WO2023077929A1 - 一种模块电源输出保护电路 - Google Patents

一种模块电源输出保护电路 Download PDF

Info

Publication number
WO2023077929A1
WO2023077929A1 PCT/CN2022/115602 CN2022115602W WO2023077929A1 WO 2023077929 A1 WO2023077929 A1 WO 2023077929A1 CN 2022115602 W CN2022115602 W CN 2022115602W WO 2023077929 A1 WO2023077929 A1 WO 2023077929A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
module
capacitor
comparator
diode
Prior art date
Application number
PCT/CN2022/115602
Other languages
English (en)
French (fr)
Inventor
皇志启
杨冬平
谢鹏飞
纪明明
胡忠阳
马涛
Original Assignee
北京卫星制造厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫星制造厂有限公司 filed Critical 北京卫星制造厂有限公司
Publication of WO2023077929A1 publication Critical patent/WO2023077929A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage

Definitions

  • the invention relates to a module power output protection circuit.
  • Aerospace-grade UC18xx series chips are widely used as controllers for the secondary power supply of spacecraft.
  • This type of chip has a simple internal structure, convenient peripheral circuit setting, high reliability, and can be set to current mode and voltage mode.
  • This type of chip does not have the standby cut-off protection function for output load overcurrent and load short circuit, nor does it have the standby cut-off protection function for output overvoltage.
  • the aerospace-grade UC18xx series chips reduce or limit the output voltage by reducing the output pulse width (PWM) of the controller. Protect module power and user loads.
  • PWM pulse width
  • the user of the secondary power supply of the spacecraft requires the secondary power supply to be indestructible in the event of overload and short circuit, and to have a recoverable function after the overload or short circuit fault is removed. Therefore, when faults such as overcurrent, short circuit, and overvoltage occur at the output terminal of the secondary power supply, it is necessary to cut off the output of the secondary power supply in time to increase the reliability of the system.
  • the object of the present invention is to provide a module power supply output protection circuit, which can cut off the secondary power supply in time when faults such as overcurrent, short circuit and overvoltage occur at the output terminal of the secondary power supply.
  • the output achieves the purpose of protecting the electric load.
  • the invention provides a module power supply output protection circuit, comprising: a cut-off type overcurrent protection module, a cut-off type overvoltage protection module, a power supply control module, a slow start module and a reference power supply module, the cut-off type over-current protection module and the
  • the cut-off type overvoltage protection modules are all used to control the charge and discharge of the slow start module, so as to control the normal operation or stop of the power supply control module;
  • the reference power supply module is used for the cut-off type overcurrent protection module and all
  • the cut-off type overvoltage protection module provides a reference voltage.
  • the cut-off type overcurrent protection module includes: a current sampling resistor, a differential amplifier circuit, an isolation circuit and a first voltage comparison circuit,
  • the current sampling resistor is connected in parallel between the input terminals of the differential amplifier circuit
  • the output end of the differential amplifier circuit is connected to the input end of the isolation circuit
  • the output terminal of the isolation circuit is connected to the input terminal of the first voltage comparison circuit.
  • the differential amplifier circuit includes: a second resistor, a third resistor, a fourth resistor, a fifth resistor, a first capacitor, a second capacitor, a third capacitor and a first comparator,
  • the first terminal of the second resistor is connected to the first terminal of the first capacitor, and the second terminal is connected to the non-inverting input terminal of the first comparator;
  • the first terminal of the third resistor is connected to the second terminal of the first capacitor, and the second terminal is connected to the inverting input terminal of the first comparator;
  • Both the first ends of the fourth resistor and the second capacitor are connected to the non-inverting input end of the first comparator, and the second ends are grounded;
  • the first end of the fifth resistor is connected to the inverting input end of the first comparator, and the second end is connected to the output end of the first comparator;
  • the first capacitor is connected in parallel with the current sampling resistor
  • the first terminal of the third capacitor is connected to the output terminal of the first comparator, and the second terminal is grounded.
  • the isolation circuit includes: a sixth resistor and a first diode,
  • the first end of the sixth resistor is connected to the output end of the first comparator, and the second end is connected to the anode of the first diode;
  • the cathode of the first diode is connected to the second terminal of the seventh resistor.
  • the first voltage comparison circuit includes: a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, an eleventh resistor, a fourth capacitor, a fifth capacitor, a second comparator, the second diode and the third diode,
  • First terminals of the seventh resistor, the eighth resistor, the ninth resistor and the fourth capacitor are all connected to the inverting input terminal of the second comparator;
  • the first terminals of the tenth resistor, the eleventh resistor, the fifth capacitor and the anode of the third diode are all connected to the non-inverting input terminal of the second comparator;
  • the second ends of the eighth resistor, the fourth capacitor, the eleventh resistor, and the fifth capacitor are all grounded;
  • Both the second terminals of the ninth resistor and the tenth resistor are connected to the output terminal of the reference power supply module;
  • the cathode of the third diode is connected to the output terminal of the second comparator
  • the anode of the second diode is connected to the slow start module and the power control module, and the cathode is connected to the output terminal of the second comparator.
  • the cut-off type overvoltage protection module includes: a voltage acquisition circuit and a second voltage comparison circuit,
  • the voltage acquisition circuit includes a fifteenth resistor, a sixteenth resistor and a seventh capacitor, the first end of the fifteenth resistor is connected to the second end of the current sampling resistor, and the second end is connected to the first Sixteen resistors and the first end of the seventh capacitor;
  • the second terminal of the fifteenth resistor, the sixteenth resistor and the first terminal of the seventh capacitor are all connected to the input terminal of the second voltage comparison circuit.
  • the second voltage comparison circuit includes: a twelfth resistor, a thirteenth resistor, a fourteenth resistor, a sixth capacitor, a third comparator, a fourth diode and a fifth diode Tube,
  • the first end of the twelfth resistor is connected to the inverting input end of the third comparator;
  • the first terminals of the thirteenth resistor, the fourteenth resistor, the sixth capacitor and the anode of the fifth diode are all connected to the non-inverting input terminal of the third comparator;
  • Both the second ends of the twelfth resistor and the fourteenth resistor are connected to the output end of the reference power supply module;
  • the anode of the fourth diode is connected to the slow start module and the power control module;
  • the inverting input terminal of the third comparator is connected to the second terminal of the fifteenth resistor and the first terminals of the sixteenth resistor and the seventh capacitor.
  • the slow start module includes: an eighth capacitor,
  • the first end of the eighth capacitor is connected to the anode of the second diode of the cut-off overcurrent protection module, the anode of the fourth diode of the cut-off overvoltage protection module and the power control module
  • the enable terminal, the second terminal is grounded.
  • the reference power supply module includes: a seventeenth resistor, an eighteenth resistor and a Zener diode,
  • Both the first ends of the seventeenth resistor and the eighteenth resistor are connected to a voltage, and the second ends are connected to the output end of the reference power module;
  • the anode of the Zener diode is grounded, and the cathode is connected to the output terminal of the reference power supply module.
  • it also includes: a power conversion module,
  • the power conversion module includes a switch, and the power control module triggers the closing or opening of the switch by whether to output a pulse width modulation signal;
  • the output end of the power conversion module is connected in series with the current sampling resistor of the cut-off type overcurrent protection module, and connected in parallel with the voltage acquisition circuit of the cut-off type overvoltage protection module.
  • the module power supply output protection circuit makes the enable terminal level of UC18XX series chips Pull low, unable to generate PWM wave. In this mode, only the chip and the auxiliary power supply work for the module power supply (secondary power supply). At the same time, when the module power supply is short-circuited, over-current or over-voltage, the protection circuit is in the cut-off mode, and the module power supply is in the standby mode. In this case, the secondary power supply Very low power consumption.
  • the overcurrent protection, short circuit protection and overvoltage protection in the present invention realize independent control.
  • the existing UC18XX series chips are used as the secondary power supply of the controller, the overcurrent protection point and the overvoltage protection point are coupled, and the parameters are difficult to match.
  • the overcurrent protection point and the overvoltage protection point are decoupled, and parameter debugging is simple.
  • FIG. 1 schematically shows a schematic diagram of the module composition of a module power supply output protection circuit according to an embodiment of the present invention
  • FIG. 2 schematically shows a specific structural diagram of a module power supply output protection circuit according to an embodiment of the present invention.
  • FIG. 1 and FIG. 2 respectively schematically show the composition of each module and the specific structure of the circuit in the module power supply output protection circuit of this embodiment.
  • the output protection circuit of the module power supply mainly includes the following modules, namely, a cut-off type overcurrent protection module 1, a cut-off type overvoltage protection module 2, a power supply control module 3, a power conversion module 4, Slow start module 5 and reference power supply module 6.
  • both the cut-off type overcurrent protection module 1 and the cut-off type overvoltage protection module 2 can be used to control the charging and discharging of the slow start module 5 and control the normal operation or stop of the power supply control module 3 .
  • the cut-off type overcurrent protection module 1 can protect the electric load.
  • the cut-off type overvoltage protection module 2 is used to protect the electric load.
  • the electric load here refers to the power conversion module 4 in this embodiment.
  • the reference power supply module 6 is used to provide the reference voltage Vref for the cut-off type overcurrent protection module 1 and the cut-off type overvoltage protection module 2 .
  • the power supply control module 3 of this embodiment may use UC18xx series chips.
  • a switch is further provided.
  • the power control module 3 triggers the switch to be closed or opened by whether to output a pulse signal.
  • the output terminal of the power conversion module 4 is connected in series with the current sampling resistor R1 of the cut-off type overcurrent protection module 1 , and is connected in parallel with the voltage acquisition circuit of the cut-off type overvoltage protection module 2 .
  • the function of the current sampling resistor R1 in the cut-off overcurrent protection module 1 is mainly to collect the current signal output by the power conversion module 4 and convert it into a voltage signal.
  • the function of the voltage collection circuit in the cut-off type overvoltage protection module 2 is mainly to collect the voltage output by the power conversion module 4 .
  • the cut-off type overcurrent protection module 1 includes: a current sampling resistor R1 , a differential amplifier circuit, an isolation circuit and a first voltage comparison circuit.
  • the current sampling resistor R1 is connected in parallel between the input terminals of the differential amplifier circuit.
  • the output end of the differential amplifier circuit is connected to the input end of the isolation circuit.
  • the output end of the isolation circuit is connected to the input end of the first voltage comparison circuit.
  • the above differential amplifier circuit includes: a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a first capacitor C1, a second capacitor C2, a third capacitor C3 and a first comparator U1.
  • the first terminal of the second resistor R2 is connected to the first terminal of the first capacitor C1, and the second terminal is connected to the non-inverting input terminal of the first comparator U1.
  • the first terminal of the third resistor R3 is connected to the second terminal of the first capacitor C1, and the second terminal is connected to the inverting input terminal of the first comparator U1.
  • Both the first ends of the fourth resistor R4 and the second capacitor C2 are connected to the non-inverting input end of the first comparator U1, and the second ends are both grounded.
  • a first end of the fifth resistor R5 is connected to the inverting input end of the first comparator U1, and a second end is connected to the output end of the first comparator U1.
  • the first capacitor C1 is connected in parallel with the current sampling resistor R1.
  • the first terminal of the third capacitor C3 is connected to the output terminal of the first comparator U1, and the second terminal is grounded.
  • the differential amplifier circuit with this structure is used to amplify the voltage signal converted by the current sampling resistor R1.
  • the isolation circuit above includes: a sixth resistor R6 and a first diode D1.
  • the first end of the sixth resistor R6 is connected to the output end of the first comparator U1, and the second end is connected to the anode of the first diode D1.
  • the cathode of the first diode D1 is connected to the second end of the seventh resistor R7.
  • the isolation circuit can prevent the reference voltage Vref provided by the reference power supply module 6 for the first voltage comparison circuit from forming a sneak path through the differential amplifier circuit.
  • the first voltage comparison circuit includes: a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, a fourth capacitor C4, a fifth capacitor C5, a second comparator U2, The second diode D2 and the third diode D3.
  • First terminals of the seventh resistor R7 , the eighth resistor R8 , the ninth resistor R9 and the fourth capacitor C4 are all connected to the inverting input terminal of the second comparator U2 .
  • the tenth resistor R10 , the eleventh resistor R11 , the first terminals of the fifth capacitor C5 and the anode of the third diode D3 are all connected to the non-inverting input terminal of the second comparator U2 .
  • Second terminals of the eighth resistor R8, the fourth capacitor C4, the eleventh resistor R11 and the fifth capacitor C5 are all grounded.
  • the second terminals of the ninth resistor R9 and the tenth resistor R10 are both connected to the output terminal of the reference power supply module 6 .
  • the cathode of the third diode D3 is connected to the output terminal of the second comparator U2.
  • the anode of the second diode D2 is connected to the slow start module 5 and the power control module 3, and the cathode is connected to the output terminal of the second comparator U2. It can be known from the above circuit structure that the anode of the second diode D2 of the first voltage comparison circuit is connected to the enable terminal of the UC18XX chip.
  • the cut-off type overvoltage protection module 2 includes: a voltage acquisition circuit and a second voltage comparison circuit.
  • the voltage acquisition circuit includes a fifteenth resistor R15, a sixteenth resistor R16 and a seventh capacitor C7.
  • the first end of the fifteenth resistor R15 is connected to the second end of the current sampling resistor R1, and the second end is connected to the sixteenth resistor R16 and the first end of the seventh capacitor C7.
  • Both the second ends of the sixteenth resistor R16 and the seventh capacitor C7 are grounded.
  • the second end of the fifteenth resistor R15, the sixteenth resistor R16 and the first end of the seventh capacitor C7 are all connected to the input end of the second voltage comparison circuit.
  • the above-mentioned second voltage comparison circuit includes: a twelfth resistor R12, a thirteenth resistor R13, a fourteenth resistor R14, a sixth capacitor C6, a third comparator U3, a fourth diode D4 and a fifth diode D5 .
  • the first terminal of the twelfth resistor R12 is connected to the inverting input terminal of the third comparator U3.
  • the thirteenth resistor R13 , the fourteenth resistor R14 , the first terminals of the sixth capacitor C6 and the anode of the fifth diode D5 are all connected to the non-inverting input terminal of the third comparator U3 .
  • the thirteenth resistor R13, the second terminals of the sixth capacitor C6 and the seventh capacitor C7 are all grounded. Both the second ends of the twelfth resistor R12 and the fourteenth resistor R14 are connected to the output end of the reference power supply module 6 . Both the cathodes of the fifth diode D5 and the fourth diode D4 are connected to the output terminal of the third comparator U3. The anode of the fourth diode D4 is connected to the slow start module 5 and the power control module 3 .
  • the slow start module 5 includes: an eighth capacitor C8.
  • the first end of the eighth capacitor C8 is connected to the anode of the second diode D2 of the cut-off type overcurrent protection module 1, the anode of the fourth diode D4 of the cut-off type overvoltage protection module 2 and the use of the power control module 3. end, and the second end is grounded.
  • the reference power supply module 6 includes: a seventeenth resistor R17, an eighteenth resistor R18 and a Zener diode Z1.
  • the first ends of the seventeenth resistor R17 and the eighteenth resistor R18 are both connected to a voltage, and the second ends are both connected to the output end of the reference power supply module 6 .
  • the anode of the Zener diode Z1 is grounded, and the cathode is connected to the output terminal of the reference power supply module 6 .
  • the current output by the power conversion module 4 becomes a weak voltage signal through the current sampling resistor R1.
  • the voltage signal is amplified by the differential amplifier circuit after being filtered by the first capacitor C1 in the differential amplifier circuit.
  • the amplified strong voltage signal and the reference voltage Vref applied to the ninth resistor R9 are superimposed to generate a voltage V3 through an adding circuit composed of the seventh resistor R7, the eighth resistor R8 and the ninth resistor R9. Compare the voltage V3 with the reference voltage Vref added to the tenth resistor R10 and the voltage V4 after being divided by the tenth resistor R10 and the eleventh resistor R11.
  • the voltage V3 is lower than the voltage V4, so that the second comparator U2 outputs a high level of 12V, the second diode D2 is in a cut-off state, the enabling pin of the power control module 3 is at a high level, and the power control module 3 works normally, that is, outputs a pulse width modulation signal PWM.
  • the current output by the power conversion module 4 becomes a weak voltage signal through the current sampling resistor R1.
  • the voltage signal is filtered and amplified. Again, the amplified strong voltage signal and the reference voltage Vref are superimposed to generate the voltage V3 through an adding circuit composed of the seventh resistor R7 , the eighth resistor R8 and the ninth resistor R9 .
  • the voltage V3 is compared with the voltage V4 obtained by dividing the reference voltage Vref through the tenth resistor R10 and the eleventh resistor R11.
  • the voltage V3 is higher than the voltage V4, and the second comparator U2 outputs a low level 0V, so that the second diode D2 is turned on, and the third diode D3 is also turned on.
  • the eighth capacitor C8 in the slow-start module 5 connected to the anode of the second diode D2 of the cut-off type overcurrent protection module 1 discharges, and the power control module 3 stops working, that is, there is no pulse width modulation signal PWM output, and the module power supply stops works and no output. Since the third diode D3 is turned on, the non-inverting input terminal of the second comparator U2 is clamped to the conduction voltage drop of the third diode D3 of 0.7V.
  • the inverting input terminal of the second comparator U2 The terminal voltage is the voltage of the reference voltage Vref after being divided by the eighth resistor R8 and the ninth resistor R9, which is 0.7V higher than the positive phase input terminal voltage of the second comparator U2, and the output of the second comparator U2 is still at a low level , pull down the level of the enable terminal of the power control module 3, so that the power control module 3 is still in the stop working state, the module power supply has no output, and the current output by the power conversion module 4 is locked, so as to realize the output overcurrent of the module power supply cut-off protection.
  • the voltage Vo output by the power conversion module 4 passes through the twelfth resistor R12, the fifteenth The addition circuit composed of the resistor R15 and the sixteenth resistor R16 is superimposed to generate a voltage V1, the voltage of the voltage V1 and the reference voltage Vref added to the fourteenth resistor R14 after being divided by the thirteenth resistor R13 and the fourteenth resistor R14 V2 for comparison.
  • the voltage V1 is lower than the voltage V2
  • the third comparator U3 outputs a high level of 12V
  • the fourth diode D4 is in a cut-off state
  • the enabling pin of the power control module 3 is at a high level
  • the power control module 3 works normally , output pulse width modulation signal.
  • the voltage V1 generated by superposition is compared with the voltage V2 generated by dividing the reference voltage Vref.
  • the third comparator U3 outputs a low level 0V
  • the fourth diode D4 is in the conduction state
  • the fifth diode D5 is in the conduction state at the same time, making it compatible with the cut-off type overvoltage protection module
  • the eighth capacitor C8 in the slow-start module 5 connected to the anode of the fourth diode D4 of 2 discharges, the power control module 3 stops working, and has no PWM output, and the module power supply stops working and has no output.
  • the non-inverting input terminal of the third comparator U3 is clamped to the conduction voltage drop of the fifth diode D5 of 0.7V.
  • the inverting input terminal of the third comparator U3 The terminal voltage is the voltage of the reference voltage Vref after being divided by the twelfth resistor R12, the fifteenth resistor R15, and the sixteenth resistor R16, which is 0.7V higher than the positive phase input terminal voltage of the third comparator U3, and the third comparator U3 is still at a low level, and the enabling terminal level of the power control module 3 is pulled low, so that the power control module 3 is still in a stop working state, the module power supply has no output, and the voltage output by the power conversion module 4 is locked to realize the Cut-off type protection when the output of the module power supply is overvoltage.
  • the module power supply output protection circuit uses ultra-low power consumption output short circuit, overcurrent and overvoltage protection circuits based on secondary side output current sampling and secondary side voltage sampling, so that the level of the enable terminal of the power control module 3 is pulled down , unable to generate PWM waves.
  • the module power supply secondary power supply
  • the protection circuit is in the cut-off mode, and the module power supply is in the standby mode. In this case, the secondary power supply Very low power consumption.
  • the cut-off type overcurrent protection module and the cut-off type overvoltage protection module in this circuit realize independent control, decouple the overcurrent protection point and the overvoltage protection point, and the circuit device parameter debugging is simple.

Abstract

本发明涉及二次电源技术领域的一种模块电源输出保护电路,包括:截流型过流保护模块(1)、截流型过压保护模块(2)、电源控制模块(3)、缓启模块(5)和基准电源模块(6),所述截流型过流保护模块(1)和所述截流型过压保护模块(2)均用于控制电源控制模块(3)的外接缓启模块(5)的充放电,实现控制所述电源控制模块(3)正常工作或停止工作;所述基准电源模块(6)用于为所述截流型过流保护模块(1)和截流型过压保护模块(2)提供基准电压。本发明在二次电源的输出端发生过流、短路和过压等故障时,可及时切断二次电源的输出达到保护用电负载的目的。同时该电路具有超低功耗的特点。

Description

一种模块电源输出保护电路
本申请要求于2021年11月8日提交中国专利局、申请号为202111316079.5、申请名称为“一种模块电源输出保护电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种模块电源输出保护电路。
背景技术
随着航天技术的飞速发展,航天器的种类和数量不断增长,航天器系统越来越复杂、运行环境越来越来恶劣、有效载荷的种类越来越多,航天器电源系统的种类也越来越来多、功能也越来越复杂。因此,在航天器的设计过程中,对电子设备的可靠性要求也在不断提高,对电子设备供电的模块电源的保护功能要求也在不断提高。
航天器二次电源广泛使用宇航级UC18xx系列芯片作为控制器,该类芯片内部结构简单、外围电路设置方便、可靠性高,且可设置为电流模式和电压模式。该类芯片不具备输出端负载过流和负载短路时待机式截流型保护功能,也不具备输出过压的待机式截流型保护功能。当用户负载端发生过流或短路时,甚至于二次电源本身发生输出过压时,宇航级UC18xx系列芯片通过减小控制器的输出脉宽(PWM),减小或限制输出电压的方式来保护模块电源和用户负载。如果不能及时发现这种情况,二次电源和有效载荷存在被烧毁的风险,严重影响航天器的可靠性。而且,航天器二次电源使用方要求二次电源在过载和短路的情况下不可损坏,并在过载或短路故障切除后具有可恢复功能。因此,当二次电源输出端发生过流、短路、过压等故障时,能够及时切断二次电源的输出是增加系统可靠性的必备条件。
技术问题
为解决上述现有技术存在的问题,本发明的目的在于提供一种模块电源输出保护电路,在二次电源的输出端发生过流、短路和过压等故障时,可及时切断二次电源的输出达到保护用电负载的目的。
技术解决方案
为实现上述发明目的,本发明的技术方案是:
本发明提供一种模块电源输出保护电路,包括:截流型过流保护模块、截流型过压保护模块、电源控制模块、缓启模块和基准电源模块,所述截流型过流保护模块和所述截流型过压保护模块均用于控制所述缓启模块的充放电,实现控制所述电源控制模块正常工作或停止工作;所述基准电源模块用于为所述截流型过流保护模块和所述截流型过压保护模块提供基准电压。
根据本发明的一个方面,所述截流型过流保护模块包括:电流采样电阻、差分放大电路、隔离电路和第一电压比较电路,
所述电流采样电阻并联在所述差分放大电路的输入端之间;
所述差分放大电路的输出端连接至所述隔离电路的输入端;
所述隔离电路的输出端连接至所述第一电压比较电路的输入端。
根据本发明的一个方面,所述差分放大电路包括:第二电阻、第三电阻、第四电阻、第五电阻、第一电容、第二电容、第三电容和第一比较器,
所述第二电阻的第一端连接至所述第一电容的第一端,第二端连接至所述第一比较器的正相输入端;
所述第三电阻的第一端连接至所述第一电容的第二端,第二端连接至所述第一比较器的反相输入端;
所述第四电阻和所述第二电容的第一端均连接至所述第一比较器的正相输入端,第二端均接地;
所述第五电阻的第一端连接至所述第一比较器的反相输入端,第二端连接至所述第一比较器的输出端;
所述第一电容与所述电流采样电阻并联;
所述第三电容的第一端连接至所述第一比较器的输出端,第二端接地。
根据本发明的一个方面,所述隔离电路包括:第六电阻和第一二极管,
所述第六电阻的第一端连接至所述第一比较器的输出端,第二端连接至所述第一二极管的正极;
所述第一二极管的负极连接至第七电阻的第二端。
根据本发明的一个方面,所述第一电压比较电路包括:第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻、第四电容、第五电容、第二比较器、第二二极管和第三二极管,
所述第七电阻、所述第八电阻、所述第九电阻和所述第四电容的第一端均连接至所述第二比较器的反相输入端;
所述第十电阻、所述第十一电阻和所述第五电容的第一端以及所述第三二极管的正极均连接至所述第二比较器的正相输入端;
所述第八电阻、所述第四电容、所述第十一电阻和所述第五电容的第二端均接地;
所述第九电阻和所述第十电阻的第二端均连接至所述基准电源模块的输出端;
所述第三二极管的负极连接至所述第二比较器的输出端;
所述第二二极管的正极连接至所述缓启模块和所述电源控制模块,负极连接至所述第二比较器的输出端。
根据本发明的一个方面,所述截流型过压保护模块包括:电压采集电路和第二电压比较电路,
所述电压采集电路包括第十五电阻、第十六电阻和第七电容,所述第十五电阻的第一端连接至所述电流采样电阻的第二端,第二端连接至所述第十六电阻和所述第七电容的第一端;
所述第十六电阻和所述第七电容的第二端均接地;
所述第十五电阻的第二端、所述第十六电阻和所述第七电容的第一端均连接至所述第二电压比较电路的输入端。
根据本发明的一个方面,所述第二电压比较电路包括:第十二电阻、第十三电阻、第十四电阻、第六电容、第三比较器、第四二极管和第五二极管,
所述第十二电阻的第一端连接至所述第三比较器的反相输入端;
所述第十三电阻、所述第十四电阻和所述第六电容的第一端以及所述第五二极管的正极均连接至所述第三比较器的正相输入端;
所述第十三电阻和所述第六电容的第二端均接地;
所述第十二电阻和所述第十四电阻的第二端均连接至所述基准电源模块的输出端;
所述第五二极管和所述第四二极管的负极均连接至所述第三比较器的输出端;
所述第四二极管的正极连接至所述缓启模块和所述电源控制模块;
所述第三比较器的反相输入端连接至所述第十五电阻的第二端以及所述第十六电阻和所述第七电容的第一端。
根据本发明的一个方面,所述缓启模块包括:第八电容,
所述第八电容的第一端连接至所述截流型过流保护模块的第二二极管的正极、所述截流型过压保护模块的第四二极管的正极和所述电源控制模块的使能端,第二端接地。
根据本发明的一个方面,所述基准电源模块包括:第十七电阻、第十八电阻和稳压二极管,
所述第十七电阻和所述第十八电阻的第一端均连接电压,第二端均连接至所述基准电源模块的输出端;
所述稳压二极管的正极接地,负极连接至所述基准电源模块的输出端。
根据本发明的一个方面,还包括:功率变换模块,
所述功率变换模块包括开关,所述电源控制模块通过是否输出脉宽调制信号触发所述开关的闭合或断开;
所述功率变换模块的输出端与所述截流型过流保护模块的电流采样电阻串联,并与所述截流型过压保护模块的电压采集电路并联。
有益效果
根据本发明的方案,模块电源输出保护电路通过采用基于副边输出电流采样、副边电压采样的超低功耗输出短路、过流和过压保护电路,使UC18XX系列芯片的使能端电平拉低,无法产生PWM波。该模式下模块电源(二次电源)只有芯片和辅助电源工作,同时,模块电源短路、过流或过压时,保护电路处于截流模式,模块电源处于待机模式,这种情况下二次电源的功耗极低。
此外,本发明中的过流保护、短路保护和过压保护实现独立控制。现有的使用UC18XX系列芯片作为控制器的二次电源,过流保护点和过压保护点相耦合,参数很难匹配。通过本发明的电路结构,将过流保护点和过压保护点解耦,参数调试简单。
附图说明
图1示意性表示本发明的一种实施方式的模块电源输出保护电路的模块组成示意图;
图2示意性表示本发明的一种实施方式的模块电源输出保护电路的具体结构示意图。
本发明的实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将
对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1和图2分别示意性地表示了本实施方式的模块电源输出保护电路中各模块组成和电路具体的结构。如图1所示,在本实施方式中,模块电源输出保护电路主要包括以下模块,分别是截流型过流保护模块1、截流型过压保护模块2、电源控制模块3、功率变换模块4、缓启模块5和基准电源模块6。其中,截流型过流保护模块1和截流型过压保护模块2都可以用来控制缓启模块5充放电,并控制电源控制模块3的正常工作或停止工作。当电源控制模块3输出脉宽调制信号PWM时,则认为电源控制模块3正常工作,当电源控制模块3无脉宽调制信号PWM输出时,则认为电源控制模块3停止工作。从而当发生短路、过流时,截流型过流保护模块1可以起到保护用电负载的作用。当发生过压时,截流型过压保护模块2用来保护用电负载的作用。这里的用电负载指的是本实施方式中的功率变换模块4。基准电源模块6用来为截流型过流保护模块1和截流型过压保护模块2提供基准电压Vref。本实施方式的电源控制模块3可以采用UC18xx系列芯片。
如图2所示,在本实施方式的功率变换模块4中,还设置一个开关。电源控制模块3通过是否输出脉冲信号触发所述开关的闭合或断开。功率变换模块4的输出端与截流型过流保护模块1的电流采样电阻R1串联,并与截流型过压保护模块2的电压采集电路并联。截流型过流保护模块1中的电流采样电阻R1的作用主要是用来采集功率变换模块4输出的电流信号,并将其转换为电压信号。截流型过压保护模块2中的电压采集电路的作用主要是用来采集功率变换模块4输出的电压。
如图2所示,截流型过流保护模块1包括:电流采样电阻R1、差分放大电路、隔离电路和第一电压比较电路。其中,电流采样电阻R1并联在差分放大电路的输入端之间。差分放大电路的输出端连接至隔离电路的输入端。隔离电路的输出端连接至第一电压比较电路的输入端。
上述差分放大电路包括:第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一电容C1、第二电容C2、第三电容C3和第一比较器U1。其中,第二电阻R2的第一端连接至第一电容C1的第一端,第二端连接至第一比较器U1的正相输入端。第三电阻R3的第一端连接至第一电容C1的第二端,第二端连接至所述第一比较器U1的反相输入端。第四电阻R4和第二电容C2的第一端均连接至第一比较器U1的正相输入端,第二端均接地。第五电阻R5的第一端连接至第一比较器U1的反相输入端,第二端连接至第一比较器U1的输出端。第一电容C1与电流采样电阻R1并联。第三电容C3的第一端连接至第一比较器U1的输出端,第二端接地。该结构的差分放大电路用于将经过电流采样电阻R1转换的电压信号进行放大处理。
上述隔离电路包括:第六电阻R6和第一二极管D1。其中,第六电阻R6的第一端连接至第一比较器U1的输出端,第二端连接至第一二极管D1的正极。第一二极管D1的负极连接至第七电阻R7的第二端。该隔离电路可以避免基准电源模块6为第一电压比较电路提供的基准电压Vref通过差分放大电路形成潜通路。
上述第一电压比较电路包括:第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第四电容C4、第五电容C5、第二比较器U2、第二二极管D2和第三二极管D3。第七电阻R7、第八电阻R8、第九电阻R9和第四电容C4的第一端均连接至第二比较器U2的反相输入端。第十电阻R10、第十一电阻R11和第五电容C5的第一端以及第三二极管D3的正极均连接至第二比较器U2的正相输入端。第八电阻R8、第四电容C4、第十一电阻R11和第五电容C5的第二端均接地。第九电阻R9和第十电阻R10的第二端均连接至基准电源模块6的输出端。第三二极管D3的负极连接至第二比较器U2的输出端。第二二极管D2的正极连接至缓启模块5和电源控制模块3,负极连接至第二比较器U2的输出端。由上述电路结构可知,第一电压比较电路的第二二极管D2的正极连接至UC18XX芯片的使能端。
如图2所示,截流型过压保护模块2包括:电压采集电路和第二电压比较电路。电压采集电路包括第十五电阻R15、第十六电阻R16和第七电容C7。第十五电阻R15的第一端连接至电流采样电阻R1的第二端,第二端连接至第十六电阻R16和第七电容C7的第一端。第十六电阻R16和第七电容C7的第二端均接地。并且,第十五电阻R15的第二端、第十六电阻R16和第七电容C7的第一端均连接至第二电压比较电路的输入端。
上述第二电压比较电路包括:第十二电阻R12、第十三电阻R13、第十四电阻R14、第六电容C6、第三比较器U3、第四二极管D4和第五二极管D5。其中,第十二电阻R12的第一端连接至第三比较器U3的反相输入端。第十三电阻R13、第十四电阻R14和第六电容C6的第一端以及第五二极管D5的正极均连接至第三比较器U3的正相输入端。第十三电阻R13、第六电容C6和第七电容C7的第二端均接地。第十二电阻R12和第十四电阻R14的第二端均连接至基准电源模块6的输出端。第五二极管D5和第四二极管D4的负极均连接至第三比较器U3的输出端。第四二极管D4的正极连接至缓启模块5和电源控制模块3。
如图2所示,缓启模块5包括:第八电容C8。第八电容C8的第一端连接至截流型过流保护模块1的第二二极管D2的正极、截流型过压保护模块2的第四二极管D4的正极和电源控制模块3的使能端,第二端接地。
基准电源模块6包括:第十七电阻R17、第十八电阻R18和稳压二极管Z1。第十七电阻R17和第十八电阻R18的第一端均连接电压,第二端均连接至基准电源模块6的输出端。稳压二极管Z1的正极接地,负极连接至基准电源模块6的输出端。
当模块电源正常工作时,功率变换模块4输出的电流经过电流采样电阻R1变为微弱的电压信号。该电压信号经过差分放大电路中的第一电容C1滤波后,由差分放大电路进行放大。放大后的强电压信号与加在第九电阻R9上的基准电压Vref通过由第七电阻R7、第八电阻R8和第九电阻R9组成的加法电路进行叠加生成电压V3。将电压V3与加在第十电阻R10上的基准电压Vref经过第十电阻R10和第十一电阻R11分压后的电压V4进行比较,此时,电压V3低于电压V4,从而第二比较器U2输出高电平12V,第二二极管D2处于截止状态,电源控制模块3的使能脚为高电平,电源控制模块3正常工作,即输出脉宽调制信号PWM。
当模块电源出现过流或短路时,功率变换模块4输出的电流经过电流采样电阻R1变为微弱的电压信号。同样地,该电压信号经滤波后放大。还是将放大后的强电压信号与基准电压Vref通过由第七电阻R7、第八电阻R8和第九电阻R9组成的加法电路进行叠加生成电压V3。并将电压V3与基准电压Vref经过第十电阻R10和第十一电阻R11分压后的电压V4进行比较。此时,电压V3高于电压V4,第二比较器U2输出低电平0V,使得第二二极管D2导通,同时第三二极管D3也导通。与截流型过流保护模块1的第二二极管D2的正极连接的缓启模块5中的第八电容C8放电,电源控制模块3停止工作,即无脉宽调制信号PWM输出,模块电源停止工作且无输出。由于第三二极管D3导通,将第二比较器U2的正相输入端嵌位为第三二极管D3的导通压降0.7V,此时,第二比较器U2的反相输入端电压为基准电压Vref经过第八电阻R8、第九电阻R9分压后的电压,高于第二比较器U2的正相输入端电压0.7V,第二比较器U2的输出仍为低电平,将电源控制模块3的使能端电平拉低,使得电源控制模块3仍为停止工作状态,模块电源无输出,将功率变换模块4输出的电流锁死,从而实现对模块电源输出过流时的截流型保护。
当模块电源正常工作时,功率变换模块4输出的电压Vo经过上述电压采集电路的滤波、抑制噪声后,与加在第十二电阻R12上的基准电压Vref通过第十二电阻R12、第十五电阻R15、第十六电阻R16组成的加法电路进行叠加生成电压V1,电压V1与加在第十四电阻R14上的基准电压Vref经过第十三电阻R13、第十四电阻R14分压后的电压V2进行比较。此时,电压V1低于电压V2,第三比较器U3输出高电平12V,第四二极管D4处于截止状态,电源控制模块3的使能脚为高电平,电源控制模块3正常工作,输出脉宽调制信号。
当模块电源的输出端发生过压时,同样地,将叠加生成的电压V1与基准电压Vref经过分压生成的电压V2进行比较。此时,电压V1高于电压V2,第三比较器U3输出低电平0V,第四二极管D4处于导通状态,同时第五二极管D5导通,使得与截流型过压保护模块2的第四二极管D4的正极连接的缓启模块5中的第八电容C8放电,电源控制模块3停止工作,无PWM输出,模块电源停止工作且无输出。由于第五二极管D5导通,将第三比较器U3的正相输入端嵌位为第五二极管D5的导通压降0.7V,此时,第三比较器U3的反相输入端电压为基准电压Vref经过第十二电阻R12、第十五电阻R15、第十六电阻R16分压后的电压,高于第三比较器U3的正相输入端电压0.7V,第三比较器U3仍为低电平,将电源控制模块3的使能端电平拉低,使得电源控制模块3仍为停止工作状态,模块电源无输出,将功率变换模块4输出的电压锁死,实现对模块电源输出过压时的截流型保护。
综上,模块电源输出保护电路通过采用基于副边输出电流采样、副边电压采样的超低功耗输出短路、过流和过压保护电路,使电源控制模块3的使能端电平拉低,无法产生PWM波。该模式下模块电源(二次电源)只有芯片和辅助电源工作,同时,模块电源短路、过流或过压时,保护电路处于截流模式,模块电源处于待机模式,这种情况下二次电源的功耗极低。此外,该电路中的截流型过流保护模块和截流型过压保护模块实现独立控制,将过流保护点和过压保护点解耦,电路器件参数调试简单。
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (10)

  1. 一种模块电源输出保护电路,其特征在于,包括:截流型过流保护模块(1)、截流型过压保护模块(2)、电源控制模块(3)、缓启模块(5)和基准电源模块(6),
    所述截流型过流保护模块(1)和所述截流型过压保护模块(2)均用于控制所述缓启模块(5)的充放电,实现控制所述电源控制模块(3)正常工作或停止工作;
    所述基准电源模块(6)用于为所述截流型过流保护模块(1)和所述截流型过压保护模块(2)提供基准电压。
  2. 根据权利要求1所述的保护电路,其特征在于,所述截流型过流保护模块(1)包括:电流采样电阻(R1)、差分放大电路、隔离电路和第一电压比较电路,
    所述电流采样电阻(R1)并联在所述差分放大电路的输入端之间;
    所述差分放大电路的输出端连接至所述隔离电路的输入端;
    所述隔离电路的输出端连接至所述第一电压比较电路的输入端。
  3. 根据权利要求2所述的保护电路,其特征在于,所述差分放大电路包括:第二电阻(R2)、第三电阻(R3)、第四电阻(R4)、第五电阻(R5)、第一电容(C1)、第二电容(C2)、第三电容(C3)和第一比较器(U1),
    所述第二电阻(R2)的第一端连接至所述第一电容(C1)的第一端,第二端连接至所述第一比较器(U1)的正相输入端;
    所述第三电阻(R3)的第一端连接至所述第一电容(C1)的第二端,第二端连接至所述第一比较器(U1)的反相输入端;
    所述第四电阻(R4)和所述第二电容(C2)的第一端均连接至所述第一比较器(U1)的正相输入端,第二端均接地;
    所述第五电阻(R5)的第一端连接至所述第一比较器(U1)的反相输入端,第二端连接至所述第一比较器(U1)的输出端;
    所述第一电容(C1)与所述电流采样电阻(R1)并联;
    所述第三电容(C3)的第一端连接至所述第一比较器(U1)的输出端,第二端接地。
  4. 根据权利要求3所述的保护电路,其特征在于,所述隔离电路包括:第六电阻(R6)和第一二极管(D1),
    所述第六电阻(R6)的第一端连接至所述第一比较器(U1)的输出端,第二端连接至所述第一二极管(D1)的正极;
    所述第一二极管(D1)的负极连接至第七电阻(R7)的第二端。
  5. 根据权利要求4所述的保护电路,其特征在于,所述第一电压比较电路包括:第七电阻(R7)、第八电阻(R8)、第九电阻(R9)、第十电阻(R10)、第十一电阻(R11)、第四电容(C4)、第五电容(C5)、第二比较器(U2)、第二二极管(D2)和第三二极管(D3),
    所述第七电阻(R7)、所述第八电阻(R8)、所述第九电阻(R9)和所述第四电容(C4)的第一端均连接至所述第二比较器(U2)的反相输入端;
    所述第十电阻(R10)、所述第十一电阻(R11)和所述第五电容(C5)的第一端以及所述第三二极管(D3)的正极均连接至所述第二比较器(U2)的正相输入端;
    所述第八电阻(R8)、所述第四电容(C4)、所述第十一电阻(R11)和所述第五电容(C5)的第二端均接地;
    所述第九电阻(R9)和所述第十电阻(R10)的第二端均连接至所述基准电源模块(6)的输出端;
    所述第三二极管(D3)的负极连接至所述第二比较器(U2)的输出端;
    所述第二二极管(D2)的正极连接至所述缓启模块(5)和所述电源控制模块(3),负极连接至所述第二比较器(U2)的输出端。
  6. 根据权利要求1所述的保护电路,其特征在于,所述截流型过压保护模块(2)包括:电压采集电路和第二电压比较电路,
    所述电压采集电路包括第十五电阻(R15)、第十六电阻(R16)和第七电容(C7),所述第十五电阻(R15)的第一端连接至所述电流采样电阻(R1)的第二端,第二端连接至所述第十六电阻(R16)和所述第七电容(C7)的第一端;
    所述第十六电阻(R16)和所述第七电容(C7)的第二端均接地;
    所述第十五电阻(R15)的第二端、所述第十六电阻(R16)和所述第七电容(C7)的第一端均连接至所述第二电压比较电路的输入端。
  7. 根据权利要求6所述的保护电路,其特征在于,所述第二电压比较电路包括:第十二电阻(R12)、第十三电阻(R13)、第十四电阻(R14)、第六电容(C6)、第三比较器(U3)、第四二极管(D4)和第五二极管(D5),
    所述第十二电阻(R12)的第一端连接至所述第三比较器(U3)的反相输入端;
    所述第十三电阻(R13)、所述第十四电阻(R14)和所述第六电容(C6)的第一端以及所述第五二极管(D5)的正极均连接至所述第三比较器(U3)的正相输入端;
    所述第十三电阻(R13)和所述第六电容(C6)的第二端均接地;
    所述第十二电阻(R12)和所述第十四电阻(R14)的第二端均连接至所述基准电源模块(6)的输出端;
    所述第五二极管(D5)和所述第四二极管(D4)的负极均连接至所述第三比较器(U3)的输出端;
    所述第四二极管(D4)的正极连接至所述缓启模块(5)和所述电源控制模块(3);
    所述第三比较器(U3)的反相输入端连接至所述第十五电阻(R15)的第二端以及所述第十六电阻(R16)和所述第七电容(C7)的第一端。
  8. 根据权利要求1所述的保护电路,其特征在于,所述缓启模块(5)包括:第八电容(C8),
    所述第八电容(C8)的第一端连接至所述截流型过流保护模块(1)的第二二极管(D2)的正极、所述截流型过压保护模块(2)的第四二极管(D4)的正极和所述电源控制模块(3)的使能端,第二端接地。
  9. 根据权利要求1所述的保护电路,其特征在于,所述基准电源模块(6)包括:第十七电阻(R17)、第十八电阻(R18)和稳压二极管(Z1),
    所述第十七电阻(R17)和所述第十八电阻(R18)的第一端均连接电压,第二端均连接至所述基准电源模块(6)的输出端;
    所述稳压二极管(Z1)的正极接地,负极连接至所述基准电源模块(6)的输出端。
  10. 根据权利要求1所述的保护电路,其特征在于,还包括:功率变换模块(4),
    所述功率变换模块(4)包括开关,所述电源控制模块(3)通过是否输出脉宽调制信号触发所述开关的闭合或断开;
    所述功率变换模块(4)的输出端与所述截流型过流保护模块(1)的电流采样电阻(R1)串联,并与所述截流型过压保护模块(2)的电压采集电路并联。
PCT/CN2022/115602 2021-11-08 2022-08-29 一种模块电源输出保护电路 WO2023077929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111316079.5 2021-11-08
CN202111316079.5A CN114172114A (zh) 2021-11-08 2021-11-08 一种模块电源输出保护电路

Publications (1)

Publication Number Publication Date
WO2023077929A1 true WO2023077929A1 (zh) 2023-05-11

Family

ID=80478404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115602 WO2023077929A1 (zh) 2021-11-08 2022-08-29 一种模块电源输出保护电路

Country Status (2)

Country Link
CN (1) CN114172114A (zh)
WO (1) WO2023077929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405967A (zh) * 2023-11-27 2024-01-16 江苏斯菲尔电气股份有限公司 一种集成式三相电流监测系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172114A (zh) * 2021-11-08 2022-03-11 北京卫星制造厂有限公司 一种模块电源输出保护电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185082B1 (en) * 1999-06-01 2001-02-06 System General Corporation Protection circuit for a boost power converter
CN101447738A (zh) * 2008-12-29 2009-06-03 重庆航天工业公司 一种隔爆兼本安电源装置
CN103166194A (zh) * 2011-12-17 2013-06-19 西安恒飞电子科技有限公司 通信电源模块的输入过电压、欠电压保护电路
CN111490519A (zh) * 2020-03-26 2020-08-04 上海芯导电子科技股份有限公司 一种过压过流的保护芯片
CN114172114A (zh) * 2021-11-08 2022-03-11 北京卫星制造厂有限公司 一种模块电源输出保护电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276734A (ja) * 1993-03-15 1994-09-30 Fujitsu Denso Ltd 過電流保護回路
JP4691404B2 (ja) * 2005-06-24 2011-06-01 三洋電機株式会社 スイッチング制御回路、自励型dc−dcコンバータ
CN2904416Y (zh) * 2006-01-24 2007-05-23 许晓华 过电流锁定电路
KR102164860B1 (ko) * 2019-08-14 2020-10-13 엘아이지넥스원 주식회사 절연형 컨버터의 과전압 또는 과전류 보호장치
CN213817224U (zh) * 2020-12-02 2021-07-27 金卡智能集团股份有限公司 电源保护电路和电路系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185082B1 (en) * 1999-06-01 2001-02-06 System General Corporation Protection circuit for a boost power converter
CN101447738A (zh) * 2008-12-29 2009-06-03 重庆航天工业公司 一种隔爆兼本安电源装置
CN103166194A (zh) * 2011-12-17 2013-06-19 西安恒飞电子科技有限公司 通信电源模块的输入过电压、欠电压保护电路
CN111490519A (zh) * 2020-03-26 2020-08-04 上海芯导电子科技股份有限公司 一种过压过流的保护芯片
CN114172114A (zh) * 2021-11-08 2022-03-11 北京卫星制造厂有限公司 一种模块电源输出保护电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405967A (zh) * 2023-11-27 2024-01-16 江苏斯菲尔电气股份有限公司 一种集成式三相电流监测系统

Also Published As

Publication number Publication date
CN114172114A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023077929A1 (zh) 一种模块电源输出保护电路
CN101877545B (zh) 电源模块
CN101505093B (zh) 一种适合空间环境应用的多路输出电源
CN106558980B (zh) 一种使能控制电路
WO2022105263A1 (zh) 光伏系统及其控制方法、以及空调系统
CN216086450U (zh) 一种具备电流采样和电压采样的配电开关电路
CN205945543U (zh) 交直流协同供电电源
CN111030493A (zh) 一种模块化多电平换流器的子模块及其保护电路
CN209001589U (zh) 高效低功耗电压暂降治理装置
CN109449880A (zh) 一种大功率宇航模块电源输入欠压保护电路
CN103715748A (zh) 锂电池充电电路
CN107465173B (zh) 一种空间电源辅助电源保护电路
CN216929576U (zh) 一种基于逆变器中的升压功率管的保护电路及逆变器
CN109412421A (zh) 一种并联供电电路
CN108649798A (zh) 一种大功率线性电源及其控制电路
CN209283098U (zh) 一种并联供电电路
CN2938640Y (zh) 具有多种保护功能的直流电源转换电路及电视机
WO2022161275A1 (zh) 一种电池充电保护电路以及机器人
CN106972766A (zh) 一种电源电路
CN109347329A (zh) 一种用于直流转直流的变换器
CN111541363A (zh) 一种基于高功率的霍尔电推进器的阳极电源
CN217508261U (zh) 一种过流保护电路
CN220527896U (zh) 一种可控斩波器及风电变流器
CN220692829U (zh) 一种辅助电源保护电路及辅助电源
CN213367398U (zh) 一种acdc开关电源安全保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888961

Country of ref document: EP

Kind code of ref document: A1