WO2023077479A1 - User equipment, base station, and wireless communication methods for pdcch monitoring - Google Patents

User equipment, base station, and wireless communication methods for pdcch monitoring Download PDF

Info

Publication number
WO2023077479A1
WO2023077479A1 PCT/CN2021/129152 CN2021129152W WO2023077479A1 WO 2023077479 A1 WO2023077479 A1 WO 2023077479A1 CN 2021129152 W CN2021129152 W CN 2021129152W WO 2023077479 A1 WO2023077479 A1 WO 2023077479A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
group
slot
space set
wireless communication
Prior art date
Application number
PCT/CN2021/129152
Other languages
French (fr)
Inventor
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd
Priority to PCT/CN2021/129152 priority Critical patent/WO2023077479A1/en
Publication of WO2023077479A1 publication Critical patent/WO2023077479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring, for example, a mechanism for search space set configuration of slot-group based PDCCH monitoring.
  • UE user equipment
  • PDCCH physical downlink control channel
  • the PDCCH monitoring occasions occur anywhere within a slot group, e.g., the type #0 PDCCH with RRC idle state.
  • How to deal with the search space (SS) sets for these two kinds of PDCCH monitoring occasions and the relationship between them is unknown and is an open issue.
  • a user equipment UE
  • a base station a base station
  • wireless communication methods for physical downlink control channel (PDCCH) monitoring which can solve issues in the prior art, provide a mechanism for search space set configuration of PDCCH monitoring based on slot-group, provide a good communication performance, and/or provide high reliability.
  • UE user equipment
  • PDCCH physical downlink control channel
  • An object of the present disclosure is to propose a user equipment (UE) , a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring, which can solve issues in the prior art, provide a mechanism for search space set configuration of PDCCH monitoring based on slot-group, provide a good communication performance, and/or provide high reliability.
  • UE user equipment
  • PDCCH physical downlink control channel
  • a wireless communication method for PDCCH monitoring performed by a UE includes being configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
  • MO monitoring occasion
  • a wireless communication method for PDCCH monitoring performed by a base station includes configuring, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
  • MO monitoring occasion
  • a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
  • the PDCCH type is further combined with RRC states, e.g., an RRC idle, an RRC inactive and/or an RRC connected.
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to configure, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
  • the PDCCH type is further combined with the RRC states, e.g., an RRC idle, an RRC inactive and/or an RRC connected.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • gNB base station
  • FIG. 4 is a flowchart illustrating a wireless communication method for PDCCH monitoring performed by a UE according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a wireless communication method for PDCCH monitoring performed by a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • a SCS subcarrier spacing
  • the new SCSs make a slot very short.
  • PDCCH monitoring ability becomes limited.
  • the PDCCH are monitored in the new time unit of a slot group.
  • Monitoring occasions (MOs) of the PDCCH fall into different slots within the slot group.
  • the MOs are taken differently with search spaces with or without radio resource control (RRC) connected.
  • RRC radio resource control
  • These search space sets comprise a first group search space set (SSSG1, or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2, or called a second search space set group or a second search space group) .
  • the detailed designs of these two search space groups are provided in some examples of this disclosure.
  • default sizes SSSG1 and SSSG2, reconfigurations of SSSG1 and SSSG2 and their locations within the slot group are provided in some embodiments of this disclosure.
  • the PDCCH monitoring can be performed smoothly.
  • the search space set is configured according to a new design of search spaces. For example, a UE can monitor type 0 PDCCHs without spanning a boundary of slot group.
  • the search space sets can be classified to groups such as a first group search space set (SSSG1, or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2, or called a second search space set group or a second search space group) .
  • the search space sets classified to groups can also be called at least one slot group for the at least one search space set.
  • the search space sets can be called at least one slot group. In some embodiments, the search space sets can be called at least one slot group and the search space sets are not classified to groups such as a first group search space set (SSSG1 or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2 or called a second search space set group or a second search space group) . In this embodiment, although there is no grouping, the search space sets can also be called at least one slot group or similar terms, or the search space sets can also be called at least one slot group for the at least one search space set, or there is no search space set group.
  • SSSG1 first group search space set
  • SSSG2 second search space set group
  • the search space sets can also be called at least one slot group or similar terms, or the search space sets can also be called at least one slot group for the at least one search space set, or there is no search space set group.
  • the configuration is sheerly based on whether the gNB is able to control the location of the PDCCH occasions.
  • the PDCCH occasion can be anywhere within a slot group.
  • the SSSG is not mentioned, or the SSSG is implicitly mentioned by RRC state.
  • Table 10.1-2 Maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration ⁇ ⁇ 0, 1, 2, 3 ⁇ for a single serving cell.
  • Table 10.1-3 Maximum number of non-overlapped CCEs per slot for a DL BWP with SCS configuration ⁇ ⁇ 0, 1, 2, 3 ⁇ for a single serving cell.
  • FIG. 1 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • a new PDCCH monitoring unit is need for new SCSs.
  • a slot group is proposed and agreed as the new time unit.
  • the slot group comprises several continuous slots. As illustrated in FIG. 1, a slot group contains 4 continuous slots at 480 KHz SCS. Further, for 960 KHz SCS, the slot group can contain 8 slots.
  • the slot group size can have other integer number of values, e.g., 2 for 480KHz and 4 for 960KHz.
  • FIG. 2 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • some examples are to allocate MOs within Y continuous slots of a slot group. Meanwhile Y is at the beginning part of the slot group.
  • FIG. 2 illustrates that, in some examples, one slot group is of size 4, with Y equal to 2.
  • PDCCH is in Y continuous slots, and Y is the possible location.
  • the design principle here is to align the size of Y to that of the PDCCH monitoring time duration of 120KHz. For example, the 3 symbols of SCS 120KHz will be contained in a slot of 120KHz, Y can have values of 1 for 480KHz SCS and 2 for 960KHz.
  • SSSG1 comprises any single one or any combination of a type 1 common search space set with a dedicated radio resource control (RRC) configuration, a type 3 common search space set, or a UE specific search space set
  • SSSG2 comprises any single one or any combination of a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set.
  • RRC radio resource control
  • Group 1 SS can be configured within the beginning part or within a few beginning continuous slots of a slot group.
  • the MOs can be in any location of the slot group. Therefore, the SS design is related to PDCCH types. Furthermore, the SS design or configuration is related to the PDCCH types in a specific RRC state. That is even the same type of PDCCH, e.g., PDCCH type 0, with RRC connected and without RRC connect will have different SS configurations. More specifically, the PDCCH type #0 without RRC connected can reside within any location of a slot group. On the other hand, the PDCCH with RRC connected can reside within a few continuous slots of at the beginning of a slot group.
  • FIG. 3 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 40 according to an embodiment of the present disclosure are provided.
  • the communication network system 40 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured, by the base station 20, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type, and optionally related to with or without RRC connected.
  • MO monitoring occasion
  • the processor 21 configures, to the UE 10, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and optionally related to with or without RRC connected.
  • MO monitoring occasion
  • FIG. 4 illustrates a wireless communication method 400 for PDCCH monitoring performed by a UE according to an embodiment of the present disclosure.
  • the method 400 includes: a block 402, being configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type, and optionally related to with or without RRC connected.
  • MO monitoring occasion
  • the configuration is preconfigured in UE, e.g., in the form of tables for the search space sets.
  • the configurations of SSs e.g., the values of Y are indicated by UE as its capability.
  • FIG. 5 illustrates a wireless communication method 500 for PDCCH monitoring performed by a base station includes according to an embodiment of the present disclosure.
  • the method 500 includes: a block 502, configuring, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and optionally related to with or without RRC connected.
  • MO monitoring occasion
  • the configuration is preconfigured in UE, e.g., in the form of tables for the search space sets.
  • the configurations of SSs e.g., the values of Y are indicated by UE as its capability.
  • the at least one search space set comprises a first group search space set and a second group search space set
  • the first group search space set comprises a type 1 common search space set with a dedicated radio resource control (RRC) configuration, a type 3 common search space set, or a UE specific search space set
  • the second group search space set comprises a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set.
  • RRC radio resource control
  • the default value (s) of the first group search space set and the second group search space set are defined, as an example the default value is for Y.
  • the default values can also relate to the SS settings, e.g., the monitoring period, duration etc. In the following explanations these default values have same connotation. We will not describe them again.
  • the default values of the first group search space set and the second group search space set are aligned with a subcarrier spacing (SCS) of 120 KHz.
  • SCS subcarrier spacing
  • the Y of the first group search space set is configured within one slot or X/2 slot of the at least one slot group
  • the Y of the second group search space set is configured within X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slots, and X/2 slot is at a beginning part of the at least one slot group.
  • the Y values of the first group search space set can have the same values as the Y values of the second search space set.
  • the Y values of the first group search space set is renamed as Y1 and the Y values of the second search space set is renamed as Y2.
  • the first group search space set is configured within first two continuous slots or first X/2 continuous slot of the at least one slot group
  • the second group search space set is configured within continuous X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slots, and X/2 slot is at a beginning part of the at least one slot group.
  • the default values of the first group search space set and the second group search space set are fixed and floats within the at least one slot group, respectively.
  • the first group search space set in an SCS of 480 KHz, is configured within two slots of the at least one slot group, and the second group search space set is configured within two slots of the at least one slot group. In some embodiments, in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots of the at least one slot group, and the second group search space set is configured within two continuous slots of the at least one slot group.
  • the first SSSG and the second SSSG there is not any namely difference of the first SSSG and the second SSSG.
  • Y is at the beginning of a slot group.
  • Y floats within the slot group.
  • the search space sets are just configured with same Y values.
  • the design principles behind are aligning with SCS 120KHz PDCCH monitoring durations.
  • Y1 value for the first kind of search space set and Y2 for the second kind of search space set.
  • Y1 is at the beginning of a slot group.
  • Y2 floats within the slot group.
  • Y1 and Y2 can both have default values and optional values. For example, Y1 ⁇ ⁇ 1, 2 ⁇ and Y2 ⁇ ⁇ 2 ⁇ for 480KHz SCS. For example, Y1 ⁇ ⁇ 2, 4 ⁇ and Y2 ⁇ ⁇ 2 ⁇ for 960 KHz SCS.
  • the design principles behind are aligning with SCS 120KHz PDCCH monitoring durations
  • a reconfiguration of the first group search space set is based on the second group search space set.
  • a quasi-co-location (QCL) of the first group search space set is the same as a QCL of the second group search space set.
  • the QCL of the second group search space set is configured via an RRC configuration, and/or the reconfiguration of the first group search space set is indicated in layer one singalling (L1) , e.g., a transmission configuration indication (TCI) in a downlink control information (DCI) .
  • L1 layer one singalling
  • TCI transmission configuration indication
  • DCI downlink control information
  • a reconfiguration of the first group search space set is via an RRC configuration.
  • a location of the second group search space set is at a boundary of the at least one slot group.
  • the UE monitors the PDCCH in the second group search space set spanning over two consecutive slots starting from a first slot.
  • the first slot is at a boundary of the at least one slot group or by end of the at least one slot group.
  • the first group search space set in an SCS of 480 KHz, is configured within one slot or X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size, and X/2 slot is at a beginning part of the at least one slot group.
  • the first group search space set is configured within first two continuous slots or X/2 slot of the at least one slot group
  • the second group search space set is configured within any slot of the X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size, and X/2 slot is at a beginning part of the at least one slot group.
  • the first group search space set is configured within Y slot of the at least one slot group
  • the second group search space set is configured within Y slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group.
  • the first group search space set is configured within Y slot of the at least one slot group
  • the second group search space set is configured within Y slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group.
  • Group 1 SS is within the Y slot of the slot group of size X.
  • FIG. 6 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 6 illustrates that, in some examples, default values for SSSG1 and SSSG2 are defined.
  • the default values for SSSG1 and SSSG2 are defined and aligned with SCS 120 KHz.
  • a reconfiguration of SSSG1 is based on SSSG2.
  • search space parameters are configured by RRCs. However, due to very short slot and a processing time limit, an RRC configuration of the SSSG1 is very tight. Implicitly, search space parameters are with reported synchronization signal blocks (SSBs) (other SS parameters) .
  • SSBs reported synchronization signal blocks
  • a QCL of the search space set in SSSG1 is the same as that of the search space set in the most previous slot group of SSSG2, without waiting for RRC configuration.
  • the RRC configuration can be applied for its parameter configuration. Explicitly, it can flow a TCI indication in a DCI for SSSG1 configuration.
  • the SSSG1 will follow RRC configuration. The configuration timeline will follow that of search space set switching for NR-U which is currently under discussion.
  • the configuration of SSSG1 and SSSG2 are not limited to the spatial relationship, e.g., the QCL.
  • Some/all of the other parameters of the search space, e.g., the monitoring period, the durations, and even the monitoring patterns, e.g., the bitmaps indicating the monitoring symbols/slots, within a slot group can be reconfigured from SSSG2 by SSSG1, for fast configuration, or the timeline is not adequate for RRC configuration.
  • the monitoring occasions within the first Y slots are retained, together with other configurations of SSSG2 are all inherited/configured to SSSG1.
  • the other the monitoring occasions beyond the first Y slots with in the slot group are neglected by the SSSG1.
  • the SSSG1 and SSSG2 does not exist, the configurations are performed at the level of the search space set for the above operations.
  • the SSSG2 can inherit some of the configurations from SSSG1, as an option.
  • FIG. 7 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • 38.213 “For operation without shared spectrum channel access and for the SS/PBCH block and CORESET multiplexing pattern 1, a UE monitors PDCCH in the Type0-PDCCH CSS set over two consecutive slots starting from slot n 0 . ”
  • FIG. 7 illustrates that, in some examples, the location of SSSG2 is determined.
  • FIG. 7 illustrates that, in some examples, slot n0 is at the slot group boundary. The location of SSSG2 is decided by n0, an offset is needed to prevent from the back-to-back monitoring.
  • FIG. 8 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 8 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • O sg is an offset for the type 0 PDCCH-CSS monitoring slot with the slot group.
  • O sg in Fig. 8 is 1 slot, compared with Fig. 7.
  • O sg is not necessarily a positive integer.
  • FIG. 9 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 9 illustrates that, in some examples, slot n0 is by end of the slot group.
  • the location of SSSG1 is decided by n0, an offset is needed to prevent from the back-to-back monitoring.
  • FIG. 10 illustrates an example of a slot group according to an embodiment of the present disclosure.
  • FIG. 10 illustrates that, in some examples, slot n0 is by end of the slot group, the location of SSSG2 is decided by n0, and an offset is needed to prevent from the back-to-back monitoring.
  • O sg is an offset for the type 0 PDCCH-CSS monitoring slot with the slot group.
  • O sg is not necessarily a positive integer and O sg is -1 indicating floating backward by one slot, compared to Fig. 7.
  • Y2 there may be no Y2 for SSSG2, where Y2 is renamed from Y which means the continuous slot within a slot group.
  • the PDCCH can reside in Y.
  • Y X.
  • One Y is for both SSSG1 and SSSG2.
  • Y is fixed to the beginning of the slot group.
  • Y can be configured to several locations. As an example, some locations are avoided to be configured, e.g., the one by the end of slot group.
  • the configuration of the related search spaces is linked to the specific PDCCH type and/or the RRC state.
  • a SCS subcarrier spacing
  • RRC radio resource control
  • search space sets are classified to groups such as a first group search space set (SSSG1, or called a first search space set group or a first search space group) and a second group search space set (SSSG2, or called a second search space set group or a second search space group) .
  • the detailed designs of these two search space groups are provided in some examples of this disclosure.
  • default sizes SSSG1 and SSSG2, reconfigurations of SSSG1 and SSSG2 and their locations within the slot group are provided in some embodiments of this disclosure.
  • the PDCCH monitoring can be performed smoothly.
  • the search space set is configured according to a new design of search spaces. For example, a UE can monitor type 0 PDCCHs without spanning a boundary of slot group.
  • FIG. 11 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 12 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE), a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring are provided. The wireless communication methods for PDCCH monitoring performed by the UE includes being configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type. This can solve issues in the prior art, provide a mechanism for search space set configuration of slot-group based PDCCH monitoring, provide a good communication performance, and/or provide high reliability.

Description

USER EQUIPMENT, BASE STATION, AND WIRELESS COMMUNICATION METHODS FOR PDCCH MONITORING
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring, for example, a mechanism for search space set configuration of slot-group based PDCCH monitoring.
2. Description of the Related Art
Currently, in a frequency range (FR) above 52.6 GHz (FR2-2) , due to phase noise, larger subcarrier spacings of 480 KHz and 960 KHz are agreed. Correspondingly, a slot in time domain becomes very small. With the small slot, if the UE still monitors a physical downlink control channel (PDCCH) in a time unit of slot, the UE may not decode the PDCCH properly. This limits PDCCH detections in various kinds of search spaces. Thus, the slot group is agreed as the new time unit for PDCCH monitoring. Further, in current discussions, the PDCCH monitoring occasions are usually considered to resides within the first few continuous slots of a slot group. On the other hand, there are other cases that the PDCCH monitoring occasions occur anywhere within a slot group, e.g., the type #0 PDCCH with RRC idle state. How to deal with the search space (SS) sets for these two kinds of PDCCH monitoring occasions and the relationship between them is unknown and is an open issue.
Therefore, there is a need for a user equipment (UE) , a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring, which can solve issues in the prior art, provide a mechanism for search space set configuration of PDCCH monitoring based on slot-group, provide a good communication performance, and/or provide high reliability.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) , a base station, and wireless communication methods for physical downlink control channel (PDCCH) monitoring, which can solve issues in the prior art, provide a mechanism for search space set configuration of PDCCH monitoring based on slot-group, provide a good communication performance, and/or provide high reliability.
In a first aspect of the present disclosure, a wireless communication method for PDCCH monitoring performed by a UE includes being configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
In a second aspect of the present disclosure, a wireless communication method for PDCCH monitoring performed by a base station includes configuring, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type.
In a third aspect of the present disclosure, a user equipment (UE) comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type. The PDCCH type is further combined with RRC states, e.g., an RRC idle, an RRC inactive and/or an RRC connected.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to configure, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type. The PDCCH type is further combined with the RRC states, e.g., an RRC idle, an RRC inactive and/or an RRC connected.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 2 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 3 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 4 is a flowchart illustrating a wireless communication method for PDCCH monitoring performed by a UE according to an embodiment of the present disclosure.
FIG. 5 is a flowchart illustrating a wireless communication method for PDCCH monitoring performed by a base station according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 9 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating an example of a slot group according to an embodiment of the present disclosure.
FIG. 11 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as  follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In some embodiments of the present disclosure, for physical downlink control channel (PDCCH) monitoring in a frequency range above 52.6 GHz (FR2-2) , a SCS (subcarrier spacing) will be 120KHz, 480KHz and 960KHz. The new SCSs make a slot very short. PDCCH monitoring ability becomes limited. Thus, the PDCCH are monitored in the new time unit of a slot group. Monitoring occasions (MOs) of the PDCCH fall into different slots within the slot group. The MOs are taken differently with search spaces with or without radio resource control (RRC) connected. These search space sets comprise a first group search space set (SSSG1, or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2, or called a second search space set group or a second search space group) . The detailed designs of these two search space groups are provided in some examples of this disclosure. For example, default sizes SSSG1 and SSSG2, reconfigurations of SSSG1 and SSSG2 and their locations within the slot group are provided in some embodiments of this disclosure. In some examples of this disclosure, the PDCCH monitoring can be performed smoothly. The search space set is configured according to a new design of search spaces. For example, a UE can monitor type 0 PDCCHs without spanning a boundary of slot group. In some embodiments, the search space sets can be classified to groups such as a first group search space set (SSSG1, or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2, or called a second search space set group or a second search space group) . In some embodiments, the search space sets classified to groups can also be called at least one slot group for the at least one search space set.
In some embodiments, the search space sets can be called at least one slot group. In some embodiments, the search space sets can be called at least one slot group and the search space sets are not classified to groups such as a first group search space set (SSSG1 or called a first search space set group or a first search space group) and/or a second group search space set (SSSG2 or called a second search space set group or a second search space group) . In this embodiment, although there is no grouping, the search space sets can also be called at least one slot group or similar terms, or the search space sets can also be called at least one slot group for the at least one search space set, or there is no search space set group. The configuration is sheerly based on whether the gNB is able to control the location of the PDCCH occasions. For example, at the initial access stage, without RRC connection, the PDCCH occasion can be anywhere within a slot group. The SSSG is not mentioned, or the SSSG is implicitly mentioned by RRC state.
Currently, in frequency range above 52.6 GHz (FR2-2) , due to phase noise, new subcarrier spacings of 480 KHz and 960 KHz are agreed. Correspondingly, a slot in time domain becomes very small. With the small slot, if the UE still monitors a PDCCH in a time unit of slot, the UE may not be able to decode the PDCCH properly. By following table in TS 38.213 Table 10.1-2 and Table 10.1-3, the maximum CCE aggregation level may not reach 16 when μ=6. At the same, the maximum number of monitored PDCCH candidates in a slot become less, it will limit the PDCCH detections in various kinds of search spaces.
Table 10.1-2: Maximum number
Figure PCTCN2021129152-appb-000001
of monitored PDCCH candidates per slot for a DL BWP with SCS configuration μ∈ {0, 1, 2, 3} for a single serving cell.
Figure PCTCN2021129152-appb-000002
Table 10.1-3: Maximum number
Figure PCTCN2021129152-appb-000003
of non-overlapped CCEs per slot for a DL BWP with SCS configuration μ∈ {0, 1, 2, 3} for a single serving cell.
Figure PCTCN2021129152-appb-000004
FIG. 1 illustrates an example of a slot group according to an embodiment of the present disclosure. In some examples, a new PDCCH monitoring unit is need for new SCSs. A slot group is proposed and agreed as the new time unit. The slot group comprises several continuous slots. As illustrated in FIG. 1, a slot group contains 4 continuous slots at 480 KHz SCS. Further, for 960 KHz SCS, the slot group can contain 8 slots. The slot group size can have other integer number of values, e.g., 2 for 480KHz and 4 for 960KHz.
FIG. 2 illustrates an example of a slot group according to an embodiment of the present disclosure. In this disclosure, some examples are to allocate MOs within Y continuous slots of a slot group. Meanwhile Y is at the beginning part of the slot group. FIG. 2 illustrates that, in some examples, one slot group is of size 4, with Y equal to 2. PDCCH is in Y continuous slots, and Y  is the possible location. The design principle here is to align the size of Y to that of the PDCCH monitoring time duration of 120KHz. For example, the 3 symbols of SCS 120KHz will be contained in a slot of 120KHz, Y can have values of 1 for 480KHz SCS and 2 for 960KHz. As another example, Y can follow the design of type#0 PDCCH monitoring occasions, which resides in two continuous slots. In this case, Y=2 for both 480KHz SCS and for 960KHz. As another example, the value of Y follows the design principle of both aligning with 120KHz DCIs and the design of type#0 PDCCH monitoring occasions, Y=2 for 480KHz SCS and Y= 4 for 960KHz SCS. Please note that the above examples are not mutually exclusive. Any single, or any combinations of above three design methods can be applied. The Y can have more than one value of a specific SCS.
In some examples, there are two groups of search space (sets) , that is Group 1 SS (SSSG1, or called a first search space set group or a first search space group) and group 2 SS (SSSG2, or called a second search space set group or a second search space group) . In some examples, SSSG1 comprises any single one or any combination of a type 1 common search space set with a dedicated radio resource control (RRC) configuration, a type 3 common search space set, or a UE specific search space set, and SSSG2 comprises any single one or any combination of a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set. In some examples, Group 1 SS can be configured within the beginning part or within a few beginning continuous slots of a slot group. For group 2 SS, the MOs can be in any location of the slot group. Therefore, the SS design is related to PDCCH types. Furthermore, the SS design or configuration is related to the PDCCH types in a specific RRC state. That is even the same type of PDCCH, e.g., PDCCH type 0, with RRC connected and without RRC connect will have different SS configurations. More specifically, the PDCCH type #0 without RRC connected can reside within any location of a slot group. On the other hand, the PDCCH with RRC connected can reside within a few continuous slots of at the beginning of a slot group.
FIG. 3 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 40 according to an embodiment of the present disclosure are provided. The communication network system 40 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The processor 11or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio  interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured, by the base station 20, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type, and optionally related to with or without RRC connected. This can solve issues in the prior art, provide a mechanism for search space set configuration of slot-group based PDCCH monitoring, provide a good communication performance, and/or provide high reliability.
In some embodiments, the processor 21 configures, to the UE 10, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and optionally related to with or without RRC connected. This can solve issues in the prior art, provide a mechanism for search space set configuration of slot-group based PDCCH monitoring, provide a good communication performance, and/or provide high reliability.
FIG. 4 illustrates a wireless communication method 400 for PDCCH monitoring performed by a UE according to an embodiment of the present disclosure. In some embodiments, the method 400 includes: a block 402, being configured, by a base station, with a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type, and optionally related to with or without RRC  connected. This can solve issues in the prior art, provide a mechanism for search space set configuration of slot-group based PDCCH monitoring, provide a good communication performance, and/or provide high reliability. As an embodiment, the configuration is preconfigured in UE, e.g., in the form of tables for the search space sets. In another example, the configurations of SSs, e.g., the values of Y are indicated by UE as its capability.
FIG. 5 illustrates a wireless communication method 500 for PDCCH monitoring performed by a base station includes according to an embodiment of the present disclosure. In some embodiments, the method 500 includes: a block 502, configuring, to a UE, a configuration of at least one search space set and determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and optionally related to with or without RRC connected. This can solve issues in the prior art, provide a mechanism for search space set configuration of slot-group based PDCCH monitoring, provide a good communication performance, and/or provide high reliability. As an embodiment, the configuration is preconfigured in UE, e.g., in the form of tables for the search space sets. In another example, the configurations of SSs, e.g., the values of Y are indicated by UE as its capability.
In some embodiments, the at least one search space set comprises a first group search space set and a second group search space set, the first group search space set comprises a type 1 common search space set with a dedicated radio resource control (RRC) configuration, a type 3 common search space set, or a UE specific search space set, and the second group search space set comprises a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set. In some embodiments, the default value (s) of the first group search space set and the second group search space set are defined, as an example the default value is for Y. The default values can also relate to the SS settings, e.g., the monitoring period, duration etc. In the following explanations these default values have same connotation. We will not describe them again. In some embodiments, the default values of the first group search space set and the second group search space set are aligned with a subcarrier spacing (SCS) of 120 KHz. In some embodiments, in an SCS of 480 KHz, the Y of the first group search space set is configured within one slot or X/2 slot of the at least one slot group, and the Y of the second group search space set is configured within X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slots, and X/2 slot is at a beginning part of the at least one slot group. In some embodiments, the Y values of the first group search space set can have the same values as the Y values of the second search space set. In some embodiments, the Y values of the first  group search space set is renamed as Y1 and the Y values of the second search space set is renamed as Y2.
In some embodiments, in an SCS of 960 KHz, the first group search space set is configured within first two continuous slots or first X/2 continuous slot of the at least one slot group, and the second group search space set is configured within continuous X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slots, and X/2 slot is at a beginning part of the at least one slot group. In some embodiments, the default values of the first group search space set and the second group search space set are fixed and floats within the at least one slot group, respectively. In some embodiments, in an SCS of 480 KHz, the first group search space set is configured within two slots of the at least one slot group, and the second group search space set is configured within two slots of the at least one slot group. In some embodiments, in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots of the at least one slot group, and the second group search space set is configured within two continuous slots of the at least one slot group.
In some embodiment, there is not any namely difference of the first SSSG and the second SSSG. There is only one Y value for both the first kind of search space set and the second kind of search space set. For the first kind of search space set, Y is at the beginning of a slot group. For the second kind of search space, Y floats within the slot group. As an alternative of this embodiment, there is no description of SSSG. The search space sets are just configured with same Y values. As an alternative of this embodiment, there is no description of SSSG. The search space sets are just configured with same Y values where Y have one default value, e.g., 1 and an optional value 2 for 480KHz and Y=2 as default value and Y=4 optional for 960KHz. The design principles behind are aligning with SCS 120KHz PDCCH monitoring durations.
In some embodiment, there is not any namely difference of the first SSSG and the second SSSG. There can be no SSSG description. There is Y1 value for the first kind of search space set and Y2 for the second kind of search space set. For the first kind of search space set, Y1 is at the beginning of a slot group. For the second kind of search space, Y2 floats within the slot group. Y1 and Y2 can both have default values and optional values. For example, Y1 ∈ {1, 2} and Y2 ∈ {2} for 480KHz SCS. For example, Y1 ∈ {2, 4} and Y2 ∈ {2} for 960 KHz SCS. Y1 = Y2 =2 is the default value. The design principles behind are aligning with SCS 120KHz PDCCH monitoring durations
In some embodiments, a reconfiguration of the first group search space set is based on the second group search space set.
In some embodiments, a quasi-co-location (QCL) of the first group search space set is the same as a QCL of the second group search space set. In some embodiments, the QCL of the second group search space set is configured via an RRC configuration, and/or the reconfiguration of the first group search space set is indicated in layer one singalling (L1) , e.g., a transmission configuration indication (TCI) in a downlink control information (DCI) . In some embodiments, a reconfiguration of the first group search space set is via an RRC configuration.
In some embodiments, a location of the second group search space set is at a boundary of the at least one slot group. In some embodiments, the UE monitors the PDCCH in the second group search space set spanning over two consecutive slots starting from a first slot. In some embodiments, the first slot is at a boundary of the at least one slot group or by end of the at least one slot group. In some embodiments, in an SCS of 480 KHz, the first group search space set is configured within one slot or X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size, and X/2 slot is at a beginning part of the at least one slot group.
In some embodiments, in an SCS of 960 KHz, the first group search space set is configured within first two continuous slots or X/2 slot of the at least one slot group, and the second group search space set is configured within any slot of the X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size, and X/2 slot is at a beginning part of the at least one slot group. In some embodiments, in an SCS of 480 KHz, the first group search space set is configured within Y slot of the at least one slot group, and the second group search space set is configured within Y slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group. In some embodiments, in an SCS of 960 KHz, the first group search space set is configured within Y slot of the at least one slot group, and the second group search space set is configured within Y slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group. Group 1 SS is within the Y slot of the slot group of size X.
FIG. 6 illustrates an example of a slot group according to an embodiment of the present disclosure. FIG. 6 illustrates that, in some examples, default values for SSSG1 and SSSG2 are defined. In details, the default values for SSSG1 and SSSG2 are defined and aligned with SCS 120 KHz. In an example, for 480 KHz, SSSG1 Y=1 and optional Y=X/2 and SSSG2 Y=X/2. In an example, for 960 KHz, SSSG1 Y=2 and optional Y=X/2 and SSSG2 Y=X/2.
As an alternative example, Y has a fixed default and floats within the slot group. In an example, for 480 KHz, Y=2 for SSSG 1 and SSCG2. In an example, for 960 KHz, Y=2 for SSSG 1 and SSCG2.
In some examples, a reconfiguration of SSSG1 is based on SSSG2. In some examples, search space parameters are configured by RRCs. However, due to very short slot and a processing time limit, an RRC configuration of the SSSG1 is very tight. Implicitly, search space parameters are with reported synchronization signal blocks (SSBs) (other SS parameters) . In some examples, a QCL of the search space set in SSSG1 is the same as that of the search space set in the most previous slot group of SSSG2, without waiting for RRC configuration. As for the QCL of SSSG2 when time line allows, the RRC configuration can be applied for its parameter configuration. Explicitly, it can flow a TCI indication in a DCI for SSSG1 configuration. As another option, when the time is adequate for RRC configuration, the SSSG1 will follow RRC configuration. The configuration timeline will follow that of search space set switching for NR-U which is currently under discussion.
As an example, the configuration of SSSG1 and SSSG2 are not limited to the spatial relationship, e.g., the QCL. Some/all of the other parameters of the search space, e.g., the monitoring period, the durations, and even the monitoring patterns, e.g., the bitmaps indicating the monitoring symbols/slots, within a slot group can be reconfigured from SSSG2 by SSSG1, for fast configuration, or the timeline is not adequate for RRC configuration. As an example, for the switching from SSSG2 to SSSG1, only the monitoring occasions within the first Y slots are retained, together with other configurations of SSSG2 are all inherited/configured to SSSG1. The other the monitoring occasions beyond the first Y slots with in the slot group are neglected by the SSSG1. In another example, the SSSG1 and SSSG2 does not exist, the configurations are performed at the level of the search space set for the above operations. In another example, when the RRC connected state is lost, the SSSG2 can inherit some of the configurations from SSSG1, as an option.
FIG. 7 illustrates an example of a slot group according to an embodiment of the present disclosure. In 38.213, “For operation without shared spectrum channel access and for the SS/PBCH block and CORESET multiplexing pattern 1, a UE monitors PDCCH in the Type0-PDCCH CSS set over two consecutive slots starting from slot n 0. ” FIG. 7 illustrates that, in some examples, the location of SSSG2 is determined. FIG. 7 illustrates that, in some examples, slot n0 is at the slot group boundary. The location of SSSG2 is decided by n0, an offset is needed to prevent from the back-to-back monitoring. FIG. 8 illustrates an example of a slot group according to an embodiment of the present disclosure. FIG. 8 illustrates that, in some examples, slot n0 is at  the slot group boundary, the location of SSSG2 is decided by n0, and an offset is needed to prevent from the back-to-back monitoring. O sg is an offset for the type 0 PDCCH-CSS monitoring slot with the slot group. O sg in Fig. 8 is 1 slot, compared with Fig. 7. We emphasized that O sg is not necessarily a positive integer.
FIG. 9 illustrates an example of a slot group according to an embodiment of the present disclosure. FIG. 9 illustrates that, in some examples, slot n0 is by end of the slot group. The location of SSSG1 is decided by n0, an offset is needed to prevent from the back-to-back monitoring. FIG. 10 illustrates an example of a slot group according to an embodiment of the present disclosure. FIG. 10 illustrates that, in some examples, slot n0 is by end of the slot group, the location of SSSG2 is decided by n0, and an offset is needed to prevent from the back-to-back monitoring. O sg is an offset for the type 0 PDCCH-CSS monitoring slot with the slot group. O sg is not necessarily a positive integer and O sg is -1 indicating floating backward by one slot, compared to Fig. 7.
As an alternative example, there may be no Y2 for SSSG2, where Y2 is renamed from Y which means the continuous slot within a slot group. The PDCCH can reside in Y. For SSSG2, Y=X. As an alternative example, there may be no Y2 for SSSG2. One Y is for both SSSG1 and SSSG2. For SSSG1, Y is fixed to the beginning of the slot group. For SSSG2, Y can be configured to several locations. As an example, some locations are avoided to be configured, e.g., the one by the end of slot group.
As an alternative, in the above examples and embodiments, there can be not any explicitly difference of the first kind of search space set and the second kind of search space set. The configuration of the related search spaces is linked to the specific PDCCH type and/or the RRC state.
In summary, in some embodiments of the present disclosure, for physical downlink control channel (PDCCH) monitoring in a frequency range above 52.6 GHz (FR2-2) , a SCS (subcarrier spacing) will be 480KHz and 960KHz. That makes a slot very short. PDCCH monitoring ability becomes limited. Thus, the PDCCH are monitored in a slot group. Monitoring occasions (MOs) of the PDCCH fall into different slots within the slot group. The MOs are taken differently with search spaces with or without radio resource control (RRC) connected. These search space sets are classified to groups such as a first group search space set (SSSG1, or called a first search space set group or a first search space group) and a second group search space set (SSSG2, or called a second search space set group or a second search space group) . The detailed designs of these two search space groups are provided in some examples of this disclosure. For example, default sizes SSSG1 and SSSG2, reconfigurations of SSSG1 and SSSG2 and their  locations within the slot group are provided in some embodiments of this disclosure. In some examples of this disclosure, the PDCCH monitoring can be performed smoothly. The search space set is configured according to a new design of search spaces. For example, a UE can monitor type 0 PDCCHs without spanning a boundary of slot group.
FIG. 11 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 12 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (47)

  1. A wireless communication method for physical downlink control channel (PDCCH) monitoring by a user equipment (UE) , comprising:
    being configured, by a base station, with a configuration of at least one search space set; and
    determining a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and/or a radio resource control (RRC) state.
  2. The wireless communication method for PDCCH monitoring by the UE according to claim 1, wherein the at least one search space set comprises a first group search space set and a second group search space set, the first group search space set comprises a type 1 common search space set with a dedicated RRC configuration, a type 3 common search space set, or a UE specific search space set, and the second group search space set comprises a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set; and/or the PDCCH type is further combined with the RRC state; and/or the RRC state comprises an RRC idle, an RRC inactive and/or an RRC connected.
  3. The wireless communication method for PDCCH monitoring by the UE according to claim 1 or 2, wherein default values of the first group search space set and the second group search space set are defined.
  4. The wireless communication method for PDCCH monitoring by the UE according to claim 3, wherein the default values of the first group search space set and the second group search space set are aligned with a subcarrier spacing (SCS) of 120 KHz.
  5. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 480 KHz, the first group search space set is configured within the first slot or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within continuous X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slot.
  6. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicting the slot group size, in terms of slot.
  7. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein the default values of the first group search space set and the second group search space  set are fixed and floats respectively, within the at least one slot group.
  8. The wireless communication method for PDCCH monitoring by the UE according to claim 7, wherein in an SCS of 480 KHz, the first group search space set is configured within two slots of the at least one slot group, and the second group search space set is configured within two slots of the at least one slot group.
  9. The wireless communication method for PDCCH monitoring by the UE according to claim 7, wherein in an SCS of 960 KHz, the first group search space set is configured within two slots of the at least one slot group, and the second group search space set is configured within two slots of the at least one slot group.
  10. The wireless communication method for PDCCH monitoring by the UE according to claim 1 or 2, wherein a reconfiguration of the first group search space set is based on the second group search space set.
  11. The wireless communication method for PDCCH monitoring by the UE according to claim 10, wherein a quasi-co-location (QCL) of the first group search space set is the same as a QCL of the second group search space set.
  12. The wireless communication method for PDCCH monitoring by the UE according to claim 11, wherein the QCL of the second group search space set is configured via an RRC configuration, and/or the reconfiguration of the first group search space set is indicated in a transmission configuration indication (TCI) in a downlink control information (DCI) .
  13. The wireless communication method for PDCCH monitoring by the UE according to claim 1 or 2, wherein a reconfiguration of the first group search space set is via an RRC configuration.
  14. The wireless communication method for PDCCH monitoring by the UE according to claim 1 or 2, wherein a location of the second group search space set is at a boundary of the at least one slot group.
  15. The wireless communication method for PDCCH monitoring by the UE according to any one of claims 1 to 14, wherein the UE monitors the PDCCH in the second group search space set over two consecutive slots starting from a first slot.
  16. The wireless communication method for PDCCH monitoring by the UE according to claim 15, wherein the first slot is at a boundary of the at least one slot group or by end of the at least one slot group.
  17. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 480 KHz, the first group search space set is configured within the first slot or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater  than 0, indicating the slot group size, in terms of slots .
  18. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 960 KHz, the first group search space set is configured within first two continuous slots or X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size, in terms of slots.
  19. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 480 KHz, the first group search space set is configured within Y continuous slot of the at least one slot group, and the second group search space set is configured within Y continuous slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group for the first group search space set and floats for the second group search space set, and Y is configured to one of a plurality of locations within the at least one slot group.
  20. The wireless communication method for PDCCH monitoring by the UE according to claim 4, wherein in an SCS of 960 KHz, the first group search space set is configured within Y continuous slot of the at least one slot group, and the second group search space set is configured within Y continuous slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group for the first group search space set and floats for the second group search space set, and Y is configured to one of a plurality of locations within the at least one slot group.
  21. A wireless communication method for physical downlink control channel (PDCCH) monitoring by a base station, comprising:
    configuring, to a user equipment (UE) , a configuration of at least one search space set; and
    controlling the UE to determine a monitoring occasion (MO) of a PDCCH in at least one slot group for the at least one search space set, wherein the configuration of the at least one search space set is related to a PDCCH type and/or a radio resource control (RRC) state.
  22. The wireless communication method for PDCCH monitoring by the base station according to claim 21, wherein the at least one search space set comprises a first group search space set and a second group search space set, the first group search space set comprises a type 1 common search space set with a dedicated RRC configuration, a type 3 common search space set, or a UE specific search space set, and the second group search space set comprises a type 1 common search space set without a dedicated RRC configuration, a type 0 common search space set, a type 0A common search space set, or a type 2 common search space set; and/or the PDCCH type is further combined with the RRC state; and/or the RRC state comprises an RRC idle, an RRC inactive and/or an RRC  connected.
  23. The wireless communication method for PDCCH monitoring by the base station according to claim 21 or 2, wherein default values of the first group search space set and the second group search space set are defined.
  24. The wireless communication method for PDCCH monitoring by the base station according to claim 23, wherein the default values of the first group search space set and the second group search space set are aligned with a subcarrier spacing (SCS) of 120 KHz.
  25. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 480 KHz, the first group search space set is configured within the first slot or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within continuous X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicting the slot group size in terms of slot.
  26. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within X/2 slot of the at least one slot group, where X is a positive integer greater than 0, indicting the slot group size in terms of slot .
  27. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein the default values of the first group search space set and the second group search space set are fixed and floats, respectively, within the at least one slot group.
  28. The wireless communication method for PDCCH monitoring by the base station according to claim 27, wherein in an SCS of 480 KHz, the first group search space set is configured within the first two continuous slots of the at least one slot group, and the second group search space set is configured within two continuous slots of the at least one slot group.
  29. The wireless communication method for PDCCH monitoring by the base station according to claim 27, wherein in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots of the at least one slot group, and the second group search space set is configured within two continuous slots of the at least one slot group.
  30. The wireless communication method for PDCCH monitoring by the base station according to claim 21 or 22, wherein a reconfiguration of the first group search space set is based on the second group search space set.
  31. The wireless communication method for PDCCH monitoring by the base station according to claim 30, wherein a quasi-co-location (QCL) of the first group search space set is the same as a QCL of the second group search space set.
  32. The wireless communication method for PDCCH monitoring by the base station according to claim 31, wherein the QCL of the second group search space set is configured via an RRC configuration, and/or the reconfiguration of the first group search space set is indicated in a transmission configuration indication (TCI) in a downlink control information (DCI) .
  33. The wireless communication method for PDCCH monitoring by the base station according to claim 31 or 32, wherein a reconfiguration of the first group search space set is via an RRC configuration.
  34. The wireless communication method for PDCCH monitoring by the base station according to claim 31 or 32, wherein a location of the second group search space set is at a boundary of the at least one slot group.
  35. The wireless communication method for PDCCH monitoring by the base station according to any one of claims 21 to 34, wherein the base station controls the UE to monitor the PDCCH in the second group search space set over two consecutive slots starting from a first slot.
  36. The wireless communication method for PDCCH monitoring by the base station according to claim 35, wherein the first slot is at a boundary of the at least one slot group or by end of the at least one slot group.
  37. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 480 KHz, the first group search space set is configured within the first one slot or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slot.
  38. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 960 KHz, the first group search space set is configured within the first two continuous slots or the first continuous X/2 slot of the at least one slot group, and the second group search space set is configured within X slot of the at least one slot group, where X is a positive integer greater than 0, indicating the slot group size in terms of slot.
  39. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 480 KHz, the first group search space set is configured within the first Y continuous slot of the at least one slot group, and the second group search space set is configured within Y continuous slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group.
  40. The wireless communication method for PDCCH monitoring by the base station according to claim 24, wherein in an SCS of 960 KHz, the first group search space set is configured within the  first Y continuous slot of the at least one slot group, and the second group search space set is configured within Y continuous slot of the at least one slot group, where Y is a positive integer greater than 0, Y slot is fixed at a beginning part of the at least one slot group, and Y is configured to one of a plurality of locations within the at least one slot group.
  41. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 1 to 20.
  42. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 21 to 40.
  43. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 40.
  44. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 40.
  45. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  46. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  47. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
PCT/CN2021/129152 2021-11-05 2021-11-05 User equipment, base station, and wireless communication methods for pdcch monitoring WO2023077479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129152 WO2023077479A1 (en) 2021-11-05 2021-11-05 User equipment, base station, and wireless communication methods for pdcch monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129152 WO2023077479A1 (en) 2021-11-05 2021-11-05 User equipment, base station, and wireless communication methods for pdcch monitoring

Publications (1)

Publication Number Publication Date
WO2023077479A1 true WO2023077479A1 (en) 2023-05-11

Family

ID=86240531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129152 WO2023077479A1 (en) 2021-11-05 2021-11-05 User equipment, base station, and wireless communication methods for pdcch monitoring

Country Status (1)

Country Link
WO (1) WO2023077479A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200389874A1 (en) * 2019-06-06 2020-12-10 Samsung Electronics Co., Ltd. Determination of search space sets for physical downlink control channel (pdcch) monitoring
WO2021086084A1 (en) * 2019-10-29 2021-05-06 엘지전자 주식회사 Method and device for transmitting and receiving wireless signal in wireless communication system
WO2021174483A1 (en) * 2020-03-05 2021-09-10 Oppo广东移动通信有限公司 Monitoring opportunity determining method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200389874A1 (en) * 2019-06-06 2020-12-10 Samsung Electronics Co., Ltd. Determination of search space sets for physical downlink control channel (pdcch) monitoring
WO2021086084A1 (en) * 2019-10-29 2021-05-06 엘지전자 주식회사 Method and device for transmitting and receiving wireless signal in wireless communication system
WO2021174483A1 (en) * 2020-03-05 2021-09-10 Oppo广东移动通信有限公司 Monitoring opportunity determining method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "PDCCH monitoring enhancements for NR from 52.6 GHz to 71 GHz", 3GPP TSG RAN WG1 #104BIS R1-2103230, 7 April 2021 (2021-04-07), XP052178007 *
SAMSUNG: "PDCCH monitoring enhancements for NR from 52.6 GHz to 71 GHz", 3GPP TSG RAN WG1 #106 R1-2106874, 6 August 2021 (2021-08-06), XP052038077 *

Similar Documents

Publication Publication Date Title
WO2021063185A1 (en) Information determination method and device, information adjustment method, threshold usage method, terminal, and storage medium
US20220022065A1 (en) Synchronization signal block based beam failure detection
US20190380098A1 (en) Method, base station, and user equipment for indicating frequency position of wireless signal
MX2014009141A (en) Methods and apparatus for efficient spectral usage in extensible carrier deployments.
US11259225B2 (en) Apparatus and method for cell frequency change procedure signal timing selection
US20150351107A1 (en) Interference processing in wireless communication
US11716676B2 (en) Channel detection method and device, and computer storage medium
WO2022213235A1 (en) Control channel and reference signal transmission in wireless networks
WO2021204231A1 (en) Information determination method and apparatus, device, and storage medium
US20210336755A1 (en) Communications method and apparatus
TWI709317B (en) Device of processing multiple component carriers
US20220209919A1 (en) Search space design for nr-u wb operations
WO2023077479A1 (en) User equipment, base station, and wireless communication methods for pdcch monitoring
CN115118381B (en) PDCCH blind detection method, device and equipment
WO2022206554A1 (en) Transmission direction determination method and apparatus, terminal, and network side device
WO2023011589A1 (en) Pdcch monitoring method, and related device and readable storage medium
EP2569877B1 (en) Method and system for bulk activation/deactivation of component carriers in a wireless network environment
CN115150953A (en) Control channel detection and indication method, device, terminal and network side equipment
CN116347610A (en) Control information DCI transmission method and related equipment
CN116471685A (en) Resource determination method, resource detection method, device, equipment and storage medium
EP4187959A1 (en) Information transmission method and apparatus, and communication device
US20230354064A1 (en) Signal configuration method and apparatus, device, and storage medium
US11356230B2 (en) Channel transmission methods and device
US20230328644A1 (en) Communication method, user equipment and base station
US20240179553A1 (en) Measurement Relaxation Method and Apparatus, Terminal, and Network-Side Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962992

Country of ref document: EP

Kind code of ref document: A1