WO2023077425A1 - Wireless communication method and related devices - Google Patents

Wireless communication method and related devices Download PDF

Info

Publication number
WO2023077425A1
WO2023077425A1 PCT/CN2021/128990 CN2021128990W WO2023077425A1 WO 2023077425 A1 WO2023077425 A1 WO 2023077425A1 CN 2021128990 W CN2021128990 W CN 2021128990W WO 2023077425 A1 WO2023077425 A1 WO 2023077425A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetition
repetitions
supplement
actual
transmission
Prior art date
Application number
PCT/CN2021/128990
Other languages
French (fr)
Inventor
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority to PCT/CN2021/128990 priority Critical patent/WO2023077425A1/en
Publication of WO2023077425A1 publication Critical patent/WO2023077425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to wireless communication technologies, and more particularly, to a wireless communication method, and related devices such as a user equipment (UE) and a base station (BS) (e.g., a gNB) .
  • UE user equipment
  • BS base station
  • gNB gNode B
  • Wireless communication systems such as the third ⁇ generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • the 3rd generation of wireless communications has generally been developed to support macro ⁇ cell mobile phone communications.
  • Communication systems and networks have developed towards being a broadband and mobile system.
  • UE user equipment
  • RAN radio access network
  • the RAN includes a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base stations, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conducts respective functions in relation to the overall network.
  • LTE Long ⁇ Term Evolution
  • E ⁇ UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • gNodeB next generation Node B
  • the 5G New Radio (NR) standard will support a multitude of different services each with very different requirements. These services include Enhanced Mobile Broadband (eMBB) for high data rate transmission, Ultra ⁇ Reliable Low Latency Communication (URLLC) for devices requiring low latency and high link reliability and Massive Machine ⁇ Type Communication (mMTC) to support a large number of low ⁇ power devices for a long life ⁇ time requiring highly energy efficient communication.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra ⁇ Reliable Low Latency Communication
  • mMTC Massive Machine ⁇ Type Communication
  • Coverage is one of the key factors that an operator considers when commercializing cellular communication networks due to its direct impact on service quality as well as CAPEX and OPEX. Despite the importance of coverage on the success of NR commercialization, a thorough coverage evaluation and a comparison with legacy RATs considering all NR specification details have not been done up to now.
  • NR Compared to LTE, NR is designed to operate at much higher frequencies such as 28GHz or 39GHz in FR2. Furthermore, many countries are making available more spectrums on FR1, such as 3.5GHz, which is typically in higher frequencies than for LTE or 3G. Due to the higher frequencies, it is inevitable that the wireless channel will be subject to higher path ⁇ loss making it more challenging to maintain an adequate quality of service that is at least equal to that of legacy RATs.
  • One key mobile application of particular importance is voice service for which a typical subscriber will always expect a ubiquitous coverage wherever s/he is.
  • NR can be deployed either in newly allocated spectrums, such as 3.5GHz, or in a spectrum re ⁇ farmed from a legacy network, e.g., 3G and 4G. In either case, coverage will be a critical issue considering the fact that these spectrums will most likely handle key mobile services such as voice and low ⁇ rate data services.
  • coverage was not thoroughly evaluated during the self ⁇ evaluation campaign towards IMT ⁇ 2020 submission and not considered in Rel ⁇ 16 enhancements. In these regards, a thorough understanding of NR coverage performance is needed while taking into account the support of latest NR specification.
  • the objective of the present application is to provide a wireless communication method and related devices, for carrying out coverage enhancement.
  • an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for PUSCH type A repetition, being configured to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
  • UE user equipment
  • an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for PUSCH type B repetition, being configured to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
  • UE user equipment
  • an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for transport block (TB) processing over multi ⁇ slot (TBoMS) PUSCH transmission, being configured to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
  • UE user equipment
  • an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for PUSCH type A repetition, configuring a user equipement (UE) for the UE to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
  • BS base station
  • UE user equipement
  • an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for PUSCH type B repetition, configuring a user equipement (UE) for the UE to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
  • BS base station
  • UE user equipement
  • an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for transport block (TB) processing over multi ⁇ slot (TBoMS) PUSCH transmission, configuring a user equipement (UE) for the UE to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
  • BS base station
  • UE user equipement
  • an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the first aspect.
  • an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the second aspect.
  • an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the third aspect.
  • an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the fourth aspect.
  • an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the fifth aspect.
  • an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the sixth aspect.
  • an embodiment of the present application provides a computer readable storage medium provided for storing a computer program, which enables a computer to execute the method of any of the first to the sixth aspects.
  • an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of any of the first to the sixth aspects.
  • an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of any of the first to the sixth aspects.
  • FIG. 1 is a schematic block diagram illustrating a communication network system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 4 is a flowchart of a wireless communication method according to yet another embodiment of the present application.
  • FIG. 5 is a schematic block diagram illustrating repetition based on available slots with collision.
  • FIG. 6 is a schematic block diagram illustrating enabled additional repetition.
  • FIG. 7 is a schematic block diagram illustrating RV determination for supplement repetitions.
  • FIG. 8 is a schematic block diagram illustrating RV determination for supplement repetitions.
  • FIG. 9 is a schematic block diagram illustrating RV determination for supplement repetitions.
  • FIG. 10 is a schematic block diagram illustrating PUSCH repetition type B transmission when meet invalid symbols.
  • FIG. 11 is a schematic block diagram illustrating supplement repetition for PUSCH type B repetition.
  • FIG. 12 is a schematic block diagram illustrating supplement part of a nominal repetition.
  • FIG. 13 is a schematic block diagram illustrating TBoMS transmission with collision.
  • FIG. 14 is a schematic block diagram illustrating DMRS for PUSCH repetition type B like TBoMS.
  • Step 1 Determine available slots for K repetitions based on Radio Resource Control (RRC) configuration (s) in addition to Time Domain Resource Allocation (TDRA) in the Downlink control Information (DCI) scheduling the PUSCH, Configured Grant (CG) configuration or activation DCI;
  • Step 2 The UE determines whether to drop a PUSCH repetition or not according to Rel ⁇ 15/16 PUSCH dropping rules, but the PUSCH repetition is still counted in the K repetitions.
  • RRC Radio Resource Control
  • TDRA Time Domain Resource Allocation
  • DCI Downlink control Information
  • CG Configured Grant
  • PUSCH repetition type B is mainly suitable for latency sensitive service, and for Coverage Enhancement (CE) , PUSCH type A repetition is enough.
  • PUSCH type B repetition is out of R ⁇ 17 CE WI scope.
  • a nominal type B repetition will be divided into one or more actual repetition if invalid symbols or slot boundary is meet, the RV is cycling based on actual repetitions.
  • UE can use all the available resources as much as possible.
  • the actual number of resource elements (REs) for a transport block (TB) may be smaller than gNB configured, reliability is decreased due to several symbols is discarded.
  • type B enhancement should be considered.
  • TBoMS transmission has been approved in WI for enhancing the coverage capability.
  • the main motivation for TBoMS is to improve the coverage capability for cell ⁇ edge UE by obtaining low code rate with less number of RBs in the frequency domain, which could boost the Power Spectral Density (PSD) for cell ⁇ edge UE for better coverage.
  • PSD Power Spectral Density
  • the collision behaviour should be determined.
  • the method of TBoMS transmission collision with other transmission have not been discussed. If similar mechanism in R ⁇ 15/16 is adopt, then the whole TB should be discarded. However, the mechanism is not friendly for resource utilization, an enhancement method should be considered.
  • a method used to ensure the K repetitions of PUSCH type A due to collision In another aspect of the present application, it is proposed a method used to enhance PUSCH type B transmission. In yet another aspect of the present application, it is proposed TBoMS transmission enhancement for both type A and type B, includes supplement transmission rules after collision happened and Demodulation of Reference Signal (DMRS) determination.
  • DMRS Demodulation of Reference Signal
  • the repetition type A is counted based on available slots in Rel ⁇ 17 and the available slots are determined based on two steps, the dropped repetition is still counted in the number of K repetitions.
  • a mechanism to ensure the number of repetition transmission is introducing for type A repetition to avoid fuzzy between gNB and UE. The corresponding RV determination mechanism is also given. If the actual repetition is across the period boundary, the mechanism to determine HARQ ⁇ ID for the CG within next periodicity is proposed.
  • PUSCH repetition type B coverage enhancement is out of scope. for both coverage limited and latency sensitive scenario, PUSCH repetition type B is more suitable than PUSCH repetition type A.
  • Rel ⁇ 16 for PUSCH repetition Type B, after determining the invalid symbol (s) for PUSCH repetition type B transmission for each of the K nominal repetitions, the remaining symbols are considered as potentially valid symbols for PUSCH repetition Type B transmission.
  • UE can use all the available resources to transmission as much as possible. However, the total number of symbols which is configured by gNB cannot be achieved. To achieve the same reliability, a re ⁇ transmission should be needed, then DCI overhead will be caused.
  • a method used to ensure UE using potential symbols for PUSCH transmission is studied.
  • a supplement repetition transmission for type B enhancement is given.
  • the RV determination for the actual repetition and the supplement repetition for PUSCH type B is proposed.
  • TBoMS PUSCH transmission For TBoMS PUSCH transmission, repetition type A like TDRA has been supported and available slots for TBoMS transmission has also been supported.
  • the number of slots for TBoMS transmission is indicated by TDRA field in DCI, a new column is added in TDRA table. If one or more than one slots within a TBoMS is collided with other transmission, the behavior is not decided yet.
  • a mechanism for ensuring number of transmission K is given.
  • a method used to enable TBoMS transmission for PUSCH type B transmission and corresponding collision case handling are also given. That is, a mechanism to deal with collision for TBoMS is proposed.
  • PUSCH type B like TBoMS is enabled, the DMRS determination based on slot within the TBoMS.
  • FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for wireless communication in a communication network system 30 according to an embodiment of the present application are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description.
  • Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application ⁇ specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read ⁇ only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • FIG. 2 illustrates a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 includes the following.
  • the UE is configured (the BS configures the UE) to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
  • the repetitions replenished as the supplement repetitions are collision repetitions. This can solve issues in the existing arts, carry out coverage enhancement, enable PUSCH type A repetition with supplement repetitions, and/or provide good communication performance.
  • RV cycling is based on total actual repetitions, and the total actual repetitions include the supplement repetitions. In an embodiment of the present application, RV cycling is based on the available repetitions and the supplement repetitions, respectively.
  • the supplement repetitions are only transmitted within a periodicity of PUSCH repetitions. In an embodiment of the present application, the supplement repetitions are transmitted across periodicity boundary of PUSCH repetitions.
  • hybrid automatic repeat request (HARQ) ⁇ identifier (ID) for configured grant (CG) in a next periodicity is calculated based on a new location, and the new location is the first actual transmission occasion of CG repetitions in the next periodicity.
  • HARQ ⁇ ID for the supplement repetition is reported with uplink control information (UCI) multipelxing on the first supplement PUSCH repetition transmission.
  • UCI uplink control information
  • the HARQ ⁇ ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
  • FIG. 3 illustrates a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 includes the following.
  • the UE is configured (the BS configures the UE) to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
  • the repetition replenished as the supplement repetition meets invalid symbols. This can solve issues in the existing arts, carry out coverage enhancement, enable PUSCH type B repetition with supplement repetitions, and/or provide good communication performance.
  • PUSCH physical uplink share channel
  • redundancy version is cycling among all of the actual repetitions and the supplement repetitons in order.
  • RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a first actual repetition within the nominal repetition which meets invalid symbols, and the first actual repetition is before a second actual repetition within the nominal repetition.
  • RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a second actual repetition within the nominal repetition which meets invalid symbols, and the second actual repetition is after a first actual repetition within the nominal repetition.
  • the number of the supplement repetitions are equal to the number of the nominal repetitions which meet invalid symbols, and the supplement repetitions are added in order.
  • a part of repetition with a same duration of invalid symbols is replenished as a supplement part after the end of the actual repetition.
  • RV is cycling is based on the nominal repetition, and the RV for the supplement part is equal to the nominal repetition which meets the invalid symbols. In one possible implementation of the present application, RV is cycling among all the nominal repetitions, including the supplement part of nominal repetition. In one possible implementation of the present application, transmission bits of actual repetition within a nominal repetition which includes invalid symbols is the same part of the nominal repetition, and transmission bits of the supplement part is the same part of the invalid symbols.
  • FIG. 4 illustrates a wireless communication method 400 according to another embodiment of the present application.
  • the method 400 includes the following.
  • the UE is configured (the BS configures the UE) to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission. This can solve issues in the existing arts, carry out coverage enhancement, and/or provide good communication performance.
  • the TBoMS PUSCH transmission is for type A PUSCH repetition. In an embodiment of the present application, the TBoMS PUSCH transmission is for type B PUSCH repetition.
  • the supplement transmission is the entire TBoMS transmission. In an embodiment of the present application, the supplement transmission is portion transmission of TBoMS, the duration of the portion transmission of TBoMS is at least equal to or larger than collided parts of the TBoMS.
  • whether the supplement transmission is across the boundary of periodicity of TBoMS repetitions is configured.
  • the duration of a nominal repetition is configured as actual number of symbols within the nominal repetition no matter whether an overlapped slot exists or not.
  • the nominal repetition is not split into one or more actual repetitions within a TBoMS.
  • DMRS location is based on the granularity of slot within a TBoMS. In an embodiment of the present application, DMRS location is based on the granularity of slot within one or more TBoMS.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This disclosure proposes a method to solve the actual number of repetitions type A smaller than the number of repetitions which is configured by gNB.
  • available slots are used for PUSCH type A repetition and the dropped repetition is still counted in number of K.
  • the actual total number of symbols is smaller than the gNB configured.
  • the periodicity of PUSCH repetition is configured as 10 slots, the number of repetitions is 4 and S slot is assumed as available slot.
  • Slot 4 and slot 5 are collided with other transmission (e.g., high priority PUSCH transmission or PUCCH with repetition transmission) , then the actual number of repetitions is only 2 (located at slot 3 and slot 8) , and thus the reliability cannot not be achieved.
  • an RRC signalling could be introduced for UE to enable transmitting the collision repetition after the end of repetition, which is determined based on available slots.
  • the periodicity of PUSCH repetitions is configured as 10 slots, the number of repetitions is 4 and S slot is assumed as available slot. Slot 4 and slot 5 are collided with other transmission.
  • RRC signalling should be configured to UE to enable the UE to replenish the collision repetitions in the end of repetition, where the end of repetition is determined based on available slots. Then the UE can transmit 2 repetitions in slot 9 and slot 10.
  • Method 1 The same RV for collision repetitions could be reused for supplement repetitions.
  • the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇ , then the RV for Repetition (Rep) 1 to 4 are 0, 2, 3, 1 respectively, and the RVs for Rep 5 and Rep 6 are 2, 3 respectively.
  • RV cycling is based on total actual repetitions, where the total actual repetitions include the supplement repetitions. For instance, as shown in FIG. 8, the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇ , then the RVs for ⁇ Rep 1, Rep 4, Rep 5, Rep 6 ⁇ are ⁇ 0, 2, 3, 1 ⁇ respectively.
  • RV cycling is based on available repetitions and supplement repetitions respectively, where the available repetitions is repetition factor K configured by gNB based on available slots.
  • the RVs for ⁇ Rep1, Rep2, Rep3, Rep4 ⁇ are ⁇ 0, 2, 3, 1 ⁇ respectively and the RVs for ⁇ Rep5, Rep6 ⁇ are ⁇ 0, 2 ⁇ respectively.
  • the RVs for the actual repetitions of ⁇ Rep 1, Rep4, Rep5, Rep6 ⁇ are ⁇ 0, 1, 0, 2 ⁇ respectively.
  • the supplement repetition can only transmit within a periodicity
  • the total number of actual repetitions should be not achieved the repetition factor k which is configured by gNB, then the reliability cannot be satisfied.
  • an RRC signalling should be introduced for a UE to enable cross periodicity boundary to replenish repetition transmissions if one or more available repetitions are collided with other transmissions.
  • the hybrid automatic repeat request (HARQ) ⁇ identifier (ID) for a configured grant (CG) is calculated based on the periodicity and the location of the first transmission occasion, however, if cross boundary of CG periodicity is enabled, the supplement repetitions will occupy the first transmission occasion of CG repetitions in the next periodicity. In this case, the HARQ ⁇ ID determination for the CG in the next periodicity should be considered. In some embodiment, if the RRC signalling is configured, the UE could be replenished the repetition across the periodicity boundary, the HARQ ⁇ ID for the CG in the next periodicity is calculated based on the new location. Where the new location is the first actual transmission occasion in the next periodicity.
  • the HARQ ⁇ ID for the supplement repetition is reported by the UE with uplink control information (UCI) that can be multiplexing on the first supplement PUSCH repetition transmission.
  • the HARQ ⁇ ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This disclosure proposes methods to enhance the PUSCH type B repetition transmission. It is thought that PUSCH repetition type B is too complex, but for both coverage limited and latency sensitive scenario, PUSCH repetition type B is more suitable than PUSCH repetition type A. So PUSCH type B repetition should be also enhanced. In Rel ⁇ 15/16, a nominal repetition of type B repetition will be split into one or more than one actual repetitions when meet slot boundary or invalid symbols, as shown in FIG. 10. The nominal repetition 3 should be split into two actual repetition due to meet invalid symbols.
  • the total number of symbols for repetition type B is smaller than gNB configured value, then the reliability cannot be satisfied.
  • Enhanced mechanism needs to be considered. The following methods could be considered.
  • Method 1 A repetition with the same duration of nominal repetition should be replenished after the end of actual repetition. As show in FIG. 11. A supplement repetition is added after the actual repetition 5 and the duration of the supplement repetition is equal to the duration of a nominal repetition.
  • the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇
  • the RV is cycling among all of the repetitions (including actual repetition and supplement repetition) in order, as a result, the RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 2.
  • the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇
  • the RV is cycling among all actual repetitions (which not include supplement repetitions) , the RV for supplement repetition is equal to the RV of the first actual repetition within the nominal repetition which meets invalid symbols.
  • RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 3.
  • the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇ )
  • the RV is cycling among all actual repetitions (which not include supplement repetitions)
  • the RV for supplement repetition is equal to the RV of the second actual repetition within the nominal repetition which meets invalid symbols.
  • RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 1.
  • the number of supplement repetitions are equal to the number of nominal repetitions which meet the invalid symbols and the supplement repetitions are added in order.
  • Method 2 A part of repetition with the same duration of invalid symbols should be replenished after the end of actual repetition.
  • the RV is cycling based on the nominal repetition and the RV for supplement part of nominal repetition is equal to the corresponding nominal repetition.
  • the RV sequence is configured as ⁇ 0, 2, 3, 1 ⁇ and 4 nominal repetitions are configured, the nominal repetition 3 includes invalid symbols and it is split into 2 actual repetitions.
  • the RV is cycling among all nominal repetitions, as a result, the RV for actual repetition 1 is 0, the RV for actual repetition 2 is 2, the RV for actual repetition 3 is 3, the RV for actual repetition 4 is 3, the RV for actual repetition 5 is 1, the RV for supplement part of nominal repetition is 3.
  • the RV is cycling among all the nominal repetitions (including the supplement part of nominal repetition) .
  • the transmission bits of actual repetition within a nominal repetition which includes invalid symbols are the same part of the nominal repetition, the transmission bits of the supplement part of a nominal repletion are the same part of the invalid symbols.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • TDRA Time Domain Resource Allocation
  • DCI downlink control information
  • Method 1 The whole TBoMS transmission is discarded. Similar mechanism in Rel ⁇ 15/16 is reused (that is, TBoMS transmission is regarded as a TO) . In this method, a corresponding re ⁇ transmission or supplement transmission is added after the end of the TBoMS transmission. Where, a re ⁇ transmission or supplement transmission is an entire TBoMS transmission.
  • Method 2 Only the overlapped slot (s) is discarded and the corresponding supplement transmission is added right after the TBoMS no matter the TBoMS is enabled repetition or not.
  • a supplement slot should be replenished after the TBoMS and the number of slots for the TBoMS transmission can be guaranteed. For instance, as shown in FIG.
  • the number of slots for TBoMS transmission is configured as 4, TBoMS repetition is enabled and the number of TBoMS repetition is 2, slot 2 of the first TBoMS repetition is collided with other transmission and it is discarded, then the slot 5 can be replenished into the first TBoMS repetition, then the first repetition of TBoMS is made up of ⁇ slot 1, slot 3, slot 4, slot5 ⁇ , so the systematic bits can be mapped completely and the performance can be guaranteed.
  • whether the supplement slot (s) could be across the boundary of periodicity of TBoMS repetitions or not is configurable.
  • Method 3 If the demodulation reference signal (DMRS) of the overlapped slots is not collided, the overlapped slots could be transmitted through RM.
  • DMRS demodulation reference signal
  • PUSCH repetition type A like TDRA has been supported for TBoMS transmission due to time limited and low complexity, however, it is not friendly using of S slot in TDD frame structure, in addition, lower efficient using of resources will be caused.
  • TBoMS transmission should be also supported for PUSCH repetition type B.
  • the similar way for PUSCH repetition type A mechanism can be reused for PUSCH type B repetition, the number of repetitions for a repetition type B like TBoMS should be added in the TDRA table, where the duration of a repetition is configured as actual number of symbols no matter whether invalid symbols will be meet or not, in other word, nominal repetition should not be split into one or more actual repetitions within a TBoMS anymore.
  • the DMRS location is based on the granularity of the slot but not the actual repetition.
  • the DMRS location based on the granularity of the slot means the time domain DMRS location is determined based on each slot within the duration of the TBoMS, For instance, as shown in FIG. 14, the nominal repetition 2 within a TBoMS needn’t split one or more actual repetition anymore and the DMRS location is not based on the actual PUSCH repetition anymore.
  • the slot is the slot which is located within a TBoMS.
  • the slot is the slot which is located within one or more TBoMS transmission.
  • the DMRS location based on the actual duration of each slot within the TBoMS.
  • Some embodiments of the present application are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present application could be adopted in the 5G NR unlicensed band communications. Some embodiments of the present application propose technical mechanisms.
  • the embodiment of the present application further provides a computer readable storage medium for storing a computer program.
  • the computer readable storage medium enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.
  • the embodiment of the present application further provides a computer program product including computer program instructions.
  • the computer program product enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.
  • the embodiment of the present application further provides a computer program.
  • the computer program enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.

Abstract

A wireless communication method and related devices are provided. The method, performed by a user equipment (UE), comprising: for PUSCH type A repetition, being configured to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots. The method carries out coverage enhancement.

Description

WIRELESS COMMUNICATION METHOD AND RELATED DEVICES TECHNICAL FIELD
The present application relates to wireless communication technologies, and more particularly, to a wireless communication method, and related devices such as a user equipment (UE) and a base station (BS) (e.g., a gNB) .
BACKGROUND ART
Wireless communication systems, such as the third‐generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro‐cell mobile phone communications. Communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN includes a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base stations, and an interface to a core network (CN) which provides overall network control. The RAN and CN each conducts respective functions in relation to the overall network.
The 3GPP has developed the so‐called Long‐Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network (E‐UTRAN) , for a mobile access network where one or more macro‐cells are supported by base station knowns as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so‐called 5G or NR (new radio) systems where one or more cells are supported by base stations known as a next generation Node B called gNodeB (gNB) .
The 5G New Radio (NR) standard will support a multitude of different services each with very different requirements. These services include Enhanced Mobile Broadband (eMBB) for high data rate transmission, Ultra‐Reliable Low Latency Communication (URLLC) for devices requiring low latency and high link reliability and Massive Machine‐Type Communication (mMTC) to support a large number of low‐power devices for a long life‐time requiring highly energy efficient communication.
Coverage is one of the key factors that an operator considers when commercializing cellular communication networks due to its direct impact on service quality as well as CAPEX and OPEX. Despite the importance of coverage on the success of NR commercialization, a thorough coverage evaluation and a comparison with legacy RATs considering all NR specification details have not been done up to now.
Compared to LTE, NR is designed to operate at much higher frequencies such as 28GHz or 39GHz in FR2. Furthermore, many countries are making available more spectrums on FR1, such as 3.5GHz, which is typically in higher frequencies than for LTE or 3G. Due to the higher frequencies, it is inevitable that the wireless channel will be subject to higher path‐loss making it more challenging to maintain an adequate quality of service that is at least equal to that of legacy RATs. One key mobile application of particular  importance is voice service for which a typical subscriber will always expect a ubiquitous coverage wherever s/he is.
For FR1, NR can be deployed either in newly allocated spectrums, such as 3.5GHz, or in a spectrum re‐farmed from a legacy network, e.g., 3G and 4G. In either case, coverage will be a critical issue considering the fact that these spectrums will most likely handle key mobile services such as voice and low‐rate data services. For FR2, coverage was not thoroughly evaluated during the self‐evaluation campaign towards IMT‐2020 submission and not considered in Rel‐16 enhancements. In these regards, a thorough understanding of NR coverage performance is needed while taking into account the support of latest NR specification.
In RAN #86 meeting, a new Rel‐17 study item on NR coverage enhancements was approved. The objective of this study item is to study potential coverage enhancement solutions for specific scenarios for both FR1 and FR2. Some potential methods for coverage enhancement have been discussed in the previous RAN1 meetings. However, there are still some issues need to carry out for coverage enhancement for uplink (UL) transmission.
SUMMARY
The objective of the present application is to provide a wireless communication method and related devices, for carrying out coverage enhancement.
In a first aspect, an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for PUSCH type A repetition, being configured to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
In a second aspect, an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for PUSCH type B repetition, being configured to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
In a third aspect, an embodiment of the present application provides a wireless communication method, performed by a user equipment (UE) , the method including: for transport block (TB) processing over multi‐slot (TBoMS) PUSCH transmission, being configured to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
In a fourth aspect, an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for PUSCH type A repetition, configuring a user equipement (UE) for the UE to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
In a fifth aspect, an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for PUSCH type B repetition, configuring a user equipement (UE) for the UE to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
In a sixth aspect, an embodiment of the present application provides a wireless communication method, performed by a base station (BS) , the method including: for transport block (TB) processing over multi‐slot (TBoMS) PUSCH transmission, configuring a user equipement (UE) for the UE to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
In a seventh aspect, an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the first aspect.
In an eighth aspect, an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the second aspect.
In a ninth aspect, an embodiment of the present application provides a UE, communicating with a BS in a network, the UE including a processor, configured to call and run program instructions stored in a memory, to execute the method of the third aspect.
In a tenth aspect, an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the fourth aspect.
In an eleventh aspect, an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the fifth aspect.
In a twelfth aspect, an embodiment of the present application provides a BS, communicating with a UE in a network, the BS including a processor, configured to call and run program instructions stored in a memory, to execute the method of the sixth aspect.
In a thirteenth aspect, an embodiment of the present application provides a computer readable storage medium provided for storing a computer program, which enables a computer to execute the method of any of the first to the sixth aspects.
In a fourteenth aspect, an embodiment of the present application provides a computer program product, which includes computer program instructions enabling a computer to execute the method of any of the first to the sixth aspects.
In a fifteenth aspect, an embodiment of the present application provides a computer program, when running on a computer, enabling the computer to execute the method of any of the first to the sixth aspects.
DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present application or related art, the following figures that will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present application, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic block diagram illustrating a communication network system according to an embodiment of the present application.
FIG. 2 is a flowchart of a wireless communication method according to an embodiment of the present application.
FIG. 3 is a flowchart of a wireless communication method according to another embodiment of the present application.
FIG. 4 is a flowchart of a wireless communication method according to yet another embodiment of the present application.
FIG. 5 is a schematic block diagram illustrating repetition based on available slots with collision.
FIG. 6 is a schematic block diagram illustrating enabled additional repetition.
FIG. 7 is a schematic block diagram illustrating RV determination for supplement repetitions.
FIG. 8 is a schematic block diagram illustrating RV determination for supplement repetitions.
FIG. 9 is a schematic block diagram illustrating RV determination for supplement repetitions.
FIG. 10 is a schematic block diagram illustrating PUSCH repetition type B transmission when meet invalid symbols.
FIG. 11 is a schematic block diagram illustrating supplement repetition for PUSCH type B repetition.
FIG. 12 is a schematic block diagram illustrating supplement part of a nominal repetition.
FIG. 13 is a schematic block diagram illustrating TBoMS transmission with collision.
FIG. 14 is a schematic block diagram illustrating DMRS for PUSCH repetition type B like TBoMS.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present application are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
It has been agreed that the repetition type A is counted based on available slots in Rel‐17 and the available slots is determined based on two steps. Step 1: Determine available slots for K repetitions based on Radio Resource Control (RRC) configuration (s) in addition to Time Domain Resource Allocation (TDRA) in the Downlink control Information (DCI) scheduling the PUSCH, Configured Grant (CG) configuration or activation DCI; Step 2: The UE determines whether to drop a PUSCH repetition or not according to Rel‐15/16 PUSCH dropping rules, but the PUSCH repetition is still counted in the K repetitions. In this case, if a PUSCH type A repetition transmission is collided with other PUSCH transmission with high priority or Physical Uplink Control Channel (PUCCH) repetition transmission, the reliability cannot be satisfied, a DCI scheduling a re‐transmission of the Transport Block (TB) should be needed. However, more DCI overhead will be caused. In addition, though latency is not a key issue of coverage, but for some latency sensitive traffic, large delay will be caused by scheduling a re‐transmission by a DCI. As a result, a method to guarantee the actual number of repetitions should be considered.
In Rel‐17 coverage enhancement, it is thought that the PUSCH repetition type B is mainly suitable for latency sensitive service, and for Coverage Enhancement (CE) , PUSCH type A repetition is enough. As a result, PUSCH type B repetition is out of R‐17 CE WI scope. In Rel‐16, a nominal type B repetition will be divided into one or more actual repetition if invalid symbols or slot boundary is meet, the RV is cycling based on actual repetitions. In this way, UE can use all the available resources as much as possible. In other words, the actual number of resource elements (REs) for a transport block (TB) may be smaller than gNB configured, reliability is decreased due to several symbols is discarded. As a result, type B enhancement should be considered.
In Rel‐17, TBoMS transmission has been approved in WI for enhancing the coverage capability. The main motivation for TBoMS is to improve the coverage capability for cell‐edge UE by obtaining low code rate with less number of RBs in the frequency domain, which could boost the Power Spectral Density (PSD) for cell‐edge UE for better coverage. When TBoMS with or without repetition transmission is collided with other transmission, the collision behaviour should be determined. However, the method of TBoMS transmission collision with other transmission have not been discussed. If similar mechanism in R‐15/16 is adopt, then the whole TB should be discarded. However, the mechanism is not friendly for resource utilization, an enhancement method should be considered.
In an aspect of the present application, it is proposed a method used to ensure the K repetitions of PUSCH type A due to collision. In another aspect of the present application, it is proposed a method used to enhance PUSCH type B transmission. In yet another aspect of the present application, it is proposed TBoMS transmission enhancement for both type A and type B, includes supplement transmission rules after collision happened and Demodulation of Reference Signal (DMRS) determination.
Based on current agreements of Type A PUSCH enhancement, it has been agreed that the repetition type A is counted based on available slots in Rel‐17 and the available slots are determined based on two steps, the dropped repetition is still counted in the number of K repetitions. In embodiments of the present application, a mechanism to ensure the number of repetition transmission is introducing for type A repetition to avoid fuzzy between gNB and UE. The corresponding RV determination mechanism is also given. If the actual repetition is across the period boundary, the mechanism to determine HARQ‐ID for the CG within next periodicity is proposed.
In R‐17 WI, PUSCH repetition type B coverage enhancement is out of scope. for both coverage limited and latency sensitive scenario, PUSCH repetition type B is more suitable than PUSCH repetition type A. In Rel‐16, for PUSCH repetition Type B, after determining the invalid symbol (s) for PUSCH repetition type B transmission for each of the K nominal repetitions, the remaining symbols are considered as potentially valid symbols for PUSCH repetition Type B transmission. In other words, UE can use all the available resources to transmission as much as possible. However, the total number of symbols which is configured by gNB cannot be achieved. To achieve the same reliability, a re‐transmission should be needed, then DCI overhead will be caused. In embodiments of the present application, a method used to ensure UE using potential symbols for PUSCH transmission is studied. A supplement repetition transmission for type  B enhancement is given. The RV determination for the actual repetition and the supplement repetition for PUSCH type B is proposed.
For TBoMS PUSCH transmission, repetition type A like TDRA has been supported and available slots for TBoMS transmission has also been supported. The number of slots for TBoMS transmission is indicated by TDRA field in DCI, a new column is added in TDRA table. If one or more than one slots within a TBoMS is collided with other transmission, the behavior is not decided yet. In embodiments of the present application, a mechanism for ensuring number of transmission K is given. In addition, a method used to enable TBoMS transmission for PUSCH type B transmission and corresponding collision case handling are also given. That is, a mechanism to deal with collision for TBoMS is proposed. When PUSCH type B like TBoMS is enabled, the DMRS determination based on slot within the TBoMS.
FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for wireless communication in a communication network system 30 according to an embodiment of the present application are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application‐specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read‐only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
FIG. 2 illustrates a wireless communication method 200 according to an embodiment of the present application. In some embodiments, referring to FIG. 2 in conjunction with FIG. 1, the method 200 includes the following. In block 202 of the method 200, for physical uplink share channel (PUSCH) type A repetition, the UE is configured (the BS configures the UE) to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots. For example, the repetitions replenished as the supplement repetitions are collision repetitions. This can  solve issues in the existing arts, carry out coverage enhancement, enable PUSCH type A repetition with supplement repetitions, and/or provide good communication performance.
In an embodiment of the present application, the same redundancy versions (RVs) for the collision repetitions are reused for the supplement repetitions. In an embodiment of the present application, RV cycling is based on total actual repetitions, and the total actual repetitions include the supplement repetitions. In an embodiment of the present application, RV cycling is based on the available repetitions and the supplement repetitions, respectively.
In an embodiment of the present application, the supplement repetitions are only transmitted within a periodicity of PUSCH repetitions. In an embodiment of the present application, the supplement repetitions are transmitted across periodicity boundary of PUSCH repetitions.
In one possible implementation of the present application, in the case of the supplement repetitions across the periodicity boundary, hybrid automatic repeat request (HARQ) ‐identifier (ID) for configured grant (CG) in a next periodicity is calculated based on a new location, and the new location is the first actual transmission occasion of CG repetitions in the next periodicity. In one possible implementation of the present application, HARQ‐ID for the supplement repetition is reported with uplink control information (UCI) multipelxing on the first supplement PUSCH repetition transmission. In some embodiments, the HARQ‐ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
FIG. 3 illustrates a wireless communication method 300 according to another embodiment of the present application. In some embodiments, referring to FIG. 3 in conjunction with FIG. 1, the method 300 includes the following. In block 302 of the method 300, for physical uplink share channel (PUSCH) type B repetition, the UE is configured (the BS configures the UE) to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition. For example, the repetition replenished as the supplement repetition meets invalid symbols. This can solve issues in the existing arts, carry out coverage enhancement, enable PUSCH type B repetition with supplement repetitions, and/or provide good communication performance.
In an embodiment of the present application, redundancy version (RV) is cycling among all of the actual repetitions and the supplement repetitons in order. In an embodiment of the present application, RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a first actual repetition within the nominal repetition which meets invalid symbols, and the first actual repetition is before a second actual repetition within the nominal repetition. In an embodiment of the present application, RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a second actual repetition within the nominal repetition which meets invalid symbols, and the second actual repetition is after a first actual repetition within the nominal repetition.
In an embodiment of the present application, the number of the supplement repetitions are equal to the number of the nominal repetitions which meet invalid symbols, and the supplement repetitions are  added in order. In an embodiment of the present application, a part of repetition with a same duration of invalid symbols is replenished as a supplement part after the end of the actual repetition.
In one possible implementation of the present application, RV is cycling is based on the nominal repetition, and the RV for the supplement part is equal to the nominal repetition which meets the invalid symbols. In one possible implementation of the present application, RV is cycling among all the nominal repetitions, including the supplement part of nominal repetition. In one possible implementation of the present application, transmission bits of actual repetition within a nominal repetition which includes invalid symbols is the same part of the nominal repetition, and transmission bits of the supplement part is the same part of the invalid symbols.
FIG. 4 illustrates a wireless communication method 400 according to another embodiment of the present application. In some embodiments, referring to FIG. 4 in conjunction with FIG. 1, the method 400 includes the following. In block 402 of the method 400, for transport block (TB) processing over multi‐slot (TBoMS) physical uplink share channel (PUSCH) transmission, the UE is configured (the BS configures the UE) to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission. This can solve issues in the existing arts, carry out coverage enhancement, and/or provide good communication performance.
In an embodiment of the present application, the TBoMS PUSCH transmission is for type A PUSCH repetition. In an embodiment of the present application, the TBoMS PUSCH transmission is for type B PUSCH repetition.
In an embodiment of the present application, the supplement transmission is the entire TBoMS transmission. In an embodiment of the present application, the supplement transmission is portion transmission of TBoMS, the duration of the portion transmission of TBoMS is at least equal to or larger than collided parts of the TBoMS.
In an embodiment of the present application, whether the supplement transmission is across the boundary of periodicity of TBoMS repetitions is configured.
In an embodiment of the present application, for TBoMS PUSCH type B repetition, the duration of a nominal repetition is configured as actual number of symbols within the nominal repetition no matter whether an overlapped slot exists or not. The nominal repetition is not split into one or more actual repetitions within a TBoMS. In an embodiment of the present application, DMRS location is based on the granularity of slot within a TBoMS. In an embodiment of the present application, DMRS location is based on the granularity of slot within one or more TBoMS.
The embodiments of the present application will be described in more detail below.
Embodiment 1:
This disclosure proposes a method to solve the actual number of repetitions type A smaller than the number of repetitions which is configured by gNB. For PUSCH type A repetition in Rel‐17, available slots are used for PUSCH type A repetition and the dropped repetition is still counted in number of K. Thus, the actual total number of symbols is smaller than the gNB configured. For instance, as shown in FIG.  5, the periodicity of PUSCH repetition is configured as 10 slots, the number of repetitions is 4 and S slot is assumed as available slot. Slot 4 and slot 5 are collided with other transmission (e.g., high priority PUSCH transmission or PUCCH with repetition transmission) , then the actual number of repetitions is only 2 (located at slot 3 and slot 8) , and thus the reliability cannot not be achieved.
An explicit way to achieve the actual number of repetitions should be considered, an RRC signalling could be introduced for UE to enable transmitting the collision repetition after the end of repetition, which is determined based on available slots. As show in FIG. 6, the periodicity of PUSCH repetitions is configured as 10 slots, the number of repetitions is 4 and S slot is assumed as available slot. Slot 4 and slot 5 are collided with other transmission. RRC signalling should be configured to UE to enable the UE to replenish the collision repetitions in the end of repetition, where the end of repetition is determined based on available slots. Then the UE can transmit 2 repetitions in slot 9 and slot 10.
In addition, the RV of all repetitions should be determined. The following methods should be considered:
Method 1: The same RV for collision repetitions could be reused for supplement repetitions. For instance, as shown in FIG. 7, the RV sequence is configured as {0, 2, 3, 1} , then the RV for Repetition (Rep) 1 to 4 are 0, 2, 3, 1 respectively, and the RVs for Rep 5 and Rep 6 are 2, 3 respectively.
Method 2: RV cycling is based on total actual repetitions, where the total actual repetitions include the supplement repetitions. For instance, as shown in FIG. 8, the RV sequence is configured as {0, 2, 3, 1} , then the RVs for {Rep 1, Rep 4, Rep 5, Rep 6} are {0, 2, 3, 1} respectively.
Method 3: RV cycling is based on available repetitions and supplement repetitions respectively, where the available repetitions is repetition factor K configured by gNB based on available slots. For instance, as shown in FIG. 9, the RVs for {Rep1, Rep2, Rep3, Rep4} are {0, 2, 3, 1} respectively and the RVs for {Rep5, Rep6} are {0, 2} respectively. As a result, the RVs for the actual repetitions of {Rep 1, Rep4, Rep5, Rep6} are {0, 1, 0, 2} respectively.
In some embodiments, if the supplement repetition can only transmit within a periodicity, in some case, the total number of actual repetitions should be not achieved the repetition factor k which is configured by gNB, then the reliability cannot be satisfied. In this case, an RRC signalling should be introduced for a UE to enable cross periodicity boundary to replenish repetition transmissions if one or more available repetitions are collided with other transmissions.
In Rel‐15/16, the hybrid automatic repeat request (HARQ) ‐identifier (ID) for a configured grant (CG) is calculated based on the periodicity and the location of the first transmission occasion, however, if cross boundary of CG periodicity is enabled, the supplement repetitions will occupy the first transmission occasion of CG repetitions in the next periodicity. In this case, the HARQ‐ID determination for the CG in the next periodicity should be considered. In some embodiment, if the RRC signalling is configured, the UE could be replenished the repetition across the periodicity boundary, the HARQ‐ID for the CG in the next periodicity is calculated based on the new location. Where the new location is the first actual transmission occasion in the next periodicity. In some embodiments, the HARQ‐ID for the supplement  repetition is reported by the UE with uplink control information (UCI) that can be multiplexing on the first supplement PUSCH repetition transmission. In some embodiments, the HARQ‐ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
Embodiment 2:
This disclosure proposes methods to enhance the PUSCH type B repetition transmission. It is thought that PUSCH repetition type B is too complex, but for both coverage limited and latency sensitive scenario, PUSCH repetition type B is more suitable than PUSCH repetition type A. So PUSCH type B repetition should be also enhanced. In Rel‐15/16, a nominal repetition of type B repetition will be split into one or more than one actual repetitions when meet slot boundary or invalid symbols, as shown in FIG. 10. The nominal repetition 3 should be split into two actual repetition due to meet invalid symbols.
In this case, the total number of symbols for repetition type B is smaller than gNB configured value, then the reliability cannot be satisfied. Enhanced mechanism needs to be considered. The following methods could be considered.
Method 1: A repetition with the same duration of nominal repetition should be replenished after the end of actual repetition. As show in FIG. 11. A supplement repetition is added after the actual repetition 5 and the duration of the supplement repetition is equal to the duration of a nominal repetition. In some embodiments (it is assumed that the RV sequence is configured as {0, 2, 3, 1} ) , the RV is cycling among all of the repetitions (including actual repetition and supplement repetition) in order, as a result, the RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 2. In some embodiments (it is assumed the RV sequence is configured as {0, 2, 3, 1} ) , the RV is cycling among all actual repetitions (which not include supplement repetitions) , the RV for supplement repetition is equal to the RV of the first actual repetition within the nominal repetition which meets invalid symbols. As a result, the RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 3. In some embodiments (it is assumed that the RV sequence is configured as {0, 2, 3, 1} ) , the RV is cycling among all actual repetitions (which not include supplement repetitions) , the RV for supplement repetition is equal to the RV of the second actual repetition within the nominal repetition which meets invalid symbols. As a result, the RV for actual repetition 1 is 0, RV for actual repetition 2 is 2, RV for actual repetition 3 is 3, RV for actual repetition 4 is 1, RV for actual repetition 5 is 0, RV for supplement repetition is 1. In some embodiments, there is a corresponding relationship between supplement repetitions and nominal repetitions which meet invalid symbols, the number of supplement repetitions are equal to the number of nominal repetitions which meet the invalid symbols and the supplement repetitions are added in order.
Method 2: A part of repetition with the same duration of invalid symbols should be replenished after the end of actual repetition. As shown in FIG. 12, in some embodiments, the RV is cycling based on the nominal repetition and the RV for supplement part of nominal repetition is equal to the corresponding nominal repetition. For instance, the RV sequence is configured as {0, 2, 3, 1} and 4 nominal repetitions are  configured, the nominal repetition 3 includes invalid symbols and it is split into 2 actual repetitions. The RV is cycling among all nominal repetitions, as a result, the RV for actual repetition 1 is 0, the RV for actual repetition 2 is 2, the RV for actual repetition 3 is 3, the RV for actual repetition 4 is 3, the RV for actual repetition 5 is 1, the RV for supplement part of nominal repetition is 3. In some embodiment, the RV is cycling among all the nominal repetitions (including the supplement part of nominal repetition) . The transmission bits of actual repetition within a nominal repetition which includes invalid symbols are the same part of the nominal repetition, the transmission bits of the supplement part of a nominal repletion are the same part of the invalid symbols.
Embodiment 3:
For transport block (TB) processing over multi‐slot (TBoMS) PUSCH transmission, repetition type A like Time Domain Resource Allocation (TDRA) has been supported and available slots for TBoMS transmission has been supported. The number of slots for TBoMS transmission is indicated by TDRA field in downlink control information (DCI) , a new column is added in TDRA table. If one or more than one slots within a TBoMS is collided with other transmission, especially when the slots map the systematic bits. However, if the slots for systematic bits bearing are discarded, a serious performance impact will be caused, the issue is not discussed yet. The following methods could be considered.
Method 1: The whole TBoMS transmission is discarded. Similar mechanism in Rel‐15/16 is reused (that is, TBoMS transmission is regarded as a TO) . In this method, a corresponding re‐transmission or supplement transmission is added after the end of the TBoMS transmission. Where, a re‐transmission or supplement transmission is an entire TBoMS transmission.
Method 2: Only the overlapped slot (s) is discarded and the corresponding supplement transmission is added right after the TBoMS no matter the TBoMS is enabled repetition or not. In other word, a supplement slot should be replenished after the TBoMS and the number of slots for the TBoMS transmission can be guaranteed. For instance, as shown in FIG. 13, the number of slots for TBoMS transmission is configured as 4, TBoMS repetition is enabled and the number of TBoMS repetition is 2, slot 2 of the first TBoMS repetition is collided with other transmission and it is discarded, then the slot 5 can be replenished into the first TBoMS repetition, then the first repetition of TBoMS is made up of {slot 1, slot 3, slot 4, slot5} , so the systematic bits can be mapped completely and the performance can be guaranteed. In some embodiments, if one of the TBoMS transmission is collided with other transmission, whether the supplement slot (s) could be across the boundary of periodicity of TBoMS repetitions or not is configurable.
Method 3: If the demodulation reference signal (DMRS) of the overlapped slots is not collided, the overlapped slots could be transmitted through RM.
In Rel 15/16, only PUSCH repetition type A like TDRA has been supported for TBoMS transmission due to time limited and low complexity, however, it is not friendly using of S slot in TDD frame structure, in addition, lower efficient using of resources will be caused. As a result, TBoMS transmission should be also supported for PUSCH repetition type B. In some embodiments, the similar way for PUSCH repetition type A mechanism can be reused for PUSCH type B repetition, the number of  repetitions for a repetition type B like TBoMS should be added in the TDRA table, where the duration of a repetition is configured as actual number of symbols no matter whether invalid symbols will be meet or not, in other word, nominal repetition should not be split into one or more actual repetitions within a TBoMS anymore. the DMRS location is based on the granularity of the slot but not the actual repetition. Where, the DMRS location based on the granularity of the slot means the time domain DMRS location is determined based on each slot within the duration of the TBoMS, For instance, as shown in FIG. 14, the nominal repetition 2 within a TBoMS needn’t split one or more actual repetition anymore and the DMRS location is not based on the actual PUSCH repetition anymore. In some embodiments, the slot is the slot which is located within a TBoMS. In some embodiments, the slot is the slot which is located within one or more TBoMS transmission. In some embodiments, the DMRS location based on the actual duration of each slot within the TBoMS.
Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Carrying out coverage enhancement. 3. Enabling PUSCH type A repetition with supplement repetitions. 4. 4. Enabling PUSCH type B repetition with supplement repetitions. 5. Providing a good communication performance. Some embodiments of the present application are used by 5G‐NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto‐bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present application are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present application could be adopted in the 5G NR unlicensed band communications. Some embodiments of the present application propose technical mechanisms.
The embodiment of the present application further provides a computer readable storage medium for storing a computer program. The computer readable storage medium enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.
The embodiment of the present application further provides a computer program product including computer program instructions. The computer program product enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.
The embodiment of the present application further provides a computer program. The computer program enables a computer to execute corresponding processes implemented by the UE/BS in each of the methods of the embodiment of the present application. For brevity, details will not be described herein again.
A person of ordinary skill in the art may be aware that, in combination with the examples described in the embodiments disclosed in this specification, units and algorithm steps may be implemented by electronic hardware or a combination of computer software and electronic hardware.  Whether the functions are performed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. A person skilled in the art may use different approaches to implement the described functions for each particular application, but it should not be considered that the implementation goes beyond the scope of the present application.
While the present application has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present application is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (57)

  1. A wireless communication method, performed by a user equipment (UE) , the method comprising:
    for physical uplink share channel (PUSCH) type A repetition, being configured to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
  2. The method of claim 1, wherein the repetitions replenished as the supplement repetitions are collision repetitions.
  3. The method of claim 2, wherein the same redundancy versions (RVs) for the collision repetitions are reused for the supplement repetitions.
  4. The method of claim 1, wherein RV cycling is based on total actual repetitions, and the total actual repetitions include the supplement repetitions.
  5. The method of claim 1, wherein RV cycling is based on the available repetitions and the supplement repetitions, respectively.
  6. The method of claim 1, wherein the supplement repetitions are only transmitted within a periodicity of PUSCH repetitions.
  7. The method of claim 1, wherein the supplement repetitions are transmitted across periodicity boundary of PUSCH repetitions.
  8. The method of claim 7, wherein in the case of the supplement repetitions across the periodicity boundary, hybrid automatic repeat request (HARQ) ‐identifier (ID) for configured grant (CG) in a next periodicity is calculated based on a new location, and the new location is the first actual transmission occasion of CG repetitions in the next periodicity.
  9. The method of claim 1, wherein HARQ‐ID for the supplement repetition is reported with uplink control information (UCI) multipelxing on the first supplement PUSCH repetition transmission.
  10. The method of claim 8, wherein the HARQ‐ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
  11. A wireless communication method, performed by a user equipment (UE) , the method comprising:
    for physical uplink share channel (PUSCH) type B repetition, being configured to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
  12. The method of claim 11, wherein redundancy version (RV) is cycling among all of the actual repetitions and the supplement repetitons in order.
  13. The method of claim 11, wherein RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a first actual repetition within the nominal repetition which meets invalid symbols, and the first actual repetition is  before a second actual repetition within the nominal repetition.
  14. The method of claim 11, wherein RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a second actual repetition within the nominal repetition which meets invalid symbols, and the second actual repetition is after a first actual repetition within the nominal repetition.
  15. The method of claim 11, wherein the number of the supplement repetitions are equal to the number of the nominal repetitions which meet invalid symbols, and the supplement repetitions are added in order.
  16. The method of claim 11, wherein a part of repetition with a same duration of invalid symbols is replenished as a supplement part after the end of the actual repetition.
  17. The method of claim 16, wherein RV is cycling is based on the nominal repetition, and the RV for the supplement part is equal to the nominal repetition which meets the invalid symbols.
  18. The method of claim 16, wherein RV is cycling among all the nominal repetitions, including the supplement part of nominal repetition.
  19. The method of claim 16, wherein transmission bits of actual repetition within a nominal repetition which includes invalid symbols is the same part of the nominal repetition, and transmission bits of the supplement part is the same part of the invalid symbols.
  20. A wireless communication method, performed by a user equipment (UE) , the method comprising:
    for transport block (TB) processing over multi‐slot (TBoMS) physical uplink share channel (PUSCH) transmission, being configured to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
  21. The method of claim 20, wherein the supplement transmission is the entire TBoMS transmission.
  22. The method of claim 20, wherein the supplement transmission is portion transmission of TBoMS, the duration of the portion transmission of TBoMS is at least equal to or larger than collided parts of the TBoMS.
  23. The method of claim 22, wherein the duration of a nominal repetition is configured as actual number of symbols within the nominal repetition no matter whether an overlapped slot exists or not.
  24. The method of claim 23, wherein DMRS location is based on the granularity of slot within a TBoMS.
  25. A wireless communication method, performed by a base station (BS) , the method comprising:
    for physical uplink share channel (PUSCH) type A repetition, configuring a user equipement (UE) for the UE to enable replenishing repetitions as supplement repetitions in the end of repetition, in which the end of repetition is determined based on available slots.
  26. The method of claim 25, wherein the repetitions replenished as the supplement repetitions are collision repetitions.
  27. The method of claim 26, wherein the same redundancy versions (RVs) for the collision repetitions are reused for the supplement repetitions.
  28. The method of claim 25, wherein RV cycling is based on total actual repetitions, and the total actual repetitions include the supplement repetitions.
  29. The method of claim 25, wherein RV cycling is based on the available repetitions and the supplement repetitions, respectively.
  30. The method of claim 25, wherein the supplement repetitions are only transmitted within a periodicity of PUSCH repetitions.
  31. The method of claim 25, wherein the supplement repetitions are transmitted across periodicity boundary of PUSCH repetitions.
  32. The method of claim 31, wherein in the case of the supplement repetitions across the periodicity boundary, hybrid automatic repeat request (HARQ) ‐identifier (ID) for configured grant (CG) in a next periodicity is calculated based on a new location, and the new location is the first actual transmission occasion of CG repetitions in the next periodicity.
  33. The method of claim 25, wherein HARQ‐ID for the supplement repetition is reported with uplink control information (UCI) multipelxing on the first supplement PUSCH repetition transmission.
  34. The method of claim 32, wherein the HARQ‐ID for CG in the next periodicity is reported with UCI multiplexing on the first actual PUSCH repetition of the CG.
  35. A wireless communication method, performed by a base station (BS) , the method comprising:
    for physical uplink share channel (PUSCH) type B repetition, configuring a user equipement (UE) for the UE to enable replenishing a repetition with a same duration of a nominal repetition as a supplement repetition after the end of actual repetition.
  36. The method of claim 35, wherein redundancy version (RV) is cycling among all of the actual repetitions and the supplement repetitons in order.
  37. The method of claim 35, wherein RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a first actual repetition within the nominal repetition which meets invalid symbols, and the first actual repetition is before a second actual repetition within the nominal repetition.
  38. The method of claim 35, wherein RV is cycling among all the actual repetitions, not including the supplement repetitions, and the RV for the supplement repetition is equal to the RV of a second actual repetition within the nominal repetition which meets invalid symbols, and the second actual repetition is after a first actual repetition within the nominal repetition.
  39. The method of claim 35, wherein the number of the supplement repetitions are equal to the number of the nominal repetitions which meet invalid symbols, and the supplement repetitions are added in order.
  40. The method of claim 35, wherein a part of repetition with a same duration of invalid symbols is replenished as a supplement part after the end of the actual repetition.
  41. The method of claim 40, wherein RV is cycling is based on the nominal repetition, and the RV for  the supplement part is equal to the nominal repetition which meets the invalid symbols.
  42. The method of claim 40, wherein RV is cycling among all the nominal repetitions, including the supplement part of nominal repetition.
  43. The method of claim 40, wherein transmission bits of actual repetition within a nominal repetition which includes invalid symbols is the same part of the nominal repetition, and transmission bits of the supplement part is the same part of the invalid symbols.
  44. A wireless communication method, performed by a base station (BS) , the method comprising:
    for transport block (TB) processing over multi‐slot (TBoMS) physical uplink share channel (PUSCH) transmission, configuring a user equipement (UE) for the UE to enable replenishing a supplement transmission after a TBoMS, in which portion of TBoMS transmission is collided with others transmission.
  45. The method of claim 44, wherein the supplement transmission is the entire TBoMS transmission.
  46. The method of claim 44, wherein the supplement transmission is portion transmission of TBoMS, the duration of the portion transmission of TBoMS is at least equal to or larger than collided parts of the TBoMS.
  47. The method of claim 46, wherein the duration of a nominal repetition is configured as actual number of symbols within the nominal repetition no matter whether an overlapped slot exists or not.
  48. The method of claim 47, wherein DMRS location is based on the granularity of slot within a TBoMS.
  49. A user equipment (UE) , communicating with a base station (BS) in a network, the UE comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 1 to 10.
  50. A user equipment (UE) , communicating with a base station (BS) in a network, the UE comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 11 to 19.
  51. A user equipment (UE) , communicating with a base station (BS) in a network, the UE comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 20 to 24.
  52. A base station (BS) , communicating with a user equipement (UE) in a network, the BS comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 25 to 34.
  53. A base station (BS) , communicating with a user equipement (UE) in a network, the BS comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 35 to 43.
  54. A base station (BS) , communicating with a user equipement (UE) in a network, the BS comprising a processor, configured to call and run program instructions stored in a memory, to execute the method of any of claims 44 to 48.
  55. A computer readable storage medium, configured to store a computer program, which enables a computer to execute the method of any of claims 1 to 48.
  56. A computer program product, comprising computer program instructions, which enable a computer to execute the method of any of claims 1 to 48.
  57. A computer program, enabling a computer to execute the method of any of claims 1 to 48.
PCT/CN2021/128990 2021-11-05 2021-11-05 Wireless communication method and related devices WO2023077425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128990 WO2023077425A1 (en) 2021-11-05 2021-11-05 Wireless communication method and related devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128990 WO2023077425A1 (en) 2021-11-05 2021-11-05 Wireless communication method and related devices

Publications (1)

Publication Number Publication Date
WO2023077425A1 true WO2023077425A1 (en) 2023-05-11

Family

ID=86240430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128990 WO2023077425A1 (en) 2021-11-05 2021-11-05 Wireless communication method and related devices

Country Status (1)

Country Link
WO (1) WO2023077425A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246582A (en) * 2020-01-20 2020-06-05 展讯半导体(南京)有限公司 Information sending method and device and information receiving method and device
WO2021188893A1 (en) * 2020-03-20 2021-09-23 Convida Wireless, Llc Coverage enhancement for reduced capability new radio devices
WO2021205374A1 (en) * 2020-04-09 2021-10-14 Lenovo (Singapore) Pte. Ltd. Apparatus and method for communicating a pusch including uci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246582A (en) * 2020-01-20 2020-06-05 展讯半导体(南京)有限公司 Information sending method and device and information receiving method and device
WO2021188893A1 (en) * 2020-03-20 2021-09-23 Convida Wireless, Llc Coverage enhancement for reduced capability new radio devices
WO2021205374A1 (en) * 2020-04-09 2021-10-14 Lenovo (Singapore) Pte. Ltd. Apparatus and method for communicating a pusch including uci

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100732, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971175 *
SHARP: "Enhancements on PUSCH repetition type A", 3GPP DRAFT; R1-2110000, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058936 *

Similar Documents

Publication Publication Date Title
EP3637821A1 (en) Control information transmission method and apparatus
CA3099869C (en) Method for transmitting uplink signal, and terminal device
US20210218511A1 (en) Methods and apparatuses for transmitting and receiving sidelink information
US20220361241A1 (en) Signal transmission method and device
US11122630B2 (en) Information sending method and apparatus and information receiving method and apparatus
US20230155660A1 (en) UE Uplink Panel Selection Framework
US20220329368A1 (en) Wireless communication method and terminal device
US20220046638A1 (en) Integrated Access-Backhaul Operation
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
US20200344806A1 (en) Method and device for transmitting information
US11902215B2 (en) Method and apparatus for resource mapping in unlicensed spectrum
US20220361206A1 (en) Signaling solution on reliability enhancement for uplink transmission
US20220330321A1 (en) Signaling solution for fast beam diversity
WO2023077425A1 (en) Wireless communication method and related devices
US20220417960A1 (en) UCI Multiplexing Enhancements
WO2023137637A1 (en) Coverage enhancement method and related devices
WO2023050416A1 (en) Method for retransmission of cancelled harq-ack feedback, method for pucch carrier switching for harq-ack feedback, and related devices
WO2023123519A1 (en) Methods and apparatuses of resource allocation for sidelink communication
WO2023150911A1 (en) Methods and apparatuses for sidelink transmission on unlicensed spectrum
US20220369307A1 (en) System and method for resource allocation
WO2023137636A1 (en) Coverage enhancement method and related devices
WO2023060565A1 (en) Methods and apparatuses for sidelink transmission
WO2023184290A1 (en) Methods and apparatuses of resource selection for sidelink communication
WO2023193153A1 (en) Wireless communication method and related devices
WO2024011632A1 (en) Resource configuration method and apparatus, device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962938

Country of ref document: EP

Kind code of ref document: A1