WO2023077863A1 - 一种超大直径带水作业深井掘进系统及施工方法 - Google Patents

一种超大直径带水作业深井掘进系统及施工方法 Download PDF

Info

Publication number
WO2023077863A1
WO2023077863A1 PCT/CN2022/105949 CN2022105949W WO2023077863A1 WO 2023077863 A1 WO2023077863 A1 WO 2023077863A1 CN 2022105949 W CN2022105949 W CN 2022105949W WO 2023077863 A1 WO2023077863 A1 WO 2023077863A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
mud
segment
water
milling
Prior art date
Application number
PCT/CN2022/105949
Other languages
English (en)
French (fr)
Inventor
苏善珍
谢正春
王丽
Original Assignee
建湖富力智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 建湖富力智能科技有限公司 filed Critical 建湖富力智能科技有限公司
Publication of WO2023077863A1 publication Critical patent/WO2023077863A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D5/00Lining shafts; Linings therefor
    • E21D5/04Lining shafts; Linings therefor with brick, concrete, stone, or similar building materials

Definitions

  • the invention relates to the technical field of deep well excavation, in particular to an ultra-large-diameter deep well excavation system and a construction method for operation with water.
  • Deep well excavation technology is widely used in the development of underground space, and it has important applications in underground three-dimensional parking garages, subway construction departure shafts, ventilation shafts for tunnels or subway pipe networks, urban sewage siphon pipes, and deep-sea mining.
  • the present invention provides a super-large-diameter deep well excavation system and construction method with water, so as to solve the technical problem that it is difficult to control the vertical verticality of deep wells and other indicators during the excavation construction process of super-large-diameter deep wells, which leads to long operation periods. .
  • a super-large-diameter deep well excavation system with water including:
  • the segment is used to enclose the well wall, and the lower end of the segment at the lowest layer is provided with a steel blade;
  • the segment propulsion device includes an annular base, which is used to locate the diameter of the deep well.
  • the upper end of the annular base is uniformly provided with a plurality of pressure cylinders along the circumference through the ring beam, which is used to apply pressure to the upper end of the upper segment and push The lower segment moves down, so that the upper and lower segments are butted in sequence to extend the well wall;
  • a support mechanism which is connected with the inner wall of the lowermost segment; the support mechanism is installed with a milling mechanism and a mud extraction mechanism through a slewing support, the excavation radius of the milling mechanism is adjustable, and the mud extraction mechanism can be relatively The supporting mechanism lifts.
  • the upper end of the ring-shaped base is connected to the ring beam through a support column to form a ring-shaped support structure with upper and lower layers parallel to each other;
  • the fixed end of the pressurizing cylinder is connected to the lower end of the ring beam, and the telescopic end of the pressurizing cylinder is connected with an action rod whose bottom surface profile matches the upper end surface of the segment.
  • the slewing support rotates around the center of the support mechanism
  • the milling and digging mechanism and the mud extracting mechanism are respectively connected to the slewing support and arranged symmetrically with respect to the rotation center of the slewing support.
  • the mud extracting mechanism includes a mortar pump, and the mortar pump is movably connected to a guide column through a lifting cylinder, and the guide column is vertically connected below the slewing support.
  • a plurality of stirring devices are uniformly arranged around the mortar pump.
  • the milling mechanism includes a support arm and a support arm oil cylinder
  • One end of the support arm is hinged to the rotary support, and the other end is equipped with a milling head through a telescopic mechanism, and the milling head can rotate by itself; one end of the support arm cylinder is hinged to the rotary support, and the other end is connected to the support arm Middle hinged.
  • the inlet of the mud-water separation device is connected to the mud extraction mechanism through the mud discharge pipe through the support mechanism, and the outlet of the mud-water separation device is connected to the return pipe;
  • the pipe support is used to provide support and guide for the mud discharge pipe and the return water pipe.
  • a construction method for excavating a super-large-diameter deep well with water, using the super-large-diameter deep-well excavation system with water comprising the following steps:
  • a number of support columns are installed on the annular base by pre-casting, and the upper ends of the support columns are fastened to connect the ring beam;
  • Segment advancement Control the telescopic end of each pressure cylinder to push out synchronously, the action rod presses down the upper end surface of the segment evenly along the circumference, and the bottom of the segment cuts down the geological layer outside the supporting side wall through the steel blade;
  • Milling operation use the support arm of the milling mechanism and the cylinder of the support arm to adjust the excavation radius and depth, use the milling head installed on the support arm to mill the geological layer; use the mortar pump and stirring device of the mud extraction mechanism to Mud is pumped to the ground;
  • Step 5) and step 6) are repeated until the tunneling reaches the design depth of the deep well;
  • the installation support mechanism also includes installing a mud-water separation device on the ground, connecting the inlet of the mud-water separation device with the mud extraction mechanism through the mud discharge pipeline through the support mechanism, and connecting the outlet of the mud-water separation device with the return water pipeline ;
  • the milling operation also includes the mud-water separation device for pumping the mud to the ground, and transporting the separated groundwater to the well through the return pipe to balance the groundwater pressure in the well.
  • the invention utilizes the construction method of applying pressure evenly from the top of the deep well by the segment propelling device, and the segment is always controlled by the bidirectional force at the upper and lower ends during the construction process, ensuring the verticality of the segment and the installation accuracy of the segment during the construction process, and improving The construction quality is improved, the construction site area is reduced, and the cost is reduced.
  • the milling and digging mechanism of the present invention is telescopic, swingable, and rotatable, and cooperates with the segment propulsion device to realize synchronous milling and digging and cutting operations, has a high degree of automation, and greatly improves construction efficiency.
  • the mud extraction mechanism of the present invention conveys the mud formed after milling to the mud-water separation device, and the separated groundwater is discharged into the well to maintain the water pressure in the well and improve the safety of construction operations.
  • the impact of water-carrying operations on the surrounding environment is reduced, and the construction period is shortened.
  • Fig. 1 is a structural schematic diagram of the tunneling system of the present invention.
  • Fig. 2 is a schematic structural view of the segment propulsion device of the tunneling system of the present invention.
  • Fig. 3 is a structural schematic diagram of the milling and digging mechanism of the tunneling system of the present invention.
  • the super-large-diameter deep well excavation system with water in this embodiment includes: a segment 10, which is used to enclose the well wall, and a steel blade 2 is provided at the lower end of the segment 10 in the lowest layer;
  • the segment propulsion device includes an annular base 14, which is used to locate the diameter of the deep well.
  • the upper end of the annular base 14 is provided with a plurality of pressure cylinders 17 uniformly along the circumference through the ring beam 16, which is used to apply pressure to the upper end of the upper segment 10. Push the lower segment 10 to move down, so that the upper and lower segments 10 are butted in sequence to extend the well wall;
  • the supporting mechanism 9 is equipped with a milling and digging mechanism and a mud extracting mechanism through a rotary support 18.
  • the excavation radius of the milling and digging mechanism is adjustable, and the mud extracting mechanism can be lifted relative to the supporting mechanism 9.
  • the ultra-large-diameter deep well excavation system with water operation of the present embodiment also includes a mud-water separation device 13 and a pipe support 12; the inlet of the mud-water separation device 13 is connected with the mud extraction mechanism through the mud discharge pipeline 11 through the support mechanism 9, and the mud-water separation device 13 The outlet is connected to the return water pipeline 19, and its outlet stretches into the well;
  • the pipe support 12 is used to provide support and guide for the mud discharge pipe 11 and the return water pipe 19 .
  • the upper end of the annular base 14 is connected with the ring beam 16 through the support column 15 to form a ring support structure with upper and lower layers parallel to each other; the fixed end of the pressure cylinder 17 is connected with the lower end of the ring beam 16, and the pressure cylinder 17
  • the telescopic end of the telescopic end is connected with action bar 171, and its bottom surface contour matches with the upper end surface of segment 10.
  • the action rod 171 is located at the inner edge of the annular base 14, so as to facilitate the application of pressure to the segment 10 installed on the inner wall of the annular base 14.
  • the steel blade 2 is a steel annular structure with a blade angle on the outer diameter side, and is used to form a cutting action on the outer diameter of the bottom of the deep well along the outer diameter.
  • the slewing support 18 rotates around the center of the support mechanism 9 as an axis.
  • the milling and digging mechanism and the mud extracting mechanism are respectively connected to the rotary support 18 and arranged symmetrically with the rotation center of the rotary support 18 .
  • the mud extraction mechanism includes a mortar pump 5, which is movably connected to the guide column 7 through the lifting cylinder 6, and the guide column 7 is vertically connected to the bottom of the slewing support 18.
  • a plurality of stirring devices 501 are uniformly arranged around the mortar pump 5 .
  • one end of the lifting cylinder 6 is fixed to the guide column 7, and the other end is connected to the mounting seat of the mortar pump 5.
  • the lifting cylinder 6 drives the mortar pump 5 to move up and down along the guide column 7 to adjust the depth and adapt to the depth of the current excavation layer. Effective extraction of mud.
  • three stirring devices 501 are evenly arranged along the circumference, and stir the mud around the bottom of the mortar pump 5 for easy extraction.
  • the mud pumped by the mortar pump 5 is input into the transmission pipe 8, and the transmission pipe 8 is connected to the corresponding inlet on the support mechanism 9, and the upper outlet of the support mechanism 9 is connected to the mud discharge pipeline 11, and the mud is transported to the mud-water separation station 13.
  • Underground water is discharged back in the well by return pipe 19, guarantees ground water pressure balance.
  • the milling and digging mechanism includes a support arm 3 and a support arm oil cylinder 4 .
  • One end of the support arm 3 is hinged with the rotary support 18, the hinge position is shown in the first hinge point 301 shown in Figure 2, the other end is installed with the milling head 1 through the telescopic mechanism, and the milling head 1 can rotate by itself;
  • one end of the support arm oil cylinder 4 is connected with the rotary support 18 is hinged, the hinge position is shown in the second hinge point 401 shown in Figure 2, and the other end is hinged with the middle part of the support arm 3.
  • the telescopic mechanism of the support arm 3 adopts the telescopic shaft 301, which is driven by the drive unit to move axially along the support arm 3 to realize deeper milling operations.
  • the hinge point 301 swings in a fan shape to complete the cutting on a certain section.
  • the milling head 1 can rotate along its axis to form a cutting operation on the bottom geological layer, and form mud under the action of groundwater.
  • the range of the effective working sector angle of the milling head 1 remains the same as the outer diameter of the steel blade 2.
  • the pressure exerted by the upper pressure cylinder 7 on the segment 10 is transmitted to the steel blade 2, thereby forming a synchronous axial Cutting, complete the excavation construction of deep well under the joint action of milling and cutting.
  • the slewing support 18 rotates to realize the synchronous rotation of the milling head 1 and the mortar pump 5 installed on it, so as to realize the milling and excavation within the 360-degree circle of the fixed depth of the deep well.
  • the support arm 3 of the milling and digging mechanism is provided with a sealing device near the end surface of the telescopic shaft 301, etc., to prevent sediment from pouring into the support arm 3 shell, so as to realize the operation of the equipment with water.
  • the super-large-diameter deep well excavation construction method with water in this embodiment adopts a super-large-diameter deep well excavation system with water, including the following steps:
  • a number of support columns 15 are installed on the ring base 14 by pre-casting, and the upper ends of the support columns 15 are fastened to connect the ring beam 16;
  • n pressure cylinders 17 on the ring beam 16 fasten the fixed end of the pressure cylinder 17 on the ring beam 16, the telescopic end faces the direction of the ring base 14, and install an action rod 171 at the end, wherein, n is an even number.
  • the outer diameter and depth of the annular base 14 can be obtained according to the diameter and depth design of the construction deep well.
  • the inner diameter of the annular base 14 is 0.3-0.5 meters larger than the outer diameter of the built deep well.
  • the length of the action rod 171 is 1.5 meters.
  • the steel blade 2 on the inner wall of the annular base 14 assemble the segment 10 on the upper end of the steel blade 2, and assemble the segment 10 layer by layer along the depth direction of the well to form the supporting side wall.
  • the depth of the supporting side wall is the pouring ring.
  • the segments 10 installed on the upper side of the steel blade 2 through splicing and assembly have the same inner and outer diameters as the steel blade 2 .
  • the foundation depth formed by pouring the annular base 14 construction can just complete the installation of the three-layer segment, and the side wall of the third-layer segment is also provided with embedded parts for installing the legs of the support mechanism 9, Thereby, the installation of the main body of the roadheader is realized, and it is fastened with the segments 10 into an integral structure.
  • the mud-water separation device 13 is installed on the ground, the inlet of the mud-water separation device 13 is connected with the mud extraction mechanism through the support mechanism 9 through the mud discharge pipeline 11, and the outlet of the mud-water separation device 13 is connected with the return water pipeline 19;
  • each pressurizing oil cylinder 17 Control the telescopic ends of each pressurizing oil cylinder 17 to push out synchronously, and the action rod 171 presses down the upper end surface of the segment 10 evenly along the circumference, and the bottom of the segment 10 cuts down the geological layer on the outside of the support side wall through the steel blade 2 .
  • the segment 10 forms a clamping state under the action of the upper pressure application cylinder 17 and the lower geological formation; Apply pressure evenly, thereby ensuring the verticality of the deep well downward.
  • the slurry pump 5 and the stirring device 501 of the slurry extraction mechanism are used to extract the slurry to the mud-water separation device 13 on the ground, and the separated groundwater is transported into the well through the return pipe 19 to balance the groundwater pressure in the well.
  • Step 5) and step 6) are repeated, and the segments 10 are continuously installed layer by layer along with the depth of the deep well until the excavation reaches the design depth of the deep well.
  • the number n of pressurizing oil cylinders 17 is set according to actual needs, preferably 6.
  • the construction of the excavation system of the present application occupies a small area, and is suitable for completing deep well construction operations in narrow streets, buildings, and other working conditions.
  • the construction method of the present application is convenient for adjusting the posture of the shaft, ensures the verticality of the shaft, and at the same time has high construction efficiency and short cycle, and is suitable for the construction of deep wells with a diameter of more than 12 meters, especially for the construction of deep wells with a diameter of 16-20 meters.
  • the excavation system and construction method of the present application are suitable for underwater work, without reducing the surrounding groundwater operations, and have no impact on the surrounding environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

一种超大直径带水作业深井掘进系统,包括:管片(10),用于围成井壁,位于最下层管片(10)的下端设有钢刃(2);管片推进装置,包括环形基座(14),环形基座(14)上端通过环梁(16)沿圆周均匀设置多个施压油缸(17),其用于对上层管片(10)的上端施压,推动下层管片(10)下移,使上、下层管片(10)依次对接以延伸井壁;以及支撑机构(9),其与最下层管片(10)的内壁连接;支撑机构(9)通过回转支撑(18)安装铣挖机构和泥浆提取机构,铣挖机构的开挖半径可调,泥浆提取机构能相对于支撑机构(9)进行升降。

Description

一种超大直径带水作业深井掘进系统及施工方法 技术领域
本发明涉及深井挖掘技术领域,尤其是一种超大直径带水作业深井掘进系统及施工方法。
背景技术
地下空间开发应用广泛的深井挖掘技术,在地下立体停车库、地铁建造始发井、隧道或地铁管网的通风井、城市污水虹吸管道及深海采矿等领域均有重要的应用。
现有技术中,深井开挖多采用半机械式人工施工作业方式,特别是直径超过12米的大直径深井均以传统人工开挖为主,配合现浇或预制管片井筒依靠自重或钢绞线下放的施工法,存在自动化程度较低、深井竖向垂直度等指标难以控制、施工作业安全性较差等问题,造成综合成本高、施工质量难以保证、作业周期长、施工场地面积大等现象。
发明内容
针对现有技术的不足,本发明提供一种超大直径带水作业深井掘进系统及施工方法,以解决目前超大直径深井掘进施工过程中深井竖向垂直度等指标难以控制导致作业周期长的技术问题。
本发明采用的技术方案如下:
一种超大直径带水作业深井掘进系统,包括:
管片,用于围成井壁,位于最下层管片的下端设有钢刃;
管片推进装置,包括环形基座,其用于定位深井的直径,所述环形基座上端通过环梁沿圆周均匀设置多个施压油缸,其用于对上层管片的上端施压,推动下层管片下移,使上、下层管片依次对接以延伸井壁;
以及支撑机构,其与最下层管片的内壁连接;所述支撑机构通过回转支撑安装铣挖机构和泥浆提取机构,所述铣挖机构的开挖半径可调,所述泥浆提取机构能相对于支撑机构进行升降。
进一步技术方案为:
所述环形基座上端通过支撑立柱与所述环梁连接,形成上下两层相互平行的环形支撑结构;
所述施压油缸的固定端与所述环梁下端连接,所述施压油缸的伸缩端连接有作用杆,其底面轮廓与所述管片的上端面相匹配。
所述施压油缸共设置偶数个,由控制系统统一控制。
所述回转支撑以所述支撑机构的中心为轴心旋转;
所述铣挖机构和泥浆提取机构分别连接在所述回转支撑上,并以回转支撑的旋转中心对称设置。
所述泥浆提取机构包括砂浆泵,所述砂浆泵通过升降油缸活动连接在导向立柱上,所述导向立柱竖直连接在回转支撑下方。
所述砂浆泵四周均匀设置多个搅拌装置。
所述铣挖机构包括支撑臂和支撑臂油缸;
所述支撑臂的一端与所述回转支撑铰接,另一端通过伸缩机构安装铣头,所述铣头能够自转;所述支撑臂油缸的一端与所述回转支撑铰接,另一端与所述支撑臂中部铰接。
还包括泥水分离装置和管道支架;
所述泥水分离装置的进口通过排泥管道经所述支撑机构与所述泥浆提取机构连接,所述泥水分离装置的出口连接回水管道;
所述管道支架用于对排泥管道和回水管道提供支撑和导向。
一种超大直径带水作业深井掘进施工方法,采用所述的超大直径带水作业深井掘进系统,包括以下步骤:
1)制作管片推进装置:
在需建造深井的位置处开挖浇筑混凝土环形基座;
在所述环形基座上采用预浇筑的方式安装若干支撑立柱,在所述支撑立柱上端紧固连接环梁;
在环梁上均匀安装n个施压油缸,将施压油缸的固定端紧固在环梁上,伸缩端朝向环形基座方向,并在端部安装作用杆,其中,n为偶数;
2)制作支撑侧壁:
将钢刃贴合环形基座的内壁放置,将管片拼装在钢刃上端,将管片沿井深方向层层拼装,组成支撑侧壁,所述支撑侧壁的深度即为浇筑所述环形基座施工形成的基础深度;
3)安装支撑机构:
将铣挖机构、泥浆提取机构与支撑机构上的回转支撑连接,将支撑机构的支腿与最下层管片侧壁上设置的预埋件连接;
4)管片推进:控制各施压油缸的伸缩端同步推出,作用杆沿圆周均匀下压管片上端面,管片底部通过钢刃对支撑侧壁外侧的地质层向下切削;
5)铣挖作业:利用铣挖机构的支撑臂和支撑臂油缸调整开挖半径和深度,利用支撑臂上安装的铣头对地质层进行铣挖;利用泥浆提取机构的砂浆泵和搅拌装置将泥浆抽取至地面;
6)叠加管片:施压油缸伸出的位移与单层管片高度相同时,停止铣挖作业;将n个施压油缸中间隔设置的n/2个先收回,在收回后的对应位置处添加管片,之后,控制先收回的施压油缸对新添加的管片层进行施压;其余n/2个施压油缸也收回,在收回后的对应位置处添加管片,完成当前层剩余管片的安装;
重复步骤5)和步骤6),至掘进达深井设计深度;
7)向井底部注混凝土封底,然后将井内地下水抽出,利用起重设备将井内的掘进系统提起,完成深井作业。
进一步技术方案为:
所述安装支撑机构,还包括在地面上安装泥水分离装置,将泥水分离装置的进口通过排泥管道经所述支撑机构与所述泥浆提取机构连接,将泥水分离装置的出口与回水管道连接;
所述铣挖作业,还包括将泥浆抽取至地面的所述泥水分离装置,将分离后的地下水通过所述回水管道输送到井内,以平衡井内的地下水压。
本发明的有益效果如下:
本发明利用管片推进装置从深井顶部均匀施压的施工方法,施工过程中管片始终受到上下两端的双向作用力的控制,保证施工过程中管片的垂直度和管片安装作业精度,提高了施工质量,减小了施工场地面积,降低了成本。
本发明的铣挖机构可伸缩和摆动、旋转,配合管片推进装置实现铣挖和切削同步作业,自动化程度高,极大地提高了施工效率。
本发明的泥浆提取机构将铣挖后形成的泥浆输送泥水分离装置,分离后的地下水被排至井内,维持井内水压,提高了施工作业安全性。降低了带水作业对周边环境的影响,缩短了施工周期。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
图1为本发明掘进系统的结构示意图。
图2为本发明掘进系统的管片推进装置的结构示意图。
图3为本发明掘进系统的铣挖机构的结构示意图。
图中:1、铣头;2、钢刃;3、支撑臂;4、支撑臂油缸;5、砂浆泵;6、升降油缸;7、导向立柱;8、传输管;9、支撑机构;10、管片;11、排泥管道;12、管道支架;13、泥水分离装置;14、环形基座;15、支撑立柱;16、环梁;17、施压油缸;18、回转支撑;19、回水管道;301、第一铰点;302、伸缩轴;401、第二铰点;501、搅拌装置;171、作用杆。
具体实施方式
以下结合附图说明本发明的具体实施方式。
如图1所示,本实施例的超大直径带水作业深井掘进系统,包括:管片10,用于围成井壁,位于最下层管片10的下端设有钢刃2;
管片推进装置,包括环形基座14,其用于定位深井的直径,环形基座14上端通过环梁16沿圆周均匀设置多个施压油缸17,其用于对上层管片10的上端施压,推动下层管片10下移,使上、下层管片10依次对接以延伸井壁;
以及支撑机构9,其与最下层管片10的内壁连接;
支撑机构9通过回转支撑18安装铣挖机构和泥浆提取机构,铣挖机构的开挖半径可调,泥浆提取机构能相对于支撑机构9进行升降。
本实施例的超大直径带水作业深井掘进系统,还包括泥水分离装置13和管道支架12;泥水分离装置13的进口通过排泥管道11经支撑机构9与泥浆提取机构连接,泥水分离装置13的出口连接回水管道19,其出口伸入至井内;
管道支架12用于对排泥管道11和回水管道19提供支撑和导向。
如图2所示,环形基座14上端通过支撑立柱15与环梁16连接,形成上下两层相互平行的环形支撑结构;施压油缸17的固定端与环梁16下端连接,施压油缸17的伸缩端连接有作用杆171,其底面轮廓与管片10的上端面相匹配。
施压油缸17共设置偶数个,由控制系统统一控制。
具体的,作用杆171位于环形基座14内侧边缘,从而方便对安装在环形基座14内壁出 的管片10进行施压。
具体的,钢刃2为外径侧具有刃角的钢制环形结构,用于对深井底部外侧地质沿外径形成切削作用。
如图3所示,回转支撑18以支撑机构9的中心为轴心旋转。
铣挖机构和泥浆提取机构分别连接在回转支撑18上,并以回转支撑18的旋转中心对称设置。
泥浆提取机构包括砂浆泵5,砂浆泵5通过升降油缸6活动连接在导向立柱7上,导向立柱7竖直连接在回转支撑18下方。砂浆泵5四周均匀设置多个搅拌装置501。
具体的,升降油缸6一端与导向立柱7固定,另一端与砂浆泵5的安装座连接,升降油缸6驱动砂浆泵5沿导向立柱7上下运动,以调节深度,自适应当前掘进层的深度,有效提取泥浆。
具体的,搅拌装置501沿圆周均匀布置有三个,对砂浆泵5底部周围泥浆进行搅拌,便于抽取。砂浆泵5抽取的泥浆输入传输管8,传输管8与支撑机构9上相应的进口连接,支撑机构9上部出口与排泥管道11连接,将泥浆输送至泥水分离站13,经过水泥分离后的地下水通过回水管道19排回井内,保证地下水压平衡。
铣挖机构包括支撑臂3和支撑臂油缸4。支撑臂3的一端与回转支撑18铰接,铰接位置见图2所示的第一铰点301,另一端通过伸缩机构安装铣头1,铣头1能够自转;支撑臂油缸4的一端与回转支撑18铰接,铰接位置见图2所示的第二铰点401,另一端与支撑臂3中部铰接。
具体的,支撑臂3的伸缩机构采用伸缩轴301,其由驱动单元驱动沿支撑臂3轴向运动,实现对更深处的铣挖作业,支撑臂3在支撑臂油缸4的作用下绕第一铰点301成扇形摆动,完成在一定截面上的切削。铣头1可沿其轴心自旋转,对底部地质层形成切削作业,将泥土等在地下水的作用下形成泥浆。铣头1有效工作扇形角的范围与钢刃2外径保持相同,切削掘进工作过程中,上端施压油缸7作用在管片10上的压力传递到钢刃2,进而使其形成同步轴向切削,在铣挖和切削的共同作用下完成深井的掘进施工。
具体的,回转支撑18转动,实现安装其上的铣头1和砂浆泵5同步旋转,实现对深井固定深度360度圆周内的铣挖掘进。
本领域技术人员可以理解,铣挖机构的支撑臂3靠近伸缩轴301伸出的一端端面等位置处设置有密封装置,防止泥沙灌入支撑臂3外壳内部,以实现设备带水作业。
本实施例的超大直径带水作业深井掘进施工方法,采用超大直径带水作业深井掘进系统,包括以下步骤:
1)制作管片推进装置:
在需建造深井的位置处开挖浇筑混凝土环形基座14;
在环形基座14上采用预浇筑的方式安装若干支撑立柱15,在支撑立柱15上端紧固连接环梁16;
在环梁16上均匀安装n个施压油缸17,将施压油缸17的固定端紧固在环梁16上,伸缩端朝向环形基座14方向,并在端部安装作用杆171,其中,n为偶数。
具体的,环形基座14外径和深度可依据施工深井直径和深度设计获得。优选的,环形基座14的内径比所建深井的外径大0.3-0.5米。
具体的,作用杆171的长度为1.5米。
2)制作支撑侧壁:
将钢刃2贴合环形基座14的内壁放置,将管片10拼装在钢刃2上端,将管片10沿井深方向层层拼装,组成支撑侧壁,支撑侧壁的深度即为浇筑环形基座14施工形成的基础深度。
具体的,通过拼接装配的方式安装在钢刃2上侧的管片10与钢刃2具有相同内外径的。
本实施例中浇筑环形基座14施工形成的基础深度恰可以完成三层管片的安装,第三层管片的侧壁上还设置有预埋件,用于安装支撑机构9的支腿,从而实现掘进机主体部分的安装,并与管片10紧固为一体结构。
3)安装支撑机构:
将铣挖机构、泥浆提取机构与支撑机构9上的回转支撑18连接,将支撑机构9的支腿与最下层管片10侧壁上设置的预埋件连接;
在地面上安装泥水分离装置13,将泥水分离装置13的进口通过排泥管道11经支撑机构9与泥浆提取机构连接,将泥水分离装置13的出口与回水管道19连接;
4)管片推进:
控制各施压油缸17的伸缩端同步推出,作用杆171沿圆周均匀下压管片10上端面,管片10底部通过钢刃2对支撑侧壁外侧的地质层向下切削。
具体的,施压过程中,管片10在上端施压油缸17和下端地质层的作用下形成夹持状态;施压油缸17间的施压位移量被严格控制,实现管片10一周范围内均匀施压,从而保证了深井向下的垂直度。
5)铣挖作业:
利用铣挖机构的支撑臂3和支撑臂油缸4调整开挖半径和深度,利用支撑臂3上安装的铣头1对地质层进行铣挖;
利用泥浆提取机构的砂浆泵5和搅拌装置501将泥浆抽取至地面的泥水分离装置13,将分离后的地下水通过回水管道19输送到井内,以平衡井内的地下水压。
6)叠加管片:
施压油缸17伸出的位移与单层管片10高度相同时,停止铣挖作业;将n个施压油缸17中间隔设置的n/2个先收回,在收回后的对应位置处添加管片10,之后,控制先收回的施压油缸17对新添加的管片10层进行施压;其余n/2个施压油缸17也收回,在收回后的对应位置处添加管片10,完成当前层剩余管片10的安装。
重复步骤5)和步骤6),管片10随深井深度不断一层一层地安装,直至掘进达深井设计深度。
7)收回铣挖机构的支撑臂3和支撑臂油缸4,以及泥浆提取机构的砂浆泵5和搅拌装置501,使井底部形成较大空间,向井底部注混凝土封底,然后将井内地下水抽出,利用起重设备将井内的掘进系统提起,完成深井施工作业。
具体的,施压油缸17的个数n根据实际需要设置,优选的采用6个。
本申请的掘进系统作业施工占地面积小、适合在空间狭小的街道、楼宇间等工况条件下完成深井施工作业。本申请的施工方法方便调整竖井姿态,保证竖井的垂直度,同时施工效率高、周期短,适合12米以上大直径深井的施工作业,特别适合16-20米直径的深井施工。本申请的掘进系统及施工方法适用于水下工作,无需降低周围地下水作业,对周围环境没有 影响。
本领域普通技术人员可以理解:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超大直径带水作业深井掘进系统,其特征在于,包括:
    管片(10),用于围成井壁,位于最下层管片(10)的下端设有钢刃(2);
    管片推进装置,包括环形基座(14),其用于定位深井的直径,所述环形基座(14)上端通过环梁(16)沿圆周均匀设置多个施压油缸(17),其用于对上层管片(10)的上端施压,推动下层管片(10)下移,使上、下层管片(10)依次对接以延伸井壁;
    以及支撑机构(9),其与最下层管片(10)的内壁连接;所述支撑机构(9)通过回转支撑(18)安装铣挖机构和泥浆提取机构,所述铣挖机构的开挖半径可调,所述泥浆提取机构能相对于支撑机构(9)进行升降。
  2. 根据权利要求1所述的超大直径带水作业深井掘进系统,其特征在于,所述环形基座(14)上端通过支撑立柱(15)与所述环梁(16)连接,形成上下两层相互平行的环形支撑结构;
    所述施压油缸(17)的固定端与所述环梁(16)下端连接,所述施压油缸(17)的伸缩端连接有作用杆(171),其底面轮廓与所述管片(10)的上端面相匹配。
  3. 根据权利要求2所述的超大直径带水作业深井掘进系统,其特征在于,所述施压油缸(17)共设置偶数个,由控制系统统一控制。
  4. 根据权利要求1所述的超大直径带水作业深井掘进系统,其特征在于,所述回转支撑(18)以所述支撑机构(9)的中心为轴心旋转;
    所述铣挖机构和泥浆提取机构分别连接在所述回转支撑(18)上,并以回转支撑(18)的旋转中心对称设置。
  5. 根据权利要求1所述的超大直径带水作业深井掘进系统,其特征在于,所述泥浆提取机构包括砂浆泵(5),所述砂浆泵(5)通过升降油缸(6)活动连接在导向立柱(7)上,所述导向立柱(7)竖直连接在回转支撑(18)下方。
  6. 根据权利要求5所述的超大直径带水作业深井掘进系统,其特征在于,所述砂浆泵(5)四周均匀设置多个搅拌装置(501)。
  7. 根据权利要求1所述的超大直径带水作业深井掘进系统,其特征在于,所述铣挖机构包括支撑臂(3)和支撑臂油缸(4);
    所述支撑臂(3)的一端与所述回转支撑(18)铰接,另一端通过伸缩机构安装铣头(1),所述铣头(1)能够自转;
    所述支撑臂油缸(4)的一端与所述回转支撑(18)铰接,另一端与所述支撑臂(3)中部铰接。
  8. 根据权利要求1所述的超大直径带水作业深井掘进系统,其特征在于,还包括泥水分离装置(13)和管道支架(12);
    所述泥水分离装置(13)的进口通过排泥管道(11)经所述支撑机构(9)与所述泥浆提取机构连接,所述泥水分离装置(13)的出口连接回水管道(19);
    所述管道支架(12)用于对排泥管道(11)和回水管道(19)提供支撑和导向。
  9. 一种超大直径带水作业深井掘进施工方法,其特征在于,采用权利要求1-8任一项所述的超大直径带水作业深井掘进系统,包括以下步骤:
    1)制作管片推进装置:
    在需建造深井的位置处开挖浇筑混凝土环形基座(14);
    在所述环形基座(14)上采用预浇筑的方式安装若干支撑立柱(15),在所述支撑立柱(15)上端紧固连接环梁(16);
    在环梁(16)上均匀安装n个施压油缸(17),将施压油缸(17)的固定端紧固在环梁(16)上,伸缩端朝向环形基座(14)方向,并在端部安装作用杆(171),其中,n为偶数;
    2)制作支撑侧壁:
    将钢刃(2)贴合环形基座(14)的内壁放置,将管片(10)拼装在钢刃(2)上端,将管片(10)沿井深方向层层拼装,组成支撑侧壁,所述支撑侧壁的深度即为浇筑所述环形基座(14)施工形成的基础深度;
    3)安装支撑机构:
    将铣挖机构、泥浆提取机构与支撑机构(9)上的回转支撑(18)连接,将支撑机构(9)的支腿与最下层管片(10)侧壁上设置的预埋件连接;
    4)管片推进:
    控制各施压油缸(17)的伸缩端同步推出,作用杆(171)沿圆周均匀下压管片(10)上端面,管片(10)底部通过钢刃(2)对支撑侧壁外侧的地质层向下切削;
    5)铣挖作业:
    利用铣挖机构的支撑臂(3)和支撑臂油缸(4)调整开挖半径和深度,利用支撑臂(3)上安装的铣头(1)对地质层进行铣挖;
    利用泥浆提取机构的砂浆泵(5)和搅拌装置(501)将泥浆抽取至地面;
    6)叠加管片:
    施压油缸(17)伸出的位移与单层管片(10)高度相同时,停止铣挖作业;
    将n个施压油缸(17)中间隔设置的n/2个先收回,在收回后的对应位置处添加管片(10),之后,控制先收回的施压油缸(17)对新添加的管片(10)层进行施压;
    其余n/2个施压油缸(17)也收回,在收回后的对应位置处添加管片(10),完成当前层剩余管片(10)的安装;
    重复步骤5)和步骤6),直至掘进达深井设计深度;
    7)向井底部注混凝土封底,然后将井内地下水抽出,利用起重设备将井内的掘进系统提起,完成深井作业。
  10. 根据权利要求9所述的超大直径带水作业深井掘进施工方法,其特征在于,所述安装支撑机构,还包括在地面上安装泥水分离装置(13),将泥水分离装置(13)的进口通过排泥管道(11)经所述支撑机构(9)与所述泥浆提取机构连接,将泥水分离装置(13)的出口与回水管道(19)连接;
    所述铣挖作业,还包括将泥浆抽取至地面的所述泥水分离装置(13),将分离后的地下水通过所述回水管道(19)输送到井内,以平衡井内的地下水压。
PCT/CN2022/105949 2021-11-05 2022-07-15 一种超大直径带水作业深井掘进系统及施工方法 WO2023077863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111310008.4A CN114033387A (zh) 2021-11-05 2021-11-05 一种超大直径带水作业深井掘进系统及施工方法
CN202111310008.4 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023077863A1 true WO2023077863A1 (zh) 2023-05-11

Family

ID=80136568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105949 WO2023077863A1 (zh) 2021-11-05 2022-07-15 一种超大直径带水作业深井掘进系统及施工方法

Country Status (2)

Country Link
CN (1) CN114033387A (zh)
WO (1) WO2023077863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117005870A (zh) * 2023-09-08 2023-11-07 中铁七局集团广州工程有限公司 一种曲线顶管工程纠偏检测装置及方法
CN117231159A (zh) * 2023-11-10 2023-12-15 克拉玛依市禹荣有限责任公司 一种自流井的膨润土封堵施工装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033387A (zh) * 2021-11-05 2022-02-11 建湖富力智能科技有限公司 一种超大直径带水作业深井掘进系统及施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332202A (ja) * 2003-04-30 2004-11-25 Kato Construction Co Ltd ライナープレートを使用した立坑の構築方法
CN106761764A (zh) * 2016-12-27 2017-05-31 山河智能装备股份有限公司 一种超大直径深竖井简易盾构装置及盾构方法
CN112459784A (zh) * 2020-11-20 2021-03-09 徐工集团凯宫重工南京股份有限公司 一种下沉式竖井掘进机及其成井方法
CN113482054A (zh) * 2021-07-13 2021-10-08 上海隧道工程有限公司 适合软土地区的主动压入式竖井施工系统及方法
CN114033387A (zh) * 2021-11-05 2022-02-11 建湖富力智能科技有限公司 一种超大直径带水作业深井掘进系统及施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332202A (ja) * 2003-04-30 2004-11-25 Kato Construction Co Ltd ライナープレートを使用した立坑の構築方法
CN106761764A (zh) * 2016-12-27 2017-05-31 山河智能装备股份有限公司 一种超大直径深竖井简易盾构装置及盾构方法
CN112459784A (zh) * 2020-11-20 2021-03-09 徐工集团凯宫重工南京股份有限公司 一种下沉式竖井掘进机及其成井方法
CN113482054A (zh) * 2021-07-13 2021-10-08 上海隧道工程有限公司 适合软土地区的主动压入式竖井施工系统及方法
CN114033387A (zh) * 2021-11-05 2022-02-11 建湖富力智能科技有限公司 一种超大直径带水作业深井掘进系统及施工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117005870A (zh) * 2023-09-08 2023-11-07 中铁七局集团广州工程有限公司 一种曲线顶管工程纠偏检测装置及方法
CN117005870B (zh) * 2023-09-08 2024-03-05 中铁七局集团广州工程有限公司 一种曲线顶管工程纠偏检测装置及方法
CN117231159A (zh) * 2023-11-10 2023-12-15 克拉玛依市禹荣有限责任公司 一种自流井的膨润土封堵施工装置
CN117231159B (zh) * 2023-11-10 2024-02-20 克拉玛依市禹荣有限责任公司 一种自流井的膨润土封堵施工装置

Also Published As

Publication number Publication date
CN114033387A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023077863A1 (zh) 一种超大直径带水作业深井掘进系统及施工方法
CN104763328B (zh) 一种液压扩孔循环钻机及其扩孔桩施工工艺
CN108691550B (zh) 一种由地下向上施工的竖井盾构机及其施工方法
CN112459784A (zh) 一种下沉式竖井掘进机及其成井方法
CN112253128B (zh) 一种全自动全断面垂直盾构机
CN110593255B (zh) 一种适用于砂卵石土层的全套管咬合桩施工方法
CN102182180B (zh) 利用制作锚杆的装置进行施工的工法
CN102373705A (zh) 外掘预应力离心管桩、方桩沉桩装置及其沉桩方法
CN110644551B (zh) 打桩机及其施工方法
CN108662281A (zh) 顶管装置及顶管施工方法
CN114033386A (zh) 一种深井掘进装置及施工方法
CN108266131A (zh) 旋转挤土扩底钻头及基桩施工方法
CN108412518B (zh) 一种具有定向定层注浆功能的双套筒钻杆及其施工方法
CN107587853B (zh) 一种全回转全套管钻机
CN116291471A (zh) 上软下硬地层大直径竖井施工方法及掘进设备
CN216406812U (zh) 一种超大直径带水作业深井掘进系统
CN113969581A (zh) 一种入岩植桩的施工方法
CN109630124B (zh) 一种沉井法竖井掘进机及其施工方法
CN102677724B (zh) 一种机械式钢套管安装装置及其安装方法
CN214091866U (zh) 一种下沉式竖井掘进机
CN213296352U (zh) 一种高效套管拔桩的液压式钻头
CN205062875U (zh) 一种旋挖导杆式窄墙防渗施工用液压抓斗
CN201962674U (zh) 旋转挤压套管锚杆
CN117287220B (zh) 一种地铁区间隧道装配式泵房及其施工方法
CN108505954B (zh) 一种压力可调节的定向注浆双套筒钻杆及其施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888898

Country of ref document: EP

Kind code of ref document: A1