WO2023078195A1 - 一种超声反射系数表征锂离子电池soc的方法 - Google Patents

一种超声反射系数表征锂离子电池soc的方法 Download PDF

Info

Publication number
WO2023078195A1
WO2023078195A1 PCT/CN2022/128498 CN2022128498W WO2023078195A1 WO 2023078195 A1 WO2023078195 A1 WO 2023078195A1 CN 2022128498 W CN2022128498 W CN 2022128498W WO 2023078195 A1 WO2023078195 A1 WO 2023078195A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
charge
soc
angle
Prior art date
Application number
PCT/CN2022/128498
Other languages
English (en)
French (fr)
Inventor
吕炎
王香苓
宋国荣
张斌鹏
何存富
吴斌
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023078195A1 publication Critical patent/WO2023078195A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of ultrasonic nondestructive testing, and in particular relates to a detection method for the state of charge (State Of Charge, SOC) of a lithium-ion battery.
  • SOC state of Charge
  • Lithium-ion batteries are widely used in aerospace, military, aerospace and electric vehicle industries. However, the capacity of the lithium-ion battery decays during the charge-discharge cycle of the lithium-ion battery.
  • the safety performance detection of the lithium-ion battery especially the state of charge (State Of Charge, SOC) and the state of health (State Of Health, SOH) has always been a lithium-ion battery. Hot issues of non-destructive testing of ion batteries,
  • Lithium-ion batteries are composed of different materials, and the propagation of ultrasonic signals is complex.
  • the internal structure of lithium-ion batteries changes slightly during the cycle, and the acoustic impedance also changes. Due to the mismatch of acoustic impedance, the reflection coefficient of ultrasonic waves will also be different. Based on the mapping relationship between ultrasonic reflection coefficient angle spectrum and lithium-ion battery SOC under different SOCs, this paper realizes the use of ultrasonic reflection coefficient angle spectrum to characterize the SOC of lithium-ion batteries.
  • the present invention designs a detection method for ultrasonically measuring the state of charge (State Of Charge, SOC) of a lithium-ion battery.
  • SOC state of charge
  • a method for detecting the SOC of a lithium-ion battery by an ultrasonic reflection coefficient method includes the following processes:
  • Step 1 Discharge the soft-pack lithium-ion battery with a stacked structure to the discharge cut-off voltage at room temperature using a charge-discharge device at room temperature, and then let it stand still. Charge the soft-pack lithium-ion battery after standing to the charge cut-off voltage with a constant current and constant voltage ;
  • Step 2 Discharge the soft-pack lithium-ion battery after standing at room temperature to the discharge cut-off voltage at a constant current, and obtain N lithium-ion batteries in different states of charge according to different discharge times.
  • the total discharge time T is the time it takes for the battery to discharge from the charge cut-off voltage to the discharge cut-off voltage.
  • the proportion of the discharge time t represents the state of charge of the lithium-ion battery.
  • the calculation formula for the state of charge is:
  • Step 3 Experimental device design.
  • the measurement system includes: two ultrasonic water immersion probes (1, 2), embedded Controller (3), digital oscilloscope (4), battery detection system (5), median computer (6), water tank (7), angle fixture (8), lithium-ion battery test piece (9), computer (10 ).
  • the connection method is shown in Figure 2, the embedded controller (3) is connected with the transmitting ultrasonic probe (1) to send ultrasonic signals, the digital oscilloscope (4) is connected with the receiving ultrasonic probe (2), and is connected with the embedded controller (3) ) connection for signal processing and acquisition.
  • the battery detection system (5) monitors and controls the state of charge of the tested lithium-ion battery in real time, can change the SOC of the lithium-ion battery and connects the computer with the battery detection system through the intermediate computer (6) for signal transmission.
  • Step 4 Using the detection method of ultrasonic water immersion, take a lithium-ion battery in a certain state of charge obtained in step 2 and place it in the water tank, and select a broadband ultrasonic probe with a certain center frequency to obtain the acoustic reflection of the lithium-ion battery Signal;
  • Step 5 From step 3, select the angle (0-60°) between the two ultrasonic probes in turn, and obtain the time-domain diagram of the acoustic reflection signal of the lithium-ion battery at each angle;
  • Step 6 Perform data processing on the time-domain reflection signals at different angles, and obtain the acoustic reflection coefficients of the lithium-ion battery at different incident angles by Fourier transform.
  • Step 7 Repeat steps 4-6 until the detection of the acoustic reflection coefficients in all states of charge (0%-100% SOC) of the lithium-ion battery obtained in step 2 is completed.
  • Step 8 From all the reflection coefficients obtained in step 7, draw the angle spectrum of the reflection coefficient of the lithium-ion battery under 0% SOC-100% SOC;
  • Step 9 Analyze the changes in the peak positions of the two peaks of the reflection coefficient angle spectrum, and obtain the mapping relationship between the reflection coefficient angle spectrum and the state of charge of the lithium-ion battery, so as to characterize the state of charge (SOC) of the lithium-ion battery.
  • SOC state of charge
  • SOC cannot be measured directly, but can only be estimated.
  • Commonly used analysis methods include ampere-hour integration method, open circuit voltage method, impedance method, Kalman filter and neural network method, etc. These methods will introduce errors due to inaccurate measurement of certain parameters, which will cause large errors in the final estimated SOC results; At the same time, the result is unstable due to the large amount of calculation.
  • Ultrasonic non-destructive testing has the characteristics of high speed, non-contact, high accuracy, and is sensitive to changes in the internal characteristics of objects. Check local features. Through the change of the internal electrode of the lithium-ion battery to affect the propagation of ultrasonic waves, characterize the reflection characteristics of the battery, build its connection with the SOC, and realize the detection of the local state of charge of the lithium-ion battery.
  • Figure 1 11-layer structure model of lithium-ion battery
  • FIG. 3 Schematic diagram of the angle fixture
  • the working principle of the present invention is:
  • the time interval is 5min, and the discharge time t is 0min, 5min, 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min; corresponding to the state of charge of the lithium-ion battery is 100% SOC, 90% SOC,, 80% SOC,, 70% SOC, 60% SOC, 50% SOC, 40% SOC, 30% SOC, 20% SOC, 10% SOC, 0% SOC;
  • S4 Experimental device design.
  • the measurement system includes: two ultrasonic probes (1, 2), embedded controller ( 3), digital oscilloscope (4), battery detection system (5), median computer (6), water tank (7), angle fixture (8), lithium-ion battery test piece (9), computer (10).
  • the connection method is shown in Figure 2.
  • the battery detection system (5) monitors and controls the state of charge of the tested lithium-ion battery in real time, can change the SOC of the lithium-ion battery and connects the computer with the battery detection system through the intermediate computer (6) for signal transmission.
  • the angle fixture can realize the excitation and reception of ultrasonic waves by the ultrasonic transducer at different angles, and the angle can be adjusted and fixed. As shown in Figure 3, the angle range is (0-60°).
  • the mapping relationship between the angular spectrum of the ultrasonic reflection coefficient and the state of charge of the lithium-ion battery is established to characterize the SOC of the lithium-ion battery.
  • S8 Characterize the state of charge (SOC) of the unknown lithium-ion battery, the horizontal distance between the two peak curves obtained in step 7 represents the distance between the two peak points of the reflectance angle spectrum in a certain state of charge of the lithium-ion battery In this way, the mapping relationship between the SOC of the lithium-ion battery and the angle spectrum of the reflection coefficient is established to characterize the SOC of the lithium-ion battery.
  • Use charging and discharging equipment to charge the same type of lithium-ion battery, and obtain the angle spectrum curve of the reflection coefficient of the lithium-ion battery in the state of charge from step 7 ( Figure 5).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Secondary Cells (AREA)

Abstract

一种超声反射系数表征锂离子电池SOC的方法,通过超声水浸检测,获得不同荷电状态SOC下的锂离子电池反射系数角度谱,建立角度谱与锂离子电池荷电状态的映射关系,用角度谱的两股峰值间距表征锂离子电池荷电状态SOC。可实现对锂离子电池荷电状态SOC的无损表征;可实现锂离子电池局部SOC测量。

Description

一种超声反射系数表征锂离子电池SOC的方法 技术领域
本发明属于超声无损检测领域,具体涉及一种锂离子电池荷电状态(State Of Charge,SOC)的检测方法。
背景技术
锂离子电池被广泛应用于航空航天,军事领域、航空航天以及电动汽车行业。但在锂离子电池充放电循环过程中锂离子电池的容量的衰减,锂离子电池的安全性能检测尤其是荷电状态(State Of Charge,SOC)和健康状态(State Of Health,SOH)一直是锂离子电池无损检测的热点问题,
锂离子电池以不同材料层叠构成,超声波信号传播复杂,锂离子电池在循环过程中内部结构发生微小变化,声阻抗也发生变化,由于声阻抗的不匹配超声波的反射系数也会不同。本文基于超声波在不同SOC下超声波反射系数角度谱与锂离子电池SOC的映射关系,实现使用超声波反射系数角度谱表征锂离子电池的SOC。
发明内容
本发明针对上述问题设计了一种超声测量锂离子电池荷电状态(State Of Charge,SOC)的检测方法。本发明的技术方案如下:
一种超声反射系数法检测锂离子电池SOC的方法,该方法的实现步骤包括如下流程:
步骤1:将层叠结构的软包锂离子电池在室温下采用充放电设备恒流放电至放电截止电压、静置,将静置后的软包锂离子电池采用恒流恒压充电至充电截止电压;
步骤2:将静置后的软包锂离子电池室温下采用恒流放电至放电截止电压,依据放电时间不同,获得N个不同荷电状态下的锂离子电池。全部放电时间T为电池由充电截止电压放电至放电截止电压所用的时间,由放电时间t的占比表示锂离子电池的荷电状态,荷电状态计算公式为:
电池荷电状态(State Of Charge,SOC)=(T-t)/T*100%SOC;
步骤3:实验装置设计,为了进行变角度超声反射系数的测量,搭建了一套进行变角度超声反射系数的测量系统,该测量系统包括:两个超声水浸探头(1,2),嵌入式控制器(3),数字示波器(4),电池检测系统(5),中位机(6),水槽(7),角度夹具(8),锂离子单电池试件(9),计算机(10)。联接方式如图2所示,嵌入式控制器(3)与发射超声探头(1)联接,发出超声波信号,数字示波器(4)与接收超声探头(2)联接,并与嵌入式控制器(3)联接,进行信号处理与采集。电池检测系统(5)实时监测和控制被测锂离子电池的荷电状态,可以改变锂离子电池的SOC并通过中位机(6)将计算机与电池检测系统联接,进行信号传 输。将被测锂离子电池的两个极耳接入电池检测系统(5),并对两个极耳做防水处理,与超声探头一起浸入装有水的水槽中,两个超声探头(1,2)由角度夹具(8)固定住,超声波信号按某一角度一激一收,测量反射信号。
步骤4:采用超声水浸的检测方法,取步骤2中获取的某个荷电状态下的锂离子电池置于水槽中,选用一定中心频率的宽频超声探头一激一收获取锂离子电池声反射信号;
步骤5:由步骤3,依次选定两个超声探头之间的夹角(0-60°),获取每个角度下的锂离子电池声反射信号时域图;
步骤6:对不同角度下的时域反射信号进行数据处理,由傅里叶变换得到不同入射角度下的锂离子电池声反射系数。
步骤7:重复步骤4-6,直至步骤2中所获得的锂离子电池所有荷电状态(0%-100%SOC)下的声反射系数检测完成。
步骤8:由步骤7中获取的所有反射系数,绘制0%SOC-100%SOC下锂离子电池反射系数角度谱;
步骤9:分析反射系数角度谱两股峰值位置的变化,获取反射系数角度谱与锂离子电池荷电状态之间的映射关系,以此表征锂离子电池荷电状态(SOC)。
本发明具有以下优点:
目前,SOC还无法直接测量,只能进行估算。常用的分析方法有安时积分法、开路电压法、阻抗法、卡尔曼滤波以及神经网络法等,此类方法会因某些参数测量不准确引入误差,使最终估算的SOC结果误差较大;同时,也因计算量过大,导致结果不稳定。在锂离子电池充电的过程中,电极的密度与弹性模量会随SOC的改变而发生变化,超声无损检测具有高速、非接触、准确率高等特点,且对物体内部特性变化敏感,可对电池局部特性进行检测。通过锂离子电池内部电极变化影响超声波的传播,表征电池反射特性,构建其与SOC的联系,实现锂离子电池的局部荷电状态检测。
附图说明
图1:锂离子电池11层结构模型;
图2:实验装置联接图;
图3:角度夹具示意图;
图4:不同荷电状态下反射系数角度谱三维图;
左峰值线:f(x)=-5.828e-05*x^2+0.001282*x+13.92
右峰值线:f(x)=5.245e-05*x^2-0.02661*x+23.37;
图5:某SOC下反射系数角度谱。
具体实施方式
本发明的工作原理是:
利用超声水浸检测,本发明通过检测不同荷电状态下软包锂离子电池的声反射系数,并改变超声换能器之间的角度,进而获得不同荷电状态(SOC)下的锂离子电池反射系数角度谱,表征电池荷电状态。
以下结合具体实例对本发明的内容做进一步的详细说明:
实施例1:
按照如下步骤:
S1:取0.7mm的锂离子软包电池(层叠结构),采用超声充放电设备对层叠结构的锂离子电池进行充放电,首先将锂离子电池放电至截止电压3V,静置2min,充电至充电截止电压4.2V。
S2:将满状态的锂离子电池以1C速率放电至3V所用时间总时间T为50min,由公式:
电池荷电状态(State Of Charge,SOC)=(T-t)/T*100%SOC,其中t为放电时间,t取值范围为0-50min;
S3:取时间间隔为5min,放电时间t分别取0min,5min,10min,15min,20min,25min,30min,35min,40min,45min,50min;分别对应锂离子电池荷电状态为100%SOC,90%SOC,,80%SOC,,70%SOC,60%SOC,50%SOC,40%SOC,30%SOC,20%SOC,10%SOC,0%SOC;
S4:实验装置设计,为了进行变角度超声反射系数的测量,搭建了一套进行变角度超声反射系数的测量系统,该测量系统包括:两个超声探头(1,2),嵌入式控制器(3),数字示波器(4),电池检测系统(5),中位机(6),水槽(7),角度夹具(8),锂离子单电池试件(9),计算机(10)。联接方式如图2所示。将被测锂离子电池的两个极耳接入电池检测系统(5),并对两个极耳做防水处理,与超声探头一起浸入装有水的水槽中,两个超声探头(1,2)由角度夹具(8)固定住,超声波信号按某一角度一激一收,测量反射信号,嵌入式控制器(3)与发射超声探头(1)联接,发出超声波信号,数字示波器(4)与接收超声探头(2)联接,并与嵌入式控制器(3)联接,进行信号处理与采集。电池检测系统(5)实时监测和控制被测锂离子电池的荷电状态,可以改变锂离子电池的SOC并通过中位机(6)将计算机与电池检测系统联接,进行信号传输。
S5:角度夹具可实现超声换能器不同角度激发和接收超声波,角度可以调节固定。如图3所示,角度变化范围为(0-60°)。
S6:选定两个中心频率为1MHz的超声探头,由角度夹具固定,两个超声探头之间的角 度变化为从0°变化至60°,本次从0°开始,步长为1,共获得61个反射信号,将由傅里叶变换得到的各个反射系数点拟合,得到某一SOC下的反射系数角度谱曲线。重复此步骤,直至获得步骤3中锂离子电池11个荷电状态下的反射系数角度谱曲线。
S7:绘制不同SOC下的反射系数角度谱,将11个不同荷电状态下获得反射系数角度曲线图拟合出三维图,如图4所示。由得到的反射系数角度谱的三维图,两股峰值点的坐标循迹得到的两条曲线方程为:
F 1(x)=5.245e-05*x^2-0.02661*x+23.37;%右,x为角度
F 2(x)=-5.828e-05*x^2+0.001282*x+13.92;%左,x为角度
随着锂离子单电池荷电状态的增加,反射系数三维角度谱第二个峰值向小角度偏移。以此建立超声反射系数角度谱与锂离子电池荷电状态之间的映射关系,表征锂离子电池SOC。
S8:表征未知锂离子电池的荷电状态(SOC),由步骤7获得的两股峰值曲线之间的水平距离代表锂离子电池某一荷电状态下反射系数角度谱两个峰值点之间的距离,以此建立锂离子电池SOC与反射系数角度谱之间的映射关系,表征锂离子电池的SOC。采用充放电设备对同种锂离子电池充电,由步骤7获得该荷电状态下的锂离子电池反射系数角度谱曲线(图5)。得到了该SOC下的锂离子电池反射系数变化曲线,计算两股峰值之间的水平距离,由步骤7中的结果,对比不同荷电状态下反射系数角度谱,确定出被测锂离子电池的荷电状态。对比得知该荷电状态为53.5%SOC。

Claims (3)

  1. 一种超声反射系数法检测锂离子电池SOC的方法,其特征在于:该方法的实现步骤包括如下流程:
    步骤1:将层叠结构的软包锂离子电池在室温下采用充放电设备恒流放电至放电截止电压、静置,将静置后的软包锂离子电池采用恒流恒压充电至充电截止电压;
    步骤2:将静置后的软包锂离子电池室温下采用恒流放电至放电截止电压,依据放电时间不同,获得N个不同荷电状态下的锂离子电池;全部放电时间T为电池由充电截止电压放电至放电截止电压所用的时间,由放电时间t的占比表示锂离子电池的荷电状态,荷电状态计算公式为:
    电池荷电状态SOC=(T-t)/T*100%;
    步骤3:检测装置搭建:搭建超声水浸检测平台,采用一角度夹具,可选择固定两个超声探头之间的夹角;
    步骤4:采用超声水浸的检测方法,取步骤2中获取的某个荷电状态下的锂离子电池置于水槽中,选用一定中心频率的宽频超声探头一激一收获取锂离子电池声反射信号;
    步骤5:由步骤3,依次选定两个超声探头之间的夹角0-60°,获取每个角度下的锂离子电池声反射信号时域图;
    步骤6:对不同角度下的时域反射信号进行数据处理,由傅里叶变换得到不同入射角度下的锂离子电池声反射系数;
    步骤7:重复步骤4-6,直至步骤2中所获得的锂离子电池所有荷电状态下的声反射系数检测完成;
    步骤8:由步骤7中获取的所有反射系数,绘制0%SOC-100%SOC下锂离子电池反射系数角度谱;
    步骤9:分析反射系数角度谱两股峰值位置的变化,获取反射系数角度谱与锂离子电池荷电状态之间的映射关系,以此表征锂离子电池荷电状态SOC。
  2. 根据权利要求1所述的一种超声反射系数法检测锂离子电池SOC的方法,其特征在于:实验激励的中心频率为0.5MHz~1.5MHz,两超声换能器之间的夹角由角度夹具控制固定,角度调节范围为0°~60°。
  3. 根据权利要求1所述的一种超声反射系数法检测锂离子电池SOC的方法,其特征在于:对接收到的反射时域信号经数据处理建立三维反射系数频率谱,由频谱中反射系数两峰值间位置关系表征软包锂离子电池荷电状态。
PCT/CN2022/128498 2021-11-08 2022-10-31 一种超声反射系数表征锂离子电池soc的方法 WO2023078195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111315015.3A CN114019388A (zh) 2021-11-08 2021-11-08 一种超声反射系数表征锂离子电池soc的方法
CN202111315015.3 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023078195A1 true WO2023078195A1 (zh) 2023-05-11

Family

ID=80062380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128498 WO2023078195A1 (zh) 2021-11-08 2022-10-31 一种超声反射系数表征锂离子电池soc的方法

Country Status (2)

Country Link
CN (1) CN114019388A (zh)
WO (1) WO2023078195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019388A (zh) * 2021-11-08 2022-02-08 北京工业大学 一种超声反射系数表征锂离子电池soc的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197382A1 (en) * 2013-08-15 2016-07-07 University Of Maryland, College Park Systems, methods, and devices for health monitoring of an energy storage device
CN110118938A (zh) * 2019-04-11 2019-08-13 华中科技大学 基于超声波频谱分析锂电池内部状态的方法及装置
CN111175661A (zh) * 2020-02-21 2020-05-19 中国电力科学研究院有限公司 一种用于确定锂离子电池的荷电状态的方法及系统
CN111344894A (zh) * 2017-09-01 2020-06-26 费赛普公司 使用声学信号确定电化学系统的特性
CN111880107A (zh) * 2020-09-10 2020-11-03 华中科技大学无锡研究院 一种检测锂离子电池荷电状态的方法和装置
US20200371165A1 (en) * 2019-05-20 2020-11-26 Amazon Technologies, Inc. Power supply monitoring systems and methods using ultrasonic sensors
US20200400614A1 (en) * 2019-06-19 2020-12-24 Battelle Memorial Institute In Operando, Non-Invasive State-of-Charge Monitoring for Redox Flow Batteries
CN113189506A (zh) * 2021-04-12 2021-07-30 河北工业大学 一种基于声波时域特征的锂离子电池荷电状态表征方法
CN114019388A (zh) * 2021-11-08 2022-02-08 北京工业大学 一种超声反射系数表征锂离子电池soc的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197382A1 (en) * 2013-08-15 2016-07-07 University Of Maryland, College Park Systems, methods, and devices for health monitoring of an energy storage device
CN111344894A (zh) * 2017-09-01 2020-06-26 费赛普公司 使用声学信号确定电化学系统的特性
CN110118938A (zh) * 2019-04-11 2019-08-13 华中科技大学 基于超声波频谱分析锂电池内部状态的方法及装置
US20200371165A1 (en) * 2019-05-20 2020-11-26 Amazon Technologies, Inc. Power supply monitoring systems and methods using ultrasonic sensors
US20200400614A1 (en) * 2019-06-19 2020-12-24 Battelle Memorial Institute In Operando, Non-Invasive State-of-Charge Monitoring for Redox Flow Batteries
CN111175661A (zh) * 2020-02-21 2020-05-19 中国电力科学研究院有限公司 一种用于确定锂离子电池的荷电状态的方法及系统
CN111880107A (zh) * 2020-09-10 2020-11-03 华中科技大学无锡研究院 一种检测锂离子电池荷电状态的方法和装置
CN113189506A (zh) * 2021-04-12 2021-07-30 河北工业大学 一种基于声波时域特征的锂离子电池荷电状态表征方法
CN114019388A (zh) * 2021-11-08 2022-02-08 北京工业大学 一种超声反射系数表征锂离子电池soc的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUORONG SONG; YAOQIAN LI; YAN LYU; JIE GAO; CUNFU HE: "Estimating state of charge of lithium-ion batteries using ultrasonic reflection and transmission coefficients by Legendre orthogonal polynomial method", 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), IEEE, 1 November 2019 (2019-11-01), pages 1256 - 1261, XP033774823, DOI: 10.1109/ICEMI46757.2019.9101585 *

Also Published As

Publication number Publication date
CN114019388A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN109764986B (zh) 一种基于超声横波相位谱的钢构件平面应力检测方法
US11422194B2 (en) Battery diagnosis apparatus and battery diagnosis method based on current pulse method
CN104090214B (zh) 一种电缆故障检测及老化分析方法
CN105137199B (zh) 基于网络分析仪的介质介电常数测量方法
WO2018090678A1 (zh) 一种监测锂离子电池荷电状态和健康状态的方法及其装置
Lyu et al. SOH estimation of lithium-ion batteries based on fast time domain impedance spectroscopy
CN106100770B (zh) 一种基于两种检波方式的噪声系数测量方法
CN106066425B (zh) 一种阻抗测量装置及其实现校准补偿的方法
WO2023078195A1 (zh) 一种超声反射系数表征锂离子电池soc的方法
CN114019387A (zh) 超声反射系数表征锂离子电池soc的方法
CN106680730A (zh) 一种可检测荷电状态的充放电装置及荷电状态的检测方法
CN109917258A (zh) 大型变压器局部放电定位检测方法
US20230228632A1 (en) Method, System, Device and Medium for Online Monitoring of Plane Stress Field without Baseline Data Based on Piezoelectric Transducer Array
CN109387564B (zh) 一种基于锂枝晶生长的锂离子电池在线检测方法及装置
CN105425128A (zh) 一种变压器局部放电超声波检测及精确定位装置与方法
CN115616428A (zh) 一种“充—检”一体电动汽车电池状态检测与评价方法
CN102590598B (zh) 基于多阈值比较的超声波信号过零点预测方法
Jie et al. Ultrasonic guided wave measurement and modeling analysis of the state of charge for lithium-ion battery
US10261054B2 (en) Method for the non-destructive ultrasonic testing of a part by echo analysis
CN113125857A (zh) 一种基于开路同轴线的吸波材料介电参数测量与反演方法
CN104749082A (zh) 孔隙含量超声多功能评价方法及装置
WO2023078196A1 (zh) 一种软包锂离子电池荷电状态超声导波原位检测方法
US20230081998A1 (en) Stress gradient high-efficiency non-destructive detection system based on frequency domain calculation of broadband swept frequency signals, and detection method thereof
CN206818638U (zh) 基于电磁波传输线理论的拉索缺陷检测系统
Zhang et al. Ultrasonic characterization of multi-layered porous lithium-ion battery structure for state of charge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889220

Country of ref document: EP

Kind code of ref document: A1