WO2023075116A1 - Impeller and cleaner using same - Google Patents

Impeller and cleaner using same Download PDF

Info

Publication number
WO2023075116A1
WO2023075116A1 PCT/KR2022/013059 KR2022013059W WO2023075116A1 WO 2023075116 A1 WO2023075116 A1 WO 2023075116A1 KR 2022013059 W KR2022013059 W KR 2022013059W WO 2023075116 A1 WO2023075116 A1 WO 2023075116A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
edge
diameter
wind
air
Prior art date
Application number
PCT/KR2022/013059
Other languages
French (fr)
Korean (ko)
Inventor
타카다마사유키
요시다미노루
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2023075116A1 publication Critical patent/WO2023075116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/22Mountings for motor fan assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the disclosed technology relates to an impeller and a cleaner using the same.
  • the stick type vacuum cleaner is equipped with a small impeller with a diameter of about 3 to 5 cm.
  • a motor that rotates and drives the impeller is also small and lightweight and can rotate at a high speed of 50000 r/min or more while securing a certain amount of torque.
  • Japanese Patent No. 3724413 and Japanese Unexamined Patent Publication No. 2017-82759 disclose small impellers employed in such vacuum cleaners.
  • a cleaner includes a main body and a dust case connected to the main body.
  • a filter chamber and an exhaust chamber are provided in the main body.
  • the impeller is disposed in the main body and rotates to generate a suction force so that air is sucked from the dust case to the main body through the air passage.
  • the impeller is rotated by a fan motor.
  • An impeller includes a boss portion fixed to a shaft of a fan motor, a base portion connected to the boss portion and having a diameter gradually increasing from a suction side to a discharge side of an air passage, and radially disposed on the base portion. It is provided with a plurality of blades that generate a suction force on the suction side of the air path.
  • Each of the plurality of blades has a wind blowing edge close to the boss and a blowing edge far from the boss.
  • the windblown edge has a proximal end, which is an end on the side of the base portion, and a protruding end, which is an end opposite to the base end.
  • the windblown edge has a swept wing shape.
  • the protruding end of the wind-blast edge is located behind the proximal end of the wind-blast edge.
  • the protruding end of the wind blowing edge is located on the suction side rather than the base end of the wind blowing edge.
  • FIG. 1 is a schematic diagram showing main parts of a stick-type cleaner according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic internal structural diagram of a body part according to an embodiment of the present disclosure.
  • FIG 3 is a perspective view and a schematic cross-sectional view showing the structure of an impeller according to an embodiment of the present disclosure.
  • FIG 4 is a view for explaining the structure of an impeller according to an embodiment of the present disclosure, as viewed from the suction side of the impeller.
  • FIG. 5 is a schematic diagram of an example of a model of fluid analysis of an impeller according to an embodiment of the present disclosure.
  • FIG. 6 is a graph showing an example of a relationship between an inclination angle of a wind blade edge and suction efficiency according to a result of fluid analysis.
  • FIG. 7 is a diagram showing an example of a fluid analysis result according to a receding angle of a wind blade edge.
  • FIG. 8 is a graph showing an example of a relationship between a receding angle of a wind blade edge and suction efficiency according to a result of fluid analysis.
  • FIG. 9 is a schematic diagram of a stick-type cleaner according to an embodiment of the present disclosure.
  • the vacuum cleaner 1 may be of a wireless type.
  • an impeller (FIG. 2: 20) according to an embodiment of the present disclosure is mounted.
  • the cleaner 1 according to an embodiment of the present disclosure may include a main body 3 and a dust case 4 connected to the main body 3 .
  • the cleaner 1 according to an embodiment of the present disclosure may further include a pipe part 2 and a handle part 5.
  • the pipe part 2 may be an elongated tubular member. Although not shown, the head of the vacuum cleaner 1 that sucks dust is mounted on one end (not shown) of the pipe part 2. The other end of the pipe part (2) is connected to the dust case (4).
  • the body portion 3 and the handle portion 5 may be integrally installed with the proximal end portion of the pipe portion 2.
  • a suction unit (Fig. 2: 10) to be described later is housed in the body portion 3.
  • a battery, a controller, etc. may be accommodated in the handle part 5 .
  • the controller controls driving of the suction unit 10 .
  • the battery may be a rechargeable secondary battery and supplies electrical energy to the suction unit 10 .
  • the handle part 5 is a part that the user grips.
  • the cleaner 1 according to an embodiment of the present disclosure is configured so that the user can handle the handle part 5 while holding it with one hand.
  • a dust case 4 is installed on the lower side of the body portion 3.
  • the dust case 4 is detachable from the body part 3.
  • a strong suction force is generated in the head. Accordingly, the dust sucked from the head is accumulated in the dust case 4 through the pipe part 2.
  • FIG. 2 is a schematic internal structural diagram of the body portion 3 according to an embodiment of the present disclosure.
  • FIG. 2 shows the internal structure of the portion surrounded by the line L1 in FIG. 1 .
  • the diffuser 15 is shown in an external shape on the left side and a cross-sectional shape on the right side with respect to the rotation axis (A).
  • the body portion 3 may include an exhaust chamber 30, a filter chamber 31, and the like.
  • the exhaust chamber 30 may be a cylindrical space with one end closed, and a plurality of inner exhaust holes 30a are formed on its outer circumference.
  • the filtration chamber 31 is arranged so as to surround the periphery of the exhaust chamber 30 .
  • a cylindrical filter 32 for trapping dust is disposed over its entire circumference.
  • a plurality of external exhaust holes 33 are formed in the cover 34 of the body portion 3 forming the outer circumferential boundary of the filter chamber 31, as shown in FIGS. 1 and 2 .
  • the suction unit 10 is housed inside the body portion 3 in a state in which a portion thereof is partially retracted into the exhaust chamber 30 .
  • the suction unit 10 may include a fan motor (electric motor) 13 and an impeller 20 .
  • the impeller 20 is disposed on the main body 3 and rotates to generate a suction force so that air is sucked into the main body 3 from the dust case 4 through the air path 50 .
  • the fan motor 13 rotates the impeller 20 .
  • the fan motor 13 and the impeller 20 may have a common rotation axis A.
  • the suction unit 10 may include an upstream side shroud 11 and a downstream side shroud 12 forming a flow path (air path 50) through which air flows.
  • the upstream shroud 11 is a cylindrical member, and includes a first large-diameter portion 11a having a large diameter and a first reduced-diameter portion 11b extending from the first large-diameter portion 11a to gradually narrow in diameter. Based on the air flow direction Y1, the first reduced-diameter portion 11b is located on the downstream side of the first large-diameter portion 11a. The diameter of the first reduced-diameter portion 11b extends from the first large-diameter portion 11a toward the air flow direction Y1.
  • the downstream shroud 12 is also a cylindrical member, and includes a second large-diameter portion 12a having a large diameter and a second reduced-diameter portion 12b extending from the second large-diameter portion 12a to gradually narrow in diameter. Based on the air flow direction Y1, the second reduced-diameter portion 12b is located upstream of the second large-diameter portion 12a. With the air flow direction Y1 as a reference, the diameter of the second reduced diameter portion 12b gradually increases, and the second large diameter portion 12a extends from the downstream end of the second reduced diameter portion 12b. . The second large-diameter portion 12a is connected to the exhaust chamber 30 .
  • the second diameter-reduced portion 12b extends from the second large-diameter portion 12a to a gradually smaller diameter in the opposite direction to the air flow direction Y1. , connected to the first diameter reduction portion 11b.
  • the first diameter of the first large-diameter portion 11a and the second diameter of the second large-diameter portion 12a may be the same or different.
  • the first reduced diameter portion 11b of the upstream shroud 11 is connected to the second reduced diameter portion 12b of the downstream shroud 12 .
  • the upstream side shroud 11 and the downstream side shroud 12 are integrally aligned in a centered state.
  • the first large-diameter portion 11a is connected to the dust case 4, and the upstream shroud 11 and the dust case 4 communicate with each other.
  • the downstream shroud 12 is disposed inside the exhaust chamber 30 .
  • the fan motor 13 directs its shaft 13a toward the downstream shroud 12 side, and is housed in the upstream shroud 11 in a state where the center of the upstream shroud 11 and the rotational axis A coincide.
  • the fan motor 13 is very small.
  • the outer diameter is about 70 mm and the height is about 40 mm (so-called palm size). Therefore, its weight is also very light.
  • the fan motor 13 has a structure capable of obtaining high efficiency and high output so as to obtain sufficient performance that can be used in the vacuum cleaner 1 using battery power.
  • the fan motor 13 in the case of the fan motor 13 according to an embodiment of the present disclosure, it can be driven at high-speed rotation of 50000 r/min or more, and even ultra-high-speed rotation of 100000 r/min or more with power consumption of 600 W, and has a suction power of 250 W or more. It has a structure that can be obtained.
  • the impeller 20 is disposed in the air passage 50, for example, in the second diameter reduced portion 12b.
  • the impeller 20 is accommodated in the second diameter reduced portion 12b.
  • the impeller 20 includes a boss portion 21 fixed with the rotation shaft A aligned with the shaft 13a of the fan motor 13, and an annular base portion extending from the boss portion 21 to the surroundings ( 22) and a plurality of blades 23 disposed on the upper surface of the base portion 22.
  • This disclosure focuses on the structure of the impeller 20 in particular. A detailed structure of the impeller 20 will be described later.
  • the suction unit 10 may have a diffuser 15 .
  • the diffuser 15 is located downstream of the impeller 20 .
  • the diffuser 15 is housed in the second large-diameter portion 12a of the downstream shroud 12 .
  • the diffuser 15 according to an embodiment of the present disclosure has a two-stage structure of an upper diffuser 15U and a lower diffuser 15D. Depending on the specifications of the suction unit 10, it may be a diffuser 15 having a one-stage structure.
  • Each of the upper diffuser 15U and the lower diffuser 15D may be a cylindrical member, and a plurality of vanes 15a extending obliquely with respect to an axial direction (eg, a rotation axis A) are formed on an outer circumferential surface of each.
  • the inclination angle of the vane 15a of the lower diffuser 15D is smaller than that of the upper diffuser 15U.
  • Each of the upper diffuser 15U and the lower diffuser 15D is fixed to the inner circumferential surface of the second large-diameter portion 12a.
  • the impeller 20 rotates at a high speed in a predetermined rotation direction. Accordingly, as indicated by arrow Y1, air flows from the dust case 4 into the upstream shroud 11, and a suction force is generated on the upstream side of the second diameter reduction portion 12b.
  • the air introduced into the upstream shroud 11 passes through the first large-diameter portion 11a and the first reduced-diameter portion 11b while cooling the fan motor 13 and is sucked into the second reduced-diameter portion 12b. .
  • the air introduced into the second diameter reduced portion 12b from the suction side 50a is the space between the inner wall surface 12c of the second reduced diameter portion 12b and the base portion 22 of the impeller 20 ( Specifically, it passes through the blades 23) and is discharged from the second reduced-diameter portion 12b and introduced into the second large-diameter portion 12a.
  • the air introduced into the second large-diameter portion 12a from the discharge side 50b of the second diameter-reduced portion 12b passes through the inner wall surface of the second large-diameter portion 12a and the upper diffuser 15U and the lower diffuser 15D. It passes through the space between the outer peripheral surfaces (specifically, between the vanes 15a) and flows into the exhaust chamber 30.
  • High-speed rotation of the fan motor 13 may be performed in order to realize a higher suction force, and accordingly, performance of the impeller 20 is also required.
  • the present disclosure provides a small impeller 20 suitable for a stick type vacuum cleaner 1 and capable of improving a suction force.
  • the impeller 20 includes a boss portion 21, a base portion 22, and a plurality of blades 23.
  • the protruding end 21a side of the boss 21, that is, the suction side 50a of the air path 50 is referred to as the 'upper side', and the opposite side is referred to as the 'lower side. '.
  • the impeller 20 has a boss portion 21 fixed to the shaft 13a, and while being connected to the boss portion 21, it goes from the suction side 50a of the air path 50 to the discharge side 50b. Equipped with an annular base portion 22 whose diameter increases according to the diameter, and a plurality of blades 23 radially disposed on the upper surface of the base portion 22 to generate a suction force on the suction side 50a of the air passage 50. do.
  • the impeller 20 may be a resin molded product, and the boss portion 21, the base portion 22, and the plurality of blades 23 may be integrally formed.
  • each blade 23 of the impeller 20 rotates counterclockwise by driving the fan motor 13 when viewed from above, as indicated by arrows Yr in FIGS. 3 and 4 .
  • each blade 23 of the impeller 20 has its outer peripheral side, for example, the blowing edge 23b is located behind its center side, for example, the wind blowing edge 23a, with respect to the rotation direction Yr. It is inclined and may have a structure in which air escapes between the blades 23 in an inclined direction with respect to the rotation axis A during rotation.
  • Such a blade 23 may be referred to as a blade having a mixed-flow fan structure. That is, the impeller 20 corresponds to a mixed flow fan.
  • the boss part 21 is a cylindrical part, and the shaft 13a is fixed to the center thereof.
  • the base portion 22 is a conical portion connected to the upper portion of the boss portion 21, and its upper surface gradually moves toward the outer circumferential side in the radial direction from the boss portion 21 toward the discharge side 50b of the air passage 50. it is inclined
  • the inclination of the upper surface of the base portion 22 is about 30°, and may range from about 20° to 40°.
  • Each blade 23 is a thin-plate-like part and protrudes upward from the upper surface of the base 22 .
  • the impeller 20 according to an embodiment of the present disclosure has nine blades 23, and these blades 23 are arranged at equal intervals in the circumferential direction.
  • Each blade 23 has a band-like appearance in which one (23a) is long and the other (23b) is very short among two edges (23a, 23b) in the radial direction, and two edges (edges) in the vertical direction
  • One (23e) of (23e, 23f) is connected to the base portion (22).
  • the longer one (wind cutting edge) 23a is located on the center side of the base portion 22, that is, close to the boss portion 21, and the shorter one (wind cutting edge)
  • An edge (wind sending edge) 23b is located on the outer circumferential side of the base portion 22, that is, away from the boss portion 21.
  • Each of the windblown edge 23a and the blowing edge 23b extends from the edge 23e in the vertical direction, for example, in a straight line.
  • Each blade 23 has a twisted shape from the wind cutting edge 23a toward the blowing edge 23b.
  • the protruding end 23d side of the wind blowing edge 23a is twisted and inclined in the direction of rotation, and the protruding end 23g side of the blowing edge 23b is twisted and inclined in the opposite direction of rotation.
  • the windblown edge 23a is formed to extend in the axial direction, that is, in the radial direction when viewed from the top. Accordingly, the protruding vertical edges 23f of each blade 23 follow the inner circumferential surface of the second diameter-reducing part 12b with a slight gap between them and the inner circumferential surface of the second diameter-reducing part 12b. is extended
  • the windblown edge 23a has a base end 23c and a protruding end 23d.
  • the base end 23c is an end on the side of the base portion 22, and the projecting end 23d is an end opposite to the base end 23c.
  • the protruding end 23d side of the wind-blast edge 23a is more rotated than the base end 23c side of the wind-blast edge 23a. It has a shape located at the back (herein, this shape is called a swept wing shape for convenience).
  • the air resistance of the blade 23 is reduced by adopting a swept wing shape, which is advantageous for high rotation.
  • the present inventors have analyzed the swept wing shape by fluid analysis to determine the swept angle ⁇ 2 (to the second reference line RL2 in the radial direction passing through the center of rotation of the impeller 20 and the base end 23c of the wind blade edge 23a).
  • the retracting angle of the wind blade edge 23a see Fig. 4
  • the protruding end 23d side of the wind blowing edge 23a is higher than the base end 23c side of the wind blowing edge 23a (the suction side of the air passage 50) (50a)) has a blade 23 of a shape.
  • the windblown edge 23a of each blade 23 is inclined upward from the base end 23c side leading to the boss portion 21 toward the protruding end 23d side.
  • the present inventors determined the inclination angle ⁇ 1 of the wind-blast edge 23a by fluid analysis (the angle at which the wind-blast edge 23a is inclined with respect to the first reference line RL1 orthogonal to the rotation axis A, see FIG. 3) As a result of the study, it was found that the suction performance can be improved by selecting the inclination angle ⁇ 1 together with the retreat angle ⁇ 2.
  • FIG. 5 is a schematic diagram of an example of a model of fluid analysis of an impeller 20 according to an embodiment of the present disclosure.
  • a model of the air passage 50 in which the impeller 20 is accommodated for example, the second diameter reduced portion 12b, is set as shown in FIG. 5, and as indicated by arrows in FIG. , How the suction efficiency (suction force/motor output) changes by changing the size of the inclination angle ⁇ 1 of the wind blade edge 23a facing the suction side 50a of the air path 50 was investigated.
  • FIG. 6 is a graph showing an example of the relationship between the inclination angle ⁇ 1 of the wind blade edge 23a and the suction efficiency according to the result of the fluid analysis.
  • the vertical axis is the suction efficiency
  • the horizontal axis is the inclination angle ( ⁇ 1).
  • the suction efficiency can be optimized by setting the inclination angle ⁇ 1 of the wind blade edge 23a to 18° or more and 26° or less.
  • the inclination angle ⁇ 1 of the wind blowing edge 23a of the impeller 20 may be set to 18° or more and 26° or less, thereby improving the suction force. Can be optimized.
  • the inclination angle ⁇ 1 at which the suction efficiency peaks is most preferable, but if the inclination angle ⁇ 1 is selected within the above range according to the specifications of the impeller 20, the effect obtained at the inclination angle ⁇ 1 at which the suction efficiency peaks almost equivalent effect can be obtained.
  • FIG. 7 is a diagram showing an example of fluid analysis results according to the retreat angle ⁇ 2 of the wind blade edge 23a.
  • FIG. 7 shows flow analysis results of air flowing through the second diameter reduction portion 12b (specifically, between the blades 23) at three different retreat angles ⁇ 2.
  • the drawing (a) of FIG. 7 shows the case where the retreat angle ⁇ 2 is 27°
  • the drawing (b) of FIG. 7 shows the case where the retreat angle ⁇ 2 is 17°
  • the drawing (c) of FIG. 7 shows the retreat angle This is the case when ( ⁇ 2) is 7°.
  • the high-concentration portion (R1) represents a portion with a relatively high flow rate of air
  • the low-concentration portion (R2) represents a relatively low flow rate of air. represents a part.
  • FIG 8 is a graph showing an example of the relationship between the retraction angle ⁇ 2 of the wind blade edge 23a and suction efficiency according to the result of the fluid analysis.
  • the suction efficiency peak exists near the retreat angle ⁇ 2 at about 17°.
  • the suction efficiency can be optimized by setting the retreat angle ⁇ 2 of the wind blade edge 23a to 15° or more and 19° or less.
  • the receding angle ⁇ 2 of the wind blowing edge 23a of the impeller 20 may be set to 15° or more and 19° or less, thereby improving the suction force. Can be optimized.
  • the retreat angle ⁇ 2 at which the suction efficiency peaks is most preferable, but if the retreat angle ⁇ 2 is selected from the range described above according to the specifications of the impeller 20, it can be obtained at the retreat angle ⁇ 2 at which the suction efficiency peaks. You can get almost the same effect as the effect you have.
  • both the inclination angle ⁇ 1 and the retreat angle ⁇ 2 of the wind-blast edge 23a are optimized. Therefore, the suction power can be further improved by combining these effects. That is, according to the impeller 20 according to an embodiment of the present disclosure, it is possible to better derive the performance of the motor, which tends to increase the rotational speed, and generate high suction force. Therefore, the high-performance vacuum cleaner 1 can be realized by a combination of the fan motor 13 rotating at high speed and the impeller 20 according to an embodiment of the present disclosure.
  • the impeller 20 of the present disclosure is not limited to the above-described embodiment.
  • the impeller 20 having blades 23 of a mixed-flow fan structure was exemplified, but the impeller 20 is centrifugal in which air escapes between the blades 23 in the radial direction during rotation. It may also have blades 23 of a fan structure. That is, the impeller 20 may correspond to a centrifugal fan.
  • the fan motor 13 is arranged upstream with respect to the impeller 20, but as shown in FIG. 9, the fan motor 13 is the impeller 20 It may also be disposed in the exhaust chamber 30 on the downstream side in the direction of air flow.
  • the impeller 20 rotating counterclockwise is exemplified, but depending on the specification, the direction of the blades 23 may be reversed so that the impeller 20 rotates clockwise.
  • a cleaner includes a main body having a filtration chamber and an exhaust chamber; a dust case connected to the main body; an impeller disposed in the main body and generating a suction force so that air is sucked into the main body from the dust case through an air passage while being rotated; and a fan motor rotating the impeller, wherein the impeller includes: a boss fixed to a shaft of the fan motor; a base portion connected to the boss portion and gradually increasing in diameter from the suction side to the discharge side of the air passage; and a plurality of blades disposed radially in the base portion to generate a suction force on the suction side of the air path, each of the plurality of blades having a wind blowing edge close to the boss portion and a blowing edge far from the boss portion.
  • the wind blowing edge has a base end that is an end toward the base portion and a protruding end that is an end opposite to the base end, and the protruding end is located behind the base end based on the rotation direction of the impeller, and the air path Based on , the protruding end of the windblown edge is located on a suction side rather than the base end of the windblown edge.
  • a receding angle of the wind-blast edge with respect to a second reference line passing through the center of rotation of the impeller and the air end of the wind-blast edge may be 15° or more and 19° or less.
  • an inclination angle of the windblown edge with respect to a first reference line orthogonal to the rotational axis of the impeller may be 18° or more and 26° or less.
  • the suction efficiency can be optimized by setting the angles as described above, and the suction force can be improved compared to the conventional impeller.
  • the impeller of the above-described type may be applied to a vacuum cleaner, for example, a stick type vacuum cleaner.
  • the above-described impeller can be applied to a vacuum cleaner as an impeller driven by an electric motor capable of being driven by electric energy supply from a battery, for example. According to such an impeller, a high suction force can be obtained with a very small size, so that a high-performance vacuum cleaner that is easy to handle can be realized.
  • the blowing edge may be twisted and inclined in a direction opposite to the rotational direction.
  • an upper surface of the base portion on which the plurality of blades are disposed may be gently inclined toward the discharge side of the air path as it radially faces an outer circumferential side from the boss portion.
  • an inclination angle of the upper surface of the base part may be 20° to 40°.
  • the plurality of blades may have a structure of any one of a mixed-flow fan structure and a centrifugal fan structure.
  • the vacuum cleaner includes a first large-diameter portion connected to the dust case and a first diameter-reduced portion extending from the first large-diameter portion in an air flow direction so that the diameter gradually decreases.
  • shroud A downstream shroud having a second large-diameter portion connected to the exhaust chamber and a second diameter-reduced portion extending from the second large-diameter portion to a direction opposite to the air flow direction and connected to the first diameter-reduced portion. may be provided, and the impeller may be disposed in the second diameter reduction unit.
  • a cleaner according to an embodiment of the present disclosure may include a diffuser accommodated in the second large-diameter portion.
  • An impeller is disposed in an air passage and rotates to suck in and discharge air, and includes a boss fixed to a shaft of a fan motor; a base portion connected to the boss portion and gradually increasing in diameter from the suction side to the discharge side of the air passage; and a plurality of blades disposed radially in the base portion to generate a suction force on the suction side of the air path, each of the plurality of blades having a wind blowing edge close to the boss portion and a blowing edge far from the boss portion.
  • the wind blowing edge has a base end that is an end toward the base portion and a protruding end that is an end opposite to the base end, and the protruding end is located behind the base end based on the rotation direction of the impeller, and the air path Based on , the protruding end of the windblown edge is located on a suction side rather than the base end of the windblown edge.
  • a receding angle of the wind-blast edge with respect to a second reference line passing through the center of rotation of the impeller and the air end of the wind-blast edge may be 15° or more and 19° or less.
  • an inclination angle of the windblown edge with respect to a first reference line orthogonal to the rotational axis of the impeller may be 18° or more and 26° or less.
  • an upper surface of the base portion on which the plurality of blades are disposed may be gently inclined toward the discharge side of the air path as it radially faces an outer circumferential side from the boss portion.
  • an inclination angle of the upper surface of the base part may be 20° to 40°.
  • the plurality of blades may have a structure of any one of a mixed-flow fan structure and a centrifugal fan structure.

Abstract

The disclosed impeller is disposed in an air passage so as to suction and discharge air while rotating. The impeller comprises: a boss part fixed to a shaft of an electric motor; a base part, which is connected to the boss part and has a diameter that becomes larger from the intake side of the air passage toward the discharge side thereof; and a plurality of blades radially arranged at the base part so as to generate suction force at the intake side of the air passage. Each of the plurality of blades has a wind-blocking edge that is close to the boss part and a blowing edge that is far from the boss part. The wind-blocking edge has the shape of a sweptback wing. The protruding end of the wind-blocking edge is positioned closer than the base end of the wind-blocking edge to the intake side with respect to the air passage.

Description

임펠러 및 이를 이용한 청소기Impeller and vacuum cleaner using the same
개시하는 기술은, 임펠러(impeller) 및 이를 이용한 청소기에 관한 것이다.The disclosed technology relates to an impeller and a cleaner using the same.
최근에 청소기 본체, 호스, 전기 코드 등이 생략된 소형 경량인 스틱형 청소기가 많이 출시되고 있다. 이러한 청소기는 무선이기 때문에 취급하기 쉬워 인기가 있다.Recently, many small and lightweight stick-type vacuum cleaners in which a cleaner body, a hose, an electric cord, and the like are omitted are being released. These vacuum cleaners are popular because they are cordless and easy to handle.
스틱형 청소기에는 직경이 3~5cm 정도인 소형 임펠러가 탑재되어 있다. 이러한 소형 임펠러로 높은 흡인력을 발생시키기 위해, 임펠러를 회전 구동하는 모터도 소형 경량이며 어느 정도의 토크를 확보하면서 50000r/min 이상으로 고속 회전할 수 있는 것이 채용되어 있다.The stick type vacuum cleaner is equipped with a small impeller with a diameter of about 3 to 5 cm. In order to generate high suction force with such a small impeller, a motor that rotates and drives the impeller is also small and lightweight and can rotate at a high speed of 50000 r/min or more while securing a certain amount of torque.
일본특허 제3724413호 공보 및 일본공개특허 2017-82759호 공보 에 이러한 청소기에 채용되어 있는 소형 임펠러가 개시되어 있다.Japanese Patent No. 3724413 and Japanese Unexamined Patent Publication No. 2017-82759 disclose small impellers employed in such vacuum cleaners.
본 개시의 일 측면에 따른 청소기는, 본체부와 본체부에 연결된 먼지 케이스를 구비한다. 본체부에는 여과실과 배기실이 마련된다. 임펠러는 본체부에 배치되어 회전되면서 풍로를 통하여 먼지 케이스로부터 본체부로 공기가 흡입되도록 흡입력을 발생시킨다. 임펠러는 팬 모터에 의하여 회전된다. A cleaner according to an aspect of the present disclosure includes a main body and a dust case connected to the main body. A filter chamber and an exhaust chamber are provided in the main body. The impeller is disposed in the main body and rotates to generate a suction force so that air is sucked from the dust case to the main body through the air passage. The impeller is rotated by a fan motor.
본 개시의 일 측면에 따른 임펠러는, 팬 모터의 샤프트에 고정되는 보스부와, 보스부에 연결되며 풍로의 흡입측에서 토출측으로 향함에 따라 지름이 점차 커지는 베이스부와, 베이스부에 방사상으로 배치되어 풍로의 흡입측에 흡인력을 발생시키는 복수의 블레이드를 구비한다. 복수의 블레이드 각각은 보스부에 가까운 풍절 에지와 보스부로부터 먼 송풍 에지를 구비한다. 풍절 에지는 베이스부 쪽의 단부인 기단과 기단의 반대쪽 단부인 돌출단을 구비한다. 풍절 에지는 후퇴익 형상을 갖는다. 다시 말하면, 임펠러의 회전 방향을 기준으로 하여 풍절 에지의 돌출단은 풍절 에지의 기단보다 뒤쪽에 위치된다. 또한, 풍로를 기준으로 하여 풍절 에지의 돌출단은 풍절 에지의 기단보다 흡입측에 위치된다.An impeller according to one aspect of the present disclosure includes a boss portion fixed to a shaft of a fan motor, a base portion connected to the boss portion and having a diameter gradually increasing from a suction side to a discharge side of an air passage, and radially disposed on the base portion. It is provided with a plurality of blades that generate a suction force on the suction side of the air path. Each of the plurality of blades has a wind blowing edge close to the boss and a blowing edge far from the boss. The windblown edge has a proximal end, which is an end on the side of the base portion, and a protruding end, which is an end opposite to the base end. The windblown edge has a swept wing shape. In other words, based on the rotational direction of the impeller, the protruding end of the wind-blast edge is located behind the proximal end of the wind-blast edge. In addition, with respect to the air path, the protruding end of the wind blowing edge is located on the suction side rather than the base end of the wind blowing edge.
도 1은 본 개시의 일 실시예에 따른 스틱형 청소기의 주요부를 나타내는 개략도이다.1 is a schematic diagram showing main parts of a stick-type cleaner according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 본체부의 개략적인 내부 구조도이다.2 is a schematic internal structural diagram of a body part according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 임펠러의 구조를 보여주는 사시도 및 개략적인 단면도이다.3 is a perspective view and a schematic cross-sectional view showing the structure of an impeller according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 임펠러의 구조를 설명하기 위한 도면으로서, 임펠러를 흡입측에서 본 도면이다.4 is a view for explaining the structure of an impeller according to an embodiment of the present disclosure, as viewed from the suction side of the impeller.
도 5는 본 개시의 일 실시예에 따른 임펠러의 유체 해석의 모델의 일 예의 개략도이다.5 is a schematic diagram of an example of a model of fluid analysis of an impeller according to an embodiment of the present disclosure.
도 6은 유체 해석의 결과에 따른 풍절 에지의 경사각과 흡입 효율과의 관계의 일 예를 보여주는 그래프이다.6 is a graph showing an example of a relationship between an inclination angle of a wind blade edge and suction efficiency according to a result of fluid analysis.
도 7은 풍절 에지의 후퇴각에 따른 유체 해석 결과의 일 예를 보여도는 도면이다.7 is a diagram showing an example of a fluid analysis result according to a receding angle of a wind blade edge.
도 8은 유체 해석의 결과에 따른 풍절 에지의 후퇴각과 흡입 효율과의 관계의 일 예를 보여주는 그래프이다.8 is a graph showing an example of a relationship between a receding angle of a wind blade edge and suction efficiency according to a result of fluid analysis.
도 9는 본 개시의 일 실시예에 따른 스틱형 청소기의 개략도이다.9 is a schematic diagram of a stick-type cleaner according to an embodiment of the present disclosure.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. The terms used in this specification have been selected from general terms that are currently widely used as much as possible while considering the functions in the present invention, but these may vary depending on the intention of a person skilled in the art, precedent, or the emergence of new technologies. In addition, in a specific case, there is also a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the invention. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, not simply the name of the term. When it is said that a certain part "includes" a certain component throughout the specification, it means that it may further include other components without excluding other components unless otherwise stated.
이하에 본 개시에 관한 임펠러 및 이를 채용한 청소기의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Hereinafter, an impeller according to the present disclosure and an embodiment of a vacuum cleaner employing the same will be described in detail so that those skilled in the art can easily carry out the impeller. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
도 1은 은 본 개시의 일 실시예에 따른 스틱형 청소기의 주요부를 나타내는 개략도이다. 이하에서는 스틱형 청소기를 단지 청소기(1)라고 지칭한다. 청소기(1)는 무선 타입일 수 있다.1 is a schematic diagram showing main parts of a stick-type cleaner according to an embodiment of the present disclosure. Hereinafter, the stick-type cleaner is simply referred to as the cleaner 1 . The vacuum cleaner 1 may be of a wireless type.
청소기(1)에, 본 개시의 일 실시예에 따른 임펠러(도 2: 20)가 탑재되어 있다. 본 개시의 일 실시예에 따른 청소기(1)는 본체부(3)와, 본체부(3)에 연결된 먼지 케이스(4)를 구비할 수 있다. 본 개시의 일 실시예에 따른 청소기(1)는 파이프부(2)와 손잡이부(5)를 더 구비할 수 있다.In the vacuum cleaner 1, an impeller (FIG. 2: 20) according to an embodiment of the present disclosure is mounted. The cleaner 1 according to an embodiment of the present disclosure may include a main body 3 and a dust case 4 connected to the main body 3 . The cleaner 1 according to an embodiment of the present disclosure may further include a pipe part 2 and a handle part 5.
파이프부(2)는 가늘고 긴 통형의 부재일 수 있다. 도시하지 않았지만, 파이프부(2)의 도시되지 않은 일단 부분에, 먼지를 흡입하는 청소기(1)의 헤드가 장착되어 있다. 파이프부(2)의 타단 부분은 먼지 케이스(4)에 연결된다. 본체부(3)와 손잡이부(5)는 파이프부(2)의 기단 부분과 일체로 설치될 수 있다. 본체부(3)에는 후술하는 흡인 유닛(도 2: 10)이 수용되어 있다. 도시하지 않았지만, 손잡이부(5)에 배터리, 제어부 등이 수용될 수 있다. 제어부는 흡인 유닛(10)의 구동을 제어한다. 배터리는 충전 가능한 이차전지일 수 있으며, 흡인 유닛(10)에 전기 에너지를 공급한다. 손잡이부(5)는 사용자가 파지하는 부분이다. 본 개시의 일 실시예에 따른 청소기(1)는 사용자가 손잡이부(5)를 한 손으로 잡은 상태로 취급할 수 있도록 구성되어 있다.The pipe part 2 may be an elongated tubular member. Although not shown, the head of the vacuum cleaner 1 that sucks dust is mounted on one end (not shown) of the pipe part 2. The other end of the pipe part (2) is connected to the dust case (4). The body portion 3 and the handle portion 5 may be integrally installed with the proximal end portion of the pipe portion 2. A suction unit (Fig. 2: 10) to be described later is housed in the body portion 3. Although not shown, a battery, a controller, etc. may be accommodated in the handle part 5 . The controller controls driving of the suction unit 10 . The battery may be a rechargeable secondary battery and supplies electrical energy to the suction unit 10 . The handle part 5 is a part that the user grips. The cleaner 1 according to an embodiment of the present disclosure is configured so that the user can handle the handle part 5 while holding it with one hand.
본체부(3)의 하측에 먼지 케이스(4)가 설치되어 있다. 먼지 케이스(4)는 본체부(3)로부터 탈착 가능하다. 흡인 유닛(10)이 구동하면 헤드에 강력한 흡인력이 발생한다. 이에 따라, 헤드로부터 흡입되는 먼지가 파이프부(2)를 통해 먼지 케이스(4)에 집적된다.A dust case 4 is installed on the lower side of the body portion 3. The dust case 4 is detachable from the body part 3. When the suction unit 10 is driven, a strong suction force is generated in the head. Accordingly, the dust sucked from the head is accumulated in the dust case 4 through the pipe part 2.
도 2는 본 개시의 일 실시예에 따른 본체부(3)의 개략적인 내부 구조도이다. 도 2는 도 1에서 선(L1)으로 둘러싸인 부분의 내부 구조를 도시한다. 또한, 도 2에서 디퓨저(15)는 회전축(A)을 기준으로 하여 좌측에는 외관 형상으로, 우측에는 단면 형상으로 도시된다.Figure 2 is a schematic internal structural diagram of the body portion 3 according to an embodiment of the present disclosure. FIG. 2 shows the internal structure of the portion surrounded by the line L1 in FIG. 1 . In addition, in FIG. 2, the diffuser 15 is shown in an external shape on the left side and a cross-sectional shape on the right side with respect to the rotation axis (A).
본체부(3)는 배기실(30), 여과실(31) 등을 구비할 수 있다. 배기실(30)은 일단이 닫힌 원통형의 공간일 수 있으며, 그 외주에는 복수의 내측 배기공(30a)이 형성되어 있다. 여과실(31)은 배기실(30)의 주위를 둘러싸도록 배치되어 있다. 여과실(31)에는, 먼지를 포착하는 원통형 필터(32)가 그 전체 둘레에 걸쳐 배치되어 있다. 여과실(31)의 외주 경계를 형성하는 본체부(3)의 커버(34)에는, 도 1 및 도 2에 도시된 바와 같이 복수의 외측 배기공(33)이 형성되어 있다. 흡인 유닛(10)은, 그 일부가 배기실(30)에 일부 들어간 상태로 본체부(3)의 내부에 수용되어 있다.The body portion 3 may include an exhaust chamber 30, a filter chamber 31, and the like. The exhaust chamber 30 may be a cylindrical space with one end closed, and a plurality of inner exhaust holes 30a are formed on its outer circumference. The filtration chamber 31 is arranged so as to surround the periphery of the exhaust chamber 30 . In the filtration chamber 31, a cylindrical filter 32 for trapping dust is disposed over its entire circumference. A plurality of external exhaust holes 33 are formed in the cover 34 of the body portion 3 forming the outer circumferential boundary of the filter chamber 31, as shown in FIGS. 1 and 2 . The suction unit 10 is housed inside the body portion 3 in a state in which a portion thereof is partially retracted into the exhaust chamber 30 .
흡인 유닛(10)은 팬 모터(전동기)(13)와 임펠러(20)를 구비할 수 있다. 임펠러(20)는 본체부(3)에 배치되어 회전되면서 풍로(50)를 통하여 먼지 케이스(4)로부터 본체부(3)로 공기가 흡입되도록 흡입력을 발생시킨다. 팬 모터(13)는 임펠러(20)를 회전시킨다. 팬 모터(13)와 임펠러(20)는 공통의 회전축(A)을 가질 수 있다. 흡인 유닛(10)은 공기가 흐르는 유로(풍로(50))를 형성하는 상류측 슈라우드(shroud)(11)와 하류측 슈라우드(shroud)(12)를 구비할 수 있다.The suction unit 10 may include a fan motor (electric motor) 13 and an impeller 20 . The impeller 20 is disposed on the main body 3 and rotates to generate a suction force so that air is sucked into the main body 3 from the dust case 4 through the air path 50 . The fan motor 13 rotates the impeller 20 . The fan motor 13 and the impeller 20 may have a common rotation axis A. The suction unit 10 may include an upstream side shroud 11 and a downstream side shroud 12 forming a flow path (air path 50) through which air flows.
상류측 슈라우드(11)는 원통형 부재로서, 직경이 큰 제1 대직경부(11a)와, 제1 대직경부(11a)로부터 직경이 점차 좁아지게 연장되는 제1 직경 축소부(11b)를 구비한다. 공기의 흐름 방향(Y1)을 기준으로 하여 제1 직경 축소부(11b)는 제1 대직경부(11a)의 하류측에 위치된다. 제1 직경 축소부(11b)는 제1 대직경부(11a)로부터 공기의 흐름 방향(Y1)으로 갈수록 직경이 점차 작아지게 연장된다. The upstream shroud 11 is a cylindrical member, and includes a first large-diameter portion 11a having a large diameter and a first reduced-diameter portion 11b extending from the first large-diameter portion 11a to gradually narrow in diameter. Based on the air flow direction Y1, the first reduced-diameter portion 11b is located on the downstream side of the first large-diameter portion 11a. The diameter of the first reduced-diameter portion 11b extends from the first large-diameter portion 11a toward the air flow direction Y1.
하류측 슈라우드(12)도 원통형 부재로서, 직경이 큰 제2 대직경부(12a)와, 제2 대직경부(12a)로부터 직경이 점차 좁아지게 연장되는 제2 직경 축소부(12b)를 구비한다. 공기의 흐름 방향(Y1)을 기준으로 하여 제2 직경 축소부(12b)는 제2 대직경부(12a)의 상류측에 위치된다. 공기의 흐름 방향(Y1)을 기준으로 하면, 제2 직경 축소부(12b)의 직경이 점차 확대되고, 제2 대직경부(12a)는 제2 직경 축소부(12b)의 하류측 단부로부터 연장된다. 제2 대직경부(12a)는 배기실(30)과 연결된다. 공기의 흐름 방향(Y1)의 반대 방향을 기준으로 하면 제2 직경 축소부(12b)는 제2 대직경부(12a)로부터 공기의 흐름 방향(Y1)의 반대 방향으로 갈수록 직경이 점차 작아지게 연장되며, 제1 직경 축소부(11b)와 연결된다. 제1 대직경부(11a)의 제1직경과 제2 대직경부(12a)의 제2직경은 동일할 수 있으며, 다를 수도 있다.The downstream shroud 12 is also a cylindrical member, and includes a second large-diameter portion 12a having a large diameter and a second reduced-diameter portion 12b extending from the second large-diameter portion 12a to gradually narrow in diameter. Based on the air flow direction Y1, the second reduced-diameter portion 12b is located upstream of the second large-diameter portion 12a. With the air flow direction Y1 as a reference, the diameter of the second reduced diameter portion 12b gradually increases, and the second large diameter portion 12a extends from the downstream end of the second reduced diameter portion 12b. . The second large-diameter portion 12a is connected to the exhaust chamber 30 . Based on the direction opposite to the air flow direction Y1, the second diameter-reduced portion 12b extends from the second large-diameter portion 12a to a gradually smaller diameter in the opposite direction to the air flow direction Y1. , connected to the first diameter reduction portion 11b. The first diameter of the first large-diameter portion 11a and the second diameter of the second large-diameter portion 12a may be the same or different.
상류측 슈라우드(11)의 제1 직경 축소부(11b)는 하류측 슈라우드(12)의 제2 직경 축소부(12b)와 연결되어 있다. 본 개시의 실시예에서, 상류측 슈라우드(11)와 하류측 슈라우드(12)는 중심을 일치된 상태로 일체화되어 있다. 제1 대직경부(11a)는 먼지 케이스(4)와 연결되어 있고, 상류측 슈라우드(11)와 먼지 케이스(4)는 서로 연통되어 있다. 하류측 슈라우드(12)는 배기실(30)의 내부에 배치되어 있다.The first reduced diameter portion 11b of the upstream shroud 11 is connected to the second reduced diameter portion 12b of the downstream shroud 12 . In the embodiment of the present disclosure, the upstream side shroud 11 and the downstream side shroud 12 are integrally aligned in a centered state. The first large-diameter portion 11a is connected to the dust case 4, and the upstream shroud 11 and the dust case 4 communicate with each other. The downstream shroud 12 is disposed inside the exhaust chamber 30 .
팬 모터(13)는, 그 샤프트(13a)를 하류측 슈라우드(12) 측으로 향하게 하고, 상류측 슈라우드(11)의 중심과 회전축(A)을 일치시킨 상태에서, 상류측 슈라우드(11)에 수용되어 있다. 팬 모터(13)는 매우 작다. 예를 들어, 본 개시의 일 실시예에 따른 팬 모터(13)의 경우, 외경은 약 70mm, 높이는 약 40mm 정도의 크기(이른바 손바닥 사이즈)이다. 따라서, 그 중량도 매우 경량이다. 팬 모터(13)는, 배터리의 전력을 이용하여 청소기(1)에 사용될 수 있는 충분한 성능을 얻을 수 있도록, 고효율, 고출력을 얻을 수 있는 구조를 가진다. 예를 들어, 본 개시의 일 실시예에 따른 팬 모터(13)의 경우, 600W의 소비전력으로 50000r/min 이상의 고속 회전, 나아가 100000r/min 이상의 초고속 회전으로 구동할 수 있으며, 250W 이상의 흡입 일률을 얻을 수 있는 구조를 가진다.The fan motor 13 directs its shaft 13a toward the downstream shroud 12 side, and is housed in the upstream shroud 11 in a state where the center of the upstream shroud 11 and the rotational axis A coincide. has been The fan motor 13 is very small. For example, in the case of the fan motor 13 according to an embodiment of the present disclosure, the outer diameter is about 70 mm and the height is about 40 mm (so-called palm size). Therefore, its weight is also very light. The fan motor 13 has a structure capable of obtaining high efficiency and high output so as to obtain sufficient performance that can be used in the vacuum cleaner 1 using battery power. For example, in the case of the fan motor 13 according to an embodiment of the present disclosure, it can be driven at high-speed rotation of 50000 r/min or more, and even ultra-high-speed rotation of 100000 r/min or more with power consumption of 600 W, and has a suction power of 250 W or more. It has a structure that can be obtained.
임펠러(20)는, 풍로(50) 내에, 예를 들어 제2 직경 축소부(12b)에 배치되어 있다. 임펠러(20)는 제2 직경 축소부(12b) 내에 수용되어 있다. 임펠러(20)는, 팬 모터(13)의 샤프트(13a)에 회전축(A)을 일치시킨 상태로 고정되는 보스부(21)와, 보스부(21)로부터 주위로 확산되는 환상의 베이스부(22)와, 베이스부(22)의 상면에 배치되는 복수의 블레이드(23)를 구비한다. 본 개시에서는 특히 임펠러(20)의 구조에 집중한다. 임펠러(20)의 상세한 구조에 관하여는 후술한다.The impeller 20 is disposed in the air passage 50, for example, in the second diameter reduced portion 12b. The impeller 20 is accommodated in the second diameter reduced portion 12b. The impeller 20 includes a boss portion 21 fixed with the rotation shaft A aligned with the shaft 13a of the fan motor 13, and an annular base portion extending from the boss portion 21 to the surroundings ( 22) and a plurality of blades 23 disposed on the upper surface of the base portion 22. This disclosure focuses on the structure of the impeller 20 in particular. A detailed structure of the impeller 20 will be described later.
흡인 유닛(10)은 디퓨저(15)를 구비할 수 잇다. 디퓨저(15)는 임펠러(20)의 하류측에 위치된다. 예를 들어, 디퓨저(15)는 하류측 슈라우드(12)의 제2 대직경부(12a)에 수용되어 있다. 본 개시의 일 실시예에 따른 디퓨저(15)는 상단 디퓨저(15U)와 하단 디퓨저(15D)의 2단 구조를 가진다. 흡인 유닛(10)의 사양에 따라서는 1단 구조의 디퓨저(15)일 수도 있다.The suction unit 10 may have a diffuser 15 . The diffuser 15 is located downstream of the impeller 20 . For example, the diffuser 15 is housed in the second large-diameter portion 12a of the downstream shroud 12 . The diffuser 15 according to an embodiment of the present disclosure has a two-stage structure of an upper diffuser 15U and a lower diffuser 15D. Depending on the specifications of the suction unit 10, it may be a diffuser 15 having a one-stage structure.
상단 디퓨저(15U)와 하단 디퓨저(15D) 각각은 원통형 부재일 수 있으며, 각각의 외주면에 축방향(예를 들어 회전축(A))에 대해 경사지게 연장되는 복수의 베인(15a)이 형성되어 있다. 상단 디퓨저(15U)보다 하단 디퓨저(15D)가 베인(15a)의 경사각이 작다. 상단 디퓨저(15U)와 하단 디퓨저(15D) 각각은 제2 대직경부(12a)의 내주면에 고정되어 있다.Each of the upper diffuser 15U and the lower diffuser 15D may be a cylindrical member, and a plurality of vanes 15a extending obliquely with respect to an axial direction (eg, a rotation axis A) are formed on an outer circumferential surface of each. The inclination angle of the vane 15a of the lower diffuser 15D is smaller than that of the upper diffuser 15U. Each of the upper diffuser 15U and the lower diffuser 15D is fixed to the inner circumferential surface of the second large-diameter portion 12a.
청소기(1)의 운전 중, 팬 모터(13)가 회전 구동됨으로써, 임펠러(20)는 일정한 회전 방향으로 고속으로 회전한다. 이에 따라, 화살표(Y1)로 나타내는 바와 같이, 공기가 먼지 케이스(4)로부터 상류측 슈라우드(11)로 유입되어, 제2 직경 축소부(12b)의 상류측에 흡인력이 발생한다. 상류측 슈라우드(11)로 유입된 공기는, 팬 모터(13)를 공냉시키면서 제1 대직경부(11a) 및 제1 직경 축소부(11b)를 통과하여 제2 직경 축소부(12b)로 흡입된다.When the fan motor 13 is driven to rotate while the vacuum cleaner 1 is running, the impeller 20 rotates at a high speed in a predetermined rotation direction. Accordingly, as indicated by arrow Y1, air flows from the dust case 4 into the upstream shroud 11, and a suction force is generated on the upstream side of the second diameter reduction portion 12b. The air introduced into the upstream shroud 11 passes through the first large-diameter portion 11a and the first reduced-diameter portion 11b while cooling the fan motor 13 and is sucked into the second reduced-diameter portion 12b. .
제2 직경 축소부(12b)에 그 흡입측(50a)으로부터 유입된 공기는, 제2 직경 축소부(12b)의 내벽면(12c)과 임펠러(20)의 베이스부(22) 사이의 공간(상세하게는 블레이드들(23) 사이)을 통과하여 제2 직경 축소부(12b)로부터 토출되어, 제2 대직경부(12a)로 유입된다. 제2 직경 축소부(12b)의 토출측(50b)으로부터 제2 대직경부(12a)로 유입된 공기는, 제2 대직경부(12a)의 내벽면과 상단 디퓨저(15U) 및 하단 디퓨저(15D)의 외주면 사이의 공간(상세하게는 베인들(15a) 사이)을 통과하여, 배기실(30)로 유입된다.The air introduced into the second diameter reduced portion 12b from the suction side 50a is the space between the inner wall surface 12c of the second reduced diameter portion 12b and the base portion 22 of the impeller 20 ( Specifically, it passes through the blades 23) and is discharged from the second reduced-diameter portion 12b and introduced into the second large-diameter portion 12a. The air introduced into the second large-diameter portion 12a from the discharge side 50b of the second diameter-reduced portion 12b passes through the inner wall surface of the second large-diameter portion 12a and the upper diffuser 15U and the lower diffuser 15D. It passes through the space between the outer peripheral surfaces (specifically, between the vanes 15a) and flows into the exhaust chamber 30.
상단 디퓨저(15U)와 하단 디퓨저(15D)를 통과함으로써, 배기실(30)에는 화살표(Y2)로 나타내는 바와 같이 축방향으로 정류(整流)된 상태로 공기가 유입된다. 배기실(30)에 유입된 공기는, 내측 배기공(30a)을 통해 여과실(31)로 유출되어, 필터(32)를 통과한 후, 화살표(Y3)로 나타내는 바와 같이 외측 배기공(33)을 통해 본체부(3) 밖으로 배기된다.By passing through the upper diffuser 15U and the lower diffuser 15D, air flows into the exhaust chamber 30 in a rectified state in the axial direction as indicated by arrow Y2. The air that has flowed into the exhaust chamber 30 flows out to the filter chamber 31 through the inner exhaust hole 30a, passes through the filter 32, and then passes through the outer exhaust hole 33 as indicated by arrow Y3. ) through which it is exhausted out of the main body part (3).
보다 높은 흡인력을 실현하기 위해 팬 모터(13)의 고속 회전화가 진행될 수 있으며, 이에 따라서 임펠러(20)도 고성능화가 요구된다. 본 개시는 스틱형 청소기(1)에 적합하고, 흡인력을 향상시킬 수 있는 소형 임펠러(20)를 제공한다. High-speed rotation of the fan motor 13 may be performed in order to realize a higher suction force, and accordingly, performance of the impeller 20 is also required. The present disclosure provides a small impeller 20 suitable for a stick type vacuum cleaner 1 and capable of improving a suction force.
도 3은 본 개시의 일 실시예에 따른 임펠러(20)의 구조를 보여주는 사시도 및 개략적인 단면도이다. 도 4는 본 개시의 일 실시예에 따른 임펠러(20)의 구조를 설명하기 위한 도면으로서, 임펠러(20)를 흡입측(50a)에서 바라본 도면이다. 상술한 바와 같이, 임펠러(20)는 보스부(21), 베이스부(22), 및 복수의 블레이드(23)를 구비한다. 편의상, 설명에서는, 도 3에 도시된 바와 같이, 보스부(21)의 돌출단(21a) 측, 다시 말하면 풍로(50)의 흡입측(50a)을 '상측'으로 하며, 그 반대쪽을 '하측'으로 한다.3 is a perspective view and a schematic cross-sectional view showing the structure of an impeller 20 according to an embodiment of the present disclosure. 4 is a view for explaining the structure of the impeller 20 according to an embodiment of the present disclosure, and is a view of the impeller 20 viewed from the suction side 50a. As described above, the impeller 20 includes a boss portion 21, a base portion 22, and a plurality of blades 23. For convenience, in the description, as shown in FIG. 3, the protruding end 21a side of the boss 21, that is, the suction side 50a of the air path 50 is referred to as the 'upper side', and the opposite side is referred to as the 'lower side. '.
구체적으로, 임펠러(20)는, 샤프트(13a)에 고정되는 보스부(21)와, 이 보스부(21)에 연결됨과 아울러 풍로(50)의 흡입측(50a)에서 토출측(50b)으로 향함에 따라 지름이 커지는 환상의 베이스부(22)와, 이 베이스부(22)의 상면에 방사상으로 배치되어 풍로(50)의 흡입측(50a)에 흡인력을 발생시키는 복수의 블레이드(23)를 구비한다. 임펠러(20)는 수지 성형품일 수 있으며, 보스부(21), 베이스부(22), 및 복수의 블레이드(23)가 일체로 형성될 수 있다.Specifically, the impeller 20 has a boss portion 21 fixed to the shaft 13a, and while being connected to the boss portion 21, it goes from the suction side 50a of the air path 50 to the discharge side 50b. Equipped with an annular base portion 22 whose diameter increases according to the diameter, and a plurality of blades 23 radially disposed on the upper surface of the base portion 22 to generate a suction force on the suction side 50a of the air passage 50. do. The impeller 20 may be a resin molded product, and the boss portion 21, the base portion 22, and the plurality of blades 23 may be integrally formed.
임펠러(20)는, 도 3, 도 4에 화살표(Yr)로 나타내는 바와 같이, 상측에서 바라본 경우, 팬 모터(13)의 구동에 의해 반시계방향으로 회전한다. 그리고, 임펠러(20)의 각 블레이드(23)는 그 외주측, 예를 들어 송풍 에지(23b)가 그 중심측, 예를 들어 풍절 에지(23a)보다 회전 방향(Yr)에 대해 뒤쪽에 위치하도록 경사져 있고, 회전 시에 블레이드(23)들의 사이를 공기가 회전축(A)에 대해 경사진 방향으로 빠져나가는 구조를 가질 수 있다. 이러한 블레이드(23)를 사류 팬 구조를 갖는 블레이드라 지칭할 수 있다. 즉, 임펠러(20)는 사류 팬에 상당한다.The impeller 20 rotates counterclockwise by driving the fan motor 13 when viewed from above, as indicated by arrows Yr in FIGS. 3 and 4 . And, each blade 23 of the impeller 20 has its outer peripheral side, for example, the blowing edge 23b is located behind its center side, for example, the wind blowing edge 23a, with respect to the rotation direction Yr. It is inclined and may have a structure in which air escapes between the blades 23 in an inclined direction with respect to the rotation axis A during rotation. Such a blade 23 may be referred to as a blade having a mixed-flow fan structure. That is, the impeller 20 corresponds to a mixed flow fan.
보스부(21)는 원통형 부분으로서, 그 중심부에 샤프트(13a)가 고정된다. 베이스부(22)는 보스부(21)의 상부에 이어지는 원뿔형 부분으로서, 그 상면은 보스부(21)로부터 반경 방향으로 외주측으로 향함에 따라 완만하게 풍로(50)의 토출측(50b)을 향하여 완만하게 경사져 있다. 베이스부(22)의 상면의 경사도는 약 30°이며, 약 20°~40°의 범위일 수 있다.The boss part 21 is a cylindrical part, and the shaft 13a is fixed to the center thereof. The base portion 22 is a conical portion connected to the upper portion of the boss portion 21, and its upper surface gradually moves toward the outer circumferential side in the radial direction from the boss portion 21 toward the discharge side 50b of the air passage 50. it is inclined The inclination of the upper surface of the base portion 22 is about 30°, and may range from about 20° to 40°.
각 블레이드(23)는 박판형 부분으로서, 베이스(22)의 상면으로부터 상방으로 돌출된다. 본 개시의 일 실시예에 따른 임펠러(20)는 9장의 블레이드(23)를 가지며, 이들 블레이드(23)가 둘레방향으로 등간격으로 배치되어 있다. 각 블레이드(23)는, 반경 방향의 두 가장자리(edge)(23a, 23b) 중에서 하나(23a)가 길고 다른 하나(23b)가 매우 짧은 띠판형의 외관을 가지며, 상하 방향의 두 가장자리(edge)(23e, 23f) 중 하나(23e)가 베이스부(22)에 연결되어있다. 반경 방향의 두 가장자리(23a, 23b) 중에서 긴 것(풍절 에지(wind cutting edge))(23a)이 베이스부(22)의 중심측에, 즉 보스부(21)에 가깝게 위치하고, 짧은 것(송풍 에지(wind sending edge))(23b)이 베이스부(22)의 외주측에, 즉 보스부(21)로부터 멀리에 위치하고 있다.Each blade 23 is a thin-plate-like part and protrudes upward from the upper surface of the base 22 . The impeller 20 according to an embodiment of the present disclosure has nine blades 23, and these blades 23 are arranged at equal intervals in the circumferential direction. Each blade 23 has a band-like appearance in which one (23a) is long and the other (23b) is very short among two edges (23a, 23b) in the radial direction, and two edges (edges) in the vertical direction One (23e) of (23e, 23f) is connected to the base portion (22). Of the two edges 23a and 23b in the radial direction, the longer one (wind cutting edge) 23a is located on the center side of the base portion 22, that is, close to the boss portion 21, and the shorter one (wind cutting edge) An edge (wind sending edge) 23b is located on the outer circumferential side of the base portion 22, that is, away from the boss portion 21.
풍절 에지(23a) 및 송풍 에지(23b) 각각은 상하 방향의 가장자리(23e)로부터 예를 들어 직선형으로 연장되어 있다. 각 블레이드(23)는, 풍절 에지(23a)에서 송풍 에지(23b)로 향하여 비틀어진 형상을 하고 있다. 풍절 에지(23a)의 돌출단(23d) 측은 회전 진행 방향으로 비틀어져 경사져 있고, 송풍 에지(23b)의 돌출단(23g) 측은 회전 반대 방향으로 비틀어져 경사지어 있다. 풍절 에지(23a)는, 도 4에 도시된 바와 같이, 축방향, 즉 상측에서 바라본 경우 지름 방향으로 연장되도록 형성되어 있다. 이에 따라, 각 블레이드(23)의 돌출된 상하 방향의 가장자리(23f)는 제2 직경 축소부(12b)의 내주면과의 사이에 약간의 간극을 두고 제2 직경 축소부(12b)의 내주면을 따라 연장된다.Each of the windblown edge 23a and the blowing edge 23b extends from the edge 23e in the vertical direction, for example, in a straight line. Each blade 23 has a twisted shape from the wind cutting edge 23a toward the blowing edge 23b. The protruding end 23d side of the wind blowing edge 23a is twisted and inclined in the direction of rotation, and the protruding end 23g side of the blowing edge 23b is twisted and inclined in the opposite direction of rotation. As shown in FIG. 4, the windblown edge 23a is formed to extend in the axial direction, that is, in the radial direction when viewed from the top. Accordingly, the protruding vertical edges 23f of each blade 23 follow the inner circumferential surface of the second diameter-reducing part 12b with a slight gap between them and the inner circumferential surface of the second diameter-reducing part 12b. is extended
풍절 에지(23a)는 기단(23c)과 돌출단(23d)을 구비한다. 기단(23c)는 베이스부(22) 쪽의 단부이며, 돌출단(23d)은 기단(23c)의 반대쪽 단부이다. 본 개시의 일 실시예에 따른 임펠러(20)의 경우, 각 블레이드(23)는, 풍절 에지 (23a)의 돌출단(23d) 측이 풍절 에지 (23a)의 기단(23c) 측보다 회전 방향의 뒤쪽에 위치하는 형상을 가진다(여기서는 편의상 이 형상을 후퇴익 형상이라고 부른다). 후퇴익 형상으로 함으로써 블레이드(23)의 공기 저항이 저감되어 고회전에 대해 유리해진다.The windblown edge 23a has a base end 23c and a protruding end 23d. The base end 23c is an end on the side of the base portion 22, and the projecting end 23d is an end opposite to the base end 23c. In the case of the impeller 20 according to an embodiment of the present disclosure, in each blade 23, the protruding end 23d side of the wind-blast edge 23a is more rotated than the base end 23c side of the wind-blast edge 23a. It has a shape located at the back (herein, this shape is called a swept wing shape for convenience). The air resistance of the blade 23 is reduced by adopting a swept wing shape, which is advantageous for high rotation.
그리고, 본 발명자들이 유체 해석에 의해 그 후퇴익 형상의 후퇴각(θ2)(임펠러(20)의 회전 중심과 풍절 에지(23a)의 기단(23c)을 통과하는 반경 방향의 제2기준선(RL2)에 대해 풍절 에지 (23a)가 후퇴하고 있는 각도, 도 4 참조)에 대해 검토한 바, 후퇴각(θ2)을 선택함으로써 흡인 성능을 향상시킬 수 있는 것이 판명되었다. 이에 관하여는 상세히 후술한다.In addition, the present inventors have analyzed the swept wing shape by fluid analysis to determine the swept angle θ2 (to the second reference line RL2 in the radial direction passing through the center of rotation of the impeller 20 and the base end 23c of the wind blade edge 23a). As a result of examining the retracting angle of the wind blade edge 23a (see Fig. 4), it was found that the suction performance can be improved by selecting the retracting angle θ2. This will be described in detail later.
나아가 본 개시의 일 실시예에 따른 임펠러(20)의 경우, 풍절 에지(23a)의 돌출단(23d) 측이 풍절 에지(23a)의 기단(23c) 측보다 상방(풍로(50)의 흡입측(50a))에 위치하는 형상의 블레이드(23)를 갖는다. 구체적으로, 도 3에 개략적으로 도시된 바와 같이, 각 블레이드(23)의 풍절 에지(23a)는, 보스부(21)에 이어지는 기단(23c) 측으로부터 돌출단(23d) 측으로 상향 경사져 있다.Furthermore, in the case of the impeller 20 according to an embodiment of the present disclosure, the protruding end 23d side of the wind blowing edge 23a is higher than the base end 23c side of the wind blowing edge 23a (the suction side of the air passage 50) (50a)) has a blade 23 of a shape. Specifically, as schematically shown in FIG. 3 , the windblown edge 23a of each blade 23 is inclined upward from the base end 23c side leading to the boss portion 21 toward the protruding end 23d side.
각 블레이드(23)의 풍절 에지(23a)를 이러한 형상으로 함으로써, 각 블레이드(23)의 공기 유입측에 위치하는 단부의 날개 부하를 저감할 수 있음과 아울러, 누설 유동을 저감할 수 있다. 그리고, 본 발명자들이 유체 해석에 의해 그 풍절 에지(23a)의 경사각(θ1)(회전축(A)에 직교하는 제1기준선(RL1)에 대해 풍절 에지(23a)가 경사져 있는 각도, 도 3 참조)에 대해 검토한 바, 후퇴각(θ2)과 함께 경사각(θ1)을 선택함으로써 흡인 성능을 향상시킬 수 있는 것이 판명되었다.By making the windblown edge 23a of each blade 23 this shape, while being able to reduce the wing load of the edge part located on the air inlet side of each blade 23, it is possible to reduce the leakage flow. Then, the present inventors determined the inclination angle θ1 of the wind-blast edge 23a by fluid analysis (the angle at which the wind-blast edge 23a is inclined with respect to the first reference line RL1 orthogonal to the rotation axis A, see FIG. 3) As a result of the study, it was found that the suction performance can be improved by selecting the inclination angle θ1 together with the retreat angle θ2.
도 5는 본 개시의 일 실시예에 따른 임펠러(20)의 유체 해석의 모델의 일 예의 개략도이다. 유체 해석을 위하여, 임펠러(20)가 수용되어 있는 풍로(50), 예를 들어 제2 직경 축소부(12b)의 모델을 도 5에 도시된 바와 같이 설정하고, 도 5에 화살표로 나타내는 바와 같이, 풍로(50)의 흡입측(50a)과 대향하는 풍절 에지(23a)의 경사각(θ1)의 크기를 바꿈으로써 흡인 효율(흡인력/모터 출력)이 어떻게 변화하는지에 대해 조사하였다.5 is a schematic diagram of an example of a model of fluid analysis of an impeller 20 according to an embodiment of the present disclosure. For fluid analysis, a model of the air passage 50 in which the impeller 20 is accommodated, for example, the second diameter reduced portion 12b, is set as shown in FIG. 5, and as indicated by arrows in FIG. , How the suction efficiency (suction force/motor output) changes by changing the size of the inclination angle θ1 of the wind blade edge 23a facing the suction side 50a of the air path 50 was investigated.
도 6은 유체 해석의 결과에 따른 풍절 에지(23a)의 경사각(θ1)과 흡입 효율과의 관계의 일 예를 보여주는 그래프이다. 세로축이 흡인 효율이며, 가로축이 경사각(θ1)이다. 경사각(θ1)이 증가함에 따라서 흡인 효율은 점차 증가하였다가 다시 감소한다. 경사각(θ1)이 약 22°가 되는 근처에 흡인 효율의 피크(peak)가 존재함을 알 수 있다. 구체적으로, 풍절 에지(23a)의 경사각(θ1)을 18° 이상 26° 이하로 설정함으로써 흡인 효율을 최적화할 수 있음을 알 수 있다.6 is a graph showing an example of the relationship between the inclination angle θ1 of the wind blade edge 23a and the suction efficiency according to the result of the fluid analysis. The vertical axis is the suction efficiency, and the horizontal axis is the inclination angle (θ1). As the inclination angle θ1 increases, the suction efficiency gradually increases and then decreases again. It can be seen that the peak of suction efficiency exists near the inclination angle θ1 of about 22°. Specifically, it can be seen that the suction efficiency can be optimized by setting the inclination angle θ1 of the wind blade edge 23a to 18° or more and 26° or less.
따라서, 본 개시의 일 실시예에 따른 임펠러(20)의 풍절 에지(23a)의 경사각(θ1)은 18° 이상 26° 이하로 설정될 수 있으며, 이에 의하여 흡인력이 향상되도록 최적화될 수 있다. 흡인 효율이 피크가 되는 경사각(θ1)이 가장 바람직하지만, 임펠러(20)의 사양에 따라 전술한 범위 내에서 경사각(θ1)을 선택하면 흡인 효율이 피크가 되는 경사각(θ1)에서 얻을 수 있는 효과와 거의 동등한 효과를 얻을 수 있다.Therefore, the inclination angle θ1 of the wind blowing edge 23a of the impeller 20 according to an embodiment of the present disclosure may be set to 18° or more and 26° or less, thereby improving the suction force. Can be optimized. The inclination angle θ1 at which the suction efficiency peaks is most preferable, but if the inclination angle θ1 is selected within the above range according to the specifications of the impeller 20, the effect obtained at the inclination angle θ1 at which the suction efficiency peaks almost equivalent effect can be obtained.
경사각(θ1)의 유체 해석과 같이, 풍절 에지(23a)의 후퇴각(θ2)에 대해서도 도 5에 도시된 바와 같은 모델을 설정하고, 후퇴각(θ2)의 크기를 바꿈으로써 흡인 효율이 어떻게 변화하는지에 대해 조사하였다. 도 7은 풍절 에지(23a) 의 후퇴각(θ2)에 따른 유체 해석 결과의 일 예를 보여도는 도면이다.Like the fluid analysis of the inclination angle θ1, how the suction efficiency changes by setting the model as shown in FIG. investigated what to do. 7 is a diagram showing an example of fluid analysis results according to the retreat angle θ2 of the wind blade edge 23a.
도 7의 각 도면은, 3가지의 서로 다른 후퇴각(θ2)에서의 제2 직경 축소부(12b)(구체적으로 블레이드들(23) 사이)를 흐르는 공기의 유동 해석 결과를 나타내고 있다. 도 7의 도면(a)는 후퇴각(θ2)이 27°인 경우이며, 도 7의 도면(b)는 후퇴각(θ2)이 17°인 경우이며, 도 7의 도면(c)는 후퇴각(θ2)이 7°인 경우이다. 도 7의 도면(a), (b), 및 (c)에서 농도가 진한 부분(R1)은 상대적으로 공기의 유동량이 많은 부분을, 농도가 연한 부분(R2)은 상대적으로 공기의 유동량이 적은 부분을 나타낸다.Each figure in FIG. 7 shows flow analysis results of air flowing through the second diameter reduction portion 12b (specifically, between the blades 23) at three different retreat angles θ2. The drawing (a) of FIG. 7 shows the case where the retreat angle θ2 is 27°, the drawing (b) of FIG. 7 shows the case where the retreat angle θ2 is 17°, and the drawing (c) of FIG. 7 shows the retreat angle This is the case when (θ2) is 7°. In the drawings (a), (b), and (c) of FIG. 7, the high-concentration portion (R1) represents a portion with a relatively high flow rate of air, and the low-concentration portion (R2) represents a relatively low flow rate of air. represents a part.
후퇴각(θ2)이 큰 도 7의 도면(a)에서는, 블레이드들(23) 사이를 흐르는 공기는 제2 직경 축소부(12b)의 하류측에서 베이스부(22) 측으로 치우쳐 흐르는 경향을 보인다. 한편, 후퇴각(θ2)이 작은 도 7의 도면(c)에서는, 블레이드들(23) 사이를 흐르는 공기는 제2 직경 축소부(12b)의 내벽면의 측으로 치우쳐 흐르는 경향을 보인다. 그리고, 후퇴각(θ2)이 이들 중간인 도 7의 도면(b)에서는, 블레이드들(23) 사이를 흐르는 공기는 베이스부(22) 측 또는 제2 직경 축소부(12b)의 내벽면 측으로 치우치지 않고 블레이드들(23) 사이의 중간 부분을 흐르는 경향을 보인다.In the drawing (a) of FIG. 7 where the retreat angle θ2 is large, the air flowing between the blades 23 tends to flow from the downstream side of the second diameter reduction portion 12b to the base portion 22 side. On the other hand, in the drawing (c) of FIG. 7 where the retreat angle θ2 is small, the air flowing between the blades 23 tends to flow toward the inner wall surface of the second diameter reduction portion 12b. And, in the drawing (b) of FIG. 7 in which the retreat angle θ2 is in the middle, the air flowing between the blades 23 is biased toward the base portion 22 side or the inner wall surface side of the second diameter reducing portion 12b. It tends to flow in the middle part between the blades 23 without hitting.
공기가 베이스부(22)의 측으로 치우쳐 흐르면, 토출류가 불균일해지고, 토출측(50b)의 베이스부(22)의 부근에서 유동 박리가 발생하여 임펠러(20)에서의 혼합 손실이 증가한다. 이에 따라, 흡인력의 저하가 초래될 수 있다. 공기가 제2 직경 축소부(12b)의 내벽면의 측으로 치우쳐 흐르면, 블레이드들(23)과 제2 직경 축소부(12b)의 내벽면의 사이에는 간극이 있으므로, 그 간극으로 공기가 빠지는 누설 유동이 증가하여, 흡인력의 저하를 초래할 수 있다. 한편, 공기가 베이스부(22) 측 또는 제2 직경 축소부(12b)의 내벽면 측으로 치우치지 않고 블레이드들(23) 사이의 중간 부분을 흐르면, 임펠러(20)의 회전력을 공기에 효과적으로 작용시킬 수 있으며, 흡인력을 효율적으로 발생할 수 있다.When the air flows biased toward the base portion 22, the discharge flow becomes non-uniform, flow separation occurs in the vicinity of the base portion 22 on the discharge side 50b, and mixing loss in the impeller 20 increases. Accordingly, a decrease in suction force may be caused. When the air flows biased toward the inner wall surface of the second diameter-reducing part 12b, there is a gap between the blades 23 and the inner wall surface of the second diameter-reducing part 12b, so the air leaks through the gap. This increase may result in a decrease in suction force. On the other hand, if the air flows through the middle part between the blades 23 without being biased towards the base part 22 or the inner wall surface of the second diameter reduction part 12b, the rotational force of the impeller 20 can be effectively applied to the air. and the suction force can be generated efficiently.
도 8은 유체 해석의 결과에 따른 풍절 에지(23a)의 후퇴각(θ2)과 흡입 효율과의 관계의 일 예를 보여주는 그래프이다. 후퇴각(θ2)이 증가됨에 따라서, 흡인 효율은 점차 증가하다가 다시 점차 감소된다. 후퇴각(θ2)이 약 17°가 되는 근처에 흡인 효율의 피크의 존재함을 알 수 있다. 구체적으로, 풍절 에지(23a)의 후퇴각(θ2)을 15° 이상 19° 이하로 함으로써 흡인 효율을 최적화할 수 있다는 것을 알 수 있다.8 is a graph showing an example of the relationship between the retraction angle θ2 of the wind blade edge 23a and suction efficiency according to the result of the fluid analysis. As the receding angle θ2 increases, the suction efficiency gradually increases and then gradually decreases again. It can be seen that the suction efficiency peak exists near the retreat angle θ2 at about 17°. Specifically, it can be seen that the suction efficiency can be optimized by setting the retreat angle θ2 of the wind blade edge 23a to 15° or more and 19° or less.
따라서, 본 개시의 일 실시예에 따른 임펠러(20)의 풍절 에지(23a)의 후퇴각(θ2)은 15° 이상 19° 이하로 설정될 수 있으며, 이에 의하여 흡인력이 향상되도록 최적화될 수 있다. 흡인 효율이 피크가 되는 후퇴각(θ2)이 가장 바람직하지만, 임펠러(20)의 사양에 따라 전술한 범위에서 후퇴각(θ2)을 선택하면 흡인 효율이 피크가 되는 후퇴각(θ2)에서 얻을 수 있는 효과와 거의 동등한 효과를 얻을 수 있다.Therefore, the receding angle θ2 of the wind blowing edge 23a of the impeller 20 according to an embodiment of the present disclosure may be set to 15° or more and 19° or less, thereby improving the suction force. Can be optimized. The retreat angle θ2 at which the suction efficiency peaks is most preferable, but if the retreat angle θ2 is selected from the range described above according to the specifications of the impeller 20, it can be obtained at the retreat angle θ2 at which the suction efficiency peaks. You can get almost the same effect as the effect you have.
본 개시의 일 실시예에 따른 임펠러(20)의 경우, 풍절 에지(23a)의 경사각(θ1) 및 후퇴각(θ2)이 모두 최적화되어 있다. 따라서, 이들의 효과가 합쳐짐으로써 흡인력을 한층 더 향상시킬 수 있다. 즉, 본 개시의 일 실시예에 따른 임펠러(20)에 의하면, 회전 속도가 고속화되는 경향에 있는 모터의 성능을 보다 잘 이끌어낼 수 있으며, 높은 흡인력을 발생시킬 수 있다. 따라서, 고속 회전하는 팬 모터(13)와 본 개시의 일 실시예에 따른 임펠러(20)의 조합에 의해 고성능 청소기(1)를 실현할 수 있게 된다.In the case of the impeller 20 according to an embodiment of the present disclosure, both the inclination angle θ1 and the retreat angle θ2 of the wind-blast edge 23a are optimized. Therefore, the suction power can be further improved by combining these effects. That is, according to the impeller 20 according to an embodiment of the present disclosure, it is possible to better derive the performance of the motor, which tends to increase the rotational speed, and generate high suction force. Therefore, the high-performance vacuum cleaner 1 can be realized by a combination of the fan motor 13 rotating at high speed and the impeller 20 according to an embodiment of the present disclosure.
본 개시의 임펠러(20)는 전술한 실시예에 한정되지 않는다. 예를 들어, 전술한 실시예에서는 사류 팬 구조의 블레이드(23)를 가진 임펠러(20)를 예시하였지만, 임펠러(20)는 회전 시에 블레이드들(23) 사이를 공기가 지름 방향으로 빠져나가는 원심 팬 구조의 블레이드(23)를 가질 수도 있다. 즉, 임펠러(20)는 원심 팬에 상당할 수도 있다.The impeller 20 of the present disclosure is not limited to the above-described embodiment. For example, in the above embodiment, the impeller 20 having blades 23 of a mixed-flow fan structure was exemplified, but the impeller 20 is centrifugal in which air escapes between the blades 23 in the radial direction during rotation. It may also have blades 23 of a fan structure. That is, the impeller 20 may correspond to a centrifugal fan.
또한, 상술한 청소기(1)의 실시예에서는, 팬 모터(13)가 임펠러(20)에 대해 상류측에 배치되어 있지만, 도 9에 도시된 바와 같이, 팬 모터(13)는 임펠러(20)에 대하여 공기의 흐름 방향으로 하류측인 배기실(30)에 배치될 수도 있다.In addition, in the embodiment of the vacuum cleaner 1 described above, the fan motor 13 is arranged upstream with respect to the impeller 20, but as shown in FIG. 9, the fan motor 13 is the impeller 20 It may also be disposed in the exhaust chamber 30 on the downstream side in the direction of air flow.
상술한 실시형태에서는, 반시계방향으로 회전하는 임펠러(20)를 예시하였지만, 사양에 따라서는 블레이드들(23)의 방향을 반대로 배치하여 임펠러(20)가 시계방향으로 회전하도록 해도 된다.In the above-described embodiment, the impeller 20 rotating counterclockwise is exemplified, but depending on the specification, the direction of the blades 23 may be reversed so that the impeller 20 rotates clockwise.
본 개시의 일 측면에 따른 청소기는, 여과실과 배기실을 구비하는 본체부; 상기 본체부에 연결된 먼지 케이스; 상기 본체부에 배치되어 회전되면서 풍로를 통하여 상기 먼지 케이스로부터 상기 본체부로 공기가 흡입되도록 흡입력을 발생시키는 임펠러; 상기 임펠러를 회전시키는 팬 모터;를 구비하며, 상기 임펠러는, 상기 팬 모터의 샤프트에 고정되는 보스부; 상기 보스부에 연결되며, 상기 풍로의 흡입측에서 토출측으로 향함에 따라 지름이 점차 커지는 베이스부; 및 상기 베이스부에 방사상으로 배치되어 상기 풍로의 흡입측에 흡인력을 발생시키는 복수의 블레이드;를 구비하며, 상기 복수의 블레이드 각각은 상기 보스부에 가까운 풍절 에지와 상기 보스부로부터 먼 송풍 에지를 구비하며, 상기 풍절 에지는 상기 베이스부 쪽의 단부인 기단과 상기 기단의 반대쪽 단부인 돌출단을 구비하며, 상기 임펠러의 회전 방향을 기준으로 하여 상기 돌출단은 상기 기단보다 뒤쪽에 위치되며, 상기 풍로를 기준으로 하여 상기 풍절 에지의 상기 돌출단은 상기 풍절 에지의 상기 기단보다 흡입측에 위치된다. 임펠러의 흡입측에서 각 블레이드의 형상을 이와 같이 함으로써 임펠러의 흡인력을 향상시킬 수 있다. 즉, 각 블레이드를 후퇴익 형상으로 함으로써 고회전에 대해 유리해지고 효율화를 도모할 수 있다. 또한, 풍절 에지의 돌출단을 흡입측을 향하여 경사시킴으로써 익면 부하를 저감할 수 있다. 이들 형상을 조합함으로써 흡인 효율이 높아지고 흡인력을 향상시킬 수 있다.A cleaner according to an aspect of the present disclosure includes a main body having a filtration chamber and an exhaust chamber; a dust case connected to the main body; an impeller disposed in the main body and generating a suction force so that air is sucked into the main body from the dust case through an air passage while being rotated; and a fan motor rotating the impeller, wherein the impeller includes: a boss fixed to a shaft of the fan motor; a base portion connected to the boss portion and gradually increasing in diameter from the suction side to the discharge side of the air passage; and a plurality of blades disposed radially in the base portion to generate a suction force on the suction side of the air path, each of the plurality of blades having a wind blowing edge close to the boss portion and a blowing edge far from the boss portion. And, the wind blowing edge has a base end that is an end toward the base portion and a protruding end that is an end opposite to the base end, and the protruding end is located behind the base end based on the rotation direction of the impeller, and the air path Based on , the protruding end of the windblown edge is located on a suction side rather than the base end of the windblown edge. By shaping each blade on the suction side of the impeller in this way, the suction force of the impeller can be improved. That is, by making each blade into a swept wing shape, it is advantageous for high rotation and efficiency can be achieved. In addition, the wing surface load can be reduced by inclining the protruding end of the wind blade edge toward the suction side. By combining these shapes, the suction efficiency can be increased and the suction force can be improved.
일 실시예로서, 상기 임펠러의 회전 중심과 상기 풍절 에지의 상기 기단을 통과하는 제2기준선에 대한 상기 풍절 에지의 후퇴각이 15° 이상 19° 이하일 수 있다. As an example, a receding angle of the wind-blast edge with respect to a second reference line passing through the center of rotation of the impeller and the air end of the wind-blast edge may be 15° or more and 19° or less.
일 실시예로서, 상기 임펠러의 회전축에 직교하는 제1기준선에 대한상기 풍절 에지의 경사각이 18° 이상 26° 이하일 수 있다.As an example, an inclination angle of the windblown edge with respect to a first reference line orthogonal to the rotational axis of the impeller may be 18° or more and 26° or less.
유체 해석에 따르면, 전술한 바와 같이 각도들을 설정함으로써 흡인 효율을 최적화할 수 있으며, 종래의 임펠러보다 흡인력을 향상시킬 수 있게 된다. 전술한 형태의 임펠러는 청소기, 예를 들어 스틱형 청소기에 적용될 수 있다. 또한 전술한 임펠러는 예를 들어 배터리로부터의 전기 에너지 공급에 의해 구동 가능한 전동기에 의하여 구동되는 임펠러로서 청소기에 적용될 수 있다. 이러한 임펠러에 따르면, 매우 작은 사이즈이면서 높은 흡인력을 얻을 수 있으므로, 취급하기 쉽고 고성능 청소기를 실현할 수 있다.According to the fluid analysis, the suction efficiency can be optimized by setting the angles as described above, and the suction force can be improved compared to the conventional impeller. The impeller of the above-described type may be applied to a vacuum cleaner, for example, a stick type vacuum cleaner. In addition, the above-described impeller can be applied to a vacuum cleaner as an impeller driven by an electric motor capable of being driven by electric energy supply from a battery, for example. According to such an impeller, a high suction force can be obtained with a very small size, so that a high-performance vacuum cleaner that is easy to handle can be realized.
일 실시예로서, 상기 송풍 에지는 상기 회전 방향의 반대 방향으로 비틀어져 경사질 수 있다. As an example, the blowing edge may be twisted and inclined in a direction opposite to the rotational direction.
일 실시예로서, 상기 복수의 블레이드가 배치되는 상기 베이스부는 상면은 상기 보스부로부터 반경방향으로 외주측을 향함에 따라 상기 풍로의 토출측을 향하여 완만하게 경사질 수 있다.As an embodiment, an upper surface of the base portion on which the plurality of blades are disposed may be gently inclined toward the discharge side of the air path as it radially faces an outer circumferential side from the boss portion.
일 실시예로서, 상기 베이스부의 상기 상면의 경사 각도는 20°~40°일 수 있다.As an example, an inclination angle of the upper surface of the base part may be 20° to 40°.
일 실시예로서, 상기 복수의 블레이드는 사류 팬 구조와 원심 팬 구조 중 어느 한 구조를 가질 수 있다.As an example, the plurality of blades may have a structure of any one of a mixed-flow fan structure and a centrifugal fan structure.
본 개시의 일 실시예에 따른 청소기는, 상기 먼지 케이스와 연결되는 제1 대직경부와 상기 제1 대직경부로부터 공기의 흐름 방향으로 갈수록 직경이 점차 작아지게 연장되는 제1 직경 축소부를 구비하는 상류측 슈라우드; 상기 배기실과 연결되는 제2 대직경부와 상기 제2 대직경부로부터 공기의 흐름 방향의 반대 방향으로 갈수록 직경이 점차 작아지게 연장되며 상기 제1 직경 축소부와 연결된 제2 직경 축소부를 구비하는 하류측 슈라우드;를 구비할 수 있으며, 상기 임펠러는 상기 제2 직경 축소부에 배치될 수 있다.The vacuum cleaner according to an embodiment of the present disclosure includes a first large-diameter portion connected to the dust case and a first diameter-reduced portion extending from the first large-diameter portion in an air flow direction so that the diameter gradually decreases. shroud; A downstream shroud having a second large-diameter portion connected to the exhaust chamber and a second diameter-reduced portion extending from the second large-diameter portion to a direction opposite to the air flow direction and connected to the first diameter-reduced portion. may be provided, and the impeller may be disposed in the second diameter reduction unit.
본 개시의 일 실시예에 따른 청소기는, 상기 제2 대직경부에 수용되는 디퓨저;를 구비할 수 있다.A cleaner according to an embodiment of the present disclosure may include a diffuser accommodated in the second large-diameter portion.
본 개시의 일 측면에 따른 임펠러는 풍로에 배치되어 회전되면서 공기를 흡입하여 토출하는 임펠러로서, 팬 모터의 샤프트에 고정되는 보스부; 상기 보스부에 연결되며, 상기 풍로의 흡입측에서 토출측으로 향함에 따라 지름이 점차 커지는 베이스부; 및 상기 베이스부에 방사상으로 배치되어 상기 풍로의 흡입측에 흡인력을 발생시키는 복수의 블레이드;를 구비하며, 상기 복수의 블레이드 각각은 상기 보스부에 가까운 풍절 에지와 상기 보스부로부터 먼 송풍 에지를 구비하며, 상기 풍절 에지는 상기 베이스부 쪽의 단부인 기단과 상기 기단의 반대쪽 단부인 돌출단을 구비하며, 상기 임펠러의 회전 방향을 기준으로 하여 상기 돌출단은 상기 기단보다 뒤쪽에 위치되며, 상기 풍로를 기준으로 하여 상기 풍절 에지의 상기 돌출단은 상기 풍절 에지의 상기 기단보다 흡입측에 위치된다.An impeller according to one aspect of the present disclosure is disposed in an air passage and rotates to suck in and discharge air, and includes a boss fixed to a shaft of a fan motor; a base portion connected to the boss portion and gradually increasing in diameter from the suction side to the discharge side of the air passage; and a plurality of blades disposed radially in the base portion to generate a suction force on the suction side of the air path, each of the plurality of blades having a wind blowing edge close to the boss portion and a blowing edge far from the boss portion. And, the wind blowing edge has a base end that is an end toward the base portion and a protruding end that is an end opposite to the base end, and the protruding end is located behind the base end based on the rotation direction of the impeller, and the air path Based on , the protruding end of the windblown edge is located on a suction side rather than the base end of the windblown edge.
일 실시예로서, 상기 임펠러의 회전 중심과 상기 풍절 에지의 상기 기단을 통과하는 제2기준선에 대한 상기 풍절 에지의 후퇴각이 15° 이상 19° 이하일 수 있다.As an example, a receding angle of the wind-blast edge with respect to a second reference line passing through the center of rotation of the impeller and the air end of the wind-blast edge may be 15° or more and 19° or less.
일 실시예로서, 상기 임펠러의 회전축에 직교하는 제1기준선에 대한상기 풍절 에지의 경사각이 18° 이상 26° 이하일 수 있다.As an example, an inclination angle of the windblown edge with respect to a first reference line orthogonal to the rotational axis of the impeller may be 18° or more and 26° or less.
일 실시예로서, 상기 복수의 블레이드가 배치되는 상기 베이스부는 상면은 상기 보스부로부터 반경방향으로 외주측을 향함에 따라 상기 풍로의 토출측을 향하여 완만하게 경사질 수 있다.As an embodiment, an upper surface of the base portion on which the plurality of blades are disposed may be gently inclined toward the discharge side of the air path as it radially faces an outer circumferential side from the boss portion.
일 실시예로서, 상기 베이스부의 상기 상면의 경사 각도는 20°~40°일 수 있다.As an example, an inclination angle of the upper surface of the base part may be 20° to 40°.
일 실시예로서, 상기 복수의 블레이드는 사류 팬 구조와 원심 팬 구조 중 어느 한 구조를 가질 수 있다.As an example, the plurality of blades may have a structure of any one of a mixed-flow fan structure and a centrifugal fan structure.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 또한, 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속한다.As described above, although the embodiments have been described with limited examples and drawings, those skilled in the art can make various modifications and variations from the above description. In addition, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims also fall within the scope of the present invention.

Claims (15)

  1. 여과실(31)과 배기실(30)을 구비하는 본체부(3);a body portion 3 having a filtration chamber 31 and an exhaust chamber 30;
    상기 본체부에 연결된 먼지 케이스(4);a dust case (4) connected to the main body;
    상기 본체부에 배치되어 회전되면서 풍로(500)를 통하여 상기 먼지 케이스로부터 상기 본체부로 공기가 흡입되도록 흡입력을 발생시키는 임펠러(20);an impeller 20 disposed in the main body and generating a suction force so that air is sucked into the main body from the dust case through the air path 500 while being rotated;
    상기 임펠러를 회전시키는 팬 모터(13);를 구비하며,A fan motor 13 rotating the impeller;
    상기 임펠러는,The impeller,
    상기 팬 모터의 샤프트(13a)에 고정되는 보스부(21);a boss part 21 fixed to the shaft 13a of the fan motor;
    상기 보스부에 연결되며, 상기 풍로의 흡입측(50a)에서 토출측(50b)으로 향함에 따라 지름이 점차 커지는 베이스부(22); 및a base portion 22 connected to the boss portion and gradually increasing in diameter from the suction side 50a to the discharge side 50b of the air passage; and
    상기 베이스부에 방사상으로 배치되어 상기 풍로의 흡입측에 흡인력을 발생시키는 복수의 블레이드(23);를 구비하며,A plurality of blades 23 radially disposed on the base portion to generate a suction force on the suction side of the air passage;
    상기 복수의 블레이드 각각은 상기 보스부에 가까운 풍절 에지(23a)와 상기 보스부로부터 먼 송풍 에지(23b)를 구비하며, Each of the plurality of blades has a wind blowing edge 23a close to the boss and a blowing edge 23b far from the boss,
    상기 풍절 에지는 상기 베이스부 쪽의 단부인 기단(23c)과 상기 기단의 반대쪽 단부인 돌출단(23d)을 구비하며,The windblown edge has a base end 23c, which is an end of the base portion, and a protruding end 23d, which is an end opposite to the base end,
    상기 임펠러의 회전 방향을 기준으로 하여 상기 돌출단은 상기 기단보다 뒤쪽에 위치되며,Based on the rotation direction of the impeller, the protruding end is located behind the base end,
    상기 풍로를 기준으로 하여 상기 풍절 에지의 상기 돌출단은 상기 풍절 에지의 상기 기단보다 흡입측에 위치되는 청소기.Based on the air path, the protruding end of the wind blowing edge is located on a suction side of the base end of the wind blowing edge.
  2. 제1항에 있어서,According to claim 1,
    상기 임펠러의 회전 중심과 상기 풍절 에지의 상기 기단을 통과하는 제2기준선(RL2)에 대한 상기 풍절 에지의 후퇴각이 15° 이상 19° 이하인 청소기.A receding angle of the windblown edge with respect to a second reference line RL2 passing through the center of rotation of the impeller and the air end of the windblown edge is 15° or more and 19° or less.
  3. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 임펠러의 회전축에 직교하는 제1기준선(RL1)에 대한 상기 풍절 에지의 경사각이 18° 이상 26° 이하인 청소기.An inclination angle of the wind-blown edge with respect to the first reference line RL1 orthogonal to the rotational axis of the impeller is 18° or more and 26° or less.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,According to any one of claims 1 to 3,
    상기 송풍 에지는 상기 회전 방향(Yr)의 반대 방향으로 비틀어져 경사진 청소기.The blowing edge is twisted in a direction opposite to the rotational direction (Yr) and inclined.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,According to any one of claims 1 to 4,
    상기 복수의 블레이드가 배치되는 상기 베이스부는 상면은 상기 보스부로부터 반경방향으로 외주측을 향함에 따라 상기 풍로의 토출측을 향하여 완만하게 경사진 청소기.The cleaner of claim 1 , wherein an upper surface of the base portion on which the plurality of blades are disposed is gently inclined toward the discharge side of the air passage as it radially faces an outer circumferential side from the boss portion.
  6. 제5항에 있어서,According to claim 5,
    상기 베이스부의 상기 상면의 경사 각도는 20°~40°인 청소기.The inclination angle of the upper surface of the base part is 20 ° to 40 ° cleaner.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,According to any one of claims 1 to 6,
    상기 복수의 블레이드는 사류 팬 구조와 원심 팬 구조 중 어느 한 구조를 갖는 청소기.The plurality of blades have a structure of any one of a mixed flow fan structure and a centrifugal fan structure.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,According to any one of claims 1 to 7,
    상기 먼지 케이스와 연결되는 제1 대직경부(11a)와 상기 제1 대직경부로부터 공기의 흐름 방향으로 갈수록 직경이 점차 작아지게 연장되는 제1 직경 축소부(11b)를 구비하는 상류측 슈라우드(11);An upstream shroud (11) having a first large-diameter portion (11a) connected to the dust case and a first diameter-reduced portion (11b) whose diameter gradually decreases from the first large-diameter portion toward the air flow direction. ;
    상기 배기실과 연결되는 제2 대직경부(12a)와 상기 제2 대직경부로부터 공기의 흐름 방향의 반대 방향으로 갈수록 직경이 점차 작아지게 연장되며 상기 제1 직경 축소부와 연결된 제2 직경 축소부(12b)를 구비하는 하류측 슈라우드(12);를 구비하며,A second large-diameter portion 12a connected to the exhaust chamber and a second diameter-reduced portion 12b extending from the second large-diameter portion to a gradually smaller diameter in the opposite direction to the air flow direction and connected to the first diameter-reduced portion ) and a downstream shroud 12 having a
    상기 임펠러는 상기 제2 직경 축소부에 배치되는 청소기.The impeller is disposed in the second diameter reduction part.
  9. 제8항에 있어서,According to claim 8,
    상기 제2 대직경부에 수용되는 디퓨저(15);를 구비하는 청소기.A cleaner having a diffuser (15) accommodated in the second large-diameter part.
  10. 풍로(50)에 배치되어 회전되면서 공기를 흡입하여 토출하는 임펠러(20)로서,As the impeller 20 disposed in the air passage 50 and sucking in and discharging air while being rotated,
    팬 모터(13)의 샤프트(13a)에 고정되는 보스부(21);a boss portion 21 fixed to the shaft 13a of the fan motor 13;
    상기 보스부에 연결되며, 상기 풍로의 흡입측(50a)에서 토출측(50b)으로 향함에 따라 지름이 점차 커지는 베이스부; 및a base portion connected to the boss portion and gradually increasing in diameter from the suction side (50a) to the discharge side (50b) of the air passage; and
    상기 베이스부에 방사상으로 배치되어 상기 풍로의 흡입측에 흡인력을 발생시키는 복수의 블레이드(23);를 구비하며,A plurality of blades 23 radially disposed on the base portion to generate a suction force on the suction side of the air passage;
    상기 복수의 블레이드 각각은 상기 보스부에 가까운 풍절 에지(23a)와 상기 보스부로부터 먼 송풍 에지(23b)를 구비하며, Each of the plurality of blades has a wind blowing edge 23a close to the boss and a blowing edge 23b far from the boss,
    상기 풍절 에지는 상기 베이스부 쪽의 단부인 기단(23c)과 상기 기단의 반대쪽 단부인 돌출단(23d)을 구비하며,The windblown edge has a base end 23c, which is an end of the base portion, and a protruding end 23d, which is an end opposite to the base end,
    상기 임펠러의 회전 방향을 기준으로 하여 상기 돌출단은 상기 기단보다 뒤쪽에 위치되며,Based on the rotation direction of the impeller, the protruding end is located behind the base end,
    상기 풍로를 기준으로 하여 상기 풍절 에지의 상기 돌출단은 상기 풍절 에지의 상기 기단보다 흡입측에 위치되는 임펠러.The impeller wherein the protruding end of the wind blowing edge is located on a suction side of the base end of the wind blowing edge based on the air passage.
  11. 제10항에 있어서,According to claim 10,
    상기 임펠러의 회전 중심과 상기 풍절 에지의 상기 기단을 통과하는 제2기준선(RL2)에 대한 상기 풍절 에지의 후퇴각이 15° 이상 19° 이하인 임펠러.The impeller having a receding angle of the wind-blast edge with respect to the second reference line RL2 passing through the center of rotation of the impeller and the air end of the wind-blast edge is 15° or more and 19° or less.
  12. 제10항 또는 제11항에 있어서,According to claim 10 or 11,
    상기 임펠러의 회전축에 직교하는 제1기준선(RL1)에 대한상기 풍절 에지의 경사각이 18° 이상 26° 이하인 임펠러.An impeller having an inclination angle of the wind-blast edge with respect to the first reference line RL1 orthogonal to the rotational axis of the impeller is 18 ° or more and 26 ° or less.
  13. 제10항 내지 제12항 중 어느 한 항에 있어서,According to any one of claims 10 to 12,
    상기 복수의 블레이드가 배치되는 상기 베이스부는 상면은 상기 보스부로부터 반경방향으로 외주측을 향함에 따라 상기 풍로의 토출측을 향하여 완만하게 경사진 임펠러.An upper surface of the base portion on which the plurality of blades are disposed is gently inclined toward the discharge side of the air passage as it radially faces an outer circumferential side from the boss portion.
  14. 제13항에 있어서,According to claim 13,
    상기 베이스부의 상기 상면의 경사 각도는 20°~40°인 임펠러.The inclination angle of the upper surface of the base portion is 20 ° ~ 40 ° impeller.
  15. 제10항 내지 제14항 중 어느 한 항에 있어서,According to any one of claims 10 to 14,
    상기 복수의 블레이드는 사류 팬 구조와 원심 팬 구조 중 어느 한 구조를 갖는 임펠러.The plurality of blades impeller having any one of a mixed-flow fan structure and a centrifugal fan structure.
PCT/KR2022/013059 2021-10-29 2022-08-31 Impeller and cleaner using same WO2023075116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-177920 2021-10-29
JP2021177920A JP2023067008A (en) 2021-10-29 2021-10-29 impeller and vacuum cleaner using the same

Publications (1)

Publication Number Publication Date
WO2023075116A1 true WO2023075116A1 (en) 2023-05-04

Family

ID=86159472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013059 WO2023075116A1 (en) 2021-10-29 2022-08-31 Impeller and cleaner using same

Country Status (2)

Country Link
JP (1) JP2023067008A (en)
WO (1) WO2023075116A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724413B2 (en) 2001-11-05 2005-12-07 松下電器産業株式会社 Electric blower for electric vacuum cleaner and electric vacuum cleaner using the same
KR100707446B1 (en) * 2005-03-16 2007-04-13 엘지전자 주식회사 Fan
JP2017082759A (en) 2015-08-19 2017-05-18 ジョンソン エレクトリック ソシエテ アノニム Fan, diffuser, and vacuum cleaner having the same
KR20180025663A (en) * 2016-09-01 2018-03-09 삼성전자주식회사 Cleaner
US20180177373A1 (en) * 2016-12-28 2018-06-28 Nidec Corporation Blower device and vacuum cleaner including the same
JPWO2017179498A1 (en) * 2016-04-11 2019-02-14 日本電産株式会社 Blower and vacuum cleaner
JP2020518761A (en) * 2017-07-03 2020-06-25 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Impeller, fan and motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724413B2 (en) 2001-11-05 2005-12-07 松下電器産業株式会社 Electric blower for electric vacuum cleaner and electric vacuum cleaner using the same
KR100707446B1 (en) * 2005-03-16 2007-04-13 엘지전자 주식회사 Fan
JP2017082759A (en) 2015-08-19 2017-05-18 ジョンソン エレクトリック ソシエテ アノニム Fan, diffuser, and vacuum cleaner having the same
JPWO2017179498A1 (en) * 2016-04-11 2019-02-14 日本電産株式会社 Blower and vacuum cleaner
KR20180025663A (en) * 2016-09-01 2018-03-09 삼성전자주식회사 Cleaner
US20180177373A1 (en) * 2016-12-28 2018-06-28 Nidec Corporation Blower device and vacuum cleaner including the same
JP2020518761A (en) * 2017-07-03 2020-06-25 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Impeller, fan and motor

Also Published As

Publication number Publication date
JP2023067008A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
EP3909491A1 (en) Noise-cancelling cooling structure and vacuum cleaner thereof
US20190162192A1 (en) Blower
JP3501022B2 (en) Electric vacuum cleaner
CN109124465A (en) Hand held cleaner and combinations thereof part, push-down dust catcher
US10674681B2 (en) Blower/vacuum
WO2013165056A1 (en) Fan
EP3536970B1 (en) Backpack blower
WO2018043931A1 (en) Vacuum cleaner
US20060062669A1 (en) Blower
WO2023075116A1 (en) Impeller and cleaner using same
KR100249324B1 (en) Fan
CN211039149U (en) Air guide device and cleaning equipment
WO2024032629A1 (en) Dust collector housing and dust collector
CN103298579A (en) Engine-operated machine
JP2018003806A (en) Electric blower and vacuum cleaner including the same
WO2018169316A1 (en) Cooling fan and seat cooling device comprising same
CN108138455A (en) Garden hair-dryer
CN208442047U (en) A kind of small-sized dry and wet two-purpose dust collector electric fan
CN219260839U (en) Blowing and sucking machine
KR100445651B1 (en) Cyclone type vacuum cleaner
KR20060015073A (en) Centrifugal fan for vacuum cleaner
AU2015101868A4 (en) Air blower and blower/vacuum apparatus
CN112814930B (en) Dry and wet dual-purpose electric fan
CN220364921U (en) Hair drier
WO2023146110A1 (en) Dust collector and cleaner having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022887320

Country of ref document: EP

Effective date: 20240312