WO2023075034A1 - Resin-coated yarn, and system and method for manufacturing same - Google Patents

Resin-coated yarn, and system and method for manufacturing same Download PDF

Info

Publication number
WO2023075034A1
WO2023075034A1 PCT/KR2022/001501 KR2022001501W WO2023075034A1 WO 2023075034 A1 WO2023075034 A1 WO 2023075034A1 KR 2022001501 W KR2022001501 W KR 2022001501W WO 2023075034 A1 WO2023075034 A1 WO 2023075034A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
resin
coated
coating
unit
Prior art date
Application number
PCT/KR2022/001501
Other languages
French (fr)
Korean (ko)
Inventor
장지상
이재정
최경석
박치균
조혜원
Original Assignee
(주)아셈스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210144680A external-priority patent/KR20230060608A/en
Priority claimed from KR1020210166016A external-priority patent/KR102546270B1/en
Application filed by (주)아셈스 filed Critical (주)아셈스
Publication of WO2023075034A1 publication Critical patent/WO2023075034A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B15/00Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours
    • D06B15/02Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours by squeezing rollers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B15/00Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours
    • D06B15/09Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours by jets of gases
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides

Definitions

  • the present invention relates to a coated yarn in which a resin is coated on the surface of yarn, and to a manufacturing apparatus and method thereof, and more particularly, to a yarn having a hot melt resin made of thermoplastic polyurethane (TPU) resin or the like on the surface together with inorganic powder. It relates to a resin-coated thread with increased Young's Modulus and improved sphericity and centrality by coating on a manufacturing system and manufacturing method thereof.
  • TPU thermoplastic polyurethane
  • hot-melt coated yarn is a yarn that implements various functions (eg, imparting adhesion and improving abrasion resistance, etc.) by coating the outer surface of the fiber yarn with a hot-melt resin.
  • Korean Patent Registration No. 10-1249975 discloses a hot melt coating step of coating yarn with a hot melt composition, a cooling step of cooling the hot melt coated yarn produced through the hot melt coating step, and a hot melt coated yarn that has undergone the cooling step. It consists of a winding step of winding, a weaving step of weaving the hot melt coated yarn that has passed through the winding step, and a heat bonding step of fixing the woven fibers by heating the woven material manufactured through the weaving step.
  • the hot melt composition 100 parts by weight of thermoplastic polyurethane, 50 to 75 parts by weight of wax, 20 to 40 parts by weight of paraffin, 5 to 30 parts by weight of calcium carbonate and 10 to 35 parts by weight of dimer acid A method for producing a coated yarn is disclosed.
  • Korean Registered Patent Publication No. 10-1341054 discloses a method for producing coated yarn, comprising the steps of mixing thermoplastic polyurethane and a thickener, melting and kneading them, drying and aging them again to prepare a compound, After melting the compound, a method for producing a coated yarn comprising the step of coating the molten compound on the surface of any one yarn selected from polyester, nylon, and spandex is disclosed.
  • the surface of the yarn is coated with the resin, transported at a predetermined speed, and rapidly cooled by passing through a water storage tank in which cooling water is stored, and then put on a reel. wind up
  • thermoplastic polyurethane (TPU) resin is quenched at a high temperature, a lot of shrinkage occurs, resulting in an uneven surface.
  • the high resistance between the molten TPU resin and the water surface of the coating yarn moving at high speed causes the TPU surface to be non-uniform, and thus the sphericity and centrality are reduced.
  • an object of the present invention is a resin coating that increases the initial modulus of elasticity (Young's Modulus) by coating a hot melt resin with inorganic powder on yarn, and improves sphericity and centrality. is to provide a
  • Another object of the present invention is to prevent damage or deformation of the resin coated on the surface of the yarn in the process of conveying the yarn at high speed during the manufacturing process, so that the surface is uniform and the resin-coated yarn can improve sphericity and centrality. It is to provide a manufacturing system and a manufacturing method using the same.
  • the resin coated yarn according to the present invention for achieving the above object is characterized in that it is prepared by coating a resin mixture in which inorganic particles are mixed with a hot melt resin heated to a certain temperature and then melted on the surface of the yarn and then cooled.
  • the inorganic particle is one selected from the group consisting of SiO 2 , CaCO 3 , CaSO 4 , TiO 2 , ZnO, ZrO 2 , Al 2 (SO 4 ) 3 , WS 2 , graphene oxide, and UV Shielding nanopowder Above, it has a size of 50 nm to 50 ⁇ m, and may be mixed in an amount of 1.5 to 2.0 parts by weight based on 100 parts by weight of the hot melt resin.
  • the coating yarn of the present invention is first cooled by cooling water mist and cooling air while being transported at a predetermined speed after the resin mixture is coated on the surface of the yarn, and then secondarily cooled while passing through a reservoir in which the cooling water is stored. can be produced through
  • the yarn may be cooled while moving zigzag through the primary cooling chamber in which cooling water mist and cooling air are sprayed.
  • the resin-coated yarn preferably has a sphericity of 75% or more and a centrality of 1.2 or more.
  • a manufacturing system for producing the resin-coated yarn of the present invention having the above characteristics is to manufacture a resin-coated yarn in which a resin mixture in which inorganic particles are mixed with a hot melt resin is coated on the surface of the yarn.
  • a yarn supply unit to which a yarn reel (reel) on which the yarn to be coated is wound is mounted;
  • a resin coating unit including a coating nozzle through which the yarn released and transported from the yarn supply unit passes, and extruding while coating the resin mixture on the surface of the yarn by supplying a resin mixture in which inorganic particles are mixed with molten hot melt resin to the coating nozzle ;
  • a primary cooling unit for primary cooling by spraying cooling water mist and cooling air to yarns coated with a resin mixture (hereinafter referred to as 'coated yarns') transported through the resin coating unit;
  • a secondary cooling unit for secondary cooling by passing the cooling water stored in the water storage tank through the coated yarn passing through the primary cooling unit; and a coated yarn recovery unit having an unloader shaft to which a recovery reel for winding the coated yarn passing through the secondary cooling unit is rotatably mounted.
  • the primary cooling unit includes a primary cooling chamber through which the coating yarn passes, a plurality of mist nozzles installed on the upper side of the primary cooling chamber and spraying cooling water mist downward, , and an air nozzle for injecting cooling air into the primary cooling chamber.
  • the primary cooling unit is installed on both sides of the primary cooling chamber so that the coating yarn moves in a zigzag shape in the primary cooling chamber, so that the coating yarn passes while being wound.
  • a plurality of guide members may be further included.
  • the plurality of mist nozzles may be arranged at regular intervals on both sides of the moving path of the coating yarn to spray cooling water mist toward the coating yarn.
  • the plurality of mist nozzles are installed inclined at a predetermined angle with respect to an axis perpendicular to the ground to spray cooling water mist toward the coating yarn.
  • the air nozzle may be disposed between the mist nozzles to inject cooling air downward.
  • the resin-coated yarn manufacturing system according to the present invention as long as the housing disposed between the secondary cooling unit and the coated yarn recovery unit, and the coated yarn disposed vertically inside the housing and passing through the secondary cooling unit pass through while being wound.
  • a drying unit including a pair of dehydration rollers and an air spray unit for spraying compressed air to the inside of the housing to dry the coated yarn may be further included.
  • a guide groove guided while the coating yarn is inserted may be spirally formed on an outer surface of the dewatering roller along a circumferential direction.
  • the method for manufacturing resin-coated yarn according to the present invention using the manufacturing system as described above may include the following steps.
  • the coating yarn passes through the primary cooling chamber, it is preferable that the coating yarn is cooled while moving zigzag inside the primary cooling chamber.
  • the initial modulus of elasticity of the coated yarn is increased.
  • a resin mixture deformed by resistance can be restored to its original shape. Therefore, the sphericity of the coated yarn can be improved to 75% or more and the centrality to 1.2 or more.
  • the coated yarn of the present invention is manufactured by being cooled through a primary cooling process using cooling water mist and cooling air and a secondary cooling process using cooling water in a water tank, surface unevenness due to rapid cooling of the resin mixture can be prevented. And, the sphericity and centrality can be further improved.
  • the manufacturing system for manufacturing the resin-coated yarn of the present invention is manufactured by cooling the resin-coated yarn through the primary cooling process by cooling water mist and cooling air, and the secondary cooling process by the cooling water of the water tank.
  • the manufacturing process it is possible to prevent surface unevenness due to rapid cooling of the resin mixture and to prevent deformation of the resin mixture coating layer due to resistance of the cooling water in the reservoir, thereby providing an advantage of further improving sphericity and centrality.
  • FIG. 1 is a cross-sectional view of a resin-coated yarn according to an embodiment of the present invention.
  • Figure 2 is a configuration diagram showing the configuration of an embodiment of a manufacturing system for manufacturing a resin-coated yarn of the present invention.
  • FIG. 3 is a cross-sectional view showing some configurations of the resin-coated yarn manufacturing system shown in FIG. 2;
  • FIG. 4 is a front cross-sectional view of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 2;
  • FIG. 5 is a cross-sectional view of a modified example of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 4, viewed from the side.
  • FIG. 6 is a cross-sectional view showing another embodiment of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 2;
  • FIG. 7 is a graph schematically showing changes in the initial modulus of elasticity depending on whether a hot melt resin and inorganic particles are mixed.
  • Figure 8 is a graph showing a comparison of the temperature change of the coating yarn by the conventional coating yarn cooling method and the coating yarn cooling method of the present invention.
  • 9 is a graph showing the measurement results of tensile strength according to the mixing amount when ZnO is mixed as an inorganic particle in a hot melt resin.
  • FIG. 10 is a graph showing the measurement results of tensile strength according to the blending amount when TiO 2 as inorganic particles was mixed with a hot melt resin.
  • the resin coated yarn 10 is a resin mixture 12 in which inorganic particles 14 are mixed with a hot melt resin 13 on the surface of a yarn 11 constituting a core fiber. ) is coated with a predetermined thickness (for example, 30 to 500 ⁇ m thick), and in the manufacturing process, while transferring the yarn at a constant speed, it is heated to a certain temperature and passed through a resin mixture in which inorganic particles are mixed with a melted hot melt resin. It is manufactured by coating the surface of yarn and then cooling it.
  • a predetermined thickness for example, 30 to 500 ⁇ m thick
  • the yarn 11 may be used alone or in combination of two or more among polyester yarn, nylon yarn, or cotton yarn.
  • the hot melt resin may be used alone or in combination of two or more of thermoplastic polyurethane (TPU) resins, polyester resins, polyurethane resins, acrylic resins, polyamide resins, ethylene vinyl acetate resins, and polyolefin resins.
  • TPU thermoplastic polyurethane
  • the inorganic particle is SiO 2 , CaCO 3 , CaSO 4 , TiO 2 , ZnO, ZrO 2 , Al 2 (SO 4 ) 3 , WS 2 , graphene oxide (Graphene oxide), UV Shielding nanopowder 1 selected from the group consisting of One or more may be used, and the inorganic particles may be spherical, elliptical, fibrous, columnar, or random, and have a size of approximately 50 nm to 50 ⁇ m.
  • the inorganic particles 14 were mixed with the hot melt resin and coated on the surface of the yarn 11 to increase the initial modulus of elasticity (Young's Modulus) of the coated yarn (see FIG. 7).
  • the inorganic particles 14 are preferably mixed in an amount of 1.0 to 1.5 parts by weight based on 100 parts by weight of the hot melt resin.
  • the inorganic particles 14 are mixed at less than 1.0 parts by weight with respect to 100 parts by weight of the hot melt resin, the effect of increasing the initial modulus (Young's Modulus) is significantly reduced, and when the amount exceeds 1.5 parts by weight, the elongation of the coating yarn due to the inorganic particles (14) ) was found to be significantly reduced.
  • FIGS 2 to 5 show an embodiment of the resin-coated yarn manufacturing system according to the present invention for manufacturing the resin-coated yarn 10 of the present invention as described above.
  • the resin-coated yarn manufacturing system includes a yarn supply unit 110 to which a yarn reel 112 to be coated is mounted, and a yarn 11 that is unwound and transported from the yarn supply unit 110 passes through the resin A coolant mist (M ) and cooling air are sprayed to perform primary cooling, and the coating yarn 10 passing through the primary cooling unit 130 passes through the cooling water stored in the water tank for secondary cooling.
  • unit 140 a drying unit 150 that performs tension control and drying functions of the coated yarn 10 that has passed through the secondary cooling unit 140, and the coated yarn 10 that has passed through the drying unit 150
  • a yarn reel 112 on which yarn 11 is wound is installed on a feeder shaft 111.
  • the feeder shaft 111 may be rotatably installed in the yarn supply unit 110 . Therefore, when the feeder shaft 111 rotates, the yarn reel 112 rotates together to release the yarn.
  • the central axis of the feeder shaft 111 is the same as the conveying direction of the yarn 11 or is disposed obliquely at a certain angle with respect to the conveying direction of the yarn 11, the feeder shaft 111 is attached to the yarn supply unit 110 In a fixedly installed state, the yarn 11 may be released from the yarn reel 112 and transported.
  • the resin coating unit 120 includes a hopper 122 for supplying hot melt resin in the form of pellets and inorganic particles 14 (see FIG. 1), and the hot melt resin supplied through the hopper 122 is heated to melt and melt.
  • a coating nozzle 123 receiving the mixture 12 is included.
  • the yarn 11 that is released and transported from the yarn supply unit 110 is coated with a high-temperature (approximately 190 ° C. to 210 ° C.) resin mixture 12 on the surface while passing through the coating nozzle 123, so that the coated yarn 10 becomes At this time, since the resin mixture 12 coated on the surface of the yarn 11 is in an uncured state, when it passes through the cooling water at high speed, the resin mixture 12 is damaged or deformed by the resistance of the water and becomes non-uniform, and the sphericity and centrality will decrease.
  • a high-temperature resin mixture 12 approximately 190 ° C. to 210 ° C.
  • the coating yarn 10 passing through the coating nozzle 123 is directly transported to the secondary cooling unit 140 where the cooling water is stored, and the primary cooling unit 130 sprays cooling water mist (M) and cooling air without cooling. After being primarily cooled in ), it is transferred to the secondary cooling unit 140 in which cooling water is stored and is secondaryly cooled.
  • the primary cooling unit 130 for this purpose is installed in the primary cooling chamber 131 through which the coating yarn 10 passes, and on the upper side of the primary cooling chamber 131. It may include a plurality of mist nozzles 132 for spraying cooling water mist M downward, and an air nozzle 133 for spraying cooling air into the primary cooling chamber 131.
  • the plurality of mist nozzles 132 are preferably arranged at regular intervals along the moving path of the coating yarn 10 .
  • a plurality of mist nozzles 132 are arranged at predetermined intervals on both sides of the moving path of the coating yarn 10, and the discharge port of the mist nozzle 132 is perpendicular to the ground It is preferably installed inclined at a predetermined angle with respect to one axis and configured to spray the cooling water mist (M) toward the coating yarn (10).
  • a plurality of mist nozzles 132 are arranged on both sides of the moving path of the coating yarn 10, and each is installed inclined at an angle with respect to an axis perpendicular to the ground toward the coating yarn 10
  • the cooling water mist (M) is configured to be sprayed, the cooling water mist (M) is spread and sprayed over a wide area, and not only the upper part of the coating yarn 10 but also the side and lower parts are generally uniformly contacted to obtain a uniform cooling effect. there is.
  • the cooling water mist (M) when the cooling water mist (M) is sprayed in a vertical direction directly above the coating yarn 10, the spreading area of the cooling water mist (M) can be relatively narrowed, and the cooling water mist (M) Although can only be applied to the top of the coated yarn 10, when the mist nozzle 132 sprays the coolant mist M obliquely from both sides of the upper part of the coated yarn 10, the coolant mist M is sprayed over a wide area , There is an advantage in that the cooling effect can be obtained substantially uniformly over the entire coating yarn 10 by being able to be buried on the top, side, and bottom of the coated yarn 10.
  • a plurality of mist nozzles 132 are provided with a coating yarn 10) may also be installed at an angle to the movement path so that the cooling water mist M is sprayed obliquely with respect to the movement path of the coating yarn 10.
  • the temperature of the cooling water mist M sprayed from the mist nozzle 132 is about 8 to 15° C.
  • the spray pressure is 0.7 to 1.5 kg/cm 2
  • the spray flow rate is 0.15 to 1.2 L/min. It was confirmed that the cooling effect of the cooling water mist M sprayed from the primary cooling unit 130 is excellent as the particles are smaller.
  • the air nozzle 133 is disposed between the mist nozzles 132 and injects cooling air downward to perform a cooling action together with the cooling water mist (M).
  • a plurality of guide members 134 passing through while the coating thread 10 is wound may be installed on both sides of the primary cooling chamber 131 so as to move.
  • the guide member 134 may be configured using a pulley or a roll.
  • the secondary cooling unit 140 is disposed on the downstream side of the primary cooling unit 130 based on the transport path of the coated yarn 10, while passing through the primary cooling unit 130.
  • the firstly cooled coating yarn 10 is immersed in the cooling water stored in the water tank 141 of the secondary cooling unit 140 and is sufficiently cooled and then transported.
  • an upstream guide roll 142, a submerged guide roll 143, and a downstream guide roll 144 guide the coated yarn 10 into the cooling water of the reservoir 141 can be installed.
  • the drying unit 150 is installed on the downstream side of the secondary cooling unit 140, and removes moisture from the surface of the coating yarn 10 while maintaining a constant tension of the coating yarn 10 to dry it. is configured to
  • the drying unit 150 includes a housing 151 in the form of a rectangular parallelepiped body disposed between the secondary cooling unit 140 and the coated yarn recovery unit 160, and the inside of the housing 151.
  • a pair of dewatering rollers 152 which are arranged vertically and pass through while the coating yarn 10 passing through the secondary cooling unit 140 is wound multiple times, and compressed air is injected into the inside of the housing 151. It may include an air sprayer 153 for drying the coating yarn.
  • Two dehydration rollers 152 are composed of a pair and rotate in the same direction inside the housing 151 to guide the coating yarn 10 and perform dehydration and tension maintenance functions. At this time, the guide groove 152a guided while the coating yarn 10 is inserted into the outer surface of the dewatering roller 152 is formed so that the coating yarn 10 can be accurately guided and transported without slipping on the outer surface of the dewatering roller 152. It is formed in a spiral along the direction.
  • the air sprayer 153 may be configured by applying a known air spray nozzle that is connected to an air pump (not shown) to spray compressed air.
  • the coated yarn recovery unit 160 is an unloader shaft to which a cylindrical recovery reel 161 rotatably mounted to wind the coated yarn 10 dried through the drying unit 150 (162).
  • the unloader shaft 162 rotates by receiving power from a motor (not shown) to wind the coated thread 10 around the reel 161 for recovery. Therefore, when the unloader shaft 162 receives power from a motor (not shown) and rotates at a constant speed, the coated yarn 10 is wound around the recovery reel 161.
  • the coated yarn 10 has a constant force Since the yarn 11 of the yarn reel 112 mounted on the feeder shaft 111 of the yarn supply unit 110 is unwound and transported toward the resin coating unit 120 at a constant speed, coating and cooling of the resin mixture , a series of drying processes proceed continuously.
  • the reel on which the yarn 11 to be coated is wound is mounted on the feeder shaft 111, and the other end of the yarn is applied to each component of the resin-coated yarn manufacturing system, that is, the coating nozzle of the resin coating unit 120 ( 123), the primary cooling unit 130, the secondary cooling unit 140, and the drying unit 150, and then the recovery reel 161 mounted on the unloader shaft 162 of the coated yarn recovery unit 160.
  • the unloader shaft 162 is rotated, the coated yarn is transferred while being wound around the recovery reel 161, and at this time, the yarn 1 mounted on the feeder shaft 111 is released from the yarn reel 112 While coming out, the yarn 11 is transferred toward the resin coating part 120 at a constant speed.
  • the yarn 11 released from the feeder shaft 111 passes through the coating nozzle 123 of the resin coating unit 120 while being transported at a constant speed (approximately 500 to 600 m/min).
  • the hot melt resin introduced through the hopper 122 is heated and melted, and inorganic particles are mixed with the melted hot melt resin to form a resin mixture 12 and supplied to the coating nozzle 122. Therefore, the high-temperature resin mixture 12 is coated to a predetermined thickness on the surface of the yarn 11 passing through the coating nozzle 122 to form the coated yarn 10.
  • the coated yarn 10 passing through the coating nozzle 122 of the resin coating unit 120 passes through the primary cooling chamber 130 of the primary cooling unit 130 .
  • the mist nozzle 132 sprays the cooling water mist M from the upper side of the primary cooling chamber 130, and at the same time, cooling air is sprayed from the air nozzle 133, so that the coated yarn 10 is primarily cooled.
  • the temperature is approximately 190 °C to 210 °C.
  • the coated yarn 10 While passing through the primary cooling unit 130, the coated yarn 10 cooled while passing through the cooling water stored in the reservoir 140 of the secondary cooling unit 140 disposed successively at the rear of the primary cooling chamber 130. cooled secondarily.
  • the temperature is cooled to approximately 25 to 30 °C, and then, when passing through the secondary cooling unit 140, it is cooled to approximately 15 to 20 °C.
  • the coated yarn 10 After passing through the secondary cooling unit 140, the coated yarn 10 enters the inside of the housing 151 of the drying unit 150, and then passes through a pair of dewatering rollers 152 multiple times to remove moisture, It is wound on the recovery reel 161 of the coating yarn recovery unit 160.
  • the coated yarn 10 wound on the recovery reel 161 is then moved to a maturation room and subjected to an aging process at a predetermined temperature range for a predetermined period of time to increase tensile strength and adhesive strength before being shipped.
  • the coated yarn 10 coated with the resin mixture 12 on the surface of the yarn 11 passes through the cooling water in the water reservoir 141 while passing through the coating nozzle 123
  • the resin mixture 12 on the surface of the yarn 11 is damaged or deformation can be minimized. Therefore, the sphericity and centrality of the final product of the coated thread 10 can be significantly improved.
  • thermoplastic polyurethane (TPU) resin as a hot melt resin, respectively.
  • TPU thermoplastic polyurethane
  • the mixture is mixed in portions and put into the resin coating unit 120 to prepare the resin mixtures 12, and PET 125De is applied as the yarn 11 to prepare coated yarn samples, and then the tensile strength and elongation of each coated yarn sample , sphericity, and centrality were measured.
  • the sphericity of the coated yarn sample was 75% or more, and the centrality was 1.2 or more.
  • the present invention can be applied to hot-melt resin-coated yarns used in adhesive fabrics or resin-coated yarns used in the manufacture of clothes, shoes, fashion accessories, etc., and technical fields related to their manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The present invention relates to a resin-coated yarn, and a system and method for manufacturing same, wherein a hot-melt resin is coated on a yarn with inorganic powders and thus the yarn has increased initial elastic modulus (Young's Modulus) and improved sphericity and centrality. The resin-coated yarn manufacturing system according to the present invention comprises: a core yarn supply unit to which a core yarn reel having a core yarn to be coated wounded therearound is mounted; a resin coating unit which includes a coating nozzle through which the core yarn released and transported from the core yarn supply unit passes and is configured to coat and extrude a resin mixture on the surface of the core yarn by supplying the resin mixture to the coating nozzle, the resin mixture being obtained by mixing inorganic particles with a molten hot-melt resin; a primary cooling unit for performing primary cooling by spraying cooling water mist and cooling air to the core yarn (hereinafter referred to as a "coated yarn") coated with the resin mixture transported through the resin coating unit; a secondary cooling unit for performing secondary cooling by passing the coated yarn having passed through the primary cooling unit through cooling water stored in a water storage tank; and a coated yarn recovery unit having an unloader shaft to which a recovery reel is rotatably mounted such that the coated yarn having passed through the secondary cooling unit is wound around same.

Description

수지 코팅사와 그 제조 시스템 및 제조 방법Resin coating yarn and its manufacturing system and manufacturing method
본 발명은 원사의 표면에 수지가 코팅된 코팅사 및 그 제조 장치와 방법에 관한 것으로, 더욱 상세하게는 표면에 열가소성 폴리우레탄(TPU; Thermoplastic Polyurethane) 수지 등으로 된 핫멜트 수지를 무기물 분말과 함께 원사에 코팅하여 초기탄성률(Young's Modulus)을 증가시키고, 구형도 및 중심도를 향상시킨 수지 코팅사와 그 제조 시스템 및 제조 방법에 관한 것이다. The present invention relates to a coated yarn in which a resin is coated on the surface of yarn, and to a manufacturing apparatus and method thereof, and more particularly, to a yarn having a hot melt resin made of thermoplastic polyurethane (TPU) resin or the like on the surface together with inorganic powder. It relates to a resin-coated thread with increased Young's Modulus and improved sphericity and centrality by coating on a manufacturing system and manufacturing method thereof.
일반적으로 핫멜트 코팅사는 섬유원사의 외부면에 핫멜트 수지를 코팅하여 다양한 기능(예를들면, 접착성 부여 및 내마모성 향상 등)을 구현하는 원사이다. In general, hot-melt coated yarn is a yarn that implements various functions (eg, imparting adhesion and improving abrasion resistance, etc.) by coating the outer surface of the fiber yarn with a hot-melt resin.
구체적으로 대한민국 등록특허공보 제10-1249975호에는 원사에 핫멜트 조성물을 코팅하는 핫멜트코팅단계와, 상기 핫멜트코팅단계를 통해 제조된 핫멜트 코팅사를 냉각하는 냉각단계와, 상기 냉각단계를 거친 핫멜트 코팅사를 권취하는 권취단계와, 상기 권취단계를 거친 핫멜트 코팅사를 직조하는 직조단계 및, 상기 직조단계를 거쳐 제조된 직조물을 가열하여 직조된 섬유들을 고정시키는 열접착단계로 이루어지며, 상기 핫멜트 조성물은 열가소성 폴리우레탄 100 중량부, 왁스 50 내지 75 중량부, 파라핀 20 내지 40 중량부, 탄산칼슘 5 내지 30 중량부 및 다이머산 10 내지 35 중량부로 이루어지는 것을 특징으로 하는 코팅사의 제조 방법이 개시되어 있다.Specifically, Korean Patent Registration No. 10-1249975 discloses a hot melt coating step of coating yarn with a hot melt composition, a cooling step of cooling the hot melt coated yarn produced through the hot melt coating step, and a hot melt coated yarn that has undergone the cooling step. It consists of a winding step of winding, a weaving step of weaving the hot melt coated yarn that has passed through the winding step, and a heat bonding step of fixing the woven fibers by heating the woven material manufactured through the weaving step. The hot melt composition 100 parts by weight of thermoplastic polyurethane, 50 to 75 parts by weight of wax, 20 to 40 parts by weight of paraffin, 5 to 30 parts by weight of calcium carbonate and 10 to 35 parts by weight of dimer acid A method for producing a coated yarn is disclosed.
그리고 대한민국 등록특허공보 제10-1341054호에는 코팅 원사의 제조방법에 있어서, 열가소성 폴리우레탄과 증점제를 혼합한 다음, 이를 용융하고 혼련시킨 후, 이를 다시 건조 및 숙성시켜 컴파운드로 제조하는 단계와, 상기 컴파운드를 용융시킨 다음, 폴리에스테르, 나일론, 스판덱스 중에서 선택된 어느 하나의 원사 표면에 상기 용융된 컴파운드를 코팅 처리하는 단계로 이루어지는 코팅 원사의 제조방법이 개시되어 있다.And Korean Registered Patent Publication No. 10-1341054 discloses a method for producing coated yarn, comprising the steps of mixing thermoplastic polyurethane and a thickener, melting and kneading them, drying and aging them again to prepare a compound, After melting the compound, a method for producing a coated yarn comprising the step of coating the molten compound on the surface of any one yarn selected from polyester, nylon, and spandex is disclosed.
전술한 것과 같이 원사의 표면에 수지를 코팅하여 코팅사를 제조하는 과정에서 원사의 표면에 수지를 코팅한 후 소정의 속도로 이송하면서 냉각수가 저장된 저수조를 통과시켜 급속 냉각한 후 릴(reel)에 권취한다. As described above, in the process of manufacturing coated yarn by coating the surface of the yarn with the resin, the surface of the yarn is coated with the resin, transported at a predetermined speed, and rapidly cooled by passing through a water storage tank in which cooling water is stored, and then put on a reel. wind up
그런데 열가소성 폴리우레탄(TPU) 수지는 고온에서 급냉할 경우 수축이 많이 발생하여 표면이 불균일해지는 문제가 발생한다. However, when the thermoplastic polyurethane (TPU) resin is quenched at a high temperature, a lot of shrinkage occurs, resulting in an uneven surface.
또한 고속으로 이동하는 코팅사의 용융된 TPU 수지와 물 표면과의 저항이 높아서 TPU 표면이 불균일해지고, 이에 따라 구형도 및 중심도가 저하되는 문제가 발생한다. In addition, the high resistance between the molten TPU resin and the water surface of the coating yarn moving at high speed causes the TPU surface to be non-uniform, and thus the sphericity and centrality are reduced.
본 발명은 상기한 종래의 문제를 해결하기 위한 것으로, 본 발명의 목적은 핫멜트 수지를 무기물 분말과 함께 원사에 코팅하여 초기탄성률(Young's Modulus)을 증가시키고, 구형도 및 중심도를 향상시킨 수지 코팅사를 제공하는 것이다.The present invention is to solve the above conventional problems, an object of the present invention is a resin coating that increases the initial modulus of elasticity (Young's Modulus) by coating a hot melt resin with inorganic powder on yarn, and improves sphericity and centrality. is to provide a
본 발명의 다른 목적은 제조 공정 중 원사를 빠른 속도로 이송하는 과정에서 원사의 표면에 코팅된 수지의 손상이나 변형을 방지하여 표면이 균일하며, 구형도 및 중심도를 향상시킬 수 있는 수지 코팅사 제조시스템 및 이를 이용한 제조 방법을 제공하는 것이다.Another object of the present invention is to prevent damage or deformation of the resin coated on the surface of the yarn in the process of conveying the yarn at high speed during the manufacturing process, so that the surface is uniform and the resin-coated yarn can improve sphericity and centrality. It is to provide a manufacturing system and a manufacturing method using the same.
상기한 목적을 달성하기 위한 본 발명에 따른 수지 코팅사는, 일정 온도로 가열되어 용융된 핫멜트 수지에 무기입자를 혼합한 수지 혼합물을 원사의 표면에 코팅한 후 냉각하여 제조된 것을 특징으로 한다. The resin coated yarn according to the present invention for achieving the above object is characterized in that it is prepared by coating a resin mixture in which inorganic particles are mixed with a hot melt resin heated to a certain temperature and then melted on the surface of the yarn and then cooled.
상기 무기입자는 SiO2, CaCO3, CaSO4, TiO2, ZnO, ZrO2, Al2(SO4)3, WS2 , 산화그래핀(Graphene oxide), UV Shielding nanopowder 로 이루어진 그룹에서 선택된 1개 이상으로, 50 ㎚ ~ 50㎛ 의 크기를 가지며, 핫멜트 수지 100 중량부에 대해 1.5 ~ 2.0 중량부로 혼합될 수 있다. The inorganic particle is one selected from the group consisting of SiO 2 , CaCO 3 , CaSO 4 , TiO 2 , ZnO, ZrO 2 , Al 2 (SO 4 ) 3 , WS 2 , graphene oxide, and UV Shielding nanopowder Above, it has a size of 50 nm to 50 μm, and may be mixed in an amount of 1.5 to 2.0 parts by weight based on 100 parts by weight of the hot melt resin.
본 발명의 코팅사는 상기 원사의 표면에 수지 혼합물이 코팅된 후 소정의 속도로 이송되면서 냉각수 미스트(mist) 및 냉각 공기에 의해 1차 냉각된 다음 냉각수가 저장된 저수조를 통과하면서 2차 냉각되는 과정을 통해 제조될 수 있다. The coating yarn of the present invention is first cooled by cooling water mist and cooling air while being transported at a predetermined speed after the resin mixture is coated on the surface of the yarn, and then secondarily cooled while passing through a reservoir in which the cooling water is stored. can be produced through
이 때 상기 원사는 냉각수 미스트 및 냉각 공기가 분사되는 1차 냉각챔버를 지그재그로 이동하면서 냉각될 수 있다. At this time, the yarn may be cooled while moving zigzag through the primary cooling chamber in which cooling water mist and cooling air are sprayed.
상기 수지 코팅사는 구형도가 75% 이상이고, 중심도가 1.2 이상인 것이 바람직하다. The resin-coated yarn preferably has a sphericity of 75% or more and a centrality of 1.2 or more.
상술한 것과 같은 특징을 갖는 본 발명의 수지 코팅사를 제조하기 위한 본 발명의 한 형태에 따른 제조 시스템은, 핫멜트 수지에 무기입자가 혼합된 수지 혼합물이 원사의 표면에 코팅된 수지 코팅사를 제조하는 제조시스템으로서, 코팅할 원사가 감겨진 원사 릴(reel)이 장착되는 원사 공급부; 원사 공급부에서 풀려져서 이송되는 원사가 통과하는 코팅노즐을 포함하며, 용융된 핫멜트 수지에 무기입자를 혼합한 수지 혼합물을 상기 코팅노즐로 공급하여 원사의 표면에 수지 혼합물을 코팅하면서 압출하는 수지코팅부; 상기 수지코팅부를 통과하여 이송되는 수지 혼합물이 코팅된 원사(이하 '코팅사')에 냉각수 미스트와 냉각공기를 분사하여 1차 냉각하는 1차 냉각부; 상기 1차 냉각부를 통과한 코팅사를 저수조에 저장된 냉각수를 통과시켜 2차 냉각시키는 2차 냉각부; 및, 상기 2차 냉각부를 통과한 코팅사를 권취하는 회수용 릴이 회전 가능하게 장착되는 언로더샤프트를 구비한 코팅사 회수부;를 포함한다. A manufacturing system according to one embodiment of the present invention for producing the resin-coated yarn of the present invention having the above characteristics is to manufacture a resin-coated yarn in which a resin mixture in which inorganic particles are mixed with a hot melt resin is coated on the surface of the yarn. As a manufacturing system, a yarn supply unit to which a yarn reel (reel) on which the yarn to be coated is wound is mounted; A resin coating unit including a coating nozzle through which the yarn released and transported from the yarn supply unit passes, and extruding while coating the resin mixture on the surface of the yarn by supplying a resin mixture in which inorganic particles are mixed with molten hot melt resin to the coating nozzle ; a primary cooling unit for primary cooling by spraying cooling water mist and cooling air to yarns coated with a resin mixture (hereinafter referred to as 'coated yarns') transported through the resin coating unit; A secondary cooling unit for secondary cooling by passing the cooling water stored in the water storage tank through the coated yarn passing through the primary cooling unit; and a coated yarn recovery unit having an unloader shaft to which a recovery reel for winding the coated yarn passing through the secondary cooling unit is rotatably mounted.
본 발명의 제조 시스템의 다른 한 형태에 따르면, 상기 1차 냉각부는, 코팅사가 통과하는 1차 냉각챔버와, 상기 1차 냉각챔버의 상측에 설치되어 하측으로 냉각수 미스트를 분사하는 복수의 미스트노즐과, 상기 1차 냉각챔버 내부로 냉각공기를 분사하는 에어노즐을 포함한다. According to another aspect of the manufacturing system of the present invention, the primary cooling unit includes a primary cooling chamber through which the coating yarn passes, a plurality of mist nozzles installed on the upper side of the primary cooling chamber and spraying cooling water mist downward, , and an air nozzle for injecting cooling air into the primary cooling chamber.
본 발명의 제조 시스템의 또 다른 한 형태에 따르면, 상기 1차 냉각부는, 상기 1차 냉각챔버 내에서 상기 코팅사가 지그재그 형태로 이동하도록 1차 냉각챔버의 양측면에 설치되어 상기 코팅사가 감겨지면서 통과하는 복수의 가이드부재를 더 포함할 수 있다. According to another aspect of the manufacturing system of the present invention, the primary cooling unit is installed on both sides of the primary cooling chamber so that the coating yarn moves in a zigzag shape in the primary cooling chamber, so that the coating yarn passes while being wound. A plurality of guide members may be further included.
그리고 상기 복수의 미스트노즐은 코팅사의 이동 경로의 양측에 일정한 간격으로 배열되어 코팅사를 향해 냉각수 미스트를 분사할 수 있다. The plurality of mist nozzles may be arranged at regular intervals on both sides of the moving path of the coating yarn to spray cooling water mist toward the coating yarn.
여기서 상기 복수의 미스트노즐은 지면(地面)에 대해 연직한 축에 대해 일정한 각도로 경사지게 설치되어 코팅사를 향해 냉각수 미스트를 분사하는 것이 바람직하다. Here, it is preferable that the plurality of mist nozzles are installed inclined at a predetermined angle with respect to an axis perpendicular to the ground to spray cooling water mist toward the coating yarn.
상기 에어노즐은 상기 미스트노즐의 사이사이에 배치되어 하측으로 냉각공기를 분사할 수 있다. The air nozzle may be disposed between the mist nozzles to inject cooling air downward.
본 발명에 따른 수지 코팅사 제조시스템은, 상기 2차 냉각부와 코팅사 회수부 사이에 배치되는 하우징과, 상기 하우징 내부에 상하로 배치되어 상기 2차 냉각부를 통과한 코팅사가 감겨지면서 통과하는 한 쌍의 탈수롤러와, 상기 하우징의 내측에 압축공기를 분사하여 코팅사를 건조시키는 에어분사유닛을 포함하는 건조부를 더 포함할 수 있다.The resin-coated yarn manufacturing system according to the present invention, as long as the housing disposed between the secondary cooling unit and the coated yarn recovery unit, and the coated yarn disposed vertically inside the housing and passing through the secondary cooling unit pass through while being wound. A drying unit including a pair of dehydration rollers and an air spray unit for spraying compressed air to the inside of the housing to dry the coated yarn may be further included.
상기 탈수롤러의 외면에 상기 코팅사가 삽입되면서 안내되는 가이드홈이 원주방향을 따라 나선형으로 형성될 수 있다. A guide groove guided while the coating yarn is inserted may be spirally formed on an outer surface of the dewatering roller along a circumferential direction.
상술한 것과 같은 제조 시스템을 이용한 본 발명에 따른 수지 코팅사 제조 방법은 다음과 같은 단계를 포함할 수 있다. The method for manufacturing resin-coated yarn according to the present invention using the manufacturing system as described above may include the following steps.
(S1) 원사를 일정한 속도로 이송하는 단계;(S1) feeding the yarn at a constant speed;
(S2) 핫멜트 수지를 가열하여 용융하고, 용융된 핫멜트 수지에 무기입자를 혼합하여 만들어진 수지 혼합물이 공급되는 압출기에 상기 원사를 통과시켜 원사의 표면에 수지 혼합물을 코팅하여 코팅사를 형성하는 단계;(S2) heating and melting the hot melt resin and passing the yarn through an extruder supplied with a resin mixture made by mixing inorganic particles with the melted hot melt resin to coat the surface of the yarn with the resin mixture to form a coated yarn;
(S3) 상기 수지 혼합물이 코팅된 코팅를 냉각수 미스트(mist) 및 냉각 공기를 분사하는 1차 냉각챔버를 통과시키면서 1차 냉각하는 단계;(S3) primary cooling while passing the coating coated with the resin mixture through a primary cooling chamber in which cooling water mist and cooling air are sprayed;
(S4) 상기 1차 냉각챔버를 통과한 코팅사를 냉각수가 저장된 저수조를 통과시키면서 2차 냉각하는 단계; 및, (S4) secondary cooling while passing the coated yarn passing through the primary cooling chamber through a reservoir in which cooling water is stored; and,
(S5) 상기 저수조를 통과한 코팅사를 권취하여 회수하는 단계. (S5) winding and recovering the coated yarn passing through the reservoir.
상기 코팅사가 1차 냉각챔버를 통과할 때 코팅사는 1차 냉각챔버 내부에서 지그재그로 이동하면서 냉각되는 것이 바람직하다.When the coating yarn passes through the primary cooling chamber, it is preferable that the coating yarn is cooled while moving zigzag inside the primary cooling chamber.
본 발명에 따르면, 핫멜트 수지에 무기입자가 혼합되어 원사의 표면에 코팅됨으로써 코팅사의 초기탄성률(Young's Modulus)이 증가하게 되므로, 코팅사가 냉각 과정에서 저수조의 냉각수를 빠른 속도로 통과하는 과정에서 냉각수의 저항에 의해 변형된 수지 혼합물이 원형으로 회복할 수 있다. 따라서 코팅사의 구형도를 75% 이상, 중심도를 1.2 이상으로 향상시킬 수 있다. According to the present invention, since inorganic particles are mixed with the hot melt resin and coated on the surface of the yarn, the initial modulus of elasticity of the coated yarn is increased. A resin mixture deformed by resistance can be restored to its original shape. Therefore, the sphericity of the coated yarn can be improved to 75% or more and the centrality to 1.2 or more.
또한 본 발명의 코팅사는 냉각수 미스트(mist) 및 냉각 공기에 의한 1차 냉각 공정과, 저수조의 냉각수에 의한 2차 냉각 공정을 통해 냉각되어 제조되기 때문에 수지 혼합물의 급냉에 의한 표면 불균일을 방지할 수 있으며, 구형도 및 중심도를 더욱 향상시킬 수 있다. In addition, since the coated yarn of the present invention is manufactured by being cooled through a primary cooling process using cooling water mist and cooling air and a secondary cooling process using cooling water in a water tank, surface unevenness due to rapid cooling of the resin mixture can be prevented. And, the sphericity and centrality can be further improved.
본 발명의 수지 코팅사를 제조하기 위한 제조시스템은, 냉각수 미스트(mist) 및 냉각 공기에 의한 1차 냉각 공정과, 저수조의 냉각수에 의한 2차 냉각 공정을 통해 수지 코팅사를 냉각하여 제조하기 때문에 제조 과정에서 수지 혼합물의 급냉에 의한 표면 불균일을 방지하고, 저수조 내의 냉각수의 저항에 의한 수지 혼합물 코팅층의 변형을 방지할 수 있게 되어 구형도 및 중심도를 더욱 향상시킬 수 있는 이점을 제공한다. The manufacturing system for manufacturing the resin-coated yarn of the present invention is manufactured by cooling the resin-coated yarn through the primary cooling process by cooling water mist and cooling air, and the secondary cooling process by the cooling water of the water tank. In the manufacturing process, it is possible to prevent surface unevenness due to rapid cooling of the resin mixture and to prevent deformation of the resin mixture coating layer due to resistance of the cooling water in the reservoir, thereby providing an advantage of further improving sphericity and centrality.
도 1은 본 발명의 일 실시예에 따른 수지 코팅사의 단면도이다. 1 is a cross-sectional view of a resin-coated yarn according to an embodiment of the present invention.
도 2는 본 발명의 수지 코팅사를 제조하기 위한 제조시스템의 일 실시예의 구성을 나타낸 구성도이다.Figure 2 is a configuration diagram showing the configuration of an embodiment of a manufacturing system for manufacturing a resin-coated yarn of the present invention.
도 3은 도 2에 도시한 수지 코팅사 제조시스템의 일부 구성을 나타낸 단면도이다.3 is a cross-sectional view showing some configurations of the resin-coated yarn manufacturing system shown in FIG. 2;
도 4는 도 2에 도시한 수지 코팅사 제조시스템을 구성하는 1차 냉각부의 정면에서 본 단면도이다. FIG. 4 is a front cross-sectional view of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 2;
도 5는 도 4에 도시한 수지 코팅사 제조시스템을 구성하는 1차 냉각부의 변형례를 나타낸 측면에서 본 단면도이다. FIG. 5 is a cross-sectional view of a modified example of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 4, viewed from the side.
도 6은 도 2에 도시한 수지 코팅사 제조시스템을 구성하는 1차 냉각부의 다른 실시예를 나타낸 단면도이다.6 is a cross-sectional view showing another embodiment of a primary cooling unit constituting the resin-coated yarn manufacturing system shown in FIG. 2;
도 7은 핫멜트 수지와 무기입자의 혼합 여부에 따른 초기탄성률 변화를 개략적으로 나타낸 그래프이다.7 is a graph schematically showing changes in the initial modulus of elasticity depending on whether a hot melt resin and inorganic particles are mixed.
도 8은 기존의 코팅사 냉각 방법과 본 발명의 코팅사 냉각 방법에 의한 코팅사의 온도 변화를 비교하여 나타낸 그래프이다.Figure 8 is a graph showing a comparison of the temperature change of the coating yarn by the conventional coating yarn cooling method and the coating yarn cooling method of the present invention.
도 9는 핫멜트 수지에 무기입자로서 ZnO를 혼합하였을 때 배합량에 따른 인장강신도의 측정 결과를 나타낸 그래프이다. 9 is a graph showing the measurement results of tensile strength according to the mixing amount when ZnO is mixed as an inorganic particle in a hot melt resin.
도 10은 핫멜트 수지에 무기입자로서 TiO2를 혼합하였을 때 배합량에 따른 인장강신도의 측정 결과를 나타낸 그래프이다. 10 is a graph showing the measurement results of tensile strength according to the blending amount when TiO 2 as inorganic particles was mixed with a hot melt resin.
첨부한 도면을 참조하여 본 발명의 실시예들에 따른 수지 코팅사와 그 제조 시스템 및 제조 방법에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. With reference to the accompanying drawings, a resin-coated yarn according to embodiments of the present invention and its manufacturing system and manufacturing method will be described in detail. Since the present invention can have various changes and various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure.
또한 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In addition, unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
도 1을 참조하면, 본 발명에 따른 수지 코팅사(10)는 코어(core) 섬유를 이루는 원사(11)의 표면에, 핫멜트 수지(13)에 무기입자(14)가 혼합된 수지 혼합물(12)이 소정의 두께(예를 들어 30 ~ 500㎛ 두께)로 코팅된 것으로, 제조 과정에서 원사를 일정한 속도로 이송하면서 일정 온도로 가열되어 용융된 핫멜트 수지에 무기입자를 혼합한 수지 혼합물을 통과시켜 원사의 표면에 코팅한 후 이를 냉각하는 방식으로 제조된 것이다. Referring to FIG. 1, the resin coated yarn 10 according to the present invention is a resin mixture 12 in which inorganic particles 14 are mixed with a hot melt resin 13 on the surface of a yarn 11 constituting a core fiber. ) is coated with a predetermined thickness (for example, 30 to 500 μm thick), and in the manufacturing process, while transferring the yarn at a constant speed, it is heated to a certain temperature and passed through a resin mixture in which inorganic particles are mixed with a melted hot melt resin. It is manufactured by coating the surface of yarn and then cooling it.
상기 원사(11)는 폴리에스터사, 나일론사 또는 면사 중에서 단독 또는 2 종 이상을 병용하여 사용할 수 있다. 그리고, 상기 핫멜트 수지는 열가소성 폴리우레탄(TPU) 수지, 폴리에스터 수지, 폴리우레탄 수지, 아크릴 수지, 폴리아미드 수지, 에틸렌비닐아세테이트 수지, 폴리올레핀 수지 중에서 단독 또는 2종 이상을 병용하여 사용할 수 있다. The yarn 11 may be used alone or in combination of two or more among polyester yarn, nylon yarn, or cotton yarn. In addition, the hot melt resin may be used alone or in combination of two or more of thermoplastic polyurethane (TPU) resins, polyester resins, polyurethane resins, acrylic resins, polyamide resins, ethylene vinyl acetate resins, and polyolefin resins.
또한 상기 무기입자는 SiO2, CaCO3, CaSO4, TiO2, ZnO, ZrO2, Al2(SO4)3, WS2 , 산화그래핀(Graphene oxide), UV Shielding nanopowder 로 이루어진 그룹에서 선택된 1개 이상을 사용할 수 있으며, 무기입자들은 구형상, 타원형상, 섬유형상, 기둥형상, 또는 무정형(random)으로 이루어질 수 있고, 대략 50 ㎚ ~ 50㎛ 의 크기를 갖는다. In addition, the inorganic particle is SiO 2 , CaCO 3 , CaSO 4 , TiO 2 , ZnO, ZrO 2 , Al 2 (SO 4 ) 3 , WS 2 , graphene oxide (Graphene oxide), UV Shielding nanopowder 1 selected from the group consisting of One or more may be used, and the inorganic particles may be spherical, elliptical, fibrous, columnar, or random, and have a size of approximately 50 nm to 50 μm.
이와 같이 핫멜트 수지에 무기입자가 혼합되어 원사(11)의 표면에 코팅됨으로써 코팅사의 초기탄성률(Young's Modulus)을 증가시키는 것으로 확인되었다(도 7 참조). 이 때 무기입자(14)는 핫멜트 수지 100 중량부에 대해 1.0 ~ 1.5 중량부로 혼합되는 것이 바람직하다. 무기입자(14)가 핫멜트 수지 100 중량부에 대해 1.0 중량부 미만으로 혼합되면 초기탄성률(Young's Modulus)을 증가 효과가 현저하게 저하되고, 1.5 중량부를 초과하게 되면 무기입자로 인하여 코팅사의 신도(elongation)가 현저하게 저하되는 것으로 확인되었다. In this way, it was confirmed that the inorganic particles were mixed with the hot melt resin and coated on the surface of the yarn 11 to increase the initial modulus of elasticity (Young's Modulus) of the coated yarn (see FIG. 7). In this case, the inorganic particles 14 are preferably mixed in an amount of 1.0 to 1.5 parts by weight based on 100 parts by weight of the hot melt resin. When the inorganic particles 14 are mixed at less than 1.0 parts by weight with respect to 100 parts by weight of the hot melt resin, the effect of increasing the initial modulus (Young's Modulus) is significantly reduced, and when the amount exceeds 1.5 parts by weight, the elongation of the coating yarn due to the inorganic particles (14) ) was found to be significantly reduced.
도 2 내지 도 5는 상기한 것과 같은 본 발명의 수지 코팅사(10)를 제조하기 위한 본 발명에 따른 수지 코팅사 제조시스템의 일 실시예를 나타낸 것이다. 2 to 5 show an embodiment of the resin-coated yarn manufacturing system according to the present invention for manufacturing the resin-coated yarn 10 of the present invention as described above.
도 2를 참조하면, 수지 코팅사 제조시스템은, 코팅할 원사 릴(reel)(112)이 장착되는 원사 공급부(110), 원사 공급부(110)에서 풀려져서 이송되는 원사(11)가 통과하면서 수지 혼합물(12)이 코팅되는 수지코팅부(120), 상기 수지코팅부(120)를 통과하여 이송되는 수지 혼합물(12)이 코팅된 원사(11)(이하 '코팅사')에 냉각수 미스트(M)와 냉각공기를 분사하여 1차 냉각하는 1차 냉각부(130), 상기 1차 냉각부(130)를 통과한 코팅사(10)를 저수조에 저장된 냉각수를 통과시켜 2차 냉각시키는 2차 냉각부(140), 상기 2차 냉각부(140)를 통과한 코팅사(10)의 장력 조절 및 건조 기능을 수행하는 건조부(150), 상기 건조부(150)를 통과한 코팅사(10)를 권취하는 회수용 릴(161)이 회전 가능하게 장착되는 언로더샤프트(162)를 구비한 코팅사 회수부(160)를 포함한다. Referring to FIG. 2, the resin-coated yarn manufacturing system includes a yarn supply unit 110 to which a yarn reel 112 to be coated is mounted, and a yarn 11 that is unwound and transported from the yarn supply unit 110 passes through the resin A coolant mist (M ) and cooling air are sprayed to perform primary cooling, and the coating yarn 10 passing through the primary cooling unit 130 passes through the cooling water stored in the water tank for secondary cooling. unit 140, a drying unit 150 that performs tension control and drying functions of the coated yarn 10 that has passed through the secondary cooling unit 140, and the coated yarn 10 that has passed through the drying unit 150 It includes a coated yarn recovery unit 160 having an unloader shaft 162 to which a recovery reel 161 for winding the yarn is rotatably mounted.
상기 원사 공급부(110)는 원사(11)가 감겨진 원사 릴(112)이 피더샤프트(111)에 설치된다. 상기 피더샤프트(111)는 원사 공급부(110)에 회전 가능하게 설치될 수 있다. 따라서 피더샤프트(111)가 회전하게 되면 원사 릴(112)이 함께 회전하여 원사가 풀려나오게 된다. 그러나 피더샤프트(111)의 중심축이 원사(11)의 이송 방향과 동일하거나 원사(11)의 이송 방향에 대해 일정 각도로 비스듬하게 배치되는 경우, 피더샤프트(111)가 원사 공급부(110)에 고정되게 설치된 상태에서 원사(11)가 원사 릴(112)에서 풀려져 나와 이송될 수 있다. In the yarn supply unit 110, a yarn reel 112 on which yarn 11 is wound is installed on a feeder shaft 111. The feeder shaft 111 may be rotatably installed in the yarn supply unit 110 . Therefore, when the feeder shaft 111 rotates, the yarn reel 112 rotates together to release the yarn. However, when the central axis of the feeder shaft 111 is the same as the conveying direction of the yarn 11 or is disposed obliquely at a certain angle with respect to the conveying direction of the yarn 11, the feeder shaft 111 is attached to the yarn supply unit 110 In a fixedly installed state, the yarn 11 may be released from the yarn reel 112 and transported.
수지코팅부(120)는 펠릿 형태의 핫멜트 수지와 무기입자(14)(도 1 참조)를 공급하는 호퍼(122)와, 상기 호퍼(122)를 통해 공급된 핫멜트 수지를 가열하여 용융하고 용융된 핫멜트 수지에 무기입자를 혼합하면서 수지 혼합물(12)(도 1 참조)을 제조하여 이송하는 용융압출기(121), 상기 용융압출기(121)의 토출구에 연통되게 설치되어 용융압출기(121)에서 만들어진 수지 혼합물(12)을 공급받는 코팅노즐(123)을 포함한다. The resin coating unit 120 includes a hopper 122 for supplying hot melt resin in the form of pellets and inorganic particles 14 (see FIG. 1), and the hot melt resin supplied through the hopper 122 is heated to melt and melt. A melt extruder 121 for producing and transporting a resin mixture 12 (see FIG. 1) while mixing inorganic particles with hot melt resin, and a resin made in the melt extruder 121 installed in communication with the discharge port of the melt extruder 121 A coating nozzle 123 receiving the mixture 12 is included.
상기 원사 공급부(110)에서 풀려져서 이송되는 원사(11)는 코팅노즐(123)을 통과하면서 표면에 고온의(대략 190℃ ~ 210℃ 정도) 수지 혼합물(12)이 코팅되어 코팅사(10)가 된다. 이 때 원사(11)의 표면에 코팅된 수지 혼합물(12)은 경화되지 않은 상태이므로 바로 냉각수를 고속으로 통과하게 되면 수지 혼합물(12)이 물의 저항에 의해 손상되거나 변형되어 불균일하게 되고, 구형도와 중심도가 낮아지게 된다. The yarn 11 that is released and transported from the yarn supply unit 110 is coated with a high-temperature (approximately 190 ° C. to 210 ° C.) resin mixture 12 on the surface while passing through the coating nozzle 123, so that the coated yarn 10 becomes At this time, since the resin mixture 12 coated on the surface of the yarn 11 is in an uncured state, when it passes through the cooling water at high speed, the resin mixture 12 is damaged or deformed by the resistance of the water and becomes non-uniform, and the sphericity and centrality will decrease.
이에 코팅노즐(123)을 통과한 코팅사(10)를 냉각수가 저장된 2차 냉각부(140)로 바로 이송하여 냉각하지 않고, 냉각수 미스트(M) 및 냉각공기를 분사하는 1차 냉각부(130)에서 1차적으로 냉각시킨 후 냉각수가 저장되어 있는 2차 냉각부(140)로 이송하여 2차 냉각한다. Therefore, the coating yarn 10 passing through the coating nozzle 123 is directly transported to the secondary cooling unit 140 where the cooling water is stored, and the primary cooling unit 130 sprays cooling water mist (M) and cooling air without cooling. After being primarily cooled in ), it is transferred to the secondary cooling unit 140 in which cooling water is stored and is secondaryly cooled.
이를 위한 1차 냉각부(130)는 도 2 내지 도 4에 도시한 것과 같이, 코팅사(10)가 통과하는 1차 냉각챔버(131)와, 상기 1차 냉각챔버(131)의 상측에 설치되어 하측으로 냉각수 미스트(M)를 분사하는 복수의 미스트노즐(132)과, 상기 1차 냉각챔버(131) 내부로 냉각공기를 분사하는 에어노즐(133)을 포함할 수 있다. As shown in FIGS. 2 to 4 , the primary cooling unit 130 for this purpose is installed in the primary cooling chamber 131 through which the coating yarn 10 passes, and on the upper side of the primary cooling chamber 131. It may include a plurality of mist nozzles 132 for spraying cooling water mist M downward, and an air nozzle 133 for spraying cooling air into the primary cooling chamber 131.
상기 복수의 미스트노즐(132)은 코팅사(10)의 이동 경로를 따라 일정한 간격으로 배열되는 것이 바람직하다. 이 때 도 4에 도시한 것과 같이 복수의 미스트노즐(132)은 코팅사(10)의 이동 경로의 양측에 소정의 간격으로 배열되고, 미스트노즐(132)의 토출구가 지면(地面)에 대해 연직한 축에 대해 소정의 각도로 경사지게 설치되어 코팅사(10)를 향해 냉각수 미스트(M)를 분사하도록 구성됨이 바람직하다. The plurality of mist nozzles 132 are preferably arranged at regular intervals along the moving path of the coating yarn 10 . At this time, as shown in FIG. 4, a plurality of mist nozzles 132 are arranged at predetermined intervals on both sides of the moving path of the coating yarn 10, and the discharge port of the mist nozzle 132 is perpendicular to the ground It is preferably installed inclined at a predetermined angle with respect to one axis and configured to spray the cooling water mist (M) toward the coating yarn (10).
이와 같이 복수의 미스트노즐(132)이 코팅사(10)의 이동 경로의 양측에서 배열되고, 각각이 지면(地面)에 대해 연직한 축에 대해 일정한 각도로 경사지게 설치되어 코팅사(10)를 향해 냉각수 미스트(M)를 분사하도록 구성되면, 냉각수 미스트(M)가 넓은 영역에 걸쳐 퍼져서 분사되고, 코팅사(10)의 상단부 뿐만 아니라 측부와 하부까지도 대체로 균일하게 접촉하여 균일한 냉각 효과를 얻을 수 있다. 즉, 냉각수 미스트(M)가 코팅사(10)의 바로 상측에서 연직한 방향으로 냉각수 미스트(M)를 분사하면 냉각수 미스트(M)의 퍼지는 영역이 상대적으로 좁아질 수 있고, 냉각수 미스트(M)가 코팅사(10)의 상단부에만 묻을 수 있지만, 미스트노즐(132)이 코팅사(10)의 상부 양측에서 비스듬하게 냉각수 미스트(M)를 분사하면 냉각수 미스트(M)가 넓은 영역에 걸쳐 분사되고, 코팅사(10)의 상단부와 측부, 하부에도 묻을 수 있게 되어 코팅사(10) 전체에 걸쳐 대체로 균일하게 냉각 효과를 얻을 수 있는 이점이 있다. In this way, a plurality of mist nozzles 132 are arranged on both sides of the moving path of the coating yarn 10, and each is installed inclined at an angle with respect to an axis perpendicular to the ground toward the coating yarn 10 When the cooling water mist (M) is configured to be sprayed, the cooling water mist (M) is spread and sprayed over a wide area, and not only the upper part of the coating yarn 10 but also the side and lower parts are generally uniformly contacted to obtain a uniform cooling effect. there is. That is, when the cooling water mist (M) is sprayed in a vertical direction directly above the coating yarn 10, the spreading area of the cooling water mist (M) can be relatively narrowed, and the cooling water mist (M) Although can only be applied to the top of the coated yarn 10, when the mist nozzle 132 sprays the coolant mist M obliquely from both sides of the upper part of the coated yarn 10, the coolant mist M is sprayed over a wide area , There is an advantage in that the cooling effect can be obtained substantially uniformly over the entire coating yarn 10 by being able to be buried on the top, side, and bottom of the coated yarn 10.
상기 복수의 미스트노즐(132)에 의해 분사되는 냉각수 미스트(M)의 분사 영역을 더욱 넓히고 균일한 미스트 분사를 도모하기 위하여, 도 5에 도시한 것과 같이 복수의 미스트노즐(132)이 코팅사(10)의 이동 경로에 대해서도 일정한 각도로 경사지게 설치되어 코팅사(10)의 이동 경로에 대해 비스듬하게 냉각수 미스트(M)를 분사하게 구성할 수도 있을 것이다. In order to further widen the spray area of the cooling water mist M sprayed by the plurality of mist nozzles 132 and promote uniform mist spray, as shown in FIG. 5, a plurality of mist nozzles 132 are provided with a coating yarn 10) may also be installed at an angle to the movement path so that the cooling water mist M is sprayed obliquely with respect to the movement path of the coating yarn 10.
미스트노즐(132)에서 분사되는 냉각수 미스트(M)의 온도는 대략 8~15℃ 정도이고, 분사 압력은 0.7 ~ 1.5 ㎏/㎠, 분사 유량은 0.15~1.2 ℓ/min 인 것이 바람직하다. 1차 냉각부(130)에서 분사되는 냉각수 미스트(M)는 입자가 작을수록 냉각효과가 우수한 것으로 확인되었다.It is preferable that the temperature of the cooling water mist M sprayed from the mist nozzle 132 is about 8 to 15° C., the spray pressure is 0.7 to 1.5 kg/cm 2 , and the spray flow rate is 0.15 to 1.2 L/min. It was confirmed that the cooling effect of the cooling water mist M sprayed from the primary cooling unit 130 is excellent as the particles are smaller.
상기 에어노즐(133)은 상기 미스트노즐(132)의 사이사이에 배치되어 하측으로 냉각공기를 분사하여 냉각수 미스트(M)와 함께 냉각 작용을 한다. The air nozzle 133 is disposed between the mist nozzles 132 and injects cooling air downward to perform a cooling action together with the cooling water mist (M).
또한 제조시스템 전체 크기의 증가를 최소화하면서 1차 냉각챔버(131)에서 충분한 서냉 효과를 얻기 위하여, 도 6에 도시한 것과 같이 상기 1차 냉각챔버(131) 내에서 코팅사(10)가 지그재그 형태로 이동하도록 1차 냉각챔버(131)의 양측면에 코팅사(10)가 감겨지면서 통과하는 복수의 가이드부재(134)가 설치될 수 있다. 상기 가이드부재(134)는 풀리 또는 롤을 사용하여 구성할 수 있다. In addition, in order to obtain a sufficient slow cooling effect in the primary cooling chamber 131 while minimizing the increase in the overall size of the manufacturing system, as shown in FIG. A plurality of guide members 134 passing through while the coating thread 10 is wound may be installed on both sides of the primary cooling chamber 131 so as to move. The guide member 134 may be configured using a pulley or a roll.
다시 도 2를 참조하면, 2차 냉각부(140)는 코팅사(10)의 이송 경로를 기준으로 1차 냉각부(130)의 하류측에 배치되고, 1차 냉각부(130)를 통과하면서 1차로 냉각된 코팅사(10)가 2차 냉각부(140)의 저수조(141)에 저장된 냉각수에 침지되면서 충분히 냉각된 후 이송될 수 있도록 구성된다. Referring back to FIG. 2 , the secondary cooling unit 140 is disposed on the downstream side of the primary cooling unit 130 based on the transport path of the coated yarn 10, while passing through the primary cooling unit 130. The firstly cooled coating yarn 10 is immersed in the cooling water stored in the water tank 141 of the secondary cooling unit 140 and is sufficiently cooled and then transported.
2차 냉각부(140)의 저수조(141)에는 코팅사(10)를 저수조(141)의 냉각수 내로 안내하는 상류측 가이드롤(142)과 침수 가이드롤(143) 및 하류측 가이드롤(144)이 설치될 수 있다. In the reservoir 141 of the secondary cooling unit 140, an upstream guide roll 142, a submerged guide roll 143, and a downstream guide roll 144 guide the coated yarn 10 into the cooling water of the reservoir 141 can be installed.
상기 건조부(150)는 2차 냉각부(140)의 하류측에 설치되어, 코팅사(10)의 장력을 일정하게 유지하면서 코팅사(10)의 표면에 묻은 물기를 제거하여 건조시키는 작용을 하도록 구성된다. The drying unit 150 is installed on the downstream side of the secondary cooling unit 140, and removes moisture from the surface of the coating yarn 10 while maintaining a constant tension of the coating yarn 10 to dry it. is configured to
도 3을 참조하면, 건조부(150)는 상기 2차 냉각부(140)와 코팅사 회수부(160) 사이에 배치되는 직육면체의 함체 형태로 된 하우징(151)과, 상기 하우징(151) 내부에 상하로 배치되고 상기 2차 냉각부(140)를 통과한 코팅사(10)가 복수회 감겨지면서 통과하는 한 쌍의 탈수롤러(152)와, 상기 하우징(151)의 내측에 압축공기를 분사하여 코팅사를 건조시키는 에어분사기(153)를 포함할 수 있다. Referring to FIG. 3 , the drying unit 150 includes a housing 151 in the form of a rectangular parallelepiped body disposed between the secondary cooling unit 140 and the coated yarn recovery unit 160, and the inside of the housing 151. A pair of dewatering rollers 152, which are arranged vertically and pass through while the coating yarn 10 passing through the secondary cooling unit 140 is wound multiple times, and compressed air is injected into the inside of the housing 151. It may include an air sprayer 153 for drying the coating yarn.
탈수롤러(152)는 2개가 한 쌍으로 구성되어 하우징(151) 내부에서 서로 동일한 방향으로 회전하면서 코팅사(10)를 안내하며 탈수 및 장력 유지 기능을 하게 된다. 이 때 코팅사(10)가 탈수롤러(152)의 외면에서 미끄러지지 않고 정확하게 안내되면서 이송될 수 있도록 탈수롤러(152)의 외면에 코팅사(10)가 삽입되면서 안내되는 가이드홈(152a)이 원주방향을 따라 나선형으로 형성된다. Two dehydration rollers 152 are composed of a pair and rotate in the same direction inside the housing 151 to guide the coating yarn 10 and perform dehydration and tension maintenance functions. At this time, the guide groove 152a guided while the coating yarn 10 is inserted into the outer surface of the dewatering roller 152 is formed so that the coating yarn 10 can be accurately guided and transported without slipping on the outer surface of the dewatering roller 152. It is formed in a spiral along the direction.
상기 에어분사기(153)는 에어펌프(미도시)와 연결되어 압축공기를 분사하는 공지의 에어분사노즐을 적용하여 구성할 수 있다. The air sprayer 153 may be configured by applying a known air spray nozzle that is connected to an air pump (not shown) to spray compressed air.
도 2를 참조하면, 상기 코팅사 회수부(160)는 건조부(150)를 통과하여 건조된 코팅사(10)를 권취하는 원통형의 회수용 릴(161)이 회전 가능하게 장착되는 언로더샤프트(162)를 구비한다. 상기 언로더샤프트(162)는 도면에 도시하지 않은 모터로부터 동력을 전달받아 회전하여 코팅사(10)를 회수용 릴(161)에 권취한다. 따라서 언로더샤프트(162)가 모터(미도시)로부터 동력을 전달받아 일정한 속도로 회전하게 되면 코팅사(10)가 회수용 릴(161)에 권취되는데, 이 때 코팅사(10)가 일정한 힘으로 당겨지게 되므로 상기 원사 공급부(110)의 피더샤프트(111)에 장착된 원사 릴(112)의 원사(11)가 풀리면서 수지코팅부(120) 쪽으로 일정한 속도로 이송되며 수지 혼합물의 코팅과 냉각, 건조의 일련의 과정들이 연속적으로 진행된다. Referring to FIG. 2, the coated yarn recovery unit 160 is an unloader shaft to which a cylindrical recovery reel 161 rotatably mounted to wind the coated yarn 10 dried through the drying unit 150 (162). The unloader shaft 162 rotates by receiving power from a motor (not shown) to wind the coated thread 10 around the reel 161 for recovery. Therefore, when the unloader shaft 162 receives power from a motor (not shown) and rotates at a constant speed, the coated yarn 10 is wound around the recovery reel 161. At this time, the coated yarn 10 has a constant force Since the yarn 11 of the yarn reel 112 mounted on the feeder shaft 111 of the yarn supply unit 110 is unwound and transported toward the resin coating unit 120 at a constant speed, coating and cooling of the resin mixture , a series of drying processes proceed continuously.
상기한 것과 같은 구성을 갖는 수지 코팅사 제조시스템을 이용하여 수지 코팅사를 제조하는 방법에 대해 상세히 설명하면 다음과 같다.A detailed description of the method for manufacturing the resin-coated yarn using the resin-coated yarn manufacturing system having the configuration described above is as follows.
먼저 코팅할 원사(11)가 감겨진 릴(reel)을 피더샤프트(111)에 장착하고, 원사의 다른 일단을 수지 코팅사 제조 시스템의 각 구성요소, 즉 수지코팅부(120)의 코팅노즐(123)과 1차 냉각부(130), 2차 냉각부(140), 건조부(150)를 통과시킨 후 코팅사 회수부(160)의 언로더샤프트(162)에 장착된 회수용 릴(161)에 연결한 후 언로더샤프트(162)를 회전시키면 코팅사가 회수용 릴(161)에 감기면서 이송되고, 이 때 피더샤프트(111)에 장착된 원사(1)가 원사 릴(112)에서 풀려져 나오면서 원사(11)가 일정한 속도로 수지코팅부(120) 쪽으로 이송된다. First, the reel on which the yarn 11 to be coated is wound is mounted on the feeder shaft 111, and the other end of the yarn is applied to each component of the resin-coated yarn manufacturing system, that is, the coating nozzle of the resin coating unit 120 ( 123), the primary cooling unit 130, the secondary cooling unit 140, and the drying unit 150, and then the recovery reel 161 mounted on the unloader shaft 162 of the coated yarn recovery unit 160. After connecting to ), when the unloader shaft 162 is rotated, the coated yarn is transferred while being wound around the recovery reel 161, and at this time, the yarn 1 mounted on the feeder shaft 111 is released from the yarn reel 112 While coming out, the yarn 11 is transferred toward the resin coating part 120 at a constant speed.
피더샤프트(111)에서 풀려져 나온 원사(11)는 일정한 속도(대략 500~600 m/min)로 이송되면서 수지코팅부(120)의 코팅노즐(123)을 통과하게 된다. 이 때 수지코팅부(120)에서는 호퍼(122)를 통해 투입된 핫멜트 수지를 가열하여 용융하고, 용융된 핫멜트 수지에 무기입자를 혼합하여 수지 혼합물(12)을 만들어 코팅노즐(122)로 공급한다. 따라서 코팅노즐(122)을 통과하는 원사(11)의 표면에 소정의 두께로 고온의 수지 혼합물(12)이 코팅되어 코팅사(10)가 형성된다. The yarn 11 released from the feeder shaft 111 passes through the coating nozzle 123 of the resin coating unit 120 while being transported at a constant speed (approximately 500 to 600 m/min). At this time, in the resin coating unit 120, the hot melt resin introduced through the hopper 122 is heated and melted, and inorganic particles are mixed with the melted hot melt resin to form a resin mixture 12 and supplied to the coating nozzle 122. Therefore, the high-temperature resin mixture 12 is coated to a predetermined thickness on the surface of the yarn 11 passing through the coating nozzle 122 to form the coated yarn 10.
수지코팅부(120)의 코팅노즐(122)을 통과한 코팅사(10)는 1차 냉각부(130)의 1차 냉각챔버(130)를 통과하게 된다. 이 때 1차 냉각챔버(130)의 상측에서 미스트노즐(132)이 냉각수 미스트(M)를 분사함과 동시에 에어노즐(133)에서 냉각 공기가 분사되어 코팅사(10)가 1차적으로 냉각된다. 코팅사(10)가 1차 냉각챔버(130) 내부로 진입할 때 온도는 대략 190℃ ~ 210℃ 정도이다. The coated yarn 10 passing through the coating nozzle 122 of the resin coating unit 120 passes through the primary cooling chamber 130 of the primary cooling unit 130 . At this time, the mist nozzle 132 sprays the cooling water mist M from the upper side of the primary cooling chamber 130, and at the same time, cooling air is sprayed from the air nozzle 133, so that the coated yarn 10 is primarily cooled. . When the coating yarn 10 enters the primary cooling chamber 130, the temperature is approximately 190 °C to 210 °C.
1차 냉각부(130)를 통과하면서 냉각된 코팅사(10)는 1차 냉각챔버(130)의 후방에 연이어서 배치된 2차 냉각부(140)의 저수조(140)에 저장된 냉각수를 통과하면서 2차적으로 냉각된다. 코팅사(10)가 1차 냉각부(130)를 통과할 때 온도는 대략 25~30℃로 냉각되고, 이 후 2차 냉각부(140)를 통과하게 되면 대략 15~20℃ 정도로 냉각된다. While passing through the primary cooling unit 130, the coated yarn 10 cooled while passing through the cooling water stored in the reservoir 140 of the secondary cooling unit 140 disposed successively at the rear of the primary cooling chamber 130. cooled secondarily. When the coated yarn 10 passes through the primary cooling unit 130, the temperature is cooled to approximately 25 to 30 °C, and then, when passing through the secondary cooling unit 140, it is cooled to approximately 15 to 20 °C.
2차 냉각부(140)를 통과한 코팅사(10)는 건조부(150)의 하우징(151) 내부로 진입한 후 한 쌍의 탈수롤러(152)를 복수회 거치면서 물기가 제거된 다음, 코팅사 회수부(160)의 회수용 릴(161)에 권취된다. After passing through the secondary cooling unit 140, the coated yarn 10 enters the inside of the housing 151 of the drying unit 150, and then passes through a pair of dewatering rollers 152 multiple times to remove moisture, It is wound on the recovery reel 161 of the coating yarn recovery unit 160.
회수용 릴(161)에 권취된 코팅사(10)는 이후 숙성실로 옮겨진 후 일정 온도 범위에서 일정 시간 동안 숙성(aging) 과정을 거쳐 인장강도 및 접착력이 증대된 후 출하된다. The coated yarn 10 wound on the recovery reel 161 is then moved to a maturation room and subjected to an aging process at a predetermined temperature range for a predetermined period of time to increase tensile strength and adhesive strength before being shipped.
전술한 것과 같이 본 발명의 수지 코팅사 제조시스템은 코팅노즐(123)을 통과하면서 원사(11)의 표면에 수지 혼합물(12)이 코팅된 코팅사(10)가 저수조(141) 내의 냉각수를 통과하기 전에 1차 냉각부(130)의 1차 냉각챔버(131)에서 냉각수 미스트(M) 및 냉각공기에 의해 서서히 냉각되므로(도 8 참조) 원사(11) 표면의 수지 혼합물(12)이 손상되거나 변형되는 현상을 최소화할 수 있다. 따라서 코팅사(10) 최종 제품의 구형도와 중심도를 대폭 향상시킬 수 있다. As described above, in the resin-coated yarn manufacturing system of the present invention, the coated yarn 10 coated with the resin mixture 12 on the surface of the yarn 11 passes through the cooling water in the water reservoir 141 while passing through the coating nozzle 123 The resin mixture 12 on the surface of the yarn 11 is damaged or deformation can be minimized. Therefore, the sphericity and centrality of the final product of the coated thread 10 can be significantly improved.
본 발명의 제조시스템에 의해 제조된 수지 코팅사의 성능을 확인하기 위하여, 핫멜트 수지로서 열가소성 폴리우레탄(TPU) 수지 100 중량부에 대해 무기입자로서 ZnO, TiO2 를 각각 1.0, 1.5, 2.0, 2.5 중량부씩 혼합하여 수지코팅부(120)에 투입하여 수지 혼합물(12)들을 제작하고, 원사(11)로서 PET 125De 를 적용하여 코팅사 샘플을 제조한 다음, 각각의 코팅사 샘플에 대해 인장강도 및 신도, 구형도, 중심도를 측정하였다. In order to confirm the performance of the resin-coated yarn produced by the manufacturing system of the present invention, 1.0, 1.5, 2.0, and 2.5 weights of ZnO and TiO 2 as inorganic particles were added to 100 parts by weight of thermoplastic polyurethane (TPU) resin as a hot melt resin, respectively. The mixture is mixed in portions and put into the resin coating unit 120 to prepare the resin mixtures 12, and PET 125De is applied as the yarn 11 to prepare coated yarn samples, and then the tensile strength and elongation of each coated yarn sample , sphericity, and centrality were measured.
도 7 및 도 8은 각각 무기입자로서 ZnO와 TiO2를 적용하였을 때 배합량에 따른 인장강신도 그래프를 나타낸 것으로, 무기입자의 함량이 1.0~2.5 중량부까지는 강도의 변화가 거의 없는 것으로 나타났으며, 신도에서는 차이가 나타났다. 이중에서 ZnO 2.0 중량부를 함유한 경우가 신도의 변화가 거의 없으며, 초기탄성률 증가가 큰 것으로 확인되었다.7 and 8 show graphs of tensile strength according to the blending amount when ZnO and TiO 2 are applied as inorganic particles, respectively, and it is shown that there is little change in strength until the content of inorganic particles is 1.0 to 2.5 parts by weight, Differences appeared in Shinto. Among them, it was confirmed that the case containing 2.0 parts by weight of ZnO showed little change in elongation and a large increase in initial modulus of elasticity.
또한 코팅사 샘플의 구형도는 75% 이상이고, 중심도가 1.2 이상인 것으로 확인되었다. In addition, it was confirmed that the sphericity of the coated yarn sample was 75% or more, and the centrality was 1.2 or more.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the detailed description of the present invention described above has been described with reference to preferred embodiments of the present invention, those skilled in the art or those having ordinary knowledge in the art will find the spirit of the present invention described in the claims to be described later. And it will be understood that the present invention can be variously modified and changed without departing from the technical scope.
본 발명은 접착성 원단에 사용되는 핫멜트 수지 코팅사 또는 의류나 신발, 패션 소품 등의 제조에 사용되는 수지 코팅사 및 그의 제조와 관련된 기술분야에 적용될 수 있다.The present invention can be applied to hot-melt resin-coated yarns used in adhesive fabrics or resin-coated yarns used in the manufacture of clothes, shoes, fashion accessories, etc., and technical fields related to their manufacture.

Claims (15)

  1. 일정 온도로 가열되어 용융된 핫멜트 수지에 무기입자를 혼합한 수지 혼합물을 원사의 표면에 코팅한 후 냉각하여 제조된 수지 코팅사. Resin-coated yarn manufactured by coating the surface of yarn with a resin mixture in which inorganic particles are mixed with hot-melt resin heated to a certain temperature and then cooled.
  2. 제1항에 있어서, 상기 무기입자는 SiO2, CaCO3, CaSO4, TiO2, ZnO, ZrO2, Al2(SO4)3, WS2 , 산화그래핀(Graphene oxide), UV Shielding nanopowder 로 이루어진 그룹에서 선택된 1개 이상으로, 50 ㎚ ~ 50㎛ 의 크기를 가지며, 핫멜트 수지 100 중량부에 대해 1.5 ~ 2.0 중량부로 혼합되는 수지 코팅사. The method of claim 1, wherein the inorganic particles are SiO 2 , CaCO 3 , CaSO 4 , TiO 2 , ZnO, ZrO 2 , Al 2 (SO 4 ) 3 , WS 2 , graphene oxide, and UV shielding nanopowder. At least one selected from the group consisting of, having a size of 50 ㎚ ~ 50㎛, resin coated yarn mixed in 1.5 ~ 2.0 parts by weight based on 100 parts by weight of hot melt resin.
  3. 제1항에 있어서, 상기 원사의 표면에 수지 혼합물이 코팅된 후 소정의 속도로 이송되면서 냉각수 미스트(mist) 및 냉각 공기에 의해 1차 냉각된 다음 냉각수가 저장된 저수조를 통과하면서 2차 냉각되는 과정을 통해 제조된 수지 코팅사. The process of claim 1, wherein the yarn is firstly cooled by cooling water mist and cooling air while being transported at a predetermined speed after the resin mixture is coated on the surface of the yarn, and then is secondarily cooled while passing through a water storage tank in which the cooling water is stored. Resin-coated yarn manufactured through
  4. 제3항에 있어서, 상기 원사는 냉각수 미스트 및 냉각 공기가 분사되는 1차 냉각챔버를 지그재그로 이동하면서 냉각되는 수지 코팅사. The resin-coated yarn according to claim 3, wherein the yarn is cooled while moving in a zigzag manner in a primary cooling chamber in which cooling water mist and cooling air are sprayed.
  5. 제1항에 있어서, 상기 수지 코팅사는 구형도가 75% 이상이고, 중심도가 1.2 이상인 수지 코팅사. The resin-coated yarn according to claim 1, wherein the resin-coated yarn has a sphericity of 75% or more and a centrality of 1.2 or more.
  6. 핫멜트 수지에 무기입자가 혼합된 수지 혼합물이 원사의 표면에 코팅된 수지 코팅사를 제조하는 제조시스템으로서, A manufacturing system for manufacturing a resin-coated yarn in which a resin mixture in which inorganic particles are mixed with a hot melt resin is coated on the surface of the yarn,
    코팅할 원사가 감겨진 원사 릴(reel)이 장착되는 원사 공급부;A yarn supply unit in which a yarn reel on which a yarn to be coated is wound is mounted;
    원사 공급부에서 풀려져서 이송되는 원사가 통과하는 코팅노즐을 포함하며, 용융된 핫멜트 수지에 무기입자를 혼합한 수지 혼합물을 상기 코팅노즐로 공급하여 원사의 표면에 수지 혼합물을 코팅하면서 압출하는 수지코팅부;A resin coating unit including a coating nozzle through which the yarn released and transported from the yarn supply unit passes, and extruding while coating the resin mixture on the surface of the yarn by supplying a resin mixture in which inorganic particles are mixed with molten hot melt resin to the coating nozzle ;
    상기 수지코팅부를 통과하여 이송되는 수지 혼합물이 코팅된 원사(이하 '코팅사')에 냉각수 미스트와 냉각공기를 분사하여 1차 냉각하는 1차 냉각부;a primary cooling unit for primary cooling by spraying cooling water mist and cooling air to yarns coated with a resin mixture (hereinafter referred to as 'coated yarns') transported through the resin coating unit;
    상기 1차 냉각부를 통과한 코팅사를 저수조에 저장된 냉각수를 통과시켜 2차 냉각시키는 2차 냉각부; 및,A secondary cooling unit for secondary cooling by passing the cooling water stored in the water storage tank through the coated yarn passing through the primary cooling unit; and,
    상기 2차 냉각부를 통과한 코팅사를 권취하는 회수용 릴이 회전 가능하게 장착되는 언로더샤프트를 구비한 코팅사 회수부;a coated yarn recovery unit having an unloader shaft to which a recovery reel for winding the coated yarn passing through the secondary cooling unit is rotatably mounted;
    를 포함하는 수지 코팅사 제조시스템.Resin coating yarn manufacturing system comprising a.
  7. 제6항에 있어서, 상기 1차 냉각부는, 코팅사가 통과하는 1차 냉각챔버와, 상기 1차 냉각챔버의 상측에 설치되어 하측으로 냉각수 미스트를 분사하는 복수의 미스트노즐과, 상기 1차 냉각챔버 내부로 냉각공기를 분사하는 에어노즐을 포함하는 수지 코팅사 제조시스템.The method of claim 6, wherein the primary cooling unit comprises a primary cooling chamber through which the coating yarn passes, a plurality of mist nozzles installed on the upper side of the primary cooling chamber and spraying cooling water mist downward, and the primary cooling chamber A resin-coated yarn manufacturing system including an air nozzle for injecting cooling air into the inside.
  8. 제7항에 있어서, 상기 1차 냉각부는, 상기 1차 냉각챔버 내에서 상기 코팅사가 지그재그 형태로 이동하도록 1차 냉각챔버의 양측면에 설치되어 상기 코팅사가 감겨지면서 통과하는 복수의 가이드부재를 더 포함하는 수지 코팅사 제조시스템.The method of claim 7, wherein the primary cooling unit further includes a plurality of guide members installed on both sides of the primary cooling chamber so that the coating yarn moves in a zigzag shape within the primary cooling chamber and passes through the coating yarn while being wound. Resin coating yarn manufacturing system.
  9. 제7항에 있어서, 상기 복수의 미스트노즐은 코팅사의 이동 경로의 양측에 일정한 간격으로 배열되어 코팅사를 향해 냉각수 미스트를 분사하는 수지 코팅사 제조시스템.The system of claim 7, wherein the plurality of mist nozzles are arranged at regular intervals on both sides of the moving path of the coated yarn to spray cooling water mist toward the coated yarn.
  10. 제9항에 있어서, 상기 복수의 미스트노즐은 지면(地面)에 대해 연직한 축에 대해 일정한 각도로 경사지게 설치되어 코팅사를 향해 냉각수 미스트를 분사하는 수지 코팅사 제조시스템.10. The system according to claim 9, wherein the plurality of mist nozzles are installed inclined at a predetermined angle with respect to an axis perpendicular to the ground to spray cooling water mist toward the coated yarn.
  11. 제9항에 있어서, 상기 에어노즐은 상기 미스트노즐의 사이사이에 배치되어 하측으로 냉각공기를 분사하는 수지 코팅사 제조시스템.[Claim 10] The system of claim 9, wherein the air nozzle is disposed between the mist nozzles to inject cooling air downward.
  12. 제6항에 있어서, 상기 2차 냉각부와 코팅사 회수부 사이에 배치되는 하우징과, 상기 하우징 내부에 상하로 배치되어 상기 2차 냉각부를 통과한 코팅사가 감겨지면서 통과하는 한 쌍의 탈수롤러와, 상기 하우징의 내측에 압축공기를 분사하여 코팅사를 건조시키는 에어분사유닛을 포함하는 건조부를 더 포함하는 수지 코팅사 제조시스템.The method of claim 6, a housing disposed between the secondary cooling unit and the coated yarn recovery unit, and a pair of dewatering rollers disposed vertically inside the housing and passing the coated yarn passing through the secondary cooling unit while being wound , The resin-coated yarn manufacturing system further comprising a drying unit including an air spray unit for spraying compressed air to the inside of the housing to dry the coated yarn.
  13. 제12항에 있어서, 상기 탈수롤러의 외면에 상기 코팅사가 삽입되면서 안내되는 가이드홈이 원주방향을 따라 나선형으로 형성된 수지 코팅사 제조시스템.[Claim 13] The system for manufacturing resin-coated yarn according to claim 12, wherein a guide groove guided while the coated yarn is inserted is spirally formed on an outer surface of the dewatering roller along a circumferential direction.
  14. 핫멜트 수지에 무기입자가 혼합된 수지 혼합물이 원사의 표면에 코팅된 수지 코팅사를 제조하는 방법으로서, A method for producing a resin-coated yarn in which a resin mixture in which inorganic particles are mixed with hot melt resin is coated on the surface of yarn,
    (S1) 원사를 일정한 속도로 이송하는 단계;(S1) feeding the yarn at a constant speed;
    (S2) 핫멜트 수지를 가열하여 용융하고, 용융된 핫멜트 수지에 무기입자를 혼합하여 만들어진 수지 혼합물이 공급되는 압출기에 상기 원사를 통과시켜 원사의 표면에 수지 혼합물을 코팅하여 코팅사를 형성하는 단계;(S2) heating and melting the hot melt resin and passing the yarn through an extruder supplied with a resin mixture made by mixing inorganic particles with the melted hot melt resin to coat the surface of the yarn with the resin mixture to form a coated yarn;
    (S3) 상기 수지 혼합물이 코팅된 코팅를 냉각수 미스트(mist) 및 냉각 공기를 분사하는 1차 냉각챔버를 통과시키면서 1차 냉각하는 단계;(S3) primary cooling while passing the coating coated with the resin mixture through a primary cooling chamber in which cooling water mist and cooling air are sprayed;
    (S4) 상기 1차 냉각챔버를 통과한 코팅사를 냉각수가 저장된 저수조를 통과시키면서 2차 냉각하는 단계; 및, (S4) secondary cooling while passing the coated yarn passing through the primary cooling chamber through a reservoir in which cooling water is stored; and,
    (S5) 상기 저수조를 통과한 코팅사를 권취하여 회수하는 단계;(S5) winding and recovering the coated yarn passing through the reservoir;
    를 포함하는 수지 코팅사의 제조 방법. Method for producing a resin coated yarn comprising a.
  15. 제14항에 있어서, 상기 코팅사가 1차 냉각챔버를 통과할 때 코팅사는 1차 냉각챔버 내부에서 지그재그로 이동하면서 냉각되는 수지 코팅사의 제조 방법. 15. The method of claim 14, wherein the coated yarn is cooled while moving zigzag inside the primary cooling chamber when the coated yarn passes through the primary cooling chamber.
PCT/KR2022/001501 2021-10-27 2022-01-27 Resin-coated yarn, and system and method for manufacturing same WO2023075034A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0144680 2021-10-27
KR1020210144680A KR20230060608A (en) 2021-10-27 2021-10-27 Thread Coated with Resin And Method for Manufacturing the Same
KR1020210166016A KR102546270B1 (en) 2021-11-26 2021-11-26 System for Manufacturing Thread Coated with Resin
KR10-2021-0166016 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023075034A1 true WO2023075034A1 (en) 2023-05-04

Family

ID=86160049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001501 WO2023075034A1 (en) 2021-10-27 2022-01-27 Resin-coated yarn, and system and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023075034A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054216A (en) * 2007-11-26 2009-05-29 (재)한국섬유기계연구소 Coating yarn cooling device of coating yarn manufacturing device
KR20090063199A (en) * 2009-05-29 2009-06-17 차용철 The foam coating method of textile of function characteristic
WO2011138284A1 (en) * 2010-05-07 2011-11-10 Bayer Materialscience Ag Process for the coating of textiles
KR20150113298A (en) * 2014-03-27 2015-10-08 (주)부성텍스텍 Yarn coating, producing method of the yarn coating, coated yarn and fabric including coated yarn
KR102082090B1 (en) * 2019-12-09 2020-02-26 박희대 Thermoplastic polyurethane coating yarn comprising hydrophobic nano silica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054216A (en) * 2007-11-26 2009-05-29 (재)한국섬유기계연구소 Coating yarn cooling device of coating yarn manufacturing device
KR20090063199A (en) * 2009-05-29 2009-06-17 차용철 The foam coating method of textile of function characteristic
WO2011138284A1 (en) * 2010-05-07 2011-11-10 Bayer Materialscience Ag Process for the coating of textiles
KR20150113298A (en) * 2014-03-27 2015-10-08 (주)부성텍스텍 Yarn coating, producing method of the yarn coating, coated yarn and fabric including coated yarn
KR102082090B1 (en) * 2019-12-09 2020-02-26 박희대 Thermoplastic polyurethane coating yarn comprising hydrophobic nano silica

Similar Documents

Publication Publication Date Title
CN111183008B (en) Process for the manufacture of fibrous material impregnated with thermoplastic polymer
JP2862338B2 (en) Flexible composite material
WO2014171625A1 (en) Electrospinning apparatus
CN100344678C (en) Monofilament reinforced rubber component and method of producing
CN110168149B (en) Device for electrospinning liquid polymer into nano-scale or submicron-scale fibers
CN101421197B (en) Process and device for manufacturing a composite strand
US20140299050A1 (en) Method for Manufacturing Ecotypic Artificial Leather or Leather-like and Automated Manufacturing Line Thereof
CN107866954B (en) Method and apparatus for manufacturing continuous fiber reinforced thermoplastic resin prepreg tape
JPH064246B2 (en) Flexible composite material and manufacturing method thereof
CN104015379B (en) A kind of thermoplastic resin prepreg preparation method and device thereof
SK5092000A3 (en) Method and apparatus for manufacturing a composite tape
KR100981727B1 (en) Monofilament thread and manufacturing method of it
WO2023075034A1 (en) Resin-coated yarn, and system and method for manufacturing same
CN112847925B (en) Continuous fiber reinforced 3D printing composite material melting and dipping system and method
WO2020111691A1 (en) Silicone-coating apparatus and coating method for elastic yarn
WO2018147526A1 (en) Preparation method and preparation apparatus of carbon fiber sheet molding compound
WO2010114298A2 (en) Method for manufacturing high stretchable coated yarn with air pocket and high stretchable coated yarn made by using the same, and method for manuacturing high stretchable fabric with air pocket and high stretchable fabric made by using the same
JP3315444B2 (en) Fiber reinforced thermoplastic resin structure and method for producing the same
KR102546270B1 (en) System for Manufacturing Thread Coated with Resin
CN113226683B (en) Method for producing fibrous material impregnated with thermoplastic polymer
CN114474484A (en) Method and equipment for manufacturing resin in-situ coated fiber precursor and application thereof
CN109457307B (en) Method for manufacturing three-proofing fiber
US3589333A (en) Apparatus for coating elongated filament with plastic
KR102680419B1 (en) Thread Coated with Different Kind of Adhesive Resin And Method for Manufacturing the Same
KR20230060608A (en) Thread Coated with Resin And Method for Manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE