WO2023075527A1 - Complex of lipid nanoparticles and novel cell-penetrating peptides - Google Patents

Complex of lipid nanoparticles and novel cell-penetrating peptides Download PDF

Info

Publication number
WO2023075527A1
WO2023075527A1 PCT/KR2022/016753 KR2022016753W WO2023075527A1 WO 2023075527 A1 WO2023075527 A1 WO 2023075527A1 KR 2022016753 W KR2022016753 W KR 2022016753W WO 2023075527 A1 WO2023075527 A1 WO 2023075527A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
alkyl
formula
independently
carbon
Prior art date
Application number
PCT/KR2022/016753
Other languages
French (fr)
Korean (ko)
Inventor
장관영
강서희
한송이
서유선
나혜림
하지희
이연주
Original Assignee
주식회사 아이큐어비앤피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이큐어비앤피 filed Critical 주식회사 아이큐어비앤피
Publication of WO2023075527A1 publication Critical patent/WO2023075527A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0033Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • It relates to a complex of a lipid nanoparticle and a new peptide having cell permeability, and more particularly, to a complex including a lipid nanoparticle containing a nucleic acid and a novel peptide exhibiting improved cell permeability compared to a commercially available TAT peptide.
  • Lipid nanoparticles are effective drug delivery systems for biologically active compounds such as cell impermeable therapeutic nucleic acids, proteins, and peptides.
  • nucleic acid-based drugs that include large nucleic acid molecules, such as in vitro transcribed messenger RNA (mRNA), as well as smaller polynucleotides that interact with messenger RNA or genes, must be delivered to the appropriate cellular compartment to be effective.
  • mRNA messenger RNA
  • dsRNA double-stranded RNA molecules
  • siRNA blocks gene expression through a highly conserved regulatory mechanism known as RNA interference (RNAi).
  • siRNAs are large, with molecular weights ranging from 12 to 17 kDa, and are highly anionic due to their phosphate backbones with up to 50 negative charges. Also, two complementary RNA strands create a rigid helix. Due to these features, siRNAs have poor drug likeness. In addition, siRNAs are rapidly degraded by nucleases present in blood and other body fluids or tissues and have been shown to stimulate strong immune responses in vitro and in vivo (Robbins et al., Oligonucleotides 19:89-102, 2009). mRNA molecules suffer similar problems of impermeability, fragility and immunogenicity.
  • lipid nanoparticle formulations have improved nucleic acid delivery in vivo. Such formulations, for example, significantly reduced the siRNA dose required to achieve target knockdown in vivo (Zimmermann et al., Nature 441:111-114, 2006).
  • lipid nanoparticle drug delivery systems are multi-component formulations comprising a cationic lipid, a helper lipid, and a lipid comprising polyethylene glycol. Positively charged cationic lipids bind to anionic nucleic acids, while other components support stable self-assembly of lipid nanoparticles.
  • Cell penetrating peptides also called CPP (Cell penetrating peptide) and MTS (membrane translocating sequences)
  • CPP Cell penetrating peptide
  • MTS membrane translocating sequences
  • HIV-1 Human immunodeficiency virus-1
  • TAT a substance called TAT penetrates the cell membrane.
  • Penetratin a cell-penetrating peptide composed of 16 amino acid sequences derived from Antennapedia homeoprotein, an essential transcription factor for the development of Drosophila, derived from VP22, a protein expressed by HSV-1 (Herpes simplex virus type 1) Cell-penetrating peptides such as VP22, the cell-penetrating peptide of the same name, Transportan consisting of artificially synthesized 27 amino acid sequences, and Poly-Arginine, an artificially repeated arginine expected to play the most important role in cell-penetrating peptides. is well known as
  • These conventional cell-penetrating peptides are sequences derived from viral proteins such as HIV-1, or derived from proteins expressed by other species such as Drosophila, or amino acid sequences constituting conventional cell-penetrating peptides are analyzed to determine a characteristic amino acid sequence. Since it is an amino acid sequence that was selected and artificially synthesized, it could cause side effects such as an immune response when applied to the human body.
  • the present inventors have developed CPP variants derived from TCTP protein (translationally controlled tumor protein) representing a series of sequences into lipid nanoparticles. As a result of binding to the particles, it was confirmed that the stability of the nucleic acid in the cytoplasm was greatly improved, and the present invention was completed.
  • TCTP protein translationally controlled tumor protein
  • an object of the present invention is to provide a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
  • R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
  • R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
  • R3 is any one amino acid selected from the group consisting of E, L, A and R,
  • R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
  • R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
  • R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
  • Another object of the present invention is to provide a composition for promoting cellular permeation of a substance containing a lipid nanoparticle and a peptide complex.
  • Another object of the present invention is to provide a composition for accelerating cell permeation of a substance composed of a lipid nanoparticle and a peptide complex.
  • Another object of the present invention is to provide a composition for accelerating cell permeation of a substance essentially consisting of a lipid nanoparticle and a peptide complex.
  • Another object of the present invention is to provide a use of a material comprising the lipid nanoparticle and the peptide complex for preparing a composition for promoting cell permeation.
  • Another object of the present invention is to provide a method for promoting cell permeation comprising administering an effective amount of a composition containing the lipid nanoparticle and a peptide complex-containing material as an active ingredient to a subject in need thereof.
  • the present invention provides a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
  • R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
  • R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
  • R3 is any one amino acid selected from the group consisting of E, L, A and R,
  • R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
  • R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
  • R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
  • the present invention provides a composition for promoting cell permeation of a substance containing a lipid nanoparticle and a peptide complex.
  • the present invention provides a composition for accelerating cell permeation of a substance composed of lipid nanoparticles and peptide complexes.
  • the present invention provides a composition for accelerating cell permeation of substances essentially consisting of lipid nanoparticles and peptide complexes.
  • the present invention provides the use of a material containing the lipid nanoparticle and the peptide complex for preparing a composition for promoting cell permeation.
  • the present invention provides a method for promoting cell permeation comprising administering an effective amount of a composition containing as an active ingredient a substance containing the lipid nanoparticle and the peptide complex to a subject in need thereof to provide.
  • range format various aspects or conditions relating to the present invention may be suggested in a range format.
  • the description of a range value is meant to include a corresponding boundary value, that is, to include all values from the lower limit value to the upper limit value unless otherwise specified. It is to be understood that the description of range formats is merely for convenience and brevity and is not to be construed as an inflexible limitation on the scope of the invention. Accordingly, statements of ranges should be considered to have specifically disclosed all possible subranges as well as individual numerical values within the range.
  • a range such as 7 to 170
  • peptide' and 'protein' are used according to their usual (conventional) meaning, that is, they refer to an amino acid sequence.
  • a peptide is not limited to a particular length, but in the context of the present invention generally refers to a fragment of a full-length protein and is subject to post-translational modifications such as glycosylation, acetylation, phosphorylation, etc., and others known in the art. It may contain modifications (both naturally occurring and non-naturally occurring modifications) and may be referred to as a "polypeptide".
  • the peptides and proteins of the present invention can be prepared using any of a variety of known recombinant and/or synthetic techniques, illustrative examples of which are further described below.
  • the present invention provides a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
  • R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
  • R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
  • R3 is any one amino acid selected from the group consisting of E, L, A and R,
  • R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
  • R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
  • R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
  • the peptide of the present invention is a novel peptide having cell membrane permeability, which itself has excellent cell membrane permeability.
  • the "cell membrane” means a membrane that builds a boundary between a cell and the outside of the cell.
  • the cell membrane may be a cell membrane of any organism, for example, a unicellular or multicellular organism belonging to bacteria (Bacteria), archaea (Archaea) and eukaryote (Eukarya).
  • the eukaryote may be any organism belonging to the protista, fungus, plant, and animal kingdoms.
  • the animal may be any animal including humans.
  • the "cell membrane” may be a membrane of any type of cell.
  • the "cell” may be selected from the group consisting of epithelial cells, muscle cells, immune cells and endothelial cells, but is not limited thereto.
  • the cells form the lining of an organ directly in contact with the outside of the body, such as endothelium, epithelium, or mucous membrane, or are cells of a cell layer covering the surface of an organ or blood vessel in the body. It can be.
  • the cells include skin epithelial cells, hair follicle epithelial cells, mucosal epithelial cells, corneal epithelial cells, scalp epithelial cells, corneal endothelial cells, and vascular endothelial cells.
  • the mucosal epithelial cells may be at least one mucosal epithelial cell selected from the group consisting of nasal cavity, lung, vagina, rectum, anus, urethra, sublingual, ocular, conjunctival and oral mucosa.
  • the vascular endothelial cells may be endothelial cells of various arteries, veins, and capillaries, including cerebral vessels constituting the blood-brain barrier (BBB), endothelial cells of lymphatic vessels, and endothelial cells of the lining of the heart.
  • the cells may be various cancer cells including cervical cancer, breast cancer, liver cancer, lung cancer, and the like.
  • the cells may be cells having receptors for various substances such as hormones, chemical transmitters in the nervous system, and drugs.
  • insulin receptors, glucagon-like-protein 1 (Glucagon-like- It may be a cell having a protein 1, GLP1) receptor, but the cell is not limited to the above examples.
  • proteases include, for example, achromopeptidase, aminopeptidase, ancrod, angiotensin converting enzyme, bromelain , calpain, calpain I, calpain II, carboxypeptidase A, carboxypeptidase B, carboxypeptidase G G), carboxypeptidase P, carboxypeptidase W, carboxypeptidase Y, caspase 1, caspase 2, caspase caspase 3, caspase 4, caspase 5, caspase 6, caspase 7, caspase 8, caspase 9 (caspase 9), caspase 10 (caspase 10), caspase 11 (caspase 11), caspase 12 (caspase 12), caspase 13 (caspase 13), cathepsin B (cathepsin B),
  • protease (protease B. licheniformis, alkaline or alcalase), protease from Bacillus polymyxa, protease from Bacillus sp (protease from Bacillus sp), protease from Rhizopus sp., protease S (protease S), proteasomes, proteinase from Aspergillus oryzae (proteinase from Aspergillus oryzae), Proteinase 3, proteinase A, proteinase K, protein C, pyroglutamate aminopeptidase, renin ( rennin), streptokinase, subtilisin, thermolysin, thrombin, tissue plasminogen activator, trypsin, tryptase and urokinase.
  • proteolytic enzyme is appropriate, taking into account the chemical specificity of the fragment to be produced.
  • the peptides of the present invention can be prepared by any suitable procedure known to those skilled in the art, such as recombinant techniques.
  • the polypeptides of the present invention can be prepared by direct peptide synthesis using solid phase techniques.
  • synthesis can be initiated by attaching functional units, called linkers, to small porous beads to guide the peptide chain.
  • linkers functional units
  • the peptide is covalently bound to the beads and prevents them from being separated by filtration until they are cleaved by a specific reactant, such as trifluoroacetic acid (TFA).
  • TFA trifluoroacetic acid
  • a protection process in which the N-terminal amine of a peptide attached to a solid phase is combined with an N-protected amino acid unit, a deprotection process, a re-exposed amine group and a new Synthesis is performed by repeating a cycle (deprotection-wash-coupling-wash) of a coupling process in which amino acids are combined.
  • the SPPS method can be performed using microwave technology together, and microwave technology can shorten the time required for coupling and deprotection of each cycle by applying heat in the peptide synthesis process.
  • the thermal energy may prevent folding or aggregation of the extended peptide chain and promote chemical bonding.
  • the peptide of the present invention can be prepared by a liquid phase peptide synthesis method, and the specific method thereof is referred to the following documents: US Patent No. 5,516,891.
  • the peptide of the present invention can be synthesized by various methods such as a method of mixing the solid phase synthesis method and the liquid phase synthesis method, and the preparation method is not limited to the means described herein.
  • Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be accomplished using, for example, an Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments can be chemically synthesized separately and combined using chemical methods to produce the target molecule.
  • the peptide is a D-form or L-form, a peptide composed of only a part of the D-form or L-form sequence, or all of them in the form of a racemate through a conventional peptide synthesis method or preparation method known to those skilled in the art. can be produced and used.
  • other conventional modifications known in the art are possible to increase the stability of the peptide.
  • the peptide may include conventional variants.
  • the variant is one in which an arbitrary change has occurred in the amino acid sequence of the 'peptide', and may include one or more substitutions, deletions, additions and/or insertions.
  • Such variants may be naturally occurring, or may be any of a number of techniques well known in the art, for example, by modifying or altering one or more of the above peptide sequences of the present invention and producing those described herein. It can be produced synthetically by evaluating biological activity.
  • the variant comprises conservative substitutions.
  • a 'conservative substitution' is a substitution in which an amino acid is substituted with another amino acid having similar properties, and a person skilled in the art can predict that the secondary structure and hydropathic nature (hydropathic nature, hydrophobic or hydrophilic nature) of the peptide are substantially unchanged. .
  • amino acids exhibit conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.
  • Modifications may be performed within the structure of the peptides of the present invention, yielding functional molecules that encode peptide variants or derivatives having desired (desirable) characteristics. If it is desired to change the amino acid sequence of the peptide in order to prepare an equivalent or improved variant of the peptide of the present invention, one or more codons can be changed based on protein codon information known in the art by those skilled in the art. there is.
  • variant peptides may differ from the native sequence by substitutions, deletions or additions of 5 or fewer amino acids.
  • Variants can also be altered, for example by deletion or addition of amino acids that have minimal impact on the secondary structure and hydropathic properties of the peptide.
  • the peptide may include a signal (or leader) sequence at the N-terminus of the protein, and this sequence directs the transfer of the protein simultaneously or after translation.
  • the peptide may also be conjugated with a linker sequence or other sequence to facilitate synthesis, purification or identification of the peptide (eg poly His), or to enhance binding of the peptide to a solid support. there is.
  • 'complex' means that one or more lipid nanoparticles are included in one or more peptides.
  • the peptide and lipid nanoparticles in the "complex" may be included in a ratio of 1: 1, 1: Da, Da: 1, Da: Da.
  • the peptide and the lipid nanoparticle may be included in a molar ratio of 1:1 to 1:100, or 100:1 to 1:1.
  • the molar ratio is exemplary and is not limited thereto.
  • the complex may be formed by simply mixing the peptide and the lipid nanoparticles, by mixing the peptide and lipid nanoparticles, or by linking them by a chemical bond, in particular, the peptide and lipid Nanoparticles may be conjugated.
  • the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
  • nucleic acid molecules (i) one or more nucleic acid molecules; (ii) cholesterol; (iii) DSPC; (iv) PEG-C-DNA; and (v) a cationic lipid of Formula 1:
  • PEG-C-DNA about 1.5;
  • Cationic lipids about 50.0;
  • the lipid refers to a group of organic compounds, including but not limited to esters of fatty acids, characterized by being insoluble in water but soluble in many organic solvents. They generally fall into at least three classes: (1) 'simple lipids', which include waxes as well as fats and oils; (2) 'complex lipids' comprising phospholipids and glycolipids; and (3) 'derived lipids' such as steroids.
  • Lipid particles (eg, LNPs) in the present invention are typically about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm. to about 90 nm in average diameter, and is substantially non-toxic.
  • the nucleic acids when present in the lipid particles of the invention, are resistant in aqueous solution to degradation due to nucleases. Nucleic acid-lipid particles and methods of making them are disclosed, for example, in US Patent Publication Nos. 20040142025 and 20070042031, the disclosures of which are incorporated herein by reference in their entirety for all purposes.
  • the lipid nanoparticle refers to a lipid-nucleic acid particle or a nucleic acid-lipid particle (eg, a stable nucleic acid-lipid particle).
  • LNP refers to particles made of lipids (e.g., cationic lipids, non-cationic lipids, and conjugated lipids that prevent particle aggregation), nucleic acids, wherein the nucleic acids (e.g., siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, short hairpin RNA (shRNA), dsRNA, mRNA, self-amplifying RNA, or plasmid, including interfering RNA or plasmids from which mRNA is transcribed) are encapsulated in lipids.
  • the nucleic acids e.g., siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, short hairpin RNA (shRNA), ds
  • Nucleic acids are at least 50%, 75%, 90%, 100% encapsulated in lipids.
  • LNPs typically include cationic lipids, non-cationic lipids, and lipid conjugates (eg, PEG-lipid conjugates).
  • LNPs can have a prolonged circulatory life following intravenous (i.v.) injection and can accumulate at distal sites (eg, at sites physically separate from the site of administration) where expression or targeting of transfected genes occurs. It is very useful for systemic application as it can mediate the silencing of gene expression.
  • the nucleic acid refers to a polymer comprising at least two deoxyribonucleotides or ribonucleotides in single- or double-stranded form, and includes DNA and RNA.
  • DNA includes, for example, antisense molecules, plasmid DNA, pre-condensed DNA, PCR products, vectors (P1, PAC, BAC, YAC, artificial chromosomes), expression cassettes, chimeric sequences, chromosomal DNA, or derivatives of these groups and It may be in the form of a combination.
  • RNA can be in the form of siRNA, asymmetric interfering RNA (aiRNA), microRNA (miRNA), mRNA, tRNA, rRNA, tRNA, viral RNA (vRNA), self-amplifying RNA, and combinations thereof.
  • Nucleic acids include nucleic acids that are synthetic, naturally occurring, and non-naturally occurring, and that contain known nucleotide analogs or modified framework residues or linkages that have similar binding properties to reference nucleic acids. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2'-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs).
  • PNAs peptide-nucleic acids
  • nucleic acids comprising known analogues of natural nucleotides that have similar binding properties to standard nucleic acids.
  • a particular nucleic acid sequence also implies conservatively modified variants (eg, degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences thereof, as well as explicitly indicated sequences. to include Specifically, degenerate codon substitutions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is replaced with mixed bases and/or deoxyinosine residues.
  • a “nucleotide” includes the sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked to each other through phosphate groups.
  • “Base” refers to the natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and purines and pyrimidines, further including their natural analogues, and including but not limited to amines, alcohols, thiols, carboxylates, and alkylhalides. synthetic derivatives of purines and pyrimidines, including but not limited to modifications that place new reactive groups such as
  • interfering RNA or the term “RNAi” or “interfering RNA sequence” refers to when the interfering RNA is in the same cell as the target gene or sequence (e.g., mediates degradation of mRNA complementary to the interfering RNA sequence or inhibits translation).
  • single-stranded RNA eg, mature miRNA
  • double-stranded RNA eg, duplex RNA such as siRNA, aiRNA, or pre-miRNA
  • Interfering RNA thus refers to a single-stranded RNA that is complementary to a target mRNA sequence or to a double-stranded RNA formed by two complementary strands or by a single self-complementary strand.
  • An interfering RNA may have substantial or complete identity to a target gene or sequence, or may have regions of mismatch (ie, mismatch motifs).
  • the sequence of the interfering RNA may correspond to a full-length target gene or a subsequence thereof.
  • An interfering RNA is a "small-interfering RNA" or “siRNA”, e.g., about 15-60, 15-50, or 15-40 (duplex) nucleotides in length, more typically about 15-30, 15-25, or 19-25 (duplex) nucleotides in length, preferably about 20-24, 21-22, or 21-23 (duplex) nucleotides in length (e.g., each complementary sequence of the double-stranded siRNA is 15-60, 15-50, 15-40, 15-30, 15-25, or 19-25 nucleotides in length, preferably about 20-24, 21-22, or 21-23 nucleotides in length, and is double stranded.
  • siRNA small-interfering RNA
  • siRNA is about 15-60, 15-50, 15-40, 15-30, 15-25, or 19-25 base pairs in length, preferably about 18-22, 19-20, or 19-21 base pairs in length) .
  • the siRNA duplex may include a 3' overhang and a 5' phosphate end of about 1 to about 4 nucleotides or about 2 to about 3 nucleotides.
  • siRNAs include, without limitation, double-stranded polynucleotide molecules assembled from two separate stranded molecules, wherein one strand is the sense strand and the other strand is the complementary antisense strand;
  • a circular single-stranded polynucleotide molecule with a stem having two or more loop structures and self-complementary sense and antisense regions, wherein the circular polynucleotide can be processed in vivo or in vitro to generate an active double-stranded siRNA molecule.
  • the siRNA molecules described herein may have a 3' overhang of one, two, three, four, or more nucleotides on one or both sides of the double-stranded region, or may have no overhang on one or both sides of the double-stranded region. (i.e., with blunt ends).
  • the siRNA has a 3' overhang of two nucleotides on each side of the double-stranded region.
  • the 3' overhang of the antisense strand is complementary to the target sequence and the 3' overhang of the sense strand is complementary to the complementary strand of the target sequence.
  • the 3' overhang has no complementarity to the target sequence or its complementary strand.
  • the 3' overhang comprises one, two, three, four, or more nucleotides, such as a 2'-deoxy (2'H) nucleotide.
  • the 3' overhang comprises deoxythymidine (dT) and/or uridine nucleotides.
  • dT deoxythymidine
  • uridine uridine nucleotides
  • one or more of the nucleotides in the 3' overhang on one or both sides of the double stranded region comprises a modified nucleotide.
  • Non-limiting examples of modified nucleotides are described above and include 2'OMe nucleotides, 2'-deoxy-2'F nucleotides, 2'-deoxy nucleotides, 2'-O-2-MOE nucleotides, LNA nucleotides, and contains a mix
  • one, two, three, four, or more nucleotides in the 3' overhang present in the sense and/or antisense strand of the siRNA are, for example, 2'OMe-guanosine nucleotides, 2'OMe- 2'OMe nucleotides such as uridine nucleotides, 2'OMe-adenosine nucleotides, 2'OMe-cytosine nucleotides, and mixtures thereof (eg, 2'OMe purine and/or pyrimidine nucleotides).
  • a siRNA is at least one or a cocktail (e.g., at least two, three, four, five, six, seven, eight, nine, ten, or more) of unmodified and/or modified siRNA sequences that silence target gene expression. ) may be included.
  • a cocktail of siRNAs can include sequences directed to the same region or domain (eg, a "hot spot") and/or to different regions or domains of one or more target genes.
  • modified siRNAs that silence one or more eg, at least two, three, four, five, six, seven, eight, nine, ten, or more
  • unmodified siRNA sequences that silence one or more are present in the cocktail. do.
  • siRNA is chemically synthesized.
  • siRNAs can also be generated by cleavage of longer dsRNAs (eg, dsRNAs greater than about 25 nucleotides in length) using E. coli RNase III or Dicer. These enzymes process dsRNA into biologically active siRNA.
  • the dsRNA is at least 50 nucleotides to about 100, 200, 300, 400, or 500 nucleotides in length.
  • a dsRNA may be 1000, 1500, 2000, 5000 nucleotides in length or longer.
  • a dsRNA can encode for an entire gene transcript or a partial gene transcript.
  • siRNAs can be encoded by a plasmid (eg, transcribed as a sequence that automatically folds into a duplex with a hairpin loop).
  • the mRNA is preferably mono-, bi-, or multicistronic, as defined herein. Coding sequences within bi- or multicistronic mRNAs preferably encode individual peptides or proteins or fragments or variants thereof as defined herein. Preferably, coding sequences encoding two or more peptides or proteins may be separated from the bi- or multicistronic mRNA by at least one IRES (Internal Ribosome Entry Point), as defined below.
  • IRES Internal Ribosome Entry Point
  • the term “encoding two or more peptides or proteins” means that a bi- or multicistronic mRNA can contain, for example, at least 2, 3, 4, 5, 6 or more (within the definitions provided herein).
  • the bi- or multicistronic mRNA is at least 2, 3, 4, 5, 6 or more, for example as defined herein (preferably different) peptides or proteins or fragments or variants thereof as defined herein.
  • IRES Internal Ribosome Entry Point
  • the so-called IRES (Internal Ribosome Entry Point) sequence may serve as the sole ribosome binding site, but encode several peptides or proteins, as defined above, that are translated by the ribosome independently of each other. However, it may also serve to provide bi- or multicistronic mRNA.
  • IRES sequences that may be used in accordance with the present invention are picornavirus (eg FMDV), pestivirus (CFFV), poliovirus (PV), encephalomyocarditis virus (ECMV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV), classic swine fever virus (CSFV), mouse corneal leukoplakia virus (MLV), monkey immunodeficiency virus (SIV) or cricket paralysis virus (CrPV).
  • picornavirus eg FMDV
  • CFFV pestivirus
  • PV poliovirus
  • ECMV encephalomyocarditis virus
  • FMDV foot-and-mouth disease virus
  • HCV hepatitis C virus
  • CSFV classic swine fever virus
  • MMV mouse corneal leukoplakia virus
  • SIV monkey immunodeficiency virus
  • CrPV cricket paralysis virus
  • the cationic lipid refers to a compound of Formula 1 or a salt thereof:
  • lipid' refers to compounds having non-polar groups including, but not limited to, long-chain saturated and unsaturated aliphatic hydrocarbon groups and such groups optionally substituted by one or more aromatic, cycloaliphatic, or heterocyclic group(s). Suitable examples include, but are not limited to, diacylglycerol, dialkylglycerol, N-N-dialkylamino, 1,2-diacyloxy-3-aminopropane, and 1,2-dialkyl-3-aminopropane.
  • Nucleic acids present in the lipid-nucleic acid particles according to the present invention include nucleic acids in any known form.
  • a nucleic acid as used herein may be single-stranded DNA or RNA, or double-stranded DNA or RNA, or a DNA-RNA hybrid.
  • double-stranded DNA are described herein and include, for example, structural genes, genes comprising control and termination regions, and self-replicating systems such as viral or plasmid DNA.
  • Examples of double-stranded RNA are described herein and include, for example, siRNA and other RNAi agents such as aiRNA and pre-miRNA.
  • Single-stranded nucleic acids include, for example, antisense oligonucleotides, ribozymes, mature miRNAs, and triplex forming oligonucleotides.
  • Nucleic acids can generally be of various lengths depending on the particular form of the nucleic acid.
  • a plasmid or gene may be between about 1,000 and about 100,000 nucleotide residues in length.
  • oligonucleotides may range from about 10 to about 100 nucleotides in length.
  • the single-stranded, double-stranded, and triple-stranded oligonucleotides are about 10 to about 60 nucleotides in length, about 15 to about 60 nucleotides in length, about 20 to about 50 nucleotides in length, and about 15 to about 60 nucleotides in length. 30 nucleotides, or from about 20 to about 30 nucleotides in length.
  • an oligonucleotide (or strand thereof) of the invention specifically hybridizes to or is complementary to a target polynucleotide sequence.
  • a target polynucleotide sequence specifically hybridizes to or is complementary to a target polynucleotide sequence.
  • specifically hybridizable and complementary refer to a sufficient degree of complementarity such that stable and specific binding occurs between a DNA or RNA target and an oligonucleotide. It is understood that oligonucleotides need not be 100% complementary to a target nucleic acid sequence to be specifically hybridizable.
  • the oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target sequence would interfere with the normal functioning of the target sequence, resulting in loss of usefulness or expression therefrom, and conditions under which specific binding is desired under physiological conditions, i.e., in the case of an in vivo assay or therapeutic treatment, or under the conditions under which the assay is performed, in the case of an in vitro assay, to a sufficient extent to prevent non-specific binding of the oligonucleotide to a non-target sequence.
  • an oligonucleotide may contain 1, 2, 3 or more base substitutions compared to the region of the gene or mRNA sequence that it targets or specifically hybridizes to.
  • the PEG-C-DMA has the following structure.
  • n is selected such that the resulting polymer chain has a molecular weight of about 1000 to about 3000. In another embodiment, n is selected such that the resulting polymer chain has a molecular weight of about 2000.
  • PEG-C-DMA is prepared as described in Heyes et al, Synthesis and Characterization of Novel Poly (Ethylene Glycol)-lipid Conjugates Suitable for use in Drug Delivery," Journal of Controlled Release, 2006, and U.S. Patent No. 8,936,942 Those skilled in the art will understand that the concentration of PEG-C-DMA can vary depending on the rate at which nucleic acid-lipid particles become soluble. For example, the rate at which nucleic acid-lipid particles become soluble is , for example by changing the molecular weight of PEG.
  • cholesterol derivatives are cholestanol, cholestanone, cholestenone, coprostanol, cholesteryl-2'-hydroxyethyl ether, cholesteryl-4'-hydroxybutyl ether, and mixtures thereof. including but not limited to
  • DSPC means distearoylphosphatidylcholine.
  • the present invention provides a method of continuous mixing, e.g., providing an aqueous solution comprising a nucleic acid to a first reservoir, providing an organic lipid solution to a second reservoir, and mixing the organic lipid solution with the aqueous solution
  • a process comprising mixing an aqueous solution with an organic lipid solution to substantially immediately produce liposomes encapsulating a nucleic acid (eg, interfering RNA or mRNA).
  • a nucleic acid eg, interfering RNA or mRNA
  • serial dilution of a lipid solution with a buffer solution generally means that the lipid solution is diluted rapidly enough during the hydration process with sufficient force to cause vesicle formation.
  • a buffer solution i.e., aqueous solution
  • LNPs formed using continuous mixing methods typically have a wavelength of about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm. has a size of nm.
  • the particles thus formed are not agglomerated and are optionally sized to obtain a uniform particle size.
  • the present invention provides an LNP produced through a direct dilution process in which a third reservoir containing a dilution buffer is fluidly coupled to a second mixing region.
  • the liposomal solution formed in the first mixing zone is immediately and directly mixed with the dilution buffer in the second mixing zone.
  • the second mixing zone comprises T-connectors arranged so that the liposomal solution and dilution buffer flows meet as opposing 180° flows; A connector providing a shallower angle, for example from about 27° to about 180°, may be used.
  • a pump mechanism delivers a controllable buffer flow to the second mixing zone.
  • the flow rate of the dilution buffer provided to the second mixing zone is controlled to be substantially the same as the flow rate of the liposome solution introduced from the first mixing zone.
  • This embodiment advantageously allows better control of the flow of the dilution buffer mixed with the liposomal solution in the second mixing zone, and thus the concentration of the liposomal solution in the buffer throughout the second mixing process. Control of such dilution buffer flow rate advantageously allows small particle size formation at reduced concentrations.
  • LNPs formed using the direct dilution process typically have a wavelength of about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm. has a size of nm.
  • the particles thus formed are not agglomerated and are optionally sized to obtain a uniform particle size.
  • lipid particles (eg, LNPs) of the invention may be sized by any method available for liposome sizing. Sizing can be performed to obtain a desired size range and relatively narrow particle size distribution. Several techniques are available for sizing the particles to the desired size. One sizing method used for liposomes and equally applicable to present particles is described in US Pat. No. 4,737,323, the disclosure of which is incorporated herein by reference in its entirety for all purposes. Sonication of particle suspensions by bath or probe sonication results in gradual size reduction to particles less than about 50 nm in size. Homogenization is another method that relies on shear energy to break larger particles into smaller ones.
  • the particles are recycled through a standard emulsion homogenizer until a selected particle size, typically about 60 to about 80 nm, is observed.
  • a selected particle size typically about 60 to about 80 nm
  • the particle size distribution can be monitored by conventional laser-beam particle size identification, or QELS.
  • Extrusion of particles through small pore polycarbonate membranes or asymmetric ceramic membranes is also an effective way to reduce particle size to a relatively well-defined size distribution.
  • the suspension is cycled through the membrane one or more times until the desired particle size distribution is achieved.
  • Particles can be extruded through successively smaller pore membranes to achieve progressive size reduction.
  • the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
  • R 1a and R 1b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 1a is H or C 1 -C 12 alkyl, and R 1b is the carbon atom to which it is attached. together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond;
  • R 2a and R 2b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is the carbon atom to which it is attached. together with adjacent R 2b and the carbon atom to which it is attached to form a carbon-carbon double bond;
  • R 3a and R 3b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is the carbon atom to which it is attached. together with adjacent R 3b and the carbon atom to which it is attached to form a carbon-carbon double bond;
  • R 4a and R 4b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is the carbon atom to which it is attached. together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
  • R 5 and R 6 are each independently methyl or cycloalkyl
  • R 7 at each occurrence, is independently H or C 1 -C 12 alkyl
  • R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle containing one nitrogen atom;
  • a and d are each independently an integer of 0 to 24;
  • b and c are each independently an integer from 1 to 24;
  • e 1 or 2
  • an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications;
  • the mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
  • a complex comprising a.
  • R 1a and R 1b are not isopropyl when a is 6 or n-butyl when a is 8.
  • R 8 and R 9 are each independently unsubstituted C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle containing one nitrogen atom.
  • either L 1 or L 2 is a carbon-carbon double bond. In other embodiments, both L 1 and L 2 are carbon-carbon double bonds.
  • carbon-carbon double bond is understood to refer to one of the following structures:
  • R a and R b are, in each case, independently H or a substituent.
  • R a and R b at each occurrence, independently are H, C 1 -C 12 alkyl or cycloalkyl, such as H or C 1 -C 12 alkyl.
  • the lipid compound of Formula 2 has structure 2a:
  • the lipid compound of Formula 2 has structure 2b:
  • the lipid compound of formula 2 has structure 2c:
  • a, b, c and d are each independently an integer from 2 to 12 or an integer from 4 to 12. In another embodiment, a, b, c and d are each independently an integer from 8 to 12 or from 5 to 9. In some specific embodiments, a is zero. In some embodiments, a is 1. In another embodiment, a is 2. In more embodiments, a is 3. In another embodiment, a is 4. In some embodiments, a is 5. In another embodiment, a is 6. In more embodiments, a is 7. In another embodiment, a is 8. In some embodiments, a is 9. In another embodiment, a is 10. In more embodiments, a is 11. In another embodiment, a is 12. In some embodiments, a is 13. In another embodiment, a is 14. In more embodiments, a is 15. In another embodiment, a is 16.
  • b is 1. In other embodiments, b is 2. In more embodiments, b is 3. In another embodiment, b is 4. In some embodiments, b is 5. In other embodiments, b is 6. In more embodiments, b is 7. In another embodiment, b is 8. In some embodiments, b is 9. In other embodiments, b is 10.
  • b is 11. In another embodiment, b is 12. In some embodiments, b is 13. In other embodiments, b is 14. In more embodiments, b is 15. In another embodiment, b is 16.
  • c is 1. In other embodiments, c is 2. In more embodiments, c is 3. In another embodiment, c is 4. In some embodiments, c is 5. In other embodiments, c is 6. In more embodiments, c is 7. In another embodiment, c is 8. In some embodiments, c is 9. In other embodiments, c is 10. In more embodiments, c is 11. In another embodiment, c is 12. In some embodiments, c is 13. In other embodiments, c is 14. In more embodiments, c is 15. In another embodiment, c is 16.
  • d is 0. In some embodiments, d is 1. In another embodiment, d is 2. In more embodiments, d is 3. In another embodiment, d is 4. In some embodiments, d is 5. In another embodiment, d is 6. In more embodiments, d is 7. In another embodiment, d is 8. In some embodiments, d is 9. In another embodiment, d is 10. In more embodiments, d is 11. In another embodiment, d is 12. In some embodiments, d is 13. In another embodiment, d is 14. In more embodiments, d is 15. In another embodiment, d is 16.
  • a and d are the same. In some other embodiments, b and c are the same. In some other specific embodiments, a and d are equal and b and c are equal.
  • the sum of a and b and the sum of c and d in Formula 2 are factors that can be varied to obtain a lipid of Formula 2 having the desired properties.
  • a and b are selected such that their sum is an integer in the range of 14 to 24.
  • c and d are selected such that their sum is an integer in the range of 14 to 24.
  • the sum of a and b and the sum of c and d are equal.
  • the sum of a and b and the sum of c and d are both the same integer, which can range from 14 to 24.
  • a. b, c and d are selected so that the sum of a and b and the sum of c and d is 12 or more.
  • e is 1. In another embodiment, e is 2.
  • R 1a , R 2a , R 3a and R 4a in Formula 2 are not particularly limited.
  • R 1a , R 2a , R 3a and R 4a are H at each occurrence.
  • at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 12 alkyl.
  • at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 8 alkyl.
  • at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 6 alkyl.
  • C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
  • R 1a , R 2a , R 3a and R 4a are at each occurrence C 1 -C 12 alkyl.
  • At least one of R 1a , R 2a , R 3a and R 4a is H, or R 1a , R 2a , R 3a and R 4a are in each case H.
  • R 1b is taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond.
  • R 4b is taken together with the carbon atom to which it is attached, together with adjacent R4b and the carbon atom to which it is attached to form a carbon-carbon double bond.
  • R 5 and R 6 in Formula 2 are not particularly limited in the above embodiments.
  • one or both of R 5 or R 6 is methyl.
  • one or both of R 5 or R 6 is cycloalkyl, such as cyclohexyl.
  • cycloalkyls can be substituted or unsubstituted.
  • cycloalkyl is substituted with C 1 -C 12 alkyl, for example tert-butyl.
  • R 7 is not particularly limited in the above-described embodiments of Formula 2.
  • at least one R 7 is H.
  • R 7 is H at each occurrence.
  • R 7 is C 1 -C 12 alkyl.
  • one of R 8 or R 9 is methyl. In other embodiments, both R 8 and R 9 are methyl.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form a 5-membered heterocycle, such as a pyrrolidinyl ring.
  • the lipid of Formula 2 has one of the structures set forth in Table 1 below.
  • the LNP comprises a lipid of Formula 2, an mRNA compound as defined herein, and one or more excipients selected from neutral lipids, steroids and pegylated lipids.
  • the lipid of formula 2 is compound 2-5. In some embodiments, the lipid of formula 2 is compound 2-6.
  • the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
  • G 3 is C 1 -C 6 alkylene
  • R a is H or C 1 -C 12 alkyl
  • R 1a and R 1b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 1a is H or C 1 -C 12 alkyl, R 1b taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached, form a carbon-carbon double bond;
  • R 2a and R 2b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is taken together with the carbon atom to which it is attached, together with adjacent R 2b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
  • R 3a and R 3b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is taken together with the carbon atom to which it is attached, together with adjacent R 3b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
  • R 4a and R 4b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is taken together with the carbon atom to which it is attached, together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
  • R 5 and R 6 are each independently H or methyl
  • R 7 is C 4 -C 20 alkyl
  • R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle;
  • a, b, c and d are each independently an integer from 1 to 24;
  • x 0, 1 or 2;
  • an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications;
  • the mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
  • a complex comprising a.
  • the lipid compound has one of the following structures 3A or 3B:
  • the lipid compound has structure 3A. In another embodiment, the lipid compound has structure 3B.
  • either L 1 or L 2 is a direct bond.
  • “direct bond” means the absence of the corresponding group (eg, L 1 or L 2 ).
  • each of L 1 and L 2 is a direct bond.
  • R 1a is H or C 1 -C 12 alkyl, and R 1b together with the carbon atom to which it is attached, adjacent R 1b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
  • R 4a is H or C 1 -C 12 alkyl, and R 4b together with the carbon atom to which it is attached, adjacent R 4b and the carbon atom to which it is bonded forms a carbon-carbon double bond.
  • R 2a is H or C 1 -C 12 alkyl
  • R 2b together with the carbon atom to which it is attached, adjacent R 2b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
  • R 3a is H or C 1 -C 12 alkyl, R 3b together with the carbon atom to which it is attached, adjacent R 3b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
  • the lipid compound has either structure 3C or 3D:
  • the lipid compound has structure 3C. In another embodiment, the lipid compound has a 3D structure.
  • e, f, g and h are each independently an integer from 4 to 10.
  • a, b, c, and d are each independently an integer from 2 to 12 or an integer from 4 to 12.
  • a, b, c and d are each independently an integer from 8 to 12 or from 5 to 9. In some specific embodiments, a is zero. In some embodiments, a is 1. In another embodiment, a is 2. In more embodiments, a is 3. In another embodiment, a is 4. In some embodiments, a is 5. In another embodiment, a is 6. In more embodiments, a is 7. In another embodiment, a is 8. In some embodiments, a is 9. In another embodiment, a is 10. In more embodiments, a is 11. In another embodiment, a is 12. In some embodiments, a is 13. In another embodiment, a is 14. In more embodiments, a is 15. In another embodiment, a is 16.
  • b is 1. In other embodiments, b is 2. In more embodiments, b is 3. In another embodiment, b is 4. In some embodiments, b is 5. In other embodiments, b is 6. In more embodiments, b is 7. In another embodiment, b is 8. In some embodiments, b is 9. In other embodiments, b is 10. In more embodiments, b is 11. In another embodiment, b is 12. In some embodiments, b is 13. In other embodiments, b is 14. In more embodiments, b is 15. In another embodiment, b is 16.
  • c is 1. In other embodiments, c is 2. In more embodiments, c is 3. In another embodiment, c is 4. In some embodiments, c is 5. In other embodiments, c is 6. In more embodiments, c is 7. In another embodiment, c is 8. In some embodiments, c is 9. In other embodiments, c is 10. In more embodiments, c is 11. In another embodiment, c is 12. In some embodiments, c is 13. In other embodiments, c is 14. In more embodiments, c is 15. In another embodiment, c is 16.
  • d is 0. In some embodiments, d is 1. In another embodiment, d is 2. In more embodiments, d is 3. In another embodiment, d is 4. In some embodiments, d is 5. In another embodiment, d is 6. In more embodiments, d is 7. In another embodiment, d is 8. In some embodiments, d is 9. In another embodiment, d is 10. In more embodiments, d is 11. In another embodiment, d is 12. In some embodiments, d is 13. In another embodiment, d is 14. In more embodiments, d is 15. In another embodiment, d is 16.
  • e is 1. In another embodiment, e is 2. In more embodiments, e is 3. In another embodiment, e is 4. In some embodiments, e is 5. In another embodiment, e is 6. In more embodiments, e is 7. In another embodiment, e is 8. In some embodiments, e is 9. In another embodiment, e is 10. In more embodiments, e is 11. In another embodiment, e is 12.
  • f is 1. In another embodiment, f is 2. In more embodiments, f is 3. In another embodiment, f is 4. In some embodiments, f is 5. In another embodiment, f is 6. In more embodiments, f is 7. In another embodiment, f is 8. In some embodiments, f is 9. In other embodiments, f is 10. In more embodiments, f is 11. In another embodiment, f is 12.
  • g is 1. In other embodiments, g is 2. In more embodiments, g is 3. In another embodiment, g is 4. In some embodiments, g is 5. In another embodiment, g is 6. In more embodiments, g is 7. In another embodiment, g is 8. In some embodiments, g is 9. In another embodiment, g is 10. In more embodiments, g is 11. In another embodiment, g is 12.
  • h is 1. In another embodiment, e is 2. In more embodiments, h is 3. In another embodiment, h is 4. In some embodiments, e is 5. In other embodiments, h is 6. In more embodiments, h is 7. In another embodiment, h is 8. In some embodiments, h is 9. In other embodiments, h is 10. In more embodiments, h is 11. In another embodiment, h is 12.
  • a and d are the same. In some other embodiments, b and c are the same. In some other specific embodiments, a and d are equal and b and c are equal.
  • the sum of a and b and the sum of c and d in Formula 3 are factors that can be varied in order to obtain a lipid having the desired properties.
  • a and b are selected such that their sum is an integer in the range of 14 to 24.
  • c and d are selected such that their sum is an integer in the range of 14 to 24.
  • the sum of a and b and the sum of c and d are equal.
  • the sum of a and b and the sum of c and d are both the same integer, which can range from 14 to 24.
  • a. b, c and d are selected so that the sum of a and b and the sum of c and d is 12 or more.
  • Substituents for R 1a , R 2a , R 3a and R 4a in Formula 3 are not particularly limited. In some embodiments, at least one of R 1a , R 2a , R 3a and R 4a is H. In some embodiments, R 1a , R 2a , R 3a and R 4a are H at each occurrence. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 12 alkyl. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 8 alkyl.
  • R 1a , R 2a , R 3a and R 4a is C 1 -C 6 alkyl.
  • C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
  • R 1a , R 2a , R 3a and R 4a at each occurrence are C 1 -C 12 alkyl.
  • At least one of R 1a , R 2a , R 3a and R 4a is H, or R 1a , R 2a , R 3a and R 4a are in each case H.
  • R 1b is taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond.
  • R 4b is taken together with the carbon atom to which it is attached, together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond.
  • R 5 and R 6 in Formula 3 are not particularly limited in the above embodiments.
  • one of R 5 or R 6 is methyl.
  • each of R 5 or R 6 is methyl.
  • R a is H or C 1 -C 12 alkyl
  • R b is C 1 -C 15 alkyl
  • x is 0, 1 or 2
  • R b is a branched C 1 -C 15 alkyl.
  • R b has one of the following structures:
  • one of R 8 or R 9 is methyl. In other embodiments, both R8 and R9 are methyl.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle.
  • R8 and R9 together with the nitrogen atom to which they are attached form a 5-membered heterocycle, such as a pyrrolidinyl ring.
  • R 8 and R 9 together with the nitrogen atom to which they are attached form a 6-membered heterocycle, such as a piperazinyl ring.
  • G 3 is C 2 -C 4 alkylene, eg C 3 alkylene.
  • the lipid compound has one of the structures set forth in Table 2 below.
  • the LNP comprises a lipid of Formula 3, an mRNA compound as described above, and one or more excipients selected from neutral lipids, steroids, and pegylated lipids.
  • the lipid of formula 3 is compound 3-9.
  • the lipid of formula 3 is compound 3-10.
  • the lipid of formula 3 is compound 3-11.
  • the lipid of formula 3 is compound 3-12.
  • the lipid of formula 3 is compound 3-32.
  • the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
  • G 1 and G 2 are each independently unsubstituted C 1 -C 12 alkylene or C 1 -C 12 alkenylene;
  • G 3 is C 1 -C 24 alkylene, C 1 -C 24 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
  • R a is H or C 1 -C 12 alkyl
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R 4 is C 1 -C 12 alkyl
  • R 5 is H or C 1 -C 6 alkyl
  • x 0, 1 or 2;
  • an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications;
  • the mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
  • a complex comprising a.
  • the lipid has one of the following structural Formulas 4A or 4B:
  • A is a 3 to 8 membered cycloalkyl or cycloalkylene ring
  • R 6 at each occurrence, is independently H, OH, or C 1 -C 24 alkyl
  • n is an integer ranging from 1 to 15.
  • the lipid has Formula 4A, and in other embodiments the lipid has Formula 4B.
  • the lipid has either Formula 4C or Formula 4D:
  • y and z are each independently an integer ranging from 1 to 12.
  • the lipid has one of the following Formulas 4E or 4F:
  • the lipid has one of the following structural Formula 4G, Formula 4H, Formula 4I, or Formula 4J:
  • n is an integer ranging from 2 to 12, such as from 2 to 8 or from 2 to 4.
  • n is 3, 4, 5 or 6.
  • n is 3.
  • n is 4.
  • n is 5.
  • n is 6.
  • y and z are each independently an integer ranging from 2 to 10.
  • y and z are each independently an integer ranging from 4 to 9 or 4 to 6.
  • R 6 is H. In other of the foregoing embodiments, R 6 is C 1 -C 24 alkyl. In other embodiments, R 6 is OH.
  • G 3 is unsubstituted. In other embodiments, G 3 is unsubstituted. In various different embodiments, G 3 is linear C 1 -C 24 alkylene or linear C 1 -C 24 alkenylene.
  • R 1 or R 2 is C 6 -C 24 alkenyl.
  • each of R 1 and R 2 independently has the structure:
  • R 7a and R 7b are independently H or C 1 -C 12 alkyl
  • a is an integer from 2 to 12;
  • R 7a , R 7b and a are each selected such that R 1 and R 2 each independently contain 6 to 20 carbon atoms.
  • a is an integer ranging from 5 to 9 or 8 to 12.
  • At least one instance of R 7a is H.
  • R 7a is H at each occurrence.
  • at least one instance of R 7b is C 1 -C 8 alkyl.
  • C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
  • R 1 or R 2 have one of the following structures:
  • R 4 is methyl or ethyl.
  • the cationic lipid of Formula 4 has one of the structures set forth in Table 3 below.
  • the LNP comprises a lipid of Formula 4, an mRNA compound as described herein, and one or more excipients selected from neutral lipids, steroids and pegylated lipids.
  • the lipid of formula 4 is compound 4-3. In some embodiments, the lipid of formula 4 is compounds 4-7.
  • LNP-4-3 means a lipid nanoparticle as defined herein comprising a cationic lipid compound 4-3 according to the table above. Other lipid nanoparticles are referred to in a similar fashion.
  • the cationic lipid of Formula 2, 3, or 4 is present in the LNP in an amount from about 30 to about 95 mole percent relative to the total lipid content of the LNP. When two or more cationic lipids are incorporated into an LNP, such percentages apply to the combined cationic lipids. In one embodiment, the cationic lipid is present in the LNP in an amount of about 30 to about 70 mole percent. In one embodiment, each cationic lipid is about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or in an amount of about 40 to about 60 mole percent, such as 60 mole percent.
  • the LNP comprises a combination or mixture of any of the lipids described above.
  • the lipid nanoparticle comprises a cationic lipid selected from the group:
  • the lipid nanoparticle is about 30 nm to about 150 nm, about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 70 to about 90 nm, about 80 nm to about 90 nm, about 70 nm to about 80 nm, or about 30 nm , 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135
  • the lipid nanoparticle has a range of about 50 nm to about 300 nm, or about 60 nm to about 250 nm, about 60 nm to about 150 nm, or about 60 nm to about 120 nm, respectively. has a hydrodynamic diameter.
  • mRNA resists degradation by nucleases in aqueous solutions when present in lipid nanoparticles.
  • the total amount of mRNA in lipid nanoparticles varies and can be defined according to the mRNA w/w ratio to total lipid.
  • the mRNA to total lipid ratio is less than 0.06 w/w, preferably between 0.03 and 0.04 w/w.
  • the LNP comprises a lipid of formula 2, 3 or 4, an mRNA compound as defined above, a neutral lipid, a steroid.
  • the lipid of formula 2 is compound 2-6, or the lipid of formula 4 is compound 4-3, the neutral lipid is DSPC, and the steroid is cholesterol.
  • the LNP comprises one or more targeting moieties capable of targeting the LNP to a cell or cell population.
  • the targeting moiety is a ligand that directs the LNP to a receptor found on the cell surface.
  • an LNP comprises one or more internalization domains.
  • the LNP comprises one or more domains that bind to cells and induce internalization of the LNP.
  • the one or more internalization mains bind to a receptor found on the cell surface and induce receptor-mediated uptake of the LNP.
  • the LNP may bind to a biomolecule in vivo, and in vivo the LNP-bound biomolecule may be recognized by a cell surface receptor to induce internalization.
  • LNP binds systemic ApoE, which results in uptake of the LNP and associated cargo.
  • Embodiments of Formula 2 lipids can be prepared according to general Scheme 1 (“Method A”), wherein R is saturated or unsaturated C 1 -C 24 alkyl or saturated or unsaturated cycloalkyl And, m is 0 or 1, n is an integer from 1 to 24.
  • Method A compounds of Structure A-1 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art.
  • a mixture of A-1, A-2 and DMAP is treated with DCC to give the bromide A-3.
  • a base e.g., N,N-diisopropylethylamine
  • N,N-dimethyldiamine A-4 to produce A-5 after any necessary workup and or purification steps. Heat at sufficient temperature and time.
  • Compound B-5 can be prepared according to general Scheme 2 (“Method B”), wherein R is a saturated or unsaturated C 1 -C 24 alkyl or saturated or unsaturated Cycloalkyl, m is 0 or 1, n is an integer from 1 to 24.
  • compounds of structure B-1 can be purchased from commercial sources or can be prepared according to methods familiar to those skilled in the art.
  • a solution of B-1 (1 equiv.) is treated with the acid chloride B-2 (1 equiv.) and a base (eg triethylamine).
  • the crude product is treated with an oxidizing agent (eg pyridinium chlorochromate) and intermediate product B-3 is recovered.
  • an oxidizing agent eg pyridinium chlorochromate
  • a solution of crude B-3, acid (eg acetic acid) and N,N-dimethylaminoamine B-4 is then treated with a reducing agent (eg sodium triacetoxyborohydride) to allow for any necessary work-up and / or after purification, B-5 is obtained.
  • a reducing agent eg sodium triacetoxyborohydride
  • starting materials A-1 and B-1 are shown above as containing only saturated methylene carbons, starting materials containing carbon-carbon double bonds can also be utilized in the preparation of compounds containing carbon-carbon double bonds. Be careful.
  • lipids of Formula 2 can be prepared according to general Scheme 3 ("Method C"), where R is a saturated or unsaturated C1-C24 alkyl or a saturated or unsaturated Cycloalkyl, m is 0 or 1, n is an integer from 1 to 24.
  • Method C a saturated or unsaturated C1-C24 alkyl or a saturated or unsaturated Cycloalkyl
  • m is 0 or 1
  • n is an integer from 1 to 24.
  • compounds of structure C-1 can be purchased from commercial sources or can be prepared according to methods familiar to those skilled in the art.
  • Embodiments of compounds of Formula 3 can be prepared according to general Scheme 4 (“Method D”), wherein R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , R 4a , R 4b , R 5 , R 6 , R 8 , R 9 , L 1 , L 2 , G 1 , G 2 , G 3 , a, b, c and d As defined, R 7' represents R 7 or C 3 -C 19 alkyl.
  • compounds of structures D-1 and D-2 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art.
  • Solutions of D-1 and D-2 are treated with a reducing agent (eg sodium triacetoxyborohydride) to obtain D-3 after any necessary work-up.
  • a reducing agent eg sodium triacetoxyborohydride
  • D-3 and base e.g., trimethylamine, DMAP
  • D-5 is treated with the acyl chloride D-4 (or carboxylic acid and DCC) to obtain D-5 after any necessary workup and/or purification.
  • D-5 can be reduced to LiAlH4 D-6 to provide D-7 after any necessary workup and/or purification.
  • Embodiments of lipids of Formula 3 can be prepared according to general Scheme 5 (“Method E”), wherein R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , R 4a , R 4b , R 5 , R 6 , R 7 , R 8 , R 9 , L 1 , L 2 , G 3 , a, b, c and d are as defined herein.
  • Scheme 5 Scheme 5
  • compounds of structures E-1 and E-2 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art.
  • General Scheme 7 provides an exemplary method for the preparation of lipids of Formula 4 (Method G).
  • G 1 , G 3 , R 1 and R 3 in General Reaction Scheme 7 are as defined herein for Formula 4, and G 1′ refers to a homologue of G 1 that is one carbon shorter.
  • Compounds of structure G-1 are purchased or prepared according to methods known in the art. Reaction of G-1 with the diol G-2 under suitable condensation conditions (eg DCC) yields the ester/alcohol G-3, which can then be oxidized to the aldehyde G-4 (eg PCC). Reaction of amines G-5 and G-4 under reductive amination conditions produces lipids of Formula 4.
  • lipids of Formula 4 can be prepared according to similar methods using suitable starting materials.
  • General Scheme 6 also illustrates the preparation of lipids of Formula 4, wherein G 1 and G 2 are the same. However, this is not a required aspect of the present invention, and modifications to the above reaction scheme are possible to produce compounds having different G 1 and G 2 .
  • Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (eg, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like.
  • Suitable protecting groups for amino, adino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl and the like.
  • Suitable protecting groups for mercapto include -C(O)-R" (where R" is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl, and the like.
  • Suitable protecting groups for carboxylic acids include alkyl, aryl or arylalkyl esters.
  • Protecting groups are known to those skilled in the art and may be added or removed according to general techniques as described herein. The use of protecting groups is known in the art. As will be appreciated by those skilled in the art, the protecting group may also be a polymeric resin such as Wang resin, Rink resin or 2-chlorotrityl-chloride resin.
  • the peptide may be selected from the group consisting of SEQ ID NOs: 1 to 10.
  • peptides consisting of the amino acid sequences of SEQ ID NOs: 1 to 10 show excellent cell membrane permeability compared to the permeability of conventional TAT proteins, and the higher the treatment concentration, the higher the intracellular permeability. confirmed to indicate
  • the present invention provides a composition for promoting cell permeation of a substance comprising a complex comprising a lipid nanoparticle and a cell penetrating peptide.
  • the composition may be used to deliver biologically active substances into living tissue or blood or promote cell permeation.
  • the composition may be delivered through cells constituting biological tissues or cell-to-cell junctions, but the delivery method is not limited.
  • the biological tissue refers to one or more epithelial tissue, muscle tissue, nerve tissue, and connective tissue, and each organ may consist of one or more tissues, such as mucous membrane, skin, brain, lung, liver, kidney, spleen, lung, heart, and stomach. , large intestine, digestive tract, bladder, ureter, urethra, ovary, testis, genital organ, muscle, blood, blood vessel, lymphatic vessel, lymph node, thymus, pancreas, adrenal gland, thyroid, parathyroid gland, larynx, tonsils, bronchi, and alveoli.
  • tissues such as mucous membrane, skin, brain, lung, liver, kidney, spleen, lung, heart, and stomach.
  • large intestine, digestive tract, bladder, ureter, urethra, ovary testis, genital organ, muscle, blood, blood vessel, lymphatic vessel, lymph node, thymus, pancreas, adrenal gland, thyroid, parathyroid gland, lary
  • Cells constituting the biological tissue include epithelial cells, muscle cells, nerve cells, glandular cells, glial cells, germ cells, stem cells, mesenchymal cells, mesenchymal stem cells, osteoblasts, osteocytes, osteoblasts, osteoclasts, blood cells Cells, hematopoietic cells, lung cells, hepatocytes, fibroblasts, immune cells, endothelial cells, adipocytes, chondrocytes, etc. may be included, but are not limited to the above examples.
  • Epithelial cells include mucosal epithelial cells, hair follicle epithelial cells, digestive tract epithelial cells, respiratory epithelial cells, genital epithelial cells, urinary epithelial cells, and the like.
  • Endothelial cells include vascular endothelial cells or lymphatic endothelial cells, but are not limited to the above examples.
  • the composition may be for delivering biologically active substances through mucous membranes or skin, but is not limited to the above examples.
  • composition of the present invention can be used for various purposes depending on the biologically active material included in the composition together with the complex.
  • the compositions of the present invention can be used to treat diseases in humans or animals.
  • the type of the disease is not limited, but it may be a disease that requires high concentration drug delivery or improved drug delivery into cells, tissues, or blood, for example, treatment with a gene therapy drug or a protein therapy drug with a high molecular weight. It can be applied to various diseases for possible diseases or treatments that require a change in the route of administration.
  • the disease includes, for example, breast cancer, liver cancer, brain cancer, prostate cancer, uterine cancer, ovarian cancer, stomach cancer, esophageal cancer, colon cancer, rectal cancer, thyroid cancer, blood cancer, skin cancer, cancer including lung cancer, diabetes, obesity, asthma, alopecia, and the like. It may be, but is not limited thereto. In addition, it can be used for research purposes to observe cell membrane permeability in vitro or intracellular delivery of drugs using the peptide through the cell membrane, and treatment of diseases treated with gene therapy drugs or high molecular weight protein therapy drugs such as cancer and diabetes can also be utilized.
  • the peptide can be used in various molecules to diagnose contrast agents, diagnostic reagents and kits, and can also be used in health functional foods (health functional food compositions) and cosmetics (cosmetic compositions), but is not limited to the above examples.
  • the present invention provides a use of a material comprising the lipid nanoparticle and the peptide complex of the present invention for preparing a composition for promoting cell permeation.
  • the present invention promotes cell permeation comprising administering an effective amount of a composition containing as an active ingredient a substance containing the lipid nanoparticle and the peptide complex of the present invention to a subject in need thereof provides a way
  • the 'effective amount' of the present invention refers to an amount that exhibits an improvement or promotion effect on cell permeation rate when administered to an individual, and the 'individual' may be an animal, preferably a mammal, particularly an animal including a human, , cells, tissues, organs, etc. derived from animals.
  • the subject may be a patient in need of the effect.
  • the term “comprising” is used in the same meaning as “including” or “characterized by”, and in the composition or method according to the present invention, specifically mentioned It does not exclude additional components or method steps not specified. Also, the term “consisting of” means excluding additional elements, steps or components not separately described. The term “essentially consisting of” means that in the scope of a composition or method, in addition to the described materials or steps, materials or steps that do not substantially affect the basic characteristics thereof may be included.
  • the complex including the lipid nanoparticle of the present invention and the novel cell-penetrating peptide can effectively penetrate into living organisms such as cells, tissues, and blood.
  • 1a to 1f show BEAS-2B cells or HeLa cells treated with the peptides of the present invention at various concentrations, 15 minutes (1a, 1b), 30 minutes (1c, 1d) and 2 hours (1e, 1f) ) This is the result of analyzing the degree of intracellular permeability.
  • 3a and 3b show that BEAS-2B cells or HeLa cells were treated with the peptides of the present invention at various concentrations, and the degree of cytotoxicity was analyzed after 24 hours and 48 hours in BEAS-2B cells (3a, 3b), and HeLa cells This is the result of analyzing the degree of cytotoxicity after 24 hours and 48 hours in (3c, 3d).
  • each of the peptides of SEQ ID NOs: 1 to 10 shown in Table 4 was prepared to have a purity of 95% or more. This peptide synthesis was carried out by requesting I-Cure Pepgen Co., Ltd.
  • a cationic lipid having Formula 1 or a salt thereof as a lipid nanoparticle to be conjugated with a cell-permeable peptide was prepared as follows.
  • a lipid stock in 100% ethanol was prepared using the lipid identities and molar ratios described below (approximately 7 mg/mL total lipid content).
  • the mRNA was diluted in acetate pH 5 and nuclease-free water to reach a concentration of 0.366 mg/mL mRNA in 100 mM acetate pH 5. Equal volumes of each solution were blended in a T-connector at 400 mL/min using the direct dilution method described in U.S. Patent No. 9,404,127 and diluted with about 4 volumes of PBS, pH 7.4. The formulation was then placed in a Slide-A-Lyzer dialysis unit (MWCO 10,000) and dialyzed overnight in 10 mM Tris, 500 mM NaCl pH 8 (Tris/NaCl buffer). After dialysis, the formulation was concentrated to about 0.6 mg/mL using a VivaSpin concentrator unit (MWCO 100,000) and then filtered through a 0.2 um syringe filter.
  • MWCO 10,000 Slide-A-Lyzer dialysis unit
  • Tris 500 mM NaCl pH 8
  • Tris/NaCl buffer Tris/
  • cationic lipids of Formulas 2 to 4 or salt formulations thereof as lipid nanoparticles to be conjugated with cell-permeable peptides were prepared as follows, and PCT Publication Nos. WO 2015/199952, WO 2017/004143 and WO 2017/075531 Lipid nanoparticles, cationic lipids and polymer conjugated lipids (PEG-lipids) were prepared and tested according to the general procedures disclosed in (the entire disclosure of which is incorporated herein by reference).
  • Lipid nanoparticle (LNP)-formulated mRNA was prepared using ionizable amino lipids (cationic lipids), phospholipids, cholesterol and pegylated lipids.
  • LNPs were prepared as follows. Cationic lipids, DSPC, cholesterol and PEG-lipids were dissolved in ethanol in molar ratios of approximately 50:10:38.5:1.5 or 47.5:10:40.8:1.7. LNPs for the examples included, for example, cationic lipid compounds 2-3 and the aforementioned components.
  • Lipid nanoparticles (LNPs) containing compounds 2-3 were prepared at an mRNA to total lipid ratio of 0.03 to 0.04 w/w.
  • mRNA was diluted to 0.05-0.2 mg/mL in 10-50 mM citrate buffer, pH 4.
  • the ethanolic lipid solution was mixed with the mRNA aqueous solution at a ratio of about 1:5 to 1:3 (vol/vol) using a syringe pump at a total flow rate exceeding 15 ml/min. Ethanol was then removed, and the external buffer was replaced by PBS by dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 ⁇ m pore sterile filter.
  • the particle diameter size of the lipid nanoparticles determined by quasi-elastic light scattering using a Malvern Zetasizer Nano (Malvern, UK), was between 60 and 90 nm.
  • the method of formulation is similar.
  • a cationic lipid of Formula 2-3 or a salt formulation thereof as a lipid nanoparticle to be conjugated with a cell-permeable peptide in the present invention was prepared as follows.
  • the peptide (40 mg, 0.023 mmol) synthesized in Example 1 was dissolved in milliQ water (0.25 mL).
  • (Boc) 2 O (15 mg, 0.069 mmol) dissolved in 1,4-dioxane was added to this solution along with triethylamine (10 ⁇ L).
  • the reaction mixture was stirred at room temperature for 6 hours. After removing the solvent under reduced pressure, the residue was suspended in CHCl 3 solution and then washed with water. After drying the CHCl 3 solution with MGSO 4 , the solvent was removed.
  • Boc-peptide and dioleoyl phosphatidyl ethanol amine were dissolved in N-methyl pyrrolidone/CH 2 Cl 2 . To this solution was added BOP followed by triethylamine (10 ⁇ L) and the mixture was stirred for 6 hours. The solvent was removed under reduced pressure at 37°C. After the residue was suspended in MeOH, the solution was filtered. After solvent removal, the residue was resuspended in acetonitrile and centrifuged. The resulting pellet was subjected to column chromatography using a Sep-Pak C18 Cartridge (Waters) to purify Boc-peptide-DOPE. Boc-peptide-DOPE (27.3 mg, 0.011 mmol) was dissolved in TFA (1 mL) and stirred for 1.5 h. TFA was removed under reduced pressure to obtain DOPE-peptide conjugate (25.7 mg).
  • Protamine sulfate (40 ⁇ g) or palmitoyl derivative (22 ⁇ g) of the peptide was incubated with siRNA in RNase free water (1 mL) at 25° C. for 20 minutes to obtain a cationic core. Meanwhile, DOPE, cholesterol, and DMPG (dimyristoyl phosphatidyl glycerol) dissolved in chloroform were evaporated under reduced pressure and stored in vacuum for 1 hour. LNP-encapsulated siRNA was prepared by hydrating a thin lipid film with RNase free water (1 mL) containing a cationic core. LNP-siRNA was purified using a Sepharose TM 4 Fast Flow column.
  • Intracellular penetration patterns of the peptides of the present invention were confirmed by fluorescence microscopy.
  • rhodamine fluorescent dye was labeled at the amino terminus of each peptide of SEQ ID NOs: 1 to 10 prepared in Example 1.
  • BEAS-2B cells or HeLa cells were treated with peptides of P1 to P10 at various concentrations, and then the concentration of peptides in cells was evaluated after 15 minutes, 30 minutes, and 2 hours.
  • a TAT peptide GRKKRRQRRR (SEQ ID NO: 11) was used as a control.
  • BEAS-2B cells or HeLa cells were treated with peptides P3, P4, and P5 at concentrations of 10 ⁇ M and 50 ⁇ M, and control TAT was also treated at the same concentration.
  • the cell culture slide was inoculated, because plastic causes fluorescence interference when observed under a fluorescence microscope. After washing, the glass cover glass was adhered to the slide glass using mounting medium with DAPI, and the sample was observed under a fluorescence microscope 400 times.
  • cytotoxicity was confirmed as follows.
  • Cells were treated with peptides prepared in the same manner as in Example 2 in the culture medium at different concentrations (0, 1, 10, 100 ⁇ M), and treated for 24 hours and 48 hours. 10ul of CCK-8 was added to each well and after 3 hours in a 5% CO 2 incubator maintained at 37°C and humidified conditions, absorbance at 460 nm using a microplate absorbance reader (SYNERGY H1 microplate reader, BIO-TEK) was measured.
  • SYNERGY H1 microplate reader BIO-TEK
  • the complex of the lipid nanoparticle and the novel cell-penetrating peptide of the present invention can effectively penetrate into living organisms such as cells, tissues, and blood, and thus has very high industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a complex of a lipid nanoparticle and a novel cell-penetrating peptide, and, more specifically, to a complex comprising a lipid nanoparticle and a novel peptide having better cell-penetrating property than common TAT peptides. The complex can effectively penetrate into cells, tissues, blood and the like of a living body.

Description

지질 나노입자 및 세포 투과성을 갖는 신규 펩타이드의 복합체Complex of lipid nanoparticles and cell-permeable novel peptides
본 출원은 2021년 10월 29일에 출원된 대한민국 특허출원 제10-2021-0146624호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.This application claims priority to Republic of Korea Patent Application No. 10-2021-0146624 filed on October 29, 2021, and the entire specification is a reference in this application.
지질 나노입자 및 세포 투과성을 갖는 신규 펩타이드의 복합체에 관한 것으로, 보다 상세하게는 핵산을 포함하는 지질 나노입자 및 상용 TAT 펩타이드와 비교하여 향상된 세포 투과성을 나타내는 신규 펩타이드를 포함하는 복합체에 관한 것이다.It relates to a complex of a lipid nanoparticle and a new peptide having cell permeability, and more particularly, to a complex including a lipid nanoparticle containing a nucleic acid and a novel peptide exhibiting improved cell permeability compared to a commercially available TAT peptide.
지질 나노입자(LNP)는 세포 불투과성인 치료용 핵산, 단백질, 및 펩타이드와 같은 생물학적 활성 화합물에 대한 효과적인 약물 전달 시스템이다. 예를 들어, 시험관 내 전사된 메신저 RNA(mRNA)와 같은 큰 핵산 분자뿐만 아니라, 메신저 RNA 또는 유전자와 상호작용하는 더 작은 폴리뉴클레오타이드를 포함하는 핵산 기반 약물은 효과적이기 위해 적절한 세포 구획으로 전달되어야 한다. siRNA를 포함한 이중 가닥 RNA 분자(dsRNA)와 같은 이중 가닥 핵산은 물리화학적 특성으로 인하여 세포 투과에 어려움을 겪는다. 적절한 구획으로 전달되면, siRNA는 RNA 간섭(RNAi)으로 알려진 고도로 보전된 조절 메커니즘을 통해 유전자 발현을 차단한다. 일반적으로 siRNA는 분자량이 12~17 kDa 범위로 크기가 크고 최대 50 개의 음전하가 있는 포스페이트 뼈대로 인해 매우 음이온성이다. 또한, 두 개의 상보적인 RNA 가닥이 강직한 나선을 생성한다. 이러한 특징으로 인하여 siRNA는 안좋은 약물 유사성을 갖는다. 또한 siRNA는 혈액 및 기타 체액 또는 조직에 존재하는 nuclease에 의해 빠르게 분해되고 시험관 내 및 생체 내에서 강력한 면역 반응을 자극하는 것으로 나타났다(Robbins et al., Oligonucleotides 19:89-102, 2009). mRNA 분자는 불투과성, 취약성 및 면역원성에서 유사한 문제를 겪는다.Lipid nanoparticles (LNPs) are effective drug delivery systems for biologically active compounds such as cell impermeable therapeutic nucleic acids, proteins, and peptides. For example, nucleic acid-based drugs that include large nucleic acid molecules, such as in vitro transcribed messenger RNA (mRNA), as well as smaller polynucleotides that interact with messenger RNA or genes, must be delivered to the appropriate cellular compartment to be effective. . Double-stranded nucleic acids such as double-stranded RNA molecules (dsRNA), including siRNA, suffer from cell penetration due to their physicochemical properties. When delivered to the appropriate compartment, siRNA blocks gene expression through a highly conserved regulatory mechanism known as RNA interference (RNAi). In general, siRNAs are large, with molecular weights ranging from 12 to 17 kDa, and are highly anionic due to their phosphate backbones with up to 50 negative charges. Also, two complementary RNA strands create a rigid helix. Due to these features, siRNAs have poor drug likeness. In addition, siRNAs are rapidly degraded by nucleases present in blood and other body fluids or tissues and have been shown to stimulate strong immune responses in vitro and in vivo (Robbins et al., Oligonucleotides 19:89-102, 2009). mRNA molecules suffer similar problems of impermeability, fragility and immunogenicity.
그러나 지질 나노입자 제제는 생체 내 핵산 전달을 개선했다. 그러한 제제는 예를 들어, 생체 내 표적 녹다운을 달성하기 위해 필요한 siRNA 용량을 상당히 감소시켰다(Zimmermann et al., Nature 441:111-114, 2006). 전형적으로, 그러한 지질 나노입자 약물 전달 시스템은 양이온성 지질, 헬퍼 지질, 및 폴리에틸렌 글리콜을 포함하는 지질을 포함하는 다성분 제제이다. 양으로 하전된 양이온성 지질은 음이온성 핵산에 결합하는 반면, 다른 성분은 지질 나노입자의 안정한 자가 조립을 지원한다.However, lipid nanoparticle formulations have improved nucleic acid delivery in vivo. Such formulations, for example, significantly reduced the siRNA dose required to achieve target knockdown in vivo (Zimmermann et al., Nature 441:111-114, 2006). Typically, such lipid nanoparticle drug delivery systems are multi-component formulations comprising a cationic lipid, a helper lipid, and a lipid comprising polyethylene glycol. Positively charged cationic lipids bind to anionic nucleic acids, while other components support stable self-assembly of lipid nanoparticles.
이와 같은 지질 나노입자 제제의 전달 효능 개선을 향한 노력이 이루어져 왔다. 그러한 많은 노력은 더 적절한 양이온성 지질을 개발하는 것을 목표로 한다. 이러한 노력에도 불구하고, 투여 후 높은 효능을 제공하고 더 적은 용량의 핵산 투여를 가능하게 하는 지질 나노입자 포함 제제의 필요성이 남아있다. Efforts have been made to improve the delivery efficacy of such lipid nanoparticle formulations. Many such efforts are aimed at developing more suitable cationic lipids. Despite these efforts, there remains a need for formulations comprising lipid nanoparticles that provide high post-administration potency and enable administration of lower doses of nucleic acids.
한편, 일반적으로 단백질, DNA와 같은 고분자로 된 생물학적 활성 물질은 친수성 및 소수성의 인지질 이중층을 통과할 수 없기 때문에 세포막을 투과해 세포 내로 들어갈 수 없다. 하지만 수용체와 같은 다른 분자들의 도움 없이 세포막을 가로지를 수 있는 세포 투과성 펩타이드(Cell penetrating peptide)가 알려져 있다.On the other hand, in general, biologically active substances made of polymers such as proteins and DNA cannot pass through a hydrophilic and hydrophobic phospholipid bilayer and cannot pass through cell membranes and enter cells. However, cell penetrating peptides are known that can cross cell membranes without the help of other molecules such as receptors.
세포 투과성 펩타이드는 CPP (Cell penetrating peptide), MTS (membrane translocating sequences)라고도 불리는데, 수송 대상체에 결합된 형태 또는 혼합된 형태로 세포막을 통과해 단백질, DNA, RNA, 지질 입자 등의 운반 대상을 세포 내 뿐만 아니라 세포질, 세포 내 소기관, 핵 안에까지 운반할 수 있다.Cell penetrating peptides, also called CPP (Cell penetrating peptide) and MTS (membrane translocating sequences), pass through the cell membrane in a form bound to a transport target or in a mixed form to transport targets such as proteins, DNA, RNA, and lipid particles into cells. It can also be transported into the cytoplasm, organelles, and nucleus.
HIV-1 (Human immunodeficiency virus-1)의 감염 기작 중 하나로 TAT 라는 물질이 세포막을 투과하는 현상이 확인된 첫 번째 단백질로서, 이로부터 유래한 TAT 펩타이드는 가장 많이 적용되고 활발한 연구가 진행되고 있다.As one of the infection mechanisms of HIV-1 (Human immunodeficiency virus-1), it is the first protein to be confirmed that a substance called TAT penetrates the cell membrane.
이외에도, 초파리의 발생과정에 필수적인 전사인자인 Antennapedia homeoprotein으로부터 유래한 16개의 아미노산 서열로 구성된 Penetratin (Antp)이라는 세포 투과성 펩타이드, HSV-1 (Herpes simplex virus type 1)이 발현하는 단백질인 VP22로부터 유래한 동명의 세포 투과성 펩타이드 VP22, 인공적으로 합성해낸 27개의 아미노산 서열로 이루어진 Transportan, 세포 투과성 펩타이드에서 가장 중요한 기능을 담당할 것이라고 예상되는 아르기닌을 인공적으로 반복시킨 폴리아르기닌 (Poly-Arginine) 등이 세포 투과성 펩타이드로 잘 알려져 있다.In addition, Penetratin (Antp), a cell-penetrating peptide composed of 16 amino acid sequences derived from Antennapedia homeoprotein, an essential transcription factor for the development of Drosophila, derived from VP22, a protein expressed by HSV-1 (Herpes simplex virus type 1) Cell-penetrating peptides such as VP22, the cell-penetrating peptide of the same name, Transportan consisting of artificially synthesized 27 amino acid sequences, and Poly-Arginine, an artificially repeated arginine expected to play the most important role in cell-penetrating peptides. is well known as
이러한 종래 세포 투과성 펩타이드들은 HIV-1과 같은 바이러스 단백질로부터 유래한 서열이거나, 초파리와 같은 다른 종이 발현하는 단백질로부터 유래한 것들이거나, 종래 세포 투과성 펩타이드를 구성하는 아미노산 서열 분석을 통해 특징적인 아미노산 서열을 선정, 인공적으로 합성해 낸 아미노산 서열이라는 점에서, 인체에 적용해서 사용할 때에 면역 반응 등의 부작용을 일으킬 소지가 있었다. These conventional cell-penetrating peptides are sequences derived from viral proteins such as HIV-1, or derived from proteins expressed by other species such as Drosophila, or amino acid sequences constituting conventional cell-penetrating peptides are analyzed to determine a characteristic amino acid sequence. Since it is an amino acid sequence that was selected and artificially synthesized, it could cause side effects such as an immune response when applied to the human body.
또한, 이들은 비교적 긴 아미노산 사슬로 이루어져 있어서 원치 않는 면역 반응을 일으킬 가능성이 더 크고, 전달하고자 하는 단백질의 구조 및 기능에 영향을 미칠 수 있기 때문에, 세포 내로 전달하고자 하는 생물학적 활성 물질과 연결할 때에 효율이 저하되는 문제가 있었다.In addition, since they consist of relatively long amino acid chains, they are more likely to cause unwanted immune responses and can affect the structure and function of the protein to be delivered, so they are less efficient when linked with biologically active substances to be delivered into cells. There was a problem with deterioration.
한편, 최근에 치료목적의 약물과 펩타이드 그리고 단백질을 세포 안으로 도입하는 실험들이 활발히 진행되고 있다. 그러나 이들 방법은 모두 일부의 세포에만 핵산을 전달할 수 있다는 한계가 있으며, 세포막에 손상을 입혀 독성을 나타내는 문제점이 있다.On the other hand, recently, experiments for introducing therapeutic drugs, peptides, and proteins into cells have been actively conducted. However, all of these methods have a limitation in that they can deliver nucleic acids only to some cells, and there is a problem of toxicity by damaging cell membranes.
이에, 본 발명자는 핵산을 포함하는 지질 나노입자를 세포 내로 효과적으로 전달할 수 있는 방법을 개발하기 위해 예의 연구를 거듭한 결과, 일련의 서열을 나타내는 TCTP 단백질(translationally controlled tumor protein) 유래 CPP 변이체를 지질 나노입자와 결합한 결과 세포질에서 핵산의 안정성이 크게 향상되는 것을 확인하고 본 발명을 완성하게 되었다.Therefore, as a result of intensive research to develop a method for effectively delivering lipid nanoparticles containing nucleic acids into cells, the present inventors have developed CPP variants derived from TCTP protein (translationally controlled tumor protein) representing a series of sequences into lipid nanoparticles. As a result of binding to the particles, it was confirmed that the stability of the nucleic acid in the cytoplasm was greatly improved, and the present invention was completed.
따라서, 본 발명의 목적은 지질 나노입자 및 하기의 아미노산 서열로 이루어진 세포 투과성 펩타이드를 포함하는 복합체를 제공하는 것이다:Accordingly, an object of the present invention is to provide a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
MIIFR-R1-R2-R3-R4-R5-R6MIIFR-R1-R2-R3-R4-R5-R6
상기 식에서,In the above formula,
R1은 A, V, I, L, S, F, K 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
R2는 S, L, F, T 및 Y로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
R3는 E, L, A 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R3 is any one amino acid selected from the group consisting of E, L, A and R,
R4는 Q, H, T, L, D 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
R5는 L, S, V, A, K 및 H로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
R6는 DK, EK, QK, NK, KK 및 FK로 이루어진 군에서 선택된 어느 하나의 디펩타이드이다.R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
본 발명의 다른 목적은 지질 나노입자 및 펩타이드 복합체를 포함하는 물질의 세포 투과 촉진용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for promoting cellular permeation of a substance containing a lipid nanoparticle and a peptide complex.
또한 본 발명의 다른 목적은 지질 나노입자 및 펩타이드 복합체로 이루어진 물질의 세포 투과 촉진용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for accelerating cell permeation of a substance composed of a lipid nanoparticle and a peptide complex.
또한 본 발명의 다른 목적은 지질 나노입자 및 펩타이드 복합체로 필수적으로 이루어진 물질의 세포 투과 촉진용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for accelerating cell permeation of a substance essentially consisting of a lipid nanoparticle and a peptide complex.
본 발명의 다른 목적은 세포 투과 촉진용 조성물을 제조하기 위한 상기 지질 나노입자 및 펩타이드 복합체를 포함하는 물질의 용도를 제공하는 것이다.Another object of the present invention is to provide a use of a material comprising the lipid nanoparticle and the peptide complex for preparing a composition for promoting cell permeation.
본 발명의 다른 목적은 상기 지질 나노입자 및 펩타이드 복합체를 포함하는 물질을 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 것을 포함하는 세포 투과 촉진 방법을 제공하는 것이다.Another object of the present invention is to provide a method for promoting cell permeation comprising administering an effective amount of a composition containing the lipid nanoparticle and a peptide complex-containing material as an active ingredient to a subject in need thereof.
상기와 같은 목적을 달성하기 위하여, 본 발명은 지질 나노입자 및 하기의 아미노산 서열로 이루어진 세포 투과성 펩타이드를 포함하는 복합체를 제공한다:In order to achieve the above object, the present invention provides a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
MIIFR-R1-R2-R3-R4-R5-R6MIIFR-R1-R2-R3-R4-R5-R6
상기 식에서,In the above formula,
R1은 A, V, I, L, S, F, K 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
R2는 S, L, F, T 및 Y로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
R3는 E, L, A 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R3 is any one amino acid selected from the group consisting of E, L, A and R,
R4는 Q, H, T, L, D 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
R5는 L, S, V, A, K 및 H로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
R6는 DK, EK, QK, NK, KK 및 FK로 이루어진 군에서 선택된 어느 하나의 디펩타이드이다.R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 지질 나노입자 및 펩타이드 복합체를 포함하는 물질의 세포 투과 촉진용 조성물을 제공한다.In order to achieve another object of the present invention, the present invention provides a composition for promoting cell permeation of a substance containing a lipid nanoparticle and a peptide complex.
또한 본 발명은 지질 나노입자 및 펩타이드 복합체로 이루어진 물질의 세포 투과 촉진용 조성물을 제공한다.In addition, the present invention provides a composition for accelerating cell permeation of a substance composed of lipid nanoparticles and peptide complexes.
또한 본 발명은 지질 나노입자 및 펩타이드 복합체로 필수적으로 이루어진 물질의 세포 투과 촉진용 조성물을 제공한다.In addition, the present invention provides a composition for accelerating cell permeation of substances essentially consisting of lipid nanoparticles and peptide complexes.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 세포 투과 촉진용 조성물을 제조하기 위한 상기 지질 나노입자 및 펩타이드 복합체를 포함하는 물질의 용도를 제공한다.In order to achieve another object of the present invention, the present invention provides the use of a material containing the lipid nanoparticle and the peptide complex for preparing a composition for promoting cell permeation.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 지질 나노입자 및 펩타이드 복합체를 포함하는 물질을 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 것을 포함하는 세포 투과 촉진 방법을 제공한다.In order to achieve another object of the present invention, the present invention provides a method for promoting cell permeation comprising administering an effective amount of a composition containing as an active ingredient a substance containing the lipid nanoparticle and the peptide complex to a subject in need thereof to provide.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 실시는, 특별히 반대로 나타내지 않는 이상, 본 발명이 속하는 기술 분야 내의 분자생물학 및 재조합 DNA 기술의 종래 방법을 사용하고, 설명을 위한 목적으로서 대부분이 당업계에 공지되어 있다.The practice of the present invention, unless specifically indicated to the contrary, uses conventional methods of molecular biology and recombinant DNA technology within the technical field to which the present invention pertains, and for illustrative purposes is largely known in the art.
본 명세서에 인용되는 모든 간행물, 특허 및 특허 출원은 그 전체가 참고로서 본 명세서에 원용된다.All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.
본 명세서에 개시된 내용 전반에 걸쳐서, 본 발명과 관련된 다양한 양상 또는 조건들이 범위 형식으로 제안될 수 있다. 본 명세서에서 범위 값의 기재는, 별다른 언급이 없는 한 해당 경계 값을 포함하는 것으로서 즉, 하한 값 이상 내지 상한 값 이하의 값들을 모두 포함하는 의미이다. 범위 형식의 서술은 단순히 편의성 및 간략성을 위한 것이며, 본 발명의 범위에 대한 융통성 없는 제한(inflexible limitation)으로서 해석되지 않아야 하는 것으로 이해되어야 한다. 따라서, 범위의 서술은 상기 범위 내의 개별적인 수치 값들뿐만 아니라 모든 가능한 하부 범위(subrange)를 구체적으로 개시한 것으로 고려되어야 한다. 예를 들어, 7 내지 170과 같은 범위의 서술은 상기 범위 내의 개별적 수치들, 예를 들어, 9, 27, 35, 101, 및 155뿐만 아니라, 10 내지 127, 23 내지 35, 80 내지 100, 50 내지 169 등과 같은 하부범위들을 구체적으로 개시한 것으로 간주되어야 한다. 이는 범위의 폭과 무관하게 적용된다.Throughout the disclosure herein, various aspects or conditions relating to the present invention may be suggested in a range format. In this specification, the description of a range value is meant to include a corresponding boundary value, that is, to include all values from the lower limit value to the upper limit value unless otherwise specified. It is to be understood that the description of range formats is merely for convenience and brevity and is not to be construed as an inflexible limitation on the scope of the invention. Accordingly, statements of ranges should be considered to have specifically disclosed all possible subranges as well as individual numerical values within the range. For example, the description of a range, such as 7 to 170, can include individual values within the range, such as 10 to 127, 23 to 35, 80 to 100, 50, as well as 9, 27, 35, 101, and 155. to 169, etc., should be considered as specifically disclosed. This applies regardless of the width of the range.
본 발명의 용어 '~을 포함하는(comprising)'이란 '함유하는' 또는 '특징으로 하는'과 동일하게 사용되며, 조성물 또는 방법에 있어서, 언급되지 않은 추가적인 성분 요소 또는 방법 단계 등을 배제하지 않는다. The term 'comprising' of the present invention is used the same as 'containing' or 'characterized by', and does not exclude additional components or method steps not mentioned in the composition or method. .
본 명세서 사용된 용어 '펩타이드' 및 '단백질'은 통상(종래)의 의미에 따라 사용되는 것으로, 즉 아미노산의 배열을 의미한다. 펩타이드는 특정의 길이로 한정되지 않지만, 본 발명의 문맥에서는 일반적으로 전장(full length) 단백질의 단편을 나타내며, 번역 후의 수식, 예를 들면 글리코실화, 아세틸화, 인산화 등 및 해당 분야에 공지된 다른 수식(자연적으로 발생하는 수식 및 비자연적 발생의 수식)을 포함할 수 있고 "폴리펩타이드"로 표현될 수도 있다. 본 발명의 펩타이드 및 단백질은 임의의 다양한 공지의 재조합 및/또는 합성의 기술을 이용하여 제조될 수 있으며, 그 예시적인 실시예는 이하에서 추가로 설명한다.As used herein, the terms 'peptide' and 'protein' are used according to their usual (conventional) meaning, that is, they refer to an amino acid sequence. A peptide is not limited to a particular length, but in the context of the present invention generally refers to a fragment of a full-length protein and is subject to post-translational modifications such as glycosylation, acetylation, phosphorylation, etc., and others known in the art. It may contain modifications (both naturally occurring and non-naturally occurring modifications) and may be referred to as a "polypeptide". The peptides and proteins of the present invention can be prepared using any of a variety of known recombinant and/or synthetic techniques, illustrative examples of which are further described below.
본 발명은 지질 나노입자 및 하기의 아미노산 서열로 이루어진 세포 투과성 펩타이드를 포함하는 복합체를 제공한다:The present invention provides a complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
MIIFR-R1-R2-R3-R4-R5-R6MIIFR-R1-R2-R3-R4-R5-R6
상기 식에서,In the above formula,
R1은 A, V, I, L, S, F, K 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
R2는 S, L, F, T 및 Y로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
R3는 E, L, A 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R3 is any one amino acid selected from the group consisting of E, L, A and R,
R4는 Q, H, T, L, D 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
R5는 L, S, V, A, K 및 H로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
R6는 DK, EK, QK, NK, KK 및 FK로 이루어진 군에서 선택된 어느 하나의 디펩타이드이다.R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
본 발명의 상기 펩타이드는 세포막 투과성이 있는 신규한 펩타이드로서 그 자체로 세포막 투과성이 우수하다.The peptide of the present invention is a novel peptide having cell membrane permeability, which itself has excellent cell membrane permeability.
본 발명에서 상기 "세포막"은 세포와 세포 외부의 경계를 짓는 막을 의미한다. 본 발명의 일 양태로서 상기 세포막은 임의의 생명체, 예를 들어 세균(Bacteria), 고세균(Archaea) 및 진핵생물(Eukarya)에 속하는 단세포 또는 다세포 생물의 세포의 막일 수 있다. 상기 진핵생물은 원생생물계(Protista), 균계(Fungus), 식물계(Plantae), 및 동물계(Animalia)에 속하는 임의의 생물일 수 있다. 상기 동물은 사람을 포함하는 임의의 동물이 될 수 있다. In the present invention, the "cell membrane" means a membrane that builds a boundary between a cell and the outside of the cell. As one aspect of the present invention, the cell membrane may be a cell membrane of any organism, for example, a unicellular or multicellular organism belonging to bacteria (Bacteria), archaea (Archaea) and eukaryote (Eukarya). The eukaryote may be any organism belonging to the protista, fungus, plant, and animal kingdoms. The animal may be any animal including humans.
본 발명에서, 상기 "세포막"은 임의의 종류의 세포의 막이 될 수 있다. 예를 들어, 상기 "세포"는 상피세포, 근육세포, 면역세포 및 내피세포로 이루어진 군으로부터 선택될 수 있으나 이에 제한되는 것은 아니다. 상기 세포는 내피(endothelium), 상피(epithelium), 점막(mucous membrane) 등 체외와 직접 맞닿아 있는 기관의 벽(lining)을 이루거나, 또는 체내에서 어떤 장기 또는 혈관의 표면을 덮는 세포층의 세포가 될 수 있다. 본 발명의 일 양태로서, 상기 세포는 피부 상피세포, 모낭 상피세포, 점막 상피세포, 각막 상피세포, 두피 상피세포, 각막 내피세포, 혈관 내피세포를 포함한다. 예를 들어, 상기 점막 상피세포는 비강, 폐, 질, 직장, 항문, 요도, 설하, 안구, 결막 및 구강 점막으로 이루어진 군으로부터 선택된 하나 이상의 점막의 상피세포일 수 있다. 예컨대 상기 혈관 내피세포는 혈액뇌장벽(BBB)을 이루고 있는 뇌혈관을 비롯한 각종 동맥, 정맥, 모세혈관의 내피세포, 림프관 내피세포, 심장 안벽의 내피세포 등이 될 수 있다. 또한 상기 세포는 자궁경부암, 유방암, 간암, 폐암 등을 포함하는 다양한 암세포가 될 수 있다. 또한 상기 세포는 호르몬, 신경계의 화학전달 물질, 약물 등 다양한 물질의 수용체(receptor)를 가진 세포가 될 수 있으며, 예를 들어 인슐린 수용체(insulin receptor), 글루카곤-유사-단백질 1(Glucagon-like-protein 1, GLP1) 수용체를 갖는 세포가 될 수 있으나, 상기 세포는 상기 예시에 제한되지 않는다. In the present invention, the "cell membrane" may be a membrane of any type of cell. For example, the "cell" may be selected from the group consisting of epithelial cells, muscle cells, immune cells and endothelial cells, but is not limited thereto. The cells form the lining of an organ directly in contact with the outside of the body, such as endothelium, epithelium, or mucous membrane, or are cells of a cell layer covering the surface of an organ or blood vessel in the body. It can be. In one aspect of the present invention, the cells include skin epithelial cells, hair follicle epithelial cells, mucosal epithelial cells, corneal epithelial cells, scalp epithelial cells, corneal endothelial cells, and vascular endothelial cells. For example, the mucosal epithelial cells may be at least one mucosal epithelial cell selected from the group consisting of nasal cavity, lung, vagina, rectum, anus, urethra, sublingual, ocular, conjunctival and oral mucosa. For example, the vascular endothelial cells may be endothelial cells of various arteries, veins, and capillaries, including cerebral vessels constituting the blood-brain barrier (BBB), endothelial cells of lymphatic vessels, and endothelial cells of the lining of the heart. In addition, the cells may be various cancer cells including cervical cancer, breast cancer, liver cancer, lung cancer, and the like. In addition, the cells may be cells having receptors for various substances such as hormones, chemical transmitters in the nervous system, and drugs. For example, insulin receptors, glucagon-like-protein 1 (Glucagon-like- It may be a cell having a protein 1, GLP1) receptor, but the cell is not limited to the above examples.
본 발명의 상기 펩타이드는 당업계에 공지된 이용가능한 기술을 이용하여 제조될 수 있다. 일례로 임의의 다양한 단백질 분해효소를 이용하여 제조될 수 있다. 예시적인 프로테아제(단백질분해효소)로서는, 예를 들면, 아크로모펩티다아제(achromopeptidase), 아미노펩티다제(aminopeptidase), 안크로드(ancrod), 안지오텐신 변환 효소(angiotensin converting enzyme), 브로멜라인(bromelain), 칼파인(calpain), 칼파인 I (calpain I), 칼파인 II (calpain II), 카르복시펩티다제 A (carboxypeptidase A), 카르복시펩티다제 B (carboxypeptidase B), 카르복시펩티다제 G (carboxypeptidase G), 카르복시펩티다제 P (carboxypeptidase P), 카르복시펩티다제 W (carboxypeptidase W), 카르복시펩티다제 Y (carboxypeptidase Y), 카스파아제 1 (caspase 1), 카스파아제 2 (caspase 2), 카스파아제 3 (caspase 3), 카스파아제 4 (caspase 4), 카스파아제 5 (caspase 5), 카스파아제 6 (caspase 6), 카스파아제 7 (caspase 7), 카스파아제 8 (caspase 8), 카스파아제 9 (caspase 9), 카스파아제 10 (caspase 10), 카스파아제 11 (caspase 11), 카스파아제 12 (caspase 12), 카스파아제 13 (caspase 13), 카텝신 B (cathepsin B), 카텝신 C (cathepsin C), 카텝신 D (cathepsin D), 카텝신 E (cathepsin E), 카텝신 G (cathepsin G), 카텝신 H (cathepsin H), 카텝신 L (cathepsin L), 키모파파인(chymopapain), 키마아제(chymase), 키모트립신(chymotrypsin), 크로스트리파인(clostripain), 콜라게나제(collagenase), 보체 C1r (complement C1r), 보체 C1s (complement C1s), 보체 D 인자(complement Factor D), 보체 I 인자(complement factor I), 쿠쿠미신(cucumisin), 디펩티딜펩티다제 IV (dipeptidyl peptidase IV), 백혈구 엘라스타제(elastase, leukocyte), 췌장 엘라스타제(elastase, pancreatic), 엔도프로테이나제 Arg-C (endoproteinase Arg-C), 엔도프로테이나제 Asp-N (endoproteinase Asp-N), 엔도프로테이나제 Glu-C (endoproteinase Glu-C), 엔도프로테이나제 Lys-C (endoproteinase Lys-C), 엔테로키나제(enterokinase), Xa 인자(factor Xa), 피신(ficin), 퓨린(furin), 그란자임 A (granzyme A), 그란자임 B (granzyme B), HIV 프로테아제(HIV Protease), IGase, 칼리크레인 조직(kallikrein tissue), 일반 류신 아미노펩티다제(leucine aminopeptidase, general), 세포기질 류신 아미노펩티다제(leucine aminopeptidase, cytosol), 마이크로솜 류신 아미노펩티다제(leucine aminopeptidase, microsomal), 매트릭스 메탈로프로테아제(matrix metalloprotease), 메티오닌 아미노펩티다제(methionine aminopeptidase), 뉴트라제(neutrase), 파파인(papain), 펩신(pepsin), 플라스민(plasmin), 프롤리다제(prolidase), 프로나제 E(pronase E), 전립선 특이적 항원(prostate specific antigen), Streptomyces griseus 유래의 호알카리성 프로테아제(protease alkalophilic from Streptomyces griseus), Aspergillus 유래의 프로테아제(protease from Aspergillus), Aspergillus saitoi 유래의 프로테아제(protease from Aspergillus saitoi), Aspergillus sojae 유래의 프로테아제(protease from Aspergillus sojae), B. licheniformis 프로테아제(protease B. licheniformis, alkaline or alcalase), Bacillus polymyxa 유래의 프로테아제(protease from Bacillus polymyxa), Bacillus sp유래의 프로테아제(protease from Bacillus sp), Rhizopus sp.유래의 프로테아제(protease from Rhizopus sp.), 프로테아제 S (protease S), 프로테아좀류(proteasomes), Aspergillus oryzae 유래의 프로테이나제(proteinase from Aspergillus oryzae), 프로테이나제 3 (proteinase 3), 프로테이나제 A (proteinase A), 프로테이나제 K (proteinase K), 프로테인 C (protein C), 피로글루타메이트 아미노펩티다제(pyroglutamate aminopeptidase), 레닌(rennin), 스트렙토키나제(streptokinase), 서브틸리신(subtilisin), 서몰리신(thermolysin), 트롬빈(thrombin), 조직 플라스미노겐 활성인자(tissue plasminogen activator), 트립신(trypsin), 트립타제(tryptase) 및 우로키나제(urokinase) 등을 들 수 있다. 당업자라면 제작하고자하는 단편의 화학적 특이성을 고려하여, 어떤 단백질분해효소가 적절할지 용이하게 결정 가능하다.The peptides of the present invention can be prepared using available techniques known in the art. For example, it can be prepared using any of a variety of proteolytic enzymes. Exemplary proteases (proteinases) include, for example, achromopeptidase, aminopeptidase, ancrod, angiotensin converting enzyme, bromelain , calpain, calpain I, calpain II, carboxypeptidase A, carboxypeptidase B, carboxypeptidase G G), carboxypeptidase P, carboxypeptidase W, carboxypeptidase Y, caspase 1, caspase 2, caspase caspase 3, caspase 4, caspase 5, caspase 6, caspase 7, caspase 8, caspase 9 (caspase 9), caspase 10 (caspase 10), caspase 11 (caspase 11), caspase 12 (caspase 12), caspase 13 (caspase 13), cathepsin B (cathepsin B), cathepsin C C), cathepsin D, cathepsin E, cathepsin G, cathepsin H, cathepsin L, chymopapain, key chymase, chymotrypsin, clostripain, collagenase, complement C1r, complement C1s, complement Factor D, complement Complement factor I, cucumisin, dipeptidyl peptidase IV, elastase (leukocyte), pancreatic elastase (pancreatic), endoproteinase Arg-C (endoproteinase Arg-C), endoproteinase Asp-N (endoproteinase Asp-N), endoproteinase Glu-C (endoproteinase Glu-C), endoproteinase Lys-C ( endoproteinase Lys-C), enterokinase, factor Xa, ficin, furin, granzyme A, granzyme B, HIV protease ), IGase, kallikrein tissue, leucine aminopeptidase, general, cytosol leucine aminopeptidase, microsomal leucine aminopeptidase, microsomal), matrix metalloprotease, methionine aminopeptidase, neutrase, papain, pepsin, plasmin, prolidase , pronase E, prostate specific antigen, protease alkalophilic from Streptomyces griseus, protease from Aspergillus, protease from Aspergillus saitoi ( protease from Aspergillus saitoi), protease from Aspergillus sojae, B. licheniformis protease (protease B. licheniformis, alkaline or alcalase), protease from Bacillus polymyxa, protease from Bacillus sp (protease from Bacillus sp), protease from Rhizopus sp., protease S (protease S), proteasomes, proteinase from Aspergillus oryzae (proteinase from Aspergillus oryzae), Proteinase 3, proteinase A, proteinase K, protein C, pyroglutamate aminopeptidase, renin ( rennin), streptokinase, subtilisin, thermolysin, thrombin, tissue plasminogen activator, trypsin, tryptase and urokinase. A person skilled in the art can easily determine which proteolytic enzyme is appropriate, taking into account the chemical specificity of the fragment to be produced.
본 발명에서 상기 펩타이드는 당분야의 숙련자에게 공지된 임의의 적합한 절차, 예컨대 재조합 기법에 의해 제조될 수 있다. 재조합 제조 방법에 부가하여, 본 발명의 폴리펩티드는 고상 기법을 이용한 직접적 펩타이드 합성에 의해 제조될 수 있다.The peptides of the present invention can be prepared by any suitable procedure known to those skilled in the art, such as recombinant techniques. In addition to recombinant production methods, the polypeptides of the present invention can be prepared by direct peptide synthesis using solid phase techniques.
고체상 펩타이드 합성(SPPS) 방법은 작은 다공성의 비드(beads)에 링커(linkers)라 불리는 기능성 유닛(functional units)을 부착하여 펩타이드 사슬을 이어 나갈 수 있도록 유도함으로써 합성을 개시할 수 있다. 액체상 방법과 달리 펩타이드는 비드와 공유 결합하여 TFA (trifluoroacetic acid)와 같은 특정 반응물에 의해 절단되기 전까지 여과(filtration) 과정에 의해 떨어져 나가는 것을 방지한다. 고체상에 부착된 펩타이드의 N-말단 아민과 N-보호 아미노산 유닛(N-protected amino acid unit)이 결합하는 보호(protection) 과정, 탈보호(deprotection) 과정, 다시 드러난 아민 그룹(amine group)과 새로운 아미노산이 결합하는 커플링(coupling) 과정의 사이클(cycle, deprotection-wash-coupling-wash)이 반복되면서 합성이 이루어지게 된다. 상기 SPPS 방법은 마이크로파(microwave) 기술을 함께 이용하여 수행할 수 있으며, 마이크로파 기술은 펩타이드 합성 과정에서 열을 가해줌으로써 각 사이클의 커플링과 탈보호에 요구되는 시간을 단축시킬 수 있다. 상기 열 에너지는 확장되는 펩타이드 사슬이 접히거나(folding) 집합체를 형성하는 것(aggregation)을 방지하고 화학적 결합을 촉진시킬 수 있다.In the solid-phase peptide synthesis (SPPS) method, synthesis can be initiated by attaching functional units, called linkers, to small porous beads to guide the peptide chain. Unlike the liquid-phase method, the peptide is covalently bound to the beads and prevents them from being separated by filtration until they are cleaved by a specific reactant, such as trifluoroacetic acid (TFA). A protection process in which the N-terminal amine of a peptide attached to a solid phase is combined with an N-protected amino acid unit, a deprotection process, a re-exposed amine group and a new Synthesis is performed by repeating a cycle (deprotection-wash-coupling-wash) of a coupling process in which amino acids are combined. The SPPS method can be performed using microwave technology together, and microwave technology can shorten the time required for coupling and deprotection of each cycle by applying heat in the peptide synthesis process. The thermal energy may prevent folding or aggregation of the extended peptide chain and promote chemical bonding.
또한 액체상 펩타이드 합성법에 의해 본 발명의 펩타이드를 제작할 수 있으며, 이의 구체적 방법은 하기의 문헌들을 참조로 한다: US 등록특허 제 5,516,891. 또한 본 발명의 펩타이드는 상기 고체상 합성법과 액체상 합성법을 혼합하는 방법 등의 다양한 방법으로 합성 가능하며, 본 명세서에 기술된 수단에 그 제조 방법이 제한되지 않는다. In addition, the peptide of the present invention can be prepared by a liquid phase peptide synthesis method, and the specific method thereof is referred to the following documents: US Patent No. 5,516,891. In addition, the peptide of the present invention can be synthesized by various methods such as a method of mixing the solid phase synthesis method and the liquid phase synthesis method, and the preparation method is not limited to the means described herein.
단백질 합성은 수동 기법을 이용해서 또는 자동화에 의해 수행될 수 있다. 자동화된 합성은, 예를 들어 Applied Biosystems 431A 펩티드 합성기(Perkin Elmer)를 이용해서 달성될 수 있다. 대안적으로, 다양한 단편이 별도로 화학적으로 합성되고 화학적 방법을 이용하여 조합되어 목적 분자를 제조할 수 있다.Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be accomplished using, for example, an Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments can be chemically synthesized separately and combined using chemical methods to produce the target molecule.
본 발명에서 상기 펩타이드는 당업자에게 알려진 통상의 펩타이드 합성 방법 혹은 제조 방법을 통하여 D-form 또는 L-form, 서열 중 일부만 D-form이나 L-form으로 구성된 펩타이드, 또는 이들의 라세미체 형태로 모두 제작하여 사용될 수 있다. 또한 펩타이드의 안정성을 높이기 위해 그 외의 당업계에 공지된 통상적인 변형이 가능하다.In the present invention, the peptide is a D-form or L-form, a peptide composed of only a part of the D-form or L-form sequence, or all of them in the form of a racemate through a conventional peptide synthesis method or preparation method known to those skilled in the art. can be produced and used. In addition, other conventional modifications known in the art are possible to increase the stability of the peptide.
본 발명에서 상기 펩타이드는 통상적인 변이체를 포함할 수 있다. 상기 변이체는, 상기 '펩타이드'의 아미노산 서열에 임의의 변경이 발생한 것으로서, 하나 이상의 치환, 결실, 부가 및/또는 삽입을 포함할 수 있다. 이러한 변이체는 자연적으로 발생되는 것일 수 있고, 또는 본 기술분야에 잘 알려진 임의의 다수의 기술을 이용하여, 예를 들어 본 발명의 상기 펩타이드 서열 중의 하나 이상을 수정 또는 변형하고 본 명세서에 기재된 이들의 생물학적 활성을 평가하는 것에 의해 합성적으로 생성될 수 있다. In the present invention, the peptide may include conventional variants. The variant is one in which an arbitrary change has occurred in the amino acid sequence of the 'peptide', and may include one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring, or may be any of a number of techniques well known in the art, for example, by modifying or altering one or more of the above peptide sequences of the present invention and producing those described herein. It can be produced synthetically by evaluating biological activity.
본 발명의 일 양태로서, 상기 변이체(variant)는 보존적 치환을 포함한다. '보존적 치환'이란, 어느 아미노산이 유사한 특성을 가지는 다른 아미노산으로 치환되어 당업자라면 그 펩타이드의 2차 구조 및 감수성질(hydropathic nature, 소수성 또는 친수성 성질)이 실질적으로 비변화 되었다고 예측할 수 있는 치환이다. 일반적으로 하기 아미노산 군이 보존성 변화를 나타낸다: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; 및 (5) phe, tyr, trp, his.In one aspect of the invention, the variant comprises conservative substitutions. A 'conservative substitution' is a substitution in which an amino acid is substituted with another amino acid having similar properties, and a person skilled in the art can predict that the secondary structure and hydropathic nature (hydropathic nature, hydrophobic or hydrophilic nature) of the peptide are substantially unchanged. . In general, the following groups of amino acids exhibit conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.
변형(modification)은 본 발명의 펩타이드의 구조 내에 수행되는 것일 수 있고, 원하는(바람직한) 특징을 가지고 있는 펩타이드 변이체 또는 파생물(derivatives)을 암호화하는 기능적 분자를 수득할 수 있다. 본 발명의 상기 펩타이드와 등가(equivalent)의 또는 향상된(improved) 변이체를 제작하기 위해 펩타이드의 아미노산 서열을 변경하고자 하는 경우, 당업자는 당업계에 알려진 단백질 코돈 정보에 기초하여 하나 이상의 코돈을 변화시킬 수 있다. Modifications may be performed within the structure of the peptides of the present invention, yielding functional molecules that encode peptide variants or derivatives having desired (desirable) characteristics. If it is desired to change the amino acid sequence of the peptide in order to prepare an equivalent or improved variant of the peptide of the present invention, one or more codons can be changed based on protein codon information known in the art by those skilled in the art. there is.
또한 상기 변이체는 비보존적 변경을 포함할 수 있다. 바람직한 실시예에서, 변이체 펩타이드는 5개 아미노산 또는 그것보다 적은 아미노산의 치환, 결실 또는 부가에 의해 천연 서열과는 다를 수 있다. 변이체는 또한, 예를 들어 상기 펩타이드의 2차 구조 및 감수(hydropathic) 특성에 대해서 가지는 영향이 최소인 아미노산의 결실 또는 부가에 의해 변경될 수 있다. In addition, the variant may contain non-conservative alterations. In a preferred embodiment, variant peptides may differ from the native sequence by substitutions, deletions or additions of 5 or fewer amino acids. Variants can also be altered, for example by deletion or addition of amino acids that have minimal impact on the secondary structure and hydropathic properties of the peptide.
본 발명에서 상기 펩타이드는 단백질의 N-말단에 시그널(또는 리더) 서열을 포함할 수 있고, 이 서열은 번역과 동시에 또는 번역 후에 그 단백질의 이송을 지시한다. 상기 펩타이드는, 또한 펩타이드의 합성, 정제 또는 동정을 용이하게 하기 위해(예를 들면 폴리 His), 또는 펩타이드의 고체 지지체에 대한 결합을 증강하기 위해, 링커 서열 또는 다른 서열과 결합(conjugate)될 수 있다. In the present invention, the peptide may include a signal (or leader) sequence at the N-terminus of the protein, and this sequence directs the transfer of the protein simultaneously or after translation. The peptide may also be conjugated with a linker sequence or other sequence to facilitate synthesis, purification or identification of the peptide (eg poly His), or to enhance binding of the peptide to a solid support. there is.
본 발명에 있어 '복합체'는 하나 이상의 펩타이드에 하나 이상의 지질 나노입자가 포함된 것을 의미한다. 본 발명에 있어서, 상기 "복합체"에서 상기 펩타이드와 지질 나노입자는 1 : 1, 1 : 다, 다 : 1, 다 : 다의 비율로 포함된 것일 수 있다. 예를 들어, 상기 펩타이드와 상기 지질 나노입자는 1 : 1 내지 1 : 100, 또는 100 : 1 내지 1 : 1의 몰비로 포함된 것일 수 있다. 그러나 상기 몰비는 예시적인 것이며 이에 제한되지 않는다. 본 발명에서 상기 복합체는 상기 펩타이드와 상기 지질 나노입자가 단순히 혼합(mixing)된 것, 펩타이드와 지질 나노입자가 혼합되어 형성된 것, 또는 이들이 화학결합에 의해 연결되는 것일 수 있으며, 특히 상기 펩타이드와 지질 나노입자가 접합(conjugate)된 것일 수 있다. In the present invention, 'complex' means that one or more lipid nanoparticles are included in one or more peptides. In the present invention, the peptide and lipid nanoparticles in the "complex" may be included in a ratio of 1: 1, 1: Da, Da: 1, Da: Da. For example, the peptide and the lipid nanoparticle may be included in a molar ratio of 1:1 to 1:100, or 100:1 to 1:1. However, the molar ratio is exemplary and is not limited thereto. In the present invention, the complex may be formed by simply mixing the peptide and the lipid nanoparticles, by mixing the peptide and lipid nanoparticles, or by linking them by a chemical bond, in particular, the peptide and lipid Nanoparticles may be conjugated.
본 발명의 일 양태에서 상기 펩타이드는 다음을 포함하는 지질 나노입자와 접합되어 복합체를 이룬다:In one aspect of the present invention, the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
(i) 하나 이상의 핵산 분자; (ii) 콜레스테롤; (iii) DSPC; (iv) PEG-C-DNA; 및 (v) 다음 화학식 1의 양이온성 지질:(i) one or more nucleic acid molecules; (ii) cholesterol; (iii) DSPC; (iv) PEG-C-DNA; and (v) a cationic lipid of Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2022016753-appb-img-000001
Figure PCTKR2022016753-appb-img-000001
또는 이의 염으로서,or as a salt thereof,
여기서 PEG-C-DNA, 양이온성 지질, 콜레스테롤, 및 DSPC에 대한 총 지질의 몰 백분율은 다음과 같다:where the molar percentages of total lipids relative to PEG-C-DNA, cationic lipids, cholesterol, and DSPC are:
PEG-C-DNA : 약 1.5;PEG-C-DNA: about 1.5;
양이온성 지질 : 약 50.0;Cationic lipids: about 50.0;
콜레스테롤 : 약 38.5; 및Cholesterol: about 38.5; and
DSPC : 약 10.0.DSPC: around 10.0.
본 발명에서 상기 지질은 지방산의 에스테르를 포함하지만 이에 제한되지 않고, 물에 불용성이지만 많은 유기 용매에 가용성임을 특징으로 하는 유기 화합물의 군을 지칭한다. 이들은 일반적으로 최소 세 가지 부류로 나뉜다: (1) 지방 및 오일 뿐만 아니라 왁스를 포함하는 '단순 지질'; (2) 인지질 및 당지질을 포함하는 '복합 지질'; 및 (3) 스테로이드와 같은 '유도 지질'.In the present invention, the lipid refers to a group of organic compounds, including but not limited to esters of fatty acids, characterized by being insoluble in water but soluble in many organic solvents. They generally fall into at least three classes: (1) 'simple lipids', which include waxes as well as fats and oils; (2) 'complex lipids' comprising phospholipids and glycolipids; and (3) 'derived lipids' such as steroids.
본 발명에서 지질 입자(예를 들어, LNP)는 전형적으로 약 40 nm 내지 약 150 nm, 약 50 nm 내지 약 150 nm, 약 60 nm 내지 약 130 nm, 약 70 nm 내지 약 110 nm, 또는 약 70 내지 약 90 nm의 평균 직경을 갖고, 실질적으로 무독성이다. 또한, 핵산은, 본 발명의 지질 입자 내에 존재할 때, 뉴클레이스로 인한 분해에 대해 수용액에서 내성이다. 핵산-지질 입자 및 이의 제조 방법은, 예를 들어, 미국 특허 공개 번호 제20040142025호 및 제20070042031호에 개시되고, 이의 개시는 모든 목적을 위해 그 전체가 본원에 참조로 포함된다.Lipid particles (eg, LNPs) in the present invention are typically about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm. to about 90 nm in average diameter, and is substantially non-toxic. In addition, the nucleic acids, when present in the lipid particles of the invention, are resistant in aqueous solution to degradation due to nucleases. Nucleic acid-lipid particles and methods of making them are disclosed, for example, in US Patent Publication Nos. 20040142025 and 20070042031, the disclosures of which are incorporated herein by reference in their entirety for all purposes.
본 발명에서 상기 지질 나노입자(LNP)는 지질-핵산 입자 또는 핵산-지질 입자(예를 들어, 안정한 핵산-지질 입자)를 지칭한다. LNP는 지질(예를 들어, 양이온성 지질, 비양이온성 지질, 및 입자의 응집을 방지하는 접합 지질), 핵산으로 만들어진 입자를 나타내고, 여기서 핵산(예를 들어, siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, 짧은 헤어핀 RNA (shRNA), dsRNA, mRNA, 자가 증폭 RNA, 또는 플라스미드, 간섭 RNA 또는 mRNA가 전사되는 플라스미드 포함)이 지질 내에 캡슐화된다. 핵산은 지질에 최소 50%, 75%, 90%, 100% 캡슐화된다. LNP는 전형적으로 양이온성 지질, 비양이온성 지질, 및 지질 접합체(예를 들어, PEG-지질 접합체)를 포함한다. LNP는 정맥내 (i.v.) 주사 후 순환 수명이 연장될 수 있고, 말단 부위(예를 들어, 투여 부위로부터 물리적으로 분리된 부위)에 축적될 수 있으며, 이러한 말단 부위에서 형질감염된 유전자의 발현 또는 표적 유전자 발현의 침묵을 매개할 수 있으므로 전신 적용에 매우 유용하다.In the present invention, the lipid nanoparticle (LNP) refers to a lipid-nucleic acid particle or a nucleic acid-lipid particle (eg, a stable nucleic acid-lipid particle). LNP refers to particles made of lipids (e.g., cationic lipids, non-cationic lipids, and conjugated lipids that prevent particle aggregation), nucleic acids, wherein the nucleic acids (e.g., siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, short hairpin RNA (shRNA), dsRNA, mRNA, self-amplifying RNA, or plasmid, including interfering RNA or plasmids from which mRNA is transcribed) are encapsulated in lipids. Nucleic acids are at least 50%, 75%, 90%, 100% encapsulated in lipids. LNPs typically include cationic lipids, non-cationic lipids, and lipid conjugates (eg, PEG-lipid conjugates). LNPs can have a prolonged circulatory life following intravenous (i.v.) injection and can accumulate at distal sites (eg, at sites physically separate from the site of administration) where expression or targeting of transfected genes occurs. It is very useful for systemic application as it can mediate the silencing of gene expression.
본 발명에서 상기 핵산은 단일- 또는 이중 가닥 형태의, 최소 둘의 데옥시리보뉴클레오타이드 또는 리보뉴클레오타이드를 포함하는 중합체를 지칭하고 DNA 및 RNA를 포함한다. DNA는, 예를 들어, 안티센스 분자, 플라스미드 DNA, 사전 축합된 DNA, PCR 생성물, 벡터 (P1, PAC, BAC, YAC, 인공 염색체), 발현 카세트, 키메라 서열, 염색체 DNA, 또는 이들 그룹의 유도체 및 조합의 형태일 수 있다. RNA는 siRNA, 비대칭 간섭 RNA (aiRNA), 마이크로RNA (miRNA), mRNA, tRNA, rRNA, tRNA, 바이러스 RNA (vRNA), 자가 증폭 RNA, 및 이들의 조합의 형태일 수 있다. 핵산은 합성, 자연 발생, 및 비자연 발생이고, 표준 핵산과 유사한 결합 특성을 갖는, 공지된 뉴클레오타이드 유사체 또는 변형된 뼈대 잔기 또는 연결을 포함하는 핵산을 포함한다. 그러한 유사체의 예는, 제한 없이, 포스포로티오에이트, 포스포라미데이트, 메틸 포스포네이트, 카이랄-메틸 포스포네이트, 2'-O-메틸 리보뉴클레오타이드, 및 펩타이드-핵산 (PNA)을 포함한다. 특별히 제한되지 않는 한, 상기 용어는 표준 핵산과 유사한 결합 특성을 갖는 천연 뉴클레오타이드의 공지된 유사체를 포함하는 핵산을 포함한다. 달리 지시되지 않는 한, 특정 핵산 서열은 또한 이의 보존적으로 변형된 변이체 (예를 들어, 퇴화 코돈 치환), 대립유전자, 오쏘로그, SNP, 및 상보적 서열뿐만 아니라 명시적으로 표시된 서열을 암시적으로 포함한다. 구체적으로, 퇴화 코돈 치환은 하나 이상의 선택된 (또는 모든) 코돈의 세 번째 위치가 혼합된 염기 및/또는 데옥시이노신 잔기로 치환되는 서열을 생성함으로써 달성될 수 있다. "뉴클레오타이드"는 당 데옥시리보스(DNA) 또는 리보스(RNA), 염기, 및 포스페이트 기를 포함한다. 뉴클레오타이드는 포스페이트 기를 통해 서로 연결된다. "염기"는 천연 화합물 아데닌, 티민, 구아닌, 사이토신, 우라실, 이노신, 및 천연 유사체를 추가로 포함하는 푸린 및 피리미딘, 및 제한되는 것은 아니지만 아민, 알코올, 티올, 카르복실레이트, 및 알킬할라이드와 같은 새로운 반응성 기를 배치하는 변형을 포함하지만 이에 제한되지 않는 푸린 및 피리미딘의 합성 유도체를 포함한다.In the present invention, the nucleic acid refers to a polymer comprising at least two deoxyribonucleotides or ribonucleotides in single- or double-stranded form, and includes DNA and RNA. DNA includes, for example, antisense molecules, plasmid DNA, pre-condensed DNA, PCR products, vectors (P1, PAC, BAC, YAC, artificial chromosomes), expression cassettes, chimeric sequences, chromosomal DNA, or derivatives of these groups and It may be in the form of a combination. RNA can be in the form of siRNA, asymmetric interfering RNA (aiRNA), microRNA (miRNA), mRNA, tRNA, rRNA, tRNA, viral RNA (vRNA), self-amplifying RNA, and combinations thereof. Nucleic acids include nucleic acids that are synthetic, naturally occurring, and non-naturally occurring, and that contain known nucleotide analogs or modified framework residues or linkages that have similar binding properties to reference nucleic acids. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2'-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs). do. Unless specifically limited, the term includes nucleic acids comprising known analogues of natural nucleotides that have similar binding properties to standard nucleic acids. Unless otherwise indicated, a particular nucleic acid sequence also implies conservatively modified variants (eg, degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences thereof, as well as explicitly indicated sequences. to include Specifically, degenerate codon substitutions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is replaced with mixed bases and/or deoxyinosine residues. A "nucleotide" includes the sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked to each other through phosphate groups. “Base” refers to the natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and purines and pyrimidines, further including their natural analogues, and including but not limited to amines, alcohols, thiols, carboxylates, and alkylhalides. synthetic derivatives of purines and pyrimidines, including but not limited to modifications that place new reactive groups such as
상기 "간섭 RNA" 또는 용어 "RNAi" 또는 "간섭 RNA 서열"은 간섭 RNA가 표적 유전자 또는 서열과 동일한 세포에 있을 때(예를 들어, 간섭 RNA 서열에 상보적인 mRNA의 분해를 매개하거나 번역을 억제함으로써) 표적 유전자 또는 서열의 발현을 감소 또는 억제할 수 있는 단일 가닥 RNA(예를 들어, 성숙 miRNA) 또는 이중 가닥 RNA(즉, siRNA, aiRNA, 또는 pre-miRNA와 같은 듀플렉스 RNA)을 지칭한다. 따라서 간섭 RNA는 표적 mRNA 서열에 또는 두 개의 상보적 가닥에 의해 또는 단일한 자기 상보적 가닥에 의해 형성된 이중 가닥 RNA에 상보적인 단일 가닥 RNA를 지칭한다. 간섭 RNA는 표적 유전자 또는 서열에 대해 실질적 또는 완전한 동일성을 가질 수 있거나, 미스매치 영역(즉, 미스매치 모티프)을 가질 수 있다. 간섭 RNA의 서열은 전장 표적 유전자, 또는 이의 하위서열에 해당할 수 있다.The term "interfering RNA" or the term "RNAi" or "interfering RNA sequence" refers to when the interfering RNA is in the same cell as the target gene or sequence (e.g., mediates degradation of mRNA complementary to the interfering RNA sequence or inhibits translation). single-stranded RNA (eg, mature miRNA) or double-stranded RNA (eg, duplex RNA such as siRNA, aiRNA, or pre-miRNA) capable of reducing or inhibiting the expression of a target gene or sequence by . Interfering RNA thus refers to a single-stranded RNA that is complementary to a target mRNA sequence or to a double-stranded RNA formed by two complementary strands or by a single self-complementary strand. An interfering RNA may have substantial or complete identity to a target gene or sequence, or may have regions of mismatch (ie, mismatch motifs). The sequence of the interfering RNA may correspond to a full-length target gene or a subsequence thereof.
간섭 RNA는 "소-간섭 RNA" 또는 "siRNA", 예를 들어, 약 15-60, 15-50, 또는 15-40 (듀플렉스) 뉴클레오타이드 길이, 더욱 전형적으로 약 15-30, 15-25, 또는 19-25 (듀플렉스) 뉴클레오타이드 길이의 간섭 RNA를 포함하고, 바람직하게는 약 20-24, 21-22, 또는 21-23 (듀플렉스) 뉴클레오타이드 길이이다(예를 들어, 이중 가닥 siRNA의 각 상보적 서열은 15-60, 15-50, 15-40, 15-30, 15-25, 또는 19-25 뉴클레오타이드 길이, 바람직하게는 약 20-24, 21-22, 또는 21-23 뉴클레오타이드 길이이고, 이중 가닥 siRNA는 약 15-60, 15-50, 15-40, 15-30, 15-25, 또는 19-25 염기쌍 길이, 바람직하게는 약 18-22, 19-20, 또는 19-21 염기쌍 길이이다). siRNA 듀플렉스는 약 1 내지 약 4개의 뉴클레오타이드 또는 약 2 내지 약 3개의 뉴클레오타이드의 3' 오버행 및 5' 포스페이트 말단을 포함할 수 있다. siRNA의 예는, 제한 없이, 두 개의 분리된 가닥 분자로부터 조립된 이중 가닥 폴리뉴클레오타이드 분자를 포함하고, 여기서 한 가닥은 센스 가닥이고 다른 가닥은 상보적 안티센스 가닥이고; 단일 가닥 분자로부터 조립된 이중 가닥 폴리뉴클레오타이드 분자를 포함하고, 여기서 센스 및 안티센스 영역은 핵산-기반 또는 비-핵산-기반 링커에 의해 연결되고; 자기 상보적 센스 및 안티센스 영역을 갖는 헤어핀 이차 구조가 있는 이중 가닥 폴리뉴클레오타이드 분자를 포함하고; 둘 이상의 루프 구조 및 자기상보적 센스 및 안티센스 영역을 갖는 스템이 있는 원형 단일 가닥 폴리뉴클레오타이드 분자를 포함하고, 여기서 원형 폴리뉴클레오타이드는 생체 내 또는 시험관 내 처리되어 활성 이중 가닥 siRNA 분자를 생성할 수 있다.An interfering RNA is a "small-interfering RNA" or "siRNA", e.g., about 15-60, 15-50, or 15-40 (duplex) nucleotides in length, more typically about 15-30, 15-25, or 19-25 (duplex) nucleotides in length, preferably about 20-24, 21-22, or 21-23 (duplex) nucleotides in length (e.g., each complementary sequence of the double-stranded siRNA is 15-60, 15-50, 15-40, 15-30, 15-25, or 19-25 nucleotides in length, preferably about 20-24, 21-22, or 21-23 nucleotides in length, and is double stranded. siRNA is about 15-60, 15-50, 15-40, 15-30, 15-25, or 19-25 base pairs in length, preferably about 18-22, 19-20, or 19-21 base pairs in length) . The siRNA duplex may include a 3' overhang and a 5' phosphate end of about 1 to about 4 nucleotides or about 2 to about 3 nucleotides. Examples of siRNAs include, without limitation, double-stranded polynucleotide molecules assembled from two separate stranded molecules, wherein one strand is the sense strand and the other strand is the complementary antisense strand; A double-stranded polynucleotide molecule assembled from single-stranded molecules, wherein sense and antisense regions are linked by a nucleic acid-based or non-nucleic acid-based linker; It comprises a double-stranded polynucleotide molecule with a hairpin secondary structure having self-complementary sense and antisense regions; A circular single-stranded polynucleotide molecule with a stem having two or more loop structures and self-complementary sense and antisense regions, wherein the circular polynucleotide can be processed in vivo or in vitro to generate an active double-stranded siRNA molecule.
본원에 기재된 siRNA 분자는 이중 가닥 영역의 하나 또는 두 면에 하나, 둘, 셋, 넷, 또는 그 이상의 뉴클레오타이드의 3' 오버행을 가질 수 있거나, 이중 가닥 영역의 하나 또는 두 면에 오버행이 없을 수 있다(즉, 평활 말단을 갖는다). 바람직하게는, siRNA는 이중 가닥 영역의 각 면에 두 뉴클레오타이드의 3' 오버행을 갖는다. 특정 예에서, 안티센스 가닥의 3' 오버행은 표적 서열에 대해 상보성을 갖고 센스 가닥의 3' 오버행은 표적 서열의 상보적 가닥에 대해 상보성을 갖는다. 대안적으로, 3' 오버행은 표적 서열 또는 이의 상보적 가닥에 대해 상보성을 갖지 않는다. 일부 실시 양태에서, 3' 오버행은 하나, 둘, 셋, 넷, 또는 그 이상의 뉴클레오타이드, 예컨대 2'-데옥시(2'H) 뉴클레오타이드를 포함한다. 특정한 바람직한 실시양태에서, 3' 오버행은 데옥시티미딘(dT) 및/또는 우리딘 뉴클레오타이드를 포함한다. 다른 실시 양태에서, 이중 가닥 영역의 하나 또는 두 면의 3' 오버행에서 뉴클레오타이드 중 하나 이상이 변형된 뉴클레오타이드를 포함한다. 변형된 뉴클레오타이드의 비제한적 예는 위에 기재되고 2'OMe 뉴클레오타이드, 2'-데옥시-2'F 뉴클레오타이드, 2'-데옥시 뉴클레오타이드, 2'-O-2-MOE 뉴클레오타이드, LNA 뉴클레오타이드, 및 이들의 혼합을 포함한다. 바람직한 실시양태에서, siRNA의 센스 및/또는 안티센스 가닥에 존재하는 3' 오버행에서 하나, 둘, 셋, 넷, 또는 그 이상의 뉴클레오타이드는, 예를 들어, 2'OMe-구아노신 뉴클레오타이드, 2'OMe-우리딘 뉴클레오타이드, 2'OMe-아데노신 뉴클레오타이드, 2'OMe-사이토신 뉴클레오타이드, 및 이들의 혼합과 같은 2'OMe 뉴클레오타이드 (예를 들어, 2'OMe 푸린 및/또는 피리미딘 뉴클레오타이드)를 포함한다.The siRNA molecules described herein may have a 3' overhang of one, two, three, four, or more nucleotides on one or both sides of the double-stranded region, or may have no overhang on one or both sides of the double-stranded region. (i.e., with blunt ends). Preferably, the siRNA has a 3' overhang of two nucleotides on each side of the double-stranded region. In certain instances, the 3' overhang of the antisense strand is complementary to the target sequence and the 3' overhang of the sense strand is complementary to the complementary strand of the target sequence. Alternatively, the 3' overhang has no complementarity to the target sequence or its complementary strand. In some embodiments, the 3' overhang comprises one, two, three, four, or more nucleotides, such as a 2'-deoxy (2'H) nucleotide. In certain preferred embodiments, the 3' overhang comprises deoxythymidine (dT) and/or uridine nucleotides. In another embodiment, one or more of the nucleotides in the 3' overhang on one or both sides of the double stranded region comprises a modified nucleotide. Non-limiting examples of modified nucleotides are described above and include 2'OMe nucleotides, 2'-deoxy-2'F nucleotides, 2'-deoxy nucleotides, 2'-O-2-MOE nucleotides, LNA nucleotides, and contains a mix In a preferred embodiment, one, two, three, four, or more nucleotides in the 3' overhang present in the sense and/or antisense strand of the siRNA are, for example, 2'OMe-guanosine nucleotides, 2'OMe- 2'OMe nucleotides such as uridine nucleotides, 2'OMe-adenosine nucleotides, 2'OMe-cytosine nucleotides, and mixtures thereof (eg, 2'OMe purine and/or pyrimidine nucleotides).
siRNA는 표적 유전자 발현을 침묵시키는 변형되지 않은 및/또는 변형된 siRNA 서열의 최소 하나 또는 칵테일(예를 들어, 최소 둘, 셋, 넷, 다섯, 여섯, 일곱, 여덟, 아홉, 열, 또는 그 이상)을 포함할 수 있다. siRNA의 칵테일은 하나 이상의 표적 유전자의 동일한 영역 또는 도메인 (예를 들어, "핫 스팟") 및/또는 상이한 영역 또는 도메인으로 향하는 서열을 포함할 수 있다. 특정 예에서, 하나 이상의 (예를 들어, 최소 둘, 셋, 넷, 다섯, 여섯, 일곱, 여덟, 아홉, 열, 또는 그 이상) 표적 유전자 발현을 침묵시키는 변형된 siRNA가 칵테일에 존재한다. 특정한 다른 예에서, 하나 이상의 (예를 들어, 최소 둘, 셋, 넷, 다섯, 여섯, 일곱, 여덟, 아홉, 열, 또는 그 이상) 표적 유전자 발현을 침묵시키는 변형되지 않은 siRNA 서열이 칵테일에 존재한다.A siRNA is at least one or a cocktail (e.g., at least two, three, four, five, six, seven, eight, nine, ten, or more) of unmodified and/or modified siRNA sequences that silence target gene expression. ) may be included. A cocktail of siRNAs can include sequences directed to the same region or domain (eg, a "hot spot") and/or to different regions or domains of one or more target genes. In certain instances, modified siRNAs that silence one or more (eg, at least two, three, four, five, six, seven, eight, nine, ten, or more) target gene expression are present in the cocktail. In certain other examples, unmodified siRNA sequences that silence one or more (e.g., at least two, three, four, five, six, seven, eight, nine, ten, or more) target gene expression are present in the cocktail. do.
바람직하게는, siRNA는 화학적으로 합성된다. siRNA는 또한 E. coli RNase III 또는 Dicer를 사용하여 더 긴 dsRNA (예를 들어, 길이가 약 25개 초과의 뉴클레오타이드인 dsRNA)의 절단에 의해 생성될 수 있다. 이들 효소는 dsRNA를 생물학적으로 활성인 siRNA로 처리한다. 바람직하게는, dsRNA는 최소 50 개의 뉴클레오타이드 내지 약 100, 200, 300, 400, 또는 500 개의 뉴클레오타이드 길이이다. dsRNA는 1000, 1500, 2000, 5000 개의 뉴클레오타이드 길이이거나 더 길 수 있다. dsRNA는 전체 유전자 전사물 또는 부분 유전자 전사물에 대해 인코딩할 수 있다. 특정 예에서, siRNA는 플라스미드에 의해 인코딩 될 수 있다(예를 들어, 헤어핀 루프가 있는 듀플렉스로 자동으로 접히는 서열로서 전사됨).Preferably, siRNA is chemically synthesized. siRNAs can also be generated by cleavage of longer dsRNAs (eg, dsRNAs greater than about 25 nucleotides in length) using E. coli RNase III or Dicer. These enzymes process dsRNA into biologically active siRNA. Preferably, the dsRNA is at least 50 nucleotides to about 100, 200, 300, 400, or 500 nucleotides in length. A dsRNA may be 1000, 1500, 2000, 5000 nucleotides in length or longer. A dsRNA can encode for an entire gene transcript or a partial gene transcript. In certain instances, siRNAs can be encoded by a plasmid (eg, transcribed as a sequence that automatically folds into a duplex with a hairpin loop).
상기 mRNA는 바람직하게는 본 설명에 정의된 바와 같은, 모노-, 바이-, 또는 멀티시스트론성이다. 바이- 또는 멀티시스트론성 mRNA 내의 암호화 서열은 바람직하게는 본 설명에 정의된 바와 같은 개별적인 펩티드 또는 단백질 또는 이의 단편 또는 변이체를 암호화한다. 바람직하게는, 둘 이상의 펩티드 또는 단백질을 암호화하는 암호화 서열은 아래에 정의된 바와 같이, 적어도 하나의 IRES(내부 리보솜 유입점)에 의해 바이- 또는 멀티시스트론성 mRNA에서 분리될 수 있다. 따라서, 용어 "둘 이상의 펩티드 또는 단백질을 암호화하는"이란, 바이- 또는 멀티시스트론성 mRNA가 본 설명에 제공된 정의 내에서 예컨대, 적어도 2개, 3개, 4개, 5개, 6개 이상의 (바람직하게는 상이한) 펩티드 또는 단백질 또는 이들의 단편 또는 변이체를 암호화할 수 있음을 의미할 수 있으나, 이에 한정되지 않는다. 더욱 바람직하게는, 이에 한정되지 아니하고, 바이- 또는 멀티시스트론성 mRNA는 예를 들어, 본 설명에 정의된 바와 같은 적어도 2개, 3개, 4개, 5개, 6개 이상의 (바람직하게는 상이한) 펩티드 또는 단백질 또는 본 설명에 정의된 바와 같은 그것들의 단편 또는 변이체를 암호화할 수 있다. 이러한 맥락에서, 위에 정의된 바와 같은, 소위 IRES(내부 리보솜 유입점) 서열은 유일한 리보솜 결합 부위로서 기능할 수 있지만, 위에 정의된 바와 같은, 서로 독립적으로 리보솜에 의해 번역되는 몇몇 펩티드 또는 단백질을 암호화하는, 바이- 또는 멀티시스트론성 mRNA를 제공하는 역할도 할 수 있다. 본 발명에 따라 사용될 수 있는 IRES 서열의 예는 피코르나바이러스(예컨대 FMDV), 페스티바이러스(CFFV), 폴리오바이러스(PV), 뇌심근염 바이러스(ECMV), 구제역 바이러스(FMDV), C형 간염 바이러스(HCV), 고전 돼지 열병 바이러스(CSFV), 마우스 각막백반 바이러스(MLV), 원숭이 면역결핍 바이러스(SIV) 또는 귀뚜라미 마비 바이러스(CrPV)로부터 기인한 것들이다.The mRNA is preferably mono-, bi-, or multicistronic, as defined herein. Coding sequences within bi- or multicistronic mRNAs preferably encode individual peptides or proteins or fragments or variants thereof as defined herein. Preferably, coding sequences encoding two or more peptides or proteins may be separated from the bi- or multicistronic mRNA by at least one IRES (Internal Ribosome Entry Point), as defined below. Thus, the term “encoding two or more peptides or proteins” means that a bi- or multicistronic mRNA can contain, for example, at least 2, 3, 4, 5, 6 or more (within the definitions provided herein). preferably different) peptides or proteins or fragments or variants thereof, but is not limited thereto. More preferably, but not limited to, the bi- or multicistronic mRNA is at least 2, 3, 4, 5, 6 or more, for example as defined herein (preferably different) peptides or proteins or fragments or variants thereof as defined herein. In this context, the so-called IRES (Internal Ribosome Entry Point) sequence, as defined above, may serve as the sole ribosome binding site, but encode several peptides or proteins, as defined above, that are translated by the ribosome independently of each other. However, it may also serve to provide bi- or multicistronic mRNA. Examples of IRES sequences that may be used in accordance with the present invention are picornavirus (eg FMDV), pestivirus (CFFV), poliovirus (PV), encephalomyocarditis virus (ECMV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV), classic swine fever virus (CSFV), mouse corneal leukoplakia virus (MLV), monkey immunodeficiency virus (SIV) or cricket paralysis virus (CrPV).
본 발명에서 상기 양이온성 지질은 화학식 1의 화합물 또는 이의 염을 말한다:In the present invention, the cationic lipid refers to a compound of Formula 1 or a salt thereof:
[화학식 1][Formula 1]
Figure PCTKR2022016753-appb-img-000002
Figure PCTKR2022016753-appb-img-000002
'소수성 지질'은 장쇄 포화 및 불포화 지방족 탄화수소 기 및 하나 이상의 방향족, 사이클로지방족, 또는 헤테로환 기(들)에 의해 임의로 치환된 그러한 기를 포함하지만 이에 제한되지 않는 무극성 기를 갖는 화합물을 지칭한다. 적합한 예는 디아실글리세롤, 디알킬글리세롤, N-N-디알킬아미노, 1,2-디아실옥시-3-아미노프로판, 및 1,2-디알킬-3-아미노프로판을 포함하지만 이에 제한되지 않는다.'Hydrophobic lipid' refers to compounds having non-polar groups including, but not limited to, long-chain saturated and unsaturated aliphatic hydrocarbon groups and such groups optionally substituted by one or more aromatic, cycloaliphatic, or heterocyclic group(s). Suitable examples include, but are not limited to, diacylglycerol, dialkylglycerol, N-N-dialkylamino, 1,2-diacyloxy-3-aminopropane, and 1,2-dialkyl-3-aminopropane.
본 발명에 따른 지질-핵산 입자에 존재하는 핵산은 공지된 임의의 형태의 핵산을 포함한다. 본원에서 사용된 핵산은 단일 가닥 DNA 또는 RNA, 또는 이중 가닥 DNA 또는 RNA, 또는 DNA-RNA 하이브리드일 수 있다. 이중 가닥 DNA의 예는 본원에 설명되고, 예를 들어, 구조 유전자, 제어 및 종결 영역을 포함하는 유전자, 및 바이러스 또는 플라스미드 DNA와 같은 자가 복제 시스템을 포함한다. 이중 가닥 RNA의 예는 본원에 설명되고, 예를 들어, siRNA 및 aiRNA와 pre-miRNA와 같은 다른 RNAi 작용제를 포함한다. 단일 가닥 핵산은, 예를 들어, 안티센스 올리고뉴클레오타이드, 리보자임, 성숙 miRNA, 및 트리플렉스 형성 올리고뉴클레오타이드를 포함한다.Nucleic acids present in the lipid-nucleic acid particles according to the present invention include nucleic acids in any known form. A nucleic acid as used herein may be single-stranded DNA or RNA, or double-stranded DNA or RNA, or a DNA-RNA hybrid. Examples of double-stranded DNA are described herein and include, for example, structural genes, genes comprising control and termination regions, and self-replicating systems such as viral or plasmid DNA. Examples of double-stranded RNA are described herein and include, for example, siRNA and other RNAi agents such as aiRNA and pre-miRNA. Single-stranded nucleic acids include, for example, antisense oligonucleotides, ribozymes, mature miRNAs, and triplex forming oligonucleotides.
핵산은 일반적으로 핵산의 특정 형태에 따라 다양한 길이일 수 있다. 예를 들어, 특정 실시양태에서, 플라스미드 또는 유전자는 길이가 약 1,000 내지 약 100,000 개의 뉴클레오타이드 잔기일 수 있다. 특정 실시양태에서, 올리고뉴클레오타이드는 길이가 약 10 내지 약 100개의 뉴클레오타이드 범위일 수 있다. 다양한 관련 실시양태에서, 단일 가닥, 이중 가닥, 및 삼중-가닥의 올리고뉴클레오타이드는 길이가 약 10 내지 약 60개의 뉴클레오타이드, 약 15 내지 약 60개의 뉴클레오타이드, 약 20 내지 약 50개의 뉴클레오타이드, 약 15 내지 약 30개의 뉴클레오타이드, 또는 약 20 내지 약 30개의 뉴클레오타이드 길이 범위일 수 있다.Nucleic acids can generally be of various lengths depending on the particular form of the nucleic acid. For example, in certain embodiments, a plasmid or gene may be between about 1,000 and about 100,000 nucleotide residues in length. In certain embodiments, oligonucleotides may range from about 10 to about 100 nucleotides in length. In various related embodiments, the single-stranded, double-stranded, and triple-stranded oligonucleotides are about 10 to about 60 nucleotides in length, about 15 to about 60 nucleotides in length, about 20 to about 50 nucleotides in length, and about 15 to about 60 nucleotides in length. 30 nucleotides, or from about 20 to about 30 nucleotides in length.
특정 실시양태에서, 본 발명의 올리고뉴클레오타이드(또는 이의 가닥)는 표적 폴리뉴클레오타이드 서열에 특이적으로 혼성화하거나 이에 상보적이다. 본원에서 사용된 용어 "특이적으로 혼성화 가능한" 및 "상보적"은 안정하고 특이적인 결합이 DNA 또는 RNA 표적과 올리고뉴클레오타이드 사이에 일어나도록 충분한 정도의 상보성을 나타낸다. 올리고뉴클레오타이드는 특이적으로 혼성화 가능할 표적 핵산 서열에 100% 상보적일 필요가 없음이 이해된다. 바람직한 실시양태에서, 올리고뉴클레오타이드는 표적 서열에 대한 올리고뉴클레오타이드의 결합이 표적 서열의 정상적인 기능에 간섭하여 그로부터의 유용성 또는 발현의 손실을 야기할 때 특이적으로 혼성화 가능하고, 특이적 결합이 요구되는 조건 하에, 즉, 생체내 분석 또는 치료적 치료의 경우에 생리학적 조건 하에, 또는 시험관내 분석의 경우에, 분석이 수행되는 조건 하에 비표적 서열에 대한 올리고뉴클레오타이드의 비특이적 결합을 방지하기 위한 충분한 정도의 상보성이 있다. 따라서, 올리고뉴클레오타이드는 표적화하거나 특이적으로 혼성화하는 유전자 또는 mRNA 서열의 영역과 비교하여 1, 2, 3 또는 그 이상의 염기 치환을 포함할 수 있다.In certain embodiments, an oligonucleotide (or strand thereof) of the invention specifically hybridizes to or is complementary to a target polynucleotide sequence. As used herein, the terms "specifically hybridizable" and "complementary" refer to a sufficient degree of complementarity such that stable and specific binding occurs between a DNA or RNA target and an oligonucleotide. It is understood that oligonucleotides need not be 100% complementary to a target nucleic acid sequence to be specifically hybridizable. In a preferred embodiment, the oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target sequence would interfere with the normal functioning of the target sequence, resulting in loss of usefulness or expression therefrom, and conditions under which specific binding is desired under physiological conditions, i.e., in the case of an in vivo assay or therapeutic treatment, or under the conditions under which the assay is performed, in the case of an in vitro assay, to a sufficient extent to prevent non-specific binding of the oligonucleotide to a non-target sequence. There is complementarity. Thus, an oligonucleotide may contain 1, 2, 3 or more base substitutions compared to the region of the gene or mRNA sequence that it targets or specifically hybridizes to.
본 발명에서 상기 PEG-C-DMA는 다음의 구조를 갖는다.In the present invention, the PEG-C-DMA has the following structure.
Figure PCTKR2022016753-appb-img-000003
Figure PCTKR2022016753-appb-img-000003
여기서 n은 생성된 중합체 사슬이 약 1000 내지 약 3000의 분자량을 갖도록 선택된다. 또 다른 실시양태에서, n은 생성된 중합체 사슬이 약 2000의 분자량을 갖도록 선택된다. PEG-C-DMA는 Heyes et al, Synthesis and Characterization of Novel Poly (Ethylene Glycol)-lipid Conjugates Suitable for use in Drug Delivery," Journal of Controlled Release, 2006, 및 미국 특허 제8,936,942호에 설명된 바와 같이 제조될 수 있다. 통상의 기술자는 PEG-C-DMA의 농도가 핵산-지질 입자가 융해성이 되는 속도에 따라 달라질 수 있음을 이해할 것이다. 예를 들어, 핵산-지질 입자가 융해성이 되는 속도는, 예를 들어, PEG의 분자량을 변경함으로써 달라질 수 있다. where n is selected such that the resulting polymer chain has a molecular weight of about 1000 to about 3000. In another embodiment, n is selected such that the resulting polymer chain has a molecular weight of about 2000. PEG-C-DMA is prepared as described in Heyes et al, Synthesis and Characterization of Novel Poly (Ethylene Glycol)-lipid Conjugates Suitable for use in Drug Delivery," Journal of Controlled Release, 2006, and U.S. Patent No. 8,936,942 Those skilled in the art will understand that the concentration of PEG-C-DMA can vary depending on the rate at which nucleic acid-lipid particles become soluble. For example, the rate at which nucleic acid-lipid particles become soluble is , for example by changing the molecular weight of PEG.
콜레스테롤 유도체의 예는 콜레스타놀, 콜레스타논, 콜레스테논, 코프로스타놀, 콜레스테릴-2'-하이드록시에틸 에테르, 콜레스테릴-4'-하이드록시부틸 에테르, 및 이들의 혼합을 포함하지만 이에 제한되지 않는다. Examples of cholesterol derivatives are cholestanol, cholestanone, cholestenone, coprostanol, cholesteryl-2'-hydroxyethyl ether, cholesteryl-4'-hydroxybutyl ether, and mixtures thereof. including but not limited to
본 발명에서 DSPC는 디스테아로일포스파티딜콜린을 의미한다.In the present invention, DSPC means distearoylphosphatidylcholine.
특정 실시양태에서, 본 발명은 연속 혼합 방법, 예를 들어, 핵산을 포함하는 수용액을 제1 저장소에 제공하는 단계, 유기 지질 용액을 제2 저장소에 제공하는 단계 및 유기 지질 용액이 수용액과 혼합되어 핵산(예를 들어, 간섭 RNA 또는 mRNA)을 캡슐화하는 리포솜을 실질적으로 즉시 생성하도록 수용액을 유기 지질 용액과 혼합하는 단계를 포함하는 과정을 통해 생성된 LNP를 제공한다. 이 과정 및 이 과정을 수행하기 위한 장치는 미국 특허 공개 번호 제20040142025호에 상세히 설명되고, 이의 개시는 모든 목적을 위해 그 전체가 본원에 참조로 포함된다.In certain embodiments, the present invention provides a method of continuous mixing, e.g., providing an aqueous solution comprising a nucleic acid to a first reservoir, providing an organic lipid solution to a second reservoir, and mixing the organic lipid solution with the aqueous solution A process comprising mixing an aqueous solution with an organic lipid solution to substantially immediately produce liposomes encapsulating a nucleic acid (eg, interfering RNA or mRNA). This process and apparatus for carrying out this process are described in detail in US Patent Publication No. 20040142025, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
지질 및 버퍼 용액을 혼합 챔버와 같은 혼합 환경에 연속으로 도입하는 작업은 버퍼 용액으로 지질 용액으로 연속 희석하여, 혼합되면 실질적으로 즉시 리포솜을 생성하는 것을 야기한다. 본원에서 사용된 어구 "버퍼 용액으로 지질 용액을 연속 희석" (및 변형)은 일반적으로 지질 용액이 소포 생성을 유발하기에 충분한 힘으로 수화 과정에서 충분히 빠르게 희석됨을 의미한다. 핵산을 포함하는 수용액을 유기 지질 용액과 혼합함으로써, 유기 지질 용액은 버퍼 용액(즉, 수용액)의 존재에서 연속 단계적 희석을 거쳐 핵산-지질 입자를 생성한다.Continuous introduction of the lipid and buffer solution into a mixing environment, such as a mixing chamber, results in serial dilution of the lipid solution with the buffer solution, producing liposomes substantially immediately upon mixing. As used herein, the phrase “serial dilution of a lipid solution with a buffer solution” (and variants) generally means that the lipid solution is diluted rapidly enough during the hydration process with sufficient force to cause vesicle formation. By mixing an aqueous solution containing nucleic acids with an organic lipid solution, the organic lipid solution undergoes serial stepwise dilution in the presence of a buffer solution (i.e., aqueous solution) to produce nucleic acid-lipid particles.
연속 혼합 방법을 사용하여 형성된 LNP는 전형적으로 약 40 nm 내지 약 150 nm, 약 50 nm 내지 약 150 nm, 약 60 nm 내지 약 130 nm, 약 70 nm 내지 약 110 nm, 또는 약 70 nm 내지 약 90 nm의 크기를 갖는다. 이렇게 형성된 입자는 응집되지 않고 균일한 입자 크기를 얻기 위해 선택적으로 크기가 조정된다.LNPs formed using continuous mixing methods typically have a wavelength of about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm. has a size of nm. The particles thus formed are not agglomerated and are optionally sized to obtain a uniform particle size.
본 발명은 희석 버퍼를 포함하는 제3 저장소가 제2 혼합 영역과 유체 결합되는 직접 희석 과정을 통해 생성된 LNP를 제공한다. 이 실시양태에서, 제1 혼합 영역에서 형성된 리포솜 용액은 제2 혼합 영역에서 희석 버퍼와 즉시 그리고 직접 혼합된다. 바람직한 양태에서, 제2 혼합 영역은 리포솜 용액 및 희석 버퍼 흐름이 대향하는 180°흐름으로서 만나도록 배열된 T-커넥터를 포함하지만; 예를 들어, 약 27° 내지 약 180°와 같이 더 얕은 각도를 제공하는 커넥터가 사용될 수 있다. 펌프 메커니즘은 제어 가능한 버퍼 흐름을 제2 혼합 영역으로 전달한다. 한 양태에서, 제2 혼합 영역에 제공되는 희석 버퍼의 유량은 제1 혼합 영역으로부터 도입되는 리포솜 용액의 유량과 실질적으로 동일하도록 제어된다. 이 실시양태는 유리하게는 제2 혼합 영역에서 리포솜 용액과 혼합되는 희석 버퍼의 흐름, 따라서 제2 혼합 공정 전반에 걸친 버퍼 중의 리포솜 용액의 농도를 더 잘 제어하도록 한다. 그러한 희석 버퍼 유량의 제어는 유리하게는 감소된 농도에서 작은 입자 크기 형성을 허용한다.The present invention provides an LNP produced through a direct dilution process in which a third reservoir containing a dilution buffer is fluidly coupled to a second mixing region. In this embodiment, the liposomal solution formed in the first mixing zone is immediately and directly mixed with the dilution buffer in the second mixing zone. In a preferred embodiment, the second mixing zone comprises T-connectors arranged so that the liposomal solution and dilution buffer flows meet as opposing 180° flows; A connector providing a shallower angle, for example from about 27° to about 180°, may be used. A pump mechanism delivers a controllable buffer flow to the second mixing zone. In one aspect, the flow rate of the dilution buffer provided to the second mixing zone is controlled to be substantially the same as the flow rate of the liposome solution introduced from the first mixing zone. This embodiment advantageously allows better control of the flow of the dilution buffer mixed with the liposomal solution in the second mixing zone, and thus the concentration of the liposomal solution in the buffer throughout the second mixing process. Control of such dilution buffer flow rate advantageously allows small particle size formation at reduced concentrations.
이러한 직접 희석 공정을 수행하기 위한 공정 및 장치는 미국 특허 공개 번호 20070042031에 상세히 설명되고, 이의 개시는 모든 목적을 위해 그 전체가 본원에 참조로 포함된다.The process and apparatus for performing this direct dilution process are described in detail in US Patent Publication No. 20070042031, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
직접 희석 과정을 사용하여 형성된 LNP는 전형적으로 약 40 nm 내지 약 150 nm, 약 50 nm 내지 약 150 nm, 약 60 nm 내지 약 130 nm, 약 70 nm 내지 약 110 nm, 또는 약 70 nm 내지 약 90 nm의 크기를 갖는다. 이렇게 형성된 입자는 응집되지 않고 균일한 입자 크기를 얻기 위해 선택적으로 크기가 조정된다.LNPs formed using the direct dilution process typically have a wavelength of about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm. has a size of nm. The particles thus formed are not agglomerated and are optionally sized to obtain a uniform particle size.
필요한 경우, 본 발명의 지질 입자(예를 들어, LNP)는 리포솜 크기조정에 이용 가능한 임의의 방법에 의해 크기 조정될 수 있다. 크기조정은 원하는 크기 범위 및 비교적 좁은 입자 크기 분포를 얻기 위해 수행될 수 있다. 입자를 원하는 크기로 크기 조정하기 위해 여러 기술을 이용할 수 있다. 리포솜에 사용되고 본 입자에 동일하게 적용 가능한 한 크기조정 방법이 미국 특허 제4,737,323호에 설명되고, 이의 개시는 모든 목적을 위해 그 전체가 본원에 참조로 포함된다. 배스 또는 프로브 초음파 처리에 의한 입자 현탁액 초음파 처리는 크기가 약 50 nm 미만인 입자까지 점진적인 크기 감소를 발생시킨다. 균질화는 전단 에너지에 의존하여 더 큰 입자를 더 작은 것으로 부수는 또 다른 방법이다. 전형적인 균질화 절차에서, 입자는 선택된 입자 크기, 전형적으로 약 60 내지 약 80 nm가 관찰될 때까지 표준 에멀젼 균질화기를 통해 재순환된다. 두 가지 방법 모두에서, 입자 크기 분포는 통상적인 레이저-빔 입자 크기 식별, 또는 QELS에 의해 모니터링될 수 있다.If desired, lipid particles (eg, LNPs) of the invention may be sized by any method available for liposome sizing. Sizing can be performed to obtain a desired size range and relatively narrow particle size distribution. Several techniques are available for sizing the particles to the desired size. One sizing method used for liposomes and equally applicable to present particles is described in US Pat. No. 4,737,323, the disclosure of which is incorporated herein by reference in its entirety for all purposes. Sonication of particle suspensions by bath or probe sonication results in gradual size reduction to particles less than about 50 nm in size. Homogenization is another method that relies on shear energy to break larger particles into smaller ones. In a typical homogenization procedure, the particles are recycled through a standard emulsion homogenizer until a selected particle size, typically about 60 to about 80 nm, is observed. In either method, the particle size distribution can be monitored by conventional laser-beam particle size identification, or QELS.
소기공 폴리카보네이트 막 또는 비대칭 세라믹 막을 통한 입자의 압출은 또한 입자 크기를 비교적 잘 정의된 크기 분포로 감소시키는 효과적인 방법이다. 전형적으로, 현탁액은 원하는 입자 크기 분포가 달성될 때까지 막을 통해 한 번 이상 순환된다. 입자는 점진적인 크기 감소를 달성하기 위해 연속적으로 더 작은 기공의 막을 통해 압출될 수 있다.Extrusion of particles through small pore polycarbonate membranes or asymmetric ceramic membranes is also an effective way to reduce particle size to a relatively well-defined size distribution. Typically, the suspension is cycled through the membrane one or more times until the desired particle size distribution is achieved. Particles can be extruded through successively smaller pore membranes to achieve progressive size reduction.
본 발명의 일 양태에서 상기 펩타이드는 다음을 포함하는 지질 나노입자와 접합되어 복합체를 이룬다:In one aspect of the present invention, the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
(i) 화학식 2를 갖는 양이온성 지질:(i) a cationic lipid having Formula 2:
[화학식 2][Formula 2]
Figure PCTKR2022016753-appb-img-000004
Figure PCTKR2022016753-appb-img-000004
또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O- 또는 탄소-탄소 이중 결합이고;L 1 and L 2 are each independently -O(C=O)-, -(C=O)O-, or a carbon-carbon double bond;
R1a 및 R1b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R1a는 H 또는 C1-C12 알킬이고, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 1a and R 1b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 1a is H or C 1 -C 12 alkyl, and R 1b is the carbon atom to which it is attached. together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond;
R2a 및 R2b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R2a는 H 또는 C1-C12 알킬이고, R2b는 그것이 결합되는 탄소 원자와 함께, 인접한 R2b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 2a and R 2b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is the carbon atom to which it is attached. together with adjacent R 2b and the carbon atom to which it is attached to form a carbon-carbon double bond;
R3a 및 R3b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R3a는 H 또는 C1-C12 알킬이고, R3b는 그것이 결합되는 탄소 원자와 함께, 인접한 R3b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 3a and R 3b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is the carbon atom to which it is attached. together with adjacent R 3b and the carbon atom to which it is attached to form a carbon-carbon double bond;
R4a 및 R4b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R4a는 H 또는 C1-C12 알킬이고, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 4a and R 4b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is the carbon atom to which it is attached. together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
R5 및 R6은 각각 독립적으로 메틸 또는 시클로알킬이고;R 5 and R 6 are each independently methyl or cycloalkyl;
R7은, 각 경우에, 독립적으로 H 또는 C1-C12 알킬이고;R 7 , at each occurrence, is independently H or C 1 -C 12 alkyl;
R8 및 R9는 각각 독립적으로 C1-C12 알킬이거나; R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 하나의 질소 원자를 포함하는 5, 6 또는 7 원 헤테로고리를 형성하고;R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle containing one nitrogen atom;
a 및 d는 각각 독립적으로 0 내지 24의 정수이고;a and d are each independently an integer of 0 to 24;
b 및 c는 각각 독립적으로 1 내지 24의 정수이고;b and c are each independently an integer from 1 to 24;
e는 1 또는 2임); 및e is 1 or 2); and
(ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
을 포함하는 복합체.A complex comprising a.
화학식 2의 일부 구현예에서, R1a, R2a, R3a 또는 R4a 중 적어도 하나는 C1-C12 알킬이거나, L1 또는 L2 중 적어도 하나는 -O(C=O)- 또는 -(C=O)O-이다. 다른 구현예에서, R1a 및 R1b는, a가 6일 때 이소프로필이 아니거나 a가 8 일 때 n-부틸이 아니다.In some embodiments of Formula 2, at least one of R 1a , R 2a , R 3a or R 4a is C 1 -C 12 alkyl, or at least one of L 1 or L 2 is -O(C=0)- or - (C=O)O-. In other embodiments, R 1a and R 1b are not isopropyl when a is 6 or n-butyl when a is 8.
화학식 2의 추가적인 일부 구현예에서, R1a, R2a, R3a 또는 R4a 중 적어도 하나는 C1-C12 알킬이거나, L1 또는 L2 중 적어도 하나는 -O(C=O)- 또는 -(C=O)O-이고; R1a 및 R1b는, a가 6일 때 이소프로필이 아니거나 a가 8일 때 n-부틸이 아니다.In some additional embodiments of Formula 2, at least one of R 1a , R 2a , R 3a or R 4a is C 1 -C 12 alkyl, or at least one of L 1 or L 2 is -O(C=O)- or -(C=O)O-; R 1a and R 1b are not isopropyl when a is 6 or n-butyl when a is 8.
화학식 @의 다른 구현예에서, R8 및 R9는 각각 독립적으로 비치환 C1-C12 알킬이거나; R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 하나의 질소 원자를 포함하는 5, 6 또는 7 원 헤테로고리를 형성한다.In another embodiment of Formula @, R 8 and R 9 are each independently unsubstituted C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle containing one nitrogen atom.
화학식 2의 일부 구현예에서, L1 또는 L2 중 임의의 하나는 -O(C=O)- 또는 탄소-탄소 이중 결합일 수 있다. L1 및 L2는 각각 -O(C=O)-일 수 있거나, 각각 탄소-탄소 이중 결합일 수 있다.In some embodiments of Formula 2, any one of L 1 or L 2 can be -O(C=O)- or a carbon-carbon double bond. L 1 and L 2 may each be -O(C=O)-, or each may be a carbon-carbon double bond.
화학식 2의 일부 구현예에서, L1 또는 L2 중 하나는 -O(C=O)-이다. 다른 구현예에서, L1 및 L2 둘 다 -O(C=O)-이다.In some embodiments of Formula 2, one of L 1 or L 2 is -O(C=O)-. In another embodiment, both L 1 and L 2 are -O(C=0)-.
화학식 2의 일부 구현예에서, L1 또는 L2 중 하나는 -(C=O)O-이다. 다른 구현예에서, L1 및 L2 둘 다 -(C=O)O-이다.In some embodiments of Formula 2, one of L 1 or L 2 is -(C=0)0-. In another embodiment, both L 1 and L 2 are -(C=0)0-.
화학식 2의 일부 다른 구현예에서, L1 또는 L2 중 하나는 탄소-탄소 이중 결합이다. 다른 구현예에서, L1 및 L2 둘 다 탄소-탄소 이중 결합이다.In some other embodiments of Formula 2, either L 1 or L 2 is a carbon-carbon double bond. In other embodiments, both L 1 and L 2 are carbon-carbon double bonds.
화학식 2의 추가적인 다른 구현예에서, L1 또는 L2 중 하나는 -O(C=O)-이고, L1 또는 L2 중 나머지는 -(C=O)O-이다. 더 많은 구현예에서, L1 또는 L2 중 하나는 -O(C=O)-이고, L1 또는 L2 중 나머지는 탄소-탄소 이중 결합이다. 또한, 더 많은 구현예에서, L1 또는 L2 중 하나는 -(C=O)O-이고, L1 또는 L2 중 나머지는 탄소-탄소 이중 결합이다.In yet another embodiment of Formula 2, one of L 1 or L 2 is -O(C=O)- and the other of L 1 or L 2 is -(C=O)O-. In more embodiments, one of L 1 or L 2 is -O(C=O)- and the other of L 1 or L 2 is a carbon-carbon double bond. Still in more embodiments, one of L 1 or L 2 is -(C=0)O- and the other of L 1 or L 2 is a carbon-carbon double bond.
명세서 전체에 걸쳐 사용된 "탄소-탄소" 이중 결합은 다음 구조 중 하나를 지칭하는 것으로 이해된다:As used throughout the specification, a “carbon-carbon” double bond is understood to refer to one of the following structures:
Figure PCTKR2022016753-appb-img-000005
또는
Figure PCTKR2022016753-appb-img-000006
Figure PCTKR2022016753-appb-img-000005
or
Figure PCTKR2022016753-appb-img-000006
이때, Ra 및 Rb는, 각 경우에, 독립적으로 H 또는 치환기이다. 예를 들어, 일부 구현예에서, Ra 및 Rb는, 각 경우에, 독립적으로 H, C1-C12 알킬 또는 시클로알킬, 예를 들어 H 또는 C1-C12 알킬이다.In this case, R a and R b are, in each case, independently H or a substituent. For example, in some embodiments, R a and R b , at each occurrence, independently are H, C 1 -C 12 alkyl or cycloalkyl, such as H or C 1 -C 12 alkyl.
다른 구현예에서, 화학식 2의 지질 화합물은 다음 구조 2a를 갖는다:In another embodiment, the lipid compound of Formula 2 has structure 2a:
Figure PCTKR2022016753-appb-img-000007
[2a]
Figure PCTKR2022016753-appb-img-000007
[2a]
다른 구현예에서 화학식 2의 지질 화합물은 다음 구조 2b를 갖는다:In another embodiment, the lipid compound of Formula 2 has structure 2b:
Figure PCTKR2022016753-appb-img-000008
[2b]
Figure PCTKR2022016753-appb-img-000008
[2b]
또 다른 구현예에서 화학식 2의 지질 화합물은 다음 구조 2c를 갖는다:In another embodiment, the lipid compound of formula 2 has structure 2c:
Figure PCTKR2022016753-appb-img-000009
[2c]
Figure PCTKR2022016753-appb-img-000009
[2c]
화학식 2의 지질 화합물의 일부 구현예에서, a, b, c 및 d는 각각 독립적으로 2 내지 12의 정수 또는 4 내지 12의 정수이다. 다른 구현예에서, a, b, c 및 d는 각각 독립적으로 8 내지 12 또는 5 내지 9의 정수이다. 일부 특정 구현예에서, a는 0이다. 일부 구현예에서, a는 1이다. 다른 구현예에서, a는 2이다. 더 많은 구현예에서, a는 3이다. 또 다른 구현예에서, a는 4이다. 일부 구현예에서, a는 5이다. 다른 구현예에서, a는 6이다. 더 많은 구현예에서, a는 7이다. 또 다른 구현예에서, a는 8이다. 일부 구현예에서, a는 9이다. 다른 구현예에서, a는 10이다. 더 많은 구현예에서, a는 11이다. 또 다른 구현예에서, a는 12이다. 일부 구현예에서, a는 13이다. 다른 구현예에서, a는 14이다. 더 많은 구현예에서, a는 15이다. 또 다른 구현예에서, a는 16이다.In some embodiments of the lipid compound of Formula 2, a, b, c and d are each independently an integer from 2 to 12 or an integer from 4 to 12. In another embodiment, a, b, c and d are each independently an integer from 8 to 12 or from 5 to 9. In some specific embodiments, a is zero. In some embodiments, a is 1. In another embodiment, a is 2. In more embodiments, a is 3. In another embodiment, a is 4. In some embodiments, a is 5. In another embodiment, a is 6. In more embodiments, a is 7. In another embodiment, a is 8. In some embodiments, a is 9. In another embodiment, a is 10. In more embodiments, a is 11. In another embodiment, a is 12. In some embodiments, a is 13. In another embodiment, a is 14. In more embodiments, a is 15. In another embodiment, a is 16.
화학식 2의 일부 다른 구현예에서, b는 1이다. 다른 구현예에서, b는 2이다. 더 많은 구현예에서, b는 3이다. 또 다른 구현예에서, b는 4이다. 일부 구현예에서, b는 5이다. 다른 구현예에서, b는 6이다. 더 많은 구현예에서, b는 7이다. 또 다른 구현예에서, b는 8이다. 일부 구현예에서, b는 9이다. 다른 구현예에서, b는 10이다.In some other embodiments of Formula 2, b is 1. In other embodiments, b is 2. In more embodiments, b is 3. In another embodiment, b is 4. In some embodiments, b is 5. In other embodiments, b is 6. In more embodiments, b is 7. In another embodiment, b is 8. In some embodiments, b is 9. In other embodiments, b is 10.
더 많은 구현예에서, b는 11이다. 또 다른 구현예에서, b는 12이다. 일부 구현예에서, b는 13이다. 다른 구현예에서, b는 14이다. 더 많은 구현예에서, b는 15이다. 또 다른 구현예에서, b는 16이다.In more embodiments, b is 11. In another embodiment, b is 12. In some embodiments, b is 13. In other embodiments, b is 14. In more embodiments, b is 15. In another embodiment, b is 16.
화학식 2의 일부 더 많은 구현예에서, c는 1이다. 다른 구현예에서, c는 2이다. 더 많은 구현예에서, c는 3이다. 또 다른 구현예에서, c는 4이다. 일부 구현예에서, c는 5이다. 다른 구현예에서, c는 6이다. 더 많은 구현예에서, c는 7이다. 또 다른 구현예에서, c는 8이다. 일부 구현예에서, c는 9이다. 다른 구현예에서, c는 10이다. 더 많은 구현예에서, c는 11이다. 또 다른 구현예에서, c는 12이다. 일부 구현예에서, c는 13이다. 다른 구현예에서, c는 14이다. 더 많은 구현예에서, c는 15이다. 또 다른 구현예에서, c는 16이다.In some more embodiments of Formula 2, c is 1. In other embodiments, c is 2. In more embodiments, c is 3. In another embodiment, c is 4. In some embodiments, c is 5. In other embodiments, c is 6. In more embodiments, c is 7. In another embodiment, c is 8. In some embodiments, c is 9. In other embodiments, c is 10. In more embodiments, c is 11. In another embodiment, c is 12. In some embodiments, c is 13. In other embodiments, c is 14. In more embodiments, c is 15. In another embodiment, c is 16.
화학식 2의 일부 특정 다른 구현예에서, d는 0이다. 일부 구현예에서, d는 1이다. 다른 구현예에서, d는 2이다. 더 많은 구현예에서, d는 3이다. 또 다른 구현예에서, d는 4이다. 일부 구현예에서, d는 5이다. 다른 구현예에서, d는 6이다. 더 많은 구현예에서, d는 7이다. 또 다른 구현예에서, d는 8이다. 일부 구현예에서, d는 9이다. 다른 구현예에서, d는 10이다. 더 많은 구현예에서, d는 11이다. 또 다른 구현예에서, d는 12이다. 일부 구현예에서, d는 13이다. 다른 구현예에서, d는 14이다. 더 많은 구현예에서, d는 15이다. 또 다른 구현예에서, d는 16이다.In some specific other embodiments of Formula 2, d is 0. In some embodiments, d is 1. In another embodiment, d is 2. In more embodiments, d is 3. In another embodiment, d is 4. In some embodiments, d is 5. In another embodiment, d is 6. In more embodiments, d is 7. In another embodiment, d is 8. In some embodiments, d is 9. In another embodiment, d is 10. In more embodiments, d is 11. In another embodiment, d is 12. In some embodiments, d is 13. In another embodiment, d is 14. In more embodiments, d is 15. In another embodiment, d is 16.
화학식 2의 일부 다른 다양한 구현예에서, a와 d는 동일하다. 일부 다른 구현예에서, b와 c는 동일하다. 일부 다른 특정 구현예에서, a와 d는 동일하고, b와 c는 동일하다.In some other various embodiments of Formula 2, a and d are the same. In some other embodiments, b and c are the same. In some other specific embodiments, a and d are equal and b and c are equal.
화학식 2에서 a와 b의 합 및 c와 d의 합은 원하는 특성을 갖는 화학식 2의 지질을 수득하기 위하여 달라질 수 있는 인자이다. 일 구현예에서, a와 b는 그것들의 합이 14 내지 24 범위의 정수가 되도록 선택된다. 다른 구현예에서, c와 d는 그것들의 합이 14 내지 24 범위의 정수가 되도록 선택된다. 추가적인 구현예에서, a와 b의 합 및 c와 d의 합은 동일하다. 예를 들어, 일부 구현예에서, a와 b의 합 및 c와 d의 합은 둘 다 동일한 정수로, 이는 14 내지 24 범위일 수 있다. 또한, 추가적인 구현예에서, a. b, c 및 d는 a와 b의 합 및 c와 d의 합이 12이 이상이 되도록 선택된다.The sum of a and b and the sum of c and d in Formula 2 are factors that can be varied to obtain a lipid of Formula 2 having the desired properties. In one implementation, a and b are selected such that their sum is an integer in the range of 14 to 24. In another embodiment, c and d are selected such that their sum is an integer in the range of 14 to 24. In a further embodiment, the sum of a and b and the sum of c and d are equal. For example, in some embodiments, the sum of a and b and the sum of c and d are both the same integer, which can range from 14 to 24. Also, in a further embodiment, a. b, c and d are selected so that the sum of a and b and the sum of c and d is 12 or more.
화학식 2의 일부 구현예에서, e는 1이다. 다른 구현예에서, e는 2이다.In some embodiments of Formula 2, e is 1. In another embodiment, e is 2.
화학식 2의 R1a, R2a, R3a 및 R4a에서의 치환기는 특별히 제한되지 않는다. 일부 구현예에서, R1a, R2a, R3a 및 R4a는 각 경우에 H이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C12 알킬이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C8 알킬이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C6 알킬이다. 전술한 구현예 중 일부에서, C1-C8 알킬은 메틸, 에틸, n-프로필, 이소-프로필, n-부틸, 이소-부틸, tert-부틸, n-헥실 또는 n-옥틸이다. 화학식 2의 일부 구현예에서, R1a, R2a, R3a 및 R4a는 각 경우에 C1-C12 알킬이다.Substituents in R 1a , R 2a , R 3a and R 4a in Formula 2 are not particularly limited. In some embodiments, R 1a , R 2a , R 3a and R 4a are H at each occurrence. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 12 alkyl. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 8 alkyl. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 6 alkyl. In some of the foregoing embodiments, C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl. In some embodiments of Formula 2, R 1a , R 2a , R 3a and R 4a are at each occurrence C 1 -C 12 alkyl.
화학식 2의 추가적인 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 H이거나, R1a, R2a, R3a 및 R4a는 각 경우에 H이다.In a further embodiment of Formula 2, at least one of R 1a , R 2a , R 3a and R 4a is H, or R 1a , R 2a , R 3a and R 4a are in each case H.
화학식 2의 일부 구현예에서, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다. 전술한 일부 구현예에서, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다.In some embodiments of Formula 2, R 1b is taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond. In some embodiments of the foregoing, R 4b is taken together with the carbon atom to which it is attached, together with adjacent R4b and the carbon atom to which it is attached to form a carbon-carbon double bond.
화학식 2의 R5 및 R6에서의 치환기는 전술한 구현예에서 특별히 제한되지 않는다. 일부 구현예에서, R5 또는 R6 중 하나 또는 둘 다는 메틸이다. 일부 다른 구현예에서, R5 또는 R6 중 하나 또는 둘 다는 시클로알킬, 예를 들어, 시클로헥실이다. 이들 구현예에서, 시클로알킬은 치환될 수 있거나 비치환될 수 있다. 일부 다른 구현예에서, 시클로알킬은 C1-C12 알킬, 예를 들어 tert-부틸로 치환된다.Substituents for R 5 and R 6 in Formula 2 are not particularly limited in the above embodiments. In some embodiments, one or both of R 5 or R 6 is methyl. In some other embodiments, one or both of R 5 or R 6 is cycloalkyl, such as cyclohexyl. In these embodiments, cycloalkyls can be substituted or unsubstituted. In some other embodiments, cycloalkyl is substituted with C 1 -C 12 alkyl, for example tert-butyl.
R7에서의 치환기는 화학식 2의 전술한 구현예에서 특별히 제한되지 않는다. 일부 구현예에서, 적어도 하나의 R7은 H이다. 일부 다른 구현예에서, R7은 각 경우에 H이다. 일부 다른 구현예에서, R7은 C1-C12 알킬이다.Substituents in R 7 are not particularly limited in the above-described embodiments of Formula 2. In some embodiments, at least one R 7 is H. In some other embodiments, R 7 is H at each occurrence. In some other embodiments, R 7 is C 1 -C 12 alkyl.
전술한 화학식 2의 일부 다른 구현예에서, R8 또는 R9 중 하나는 메틸이다. 다른 구현예에서, R8 및 R9 둘 다 메틸이다.In some other embodiments of Formula 2 above, one of R 8 or R 9 is methyl. In other embodiments, both R 8 and R 9 are methyl.
화학식 2의 일부 상이한 구현예에서, R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5, 6 또는 7원 헤테로고리를 형성한다. 전술한 일부 구현예에서, R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5원 헤테로고리, 예를 들어, 피롤리디닐 고리를 형성한다.In some different embodiments of Formula 2, R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle. In some embodiments of the foregoing, R 8 and R 9 together with the nitrogen atom to which they are attached form a 5-membered heterocycle, such as a pyrrolidinyl ring.
다양한 상이한 구현예에서, 화학식 2의 지질은 아래 표 1에 기재된 구조 중 하나를 갖는다.In various different embodiments, the lipid of Formula 2 has one of the structures set forth in Table 1 below.
Figure PCTKR2022016753-appb-img-000010
Figure PCTKR2022016753-appb-img-000010
Figure PCTKR2022016753-appb-img-000011
Figure PCTKR2022016753-appb-img-000011
Figure PCTKR2022016753-appb-img-000012
Figure PCTKR2022016753-appb-img-000012
Figure PCTKR2022016753-appb-img-000013
Figure PCTKR2022016753-appb-img-000013
Figure PCTKR2022016753-appb-img-000014
Figure PCTKR2022016753-appb-img-000014
Figure PCTKR2022016753-appb-img-000015
Figure PCTKR2022016753-appb-img-000015
Figure PCTKR2022016753-appb-img-000016
Figure PCTKR2022016753-appb-img-000016
Figure PCTKR2022016753-appb-img-000017
Figure PCTKR2022016753-appb-img-000017
일부 구현예에서, LNP는 화학식 2의 지질, 본 설명에 정의된 바와 같은 mRNA 화합물 및, 중성 지질, 스테로이드 및 페길화 지질로부터 선택된 1종 이상의 부형제를 포함한다. 일부 구현예에서, 화학식 2의 지질은 화합물 2-5이다. 일부 구현예에서, 화학식 2의 지질은 화합물 2-6이다.In some embodiments, the LNP comprises a lipid of Formula 2, an mRNA compound as defined herein, and one or more excipients selected from neutral lipids, steroids and pegylated lipids. In some embodiments, the lipid of formula 2 is compound 2-5. In some embodiments, the lipid of formula 2 is compound 2-6.
본 발명의 일 양태에서 상기 펩타이드는 다음을 포함하는 지질 나노입자와 접합되어 복합체를 이룬다:In one aspect of the present invention, the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
(i) 화학식 3을 갖는 양이온성 지질:(i) a cationic lipid having Formula 3:
[화학식 3][Formula 3]
Figure PCTKR2022016753-appb-img-000018
Figure PCTKR2022016753-appb-img-000018
또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O)x-, -S-S-, -C(=O)S-, -SC(=O)-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa-, -OC(=O)NRa-, -NRaC(=O)O-, 또는 직접적인 결합이고;L 1 and L 2 are each independently -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O) x -, -SS- , -C(=O)S-, -SC(=O)-, -NR a C(=O)-, -C(=O)NR a -, -NR a C(=O)NRa-, - OC(=O)NR a -, -NR a C(=O)O-, or a direct bond;
G1은 C1-C2 알킬렌, -(C=O)- , -O(C=O)-, -SC(=O)-, -NRaC(=O)- 또는 직접적인 결합이고;G 1 is C 1 -C 2 alkylene, -(C=O)- , -O(C=O)-, -SC(=O)-, -NR a C(=O)- or a direct bond;
G2는 -C(=O)- , -(C=O)O-, -C(=O)S-, -C(=O)NRa- 또는 직접적인 결합이고;G 2 is -C(=0)- , -(C=0)0-, -C(=0)S-, -C(=0)NR a - or a direct bond;
G3은 C1-C6 알킬렌이고;G 3 is C 1 -C 6 alkylene;
Ra는 H 또는 C1-C12 알킬이고;R a is H or C 1 -C 12 alkyl;
R1a 및 R1b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R1a는 H 또는 C1-C12 알킬이고, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 1a and R 1b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 1a is H or C 1 -C 12 alkyl, R 1b taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached, form a carbon-carbon double bond;
R2a 및 R2b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R2a는 H 또는 C1-C12 알킬이고, R2b는 그것이 결합되는 탄소 원자와 함께, 인접한 R2b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 2a and R 2b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is taken together with the carbon atom to which it is attached, together with adjacent R 2b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
R3a 및 R3b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R3a는 H 또는 C1-C12 알킬이고, R3b는 그것이 결합되는 탄소 원자와 함께, 인접한 R3b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 3a and R 3b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is taken together with the carbon atom to which it is attached, together with adjacent R 3b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
R4a 및 R4b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R4a는 H 또는 C1-C12 알킬이고, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 4a and R 4b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is taken together with the carbon atom to which it is attached, together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
R5 및 R6은 각각 독립적으로 H 또는 메틸이고;R 5 and R 6 are each independently H or methyl;
R7 는 C4-C20 알킬이고;R 7 is C 4 -C 20 alkyl;
R8 및 R9는 각각 독립적으로 C1-C12 알킬이거나; R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5, 6 또는 7 원 헤테로고리를 형성하고;R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle;
a, b, c 및 d는 각각 독립적으로 1 내지 24의 정수이고;a, b, c and d are each independently an integer from 1 to 24;
x는 0, 1 또는 2임); 및x is 0, 1 or 2; and
(ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
을 포함하는 복합체.A complex comprising a.
화학식 3의 일부 구현예에서, L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O- 또는 직접적인 결합이다. 다른 구현예에서, G1 및 G2는 각각 독립적으로 -(C=O)- 또는 직접적인 결합이다. 일부 상이한 구현예에서, L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O- 또는 직접적인 결합이고; G1 및 G2는 각각 독립적으로 -(C=O)- 또는 직접적인 결합이다.In some embodiments of Formula 3, L 1 and L 2 are each independently -O(C=O)-, -(C=O)O-, or a direct bond. In another embodiment, G 1 and G 2 are each independently -(C=0)- or a direct bond. In some different embodiments, L 1 and L 2 are each independently -O(C=0)-, -(C=0)0-, or a direct bond; G 1 and G 2 are each independently -(C=O)- or a direct bond.
화학식 3의 일부 상이한 구현예에서, L1 및 L2는 각각 독립적으로 -C(=O)-, -O-, -S(O)x-, -S-S-, -C(=O)S-, -SC(=O)-, -NRa-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa, -OC(=O)NRa-, -NRaC(=O)O-, -NRaS(O)xNRa-, -NRaS(O)x- 또는 -S(O)xNRa-이다.In some different embodiments of Formula 3, L 1 and L 2 are each independently -C(=O)-, -O-, -S(O)x-, -SS-, -C(=O)S- , -SC(=O)-, -NRa-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa, -OC(=O)NRa-, -NRaC( =O)O-, -NRaS(O)xNRa-, -NRaS(O)x- or -S(O)xNRa-.
화학식 3의 전술한 구현예 중 다른 구현예에서, 지질 화합물은 다음 구조 3A 또는 3B 중 하나를 갖는다:In another of the aforementioned embodiments of Formula 3, the lipid compound has one of the following structures 3A or 3B:
Figure PCTKR2022016753-appb-img-000019
[3A] 또는
Figure PCTKR2022016753-appb-img-000019
[3A] or
Figure PCTKR2022016753-appb-img-000020
[3B]
Figure PCTKR2022016753-appb-img-000020
[3B]
화학식 3의 일부 구현예에서, 지질 화합물은 구조 3A를 갖는다. 다른 구현예에서, 지질 화합물은 구조 3B를 갖는다.In some embodiments of Formula 3, the lipid compound has structure 3A. In another embodiment, the lipid compound has structure 3B.
화학식 3의 전술한 구현예 중 임의의 구현예에서, L1 또는 L2 중 하나는 -O(C=O)-이다. 예를 들어, 일부 구현예에서, L1 및 L2 각각은 -O(C=O)-이다.In any of the preceding embodiments of Formula 3, one of L 1 or L 2 is -O(C=O)-. For example, in some embodiments, each of L 1 and L 2 is -O(C=0)-.
화학식 3의 일부 상이한 구현예에서, L1 또는 L2 중 하나는 -(C=O)O-이다. 예를 들어, 일부 구현예에서, L1 및 L2 각각은 -(C=O)O-이다.In some different embodiments of Formula 3, one of L 1 or L 2 is -(C=0)0-. For example, in some embodiments, each of L 1 and L 2 is -(C=0)0-.
화학식 3의 상이한 구현예에서, L1 또는 L2 중 하나는 직접적인 결합이다. 본 설명에 사용된 "직접적인 결합"은 해당 기(예컨대, L1 또는 L2)가 부존재함을 의미한다. 예를 들어, 일부 구현예에서, L1 및 L2 각각은 직접적인 결합이다.In a different embodiment of Formula 3, either L 1 or L 2 is a direct bond. As used herein, “direct bond” means the absence of the corresponding group (eg, L 1 or L 2 ). For example, in some embodiments, each of L 1 and L 2 is a direct bond.
화학식 3의 다른 상이한 구현예에서, R1a 및 R1b의 적어도 한 번의 존재에 대하여, R1a는 H 또는 C1-C12 알킬이고, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다.In other different embodiments of Formula 3, for at least one occurrence of R 1a and R 1b , R 1a is H or C 1 -C 12 alkyl, and R 1b together with the carbon atom to which it is attached, adjacent R 1b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
화학식 3의 또 다른 상이한 구현예에서, R4a 및 R4b의 적어도 한 번의 존재에 대하여, R4a는 H 또는 C1-C12 알킬이고, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다.In still other different embodiments of Formula 3, for at least one occurrence of R 4a and R 4b , R 4a is H or C 1 -C 12 alkyl, and R 4b together with the carbon atom to which it is attached, adjacent R 4b and the carbon atom to which it is bonded forms a carbon-carbon double bond.
화학식 3의 더 많은 구현예에서, R2a 및 R2b의 적어도 한 번의 존재에 대하여, R2a는 H 또는 C1-C12 알킬이고, R2b는 그것이 결합되는 탄소 원자와 함께, 인접한 R2b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중결합을 형성한다.In more embodiments of Formula 3, for at least one occurrence of R 2a and R 2b , R 2a is H or C 1 -C 12 alkyl, and R 2b together with the carbon atom to which it is attached, adjacent R 2b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
화학식 3의 다른 상이한 구현예에서, R3a 및 R3b의 적어도 한 번의 존재에 대하여, R3a는 H 또는 C1-C12 알킬이고, R3b는 그것이 결합되는 탄소 원자와 함께, 인접한 R3b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다.In other different embodiments of Formula 3, for at least one occurrence of R 3a and R 3b , R 3a is H or C 1 -C 12 alkyl, R 3b together with the carbon atom to which it is attached, adjacent R 3b and Used together with the carbon atom to which it is bonded, it forms a carbon-carbon double bond.
화학식 3의 다양한 다른 구현예에서, 지질 화합물은 다음 구조 3C 또는 3D 중 하나를 갖는다:In various other embodiments of Formula 3, the lipid compound has either structure 3C or 3D:
Figure PCTKR2022016753-appb-img-000021
[3C] 또는
Figure PCTKR2022016753-appb-img-000021
[3C] or
Figure PCTKR2022016753-appb-img-000022
[3D]
Figure PCTKR2022016753-appb-img-000022
[3D]
(화학식에서, e, f, g 및 h는 각각 독립적으로 1 내지 12의 정수이다).(In the formula, e, f, g and h are each independently an integer of 1 to 12).
화학식 3의 일부 구현예에서, 지질 화합물은 구조 3C를 갖는다. 다른 구현예에서, 지질 화합물은 구조 3D를 갖는다.In some embodiments of Formula 3, the lipid compound has structure 3C. In another embodiment, the lipid compound has a 3D structure.
구조 3C 또는 3D의 다양한 구현예에서, e, f, g 및 h는 각각 독립적으로 4 내지 10의 정수이다.In various embodiments of structure 3C or 3D, e, f, g and h are each independently an integer from 4 to 10.
화학식 3의 일부 구현예에서, a, b, c 및 d는 각각 독립적으로 2 내지 12의 정수 또는 4 내지 12의 정수이다.In some embodiments of Formula 3, a, b, c, and d are each independently an integer from 2 to 12 or an integer from 4 to 12.
다른 구현예에서, a, b, c 및 d는 각각 독립적으로 8 내지 12 또는 5 내지 9의 정수이다. 일부 특정 구현예에서, a는 0이다. 일부 구현예에서, a는 1이다. 다른 구현예에서, a는 2이다. 더 많은 구현예에서, a는 3이다. 또 다른 구현예에서, a는 4이다. 일부 구현예에서, a는 5이다. 다른 구현예에서, a는 6이다. 더 많은 구현예에서, a는 7이다. 또 다른 구현예에서, a는 8이다. 일부 구현예에서, a는 9이다. 다른 구현예에서, a는 10이다. 더 많은 구현예에서, a는 11이다. 또 다른 구현예에서, a는 12이다. 일부 구현예에서, a는 13이다. 다른 구현예에서, a는 14이다. 더 많은 구현예에서, a는 15이다. 또 다른 구현예에서, a는 16이다.In another embodiment, a, b, c and d are each independently an integer from 8 to 12 or from 5 to 9. In some specific embodiments, a is zero. In some embodiments, a is 1. In another embodiment, a is 2. In more embodiments, a is 3. In another embodiment, a is 4. In some embodiments, a is 5. In another embodiment, a is 6. In more embodiments, a is 7. In another embodiment, a is 8. In some embodiments, a is 9. In another embodiment, a is 10. In more embodiments, a is 11. In another embodiment, a is 12. In some embodiments, a is 13. In another embodiment, a is 14. In more embodiments, a is 15. In another embodiment, a is 16.
화학식 3의 일부 구현예에서, b는 1이다. 다른 구현예에서, b는 2이다. 더 많은 구현예에서, b는 3이다. 또 다른 구현예에서, b는 4이다. 일부 구현예에서, b는 5이다. 다른 구현예에서, b는 6이다. 더 많은 구현예에서, b는 7이다. 또 다른 구현예에서, b는 8이다. 일부 구현예에서, b는 9이다. 다른 구현예에서, b는 10이다. 더 많은 구현예에서, b는 11이다. 또 다른 구현예에서, b는 12이다. 일부 구현예에서, b는 13이다. 다른 구현예에서, b는 14이다. 더 많은 구현예에서, b는 15이다. 또 다른 구현예에서, b는 16이다.In some embodiments of Formula 3, b is 1. In other embodiments, b is 2. In more embodiments, b is 3. In another embodiment, b is 4. In some embodiments, b is 5. In other embodiments, b is 6. In more embodiments, b is 7. In another embodiment, b is 8. In some embodiments, b is 9. In other embodiments, b is 10. In more embodiments, b is 11. In another embodiment, b is 12. In some embodiments, b is 13. In other embodiments, b is 14. In more embodiments, b is 15. In another embodiment, b is 16.
화학식 3의 일부 구현예에서, c는 1이다. 다른 구현예에서, c는 2이다. 더 많은 구현예에서, c는 3이다. 또 다른 구현예에서, c는 4이다. 일부 구현예에서, c는 5이다. 다른 구현예에서, c는 6이다. 더 많은 구현예에서, c는 7이다. 또 다른 구현예에서, c는 8이다. 일부 구현예에서, c는 9이다. 다른 구현예에서, c는 10이다. 더 많은 구현예에서, c는 11이다. 또 다른 구현예에서, c는 12이다. 일부 구현예에서, c는 13이다. 다른 구현예에서, c는 14이다. 더 많은 구현예에서, c는 15이다. 또 다른 구현예에서, c는 16이다.In some embodiments of Formula 3, c is 1. In other embodiments, c is 2. In more embodiments, c is 3. In another embodiment, c is 4. In some embodiments, c is 5. In other embodiments, c is 6. In more embodiments, c is 7. In another embodiment, c is 8. In some embodiments, c is 9. In other embodiments, c is 10. In more embodiments, c is 11. In another embodiment, c is 12. In some embodiments, c is 13. In other embodiments, c is 14. In more embodiments, c is 15. In another embodiment, c is 16.
화학식 3의 일부 특정 구현예에서, d는 0이다. 일부 구현예에서, d는 1이다. 다른 구현예에서, d는 2이다. 더 많은 구현예에서, d는 3이다. 또 다른 구현예에서, d는 4이다. 일부 구현예에서, d는 5이다. 다른 구현예에서, d는 6이다. 더 많은 구현예에서, d는 7이다. 또 다른 구현예에서, d는 8이다. 일부 구현예에서, d는 9이다. 다른 구현예에서, d는 10이다. 더 많은 구현예에서, d는 11이다. 또 다른 구현예에서, d는 12이다. 일부 구현예에서, d는 13이다. 다른 구현예에서, d는 14이다. 더 많은 구현예에서, d는 15이다. 또 다른 구현예에서, d는 16이다.In some specific embodiments of Formula 3, d is 0. In some embodiments, d is 1. In another embodiment, d is 2. In more embodiments, d is 3. In another embodiment, d is 4. In some embodiments, d is 5. In another embodiment, d is 6. In more embodiments, d is 7. In another embodiment, d is 8. In some embodiments, d is 9. In another embodiment, d is 10. In more embodiments, d is 11. In another embodiment, d is 12. In some embodiments, d is 13. In another embodiment, d is 14. In more embodiments, d is 15. In another embodiment, d is 16.
화학식 3의 일부 구현예에서, e는 1이다. 다른 구현예에서, e는 2이다. 더 많은 구현예에서, e는 3이다. 또 다른 구현예에서, e는 4이다. 일부 구현예에서, e는 5이다. 다른 구현예에서, e는 6이다. 더 많은 구현예에서, e는 7이다. 또 다른 구현예에서, e는 8이다. 일부 구현예에서, e는 9이다. 다른 구현예에서, e는 10이다. 더 많은 구현예에서, e는 11이다. 또 다른 구현예에서, e는 12이다.In some embodiments of Formula 3, e is 1. In another embodiment, e is 2. In more embodiments, e is 3. In another embodiment, e is 4. In some embodiments, e is 5. In another embodiment, e is 6. In more embodiments, e is 7. In another embodiment, e is 8. In some embodiments, e is 9. In another embodiment, e is 10. In more embodiments, e is 11. In another embodiment, e is 12.
화학식 3의 일부 구현예에서, f는 1이다. 다른 구현예에서, f는 2이다. 더 많은 구현예에서, f는 3이다. 또 다른 구현예에서, f는 4이다. 일부 구현예에서, f는 5이다. 다른 구현예에서, f는 6이다. 더 많은 구현예에서, f는 7이다. 또 다른 구현예에서, f는 8이다. 일부 구현예에서, f는 9이다. 다른 구현예에서, f는 10이다. 더 많은 구현예에서, f는 11이다. 또 다른 구현예에서, f는 12이다.In some embodiments of Formula 3, f is 1. In another embodiment, f is 2. In more embodiments, f is 3. In another embodiment, f is 4. In some embodiments, f is 5. In another embodiment, f is 6. In more embodiments, f is 7. In another embodiment, f is 8. In some embodiments, f is 9. In other embodiments, f is 10. In more embodiments, f is 11. In another embodiment, f is 12.
화학식 3의 일부 구현예에서, g는 1이다. 다른 구현예에서, g는 2이다. 더 많은 구현예에서, g는 3이다. 또 다른 구현예에서, g는 4이다. 일부 구현예에서, g는 5이다. 다른 구현예에서, g는 6이다. 더 많은 구현예에서, g는 7이다. 또 다른 구현예에서, g는 8이다. 일부 구현예에서, g는 9이다. 다른 구현예에서, g는 10이다. 더 많은 구현예에서, g는 11이다. 또 다른 구현예에서, g는 12이다.In some embodiments of Formula 3, g is 1. In other embodiments, g is 2. In more embodiments, g is 3. In another embodiment, g is 4. In some embodiments, g is 5. In another embodiment, g is 6. In more embodiments, g is 7. In another embodiment, g is 8. In some embodiments, g is 9. In another embodiment, g is 10. In more embodiments, g is 11. In another embodiment, g is 12.
화학식 3의 일부 구현예에서, h는 1이다. 다른 구현예에서, e는 2이다. 더 많은 구현예에서, h는 3이다. 또 다른 구현예에서, h는 4이다. 일부 구현예에서, e는 5이다. 다른 구현예에서, h는 6이다. 더 많은 구현예에서, h는 7이다. 또 다른 구현예에서, h는 8이다. 일부 구현예에서, h는 9이다. 다른 구현예에서, h는 10이다. 더 많은 구현예에서, h는 11이다. 또 다른 구현예에서, h는 12이다.In some embodiments of Formula 3, h is 1. In another embodiment, e is 2. In more embodiments, h is 3. In another embodiment, h is 4. In some embodiments, e is 5. In other embodiments, h is 6. In more embodiments, h is 7. In another embodiment, h is 8. In some embodiments, h is 9. In other embodiments, h is 10. In more embodiments, h is 11. In another embodiment, h is 12.
화학식 3의 일부 다른 다양한 구현예에서, a와 d는 동일하다. 일부 다른 구현예에서, b와 c는 동일하다. 일부 다른 특정 구현예에서, a와 d는 동일하고, b와 c는 동일하다.In some other various embodiments of Formula 3, a and d are the same. In some other embodiments, b and c are the same. In some other specific embodiments, a and d are equal and b and c are equal.
화학식 3의 a와 b의 합 및 c와 d의 합은 원하는 특성을 갖는 지질을 수득하기 위하여 달라질 수 있는 인자이다. 일 구현예에서, a와 b는 그것들의 합이 14 내지 24 범위의 정수가 되도록 선택된다. 다른 구현예에서, c와 d는 그것들의 합이 14 내지 24 범위의 정수가 되도록 선택된다. 추가적인 구현예에서, a와 b의 합 및 c와 d의 합은 동일하다. 예를 들어, 일부 구현예에서, a와 b의 합 및 c와 d의 합은 둘 다 동일한 정수로, 이는 14 내지 24 범위일 수 있다. 또한, 추가적인 구현예에서, a. b, c 및 d는 a와 b의 합 및 c와 d의 합이 12이 이상이 되도록 선택된다.The sum of a and b and the sum of c and d in Formula 3 are factors that can be varied in order to obtain a lipid having the desired properties. In one implementation, a and b are selected such that their sum is an integer in the range of 14 to 24. In another embodiment, c and d are selected such that their sum is an integer in the range of 14 to 24. In a further embodiment, the sum of a and b and the sum of c and d are equal. For example, in some embodiments, the sum of a and b and the sum of c and d are both the same integer, which can range from 14 to 24. Also, in a further embodiment, a. b, c and d are selected so that the sum of a and b and the sum of c and d is 12 or more.
화학식 3의 R1a, R2a, R3a 및 R4a에서의 치환기는 특별히 제한되지 않는다. 일부 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 H이다. 일부 구현예에서, R1a, R2a, R3a 및 R4a는 각 경우에 H이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C12 알킬이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C8 알킬이다. 일부 다른 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 C1-C6 알킬이다. 전술한 구현예 중 일부에서, C1-C8 알킬은 메틸, 에틸, n-프로필, 이소-프로필, n-부틸, 이소-부틸, tert-부틸, n-헥실 또는 n-옥틸이다.Substituents for R 1a , R 2a , R 3a and R 4a in Formula 3 are not particularly limited. In some embodiments, at least one of R 1a , R 2a , R 3a and R 4a is H. In some embodiments, R 1a , R 2a , R 3a and R 4a are H at each occurrence. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 12 alkyl. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 8 alkyl. In some other embodiments, at least one of R 1a , R 2a , R 3a and R 4a is C 1 -C 6 alkyl. In some of the foregoing embodiments, C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
화학식 3의 일부 구현예에서, R1a, R2a, R3a 및 R4a는 각 경우에 C1-C12 알킬이다.In some embodiments of Formula 3, R 1a , R 2a , R 3a and R 4a at each occurrence are C 1 -C 12 alkyl.
화학식 3의 추가적인 구현예에서, R1a, R2a, R3a 및 R4a 중 적어도 하나는 H이거나, R1a, R2a, R3a 및 R4a는 각 경우에 H이다.In a further embodiment of Formula 3, at least one of R 1a , R 2a , R 3a and R 4a is H, or R 1a , R 2a , R 3a and R 4a are in each case H.
화학식 3의 일부 구현예에서, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다. 전술한 일부 구현예에서, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성한다.In some embodiments of Formula 3, R 1b is taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond. In some embodiments of the foregoing, R 4b is taken together with the carbon atom to which it is attached, together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond.
화학식 3의 R5 및 R6에서의 치환기는 전술한 구현예에서 특별히 제한되지 않는다. 일부 구현예에서, R5 또는 R6 중 하나는 메틸이다. 다른 구현예에서, R5 또는 R6 각각은 메틸이다.Substituents for R 5 and R 6 in Formula 3 are not particularly limited in the above embodiments. In some embodiments, one of R 5 or R 6 is methyl. In other embodiments, each of R 5 or R 6 is methyl.
화학식 3의 R7에서의 치환기는 전술한 구현예에서 특별히 제한되지 않는다. 일부 구현예에서, R7은 C6-C16 알킬이다. 일부 다른 구현예에서, R7은 C6-C9 알킬이다. 이들 구현예 중 일부에서, R7은 -(C=O)ORb, -O(C=O)Rb, -C(=O)Rb, -ORb, -S(O)xRb, -S-SRb, -C(=O)SRb, -SC(=O)Rb, -NRaRb, -NRaC(=O)Rb, -C(=O)NRaRb, -NRaC(=O)NRaRb, -OC(=O)NRaRb, -NRaC(=O)ORb, -NRaS(O)xNRaRb, -NRaS(O)xRb 또는 -S(O)xNRaRb로 치환되며, Substituents in R 7 of Formula 3 are not particularly limited in the above embodiments. In some embodiments, R 7 is C 6 -C 16 alkyl. In some other embodiments, R 7 is C 6 -C 9 alkyl. In some of these embodiments, R7 is -(C=0)ORb, -O(C=0)Rb, -C(=0)Rb, -ORb, -S(0)xRb, -S-SRb, - C(=O)SRb, -SC(=O)Rb, -NRaRb, -NRaC(=O)Rb, -C(=O)NRaRb, -NRaC(=O)NRaRb, -OC(=O)NRaRb, Substituted with -NRaC(=O)ORb, -NRaS(O)xNRaRb, -NRaS(O)xRb or -S(O)xNRaRb,
이때, Ra는 H 또는 C1-C12 알킬이고; Rb는 C1-C15 알킬이고; x는 0, 1 또는 2이다. 예를 들어, 일부 구현예에서, R7은 -(C=O)ORb 또는 -O(C=O)Rb로 치환된다.In this case, R a is H or C 1 -C 12 alkyl; R b is C 1 -C 15 alkyl; x is 0, 1 or 2; For example, in some embodiments, R 7 is substituted with -(C=0)ORb or -0(C=0)Rb.
화학식 3의 전술한 구현예 중 다양한 구현예에서, Rb는 분지형 C1-C15 알킬이다. 예를 들어, 일부 구현예에서, Rb는 다음 구조 중 하나를 갖는다:In various of the aforementioned embodiments of Formula 3, R b is a branched C 1 -C 15 alkyl. For example, in some embodiments, R b has one of the following structures:
Figure PCTKR2022016753-appb-img-000023
Figure PCTKR2022016753-appb-img-000023
전술한 화학식 3의 일부 다른 구현예에서, R8 또는 R9 중 하나는 메틸이다. 다른 구현예에서, R8 및 R9 둘 다 메틸이다.In some other embodiments of Formula 3 above, one of R 8 or R 9 is methyl. In other embodiments, both R8 and R9 are methyl.
화학식 3의 일부 상이한 구현예에서, R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5, 6 또는 7원 헤테로 고리를 형성한다. 전술한 일부 구현예에서, R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5원 헤테로고리, 예를 들어, 피롤리디닐 고리를 형성한다. 전술한 일부 상이한 구현예에서, R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 6원 헤테로고리, 예를 들어, 피페라지닐 고리를 형성한다.In some different embodiments of Formula 3, R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle. In some embodiments of the foregoing, R8 and R9 together with the nitrogen atom to which they are attached form a 5-membered heterocycle, such as a pyrrolidinyl ring. In some of the different embodiments described above, R 8 and R 9 together with the nitrogen atom to which they are attached form a 6-membered heterocycle, such as a piperazinyl ring.
화학식 3의 전술한 지질의 또 다른 구현예에서, G3은 C2-C4 알킬렌, 예를 들어, C3 알킬렌이다. In another embodiment of the aforementioned lipid of Formula 3, G 3 is C 2 -C 4 alkylene, eg C 3 alkylene.
다양한 상이한 구현예에서, 지질 화합물은 아래 표 2에 기재된 구조 중 하나를 갖는다.In a variety of different embodiments, the lipid compound has one of the structures set forth in Table 2 below.
Figure PCTKR2022016753-appb-img-000024
Figure PCTKR2022016753-appb-img-000024
Figure PCTKR2022016753-appb-img-000025
Figure PCTKR2022016753-appb-img-000025
Figure PCTKR2022016753-appb-img-000026
Figure PCTKR2022016753-appb-img-000026
Figure PCTKR2022016753-appb-img-000027
Figure PCTKR2022016753-appb-img-000027
Figure PCTKR2022016753-appb-img-000028
Figure PCTKR2022016753-appb-img-000028
Figure PCTKR2022016753-appb-img-000029
Figure PCTKR2022016753-appb-img-000029
Figure PCTKR2022016753-appb-img-000030
Figure PCTKR2022016753-appb-img-000030
일부 구현예에서, LNP는 화학식 3의 지질, 위에 기술된 바와 같은 mRNA 화합물 및, 중성 지질, 스테로이드 및 페길화 지질로부터 선택된 1종 이상의 부형제를 포함한다. 일부 구현예에서, 화학식 3의 지질은 화합물 3-9이다. 일부 구현예에서, 화학식 3의 지질은 화합물 3-10이다. 일부 구현예에서, 화학식 3의 지질은 화합물 3-11이다. 일부 구현예에서, 화학식 3의 지질은 화합물 3-12이다. 일부 구현예에서, 화학식 3의 지질은 화합물 3-32이다.In some embodiments, the LNP comprises a lipid of Formula 3, an mRNA compound as described above, and one or more excipients selected from neutral lipids, steroids, and pegylated lipids. In some embodiments, the lipid of formula 3 is compound 3-9. In some embodiments, the lipid of formula 3 is compound 3-10. In some embodiments, the lipid of formula 3 is compound 3-11. In some embodiments, the lipid of formula 3 is compound 3-12. In some embodiments, the lipid of formula 3 is compound 3-32.
본 발명의 일 양태에서 상기 펩타이드는 다음을 포함하는 지질 나노입자와 접합되어 복합체를 이룬다:In one aspect of the present invention, the peptide is conjugated to form a complex with a lipid nanoparticle comprising:
(i) 화학식 4를 갖는 양이온성 지질:(i) a cationic lipid having Formula 4:
[화학식 4] [Formula 4]
Figure PCTKR2022016753-appb-img-000031
Figure PCTKR2022016753-appb-img-000031
또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
L1 또는 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O)x-, -S-S-, -C(=O)S-, -SC(=O)-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa-, -OC(=O)NRa- 또는 -NRaC(=O)O-,L 1 or L 2 are each independently -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O) x -, -SS- , -C(=O)S-, -SC(=O)-, -NR a C(=O)-, -C(=O)NR a -, -NR a C(=O)NR a -, -OC(=O)NR a - or -NR a C(=O)O-;
바람직하게는 L1 또는 L2는 -O(C=O)- 또는 -(C=O)O-이고;Preferably L 1 or L 2 is -O(C=O)- or -(C=O)O-;
G1 및 G2는 각각 독립적으로 비치환 C1-C12 알킬렌 또는 C1-C12 알케닐렌이고;G 1 and G 2 are each independently unsubstituted C 1 -C 12 alkylene or C 1 -C 12 alkenylene;
G3은 C1-C24 알킬렌, C1-C24 알케닐렌, C3-C8 시클로알킬렌, 또는 C3-C8 시클로알케닐렌이고;G 3 is C 1 -C 24 alkylene, C 1 -C 24 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
Ra는 H 또는 C1-C12 알킬이고;R a is H or C 1 -C 12 alkyl;
R1 및 R2는 각각 독립적으로 C6-C24 알킬 또는 C6-C24 알케닐이고;R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl;
R3은 H, OR5, CN, -C(=O)OR4, -OC(=O)R4 또는 -NR5C(=O)R4이고;R 3 is H, OR 5 , CN, -C(=0)OR 4 , -OC(=0)R 4 or -NR 5 C(=0)R 4 ;
R4는 C1-C12 알킬이고;R 4 is C 1 -C 12 alkyl;
R5는 H 또는 C1-C6 알킬이고;R 5 is H or C 1 -C 6 alkyl;
x는 0, 1 또는 2임); 및x is 0, 1 or 2; and
(ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
을 포함하는 복합체.A complex comprising a.
상기 화학식 4의 전술한 구현예 중 일부 구현예에서, 지질은 다음의 구조 화학식 4A 또는 화학식 4B 중 하나를 갖는다:In some embodiments of the aforementioned embodiments of Formula 4 above, the lipid has one of the following structural Formulas 4A or 4B:
Figure PCTKR2022016753-appb-img-000032
[화학식 4A] 또는
Figure PCTKR2022016753-appb-img-000032
[Formula 4A] or
Figure PCTKR2022016753-appb-img-000033
[화학식 4B]
Figure PCTKR2022016753-appb-img-000033
[Formula 4B]
이때, A는 3 내지 8 원 사이클로알킬 또는 사이클로알킬렌 고리이고;where A is a 3 to 8 membered cycloalkyl or cycloalkylene ring;
R6은, 각 경우에, 독립적으로 H, OH, 또는 C1-C24 알킬이고;R 6 , at each occurrence, is independently H, OH, or C 1 -C 24 alkyl;
n은 1 내지 15 범위의 정수이다.n is an integer ranging from 1 to 15.
화학식 4의 전술한 구현예 중 일부 구현에서, 지질은 화학식 4A를 갖고, 다른 구현예에서 지질은 화학식 4B를 갖는다.In some of the aforementioned embodiments of Formula 4, the lipid has Formula 4A, and in other embodiments the lipid has Formula 4B.
화학식4의 다른 구현예에서, 지질은 다음의 화학식4C 또는 화학식4D 중 하나를 갖는다:In another embodiment of Formula 4, the lipid has either Formula 4C or Formula 4D:
Figure PCTKR2022016753-appb-img-000034
[화학식4C] 또는
Figure PCTKR2022016753-appb-img-000034
[Formula 4C] or
Figure PCTKR2022016753-appb-img-000035
[화학식4D]
Figure PCTKR2022016753-appb-img-000035
[Formula 4D]
이때, y 및 z는 각각 독립적으로 1 내지 12 범위의 정수이다.In this case, y and z are each independently an integer ranging from 1 to 12.
화학식4의 전술한 구현예 중 임의의 구현예에서, L1 또는 L2 중 하나는 -O(C=O)-이다. 예를 들어, 일부 구현예에서, L1 및 L2 각각은 -O(C=O)-이다. 임의의 전술한 구현예 중 일부 상이한 구현예에서, L1 및 L2는 각각 독립적으로 -(C=O)O- 또는 -O(C=O)-이다. 예를 들어, 일부 구현예에서, L1 및 L2 각각은 -(C=O)O-이다.In any of the preceding embodiments of Formula 4, one of L 1 or L 2 is -O(C=O)-. For example, in some embodiments, each of L 1 and L 2 is -O(C=0)-. In some different embodiments of any of the foregoing, L1 and L2 are each independently -(C=0)0- or -0(C=0)-. For example, in some embodiments, each of L 1 and L 2 is -(C=0)0-.
화학식4의 일부 상이한 구현예에서, 지질은 다음의 화학식4E 또는 4F 중 하나를 갖는다:In some different embodiments of Formula 4, the lipid has one of the following Formulas 4E or 4F:
Figure PCTKR2022016753-appb-img-000036
[화학식4E] 또는
Figure PCTKR2022016753-appb-img-000036
[Formula 4E] or
Figure PCTKR2022016753-appb-img-000037
[화학식4F]
Figure PCTKR2022016753-appb-img-000037
[Formula 4F]
화학식4의 전술한 구현예 중 일부 구현예에서, 지질은 다음의 구조 화학식4G, 화학식4H, 화학식4I, 또는 화학식4J 중 하나를 갖는다:In some embodiments of the foregoing embodiments of Formula 4, the lipid has one of the following structural Formula 4G, Formula 4H, Formula 4I, or Formula 4J:
Figure PCTKR2022016753-appb-img-000038
[화학식4G];
Figure PCTKR2022016753-appb-img-000038
[Formula 4G];
Figure PCTKR2022016753-appb-img-000039
[화학식4H];
Figure PCTKR2022016753-appb-img-000039
[Formula 4H];
Figure PCTKR2022016753-appb-img-000040
[화학식4I] 또는
Figure PCTKR2022016753-appb-img-000040
[Formula 4I] or
Figure PCTKR2022016753-appb-img-000041
[화학식4J]
Figure PCTKR2022016753-appb-img-000041
[Formula 4J]
화학식4의 전술한 구현예 중 일부 구현예에서 n은 2 내지 12 범위의 정수, 예를 들어, 2 내지 8 또는 2 내지 4 범위의 정수이다. 예를 들어, 일부 구현예에서, n은 3, 4, 5 또는 6이다. 일부 구현예에서, n은 3이다. 일부 구현예에서, n은 4이다. 일부 구현예에서, n은 5이다. 일부 구현예에서, n은 6이다.In some embodiments of the aforementioned embodiments of Formula 4, n is an integer ranging from 2 to 12, such as from 2 to 8 or from 2 to 4. For example, in some embodiments n is 3, 4, 5 or 6. In some embodiments, n is 3. In some embodiments, n is 4. In some embodiments, n is 5. In some embodiments, n is 6.
화학식4의 전술한 구현예 중 일부 다른 구현예에서, y 및 z는 각각 독립적으로 2 내지 10 범위의 정수이다. 예를 들어, 일부 구현예에서, y 및 z는 각각 독립적으로 4 내지 9 또는 4 내지 6 범위의 정수이다.In some other of the aforementioned embodiments of Formula 4, y and z are each independently an integer ranging from 2 to 10. For example, in some embodiments, y and z are each independently an integer ranging from 4 to 9 or 4 to 6.
화학식4의 전술한 구현예 중 일부 구현예에서, R6은 H이다. 전술한 구현예 중 다른 구현예에서, R6은 C1-C24 알킬이다. 다른 구현예에서, R6은 OH이다.In some of the aforementioned embodiments of Formula 4, R 6 is H. In other of the foregoing embodiments, R 6 is C 1 -C 24 alkyl. In other embodiments, R 6 is OH.
화학식4의 일부 구현예에서, G3은 치환되지 않는다. 다른 구현예에서, G3은 치환되지 않는다. 다양한 상이한 구현예에서, G3은 선형 C1-C24 알킬렌 또는 선형 C1-C24 알케닐렌이다.In some embodiments of Formula 4, G 3 is unsubstituted. In other embodiments, G 3 is unsubstituted. In various different embodiments, G 3 is linear C 1 -C 24 alkylene or linear C 1 -C 24 alkenylene.
화학식4의 일부 다른 전술한 구현예에서, R1 또는 R2, 또는 둘 다는 C6-C24 알케닐이다. 예를 들어, 일부 구현예에서, R1 및 R2 각각은, 독립적으로 다음 구조를 갖는다:In some other aforementioned embodiments of Formula 4, either R 1 or R 2 , or both, is C 6 -C 24 alkenyl. For example, in some embodiments, each of R 1 and R 2 independently has the structure:
Figure PCTKR2022016753-appb-img-000042
Figure PCTKR2022016753-appb-img-000042
이때, R7a 및 R7b는, 각 경우에, 독립적으로 H 또는 C1-C12 알킬이고;wherein R 7a and R 7b , at each occurrence, are independently H or C 1 -C 12 alkyl;
a는 2 내지 12의 정수이고,a is an integer from 2 to 12;
R7a, R7b 및 a는 각각, R1 및 R2가 각각 독립적으로 6 내지 20개 탄소 원자를 포함하도록 선택된다. 예를 들어, 일부 구현예에서, a는 5 내지 9 또는 8 내지 12 범위의 정수이다.R 7a , R 7b and a are each selected such that R 1 and R 2 each independently contain 6 to 20 carbon atoms. For example, in some embodiments, a is an integer ranging from 5 to 9 or 8 to 12.
화학식4의 전술한 구현예 중 일부 구현예에서, R7a 중 적어도 하나의 경우는 H이다. 예를 들어, 일부 구현예에서, R7a는 각 경우에 H이다. 전술한 구현예 중 다른 상이한 구현예에서, R7b 중 적어도 하나의 경우는 C1-C8 알킬이다. 예를 들어, 일부 구현예에서, C1-C8 알킬은 메틸, 에틸, n-프로필, 이소-프로필, n-부틸, 이소-부틸, tert-부틸, n-헥실 또는 n-옥틸이다.In some embodiments of the aforementioned embodiments of Formula 4, at least one instance of R 7a is H. For example, in some embodiments, R 7a is H at each occurrence. In other different of the foregoing embodiments, at least one instance of R 7b is C 1 -C 8 alkyl. For example, in some embodiments, C 1 -C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
화학식4의 상이한 구현예에서, R1 또는 R2, 또는 둘 다는 다음 구조 중 하나를 갖는다:In a different embodiment of Formula 4, R 1 or R 2 , or both have one of the following structures:
Figure PCTKR2022016753-appb-img-000043
Figure PCTKR2022016753-appb-img-000043
화학식4의 전술한 구현예 중 일부에서 R3은 OH, CN, -C(=O)OR4, -OC(=O)R4 또는 -NHC(=O)R4이다. 일부 구현예에서, R4는 메틸 또는 에틸이다.In some of the aforementioned embodiments of Formula 4, R 3 is OH, CN, -C(=O)OR 4 , -OC(=O)R 4 or -NHC(=O)R 4 . In some embodiments, R 4 is methyl or ethyl.
다양한 상이한 구현예에서, 화학식4의 양이온성 지질은 아래 표 3에 기재된 구조 중 하나를 갖는다In various different embodiments, the cationic lipid of Formula 4 has one of the structures set forth in Table 3 below.
Figure PCTKR2022016753-appb-img-000044
Figure PCTKR2022016753-appb-img-000044
Figure PCTKR2022016753-appb-img-000045
Figure PCTKR2022016753-appb-img-000045
Figure PCTKR2022016753-appb-img-000046
Figure PCTKR2022016753-appb-img-000046
Figure PCTKR2022016753-appb-img-000047
Figure PCTKR2022016753-appb-img-000047
Figure PCTKR2022016753-appb-img-000048
Figure PCTKR2022016753-appb-img-000048
Figure PCTKR2022016753-appb-img-000049
Figure PCTKR2022016753-appb-img-000049
Figure PCTKR2022016753-appb-img-000050
Figure PCTKR2022016753-appb-img-000050
일부 구현예에서, LNP는 화학식 4의 지질, 본 설명에 기술된 바와 같은 mRNA 화합물 및, 중성 지질, 스테로이드 및 페길화 지질로부터 선택된 1종 이상의 부형제를 포함한다. 일부 구현예에서, 화학식4의 지질은 화합물 4-3이다. 일부 구현예에서, 화학식4의 지질은 화합물 4-7이다.In some embodiments, the LNP comprises a lipid of Formula 4, an mRNA compound as described herein, and one or more excipients selected from neutral lipids, steroids and pegylated lipids. In some embodiments, the lipid of formula 4 is compound 4-3. In some embodiments, the lipid of formula 4 is compounds 4-7.
본 발명의 맥락 내에서, LNP-4-3은 위의 표에 따른 양이온성 지질 화합물 4-3을 포함하는 본 설명에 정의된 지질 나노입자를 의미한다. 다른 지질 나노입자는 유사한 형태로 언급된다.Within the context of the present invention, LNP-4-3 means a lipid nanoparticle as defined herein comprising a cationic lipid compound 4-3 according to the table above. Other lipid nanoparticles are referred to in a similar fashion.
일부 구현예에서, 화학식 2, 3 또는 4의 양이온성 지질은 LNP의 총 지질 함량에 비해, 약 30 내지 약 95 몰 퍼센트의 양으로 LNP에 존재한다. 2종 이상의 양이온성 지질이 LNP 내에 혼입되는 경우, 그러한 퍼센트는 조합된 양이온성 지질에 적용된다. 일 구현예에서, 양이온성 지질은 약 30 내지 약 70 몰 퍼센트의 양으로 LNP에 존재한다. 일 구현예에서, 양이온성 지질은 각각 약 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 또는 60 몰 퍼센트와 같이, 약 40 내지 약 60 몰 퍼센트의 양으로 LNP에 존재한다.In some embodiments, the cationic lipid of Formula 2, 3, or 4 is present in the LNP in an amount from about 30 to about 95 mole percent relative to the total lipid content of the LNP. When two or more cationic lipids are incorporated into an LNP, such percentages apply to the combined cationic lipids. In one embodiment, the cationic lipid is present in the LNP in an amount of about 30 to about 70 mole percent. In one embodiment, each cationic lipid is about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or in an amount of about 40 to about 60 mole percent, such as 60 mole percent.
본 발명의 일부 구현예에서, LNP는 위에 기술된 임의의 지질의 조합물 또는 혼합물을 포함한다.In some embodiments of the invention, the LNP comprises a combination or mixture of any of the lipids described above.
바람직한 구현예 중 하나에서, 지질 나노입자는 다음 군으로부터 선택된 양이온성 지질을 포함한다:In one of the preferred embodiments, the lipid nanoparticle comprises a cationic lipid selected from the group:
Figure PCTKR2022016753-appb-img-000051
Figure PCTKR2022016753-appb-img-000051
바람직한 구현예에서, 지질 나노입자는 약 30 nm 내지 약 150 nm, 약 40 nm 내지 약 150 nm, 약 50 nm 내지 약 150 nm, 약 60 nm 내지 약 130 nm, 약 70 nm 내지 약 110 nm, 약 70 nm 내지 약 100 nm, 약 80 nm 내지 약 100 nm, 약 90 nm 내지 약 100 nm, 약 70 내지 약 90 nm, 약 80 nm 내지 약 90 nm, 약 70 nm 내지 약 80 nm, 또는 약 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, 또는 150 nm의 평균 직경을 가지며, 실질적으로 무독성이다. 언급된 바와 같이, 평균 직경은 동적 광산란에 의해 결정한 z-평균값에 상응할 수 있다.In a preferred embodiment, the lipid nanoparticle is about 30 nm to about 150 nm, about 40 nm to about 150 nm, about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 70 to about 90 nm, about 80 nm to about 90 nm, about 70 nm to about 80 nm, or about 30 nm , 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm in average diameter, and is substantially non-toxic. As mentioned, the average diameter may correspond to a z-average value determined by dynamic light scattering.
본 발명의 또 다른 바람직한 구현예에서, 지질 나노입자는 각각 약 50 nm 내지 약 300 nm, 또는 약 60 nm 내지 약 250 nm, 약 60 nm 내지 약 150 nm, 또는 약 60 nm 내지 약 120 nm 범위의 유체 역학적 직경을 갖는다.In another preferred embodiment of the present invention, the lipid nanoparticle has a range of about 50 nm to about 300 nm, or about 60 nm to about 250 nm, about 60 nm to about 150 nm, or about 60 nm to about 120 nm, respectively. has a hydrodynamic diameter.
일부 구현예에서, mRNA는 지질 나노입자에 존재할 때, 수용액에서 뉴클레아제로의 분해에 저항한다.In some embodiments, mRNA resists degradation by nucleases in aqueous solutions when present in lipid nanoparticles.
지질 나노입자 내의 mRNA의 총량은 다양하며, 총 지질에 대한 mRNA w/w 비율에 따라 정의될 수 있다. 본 발명의 일 구현예에서, 총 지질에 대한 mRNA 비율은 0.06 w/w 미만, 바람직하게는 0.03 내지 0.04 w/w이다.The total amount of mRNA in lipid nanoparticles varies and can be defined according to the mRNA w/w ratio to total lipid. In one embodiment of the invention, the mRNA to total lipid ratio is less than 0.06 w/w, preferably between 0.03 and 0.04 w/w.
일부 구현예에서, LNP는 화학식 2, 3 또는 4의 지질, 위에 정의된 바와 같은 mRNA 화합물, 중성 지질, 스테로이드를 포함한다. 일부 구현예에서, 화학식 2의 지질은 화합물 2-6, 또는 화학식 4의 지질은 화합물 4-3이고, 중성 지질은 DSPC이고, 스테로이드는 콜레스테롤이다.In some embodiments, the LNP comprises a lipid of formula 2, 3 or 4, an mRNA compound as defined above, a neutral lipid, a steroid. In some embodiments, the lipid of formula 2 is compound 2-6, or the lipid of formula 4 is compound 4-3, the neutral lipid is DSPC, and the steroid is cholesterol.
일부 구현예에서, LNP는 LNP를 세포 또는 세포 집단으로 표적화할 수 있는 1개 이상의 표적화 모이어티를 포함한다. 예를 들어, 일 구현예에서, 표적화 모이어티는 LNP를 세포 표면 상에서 발견되는 수용체로 유도하는 리간드이다.In some embodiments, the LNP comprises one or more targeting moieties capable of targeting the LNP to a cell or cell population. For example, in one embodiment, the targeting moiety is a ligand that directs the LNP to a receptor found on the cell surface.
일부 구현예에서, LNP는 1개 이상의 내재화 도메인을 포함한다. 예를 들어, 일 구현예에서, LNP는 세포에 결합하여 LNP의 내재화를 유도하는 1개 이상의 도메인을 포함한다. 예를 들어, 일 구현예에서, 1개 이상의 내재화 메인은 세포 표면 상에서 발견되는 수용체에 결합하여 수용체 매개성 LNP의 흡수를 유도한다. 일부 구현예에서, LNP는 생체 내에서 생체 분자와 결합할 수 있으며, 생체 내에서 LNP-결합된 생체 분자는 세포 표면 수용체에 의해 인식되어 내재화를 유도할 수 있다. 예를 들어, 일 구현예에서, LNP는 전신성(systemic) ApoE와 결합하며, 이는 LNP 및 회합된 카고의 흡수를 초래한다.In some embodiments, an LNP comprises one or more internalization domains. For example, in one embodiment, the LNP comprises one or more domains that bind to cells and induce internalization of the LNP. For example, in one embodiment, the one or more internalization mains bind to a receptor found on the cell surface and induce receptor-mediated uptake of the LNP. In some embodiments, the LNP may bind to a biomolecule in vivo, and in vivo the LNP-bound biomolecule may be recognized by a cell surface receptor to induce internalization. For example, in one embodiment, LNP binds systemic ApoE, which results in uptake of the LNP and associated cargo.
다음의 반응식은 화학식 2, 3 또는 4의 지질을 제조하는 방법을 예시한다.The following reaction schemes illustrate methods for preparing lipids of Formula 2, 3 or 4.
일반 반응식1General Scheme 1
Figure PCTKR2022016753-appb-img-000052
Figure PCTKR2022016753-appb-img-000052
화학식 2 지질의 구현예(예컨대, 화합물 A-5)는 일반 반응식 1("방법 A")에 따라 제조될 수 있는데, 이때, R은 포화 또는 불포화 C1-C24 알킬 또는 포화 또는 불포화 시클로알킬이며, m은 0 또는 1이고, n은 1 내지 24의 정수이다. 일반 반응식 1을 참조하면, 구조 A-1의 화합물은 상업적 공급원으로부터 구입할 수 있거나, 당업자에게 친숙한 방법에 따라 제조될 수 있다. A-1, A-2 및 DMAP의 혼합물을 DCC로 처리하여 브롬화물 A-3을 제공한다. 브롬화물 A-3, 염기(예컨대, N,N-디이소프로필에틸아민) 및 N,N-디메틸디아민 A-4의 혼합물을 임의의 필수적인 워크업 및 또는 정제 단계 후에 A-5를 생산하기에 충분한 온도와 시간에서 가열한다.Embodiments of Formula 2 lipids (eg, Compounds A-5) can be prepared according to general Scheme 1 (“Method A”), wherein R is saturated or unsaturated C 1 -C 24 alkyl or saturated or unsaturated cycloalkyl And, m is 0 or 1, n is an integer from 1 to 24. Referring to General Scheme 1, compounds of Structure A-1 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art. A mixture of A-1, A-2 and DMAP is treated with DCC to give the bromide A-3. A mixture of bromide A-3, a base (e.g., N,N-diisopropylethylamine) and N,N-dimethyldiamine A-4 to produce A-5 after any necessary workup and or purification steps. Heat at sufficient temperature and time.
일반 반응식 2General Scheme 2
Figure PCTKR2022016753-appb-img-000053
Figure PCTKR2022016753-appb-img-000053
화학식 2의 화합물의 다른 구현예(예컨대, 화합물 B-5)는 일반 반응식 2("방법 B")에 따라 제조될 수 있는데, 이때, R은 포화 또는 불포화 C1-C24 알킬 또는 포화 또는 불포화 시클로알킬이며, m은 0 또는 1이고, n은 1 내지 24의 정수이다. 일반 반응식 2에 나타난 바와 같이, 구조 B-1의 화합물은 상업적 공급원으로부터 구입할 수 있거나, 당업자에게 친숙한 방법에 따라 제조될 수 있다. B-1(1 당량)의 용액을 산 염화물 B-2(1 당량) 및 염기(예컨대, 트리에틸아민)으로 처리한다. 미정제 생성물을 산화제(예컨대, 피리디늄 클로로크로메이트)로 처리하고, 중간 생성물 B-3을 회수한다. 그 후, 미정제 B-3, 산(예컨대, 아세트산) 및 N,N-디메틸아미노아민 B-4의 용액을 환원제(예컨대, 소듐 트리아세톡시보로하이드라이드)로 처리하여 임의의 필수적인 워크업 및/또는 정제 후에 B-5를 수득한다.Other embodiments of compounds of Formula 2 (eg, Compound B-5) can be prepared according to general Scheme 2 (“Method B”), wherein R is a saturated or unsaturated C 1 -C 24 alkyl or saturated or unsaturated Cycloalkyl, m is 0 or 1, n is an integer from 1 to 24. As shown in General Scheme 2, compounds of structure B-1 can be purchased from commercial sources or can be prepared according to methods familiar to those skilled in the art. A solution of B-1 (1 equiv.) is treated with the acid chloride B-2 (1 equiv.) and a base (eg triethylamine). The crude product is treated with an oxidizing agent (eg pyridinium chlorochromate) and intermediate product B-3 is recovered. A solution of crude B-3, acid (eg acetic acid) and N,N-dimethylaminoamine B-4 is then treated with a reducing agent (eg sodium triacetoxyborohydride) to allow for any necessary work-up and / or after purification, B-5 is obtained.
출발 물질 A-1 및 B-1이 포화 메틸렌 탄소만을 포함하는 것으로 위에는 도시되었지만, 탄소-탄소 이중 결합을 포함하는 출발 물질 또한, 탄소-탄소 이중 결합을 포함하는 화합물의 제조에 활용될 수 있음을 주의해야 한다.Although starting materials A-1 and B-1 are shown above as containing only saturated methylene carbons, starting materials containing carbon-carbon double bonds can also be utilized in the preparation of compounds containing carbon-carbon double bonds. Be careful.
일반 반응식 3General Scheme 3
Figure PCTKR2022016753-appb-img-000054
Figure PCTKR2022016753-appb-img-000054
화학식 2의 지질의 상이한 구현예(예컨대, 화합물 C-7 또는 C9)는 일반 반응식 3("방법 C")에 따라 제조될 수 있는데, 이때, R은 포화 또는 불포화 C1-C24 알킬 또는 포화 또는 불포화 시클로알킬이며, m은 0 또는 1이고, n은 1 내지 24의 정수이다. 일반 반응식 3을 참조하면, 구조 C-1의 화합물은 상업적 공급원으로부터 구입할 수 있거나, 당업자에게 친숙한 방법에 따라 제조될 수 있다.Different embodiments of lipids of Formula 2 (e.g., compounds C-7 or C9) can be prepared according to general Scheme 3 ("Method C"), where R is a saturated or unsaturated C1-C24 alkyl or a saturated or unsaturated Cycloalkyl, m is 0 or 1, n is an integer from 1 to 24. Referring to General Scheme 3, compounds of structure C-1 can be purchased from commercial sources or can be prepared according to methods familiar to those skilled in the art.
일반 반응식 4General Scheme 4
Figure PCTKR2022016753-appb-img-000055
Figure PCTKR2022016753-appb-img-000055
화학식 3의 화합물의 구현예(예컨대, 화합물 D-5 및 D-7)는 일반 반응식 4("방법 D")에 따라 제조될 수 있는데, 이때, R1a, R1b, R2a, R2b, R3a, R3b, R4a, R4b, R5, R6, R8, R9, L1, L2, G1, G2, G3, a, b, c 및 d는 본 설명에 정의된 바와 같고, R7'는 R7 또는 C3-C19 알킬을 나타낸다. 일반 반응식 1을 참조하면, 구조 D-1 및 D-2의 화합물은 상업적 공급원으로부터 구입할 수 있거나, 당업자에게 친숙한 방법에 따라 제조될 수 있다. D-1 및 D-2의 용액을 환원제(예컨대, 소듐 트리아세톡시보로하이드라이드)로 처리하여 임의의 필수적인 워크업 후에 D-3을 수득한다. D-3 및 염기(예컨대, 트리메틸아민, DMAP)의 용액을 아실 클로라이드 D-4(또는 카르복시산 및 DCC)로 처리하여 임의의 필수적인 워크업 및/또는 정제 후에 D-5를 수득한다. D-5는 LiAlH4 D-6로 환원되어 임의의 필수적인 워크업 및/또는 정제 후 D-7을 제공할 수 있다.Embodiments of compounds of Formula 3 (eg, compounds D-5 and D-7) can be prepared according to general Scheme 4 (“Method D”), wherein R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , R 4a , R 4b , R 5 , R 6 , R 8 , R 9 , L 1 , L 2 , G 1 , G 2 , G 3 , a, b, c and d As defined, R 7' represents R 7 or C 3 -C 19 alkyl. Referring to General Scheme 1, compounds of structures D-1 and D-2 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art. Solutions of D-1 and D-2 are treated with a reducing agent (eg sodium triacetoxyborohydride) to obtain D-3 after any necessary work-up. A solution of D-3 and base (e.g., trimethylamine, DMAP) is treated with the acyl chloride D-4 (or carboxylic acid and DCC) to obtain D-5 after any necessary workup and/or purification. D-5 can be reduced to LiAlH4 D-6 to provide D-7 after any necessary workup and/or purification.
일반 반응식 5General Scheme 5
Figure PCTKR2022016753-appb-img-000056
Figure PCTKR2022016753-appb-img-000056
화학식 3의 지질의 구현예(예컨대, 화합물 E-5)는 일반 반응식 5("방법 E")에 따라 제조될 수 있는데, 이때, R1a, R1b, R2a, R2b, R3a, R3b, R4a, R4b, R5, R6, R7, R8, R9, L1, L2, G3, a, b, c 및 d는 본 설명에 정의된 바와 같다. 일반 반응식 2을 참조하면, 구조 E-1 및 E-2의 화합물은 상업적 공급원으로부터 구입할 수 있거나, 당업자에게 친숙한 방법에 따라 제조될 수 있다. (과량의) E-1, E-2 및 염기(예컨대, 포타슘 카보네이트)의 혼합물을 가열하여 임의의 필수적인 워크업 후 E-3을 수득한다. E-3 및 염기(예컨대, 트리메틸아민, DMAP)의 용액을 아실클로라이드 E-4(또는 카르복시산 및 DCC)로 처리하여 임의의 필수적인 워크업 및/또는 정제 후에 E-5를 수득한다.Embodiments of lipids of Formula 3 (eg, Compound E-5) can be prepared according to general Scheme 5 (“Method E”), wherein R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , R 4a , R 4b , R 5 , R 6 , R 7 , R 8 , R 9 , L 1 , L 2 , G 3 , a, b, c and d are as defined herein. Referring to General Scheme 2, compounds of structures E-1 and E-2 may be purchased from commercial sources or may be prepared according to methods familiar to those skilled in the art. Heat the mixture of (excess) E-1, E-2 and a base (eg potassium carbonate) to obtain E-3 after any necessary work-up. A solution of E-3 and a base (e.g., trimethylamine, DMAP) is treated with the acyl chloride E-4 (or carboxylic acid and DCC) to yield E-5 after any necessary workup and/or purification.
일반 반응식 6General Scheme 6
Figure PCTKR2022016753-appb-img-000057
Figure PCTKR2022016753-appb-img-000057
화학식 3의 화합물의 다른 구현예(예컨대, F-9)는 일반 반응식 6(방법 F)에 따라 제조된다. 일반 반응식 6에 도시된 바와 같이, 적절히 보호된 케톤(F-1)을 환원적 아민화 조건 하에서 아민 F-2와 반응시켜 F-3을 수득한다. F-3의 산 염화물 F-4와의 아실화는 아실화 생성물 F-5를 생성한다. F-5 상의 알코올 보호기 제거에 이은, F-7 및/또는 F-8 및 적당한 활성화 시약(예컨대, DCC)과의 반응은 원하는 화합물 F-9를 생성한다.Other embodiments of compounds of Formula 3 (eg, F-9) are prepared according to general Scheme 6 (Method F). As shown in general Scheme 6, a suitably protected ketone (F-1) is reacted with an amine F-2 under reductive amination conditions to give F-3. Acylation of F-3 with acid chloride F-4 yields acylation product F-5. Removal of the alcohol protecting group on F-5, followed by reaction with F-7 and/or F-8 and a suitable activating reagent (eg DCC) yields the desired compound F-9.
일반 반응식 7General Scheme 7
Figure PCTKR2022016753-appb-img-000058
Figure PCTKR2022016753-appb-img-000058
일반 반응식 7은 화학식 4의 지질의 제조를 위한 예시적인 방법(방법 G)을 제공한다. 일반 반응식 7의 G1, G3, R1 및 R3은 화학식 4에 대하여 본 설명에서 정의한 바와 같고, G1'는 G1의 탄소 하나가 더 짧은 동종체를 지칭한다. 구조 G-1의 화합물은 구입되거나 당해 분야에 공지된 방법에 따라 제조된다. 적당한 축합 조건(예컨대, DCC) 하에서의 디올 G-2와의 G-1의 반응은 에스테르/알코올 G-3을 생성하며, 이는 그 후 알데히드 G-4로 산화될 수 있다(예컨대, PCC). 환원적 아민화 조건 하에서 아민 G-5와 G-4의 반응은 화학식 4의 지질을 생성한다. General Scheme 7 provides an exemplary method for the preparation of lipids of Formula 4 (Method G). G 1 , G 3 , R 1 and R 3 in General Reaction Scheme 7 are as defined herein for Formula 4, and G 1′ refers to a homologue of G 1 that is one carbon shorter. Compounds of structure G-1 are purchased or prepared according to methods known in the art. Reaction of G-1 with the diol G-2 under suitable condensation conditions (eg DCC) yields the ester/alcohol G-3, which can then be oxidized to the aldehyde G-4 (eg PCC). Reaction of amines G-5 and G-4 under reductive amination conditions produces lipids of Formula 4.
화학식 4의 지질의 제조를 위한 다양한 대안적인 전략이 당업자에게 이용 가능하다는 점을 유의해야 한다. 예를 들어, 화학식 4의 기타 지질로서, L1 및 L2는 에스테르 이외의 것인 지질은 적당한 출발 물질을 이용하는 유사한 방법에 따라 제조될 수 있다. 또한, 일반 반응식 6은 화학식 4의 지질의 제조를 도시하는데, 이때, G1 및 G2는 동일하다. 그러나 이는 본 발명의 요구되는 양태는 아니며, G1 및 G2가 상이한 화합물을 생성하기 위하여 위의 반응식에 대한 변형이 가능하다.It should be noted that a variety of alternative strategies for the preparation of lipids of Formula 4 are available to those skilled in the art. For example, other lipids of Formula 4, wherein L 1 and L 2 are other than esters, can be prepared according to similar methods using suitable starting materials. General Scheme 6 also illustrates the preparation of lipids of Formula 4, wherein G 1 and G 2 are the same. However, this is not a required aspect of the present invention, and modifications to the above reaction scheme are possible to produce compounds having different G 1 and G 2 .
본 설명에 기술된 방법에서, 중간 화합물의 기능기는 적합한 보호기로 보호되어야 할 필요가 있을 수 있음을 당업자는 인정할 것이다. 이러한 기능기에는 하이드록시, 아미노, 머캅토 및 카르복시산이 포함된다. 하이드록시를 위한 적합한 보호기에는 트리알킬실릴 또는 디아릴알킬실릴(예를 들어, t-부틸디메틸실릴, t-부틸디페닐실릴 또는 트리메틸실릴), 테트라하이드로피라닐, 벤질 등이 포함된다. 아미노, 아디노 및 구아니디노를 위한 적합한 보호기에는 t-부톡시카보닐, 벤질옥시카보닐 등이 포함된다. 머캅토를 위한 적합한 보호기에는 -C(O)-R"(여기서 R"은 알킬, 아릴 또는 아릴알킬), p-메톡시벤질, 트리틸 등이 포함된다. 카복시산을 위한 적합한 보호기에는 알킬, 아릴 또는 아릴알킬 에스테르가 포함된다. 보호기는 당업자에게 공지되어 있으며 본 설명에 기술된 바와 같은 일반적인 기술에 따라 부가되거나 제거될 수 있다. 보호 기의 사용은 당업계에 공지되어 있다. 당업자가 인정하는 바와 같이, 보호기는 또한, 왕(Wang) 수지, 링크(Rink) 수지 또는 2-클로로트리틸-클로라이드 수지와 같은 폴리머 수지일 수 있다.It will be appreciated by those skilled in the art that in the methods described herein, functional groups of intermediate compounds may need to be protected with suitable protecting groups. These functional groups include hydroxy, amino, mercapto and carboxylic acids. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (eg, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, adino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl and the like. Suitable protecting groups for mercapto include -C(O)-R" (where R" is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl, and the like. Suitable protecting groups for carboxylic acids include alkyl, aryl or arylalkyl esters. Protecting groups are known to those skilled in the art and may be added or removed according to general techniques as described herein. The use of protecting groups is known in the art. As will be appreciated by those skilled in the art, the protecting group may also be a polymeric resin such as Wang resin, Rink resin or 2-chlorotrityl-chloride resin.
본 발명의 일 양태에서 상기 펩타이드는 서열번호 1 내지 10으로 이루어진 군에서 선택될 수 있다. In one aspect of the present invention, the peptide may be selected from the group consisting of SEQ ID NOs: 1 to 10.
본 발명의 일 실시예에 따르면, 서열번호 1 내지 10의 아미노산 서열로 이루어진 펩타이드는 종래의 TAT 단백질의 투과율과 비교하여 탁월한 세포막 투과도를 나타내며, 처리농도가 높을수록 세포 내 투과율은 급격히 증가하는 양상을 나타내는 것으로 확인되었다. According to one embodiment of the present invention, peptides consisting of the amino acid sequences of SEQ ID NOs: 1 to 10 show excellent cell membrane permeability compared to the permeability of conventional TAT proteins, and the higher the treatment concentration, the higher the intracellular permeability. confirmed to indicate
본 발명은 지질 나노입자 및 세포 투과성 펩타이드를 포함하는 복합체를 포함하는 물질의 세포 투과 촉진용 조성물을 제공한다.The present invention provides a composition for promoting cell permeation of a substance comprising a complex comprising a lipid nanoparticle and a cell penetrating peptide.
본 발명에 있어서, 상기 조성물은 생물학적 활성물질을 생체 조직 또는 혈중으로 전달시키거나 세포 투과를 촉진시키기 위해 사용될 수 있다. 상기 조성물은 생체 조직을 구성하는 세포 또는 세포 간 연접을 통하여 전달될 수 있으나 전달 방식에는 제한이 없다. In the present invention, the composition may be used to deliver biologically active substances into living tissue or blood or promote cell permeation. The composition may be delivered through cells constituting biological tissues or cell-to-cell junctions, but the delivery method is not limited.
상기 생체 조직은 하나 이상의 상피조직, 근육조직, 신경조직, 결합조직을 의미하며 각 장기는 하나 이상의 조직으로 이루어질 수 있으므로, 점막, 피부, 뇌, 폐, 간, 신장, 비장, 폐장, 심장, 위장, 대장, 소화관, 방광, 요관, 요도, 난소, 정소, 생식기, 근육, 혈액, 혈관, 림프관, 림프절, 흉선, 췌장, 부신, 갑상선, 부갑상선, 후두, 편도, 기관지, 폐포의 다양한 생체 장기가 포함될 수 있으나, 상기 예시에 제한되지 않는다. The biological tissue refers to one or more epithelial tissue, muscle tissue, nerve tissue, and connective tissue, and each organ may consist of one or more tissues, such as mucous membrane, skin, brain, lung, liver, kidney, spleen, lung, heart, and stomach. , large intestine, digestive tract, bladder, ureter, urethra, ovary, testis, genital organ, muscle, blood, blood vessel, lymphatic vessel, lymph node, thymus, pancreas, adrenal gland, thyroid, parathyroid gland, larynx, tonsils, bronchi, and alveoli. However, it is not limited to the above example.
상기 생체 조직을 구성하는 세포는 상피세포, 근육세포, 신경세포, 선세포, 신경교세포, 생식세포, 줄기세포, 중간엽세포, 중간엽줄기세포, 골아세포, 골세포, 조골세포, 파골세포, 혈구세포, 조혈세포, 폐세포, 간세포, 섬유아세포, 면역세포, 내피세포, 지방세포, 연골세포 등 다양한 세포가 포함될 수 있으나, 상기 예시에 제한되지 않는다.Cells constituting the biological tissue include epithelial cells, muscle cells, nerve cells, glandular cells, glial cells, germ cells, stem cells, mesenchymal cells, mesenchymal stem cells, osteoblasts, osteocytes, osteoblasts, osteoclasts, blood cells Cells, hematopoietic cells, lung cells, hepatocytes, fibroblasts, immune cells, endothelial cells, adipocytes, chondrocytes, etc. may be included, but are not limited to the above examples.
상피세포에는 점막상피세포, 모낭상피세포, 소화관상피세포, 호흡기상피세포, 생식기상피세포, 비뇨기상피세포 등이 포함된다. 내피세포는 혈관내피세포 또는 림프관내피세포 등이 있으나, 상기 예시에 제한되지 않는다.Epithelial cells include mucosal epithelial cells, hair follicle epithelial cells, digestive tract epithelial cells, respiratory epithelial cells, genital epithelial cells, urinary epithelial cells, and the like. Endothelial cells include vascular endothelial cells or lymphatic endothelial cells, but are not limited to the above examples.
본 발명의 일 양태로서, 상기 조성물은 점막 또는 피부를 통하여 생물학적 활성물질을 전달시키기 위한 것일 수 있으나, 상기 예시에 제한되지 않는다.As one aspect of the present invention, the composition may be for delivering biologically active substances through mucous membranes or skin, but is not limited to the above examples.
본 발명의 조성물은 상기 복합체와 함께 조성물 내에 포함된 생물학적 활성물질에 따라 다양한 용도로 사용될 수 있다. 예를 들어, 본 발명의 조성물은 인간 또는 동물에서 질환을 치료하는데 사용될 수 있다. 상기 질환의 종류에는 제한이 없으나, 세포, 조직, 혈액 내로 높은 농도로 약물을 전달하거나 개선된 약물의 전달이 필요한 질환이 될 수 있으며, 예를 들어 유전자 치료제 약물 또는 분자량이 큰 단백질 치료제 약물로 치료될 수 있는 질환이나 투여경로의 변경이 필요한 치료제에 대한 다양한 질환 적용 가능하다. 상기 질환은 예컨대 유방암, 간암, 뇌암, 전립선암, 자궁암, 난소암, 위암, 식도암, 대장암, 직장암, 갑상선암, 혈액암, 피부암, 폐암 등을 포함하는 암, 당뇨병, 비만, 천식, 탈모증 등이 될 수 있으나, 이에 제한되지 않는다. 또한 시험관내에서 세포막 투과성 또는 상기 펩타이드를 이용한 약물의 세포막을 통한 세포내 전달을 관찰하기 위한 연구 목적으로 활용할 수도 있고, 암, 당뇨병 등 유전자 치료제 약물 또는 분자량이 큰 단백질 치료제 약물로 치료되는 질환의 치료에도 활용할 수 있다. 상기 펩타이드를 다양한 분자에 활용하여 조영제, 진단 시약 및 키트 등의 진단에도 활용할 수 있으며, 건강기능식품 (건강기능식품 조성물), 화장품 (화장료 조성물)에도 활용할 수 있으나, 상기 예시에 제한되지 않는다. The composition of the present invention can be used for various purposes depending on the biologically active material included in the composition together with the complex. For example, the compositions of the present invention can be used to treat diseases in humans or animals. The type of the disease is not limited, but it may be a disease that requires high concentration drug delivery or improved drug delivery into cells, tissues, or blood, for example, treatment with a gene therapy drug or a protein therapy drug with a high molecular weight. It can be applied to various diseases for possible diseases or treatments that require a change in the route of administration. The disease includes, for example, breast cancer, liver cancer, brain cancer, prostate cancer, uterine cancer, ovarian cancer, stomach cancer, esophageal cancer, colon cancer, rectal cancer, thyroid cancer, blood cancer, skin cancer, cancer including lung cancer, diabetes, obesity, asthma, alopecia, and the like. It may be, but is not limited thereto. In addition, it can be used for research purposes to observe cell membrane permeability in vitro or intracellular delivery of drugs using the peptide through the cell membrane, and treatment of diseases treated with gene therapy drugs or high molecular weight protein therapy drugs such as cancer and diabetes can also be utilized. The peptide can be used in various molecules to diagnose contrast agents, diagnostic reagents and kits, and can also be used in health functional foods (health functional food compositions) and cosmetics (cosmetic compositions), but is not limited to the above examples.
또한 본 발명은 세포 투과 촉진용 조성물을 제조하기 위한 본 발명의 지질 나노입자 및 펩타이드 복합체를 포함하는 물질의 용도를 제공한다.In addition, the present invention provides a use of a material comprising the lipid nanoparticle and the peptide complex of the present invention for preparing a composition for promoting cell permeation.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 본 발명의 지질 나노입자 및 펩타이드 복합체를 포함하는 물질을 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 것을 포함하는 세포 투과 촉진 방법을 제공한다.In order to achieve another object of the present invention, the present invention promotes cell permeation comprising administering an effective amount of a composition containing as an active ingredient a substance containing the lipid nanoparticle and the peptide complex of the present invention to a subject in need thereof provides a way
본 발명의 상기 '유효량'이란 개체에게 투여하였을 때, 세포 투과 속도의 개선, 촉진 효과를 나타내는 양을 말하며, 상기 '개체'란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 상기 효과가 필요한 환자(patient) 일 수 있다.The 'effective amount' of the present invention refers to an amount that exhibits an improvement or promotion effect on cell permeation rate when administered to an individual, and the 'individual' may be an animal, preferably a mammal, particularly an animal including a human, , cells, tissues, organs, etc. derived from animals. The subject may be a patient in need of the effect.
본 명세서에서 용어 "을 포함하는(comprising)"이란 "함유하는(including)" 또는 "특징으로 하는(characterized by)"과 동일한 의미로 사용되며, 본 발명에 따른 조성물 또는 방법에 있어서, 구체적으로 언급되지 않은 추가적인 구성 성분 또는 방법의 단계 등을 배제하지 않는다. 또한 용어 "로 이루어지는(consisting of)"이란 별도로 기재되지 않은 추가적인 요소, 단계 또는 성분 등을 제외하는 것을 의미한다. 용어 "필수적으로 이루어지는(essentially consisting of)"이란 조성물 또는 방법의 범위에 있어서, 기재된 물질 또는 단계와 더불어 이의 기본적인 특성에 실질적으로 영향을 미치지 않는 물질 또는 단계 등을 포함할 수 있는 것을 의미한다.In this specification, the term "comprising" is used in the same meaning as "including" or "characterized by", and in the composition or method according to the present invention, specifically mentioned It does not exclude additional components or method steps not specified. Also, the term "consisting of" means excluding additional elements, steps or components not separately described. The term "essentially consisting of" means that in the scope of a composition or method, in addition to the described materials or steps, materials or steps that do not substantially affect the basic characteristics thereof may be included.
따라서, 본 발명의 지질 나노입자와 신규한 세포 투과성 펩타이드를 포함한 복합체는 세포, 조직, 혈액 등 생체 내로 효과적으로 침투할 수 있다.Therefore, the complex including the lipid nanoparticle of the present invention and the novel cell-penetrating peptide can effectively penetrate into living organisms such as cells, tissues, and blood.
도 1a 내지 도 1f는 본 발명의 펩타이드들을 다양한 농도로 BEAS-2B 세포 또는 HeLa 세포에 처리하고, 15 분 후(1a, 1b), 30분 후 (1c, 1d) 및 2시간 후(1e, 1f) 세포 내 투과정도를 분석한 결과이다.1a to 1f show BEAS-2B cells or HeLa cells treated with the peptides of the present invention at various concentrations, 15 minutes (1a, 1b), 30 minutes (1c, 1d) and 2 hours (1e, 1f) ) This is the result of analyzing the degree of intracellular permeability.
도 2a 내지 도 2d는 본 발명의 펩타이드를 다양한 농도로 BEAS-2B 세포 또는 HeLa 세포에 처리하고, BEAS-2B 세포에서 30 분 후 형광 현미경으로 분석하였고(2a, 2b), HeLa 세포에서 2 시간 후 형광 현미경으로 분석한 결과(2c, 2d)이다.2a to 2d show that BEAS-2B cells or HeLa cells were treated with the peptides of the present invention at various concentrations, and analyzed by fluorescence microscopy after 30 minutes in BEAS-2B cells (2a, 2b), and after 2 hours in HeLa cells. These are the results of analysis with a fluorescence microscope (2c, 2d).
도 3a 및 도 3b는 본 발명의 펩타이드를 다양한 농도로 BEAS-2B 세포 또는 HeLa 세포에 처리하고, BEAS-2B 세포에서 24 시간 및 48 시간 후 세포 독성 정도를 분석하였고(3a, 3b), HeLa 세포에서 24 시간 및 48 시간 후 세포 독성 정도를 분석한 결과이다(3c, 3d).3a and 3b show that BEAS-2B cells or HeLa cells were treated with the peptides of the present invention at various concentrations, and the degree of cytotoxicity was analyzed after 24 hours and 48 hours in BEAS-2B cells (3a, 3b), and HeLa cells This is the result of analyzing the degree of cytotoxicity after 24 hours and 48 hours in (3c, 3d).
이하 본 발명을 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.
실시예 1: 세포 투과성 펩타이드의 제작Example 1: Construction of cell penetrating peptides
세포 투과성을 나타내는 펩타이드를 제작하기 위해 하기 표 4에 나타낸 서열번호 1 내지 10의 각 펩타이드를 순도 95% 이상이 되도록 제작하였다. 이 펩타이드 합성은 아이큐어펩젠㈜에 의뢰하여 진행하였다.In order to prepare peptides exhibiting cell permeability, each of the peptides of SEQ ID NOs: 1 to 10 shown in Table 4 was prepared to have a purity of 95% or more. This peptide synthesis was carried out by requesting I-Cure Pepgen Co., Ltd.
서열번호sequence number 명칭designation 서열order
서열번호 1SEQ ID NO: 1 BCP 1BCP 1 MIIFRASEQLDKMIIFRASEQLDK
서열번호 2SEQ ID NO: 2 BCP 2BCP 2 MIIFRVLEQSEKMIIFRVLEQSEK
서열번호 3SEQ ID NO: 3 BCP 3BCP 3 MIIFRIFLHLQKMIIFRIFLHLQK
서열번호 4SEQ ID NO: 4 BCP 4BCP 4 MIIFRLFLHLNKMIIFRLFLHLNK
서열번호 5SEQ ID NO: 5 BCP 5BCP 5 MIIFRLSATVKKMIIFRLSATVKK
서열번호 6SEQ ID NO: 6 BCP 6BCP 6 MIIFRSTALVKKMIIFRSTALVKK
서열번호 7SEQ ID NO: 7 BCP 7BCP 7 MIIFRLSATAKKMIIFRLSATAKK
서열번호 8SEQ ID NO: 8 BCP 8BCP 8 MIIFRFYEDAFKMIIFRFYEDAFK
서열번호 9SEQ ID NO: 9 BCP 9BCP 9 MIIFRKKEDKDKMIIFRKKEDKDK
서열번호 10SEQ ID NO: 10 BCP 10BCP 10 MIIFRRLRRHKKMIIFRRLRRHKK
서열번호 11SEQ ID NO: 11 TAT(대조군)TAT (control) GRKKRRQRRRGRKKRRQRRR
실시예 2: 지질 나노입자의 제작 (1)Example 2: Fabrication of lipid nanoparticles (1)
본 발명에서 세포 투과성 펩타이드와 접합될 지질 나노입자로서 화학식 1을 갖는 양이온성 지질 또는 이의 염 제제는 다음과 같이 제조되었다.In the present invention, a cationic lipid having Formula 1 or a salt thereof as a lipid nanoparticle to be conjugated with a cell-permeable peptide was prepared as follows.
하기에 기재된 지질 동일성 및 몰비를 사용하여 100% 에탄올 중의 지질 스탁이 제조되었다(약 7 mg/mL 총 지질 함량).A lipid stock in 100% ethanol was prepared using the lipid identities and molar ratios described below (approximately 7 mg/mL total lipid content).
PEG-C-DMA : CL1 : CHOL : DSPC = 1.5 : 50.0 : 38.5 : 10.0PEG-C-DMA:CL1:CHOL:DSPC = 1.5:50.0:38.5:10.0
mRNA를 아세테이트 pH 5 및 뉴클레이스가 없는 물에 희석하여 100 mM 아세테이트 pH 5 중의 0.366 mg/mL mRNA의 농도에 도달했다. 미국 특허 번호 9,404,127에 설명된 직접 희석 방법을 사용하여 동일한 부피의 각 용액을 T-커넥터에서 400 mL/분으로 블렌딩하고, 약 4 부피의 PBS, pH 7.4로 희석했다. 이후 제제를 Slide-A- Lyzer 투석 유닛(MWCO 10,000)에 넣고 밤새 10 mM 트리스, 500 mM NaCl pH 8 (트리스/NaCl 버퍼) 투석했다. 투석 후 제제를 VivaSpin 농축기 유닛 (MWCO 100,000)을 사용하여 약 0.6mg/mL로 농축한 다음 0.2 um 주사기 필터를 통해 여과했다.The mRNA was diluted in acetate pH 5 and nuclease-free water to reach a concentration of 0.366 mg/mL mRNA in 100 mM acetate pH 5. Equal volumes of each solution were blended in a T-connector at 400 mL/min using the direct dilution method described in U.S. Patent No. 9,404,127 and diluted with about 4 volumes of PBS, pH 7.4. The formulation was then placed in a Slide-A-Lyzer dialysis unit (MWCO 10,000) and dialyzed overnight in 10 mM Tris, 500 mM NaCl pH 8 (Tris/NaCl buffer). After dialysis, the formulation was concentrated to about 0.6 mg/mL using a VivaSpin concentrator unit (MWCO 100,000) and then filtered through a 0.2 um syringe filter.
실시예 3: 지질 나노입자의 제작 (2)Example 3: Fabrication of lipid nanoparticles (2)
본 발명에서 세포 투과성 펩타이드와 접합될 지질 나노입자로서 화학식 2 내지 화학식 4의 양이온성 지질 또는 이의 염 제제는 다음과 같이 제조되었으며, PCT 공개 번호 WO 2015/199952, WO 2017/004143 및 WO 2017/075531(이의 전체 개시 내용은 본 설명에 참조로 포함됨)에 개시된 일반적인 절차에 따라 지질 나노입자, 양이온성 지질 및 폴리머 접합 지질(PEG-지질)을 제조하고 시험하였다.In the present invention, cationic lipids of Formulas 2 to 4 or salt formulations thereof as lipid nanoparticles to be conjugated with cell-permeable peptides were prepared as follows, and PCT Publication Nos. WO 2015/199952, WO 2017/004143 and WO 2017/075531 Lipid nanoparticles, cationic lipids and polymer conjugated lipids (PEG-lipids) were prepared and tested according to the general procedures disclosed in (the entire disclosure of which is incorporated herein by reference).
이온화 가능한 아미노 지질(양이온성 지질), 인지질, 콜레스테롤 및 페길화 지질을 이용하여 지질 나노입자(LNP)-제형화된 mRNA를 제조하였다. LNP는 다음과 같이 제조하였다. 대략 50:10:38.5:1.5 또는 47.5:10:40.8:1.7의 몰 비율로 양이온성 지질, DSPC, 콜레스테롤 및 PEG-지질을 에탄올에 용해시켰다. 실시예를 위한 LNP는 예를 들어, 양이온성 지질 화합물 2-3 및 전술한 성분들을 포함하였다. 화합물 2-3을 포함하는 지질 나노입자(LNP)를 0.03 내지 0.04 w/w의 mRNA 대 총 지질의 비율로 제조하였다. 간략하게는, mRNA를 10 내지 50mM 시트르산 완충액, pH 4에 0.05 내지 0.2 mg/mL까지 희석시켰다. 시린지 펌프를 이용하여 15 ml/분을 초과하는 전체 유속으로 에탄올성 지질 용액을 mRNA 수용액과 약 1:5 내지 1:3(vol/vol)의 비율로 혼합하였다. 그 후, 에탄올을 제거하고, 외부 완충액을 투석에 의해 PBS로 교체하였다. 마지막으로, 지질 나노입자를 0.2 μm공극 멸균 필터로 여과시켰다. 맬번 제타사이저 나노(Malvern Zetasizer Nano, 맬번(Malvern), 영국)를 이용한 준탄성 광산란으로 결정한 지질 나노입자의 입자 직경 크기는 60 내지 90 nm였다. 본 명세서에 언급된 기타 양이온성 지질 성분의 경우, 제형화 방법은 비슷하다.Lipid nanoparticle (LNP)-formulated mRNA was prepared using ionizable amino lipids (cationic lipids), phospholipids, cholesterol and pegylated lipids. LNPs were prepared as follows. Cationic lipids, DSPC, cholesterol and PEG-lipids were dissolved in ethanol in molar ratios of approximately 50:10:38.5:1.5 or 47.5:10:40.8:1.7. LNPs for the examples included, for example, cationic lipid compounds 2-3 and the aforementioned components. Lipid nanoparticles (LNPs) containing compounds 2-3 were prepared at an mRNA to total lipid ratio of 0.03 to 0.04 w/w. Briefly, mRNA was diluted to 0.05-0.2 mg/mL in 10-50 mM citrate buffer, pH 4. The ethanolic lipid solution was mixed with the mRNA aqueous solution at a ratio of about 1:5 to 1:3 (vol/vol) using a syringe pump at a total flow rate exceeding 15 ml/min. Ethanol was then removed, and the external buffer was replaced by PBS by dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 μm pore sterile filter. The particle diameter size of the lipid nanoparticles, determined by quasi-elastic light scattering using a Malvern Zetasizer Nano (Malvern, UK), was between 60 and 90 nm. For other cationic lipid components mentioned herein, the method of formulation is similar.
특히 본 발명에서 세포 투과성 펩타이드와 접합될 지질 나노입자로서 화학식 2-3의 양이온성 지질 또는 이의 염 제제는 다음과 같이 제조되었다.In particular, a cationic lipid of Formula 2-3 or a salt formulation thereof as a lipid nanoparticle to be conjugated with a cell-permeable peptide in the present invention was prepared as follows.
메틸렌 클로라이드(20mL) 중 6-(2'-헥실데카노일옥시)헥산-1-알(2.4g), 아세트산(0.33g) 및 4-아미노부탄-1-올(0.23g)의 용액을 2시간 동안 소듐 트리아세톡시보로하이드라이드(1.3 g)으로 처리하였다. 이 용액을 중탄산나트륨 수용액으로 세척하였다. 유기상을 무수 황산마그네슘으로 건조하고, 여과하고, 용매를 제거하였다. 잔류물을 메탄올/메틸렌 클로라이드(0 내지 8/100 내지 92%) 구배를 이용하여 실리카겔 컬럼으로 통과시켜, 무색 오일로서 화합물 2-3을 수득하였다(0.4g).A solution of 6-(2′-hexyldecanoyloxy)hexan-1-al (2.4 g), acetic acid (0.33 g) and 4-aminobutan-1-ol (0.23 g) in methylene chloride (20 mL) was added for 2 h. while treated with sodium triacetoxyborohydride (1.3 g). This solution was washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and the solvent was removed. The residue was passed through a silica gel column using a methanol/methylene chloride (0 to 8/100 to 92%) gradient to give compound 2-3 as a colorless oil (0.4 g).
실시예 4: 지질 나노입자 및 세포 투과성 펩타이드 복합체의 제작Example 4: Fabrication of Lipid Nanoparticle and Cell Penetrating Peptide Complex
상기 실시예 1에서 합성된 펩타이드(40 mg, 0.023mmol)는 milliQ 물(0.25 mL)에 용해시켰다. 이 용액에 1,4-디옥산(1,4-dioxane)에 녹인 (Boc)2O (15 mg, 0.069 mmol)를 트리에틸아민(triethylamine, 10μL)과 함께 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반하였다. 감압하에서 용매를 제거한 후, 잔류물을 CHCl3 용액에 현탁시킨 다음, 물로 세척하였다. CHCl3 용액을 MGSO4로 건조시킨 후 용매를 제거하였다. The peptide (40 mg, 0.023 mmol) synthesized in Example 1 was dissolved in milliQ water (0.25 mL). (Boc) 2 O (15 mg, 0.069 mmol) dissolved in 1,4-dioxane was added to this solution along with triethylamine (10 μL). The reaction mixture was stirred at room temperature for 6 hours. After removing the solvent under reduced pressure, the residue was suspended in CHCl 3 solution and then washed with water. After drying the CHCl 3 solution with MGSO 4 , the solvent was removed.
Boc-펩타이드 및 DOPE(dioleoyl phosphatidyl ethanol amine)를 N-메틸피로리돈(methyl pyrrolidone)/CH2Cl2에 용해시켰다. 이 용액에 BOP에 이어 트리에틸아민 (10 μL)을 첨가하고, 혼합물을 6 시간 동안 교반하였다. 37℃에서 감압하에 용매를 제거하였다. 잔류믈을 MeOH에 현탁시킨 후, 용액을 여과하였다. 용매 제거 후, 잔류물을 아세토니트릴(acetonitrile)에 다시 현탁시킨 다음 원심분리하였다. 생성된 펠렛을 Sep-Pak C18 Cartridge (Waters)를 사용하여 칼럼 크로마토그래피하여 Boc-펩타이드-DOPE를 정제하였다. Boc-펩타이드-DOPE (27.3 mg, 0.011 mmol)를 TFA (1 mL)에 용해시키고 1.5시간 동안 교반하였다. 감압하에서 TFA를 제거하여 DOPE-펩티드 접합체 (25.7 mg)를 얻었다.Boc-peptide and dioleoyl phosphatidyl ethanol amine (DOPE) were dissolved in N-methyl pyrrolidone/CH 2 Cl 2 . To this solution was added BOP followed by triethylamine (10 μL) and the mixture was stirred for 6 hours. The solvent was removed under reduced pressure at 37°C. After the residue was suspended in MeOH, the solution was filtered. After solvent removal, the residue was resuspended in acetonitrile and centrifuged. The resulting pellet was subjected to column chromatography using a Sep-Pak C18 Cartridge (Waters) to purify Boc-peptide-DOPE. Boc-peptide-DOPE (27.3 mg, 0.011 mmol) was dissolved in TFA (1 mL) and stirred for 1.5 h. TFA was removed under reduced pressure to obtain DOPE-peptide conjugate (25.7 mg).
프로타민 설페이트(protamine sulfate, 40μg) 또는 펩타이드의 팔미토일 유도체(palmitoyl derivative, 22 μg)를 25℃에서 20분 동안 RNase free water(1 mL)에서 siRNA와 함께 인큐베이션하여 양이온성 코어를 수득하였다. 한편, 클로로포름에 녹인 DOPE, 콜레스테롤, DMPG(dimyristoyl phosphatidyl glycerol)는 감압증발시켜 1시간 동안 진공에서 보관하였다. LNP 캡슐화 siRNA는 양이온성 코어를 포함하는 RNase free water (1 mL)로 얇은 지질 필름을 수화하여 준비하였다. LNP-siRNA는 SepharoseTM 4 Fast Flow 컬럼을 이용하여 정제하였다. 각 분획의 260 및 750 nm에서의 흡광도를 각각 siRNA 및 LNP의 지표로 모니터링하였다. RNase가 없는 물에 용해된 펩타이드-DOPE를 LNP-siRNA 용액에 첨가한 다음 40에서 30분 동안 인큐베이션하여 LNP를 CPP로 변형시켰다.Protamine sulfate (40 μg) or palmitoyl derivative (22 μg) of the peptide was incubated with siRNA in RNase free water (1 mL) at 25° C. for 20 minutes to obtain a cationic core. Meanwhile, DOPE, cholesterol, and DMPG (dimyristoyl phosphatidyl glycerol) dissolved in chloroform were evaporated under reduced pressure and stored in vacuum for 1 hour. LNP-encapsulated siRNA was prepared by hydrating a thin lipid film with RNase free water (1 mL) containing a cationic core. LNP-siRNA was purified using a Sepharose TM 4 Fast Flow column. The absorbance at 260 and 750 nm of each fraction was monitored as an indicator of siRNA and LNP, respectively. Peptide-DOPE dissolved in RNase-free water was added to the LNP-siRNA solution, followed by incubation at 40 °C for 30 min to transform LNP into CPP.
실시예 5: 세포 투과성 펩타이드의 세포 내 투과 양상 확인Example 5: Confirmation of intracellular penetration pattern of cell penetrating peptides
본 발명의 펩타이드의 세포 내 투과 양상을 형광 현미경으로 확인하였다. Intracellular penetration patterns of the peptides of the present invention were confirmed by fluorescence microscopy.
이를 위하여 상기 실시예 1에서 제작한 서열번호 1 내지 10의 각 펩타이드의 아미노 말단에 로다민(Rhodamine) 형광 염료를 표지(labelling) 하였다. BEAS-2B 세포 또는 HeLa 세포에 다양한 농도의 P1 내지 P10의 펩타이드를 처리한 후 15분, 30분 및 2시간 경과 후 세포 내 펩타이드의 농도를 평가하였다. 대조군으로는 TAT 펩타이드(GRKKRRQRRR) (서열번호 11)를 사용하였다. To this end, rhodamine fluorescent dye was labeled at the amino terminus of each peptide of SEQ ID NOs: 1 to 10 prepared in Example 1. BEAS-2B cells or HeLa cells were treated with peptides of P1 to P10 at various concentrations, and then the concentration of peptides in cells was evaluated after 15 minutes, 30 minutes, and 2 hours. As a control, a TAT peptide (GRKKRRQRRR) (SEQ ID NO: 11) was used.
도 1에 나타낸 바와 같이, 본 발명의 P1 내지 P10의 펩타이드는 모두 대조군으로 사용된 TAT보다 월등히 향상된 세포 투과도를 나타낸 것으로 확인되었다As shown in Figure 1, it was confirmed that all of the peptides P1 to P10 of the present invention showed significantly improved cell permeability than TAT used as a control.
그 다음으로, 10 μM 과 50 μM의 농도로 펩타이드 P3, P4, P5를 BEAS-2B 세포 또는 HeLa 세포에 처리하였고, 대조군 TAT도 같은 농도로 처리하였다. 단, 세포 접종시 세포 배양 슬라이드에 접종하였는데, 이는 형광 현미경 관찰시 플라스틱은 형광간섭현상을 유발하기 때문이다. 세척 후 mounting medium with DAPI를 사용하여 유리 커버 글라스를 슬라이드 글라스에 밀착시켜 형광 현미경 400배로 시료를 관찰하였다.Then, BEAS-2B cells or HeLa cells were treated with peptides P3, P4, and P5 at concentrations of 10 μM and 50 μM, and control TAT was also treated at the same concentration. However, at the time of cell inoculation, the cell culture slide was inoculated, because plastic causes fluorescence interference when observed under a fluorescence microscope. After washing, the glass cover glass was adhered to the slide glass using mounting medium with DAPI, and the sample was observed under a fluorescence microscope 400 times.
도 2에 나타낸 바와 같이, P3, P4 및 P5는 모두 대조군으로 사용된 TAT보다 월등히 향상된 세포 투과도를 나타내는 것을 확인할 수 있었다. As shown in FIG. 2, it was confirmed that P3, P4, and P5 all showed significantly improved cell permeability than TAT used as a control.
실시예 6: 세포 투과성 펩타이드의 세포 독성 확인Example 6: Confirmation of cytotoxicity of cell penetrating peptides
본 발명의 펩타이드의 세포 내 투과 활성이 세포독성으로 인해 세포막이 약해져서 발생한 것인지 확인하기 위해 다음과 같이 세포독성을 확인하였다. In order to confirm whether the intracellular permeation activity of the peptide of the present invention was caused by weakening of the cell membrane due to cytotoxicity, cytotoxicity was confirmed as follows.
상기 실시예 2와 동일한 방법으로 세포에 준비한 펩타이드들을 농도별(0, 1, 10, 100 μM)로 배양배지에 처리하고, 24 시간과 48 시간 처리하였다. 각 웰에 10ul의 CCK-8을 첨가하고 37℃의 가습조건이 유지되는 5% CO2 인큐베이터에서 3시간 후 마이크로 플레이트 흡광도 판독기(SYNERGY H1 microplate reader, BIO-TEK)를 사용하여 460 nm에서의 흡광도를 측정하였다. Cells were treated with peptides prepared in the same manner as in Example 2 in the culture medium at different concentrations (0, 1, 10, 100 μM), and treated for 24 hours and 48 hours. 10ul of CCK-8 was added to each well and after 3 hours in a 5% CO 2 incubator maintained at 37°C and humidified conditions, absorbance at 460 nm using a microplate absorbance reader (SYNERGY H1 microplate reader, BIO-TEK) was measured.
도 3에 나타낸 바와 같이, 10μM의 농도까지 아무런 세포독성을 나타내지 않았으며, 100μM의 농도에서도 세포 투과도 실험 결과에 영향을 줄 수 있는 정도의 세포독성은 확인되지 않았다. As shown in FIG. 3, no cytotoxicity was exhibited up to a concentration of 10 μM, and even at a concentration of 100 μM, cytotoxicity to a degree that could affect the results of the cell permeability test was not confirmed.
본 발명의 지질 나노입자 및 신규 세포 투과성 펩타이드의 복합체는 세포, 조직, 혈액 등 생체 내로 효과적으로 침투할 수 있어 산업상 이용가능성이 매우 높다.The complex of the lipid nanoparticle and the novel cell-penetrating peptide of the present invention can effectively penetrate into living organisms such as cells, tissues, and blood, and thus has very high industrial applicability.

Claims (14)

  1. 지질 나노입자 및 하기의 아미노산 서열로 이루어진 세포 투과성 펩타이드를 포함하는 복합체:A complex comprising a lipid nanoparticle and a cell penetrating peptide consisting of the following amino acid sequence:
    MIIFR-R1-R2-R3-R4-R5-R6MIIFR-R1-R2-R3-R4-R5-R6
    상기 식에서,In the above formula,
    R1은 A, V, I, L, S, F, K 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R1 is any one amino acid selected from the group consisting of A, V, I, L, S, F, K and R,
    R2는 S, L, F, T 및 Y로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R2 is any one amino acid selected from the group consisting of S, L, F, T and Y;
    R3는 E, L, A 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R3 is any one amino acid selected from the group consisting of E, L, A and R,
    R4는 Q, H, T, L, D 및 R로 이루어진 군에서 선택된 어느 하나의 아미노산이며, R4 is any one amino acid selected from the group consisting of Q, H, T, L, D and R,
    R5는 L, S, V, A, K 및 H로 이루어진 군에서 선택된 어느 하나의 아미노산이고,R5 is any one amino acid selected from the group consisting of L, S, V, A, K and H;
    R6는 DK, EK, QK, NK, KK 및 FK로 이루어진 군에서 선택된 어느 하나의 디펩타이드이다.R6 is any one dipeptide selected from the group consisting of DK, EK, QK, NK, KK and FK.
  2. 제1항에 있어 상기 지질 나노입자는 다음을 포함하는 것인 복합체:The complex of claim 1, wherein the lipid nanoparticle comprises:
    (i) 하나 이상의 핵산 분자; (ii) 콜레스테롤; (iii) DSPC; (iv) PEG-C-DNA; 및 (v) 다음 화학식 1의 양이온성 지질:(i) one or more nucleic acid molecules; (ii) cholesterol; (iii) DSPC; (iv) PEG-C-DNA; and (v) a cationic lipid of Formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2022016753-appb-img-000059
    Figure PCTKR2022016753-appb-img-000059
    또는 이의 염으로서,or as a salt thereof,
    여기서 PEG-C-DNA, 양이온성 지질, 콜레스테롤, 및 DSPC에 대한 총 지질의 몰 백분율은 다음과 같다:where the molar percentages of total lipids relative to PEG-C-DNA, cationic lipids, cholesterol, and DSPC are:
    PEG-C-DNA : 약 1.5;PEG-C-DNA: about 1.5;
    양이온성 지질 : 약 50.0;Cationic lipids: about 50.0;
    콜레스테롤 : 약 38.5; 및Cholesterol: about 38.5; and
    DSPC : 약 10.0.DSPC: around 10.0.
  3. 제1항에 있어 상기 지질 나노입자는 다음을 포함하는 것인 복합체:The complex of claim 1, wherein the lipid nanoparticle comprises:
    (i) 화학식 2를 갖는 양이온성 지질:(i) a cationic lipid having Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2022016753-appb-img-000060
    Figure PCTKR2022016753-appb-img-000060
    또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
    L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O- 또는 탄소-탄소 이중 결합이고;L 1 and L 2 are each independently -O(C=O)-, -(C=O)O-, or a carbon-carbon double bond;
    R1a 및 R1b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R1a는 H 또는 C1-C12 알킬이고, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 1a and R 1b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 1a is H or C 1 -C 12 alkyl, and R 1b is the carbon atom to which it is attached. together with adjacent R 1b and the carbon atom to which it is attached to form a carbon-carbon double bond;
    R2a 및 R2b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R2a는 H 또는 C1-C12 알킬이고, R2b는 그것이 결합되는 탄소 원자와 함께, 인접한 R2b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 2a and R 2b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is the carbon atom to which it is attached. together with adjacent R 2b and the carbon atom to which it is attached to form a carbon-carbon double bond;
    R3a 및 R3b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R3a는 H 또는 C1-C12 알킬이고, R3b는 그것이 결합되는 탄소 원자와 함께, 인접한 R3b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 3a and R 3b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is the carbon atom to which it is attached. together with adjacent R 3b and the carbon atom to which it is attached to form a carbon-carbon double bond;
    R4a 및 R4b는, 각 경우에, 독립적으로 (a) H 또는 C1-C12 알킬, 또는 (b) R4a는 H 또는 C1-C12 알킬이고, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 4a and R 4b are, at each occurrence, independently (a) H or C 1 -C 12 alkyl, or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is the carbon atom to which it is attached. together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
    R5 및 R6은 각각 독립적으로 메틸 또는 시클로알킬이고;R 5 and R 6 are each independently methyl or cycloalkyl;
    R7은, 각 경우에, 독립적으로 H 또는 C1-C12 알킬이고;R 7 , at each occurrence, is independently H or C 1 -C 12 alkyl;
    R8 및 R9는 각각 독립적으로 C1-C12 알킬이거나; R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 하나의 질소 원자를 포함하는 5, 6 또는 7 원 헤테로고리를 형성하고;R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle containing one nitrogen atom;
    a 및 d는 각각 독립적으로 0 내지 24의 정수이고;a and d are each independently an integer of 0 to 24;
    b 및 c는 각각 독립적으로 1 내지 24의 정수이고;b and c are each independently an integer from 1 to 24;
    e는 1 또는 2임); 및e is 1 or 2); and
    (ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
    을 포함하는 복합체.A complex comprising a.
  4. 제1항에 있어 상기 지질 나노입자는 다음을 포함하는 것인 복합체:The complex of claim 1, wherein the lipid nanoparticle comprises:
    (i) 화학식 3을 갖는 양이온성 지질:(i) a cationic lipid having Formula 3:
    [화학식 3][Formula 3]
    Figure PCTKR2022016753-appb-img-000061
    Figure PCTKR2022016753-appb-img-000061
    또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
    L1 및 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O)x-, -S-S-, -C(=O)S-, -SC(=O)-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa-, -OC(=O)NRa-, -NRaC(=O)O-, 또는 직접적인 결합이고;L 1 and L 2 are each independently -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O) x -, -SS- , -C(=O)S-, -SC(=O)-, -NR a C(=O)-, -C(=O)NR a -, -NR a C(=O)NRa-, - OC(=O)NR a -, -NR a C(=O)O-, or a direct bond;
    G1은 C1-C2 알킬렌, -(C=O)-, -O(C=O)-, -SC(=O)-, -NRaC(=O)- 또는 직접적인 결합이고;G 1 is C 1 -C 2 alkylene, -(C=O)-, -O(C=O)-, -SC(=O)-, -NR a C(=O)- or a direct bond;
    G2는 -C(=O)-, -(C=O)O-, -C(=O)S-, -C(=O)NRa- 또는 직접적인 결합이고;G 2 is -C(=0)-, -(C=0)0-, -C(=0)S-, -C(=0)NR a - or a direct key;
    G3은 C1-C6 알킬렌이고;G 3 is C 1 -C 6 alkylene;
    Ra는 H 또는 C1-C12 알킬이고;R a is H or C 1 -C 12 alkyl;
    R1a 및 R1b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R1a는 H 또는 C1-C12 알킬이고, R1b는 그것이 결합되는 탄소 원자와 함께, 인접한 R1b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 1a and R 1b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 1a is H or C 1 -C 12 alkyl, R 1b taken together with the carbon atom to which it is attached, together with adjacent R 1b and the carbon atom to which it is attached, form a carbon-carbon double bond;
    R2a 및 R2b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R2a는 H 또는 C1-C12 알킬이고, R2b는 그것이 결합되는 탄소 원자와 함께, 인접한 R2b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 2a and R 2b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 2a is H or C 1 -C 12 alkyl, and R 2b is taken together with the carbon atom to which it is attached, together with adjacent R 2b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
    R3a 및 R3b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R3a는 H 또는 C1-C12 알킬이고, R3b는 그것이 결합되는 탄소 원자와 함께, 인접한 R3b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 3a and R 3b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 3a is H or C 1 -C 12 alkyl, and R 3b is taken together with the carbon atom to which it is attached, together with adjacent R 3b and the carbon atom to which it is attached, to form a carbon-carbon double bond;
    R4a 및 R4b는, 각 경우에, 독립적으로: (a) H 또는 C1-C12 알킬; 또는 (b) R4a는 H 또는 C1-C12 알킬이고, R4b는 그것이 결합되는 탄소 원자와 함께, 인접한 R4b 및 그것이 결합되는 탄소 원자와 함께 쓰여 탄소-탄소 이중 결합을 형성하고;R 4a and R 4b are, at each occurrence, independently: (a) H or C 1 -C 12 alkyl; or (b) R 4a is H or C 1 -C 12 alkyl, and R 4b is taken together with the carbon atom to which it is attached, together with adjacent R 4b and the carbon atom to which it is attached to form a carbon-carbon double bond;
    R5 및 R6은 각각 독립적으로 H 또는 메틸이고;R 5 and R 6 are each independently H or methyl;
    R7는 C4-C20 알킬이고;R 7 is C 4 -C 20 alkyl;
    R8 및 R9는 각각 독립적으로 C1-C12 알킬이거나; R8 및 R9는, 그것들이 부착되는 질소 원자와 함께, 5, 6 또는 7 원 헤테로고리를 형성하고;R 8 and R 9 are each independently C 1 -C 12 alkyl; R 8 and R 9 together with the nitrogen atom to which they are attached form a 5, 6 or 7 membered heterocycle;
    a, b, c 및 d는 각각 독립적으로 1 내지 24의 정수이고;a, b, c and d are each independently an integer from 1 to 24;
    x는 0, 1 또는 2임); 및x is 0, 1 or 2; and
    (ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
    을 포함하는 복합체.A complex comprising a.
  5. 제1항에 있어 상기 지질 나노입자는 다음을 포함하는 것인 복합체:The complex of claim 1, wherein the lipid nanoparticle comprises:
    (i) 화학식 4를 갖는 양이온성 지질:(i) a cationic lipid having Formula 4:
    [화학식 4] [Formula 4]
    Figure PCTKR2022016753-appb-img-000062
    Figure PCTKR2022016753-appb-img-000062
    또는 이의 약학적으로 허용 가능한 염, 호변이성체, 전구약물 또는 입체이성질체(화학식에서,Or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof (in the formula:
    L1 또는 L2는 각각 독립적으로 -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O)x-, -S-S-, -C(=O)S-, -SC(=O)-, -NRaC(=O)-, -C(=O)NRa-, -NRaC(=O)NRa-, -OC(=O)NRa- 또는 -NRaC(=O)O-,L 1 or L 2 are each independently -O(C=O)-, -(C=O)O-, -C(=O)-, -O-, -S(O) x -, -SS- , -C(=O)S-, -SC(=O)-, -NR a C(=O)-, -C(=O)NR a -, -NR a C(=O)NR a -, -OC(=O)NR a - or -NR a C(=O)O-;
    바람직하게는 L1 또는 L2는 -O(C=O)- 또는 -(C=O)O-이고;Preferably L 1 or L 2 is -O(C=O)- or -(C=O)O-;
    G1 및 G2는 각각 독립적으로 비치환 C1-C12 알킬렌 또는 C1-C12 알케닐렌이고;G 1 and G 2 are each independently unsubstituted C 1 -C 12 alkylene or C 1 -C 12 alkenylene;
    G3은 C1-C24 알킬렌, C1-C24 알케닐렌, C3-C8 시클로알킬렌, 또는 C3-C8 시클로알케닐렌이고;G 3 is C 1 -C 24 alkylene, C 1 -C 24 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
    Ra는 H 또는 C1-C12 알킬이고;R a is H or C 1 -C 12 alkyl;
    R1 및 R2는 각각 독립적으로 C6-C24 알킬 또는 C6-C24 알케닐이고;R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl;
    R3은 H, OR5, CN, -C(=O)OR4, -OC(=O)R4 또는 -NR5C(=O)R4이고;R 3 is H, OR 5 , CN, -C(=0)OR 4 , -OC(=0)R 4 or -NR 5 C(=0)R 4 ;
    R4는 C1-C12 알킬이고;R 4 is C 1 -C 12 alkyl;
    R5는 H 또는 C1-C6 알킬이고;R 5 is H or C 1 -C 6 alkyl;
    x는 0, 1 또는 2임); 및x is 0, 1 or 2; and
    (ii) 적어도 하나의 항원 펩티드 또는 단백질을 암호화하는 mRNA 서열을 포함하는 mRNA 화합물로서, 이 mRNA 화합물은 선택적으로 뉴클레오시드 변형을 포함하지 않고, 특히 염기 변형을 포함하지 않으며; mRNA 화합물은 상기 지질 나노입자에 캡슐화되거나 상기 지질 나노입자와 회합되는 것인 mRNA 화합물;(ii) an mRNA compound comprising an mRNA sequence encoding at least one antigenic peptide or protein, wherein the mRNA compound is optionally free of nucleoside modifications, in particular free of base modifications; The mRNA compound is an mRNA compound that is encapsulated in the lipid nanoparticle or associated with the lipid nanoparticle;
    을 포함하는 복합체.A complex comprising a.
  6. 제1항에 있어서, 상기 펩타이드는 서열번호 1 내지 10으로 이루어진 군에서 선택된 것을 특징으로 하는 복합체.The complex according to claim 1, wherein the peptide is selected from the group consisting of SEQ ID NOs: 1 to 10.
  7. 제1항 내지 제6항 중 어느 한 항의 복합체를 포함하는 물질의 세포 투과 촉진용 조성물.A composition for promoting cell permeation of a substance comprising the complex of any one of claims 1 to 6.
  8. 제7항에 있어서, 상기 세포는 상피세포, 근육세포, 신경세포, 선세포, 신경교세포, 생식세포, 줄기세포, 중간엽세포, 중간엽줄기세포, 골아세포, 골세포, 조골세포, 파골세포, 혈구세포, 조혈세포, 폐세포, 간세포, 섬유아세포, 면역세포, 내피세포, 지방세포, 연골세포로 이루어진 군에서 선택된 것을 특징으로 하는 조성물.The method of claim 7, wherein the cells are epithelial cells, muscle cells, nerve cells, glandular cells, glial cells, germ cells, stem cells, mesenchymal cells, mesenchymal stem cells, osteoblasts, osteocytes, osteoblasts, osteoclasts, A composition characterized in that it is selected from the group consisting of blood cells, hematopoietic cells, lung cells, hepatocytes, fibroblasts, immune cells, endothelial cells, adipocytes, and chondrocytes.
  9. 제7항에 있어서, 상기 조성물은 점막 또는 피부를 통하여 생물학적 활성물질을 전달시키기 위한 것을 특징으로 하는 조성물. 8. The composition according to claim 7, wherein the composition is for delivering a biologically active substance through mucous membranes or skin.
  10. 세포 투과 촉진용 조성물을 제조하기 위한 제1항 내지 제6항 중 어느 한 항의 복합체를 포함하는 물질의 용도.Use of a material comprising the complex of any one of claims 1 to 6 for preparing a composition for promoting cell permeation.
  11. 제10항에 있어서, 상기 세포는 상피세포, 근육세포, 신경세포, 선세포, 신경교세포, 생식세포, 줄기세포, 중간엽세포, 중간엽줄기세포, 골아세포, 골세포, 조골세포, 파골세포, 혈구세포, 조혈세포, 폐세포, 간세포, 섬유아세포, 면역세포, 내피세포, 지방세포, 연골세포로 이루어진 군에서 선택된 것을 특징으로 하는 용도.The method of claim 10, wherein the cells are epithelial cells, muscle cells, nerve cells, glandular cells, glial cells, germ cells, stem cells, mesenchymal cells, mesenchymal stem cells, osteoblasts, osteocytes, osteoblasts, osteoclasts, Use characterized by being selected from the group consisting of blood cells, hematopoietic cells, lung cells, hepatocytes, fibroblasts, immune cells, endothelial cells, adipocytes, and chondrocytes.
  12. 제10항에 있어서, 상기 조성물은 점막 또는 피부를 통하여 생물학적 활성물질을 전달시키기 위한 것을 특징으로 하는 용도.11. The use according to claim 10, wherein the composition is for delivery of a biologically active substance through mucous membranes or skin.
  13. 제1항 내지 제6항 중 어느 한 항의 복합체를 포함하는 물질을 유효성분으로 포함하는 조성물의 유효량을 이를 필요로 하는 개체에 투여하는 것을 포함하는 세포 투과 촉진 방법.A method for promoting cell permeation comprising administering an effective amount of a composition comprising a substance comprising the complex of any one of claims 1 to 6 as an active ingredient to a subject in need thereof.
  14. 제13항에 있어서, 상기 세포는 상피세포, 근육세포, 신경세포, 선세포, 신경교세포, 생식세포, 줄기세포, 중간엽세포, 중간엽줄기세포, 골아세포, 골세포, 조골세포, 파골세포, 혈구세포, 조혈세포, 폐세포, 간세포, 섬유아세포, 면역세포, 내피세포, 지방세포, 연골세포로 이루어진 군에서 선택된 것을 특징으로 하는 방법.The method of claim 13, wherein the cells are epithelial cells, muscle cells, nerve cells, glandular cells, glial cells, germ cells, stem cells, mesenchymal cells, mesenchymal stem cells, osteoblasts, osteocytes, osteoblasts, osteoclasts, A method characterized by being selected from the group consisting of blood cells, hematopoietic cells, lung cells, hepatocytes, fibroblasts, immune cells, endothelial cells, adipocytes, and chondrocytes.
PCT/KR2022/016753 2021-10-29 2022-10-28 Complex of lipid nanoparticles and novel cell-penetrating peptides WO2023075527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0146624 2021-10-29
KR1020210146624A KR20230061895A (en) 2021-10-29 2021-10-29 Complexes of lipid nanoparticles and novel peptide having cell penetrating activity

Publications (1)

Publication Number Publication Date
WO2023075527A1 true WO2023075527A1 (en) 2023-05-04

Family

ID=86159623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016753 WO2023075527A1 (en) 2021-10-29 2022-10-28 Complex of lipid nanoparticles and novel cell-penetrating peptides

Country Status (2)

Country Link
KR (1) KR20230061895A (en)
WO (1) WO2023075527A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083218A (en) * 2006-02-20 2007-08-23 이화여자대학교 산학협력단 Peptide having cell membrane penetrating activity
KR20170114997A (en) * 2016-04-06 2017-10-16 이화여자대학교 산학협력단 A peptide with ability to penetrate plasma membrane
KR20190093816A (en) * 2016-10-26 2019-08-26 큐어백 아게 Lipid nanoparticle mRNA vaccine
WO2020219941A1 (en) * 2019-04-26 2020-10-29 Genevant Sciences Gmbh Lipid nanoparticles
WO2022131764A1 (en) * 2020-12-15 2022-06-23 주식회사 아이큐어비앤피 Novel peptide having cell-penetrating ability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083218A (en) * 2006-02-20 2007-08-23 이화여자대학교 산학협력단 Peptide having cell membrane penetrating activity
KR20170114997A (en) * 2016-04-06 2017-10-16 이화여자대학교 산학협력단 A peptide with ability to penetrate plasma membrane
KR20190093816A (en) * 2016-10-26 2019-08-26 큐어백 아게 Lipid nanoparticle mRNA vaccine
WO2020219941A1 (en) * 2019-04-26 2020-10-29 Genevant Sciences Gmbh Lipid nanoparticles
WO2022131764A1 (en) * 2020-12-15 2022-06-23 주식회사 아이큐어비앤피 Novel peptide having cell-penetrating ability

Also Published As

Publication number Publication date
KR20230061895A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2018030789A1 (en) Peptide nucleic acid complex having improved cell permeability and pharmaceutical composition comprising same
WO2019156365A1 (en) Peptide nucleic acid complex having endosomal escape capacity, and use thereof
WO2015002511A1 (en) Improved nanoparticle type oligonucleotide structure having high efficiency and method for preparing same
WO2010131916A2 (en) Sirna conjugate and preparation method thereof
US6878805B2 (en) Peptide-conjugated oligomeric compounds
AU2002316135B9 (en) Conjugates and compositions for cellular delivery
WO2015002513A2 (en) Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, compositon containing same for preventing or treating respiratory disease
WO2013077680A1 (en) Development of novel macromolecule transduction domain with improved cell permeability and method for using same
WO2021145595A1 (en) Lipid nanoparticles for in-vivo drug delivery, and uses thereof
WO2015152693A2 (en) Novel double-stranded oligo rna and pharmaceutical composition comprising same for preventing or treating fibrosis or respiratory diseases
WO2010126319A2 (en) Lipopeptide with specific affinity to the fc region of an antibody, and antigen-recognizing lipid nanoparticle comprising same
WO2019156366A1 (en) Skin-permeating carrier containing nucleic acid complex and use thereof
JPH07501316A (en) Lipid conjugates of therapeutic peptides and protease inhibitors
WO2012011693A2 (en) Cationic lipid, a production method for the same and a vehicle having cell penetrating properties comprising the same
WO2019225968A1 (en) Amphiregulin gene-specific double-stranded oligonucleotide and composition, for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
WO2019066586A1 (en) Long-acting conjugate of glucagon-like peptide-2 (glp-2) derivative
WO2023075527A1 (en) Complex of lipid nanoparticles and novel cell-penetrating peptides
WO2015002512A1 (en) Dengue virus-specific sirna, double helix oligo-rna structure comprising sirna, and composition for suppressing proliferation of dengue virus comprising rna structure
WO2022191377A1 (en) Vaccine composition for preventing sars-cov-2
WO2022131764A1 (en) Novel peptide having cell-penetrating ability
WO2014054927A1 (en) Amphiregulin-specific double-helical oligo-rna, double-helical oligo-rna structure comprising double-helical oligo-rna, and composition for preventing or treating respiratory diseases containing same
WO2023182756A1 (en) Novel ionizable lipid and lipid nanoparticle composition using same
EP2776471A1 (en) Stable peptide-based furin inhibitors
WO2022270941A1 (en) Lipid nanoparticles and method for preparing same
WO2022139528A1 (en) Lipid nanoparticles comprising mannose or uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887722

Country of ref document: EP

Kind code of ref document: A1