's comfort.
  • the preset slope curve in this embodiment can be a piecewise function, as shown in the following formula:
  • K is the slope of the preset slope curve, that is, the ordinate value of the preset slope curve
  • t is the system realization, for example, 6 is the sunrise time, and 18 is the sunset time.
  • the first sub-slope curve, the second sub-slope curve, and the second slope curve can be adjusted according to actual needs. It is only necessary to ensure that the slope of the first sub-slope curve and the slope of the second sub-slope curve are less than the first sub-slope curve.
  • the slope of the two-slope curve is used to reduce the blue light intensity in the night time period and ensure the blue light intensity in the daytime time period.
  • the color adjustment method of this embodiment specifically includes the following steps:
  • Step S71 Obtain the blue light component, red light component, green light component and current system time of the current screen pixel respectively.
  • the display device uses the video signal generator module to generate RGB data signals, from which the blue light component, red light component and green light component of the current screen pixel can be respectively obtained.
  • the current system time can be obtained by calling a time system function such as the Get System Time() function.
  • the current system time can be world time or Beijing time.
  • the current system time used in this embodiment is a part of the time output by the time system function, for example, the time output by the time system function is 11:45:35, then the current system time used in this embodiment is 11, that is, the clock time , can avoid frequent repeated execution of the following steps S12 and S13, save computing resources, and improve the stability of color adjustment.
  • the current system time can be accurate to minutes, such as 11:45; at the same time, the clock data and minute data of the current system time can be converted into one data, for example, 11:45 is converted into 11.75.
  • the blue light component of the current screen pixel and the current system time can be acquired periodically at preset time intervals.
  • the preset interval may be 1 minute, which may be realized by a timer with a timing duration of 1 minute.
  • Step S72 If the current system time is in the night time period, perform gamma correction on the blue light component by using the first color lookup table function.
  • Step S72 is similar to the above-mentioned step S12 and will not be repeated here.
  • Step S73 If the current system time is not in the night time period, use the second color lookup table function to perform gamma correction on the blue light component; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • Step S73 is similar to the above step S13 and will not be repeated here.
  • Step S74 Perform gamma correction on the red light component by using the third color lookup table function, and perform gamma correction on the green light component by using the fourth color lookup table function.
  • the third color lookup table function and the fourth color lookup table function can refer to existing gamma correction functions.
  • the light components of the three channels of R/G/B are used to perform gamma correction using different color lookup table functions, which can improve the accuracy of color correction.
  • the color adjustment method of this embodiment specifically includes the following steps:
  • Step S81 Obtain the blue light component of the current screen pixel and the current system time.
  • Step S81 is similar to step S11 and will not be repeated here.
  • Step S82 Obtain the light intensity of the current environment.
  • LX is the ambient light intensity
  • the unit is Lux.
  • Step S83 Correcting the preset slope curve by using the light intensity.
  • the modified preset slope curve satisfies:
  • K is the slope of the preset slope curve, that is, the ordinate value of the preset slope curve
  • t is the system time, for example, 6 is the sunrise time, and 18 is the sunset time.
  • the slope is reduced to further reduce the blue light brightness when the light intensity is small; when the light intensity is high, the slope remains unchanged to ensure the blue light brightness.
  • Step S84 If the current system time is in the night time period, obtain the slope corresponding to the current system time from the corrected preset slope curve, and generate the first color lookup table function based on the slope in the corrected preset slope curve .
  • Step S84 is similar to step S21 and will not be repeated here.
  • Step S85 Generate a blue-ray mapping table based on the first color look-up table function.
  • Step S85 is similar to step S22 and will not be repeated here.
  • Step S86 Perform gamma correction on the blue light component using the blue light mapping table.
  • Step S86 is similar to step S23 and will not be repeated here.
  • Step S87 If the current system time is not in the night time period, obtain the slope corresponding to the current system time from the corrected preset slope curve, and generate a second color lookup table function based on the slope in the corrected preset slope curve , and use the second color lookup table function to perform gamma correction on the blue light component; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • Step S87 is similar to step S13 and will not be repeated here.
  • gamma correction is further performed on the red light component and the green light component of the pixel.
  • the ambient light intensity is used to correct the slope corresponding to the night time period in the preset slope curve, which can further reduce the blue light brightness when the light intensity is low, and ensure the blue light brightness when the light intensity is high.
  • the present application further proposes a color adjustment device, as shown in FIG. 9 , which is a schematic structural diagram of an embodiment of the color adjustment device of the present application.
  • the color adjustment device 90 of this embodiment includes: a video signal generator 91 and a gamma correction module 92; the video signal generator 91 is used to obtain the blue light component of the current screen pixel and the current system time, and is used to generate the first color lookup table function and The second color look-up table function; the gamma correction module 92 is connected with the video signal generator 91, and is used for using the first color look-up table function to carry out gamma correction to the blue light component when the current system time is in the night time period, and for When the current system time is not in the night time period, the blue light component is gamma corrected by using the second color lookup table function; wherein, the slope of the first color lookup table function is smaller than the slope of the second color lookup table function.
  • the gamma correction module 92 of this embodiment can use the first color lookup table with a smaller slope to perform gamma correction on the blue light component when the current system time is in the night time period, which can reduce the gamma correction in the night time period.
  • Blue light intensity so as to protect eyesight and improve sleep quality; and when the current system time is not at night, that is, during the daytime, the second color lookup table with a larger slope is used to perform gamma correction on the blue light component, which can ensure the brightness of the blue light during the daytime. brightness.
  • the gamma correction module 92 of this embodiment is provided outside the video signal generator 91 .
  • Video signal generator 91 is responsible for generating RGB data signals (R0 ⁇ R7, G0 ⁇ G7, B0 ⁇ B7), pixel clock signal (DCLK), synchronous control signal (data valid signal DE, line synchronous signal HSYNC, field synchronous signal VSYNC) ; Its input is the RGB or YUB buffer data output by the processor GPU/audio encoding VIDEO Decoder/audio. Since the resolution is as high as 4K, it occupies a relatively large space. Taking 4K ARGB888 as an example, the size is 32M Bytes, so it needs to be stored in on external storage.
  • Video signal generator 91 and gamma correction module 92 are connected through TTL interface
  • TTL interface is a kind of parallel 28pins video signal output interface, 24 data pins (R0 ⁇ R7, G0 ⁇ G7, B0 ⁇ B7), 1 pixel Clock pins, 3 control pins (DE, HSYNC, VSYNC).
  • the gamma correction module 92 performs remapping on the basis of the RGB signals input by the R/G/B color lookup table for color processing.
  • the color lookup table has three components R, G, and B; the color lookup tables used by R/G/B are RLUT, GLUT, and BLUT respectively.
  • the gamma correction module 92 is integrated in the video signal generator 101 to save the bill of material (Bill of Material, BOM) cost.
  • the video signal generator 101 is further integrated with a direct memory access (Direct Memory Access, DMA) and a color synthesizer (Composer).
  • DMA Direct Memory Access
  • Composer color synthesizer
  • the GPU outputs RGB buffer data
  • the multimedia playback application system reads the compressed video stream from the SD card or the network, and outputs the YUV buffer data after audio decoding
  • the camera preview application audio output YUV buffer data is placed in Dynamic Random Access Memory (DRAM), which we also call Layer. Since the content to be displayed is placed in the DRAM, and a DRAM corresponds to a Layer, it needs to be read to the FIFO memory through the bus through the DMA in the video signal generator 101 before merging.
  • DRAM Dynamic Random Access Memory
  • Composer's duty is to merge N Layers into one layer and output it backward;
  • gamma correction module 92 is integrated in video signal generator 101 and located behind Composer, and is responsible for re-correcting RGB values to obtain expected effect.
  • the color adjustment device of the present application is also used to implement the above color adjustment method, which will not be described in detail here.
  • the present application further proposes a display device.
  • the display device of this embodiment includes: a video signal generator 101, a memory 121 and a display panel 122, and the memory 121 is connected to the video signal generator 101 (color adjustment device 90) , used to store pixels; the display panel 122 is connected to the video signal generator 101 and used to display gamma-corrected pixels.
  • FIG. 11 is a schematic structural diagram of an embodiment of a display device of the present application.
  • the display device in this embodiment includes: a color adjustment device 90, a memory 121, and a display panel 122; the memory 121 is connected to the color adjustment device 90 for storing pixels; the display panel 122 is connected to the color adjustment device 90 for displaying gamma-corrected of pixels.
  • the memory 121 may adopt DRAM, or other forms of memory.
  • the color adjustment device shown in FIG. 10 may also be used instead of the color adjustment device 90 of this embodiment.
  • the color adjustment method of the embodiment of the present application can use the first color lookup table with a smaller slope to perform gamma correction on the blue light component when the current system time is in the night time period, and can reduce the blue light intensity in the night time period , so as to protect eyesight and improve sleep quality; and when the current system time is not at night, that is, during the daytime, the second color lookup table with a larger slope is used to perform gamma correction on the blue light component, which can ensure the light intensity during the daytime .
  • this application can adjust the screen light intensity according to the system time, so that the change of the screen light intensity meets the needs of human health and improves the protection effect on the human body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Of Color Television Signals (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种颜色调整方法及装置、显示设备。颜色调整方法包括:获取当前屏幕像素的蓝光分量及当前系统时间(S11);若当前系统时间在夜晚时段内,则采用第一颜色查找表函数对蓝光分量进行伽马校正(S12);若当前系统时间不在夜晚时段内,则采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率(S13)。通过这种方式,能够降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量,提高对人体的保护作用,且能够保证非夜晚时段内的光强度。

Description

颜色调整方法及装置、显示设备 【技术领域】
本申请涉及显示技术领域,特别是涉及一种颜色调整方法及装置、显示设备。
【背景技术】
以往,大多数显示器是阴极射线管显示器。这些显示器有一个物理特性就是两倍的输入电压产生的不是两倍的亮度。输入电压产生约为输入电压的2.2次幂的亮度,这叫做显示器伽马系数。从而导致,亮区的信息比预想的更亮,暗区的信息比预想的更暗。因此,需要对输入电压进行伽马校正,经过一个新的指数函数,以设备伽马系数的倒数为指数。
现有技术中,通常根据环境光强度调整电子产品屏幕的光强度。这种方式虽然能够提高用户使用的便捷性,但不利于人体健康,如会抑制退黑素、蓝光伤害眼睛等。
【发明内容】
本申请主要解决的技术问题是提供一种颜色调整方法及装置、显示设备,以降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量,提高对人体的保护作用,且能够保证非夜晚时段内的光强度。
为解决上述技术问题,本申请提供一种颜色调整方法。该颜色调整方法包括:获取当前屏幕像素的蓝光分量及当前系统时间;若当前系统时间在夜晚时段内,则采用第一颜色查找表函数对蓝光分量进行伽马校正;若当前系统时间不在夜晚时段内,则采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
为解决上述技术问题,本申请提供一种颜色调整装置。该颜色调整装置包括:视频信号发生器,用于获取当前屏幕像素的蓝光分量及当前系统时间,并用于生成第一颜色查找表函数及第二颜色查找表函数;伽马校正模块,与视频信号发生器连接,用于在当前系统时间在夜晚时段内时,采用第一颜色查找表函数对蓝光分量进行伽马校正,及用于在当前系统时间不在夜晚时段内时,采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
为解决上述技术问题,本申请提供一种显示设备。该显示设备包括:上述 颜色调整装置;存储器,与颜色调整装置连接,用于存储像素;显示面板,与颜色调整装置连接,用于显示伽马校正后的像素。
与现有技术相比,本申请的有益效果是:本申请实施例颜色调整方法能够在当前系统时间在夜晚时段内时,采用斜率较小的第一颜色查找表对蓝光分量进行伽马校正,能够降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量;而在当前系统时间在非夜晚,即白天时段内时,采用斜率较大的第二颜色查找表对蓝光分量进行伽马校正,能够保证白天时段内的光强度。与传统的基于环境光强度调整屏幕光强的技术方案,本申请能够根据系统时间调整屏幕光强度,使得屏幕的光强度变化符合人体健康需求,提高对人体的保护作用。
【附图说明】
图1是本申请颜色调整方法一实施例的流程示意图;
图2是图1实施例颜色调整方法中步骤S12的具体流程示意图;
图3是本申请预设斜率曲线一实施例的曲线示意图;
图4是图1实施例颜色调整方法中步骤S13的具体流程示意图;
图5是本申请预设斜率曲线一实施例的曲线示意图;
图6是本申请预设斜率曲线一实施例的曲线示意图;
图7是本申请颜色调整方法一实施例的流程示意图;
图8是本申请颜色调整方法一实施例的流程示意图;
图9是本申请颜色调整装置一实施例的结构示意图;
图10是本申请颜色调整装置一实施例的结构示意图;
图11是本申请显示设备一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请首先提出一种颜色调整方法,如图1所述,图1是本申请颜色调整方法一实施例的流程示意图。本实施例颜色调整方法具体包括以下步骤:
步骤S11:获取当前屏幕像素的蓝光分量及当前系统时间。
具体地,显示设备利用视频信号发生器模块产生RGB数据信号,可以从 RGB数据信号中获取当前屏幕像素的蓝光分量。
具体地,可以通过调用时间系统函数如Get System Time()函数等获取当前系统时间。当前系统时间可以是世界时间或者北京时间。
其中,本实施例所用的当前系统时间为时间系统函数输出的时间的一部分,例如时间系统函数输出的时间为11点45分35秒,那么本实施例所用的当前系统时间为11,即时钟时间,能够避免下述步骤S12及步骤S13的频繁重复执行,节约计算资源,并提高颜色调整的平稳性。
在其它实施例中,当前系统时间还可以精确到分钟,如11点45分;同时可以将当前系统时间的时钟数据及分钟数据转换成一个数据,例如将11点45分转换成11.75。
本实施例可以以预设时间间隔周期性获取当前屏幕像素的蓝光分量及当前系统时间。例如,该预设之间间隔可以为1分钟,可以通过计时时长为1分钟的计时器实现。
步骤S12:若当前系统时间在夜晚时段内,则采用第一颜色查找表函数对蓝光分量进行伽马校正。
将当前系统时间与夜晚时段进行比较,若当前系统时间位于夜晚时段内,则判断用户处于夜晚场景,则采用第一颜色查找表函数对蓝光分量进行伽马校正。
可选地,本实施例的夜晚时段及非夜晚时段,即白天时段可以根据日出时间和日落时间进行设置;例如6点为日出时间,18点为日落时间,则6点-18点为白天时段,18点-24点及0点-6点为夜晚时段;日出时间及日落时间可以由用户自行设置,能够简化计算,节约计算开销,提高颜色调整速度。
或者可以采用如下方法计算得到日出时间及日落时间,并根据日出时间与日落时间获得夜晚时段及白天时段。日出时间及日落时间与经纬度、日期相关,计算公式如下:
日出时间:24*(180+时区*15-经度-ACOS(-TAN(-23.4*COS(2*π*(日期序列数+9)/365)*π/180)*TAN(纬度*π/180))*180/π)/360。
日落时间:24*(1+(时区*15-经度)/180)-日出时间。
在其它实施例中,可以根据实际需要(如天气、季节及作息习惯等)设置夜晚时段、白天时段。
可选地,本实施例可以采用如图2所示的方法实现步骤S12。
步骤S21:若当前系统时间在夜晚时段内,则从预设斜率曲线中获取与当前系统时间对应的斜率,并基于斜率生成第一颜色查找表函数。
颜色查找表(Look-Up-Table)对应着一种映射关系。LUT的本质为数学转换模型,通过对颜色的采样与差值计算,将色彩输入数值转换为特定的数值输出;其作用于图像的结果就是图像的颜色产生了变化,所以LUT可以理解为一种色彩效果的预设。本实施例的LUT用于显示设备的色彩校正。
如图3所示,本实施例的预设斜率曲线为伽马LUT曲线,包括第一斜率曲线31,其中,第一斜率曲线31为一次函数曲线,第一斜率曲线31的时间轴(横坐标轴)与夜晚时段对应。
从第一斜率曲线31中获取与当前系统时间对应的斜率,即第一斜率曲线31的纵坐标值;并基于该斜率生成第一颜色查找表函数,例如该斜率为K1时,生成的第一颜色查找表函数可以为y=K1*x,该斜率为K2时,生成的第一颜色查找表函数可以为y=K2*x。第一颜色查找表函数是输入颜色值x与输出颜色值y之间的线性函数;当然,在其它实施例中,第一颜色查找表函数还可以是输入颜色值x与输出颜色值y之间其它函数,具体可以参阅现有技术。
步骤S22:基于第一颜色查表找函数生成蓝光映射表。
x取值为0~255,x依次取0,1,2,3,4,…255,利用第一颜色查找表函数分别计算出y值,将x、y及二者之间的映射关系存储于蓝光映射表。
步骤S23:利用蓝光映射表对蓝光分量进行伽马校正。
将生成的蓝光映射表配置到对应的伽马校正模块,以利用该蓝光映射表对获取的蓝光分量进行伽马校正。
步骤S13:若当前系统时间不在夜晚时段内,则采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
进一步地,本实施例进一步对像素的红光分量及绿光分量进行伽马校正。
区别于现有技术,本实施例颜色调整方法能够在当前系统时间在夜晚时段内时,采用斜率较小的第一颜色查找表对蓝光分量进行伽马校正,能够降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量;而在当前系统时间在非夜晚时段内时,采用斜率较大的第二颜色查找表对蓝光分量进行伽马校正,能够保证非夜晚时段内的光强度。与传统的基于环境光强度调整屏幕光强的技术方案,本申请能够根据系统时间调整屏幕光强度,使得屏幕的光强度变化符合 人体健康需求,提高对人体的保护作用。
可选地,本实施例可以采用如图4所示的方法实现步骤S13。
步骤S41:从预设斜率曲线中获取与当前系统时间对应的斜率,并基于斜率生成第一颜色查找表函数。
如图3所示,本实施例的预设斜率曲线进一步包括第二斜率曲线32,其中,第二斜率曲线32的斜率为1,第二斜率曲线32的时间轴(横坐标轴)与非夜晚时段,即白天时段对应。
从第二斜率曲线32中获取与当前系统时间对应的斜率1,并基于斜率1生成第二颜色查找表函数可以为y=x。斜率为1能够保证光强度,以最大程度的还原颜色显示。第二颜色查找表函数是输入颜色值x与输出颜色值y之间的线性函数;当然,在其它实施例中,第二颜色查找表函数还可以是输入颜色值x与输出颜色值y之间其它函数,具体可以参阅现有技术。
步骤S42:基于第二颜色查找表函数生成另一蓝光映射表。
x取值为0~255,x依次取0,1,2,3,4,…255,利用第一颜色查找表函数分别计算出y值,将x、y及二者之间的映射关系存储于另一蓝光映射表。
步骤S43:利用另一蓝光映射表对蓝光分量进行伽马校正。
将生成的另一蓝光映射表配置到对应的伽马校正模块,以利用该另一蓝光映射表对获取的白天时段的蓝光分量进行伽马校正。
其中,如图3所示,本实施例的第一斜率曲线31包括第一子斜率曲线311及第二子斜率曲线321,第一子斜率曲线311的斜率随系统时间的增加而增加,第二子斜率曲线321的斜率随系统时间的增加而减小,第二斜率曲线32的两端分别与第一子斜率曲线311及第二子斜率曲线321连接,第一子斜率311曲线对应的系统时间小于第二子斜率曲线321对应的系统时间。也就是说,越靠近白天时段,第一斜率曲线31的斜率越大。
因越靠近白天时段,环境的光强度越强,且用户的睡眠越浅,因此本实施例的上述预设曲线很符合环境及睡眠特性,能够进一步提高用户的舒适性。
具体地,本实施例的预设斜率曲线可以为分段函数,如下式所示:
Figure PCTCN2022129028-appb-000001
其中,K为预设斜率曲线的斜率,即预设斜率曲线的纵坐标值,t为系统时间,例如,6为日出时间,18为日落时间。
可以根据实际需要(如天气、季节及作息习惯等)调整日出时间、日落时间及上述公式中的常数。
在另一实施例中,如图5所示,图5是本申请预设斜率曲线一实施例的曲线示意图。本实施例预设斜率曲线中的第一子斜率曲线511及第一子斜率曲线521为二次函数曲线,第二斜率曲线52的斜率为1;第一子斜率曲线511的斜率随系统时间的增加而增加,第二子斜率曲线521的斜率随系统时间的增加而减小,第二斜率曲线52的两端分别与第一子斜率曲线511及第二子斜率曲线521连接,第一子斜率511曲线对应的系统时间早于第二子斜率曲线521对应的系统时间。也就是说,越靠近白天时段,第一斜率曲线51的斜率越大。
斜率为1能够保证光强度,以最大程度的还原颜色显示。因越靠近白天时段,环境的光强度越强,且用户的睡眠越浅,因此本实施例的上述预设曲线很符合环境及睡眠特性,能够进一步提高用户的舒适性。
具体地,本实施例的预设斜率曲线可以为分段函数,如下式所示:
Figure PCTCN2022129028-appb-000002
其中,K为预设斜率曲线的斜率,即预设斜率曲线的纵坐标值,t为系统时间,例如,6为日出时间,18为日落时间。
在另一实施例中,如图6所示,图6是本申请预设斜率曲线一实施例的曲线示意图。本实施例预设斜率曲线中的第一子斜率曲线611及第一子斜率曲线621为0.5次幂函数曲线,第二斜率曲线62的斜率为1;第一子斜率曲线611的斜率随系统时间的增加而增加,第二子斜率曲线621的斜率随系统时间的增加而减小,第二斜率曲线62的两端分别与第一子斜率曲线611及第二子斜率曲线621连接,第一子斜率611曲线对应的系统时间小于第二子斜率曲线621对应的系统时间。也就是说,越靠近非夜晚时段,第一斜率曲线61的斜率越大。
斜率为1能够保证光强度,以最大程度的还原颜色显示。因越靠近非夜晚时段,环境的光强度越强,且用户的睡眠越浅,因此本实施例的上述预设曲线很符合环境及睡眠特性,能够进一步提高用户的舒适性。
具体地,本实施例的预设斜率曲线可以为分段函数,如下式所示:
Figure PCTCN2022129028-appb-000003
其中,K为预设斜率曲线的斜率,即预设斜率曲线的纵坐标值,t为系统实现,例如,6为日出时间,18为日落时间。
在其它实施例中,可以根据实际需要对第一子斜率曲线、第二子斜率曲线及第二斜率曲线进行调整,只需要保证第一子斜率曲线的斜率及第二子斜率曲线的斜率小于第二斜率曲线的斜率,以降低夜晚时段的蓝光强度,及保证白天时段的蓝光强度。
在另一实施例中,如图7所示,本实施例颜色调整方法具体包括以下步骤:
步骤S71:分别获取当前屏幕像素的蓝光分量、红光分量、绿光分量及当前系统时间。
具体地,显示设备利用视频信号发生器模块产生RGB数据信号,可以从RGB数据信号中分别获取当前屏幕像素的蓝光分量、红光分量及绿光分量。
具体地,可以通过调用时间系统函数如Get System Time()函数等获取当前系统时间。当前系统时间可以是世界时间或者北京时间。
其中,本实施例所用的当前系统时间为时间系统函数输出的时间的一部分,例如时间系统函数输出的时间为11点45分35秒,那么本实施例所用的当前系统时间为11,即时钟时间,能够避免下述步骤S12及步骤S13的频繁重复执行,节约计算资源,并提高颜色调整的平稳性。
在其它实施例中,当前系统时间还可以精确到分钟,如11点45分;同时可以将当前系统时间的时钟数据及分钟数据转换成一个数据,例如将11点45分转换成11.75。
本实施例可以以预设时间间隔周期性获取当前屏幕像素的蓝光分量及当前系统时间。例如,该预设之间间隔可以为1分钟,可以通过计时时长为1分钟的计时器实现。
步骤S72:若当前系统时间在夜晚时段内,则采用第一颜色查找表函数对蓝光分量进行伽马校正。
步骤S72与上述步骤S12类似,这里不赘述。
步骤S73:若当前系统时间不在夜晚时段内,则采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
步骤S73与上述步骤S13类似,这里不赘述。
步骤S74:采用第三颜色查找表函数对红光分量进行伽马校正,及采用第四颜色查找表函数对绿光分量进行伽马校正。
第三颜色查找表函数及第四颜色查找表函数可以参阅现有伽马校正函数。
本实施例采用R/G/B三个通道的光分量使用不同的颜色查找表函数进行伽马校正,能够提高颜色校正的精准度。
在另一实施例中,如图8所示,本实施例颜色调整方法具体包括以下步骤:
步骤S81:获取当前屏幕像素的蓝光分量及当前系统时间。
步骤S81与步骤S11类似,这里不赘述。
步骤S82:获取当前环境的光强度。
获取当前系统时间时环境的光强度。进一步获取环境光强度百分比L:
Figure PCTCN2022129028-appb-000004
其中,LX为环境光强度,单位为Lux。
由上述公式可知,光强度较小时,减小斜率,光强度较大时,斜率不变。
步骤S83:利用光强度对预设斜率曲线进行修正。
修正后的预设斜率曲线满足:
Figure PCTCN2022129028-appb-000005
其中,K为预设斜率曲线的斜率,即预设斜率曲线的纵坐标值,t为系统时间,例如,6为日出时间,18为日落时间。
光强度较小时,减小斜率,以进一步减少光强度较小时蓝光亮度;光强度较大时,斜率不变,以保证蓝光亮度。
步骤S84:若当前系统时间在夜晚时段内,则从修正后的预设斜率曲线中获取与当前系统时间对应的斜率,并基于修正后的预设斜率曲线中的斜率生成第一颜色查找表函数。
步骤S84与步骤S21类似,这里不赘述。
步骤S85:基于第一颜色查找表函数生成蓝光映射表。
步骤S85与步骤S22类似,这里不赘述。
步骤S86:利用蓝光映射表对蓝光分量进行伽马校正。
步骤S86与步骤S23类似,这里不赘述。
步骤S87:若当前系统时间不在夜晚时段内,则从修正后的预设斜率曲线中获取与当前系统时间对应的斜率,并基于修正后的预设斜率曲线中的斜率生成第二颜色查找表函数,并采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
步骤S87与步骤S13类似,这里不赘述。
进一步地,本实施例进一步对像素的红光分量及绿光分量进行伽马校正。
本实施例利用环境的光强度对预设斜率曲线中与夜晚时段对应的斜率进行修正,能够进一步减少光强度较小时蓝光亮度,并保证光强度较大时蓝光亮度。
本申请进一步提出一种颜色调整装置,如图9所示,图9是本申请颜色调整装置一实施例的结构示意图。本实施例颜色调整装置90包括:视频信号发生器91及伽马校正模块92;视频信号发生器91用于获取当前屏幕像素的蓝光分量及当前系统时间,并用于生成第一颜色查找表函数及第二颜色查找表函数;伽马校正模块92与视频信号发生器91连接,用于在当前系统时间在夜晚时段内时,采用第一颜色查找表函数对蓝光分量进行伽马校正,及用于在当前系统时间不在夜晚时段内时,采用第二颜色查找表函数对蓝光分量进行伽马校正;其中,第一颜色查找表函数的斜率小于第二颜色查找表函数的斜率。
区别于现有技术,本实施例的伽马校正模块92能够在当前系统时间在夜晚时段内时,采用斜率较小的第一颜色查找表对蓝光分量进行伽马校正,能够降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量;而在当前系统时间在非夜晚,即白天时段内时,采用斜率较大的第二颜色查找表对蓝光分量进行伽马校正,能够保证白天时段内的光强度。
本实施例的伽马校正模块92设置在视频信号发生器91外部。视频信号发生器91负责产生RGB数据信号(R0~R7、G0~G7、B0~B7)、像素时钟信号 (DCLK)、同步控制信号(数据有效信号DE、行同步信号HSYNC、场同步信号VSYNC);其输入是由处理器GPU/音频编码VIDEO Decoder/音频输出的RGB or YUB缓冲数据,由于分辨率高达4K,占用的空间比较大,以4K ARGB888为例,尺寸为32M Bytes,故需存放在外部存储上。
视频信号发生器91与伽马校正模块92通过TTL接口连接,TTL接口是一种并行的28pins视频信号输出接口,24个data pins(R0~R7、G0~G7、B0~B7),1个像素时钟pins,3个控制pins(DE、HSYNC、VSYNC)。
伽马校正模块92基于R/G/B颜色查找表输入的RGB信号进行重新映射进行颜色处理。颜色查找表有三个分量R、G、B;R/G/B使用的颜色查找表分别是RLUT、GLUT、BLUT。
在另一实施例中,如图10所示,伽马校正模块92集成在视频信号发生器101内,以节省物料清单(Bill of Material,BOM)成本。视频信号发生器101内进一步集成有直接存储器存取(Direct Memory Access,DMA)及颜色合成器(Composer)等。
在导航应用中,GPU输出RGB缓冲数据,多媒体播放应用系统从SD卡或者网络中读取视频压缩流,经过音频解码输出YUV缓冲数据;摄像头拍照预览应用音频输出YUV缓冲数据,这些RGB缓冲数据和YUB缓冲数据都是放在动态随机存取存储器(Dynamic Random Access Memory,DRAM)中,我们也称之为Layer。由于需要显示的内容都是放在DRAM里面,一块DRAM对应一个Layer,故需要通过视频信号发生器101中的DMA将其通过总线读至先进先出存储器,才能进行合并。
Composer的职责是将N个Layer合并成一层向后输出;伽马校正模块92集成在视频信号发生器101内,且位于Composer的后面,负责将RGB值重新矫正得到预期的效果。
本申请颜色调整装置还用于实现上述颜色调整方法,这里不赘述。
本申请进一步提出一种显示设备,如图10所示,本实施例显示设备包括:视频信号发生器101、存储器121及显示面板122,存储器121与视频信号发生器101(颜色调整装置90)连接,用于存储像素;显示面板122与视频信号发生器101连接,用于显示伽马校正后的像素。
在另一实施例中,如图11所示,图11是本申请显示设备一实施例的结构示意图。本实施例显示设备包括:颜色调整装置90、存储器121及显示面板122; 存储器121与颜色调整装置90连接,用于存储像素;显示面板122与颜色调整装置90连接,用于显示伽马校正后的像素。
颜色调整装置90可参阅上述实施例。存储器121可采用DRAM,也可以采用其它形式存储器。
在其它实施例中,还可以采用图10所示的颜色调整装置代替本实施例的颜色调整装置90。
区别于现有技术,本申请实施例颜色调整方法能够在当前系统时间在夜晚时段内时,采用斜率较小的第一颜色查找表对蓝光分量进行伽马校正,能够降低夜晚时段内的蓝光强度,从而保护视力及提升睡眠质量;而在当前系统时间在非夜晚,即白天时段内时,采用斜率较大的第二颜色查找表对蓝光分量进行伽马校正,能够保证白天时段内的光强度。与传统的基于环境光强度调整屏幕光强的技术方案,本申请能够根据系统时间调整屏幕光强度,使得屏幕的光强度变化符合人体健康需求,提高对人体的保护作用。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种颜色调整方法,其特征在于,包括:
    获取当前屏幕像素的蓝光分量及当前系统时间;
    若所述当前系统时间在夜晚时段内,则采用第一颜色查找表函数对所述蓝光分量进行伽马校正;
    若所述当前系统时间不在所述夜晚时段内,则采用第二颜色查找表函数对所述蓝光分量进行伽马校正;
    其中,所述第一颜色查找表函数的斜率小于所述第二颜色查找表函数的斜率。
  2. 根据权利要求1所述的颜色调整方法,其特征在于,所述采用第一颜色查找表函数对所述蓝光分量进行伽马校正包括:
    从预设斜率曲线中获取与所述当前系统时间对应的斜率,并基于所述斜率生成第一颜色查找表函数;
    基于所述第一颜色查找表函数生成蓝光映射表;
    利用所述蓝光映射表对所述蓝光分量进行伽马校正。
  3. 根据权利要求2所述的颜色调整方法,其特征在于,所述预设斜率曲线包括与所述夜晚时段对应的第一斜率曲线,所述第一斜率曲线为一次函数曲线、二次函数曲线或者0.5次幂函数曲线。
  4. 根据权利要求3所述的颜色调整方法,其特征在于,所述预设斜率曲线进一步包括第二斜率曲线,所述第二斜率曲线与白天时段的系统时间对应。
  5. 根据权利要求4所述的颜色调整方法,其特征在于,所述第一斜率曲线包括第一子斜率曲线及第二子斜率曲线,所述第一子斜率曲线的所述斜率随系统时间的增加而增加,所述第二子斜率曲线的所述斜率随所述系统时间的增加而减小,所述第二斜率曲线的两端分别与所述第一子斜率曲线及所述第二子斜率曲线连接,所述第一子斜率曲线对应的所述系统时间早于所述第二子斜率曲线对应的所述系统时间。
  6. 根据权利要求2所述的颜色调整方法,其特征在于,进一步包括:
    获取当前环境的光强度;
    利用光强度对所述预设斜率曲线进行修正,以从修正后的所述预设斜率曲线中获取与所述当前系统时间对应的斜率。
  7. 根据权利要求1所述的颜色调整方法,其特征在于,进一步包括:
    分别获取当前屏幕像素的红光分量及绿光分量;
    采用第三颜色查找表函数对所述红光分量进行伽马校正,及采用第四颜色查找表函数对所述绿光分量进行伽马校正。
  8. 根据权利要求1所述的颜色调整方法,其特征在于,所述获取当前屏幕像素的蓝光分量及当前系统时间包括:
    以预设时间间隔周期性获取当前屏幕像素的蓝光分量及当前系统时间。
  9. 一种颜色调整装置,其特征在于,包括:
    视频信号发生器,用于获取当前屏幕像素的蓝光分量及当前系统时间,并用于生成第一颜色查找表函数及第二颜色查找表函数;
    伽马校正模块,与所述视频信号发生器连接,用于在所述当前系统时间在所述夜晚时段内时,采用所述第一颜色查找表函数对所述蓝光分量进行伽马校正,及用于在所述当前系统时间不在所述夜晚时段内时,采用第二颜色查找表函数对所述蓝光分量进行伽马校正;其中,所述第一颜色查找表函数的斜率小于所述第二颜色查找表函数的斜率。
  10. 一种显示设备,其特征在于,包括:
    权利要求9所述的颜色调整装置;
    存储器,与所述颜色调整装置连接,用于存储所述像素;
    显示面板,与所述颜色调整装置连接,用于显示所述伽马校正后的所述像素。
PCT/CN2022/129028 2021-11-08 2022-11-01 颜色调整方法及装置、显示设备 WO2023078250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111315363.0A CN113870810A (zh) 2021-11-08 2021-11-08 颜色调整方法及装置、显示设备
CN202111315363.0 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023078250A1 true WO2023078250A1 (zh) 2023-05-11

Family

ID=78987470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129028 WO2023078250A1 (zh) 2021-11-08 2022-11-01 颜色调整方法及装置、显示设备

Country Status (2)

Country Link
CN (1) CN113870810A (zh)
WO (1) WO2023078250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113870810A (zh) * 2021-11-08 2021-12-31 合肥杰发科技有限公司 颜色调整方法及装置、显示设备
CN116052607B (zh) * 2023-04-03 2023-09-19 荣耀终端有限公司 电子设备控制方法、装置、芯片、电子设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794194A (zh) * 2014-01-24 2014-05-14 厦门美图之家科技有限公司 一种自动调整移动终端屏幕颜色的方法
CN105070252A (zh) * 2015-08-13 2015-11-18 小米科技有限责任公司 降低显示亮度的方法及装置
CN106201403A (zh) * 2016-07-11 2016-12-07 深圳市护眼宝科技有限公司 调节led屏幕蓝光显示的方法
WO2017031237A1 (en) * 2015-08-17 2017-02-23 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US20170318345A1 (en) * 2016-05-02 2017-11-02 Echostar Technologies L.L.C. Reduce blue light at set-top box to assist with sleep
US10186209B1 (en) * 2015-11-09 2019-01-22 Amazon Technologies, Inc. Night time control of brightness and blue light emission in device displays
CN110032351A (zh) * 2019-04-22 2019-07-19 广东小天才科技有限公司 屏幕蓝光调节方法、装置、电子设备和存储介质
CN113870810A (zh) * 2021-11-08 2021-12-31 合肥杰发科技有限公司 颜色调整方法及装置、显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933526A (zh) * 2016-04-29 2016-09-07 乐视控股(北京)有限公司 调节终端屏幕显示状态的方法和装置
CN107045417A (zh) * 2017-04-07 2017-08-15 广东欧珀移动通信有限公司 屏幕色温调节方法、装置及其设备
US20200098300A1 (en) * 2017-04-19 2020-03-26 Intel Corporation Methods and apparatus to set a blue light cutoff time of an electronic device
CN110428794A (zh) * 2019-08-06 2019-11-08 广东小天才科技有限公司 一种调节屏幕蓝光的方法、装置及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794194A (zh) * 2014-01-24 2014-05-14 厦门美图之家科技有限公司 一种自动调整移动终端屏幕颜色的方法
CN105070252A (zh) * 2015-08-13 2015-11-18 小米科技有限责任公司 降低显示亮度的方法及装置
WO2017031237A1 (en) * 2015-08-17 2017-02-23 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US10186209B1 (en) * 2015-11-09 2019-01-22 Amazon Technologies, Inc. Night time control of brightness and blue light emission in device displays
US20170318345A1 (en) * 2016-05-02 2017-11-02 Echostar Technologies L.L.C. Reduce blue light at set-top box to assist with sleep
CN106201403A (zh) * 2016-07-11 2016-12-07 深圳市护眼宝科技有限公司 调节led屏幕蓝光显示的方法
CN110032351A (zh) * 2019-04-22 2019-07-19 广东小天才科技有限公司 屏幕蓝光调节方法、装置、电子设备和存储介质
CN113870810A (zh) * 2021-11-08 2021-12-31 合肥杰发科技有限公司 颜色调整方法及装置、显示设备

Also Published As

Publication number Publication date
CN113870810A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023078250A1 (zh) 颜色调整方法及装置、显示设备
TWI317119B (en) Display device, liquid crystal monitor, liquid crystal television receiver, and display method
US8982163B2 (en) Techniques for dynamically regulating display images for ambient viewing conditions
US8654060B2 (en) Processing device and processing method of high dynamic contrast for liquid crystal display apparatus
TWI478144B (zh) 具強光可視性的顯示方法與使用此方法的電子裝置
WO2019134605A1 (zh) 根据人眼特性进行背光亮度调节的方法、装置和设备
TWI307600B (en) Image processing method for display device
US9824650B2 (en) Method of adjusting display unit and electronic device
WO2018176523A1 (zh) Rgbw液晶显示装置的亮度调节方法及装置
WO2020228580A1 (zh) 显示方法、显示装置以及计算机存储介质
CN101826282B (zh) 一种液晶显示装置和数字图像信号的处理方法
CN107690811A (zh) 呈现和显示高动态范围内容
CN109064966B (zh) 一种显示面板的驱动方法及驱动芯片、显示装置
WO2017113343A1 (zh) 一种调节背光亮度的方法和终端
JP2008209828A (ja) 画像表示装置及び電子機器
US10332481B2 (en) Adaptive display management using 3D look-up table interpolation
WO2021169559A1 (zh) 显示装置及其驱动方法和驱动装置、计算机可读存储介质
CN101814279B (zh) 动态背光液晶显示系统及方法
WO2019179512A1 (zh) 显示方法、显示装置及显示器
EP4135305A1 (en) Method and apparatus for acquiring mapping curve parameter
KR20110012685A (ko) 데이터 보정방법 및 이를 이용한 액정표시장치
CN105592254A (zh) 图像显示方法及电子装置
US20220351701A1 (en) Method and device for adjusting image quality, and readable storage medium
US20150035868A1 (en) Projection device and luminance control method of frame thereof
CN113674718B (zh) 显示亮度调整方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889274

Country of ref document: EP

Kind code of ref document: A1