WO2023074891A1 - Electric cylinder device - Google Patents

Electric cylinder device Download PDF

Info

Publication number
WO2023074891A1
WO2023074891A1 PCT/JP2022/040611 JP2022040611W WO2023074891A1 WO 2023074891 A1 WO2023074891 A1 WO 2023074891A1 JP 2022040611 W JP2022040611 W JP 2022040611W WO 2023074891 A1 WO2023074891 A1 WO 2023074891A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motion
output shaft
conversion mechanism
electric motor
motion conversion
Prior art date
Application number
PCT/JP2022/040611
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 小野田
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022173057A external-priority patent/JP2023067844A/en
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023074891A1 publication Critical patent/WO2023074891A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/28Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged apart from the brake

Definitions

  • the present invention relates to an electric cylinder device that supplies liquid to a supply target.
  • Patent Document 1 describes an example of an electric cylinder device that supplies brake fluid to a wheel cylinder.
  • the rotary motion of the electric motor is transmitted to the linear motion conversion mechanism via the motion transmission mechanism.
  • the linear motion conversion mechanism converts input rotational motion into linear motion and transmits it to the piston.
  • the brake fluid is supplied to the wheel cylinder from the hydraulic chamber in the cylinder. As a result, braking force is applied to the vehicle.
  • the electric motor is arranged coaxially with the linear motion conversion mechanism, and a planetary gear mechanism is employed as the motion transmission mechanism.
  • An electric cylinder device for solving the above-mentioned problems is an electric cylinder device in which a stator and a rotor of an electric motor are accommodated in a motor housing, an output shaft rotating integrally with the rotor protrudes from the motor housing, and rotational motion of the output shaft is achieved. is transmitted to the linear motion conversion mechanism by the motion transmission mechanism, the rotary motion of the rotary part of the linear motion conversion mechanism is converted into the linear motion of the linear motion conversion mechanism, and the piston in the cylinder converts the linear motion conversion It is a device driven by the linear motion of the linear motion part of the mechanism.
  • the electric motor and the linear motion conversion mechanism are arranged at positions where the axis of the output shaft and the axis of the rotating portion are deviated from each other, and the linear motion conversion mechanism is connected to the linear motion conversion mechanism.
  • the motor housing is located outside the radially projected image.
  • the electric motor and the linear motion conversion mechanism are arranged in such a manner that the axis of the output shaft and the axis of the rotating part are displaced. Therefore, a mechanism other than the planetary gear mechanism, such as a mechanism having a spur gear or a helical gear, can be employed as the motion transmission mechanism. Further, the motor housing is positioned outside the image of the linear motion conversion mechanism projected in the radial direction of the linear motion conversion mechanism. Therefore, the motor housing is not arranged at a position adjacent to the linear motion conversion mechanism in the radial direction of the linear motion conversion mechanism. This makes it possible to arrange various structures at positions adjacent to the linear motion converting mechanism in the radial direction.
  • the degree of freedom in designing the electric cylinder device can be improved.
  • FIG. 1 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with an electric cylinder device according to the first embodiment.
  • FIG. 2 is a diagram showing the positional relationship between the image of the electric motor and the image of the linear motion conversion mechanism on a virtual plane in the electric cylinder device of FIG.
  • FIG. 3 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with the electric cylinder device of the second embodiment.
  • FIG. 4 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with an electric cylinder device according to the third embodiment.
  • FIG. 5 is a schematic diagram showing a part of a modification of the electric cylinder device.
  • FIG. 6 is a schematic diagram showing a part of a modification of the electric cylinder device.
  • FIG. 1 shows an electric braking device 100 for a vehicle that includes an electric cylinder device 10 of this embodiment.
  • the electric braking device 100 has a wheel cylinder 110 .
  • the electric cylinder device 10 is connected to the wheel cylinder 110 via a fluid passage 120 . That is, the wheel cylinder 110 is the object to which brake fluid (an example of fluid) is supplied by the electric cylinder device 10 .
  • brake fluid an example of fluid
  • the fluid pressure in the wheel cylinder 110 increases. Thereby, a braking force is applied to the wheels of the vehicle.
  • the electric cylinder device 10 includes a main body case 20 , a substrate housing case 30 and a base member 40 .
  • the body case 20 has a rectangular parallelepiped shape.
  • the board housing case 30 is attached to the first main body side surface 21, which is the side surface on the right side in the figure.
  • the pedestal member 40 is arranged on the opposite side of the substrate housing case 30 with the body case 20 interposed therebetween.
  • a base member 40 is attached to the second body side surface 22, which is the side surface on the left side in the drawing, of the six side surfaces of the body case 20. As shown in FIG. That is, the substrate housing case 30 and the base member 40 are arranged so that the main body case 20 is positioned between them.
  • the body case 20 is formed with a cylinder through hole 23 and a rotary shaft through hole 24 that penetrate the body case 20 . That is, by forming the cylinder through hole 23 in the main body case 20, the first main body side surface 21 is formed with the first opening 23a, and the second main body side surface 22 is formed with the second opening 23b. Further, by forming the rotary shaft through-hole 24 in the main body case 20, a first opening 24a is formed in the first main body side surface 21 and a second opening 24b is formed in the second main body side surface 22. .
  • the first opening 24 a is closed by the board accommodation case 30 , while the first opening 23 a is not closed by the board accommodation case 30 .
  • the second opening 23b and the second opening 24b are closed by the base member 40, respectively.
  • the substrate housing case 30 is formed with a first housing chamber 31 that communicates with the inside of the rotary shaft through hole 24 and a second housing chamber 32 that is separated from the first housing chamber 31 .
  • a control board 12 for controlling the electric braking device 100 is arranged in the second accommodation chamber 32 .
  • a magnet 11 is arranged in the first housing chamber 31 as a rotation angle detector.
  • a rotation angle sensor 13 for detecting the rotation of the magnet 11 is provided on the control board 12 facing the magnet 11 .
  • the pedestal member 40 is formed with a pedestal housing chamber 41 communicating with both the inside of the cylinder through hole 23 and the inside of the rotary shaft through hole 24 . Therefore, the cylinder through-hole 23 and the rotating shaft through-hole 24 communicate with each other via the pedestal housing chamber 41 .
  • the electric cylinder device 10 includes an electric motor 50 , a motion transmission mechanism 60 , a linear motion converting mechanism 70 and a cylinder mechanism 80 .
  • the cylinder mechanism 80 is fixed to the body case 20 . Specifically, the cylinder mechanism 80 is inserted through the cylinder through-hole 23 of the main body case 20 . The cylinder mechanism 80 protrudes outside the main body case 20 from the first main body side surface 21 .
  • the cylinder mechanism 80 has a cylinder 81 supported by the body case 20 and a piston 82 arranged inside the cylinder 81 .
  • the cylinder 81 has a cylindrical portion 811 and a bottom wall 812 closing one end of the cylindrical portion 811 .
  • a hydraulic pressure chamber 83 for storing brake fluid is defined by a bottom wall 812 and a piston 82.
  • the hydraulic pressure chamber 83 is provided with a spring 84 that biases the piston 82 in the backward direction Z2, which is the direction in which the volume of the hydraulic pressure chamber 83 is expanded.
  • the piston 82 rectilinearly moves within the cylinder 81 in the backward direction Z2 and in the forward direction Z1, which is the reverse direction of the backward direction Z2.
  • the piston 82 linearly moves in the forward direction Z1
  • the piston 82 approaches the bottom wall 812, so the volume of the hydraulic pressure chamber 83 is reduced.
  • the brake fluid in hydraulic pressure chamber 83 is delivered to wheel cylinder 110 .
  • the piston 82 rectilinearly moves in the backward direction Z2
  • the piston 82 separates from the bottom wall 812, so the volume of the hydraulic pressure chamber 83 increases.
  • the hydraulic pressure within the wheel cylinder 110 is reduced, and the brake fluid is returned to the hydraulic pressure chamber 83 .
  • the direct-acting conversion mechanism 70 is supported by the body case 20 via a cylinder 81 .
  • the linear motion conversion mechanism 70 converts the rotary motion transmitted from the electric motor 50 into linear motion and transmits the linear motion to the piston 82 .
  • the linear motion conversion mechanism 70 is, for example, a ball screw mechanism or a feed screw mechanism.
  • the linear motion conversion mechanism 70 has a rotary member 71 that rotates in conjunction with the rotation of the electric motor 50 and a linear motion member 72 that linearly moves in a direction corresponding to the rotation direction of the rotary member 71 .
  • a nut is used as the rotating member 71
  • a screw disposed inside the nut is used as the linear motion member 72 .
  • the rotary member 71 corresponds to the "rotating portion of the linear motion conversion mechanism”
  • the linear motion member 72 corresponds to the "linear motion portion of the linear motion conversion mechanism”.
  • the linear motion member 72 can move back and forth in the direction along the axis 70 a of the linear motion converting mechanism 70 .
  • one of the directions along the axis 70a is the forward direction Z1 and the other is the backward direction Z2.
  • the linear motion member 72 pushes the piston 82 in the forward direction Z1.
  • the linear motion member 72 pulls the piston 82 in the backward direction Z2, and is further assisted by the urging force of the spring 84 and the hydraulic pressure in the hydraulic pressure chamber 83 in the backward direction Z2.
  • the piston 82 moves linearly.
  • the electric motor 50 comprises a motor housing 51 , a stator 52 , a rotor 53 and an output shaft 54 .
  • the motor housing 51 is fixed to the base member 40 .
  • the stator 52 and rotor 53 are housed within the motor housing 51 .
  • the output shaft 54 protrudes outside from inside the motor housing 51 . That is, the distal end portion 541 of the output shaft 54 is positioned within the pedestal housing chamber 41 of the pedestal member 40 .
  • the motor housing 51 is arranged on the opposite side of the main body case 20 with the base member 40 interposed therebetween in the direction along the axis 70 a of the linear motion converting mechanism 70 . That is, the motor housing 51 is located in the retreating direction Z2 with respect to the linear motion converting mechanism 70 .
  • the end of the linear motion conversion mechanism 70 in the backward direction Z2 (the left end in the drawing) is defined as a first end
  • the end of the linear motion conversion mechanism 70 in the forward direction Z1 (the right end in the drawing) is defined as a second end.
  • the tip portion 541 of the output shaft 54 is located in the forward direction Z1 from the first end of the linear motion conversion mechanism 70 and in the backward direction Z2 from the second end.
  • the linear motion conversion mechanism 70 and the electric motor 50 are projected in the extending direction of the virtual straight line S1 on the virtual plane HB orthogonal to the virtual straight line S1 extending in the radial direction of the linear motion conversion mechanism 70 .
  • the image of the motor housing 51 of the electric motor 50 does not overlap the image of the linear motion converting mechanism 70 on the virtual plane HB.
  • the image of the output shaft 54 of the electric motor 50 overlaps the image of the linear motion converting mechanism 70 .
  • the virtual plane HB rotates 360° around the axis 70a.
  • the image of the motor housing 51 does not overlap the image of the linear motion conversion mechanism 70 regardless of the position in the circumferential direction of the imaginary straight line S1. Therefore, it can be said that the motor housing 51 is arranged outside the image of the linear motion conversion mechanism 70 projected in the radial direction of the linear motion conversion mechanism 70 .
  • the electric motor 50 is not arranged coaxially with the linear motion conversion mechanism 70 .
  • the electric motor 50 and the linear motion conversion mechanism 70 are positioned at a position where the axis 50a of the electric motor 50, which is the axis of the output shaft 54, and the axis 70a of the linear motion conversion mechanism 70, which is the axis of the rotating portion, are deviated from each other. are placed.
  • the output shaft 54 is parallel to the axis 70a of the linear motion conversion mechanism 70 and positioned outside the linear motion conversion mechanism 70 in the radial direction of the linear motion conversion mechanism 70 .
  • FIG. 2 schematically shows a motor image P50, which is an image of the electric motor 50 projected onto the virtual plane HA, and a mechanism image P70, which is an image of the linear motion conversion mechanism 70. As shown in FIG. As shown in FIG. 2, a portion of the motor image P50 overlaps the mechanism image P70 on the virtual plane HA.
  • the radius of the motor housing 51 is defined as motor radius L50
  • the radius of linear motion conversion mechanism 70 is defined as mechanism radius L70.
  • a straight line distance from the axis 50a of the electric motor 50 to the axis 70a of the linear motion conversion mechanism 70 on the virtual plane HA is defined as an inter-axis distance L1.
  • the center distance L1 is shorter than the sum of the motor radius L50 and the mechanism radius L70.
  • the retreating direction Z2 is one of the extending directions of the output shaft 54, it can be said that the retreating direction Z2 is the direction of the output shaft 54. Therefore, in FIG. 2, the image of the electric motor 50 when the electric motor 50 is projected in the direction of the output shaft 54 with respect to the linear motion converting mechanism 70 is illustrated as the motor image P50. In other words, in the present embodiment, the electric motor 50 is arranged so that a portion of the projected image of the electric motor 50 overlaps the linear motion converting mechanism 70 .
  • the motion transmission mechanism 60 is arranged in the pedestal housing chamber 41 .
  • the motion transmission mechanism 60 transmits the rotary motion of the electric motor 50 to the linear motion conversion mechanism 70 .
  • the motion transmission mechanism 60 decelerates the rotational motion of the electric motor 50 and transmits it to the linear motion conversion mechanism 70 .
  • the motion transmission mechanism 60 has a drive gear 61 and a first driven gear 62 .
  • the first driven gear 62 meshes with the driving gear 61 . Therefore, the first driven gear 62 rotates according to the rotation of the drive gear 61 .
  • the drive gear 61 is provided at the tip portion 541 of the output shaft 54 of the electric motor 50 .
  • the first driven gear 62 is connected to a linear motion conversion mechanism 70 . That is, the first driven gear 62 is fixed to the rotating member 71 of the linear motion converting mechanism 70 . Specifically, the first driven gear 62 is arranged coaxially with the rotating member 71 and arranged radially outside the rotating member 71 . Thereby, the rotary motion of the electric motor 50 is transmitted to the linear motion conversion mechanism 70 via the driving gear 61 and the first driven gear 62 .
  • the output shaft 54 of the electric motor 50 is parallel to the axis 70a of the linear motion conversion mechanism 70 as described above. Therefore, spur gears are employed as the driving gear 61 and the first driven gear 62 .
  • the motion transmission mechanism 60 has a second driven gear 63 and a rotating shaft 64 .
  • the second driven gear 63 meshes with the drive gear 61 . Therefore, the second driven gear 63 rotates according to the rotation of the drive gear 61 .
  • the rotating shaft 64 rotates integrally with the second driven gear 63 .
  • the rotating shaft 64 is arranged coaxially with the second driven gear 63 .
  • the rotation axis 64 is parallel to the output shaft 54 of the electric motor 50 .
  • the rotating shaft 64 is inserted through the rotating shaft through-hole 24 of the main body case 20 and extends to the first housing chamber 31 .
  • the rotating shaft 64 is rotatably supported by the main body case 20 via a plurality of bearings 66 .
  • a magnet 11 is attached to a portion of the rotating shaft 64 that is located in the first storage chamber 31 .
  • a magnet 11 is provided in the first storage chamber 31, and a rotation angle sensor 13 is arranged on the opposite side of the magnet 11 across the partition wall. Therefore, the rotation angle sensor 13 detects the rotation angle and rotation speed of the rotating shaft 64 . That is, the rotation angle sensor 13 outputs a signal corresponding to the rotation of the rotating shaft 64 to the control board 12 .
  • the electric motor 50 is not arranged coaxially with the linear motion converting mechanism 70 as shown in FIG. That is, the electric motor 50 and the linear motion conversion mechanism 70 are arranged in such a manner that the axis 50a of the electric motor 50 and the axis 70a of the linear motion conversion mechanism 70 are deviated from each other. Therefore, as the motion transmission mechanism 60, a mechanism other than the planetary gear mechanism, that is, a mechanism having a plurality of spur gears can be employed.
  • the motor housing 51 of the electric motor 50 is arranged in the backward direction Z2 relative to the linear motion conversion mechanism 70 . That is, the motor housing 51 is not arranged at a position adjacent to the linear motion conversion mechanism 70 in the radial direction of the linear motion conversion mechanism 70 . Therefore, various structures can be arranged at positions adjacent to the linear motion conversion mechanism 70 in the radial direction.
  • the degree of freedom in designing the electric cylinder device 10 can be increased.
  • the motor housing 51 is arranged in the backward direction Z2 relative to the linear motion conversion mechanism 70, but the output shaft 54 is located at the first end and the second end in the direction along the axis 70a of the linear motion conversion mechanism 70. placed between the ends.
  • the degree of freedom in designing the electric cylinder device 10 can be increased while suppressing an increase in the size of the electric cylinder device 10 in the direction along the axis 70a.
  • spur gears are employed as the drive gear 61 and the first driven gear 62 of the motion transmission mechanism 60.
  • a drive gear 61 and a first driven gear 62 are arranged between a first end and a second end of the linear motion converting mechanism 70 in the direction along the axis 70 a of the linear motion converting mechanism 70 . Accordingly, it is possible to suppress an increase in the size of the electric cylinder device 10 in the direction along the axis 70a.
  • the electric motor 50 is arranged at a position distant from the linear motion converting mechanism 70 .
  • the motion transmission mechanism is not provided with a relay gear that meshes with both the drive gear provided on the output shaft 54 of the electric motor 50 and the first driven gear provided on the linear motion converting mechanism 70, the electric motor 50 will not rotate. There is a possibility that motion cannot be transmitted to the linear motion converting mechanism 70 .
  • the electric motor 50 is arranged so that a part of the motor image P50 overlaps the mechanism image P70 on the virtual plane HA as shown in FIG. That is, the electric motor 50 is arranged relatively close to the linear motion converting mechanism 70 . Therefore, since the drive gear 61 can mesh with the first driven gear 62, there is no need to provide a relay gear. Therefore, an increase in the number of parts of the motion transmission mechanism 60 can be suppressed.
  • the dimension of the electric motor in the direction along the axis 50a is larger than that of an electric motor without a built-in rotation angle sensor.
  • the electric cylinder device 10 can detect the rotation angle and rotation speed of the electric motor 50 based on the detection value of the rotation angle sensor 13 . Therefore, it is not necessary to use the electric motor 50 in which the rotation angle sensor is built in the motor housing 51 . Therefore, it is possible to suppress an increase in the size of the electric cylinder device 10 in the direction along the axis 70 a of the linear motion conversion mechanism 70 .
  • the power transmission path of the electric motor 50 is branched into two.
  • the rotation angle sensor 13 detects the rotation of the rotating shaft 64 arranged on a path different from the path for transmitting the motion to the direct-acting conversion mechanism 70 .
  • the degree of freedom in arranging the magnet 11 and the rotation angle sensor 13 in the electric cylinder device 10 can be increased.
  • the magnet 11 can be arranged near the rotation angle sensor 13 provided on the control board 12 .
  • FIG. 3 illustrates an electric braking device 100 for a vehicle that includes an electric cylinder device 10A.
  • the electric cylinder device 10A includes a substrate housing case 30, a main body case 20A, a base member 40A, and a motor housing 51.
  • the motor housing 51 has a housing main body 511 that accommodates the stator 52 and the rotor 53 and a flange portion 515 .
  • the housing body 511 has a cylindrical portion 512 and a lid portion 513 that closes the opening of the cylindrical portion 512 in the backward direction Z2.
  • the flange portion 515 extends outward in the radial direction centered on the output shaft 54 from the end of the cylindrical portion 512 in the forward direction Z1.
  • a flange portion 515 is fastened to the base member 40A. Thereby, the motor housing 51 is attached to the base member 40A.
  • the base member 40A is arranged between the main body case 20A and the motor housing 51. That is, the pedestal member 40A is attached to the main body case 20A so as to be sandwiched between the main body case 20A and the motor housing 51. As shown in FIG. A motion transmission mechanism 60 is housed in the pedestal housing chamber 41 of the pedestal member 40A.
  • the outer surface 401 of the base member 40A is located outside the rotor 53 in the radial direction about the output shaft 54 of the electric motor 50 . More specifically, the outer surface 401 of the base member 40A is located outside the outer peripheral surface of the cylindrical portion 512 of the motor housing 51 in the radial direction about the output shaft 54 .
  • the electric motor 50 has power pins 56 .
  • Power pins 56 are electrically connected to coils wound around stator 52 .
  • the power pin 56 protrudes from inside the motor housing 51 in the forward direction Z1. In other words, the tip of the power pin 56 is positioned within the pedestal housing chamber 41 .
  • a relay circuit board 14 is provided in the pedestal housing chamber 41 .
  • the relay circuit board 14 is arranged between the motion transmission mechanism 60 and the peripheral wall of the base member 40A.
  • a portion of the relay circuit board 14 is located outside the housing main body 511 in the radial direction about the output shaft 54 .
  • a portion of the relay circuit board 14 located outside the stator 52 in the radial direction about the output shaft 54 is referred to as an outer portion.
  • the signal line 15 electrically connected to the control board 12 is electrically connected to the outer portion. That is, in the pedestal housing chamber 41 , the signal line 15 is located outside the stator 52 in the radial direction about the output shaft 54 . Specifically, the signal line 15 is located outside the housing body 511 in the radial direction about the output shaft 54 .
  • the power pins 56 of the electric motor 50 are electrically connected to the terminals of the relay circuit board 14 .
  • the power pins 56 and the signal lines 15 are electrically connected.
  • the signal line 15 passes through the base member 40A and the body case 20A. A first end of the signal line 15 is electrically connected to the control board 12 , while a second end of the signal line 15 is electrically connected to the relay circuit board 14 . Therefore, power can be supplied from the control board 12 to the electric motor 50 via the signal line 15 .
  • a signal line electrically connecting the electric motor 50 and the control board 12 can be arranged outside the stator 52 in the radial direction about the output shaft 54 in the pedestal housing chamber 41 . As a result, it is not necessary to employ the electric motor having the large radial dimension as the electric motor 50 . Therefore, it is possible to suppress an increase in the size of the electric cylinder device 10A.
  • FIG. 4 illustrates an electric braking device 100 for a vehicle that includes an electric cylinder device 10B.
  • the electric cylinder device 10B includes a substrate housing case 30B, a main body case 20B, a base member 40B, and a motor housing 51.
  • the motor housing 51 has a housing main body 511 that accommodates the stator 52 and the rotor 53 and a flange portion 515 .
  • a collar portion 515 is fastened to the base member 40B.
  • the body case 20B is formed with a cylinder through-hole 23 and a rotary shaft through-hole 24B that penetrate the body case 20B.
  • the rotary shaft through hole 24B is located outside the stator 52 of the electric motor 50 in the radial direction about the output shaft 54 .
  • the rotary shaft through hole 24 ⁇ /b>B is located outside the housing body 511 in the radial direction centering on the output shaft 54 .
  • the substrate housing case 30B is formed with a first housing chamber 31B that communicates with the inside of the rotary shaft through hole 24B, and a second housing chamber 32 that is separated from the first housing chamber 31B.
  • a magnet 11 as a rotation angle detector is arranged in the first storage chamber 31B.
  • a control board 12 is arranged in the second storage chamber 32 .
  • the base member 40B is arranged between the main body case 20B and the motor housing 51. That is, the pedestal member 40B is attached to the main body case 20B so as to be sandwiched between the main body case 20B and the motor housing 51. As shown in FIG. A motion transmission mechanism 60 is housed in the pedestal housing chamber 41 of the pedestal member 40B.
  • the outer surface 401 of the base member 40B is located outside the rotor 53 in the radial direction about the output shaft 54 of the electric motor 50 . More specifically, the outer surface 401 of the base member 40B is located outside the outer peripheral surface of the cylindrical portion 512 of the motor housing 51 in the radial direction about the output shaft 54 .
  • the electric cylinder device 10 ⁇ /b>B includes a first relay gear 91 and a second relay gear 95 arranged in the pedestal housing chamber 41 and a rotating shaft 64 .
  • the first intermediate gear 91 is attached to the output shaft 54 .
  • the first relay gear 91 is arranged coaxially with the output shaft 54 . Therefore, the first intermediate gear 91 rotates integrally with the output shaft 54 and the driving gear 61 .
  • the first intermediate gear 91 has a disc portion 92 and a ring-shaped gear portion 93 fixed to the disc portion 92 .
  • a through hole into which the output shaft 54 is fitted is formed in the center of the disk portion.
  • a motion transmission mechanism 60 is arranged inside the gear portion 93 .
  • the gear portion 93 is an external gear.
  • the second intermediate gear 95 is arranged outside the housing main body 511 in the radial direction about the output shaft 54 .
  • the second intermediate gear 95 meshes with the gear portion 93 . Therefore, when the output shaft 54 rotates, the second intermediate gear 95 rotates in synchronization with the first intermediate gear 91 and the drive gear 61 .
  • the rotating shaft 64 rotates integrally with the second intermediate gear 95 .
  • the rotating shaft 64 is arranged coaxially with the second intermediate gear 95 . Therefore, the rotating shaft 64 is connected to the output shaft 54 of the electric motor 50 inside the base member 40B so as to be able to transmit power.
  • the rotation axis 64 is parallel to the output shaft 54 . That is, the rotating shaft 64 extends along the axis of the output shaft 54 , that is, along the axis 50 a of the electric motor 50 .
  • the rotating shaft 64 is inserted through the rotating shaft through-hole 24B of the main body case 20B and extends to the first housing chamber 31B.
  • the rotating shaft 64 is rotatably supported by the main body case 20B via a plurality of bearings 66 .
  • a magnet 11 is attached to a portion of the rotary shaft 64 located in the first storage chamber 31B. That is, the second relay gear 95 is attached to the first end 641 positioned inside the pedestal housing chamber 41 among both ends of the rotating shaft 64, and the second end positioned inside the first housing chamber 31B is mounted. A magnet 11 is attached to 642 . It can be said that the second end portion 642 is arranged on the outside of the base member 40B on the main body case 20B side.
  • the power transmission path of the electric motor 50 is branched into two by arranging the first relay gear 91 in the pedestal housing chamber 41 .
  • the rotation angle sensor 13 detects the rotation of the rotating shaft 64 arranged on a path different from the path for transmitting the motion to the direct-acting conversion mechanism 70 . This eliminates the need to use an electric motor with a built-in rotation angle sensor as the electric motor 50 .
  • the second driven gear 63 may be arranged so as to mesh with the first driven gear 62 instead of the drive gear 61.
  • a rotation angle sensor may be arranged so as to detect the rotation angle and rotation speed of the second driven gear 63 .
  • the rotating shaft 64 can be omitted.
  • the rotation angle sensor 13 may employ a sensor other than a magnetic sensor as long as it can detect the rotation angle and rotation speed.
  • a Hall sensor may be employed as the rotation angle sensor 13 .
  • the electric motor 50 may include a rotation angle sensor.
  • the motion transmission mechanism 60 can omit the second driven gear 63 and the rotating shaft 64 .
  • the inter-axis distance L1 is shorter than both the motor radius L50 and the mechanism radius L70.
  • the electric motor 50 may be arranged so that the motor image P50 does not overlap the mechanism image P70 on the virtual plane HA. In this case, the electric motor 50 is arranged relatively far from the linear motion conversion mechanism 70 . Therefore, the motion transmission mechanism may have a configuration in which at least one intermediate gear is arranged in the power transmission path between the drive gear 61 and the first driven gear 62 .
  • the electric motor 50 is arranged so that the output shaft 54 is parallel to the axis 70a of the linear motion conversion mechanism 70, but this is not the only option.
  • the output shaft 54 may be inclined with respect to the axis 70a.
  • the electric motor 50 may be arranged so that the output shaft 54 in addition to the motor housing 51 is located in the backward direction Z2 relative to the linear motion conversion mechanism 70 .
  • the electric cylinder device is configured so that the output shaft 54 is orthogonal to the axis 70a of the linear motion conversion mechanism 70, or the output shaft 54 is substantially orthogonal to the axis 70a of the linear motion conversion mechanism 70, as shown in FIG. , the electric motor 50 may be arranged. In the case of such a configuration, the electric motor 50 can be arranged in the backward direction Z2 with respect to the linear motion conversion mechanism 70 .
  • the motion transmission mechanism 60 has a plurality of gears that mesh with each other, at least one of the plurality of gears need not be a spur gear.
  • the driving gear 61 and the first driven gear 62 for example, bevel gears may be employed as shown in FIG. 6, or helical gears may be employed.
  • the motion transmission mechanism may use a belt or a chain to transmit power.
  • the cylinder mechanism 80 may have a configuration in which the spring 84 is omitted.
  • main body cases 20, 20A, 20B have a first main body side surface 21 to which the substrate housing cases 30, 30B are attached and a second main body side surface 22 to which the base members 40, 40A, 40B are attached, they are other than rectangular parallelepipeds. Other shapes may be used.
  • the motor housing 51 can be arranged outside the image of the linear motion conversion mechanism 70 projected in the radial direction of the linear motion conversion mechanism 70, the motor housing 51 can be arranged at a position different from the position shown in FIG. good too.
  • the motor housing 51 may be arranged in the forward direction Z1 from the linear motion conversion mechanism 70 .
  • the electric cylinder device may be embodied as a device to which liquid is to be supplied, other than the wheel cylinder 110 .

Abstract

An electric cylinder device 10 comprising a cylinder mechanism 80, an electric motor 50, a linear motion conversion mechanism 70, and a motion transmission mechanism 60. The electric motor 50 and the linear motion conversion mechanism 70 are arranged at such positions that the axis 50a of the electric motor 50 and the axis 70a of the linear motion conversion mechanism 70 are displaced from each other. A motor housing 51 of the electric motor 50 is positioned outside an image obtained by projecting the linear motion conversion mechanism 70 in the radial direction of the linear motion conversion mechanism 70.

Description

電動シリンダ装置Electric cylinder device
 本発明は、供給対象に液体を供給する電動シリンダ装置に関する。 The present invention relates to an electric cylinder device that supplies liquid to a supply target.
 特許文献1には、ホイールシリンダにブレーキ液を供給する電動シリンダ装置の一例が記載されている。この電動シリンダ装置では、電気モータの回転運動が運動伝達機構を介して直動変換機構に伝達される。直動変換機構は、入力された回転運動を直動運動に変換してピストンに伝達する。ピストンが直動すると、シリンダ内の液圧室からブレーキ液がホイールシリンダに供給される。その結果、車両に制動力が付与される。 Patent Document 1 describes an example of an electric cylinder device that supplies brake fluid to a wheel cylinder. In this electric cylinder device, the rotary motion of the electric motor is transmitted to the linear motion conversion mechanism via the motion transmission mechanism. The linear motion conversion mechanism converts input rotational motion into linear motion and transmits it to the piston. When the piston rectilinearly moves, the brake fluid is supplied to the wheel cylinder from the hydraulic chamber in the cylinder. As a result, braking force is applied to the vehicle.
 なお、上記の電動シリンダ装置では、電気モータが直動変換機構に同軸配置されているとともに、運動伝達機構として遊星歯車機構が採用されている。 It should be noted that in the electric cylinder device described above, the electric motor is arranged coaxially with the linear motion conversion mechanism, and a planetary gear mechanism is employed as the motion transmission mechanism.
米国特許第10378623号明細書U.S. Pat. No. 1,037,8623
 遊星歯車機構以外の機構を運動伝達機構として採用できるように、上記のような電動シリンダ装置における設計の自由度を高めたいという要望がある。  There is a demand to increase the degree of freedom in designing the electric cylinder device as described above so that mechanisms other than the planetary gear mechanism can be adopted as the motion transmission mechanism.
 上記課題を解決するための電動シリンダ装置は、電気モータのステータ及びロータがモータハウジング内に収容され、前記ロータと一体に回転する出力軸が前記モータハウジングから外部に突出し、前記出力軸の回転運動が運動伝達機構により直動変換機構に伝達され、前記直動変換機構の回転部の回転運動が前記直動変換機構の直動部の直線運動に変換され、シリンダ内のピストンが前記直動変換機構の前記直動部の直線運動により駆動される装置である。この電動シリンダ装置では、前記出力軸の軸線と前記回転部の軸線とがずれた位置に、前記電気モータと前記直動変換機構とが配置され、前記直動変換機構を前記直動変換機構の径方向に投影した像の外に前記モータハウジングが位置している。 An electric cylinder device for solving the above-mentioned problems is an electric cylinder device in which a stator and a rotor of an electric motor are accommodated in a motor housing, an output shaft rotating integrally with the rotor protrudes from the motor housing, and rotational motion of the output shaft is achieved. is transmitted to the linear motion conversion mechanism by the motion transmission mechanism, the rotary motion of the rotary part of the linear motion conversion mechanism is converted into the linear motion of the linear motion conversion mechanism, and the piston in the cylinder converts the linear motion conversion It is a device driven by the linear motion of the linear motion part of the mechanism. In this electric cylinder device, the electric motor and the linear motion conversion mechanism are arranged at positions where the axis of the output shaft and the axis of the rotating portion are deviated from each other, and the linear motion conversion mechanism is connected to the linear motion conversion mechanism. The motor housing is located outside the radially projected image.
 上記構成によれば、出力軸の軸線と回転部の軸線とがずれた態様で、電気モータと直動変換機構とが配置されている。そのため、運動伝達機構として、遊星歯車機構以外の機構、例えば平歯ギヤやはす歯ギヤを有する機構を採用できる。また、直動変換機構を直動変換機構の径方向に投影した像の外にモータハウジングが位置している。そのため、直動変換機構の径方向で直動変換機構に隣り合う位置にモータハウジングが配置されていない。これにより、径方向で直動変換機構に隣り合う位置に様々な構造物を配置することが可能となる。 According to the above configuration, the electric motor and the linear motion conversion mechanism are arranged in such a manner that the axis of the output shaft and the axis of the rotating part are displaced. Therefore, a mechanism other than the planetary gear mechanism, such as a mechanism having a spur gear or a helical gear, can be employed as the motion transmission mechanism. Further, the motor housing is positioned outside the image of the linear motion conversion mechanism projected in the radial direction of the linear motion conversion mechanism. Therefore, the motor housing is not arranged at a position adjacent to the linear motion conversion mechanism in the radial direction of the linear motion conversion mechanism. This makes it possible to arrange various structures at positions adjacent to the linear motion converting mechanism in the radial direction.
 したがって、上記構成によれば、電動シリンダ装置の設計の自由度を向上できる。 Therefore, according to the above configuration, the degree of freedom in designing the electric cylinder device can be improved.
図1は、第1実施形態の電動シリンダ装置を備える車両の電動制動装置の概略を示す一部断面図である。FIG. 1 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with an electric cylinder device according to the first embodiment. 図2は、図1の電動シリンダ装置において、仮想平面上における電気モータの像と直動変換機構の像との位置関係を示す図である。FIG. 2 is a diagram showing the positional relationship between the image of the electric motor and the image of the linear motion conversion mechanism on a virtual plane in the electric cylinder device of FIG. 図3は、第2実施形態の電動シリンダ装置を備える車両の電動制動装置の概略を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with the electric cylinder device of the second embodiment. 図4は、第3実施形態の電動シリンダ装置を備える車両の電動制動装置の概略を示す一部断面図である。FIG. 4 is a partial cross-sectional view showing an outline of an electric braking device for a vehicle equipped with an electric cylinder device according to the third embodiment. 図5は、電動シリンダ装置の変更例の一部を示す模式図である。FIG. 5 is a schematic diagram showing a part of a modification of the electric cylinder device. 図6は、電動シリンダ装置の変更例の一部を示す模式図である。FIG. 6 is a schematic diagram showing a part of a modification of the electric cylinder device.
 (第1実施形態)
 以下、電動シリンダ装置の第1実施形態を図1及び図2に従って説明する。
 図1には、本実施形態の電動シリンダ装置10を備える車両の電動制動装置100が図示されている。電動制動装置100は、ホイールシリンダ110を備えている。ホイールシリンダ110には液路120を介して電動シリンダ装置10が接続されている。すなわち、ホイールシリンダ110が、電動シリンダ装置10によるブレーキ液(液体の一例)の供給対象である。電動シリンダ装置10からホイールシリンダ110に液路120を介してブレーキ液が供給されると、ホイールシリンダ110内の液圧が高くなる。これにより、車両の車輪に制動力が付与される。
(First embodiment)
A first embodiment of an electric cylinder device will be described below with reference to FIGS. 1 and 2. FIG.
FIG. 1 shows an electric braking device 100 for a vehicle that includes an electric cylinder device 10 of this embodiment. The electric braking device 100 has a wheel cylinder 110 . The electric cylinder device 10 is connected to the wheel cylinder 110 via a fluid passage 120 . That is, the wheel cylinder 110 is the object to which brake fluid (an example of fluid) is supplied by the electric cylinder device 10 . When brake fluid is supplied from the electric cylinder device 10 to the wheel cylinder 110 through the fluid passage 120, the fluid pressure in the wheel cylinder 110 increases. Thereby, a braking force is applied to the wheels of the vehicle.
 <電動シリンダ装置の構成>
 電動シリンダ装置10は、本体ケース20と基板収容ケース30と台座部材40とを備えている。本体ケース20は直方体状をなしている。本体ケース20の6つの側面のうち、図中右側の側面である第1本体側面21に基板収容ケース30が取り付けられている。台座部材40は、本体ケース20を挟んだ基板収容ケース30の反対側に配置されている。そして、本体ケース20の6つの側面のうち、図中左側の側面である第2本体側面22に台座部材40が取り付けられている。すなわち、基板収容ケース30及び台座部材40は、それらの間に本体ケース20が位置するようにそれぞれ配置されている。
<Configuration of electric cylinder device>
The electric cylinder device 10 includes a main body case 20 , a substrate housing case 30 and a base member 40 . The body case 20 has a rectangular parallelepiped shape. Of the six side surfaces of the main body case 20, the board housing case 30 is attached to the first main body side surface 21, which is the side surface on the right side in the figure. The pedestal member 40 is arranged on the opposite side of the substrate housing case 30 with the body case 20 interposed therebetween. A base member 40 is attached to the second body side surface 22, which is the side surface on the left side in the drawing, of the six side surfaces of the body case 20. As shown in FIG. That is, the substrate housing case 30 and the base member 40 are arranged so that the main body case 20 is positioned between them.
 本体ケース20には、本体ケース20を貫通するシリンダ貫通孔23及び回転軸用貫通孔24が形成されている。すなわち、シリンダ貫通孔23を本体ケース20に形成したことによって、第1本体側面21には第1開口23aが形成されるとともに、第2本体側面22には第2開口23bが形成される。また、回転軸用貫通孔24を本体ケース20に形成したことによって、第1本体側面21には第1開口24aが形成されるとともに、第2本体側面22には第2開口24bが形成される。そして、第1開口24aは基板収容ケース30に閉塞される一方、第1開口23aは基板収容ケース30に閉塞されない。第2開口23b及び第2開口24bは台座部材40によってそれぞれ閉塞される。 The body case 20 is formed with a cylinder through hole 23 and a rotary shaft through hole 24 that penetrate the body case 20 . That is, by forming the cylinder through hole 23 in the main body case 20, the first main body side surface 21 is formed with the first opening 23a, and the second main body side surface 22 is formed with the second opening 23b. Further, by forming the rotary shaft through-hole 24 in the main body case 20, a first opening 24a is formed in the first main body side surface 21 and a second opening 24b is formed in the second main body side surface 22. . The first opening 24 a is closed by the board accommodation case 30 , while the first opening 23 a is not closed by the board accommodation case 30 . The second opening 23b and the second opening 24b are closed by the base member 40, respectively.
 基板収容ケース30には、回転軸用貫通孔24内と連通する第1収容室31と、第1収容室31とは区分けされている第2収容室32とが形成されている。第2収容室32には、電動制動装置100を制御するための制御基板12が配置されている。第1収容室31には、回転角検出部としての磁石11が配置されている。そして、磁石11に向かい合う制御基板12の位置には磁石11の回転を検出する回転角センサ13が設けられている。 The substrate housing case 30 is formed with a first housing chamber 31 that communicates with the inside of the rotary shaft through hole 24 and a second housing chamber 32 that is separated from the first housing chamber 31 . A control board 12 for controlling the electric braking device 100 is arranged in the second accommodation chamber 32 . A magnet 11 is arranged in the first housing chamber 31 as a rotation angle detector. A rotation angle sensor 13 for detecting the rotation of the magnet 11 is provided on the control board 12 facing the magnet 11 .
 台座部材40には、シリンダ貫通孔23内及び回転軸用貫通孔24内の何れにも連通する台座内収容室41が形成されている。そのため、台座内収容室41を介してシリンダ貫通孔23と回転軸用貫通孔24とが互いに連通している。 The pedestal member 40 is formed with a pedestal housing chamber 41 communicating with both the inside of the cylinder through hole 23 and the inside of the rotary shaft through hole 24 . Therefore, the cylinder through-hole 23 and the rotating shaft through-hole 24 communicate with each other via the pedestal housing chamber 41 .
 電動シリンダ装置10は、電気モータ50、運動伝達機構60、直動変換機構70及びシリンダ機構80を備えている。
 <シリンダ機構>
 シリンダ機構80は本体ケース20に固定されている。具体的には、シリンダ機構80は本体ケース20のシリンダ貫通孔23に挿通されている。そして、シリンダ機構80は、第1本体側面21から本体ケース20外に突出している。
The electric cylinder device 10 includes an electric motor 50 , a motion transmission mechanism 60 , a linear motion converting mechanism 70 and a cylinder mechanism 80 .
<Cylinder mechanism>
The cylinder mechanism 80 is fixed to the body case 20 . Specifically, the cylinder mechanism 80 is inserted through the cylinder through-hole 23 of the main body case 20 . The cylinder mechanism 80 protrudes outside the main body case 20 from the first main body side surface 21 .
 シリンダ機構80は、本体ケース20に支持されているシリンダ81と、シリンダ81内に配置されているピストン82とを有している。シリンダ81は、円筒状をなす筒状部811と、筒状部811の一端を閉塞する底壁812とを有している。シリンダ81内には、底壁812とピストン82とによって、ブレーキ液を貯留する液圧室83が区画されている。液圧室83には、液圧室83の容積を拡大する方向である後退方向Z2にピストン82を付勢するスプリング84が設けられている。 The cylinder mechanism 80 has a cylinder 81 supported by the body case 20 and a piston 82 arranged inside the cylinder 81 . The cylinder 81 has a cylindrical portion 811 and a bottom wall 812 closing one end of the cylindrical portion 811 . Inside the cylinder 81, a hydraulic pressure chamber 83 for storing brake fluid is defined by a bottom wall 812 and a piston 82. As shown in FIG. The hydraulic pressure chamber 83 is provided with a spring 84 that biases the piston 82 in the backward direction Z2, which is the direction in which the volume of the hydraulic pressure chamber 83 is expanded.
 ピストン82は、シリンダ81内において、後退方向Z2、及び、後退方向Z2の逆方向である前進方向Z1に直動する。前進方向Z1にピストン82が直動すると、ピストン82が底壁812に接近するため、液圧室83の容積が縮小する。その結果、液圧室83のブレーキ液がホイールシリンダ110に送り出される。一方、後退方向Z2にピストン82が直動すると、ピストン82が底壁812から離間するため、液圧室83の容積が拡大する。その結果、ホイールシリンダ110内の液圧が減少し、液圧室83にブレーキ液が戻る。 The piston 82 rectilinearly moves within the cylinder 81 in the backward direction Z2 and in the forward direction Z1, which is the reverse direction of the backward direction Z2. When the piston 82 linearly moves in the forward direction Z1, the piston 82 approaches the bottom wall 812, so the volume of the hydraulic pressure chamber 83 is reduced. As a result, the brake fluid in hydraulic pressure chamber 83 is delivered to wheel cylinder 110 . On the other hand, when the piston 82 rectilinearly moves in the backward direction Z2, the piston 82 separates from the bottom wall 812, so the volume of the hydraulic pressure chamber 83 increases. As a result, the hydraulic pressure within the wheel cylinder 110 is reduced, and the brake fluid is returned to the hydraulic pressure chamber 83 .
 <直動変換機構>
 直動変換機構70は、シリンダ81を介して本体ケース20に支持されている。直動変換機構70は、電気モータ50から伝達された回転運動を直線運動に変換してピストン82に伝達する。直動変換機構70は、例えば、ボールねじ機構又は送りねじ機構である。こうした直動変換機構70は、電気モータ50の回転に連動して回転する回転部材71と、回転部材71の回転方向に応じた方向に直動する直動部材72とを有している。本実施形態では、回転部材71としてナットが採用されており、ナットの内側に配置されているねじが直動部材72として採用されている。回転部材71が「直動変換機構の回転部」に対応し、直動部材72が「直動変換機構の直動部」に対応する。
<Linear motion conversion mechanism>
The direct-acting conversion mechanism 70 is supported by the body case 20 via a cylinder 81 . The linear motion conversion mechanism 70 converts the rotary motion transmitted from the electric motor 50 into linear motion and transmits the linear motion to the piston 82 . The linear motion conversion mechanism 70 is, for example, a ball screw mechanism or a feed screw mechanism. The linear motion conversion mechanism 70 has a rotary member 71 that rotates in conjunction with the rotation of the electric motor 50 and a linear motion member 72 that linearly moves in a direction corresponding to the rotation direction of the rotary member 71 . In this embodiment, a nut is used as the rotating member 71 , and a screw disposed inside the nut is used as the linear motion member 72 . The rotary member 71 corresponds to the "rotating portion of the linear motion conversion mechanism", and the linear motion member 72 corresponds to the "linear motion portion of the linear motion conversion mechanism".
 直動部材72は、直動変換機構70の軸線70aに沿う方向に進退移動可能である。本実施形態では、軸線70aに沿う方向のうち、一方が前進方向Z1であり、他方が後退方向Z2である。直動部材72が前進方向Z1に移動すると、直動部材72がピストン82を前進方向Z1に押すため、スプリング84の付勢力に抗してピストン82が前進方向Z1に直動する。一方、直動部材72が後退方向Z2に移動すると、直動部材72がピストン82を後退方向Z2に引き、さらにスプリング84の付勢力及び液圧室83の液圧によって助勢されて後退方向Z2にピストン82が直動する。 The linear motion member 72 can move back and forth in the direction along the axis 70 a of the linear motion converting mechanism 70 . In this embodiment, one of the directions along the axis 70a is the forward direction Z1 and the other is the backward direction Z2. When the linear motion member 72 moves in the forward direction Z1, the linear motion member 72 pushes the piston 82 in the forward direction Z1. On the other hand, when the linear motion member 72 moves in the backward direction Z2, the linear motion member 72 pulls the piston 82 in the backward direction Z2, and is further assisted by the urging force of the spring 84 and the hydraulic pressure in the hydraulic pressure chamber 83 in the backward direction Z2. The piston 82 moves linearly.
 <電気モータ>
 電気モータ50は、モータハウジング51と、ステータ52と、ロータ53と、出力軸54とを備えている。モータハウジング51は台座部材40に固定されている。ステータ52及びロータ53は、モータハウジング51内に収容されている。出力軸54は、モータハウジング51内から外部に突出している。すなわち、出力軸54の先端部541は台座部材40の台座内収容室41内に位置している。
<Electric motor>
The electric motor 50 comprises a motor housing 51 , a stator 52 , a rotor 53 and an output shaft 54 . The motor housing 51 is fixed to the base member 40 . The stator 52 and rotor 53 are housed within the motor housing 51 . The output shaft 54 protrudes outside from inside the motor housing 51 . That is, the distal end portion 541 of the output shaft 54 is positioned within the pedestal housing chamber 41 of the pedestal member 40 .
 なお、モータハウジング51は、直動変換機構70の軸線70aに沿う方向において、台座部材40を挟んで本体ケース20の反対側に配置されている。すなわち、モータハウジング51は、直動変換機構70よりも後退方向Z2に位置している。直動変換機構70の後退方向Z2の端(図中左端)を第1端とし、直動変換機構70の前進方向Z1の端(図中右端)を第2端とする。このとき、出力軸54の先端部541は、直動変換機構70の第1端よりも前進方向Z1であって第2端よりも後退方向Z2に位置している。 The motor housing 51 is arranged on the opposite side of the main body case 20 with the base member 40 interposed therebetween in the direction along the axis 70 a of the linear motion converting mechanism 70 . That is, the motor housing 51 is located in the retreating direction Z2 with respect to the linear motion converting mechanism 70 . The end of the linear motion conversion mechanism 70 in the backward direction Z2 (the left end in the drawing) is defined as a first end, and the end of the linear motion conversion mechanism 70 in the forward direction Z1 (the right end in the drawing) is defined as a second end. At this time, the tip portion 541 of the output shaft 54 is located in the forward direction Z1 from the first end of the linear motion conversion mechanism 70 and in the backward direction Z2 from the second end.
 言い換えると、直動変換機構70の径方向に延びる仮想直線S1と直交する仮想平面HBに対し、直動変換機構70及び電気モータ50を仮想直線S1の延伸方向に投影したとする。このとき、仮想平面HBでは、電気モータ50のモータハウジング51の像は直動変換機構70の像に重ならない。その一方で、仮想平面HBでは、電気モータ50の出力軸54の像は直動変換機構70の像に重なる。 In other words, it is assumed that the linear motion conversion mechanism 70 and the electric motor 50 are projected in the extending direction of the virtual straight line S1 on the virtual plane HB orthogonal to the virtual straight line S1 extending in the radial direction of the linear motion conversion mechanism 70 . At this time, the image of the motor housing 51 of the electric motor 50 does not overlap the image of the linear motion converting mechanism 70 on the virtual plane HB. On the other hand, on the virtual plane HB, the image of the output shaft 54 of the electric motor 50 overlaps the image of the linear motion converting mechanism 70 .
 直動変換機構70の軸線70aを中心に上記仮想直線S1を360°回転させると、仮想平面HBは軸線70aを中心に360°回転する。この場合、何れの周方向位置に仮想直線S1が位置する場合であっても、モータハウジング51の像は直動変換機構70の像に重ならない。したがって、直動変換機構70を直動変換機構70の径方向に投影した像の外にモータハウジング51が配置されているといえる。 When the virtual straight line S1 is rotated 360° around the axis 70a of the linear motion converting mechanism 70, the virtual plane HB rotates 360° around the axis 70a. In this case, the image of the motor housing 51 does not overlap the image of the linear motion conversion mechanism 70 regardless of the position in the circumferential direction of the imaginary straight line S1. Therefore, it can be said that the motor housing 51 is arranged outside the image of the linear motion conversion mechanism 70 projected in the radial direction of the linear motion conversion mechanism 70 .
 また、図1に示すように、電気モータ50は直動変換機構70と同軸に配置されていない。言い換えると、出力軸54の軸線である電気モータ50の軸線50aと、回転部の軸線である直動変換機構70の軸線70aとがずれた位置に、電気モータ50と直動変換機構70とが配置されている。本実施形態では、出力軸54は、直動変換機構70の軸線70aと平行であるとともに、直動変換機構70の径方向において直動変換機構70よりも外側に位置している。 Also, as shown in FIG. 1, the electric motor 50 is not arranged coaxially with the linear motion conversion mechanism 70 . In other words, the electric motor 50 and the linear motion conversion mechanism 70 are positioned at a position where the axis 50a of the electric motor 50, which is the axis of the output shaft 54, and the axis 70a of the linear motion conversion mechanism 70, which is the axis of the rotating portion, are deviated from each other. are placed. In the present embodiment, the output shaft 54 is parallel to the axis 70a of the linear motion conversion mechanism 70 and positioned outside the linear motion conversion mechanism 70 in the radial direction of the linear motion conversion mechanism 70 .
 ここで、直動変換機構70の軸線70aと直交する仮想平面HAに対し、後退方向Z2を指す白抜き矢印A1に電気モータ50及び直動変換機構70を投影したとする。図2には、仮想平面HAに投影した電気モータ50の像であるモータ像P50と、直動変換機構70の像である機構像P70とが模式的に示されている。図2に示すように、仮想平面HAではモータ像P50の一部が機構像P70に重なる。 Here, it is assumed that the electric motor 50 and the linear motion conversion mechanism 70 are projected onto a white arrow A1 pointing in the backward direction Z2 on the virtual plane HA perpendicular to the axis 70a of the linear motion conversion mechanism 70. FIG. 2 schematically shows a motor image P50, which is an image of the electric motor 50 projected onto the virtual plane HA, and a mechanism image P70, which is an image of the linear motion conversion mechanism 70. As shown in FIG. As shown in FIG. 2, a portion of the motor image P50 overlaps the mechanism image P70 on the virtual plane HA.
 なお、モータハウジング51の半径をモータ半径L50とし、直動変換機構70の半径を機構半径L70とする。仮想平面HA上における、電気モータ50の軸線50aから直動変換機構70の軸線70aまでの直線距離を軸間距離L1とする。このとき、軸間距離L1はモータ半径L50と機構半径L70との和よりも短い。 It should be noted that the radius of the motor housing 51 is defined as motor radius L50, and the radius of linear motion conversion mechanism 70 is defined as mechanism radius L70. A straight line distance from the axis 50a of the electric motor 50 to the axis 70a of the linear motion conversion mechanism 70 on the virtual plane HA is defined as an inter-axis distance L1. At this time, the center distance L1 is shorter than the sum of the motor radius L50 and the mechanism radius L70.
 後退方向Z2は出力軸54の延伸方向の1つであるため、後退方向Z2は出力軸54の方向であると云える。そのため、図2には、電気モータ50を直動変換機構70に対して出力軸54の方向に投影した場合の電気モータ50の像がモータ像P50として図示されていることになる。つまり、本実施形態では、電気モータ50を投影した像の一部と直動変換機構70が重なるように電気モータ50が配置されている。 Since the retreating direction Z2 is one of the extending directions of the output shaft 54, it can be said that the retreating direction Z2 is the direction of the output shaft 54. Therefore, in FIG. 2, the image of the electric motor 50 when the electric motor 50 is projected in the direction of the output shaft 54 with respect to the linear motion converting mechanism 70 is illustrated as the motor image P50. In other words, in the present embodiment, the electric motor 50 is arranged so that a portion of the projected image of the electric motor 50 overlaps the linear motion converting mechanism 70 .
 <運動伝達機構>
 図1に示すように、運動伝達機構60は、台座内収容室41内に配置されている。運動伝達機構60は、電気モータ50の回転運動を直動変換機構70に伝達する。具体的には、運動伝達機構60は、電気モータ50の回転運動を減速して直動変換機構70に伝達する。運動伝達機構60は、駆動ギヤ61と第1従動ギヤ62とを有している。本実施形態では、第1従動ギヤ62は駆動ギヤ61と噛み合っている。そのため、第1従動ギヤ62は、駆動ギヤ61の回転に応じて回転する。
<Movement transmission mechanism>
As shown in FIG. 1 , the motion transmission mechanism 60 is arranged in the pedestal housing chamber 41 . The motion transmission mechanism 60 transmits the rotary motion of the electric motor 50 to the linear motion conversion mechanism 70 . Specifically, the motion transmission mechanism 60 decelerates the rotational motion of the electric motor 50 and transmits it to the linear motion conversion mechanism 70 . The motion transmission mechanism 60 has a drive gear 61 and a first driven gear 62 . In this embodiment, the first driven gear 62 meshes with the driving gear 61 . Therefore, the first driven gear 62 rotates according to the rotation of the drive gear 61 .
 駆動ギヤ61は、電気モータ50の出力軸54の先端部541に設けられている。第1従動ギヤ62は直動変換機構70に連結されている。すなわち、第1従動ギヤ62は、直動変換機構70の回転部材71に固定されている。具体的には、第1従動ギヤ62は、回転部材71と同軸配置されており、回転部材71の径方向外側に配置されている。これにより、電気モータ50の回転運動が、駆動ギヤ61及び第1従動ギヤ62を介して直動変換機構70に伝達される。 The drive gear 61 is provided at the tip portion 541 of the output shaft 54 of the electric motor 50 . The first driven gear 62 is connected to a linear motion conversion mechanism 70 . That is, the first driven gear 62 is fixed to the rotating member 71 of the linear motion converting mechanism 70 . Specifically, the first driven gear 62 is arranged coaxially with the rotating member 71 and arranged radially outside the rotating member 71 . Thereby, the rotary motion of the electric motor 50 is transmitted to the linear motion conversion mechanism 70 via the driving gear 61 and the first driven gear 62 .
 本実施形態では、上述したように電気モータ50の出力軸54は直動変換機構70の軸線70aと平行である。そのため、駆動ギヤ61及び第1従動ギヤ62として平歯ギヤが採用されている。 In this embodiment, the output shaft 54 of the electric motor 50 is parallel to the axis 70a of the linear motion conversion mechanism 70 as described above. Therefore, spur gears are employed as the driving gear 61 and the first driven gear 62 .
 また、運動伝達機構60は第2従動ギヤ63と回転軸64とを有している。本実施形態では、第2従動ギヤ63は駆動ギヤ61と噛み合っている。そのため、第2従動ギヤ63は駆動ギヤ61の回転に応じて回転する。 Also, the motion transmission mechanism 60 has a second driven gear 63 and a rotating shaft 64 . In this embodiment, the second driven gear 63 meshes with the drive gear 61 . Therefore, the second driven gear 63 rotates according to the rotation of the drive gear 61 .
 回転軸64は第2従動ギヤ63と一体回転する。本実施形態では、回転軸64は、第2従動ギヤ63と同軸配置されている。そのため、回転軸64は、電気モータ50の出力軸54と平行である。回転軸64は、本体ケース20の回転軸用貫通孔24を挿通して第1収容室31まで延びている。回転軸64は、複数の軸受66を介して本体ケース20に回転自在な状態で支持されている。そして、回転軸64のうち、第1収容室31に位置する部分に磁石11が取り付けられている。 The rotating shaft 64 rotates integrally with the second driven gear 63 . In this embodiment, the rotating shaft 64 is arranged coaxially with the second driven gear 63 . As such, the rotation axis 64 is parallel to the output shaft 54 of the electric motor 50 . The rotating shaft 64 is inserted through the rotating shaft through-hole 24 of the main body case 20 and extends to the first housing chamber 31 . The rotating shaft 64 is rotatably supported by the main body case 20 via a plurality of bearings 66 . A magnet 11 is attached to a portion of the rotating shaft 64 that is located in the first storage chamber 31 .
 なお、第1収容室31内には磁石11が設けられており、区画壁を挟んだ磁石11の反対側に回転角センサ13が配置されている。そのため、回転角センサ13は回転軸64の回転角及び回転速度を検出する。すなわち、回転角センサ13は、回転軸64の回転に応じた信号を制御基板12に出力する。 A magnet 11 is provided in the first storage chamber 31, and a rotation angle sensor 13 is arranged on the opposite side of the magnet 11 across the partition wall. Therefore, the rotation angle sensor 13 detects the rotation angle and rotation speed of the rotating shaft 64 . That is, the rotation angle sensor 13 outputs a signal corresponding to the rotation of the rotating shaft 64 to the control board 12 .
 <本実施形態における作用及び効果>
 電動シリンダ装置10では、図1に示したように電気モータ50が直動変換機構70と同軸に配置されていない。すなわち、電気モータ50の軸線50aと直動変換機構70の軸線70aとがずれた態様で、電気モータ50及び直動変換機構70が配置されている。そのため、運動伝達機構60として、遊星歯車機構以外の機構、すなわち複数の平歯ギヤを有する機構を採用できる。
<Actions and effects of the present embodiment>
In the electric cylinder device 10, the electric motor 50 is not arranged coaxially with the linear motion converting mechanism 70 as shown in FIG. That is, the electric motor 50 and the linear motion conversion mechanism 70 are arranged in such a manner that the axis 50a of the electric motor 50 and the axis 70a of the linear motion conversion mechanism 70 are deviated from each other. Therefore, as the motion transmission mechanism 60, a mechanism other than the planetary gear mechanism, that is, a mechanism having a plurality of spur gears can be employed.
 また、電気モータ50のモータハウジング51は、直動変換機構70よりも後退方向Z2に配置されている。すなわち、直動変換機構70の径方向で直動変換機構70に隣り合う位置にモータハウジング51が配置されていない。そのため、径方向で直動変換機構70に隣り合う位置に様々な構造物を配置することができる。 Also, the motor housing 51 of the electric motor 50 is arranged in the backward direction Z2 relative to the linear motion conversion mechanism 70 . That is, the motor housing 51 is not arranged at a position adjacent to the linear motion conversion mechanism 70 in the radial direction of the linear motion conversion mechanism 70 . Therefore, various structures can be arranged at positions adjacent to the linear motion conversion mechanism 70 in the radial direction.
 したがって、本実施形態によれば、電動シリンダ装置10における設計の自由度を高くできる。
 電動シリンダ装置10では、モータハウジング51は直動変換機構70よりも後退方向Z2に配置されているものの、出力軸54は、直動変換機構70の軸線70aに沿う方向における第1端と第2端との間に配置されている。これにより、軸線70aに沿う方向における電動シリンダ装置10の大型化を抑制しつつ、電動シリンダ装置10の設計の自由度を高くできる。
Therefore, according to this embodiment, the degree of freedom in designing the electric cylinder device 10 can be increased.
In the electric cylinder device 10, the motor housing 51 is arranged in the backward direction Z2 relative to the linear motion conversion mechanism 70, but the output shaft 54 is located at the first end and the second end in the direction along the axis 70a of the linear motion conversion mechanism 70. placed between the ends. As a result, the degree of freedom in designing the electric cylinder device 10 can be increased while suppressing an increase in the size of the electric cylinder device 10 in the direction along the axis 70a.
 電動シリンダ装置10では、電気モータ50の出力軸54は直動変換機構70の軸線70aと平行であるため、運動伝達機構60の駆動ギヤ61及び第1従動ギヤ62として平歯ギヤを採用している。そして、直動変換機構70の軸線70aに沿う方向において直動変換機構70の第1端と第2端との間に駆動ギヤ61及び第1従動ギヤ62が配置されている。これにより、軸線70aに沿う方向における電動シリンダ装置10の大型化を抑制できる。 In the electric cylinder device 10, since the output shaft 54 of the electric motor 50 is parallel to the axis 70a of the linear motion conversion mechanism 70, spur gears are employed as the drive gear 61 and the first driven gear 62 of the motion transmission mechanism 60. there is A drive gear 61 and a first driven gear 62 are arranged between a first end and a second end of the linear motion converting mechanism 70 in the direction along the axis 70 a of the linear motion converting mechanism 70 . Accordingly, it is possible to suppress an increase in the size of the electric cylinder device 10 in the direction along the axis 70a.
 ここで、直動変換機構70から離れた位置に電気モータ50が配置される場合を考える。この場合、電気モータ50の出力軸54に設けられる駆動ギヤと、直動変換機構70に設けられる第1従動ギヤとの双方に噛み合う中継ギヤを運動伝達機構に設けないと、電気モータ50の回転運動を直動変換機構70に伝達できなくなるおそれがある。 Here, consider the case where the electric motor 50 is arranged at a position distant from the linear motion converting mechanism 70 . In this case, if the motion transmission mechanism is not provided with a relay gear that meshes with both the drive gear provided on the output shaft 54 of the electric motor 50 and the first driven gear provided on the linear motion converting mechanism 70, the electric motor 50 will not rotate. There is a possibility that motion cannot be transmitted to the linear motion converting mechanism 70 .
 この点、電動シリンダ装置10では、図2に示したように仮想平面HAでモータ像P50の一部が機構像P70と重なるように、電気モータ50が配置されている。すなわち、直動変換機構70の比較的近くに電気モータ50が配置されている。そのため、駆動ギヤ61に第1従動ギヤ62を噛み合わせることができるため、中継ギヤを設けなくてもよい。したがって、運動伝達機構60の部品点数の増大を抑制できる。 In this regard, in the electric cylinder device 10, the electric motor 50 is arranged so that a part of the motor image P50 overlaps the mechanism image P70 on the virtual plane HA as shown in FIG. That is, the electric motor 50 is arranged relatively close to the linear motion converting mechanism 70 . Therefore, since the drive gear 61 can mesh with the first driven gear 62, there is no need to provide a relay gear. Therefore, an increase in the number of parts of the motion transmission mechanism 60 can be suppressed.
 回転角センサを内蔵した電気モータの場合、回転角センサを内蔵してない電気モータの場合と比較し、軸線50aに沿う方向における電気モータの寸法が大きくなる。電動シリンダ装置10では、回転角センサ13の検出値に基づいて電気モータ50の回転角及び回転速度を検出できる。そのため、電気モータ50として、モータハウジング51内に回転角センサが内蔵されたものを採用しなくてもよくなる。したがって、直動変換機構70の軸線70aに沿う方向における電動シリンダ装置10の大型化を抑制できる。 In the case of an electric motor with a built-in rotation angle sensor, the dimension of the electric motor in the direction along the axis 50a is larger than that of an electric motor without a built-in rotation angle sensor. The electric cylinder device 10 can detect the rotation angle and rotation speed of the electric motor 50 based on the detection value of the rotation angle sensor 13 . Therefore, it is not necessary to use the electric motor 50 in which the rotation angle sensor is built in the motor housing 51 . Therefore, it is possible to suppress an increase in the size of the electric cylinder device 10 in the direction along the axis 70 a of the linear motion conversion mechanism 70 .
 なお、電動シリンダ装置10では、駆動ギヤ61と噛み合う第2従動ギヤ63を設けることにより、電気モータ50の動力伝達経路を2つに分岐している。そして、直動変換機構70に伝える経路とは別の経路に配置されている回転軸64の回転を回転角センサ13で検出している。このように直動変換機構70に回転運動を伝える経路とは別の経路を設けることにより、電動シリンダ装置10内における磁石11及び回転角センサ13の配置の自由度を高くできる。例えば図1に示したように、制御基板12に設けられた回転角センサ13の近くに磁石11を配置できる。 In addition, in the electric cylinder device 10, by providing the second driven gear 63 that meshes with the drive gear 61, the power transmission path of the electric motor 50 is branched into two. The rotation angle sensor 13 detects the rotation of the rotating shaft 64 arranged on a path different from the path for transmitting the motion to the direct-acting conversion mechanism 70 . By providing a path different from the path for transmitting the rotational motion to the linear motion conversion mechanism 70 in this manner, the degree of freedom in arranging the magnet 11 and the rotation angle sensor 13 in the electric cylinder device 10 can be increased. For example, as shown in FIG. 1, the magnet 11 can be arranged near the rotation angle sensor 13 provided on the control board 12 .
 電動シリンダ装置10では、制御基板12の近くにはスペースに比較的余裕がある。そのため、電動シリンダ装置10では回転角センサ13として磁気センサを採用できる。その結果、回転角センサ13としてホールセンサを採用する場合と比較し、回転角や回転速度の検出精度を高くできる。 In the electric cylinder device 10, there is a relatively large space near the control board 12. Therefore, a magnetic sensor can be employed as the rotation angle sensor 13 in the electric cylinder device 10 . As a result, compared with the case where a Hall sensor is employed as the rotation angle sensor 13, the detection accuracy of the rotation angle and rotation speed can be increased.
 (第2実施形態)
 電動シリンダ装置の第2実施形態を図3に従って説明する。以下の説明においては、第1実施形態と相違する部分について主に説明するものとし、第1実施形態と同一の部材構成には同一符号を付して重複説明を省略するものとする。
(Second embodiment)
A second embodiment of the electric cylinder device will be described with reference to FIG. In the following description, the parts that are different from the first embodiment will be mainly described, and the same reference numerals will be given to the same member configurations as in the first embodiment, and redundant description will be omitted.
 図3は、電動シリンダ装置10Aを備える車両の電動制動装置100を図示している。電動シリンダ装置10Aは、基板収容ケース30と本体ケース20Aと台座部材40Aとモータハウジング51とを備えている。モータハウジング51は、ステータ52及びロータ53を収容するハウジング本体511と、鍔部515とを有している。ハウジング本体511は、円筒部512と、円筒部512の後退方向Z2の開口を閉塞する蓋部513とを有している。鍔部515は、円筒部512の前進方向Z1の端から、出力軸54を中心とする径方向における外側に延出している。そして、鍔部515が、台座部材40Aに締結されている。これにより、モータハウジング51が台座部材40Aに取り付けられる。 FIG. 3 illustrates an electric braking device 100 for a vehicle that includes an electric cylinder device 10A. The electric cylinder device 10A includes a substrate housing case 30, a main body case 20A, a base member 40A, and a motor housing 51. As shown in FIG. The motor housing 51 has a housing main body 511 that accommodates the stator 52 and the rotor 53 and a flange portion 515 . The housing body 511 has a cylindrical portion 512 and a lid portion 513 that closes the opening of the cylindrical portion 512 in the backward direction Z2. The flange portion 515 extends outward in the radial direction centered on the output shaft 54 from the end of the cylindrical portion 512 in the forward direction Z1. A flange portion 515 is fastened to the base member 40A. Thereby, the motor housing 51 is attached to the base member 40A.
 台座部材40Aは、本体ケース20Aとモータハウジング51との間に配置されている。すなわち、台座部材40Aは、本体ケース20Aとモータハウジング51に挟まれた態様で本体ケース20Aに取り付けられている。そして、台座部材40Aの台座内収容室41に運動伝達機構60が収容されている。台座部材40Aの外側面401は、電気モータ50の出力軸54を中心とする径方向においてロータ53よりも外側に位置している。より詳しくは、台座部材40Aの外側面401は、出力軸54を中心とする径方向において、モータハウジング51の円筒部512の外周面よりも外側に位置している。 The base member 40A is arranged between the main body case 20A and the motor housing 51. That is, the pedestal member 40A is attached to the main body case 20A so as to be sandwiched between the main body case 20A and the motor housing 51. As shown in FIG. A motion transmission mechanism 60 is housed in the pedestal housing chamber 41 of the pedestal member 40A. The outer surface 401 of the base member 40A is located outside the rotor 53 in the radial direction about the output shaft 54 of the electric motor 50 . More specifically, the outer surface 401 of the base member 40A is located outside the outer peripheral surface of the cylindrical portion 512 of the motor housing 51 in the radial direction about the output shaft 54 .
 電気モータ50は、電力ピン56を備えている。電力ピン56は、ステータ52に巻き付けられているコイルに電気的に接続されている。電力ピン56は、モータハウジング51内から前進方向Z1に突出している。すなわち、電力ピン56の先端は、台座内収容室41内に位置している。 The electric motor 50 has power pins 56 . Power pins 56 are electrically connected to coils wound around stator 52 . The power pin 56 protrudes from inside the motor housing 51 in the forward direction Z1. In other words, the tip of the power pin 56 is positioned within the pedestal housing chamber 41 .
 台座内収容室41には、中継回路基板14が設けられている。中継回路基板14は、運動伝達機構60と台座部材40Aの周壁との間に配置されている。中継回路基板14の一部分は、上記出力軸54を中心とする径方向においてハウジング本体511よりも外側に位置している。中継回路基板14のうち、上記出力軸54を中心とする径方向においてステータ52よりも外側に位置する部分を外側部分とする。このとき、外側部分には、制御基板12に電気的に接続されている信号線15が電気的に接続されている。すなわち、台座内収容室41内では、出力軸54を中心とする径方向において信号線15はステータ52よりも外側に位置している。詳しくは、信号線15は、出力軸54を中心とする径方向において、ハウジング本体511よりも外側に位置している。 A relay circuit board 14 is provided in the pedestal housing chamber 41 . The relay circuit board 14 is arranged between the motion transmission mechanism 60 and the peripheral wall of the base member 40A. A portion of the relay circuit board 14 is located outside the housing main body 511 in the radial direction about the output shaft 54 . A portion of the relay circuit board 14 located outside the stator 52 in the radial direction about the output shaft 54 is referred to as an outer portion. At this time, the signal line 15 electrically connected to the control board 12 is electrically connected to the outer portion. That is, in the pedestal housing chamber 41 , the signal line 15 is located outside the stator 52 in the radial direction about the output shaft 54 . Specifically, the signal line 15 is located outside the housing body 511 in the radial direction about the output shaft 54 .
 なお、中継回路基板14の端子に、電気モータ50の電力ピン56が電気的に接続されている。そして、中継回路基板14において、電力ピン56と信号線15とが電気的に接続されている。信号線15は、台座部材40A内及び本体ケース20A内を通っている。そして、信号線15の第1端は制御基板12に電気的に接続されている一方、信号線15の第2端は中継回路基板14に電気的に接続されている。そのため、制御基板12から信号線15を介して電気モータ50に電力を供給できる。 The power pins 56 of the electric motor 50 are electrically connected to the terminals of the relay circuit board 14 . In the relay circuit board 14, the power pins 56 and the signal lines 15 are electrically connected. The signal line 15 passes through the base member 40A and the body case 20A. A first end of the signal line 15 is electrically connected to the control board 12 , while a second end of the signal line 15 is electrically connected to the relay circuit board 14 . Therefore, power can be supplied from the control board 12 to the electric motor 50 via the signal line 15 .
 <本実施形態における作用及び効果>
 本実施形態では、上記第1実施形態と同等の作用及び効果に加え、以下の効果をさらに得ることができる。
<Actions and effects of the present embodiment>
In this embodiment, the following effects can be obtained in addition to the same functions and effects as those of the first embodiment.
 台座内収容室41内において、電気モータ50と制御基板12とを電気的に繋ぐ信号ラインを、出力軸54を中心とする径方向においてステータ52よりも外側に配置できる。これにより、電気モータ50として、上記径方向の寸法の大きい電気モータを採用しなくてもよい。したがって、電動シリンダ装置10Aが大型化することを抑制できる。 A signal line electrically connecting the electric motor 50 and the control board 12 can be arranged outside the stator 52 in the radial direction about the output shaft 54 in the pedestal housing chamber 41 . As a result, it is not necessary to employ the electric motor having the large radial dimension as the electric motor 50 . Therefore, it is possible to suppress an increase in the size of the electric cylinder device 10A.
 (第3実施形態)
 電動シリンダ装置の第3実施形態を図4に従って説明する。以下の説明においては、第1実施形態と相違する部分について主に説明するものとし、第1実施形態及び第2実施形態と同一の部材構成には同一符号を付して重複説明を省略するものとする。
(Third embodiment)
A third embodiment of the electric cylinder device will be described with reference to FIG. In the following description, the parts that are different from the first embodiment will be mainly described, and the same reference numerals will be given to the same member configurations as in the first and second embodiments, and redundant description will be omitted. and
 図4は、電動シリンダ装置10Bを備える車両の電動制動装置100を図示している。電動シリンダ装置10Bは、基板収容ケース30Bと本体ケース20Bと台座部材40Bとモータハウジング51とを備えている。モータハウジング51は、ステータ52及びロータ53を収容するハウジング本体511と、鍔部515とを有している。鍔部515が、台座部材40Bに締結されている。 FIG. 4 illustrates an electric braking device 100 for a vehicle that includes an electric cylinder device 10B. The electric cylinder device 10B includes a substrate housing case 30B, a main body case 20B, a base member 40B, and a motor housing 51. As shown in FIG. The motor housing 51 has a housing main body 511 that accommodates the stator 52 and the rotor 53 and a flange portion 515 . A collar portion 515 is fastened to the base member 40B.
 本体ケース20Bには、本体ケース20Bを貫通するシリンダ貫通孔23及び回転軸用貫通孔24Bが形成されている。本実施形態では、回転軸用貫通孔24Bは、出力軸54を中心とする径方向において、電気モータ50のステータ52よりも外側に位置している。詳しくは、回転軸用貫通孔24Bは、出力軸54を中心とする径方向においてハウジング本体511よりも外側に位置している。 The body case 20B is formed with a cylinder through-hole 23 and a rotary shaft through-hole 24B that penetrate the body case 20B. In the present embodiment, the rotary shaft through hole 24B is located outside the stator 52 of the electric motor 50 in the radial direction about the output shaft 54 . Specifically, the rotary shaft through hole 24</b>B is located outside the housing body 511 in the radial direction centering on the output shaft 54 .
 基板収容ケース30Bには、回転軸用貫通孔24B内と連通する第1収容室31Bと、第1収容室31Bとは区分けされている第2収容室32とが形成されている。第1収容室31Bには、回転角検出部としての磁石11が配置されている。第2収容室32に制御基板12が配置されている。 The substrate housing case 30B is formed with a first housing chamber 31B that communicates with the inside of the rotary shaft through hole 24B, and a second housing chamber 32 that is separated from the first housing chamber 31B. A magnet 11 as a rotation angle detector is arranged in the first storage chamber 31B. A control board 12 is arranged in the second storage chamber 32 .
 台座部材40Bは、本体ケース20Bとモータハウジング51との間に配置されている。すなわち、台座部材40Bは、本体ケース20Bとモータハウジング51とに挟まれた態様で本体ケース20Bに取り付けられている。そして、台座部材40Bの台座内収容室41に運動伝達機構60が収容されている。台座部材40Bの外側面401は、電気モータ50の出力軸54を中心とする径方向においてロータ53よりも外側に位置している。より詳しくは、台座部材40Bの外側面401は、出力軸54を中心とする径方向において、モータハウジング51の円筒部512の外周面よりも外側に位置している。 The base member 40B is arranged between the main body case 20B and the motor housing 51. That is, the pedestal member 40B is attached to the main body case 20B so as to be sandwiched between the main body case 20B and the motor housing 51. As shown in FIG. A motion transmission mechanism 60 is housed in the pedestal housing chamber 41 of the pedestal member 40B. The outer surface 401 of the base member 40B is located outside the rotor 53 in the radial direction about the output shaft 54 of the electric motor 50 . More specifically, the outer surface 401 of the base member 40B is located outside the outer peripheral surface of the cylindrical portion 512 of the motor housing 51 in the radial direction about the output shaft 54 .
 電動シリンダ装置10Bは、台座内収容室41内に配置されている第1中継ギヤ91及び第2中継ギヤ95と、回転軸64とを備えている。
 第1中継ギヤ91は出力軸54に取り付けられている。また、第1中継ギヤ91は、出力軸54と同軸に配置されている。そのため、第1中継ギヤ91は、出力軸54及び駆動ギヤ61と一体に回転する。第1中継ギヤ91は、円板部92と、円板部92に固定されているリング状のギヤ部93とを有している。円板部の中央には、出力軸54が嵌合されている貫通孔が形成されている。そして、ギヤ部93よりも内側に、運動伝達機構60が配置されている。なお、ギヤ部93は外歯歯車である。
The electric cylinder device 10</b>B includes a first relay gear 91 and a second relay gear 95 arranged in the pedestal housing chamber 41 and a rotating shaft 64 .
The first intermediate gear 91 is attached to the output shaft 54 . Also, the first relay gear 91 is arranged coaxially with the output shaft 54 . Therefore, the first intermediate gear 91 rotates integrally with the output shaft 54 and the driving gear 61 . The first intermediate gear 91 has a disc portion 92 and a ring-shaped gear portion 93 fixed to the disc portion 92 . A through hole into which the output shaft 54 is fitted is formed in the center of the disk portion. A motion transmission mechanism 60 is arranged inside the gear portion 93 . Note that the gear portion 93 is an external gear.
 第2中継ギヤ95は、出力軸54を中心とする径方向においてハウジング本体511よりも外側に配置されている。そして、第2中継ギヤ95はギヤ部93と噛み合っている。そのため、出力軸54が回転すると、第1中継ギヤ91及び駆動ギヤ61と同期して第2中継ギヤ95が回転する。 The second intermediate gear 95 is arranged outside the housing main body 511 in the radial direction about the output shaft 54 . The second intermediate gear 95 meshes with the gear portion 93 . Therefore, when the output shaft 54 rotates, the second intermediate gear 95 rotates in synchronization with the first intermediate gear 91 and the drive gear 61 .
 回転軸64は第2中継ギヤ95と一体に回転する。本実施形態では、回転軸64は、第2中継ギヤ95と同軸配置されている。そのため、回転軸64は、台座部材40Bの内部で電気モータ50の出力軸54に動力伝達可能な状態で連結されている。さらに、回転軸64は出力軸54と平行である。すなわち、回転軸64は、出力軸54の軸線、すなわち電気モータ50の軸線50aに沿う方向に延びている。回転軸64は、本体ケース20Bの回転軸用貫通孔24Bを挿通して第1収容室31Bまで延びている。回転軸64は、複数の軸受66を介して本体ケース20Bに回転自在な状態で支持されている。そして、回転軸64のうち、第1収容室31Bに位置する部分に磁石11が取り付けられている。すなわち、回転軸64の両端部のうち、台座内収容室41内に位置する第1端部641に第2中継ギヤ95が取り付けられており、第1収容室31B内に位置する第2端部642に磁石11が取り付けられている。第2端部642は、台座部材40Bの本体ケース20B側の外側に配置されているといえる。 The rotating shaft 64 rotates integrally with the second intermediate gear 95 . In this embodiment, the rotating shaft 64 is arranged coaxially with the second intermediate gear 95 . Therefore, the rotating shaft 64 is connected to the output shaft 54 of the electric motor 50 inside the base member 40B so as to be able to transmit power. Furthermore, the rotation axis 64 is parallel to the output shaft 54 . That is, the rotating shaft 64 extends along the axis of the output shaft 54 , that is, along the axis 50 a of the electric motor 50 . The rotating shaft 64 is inserted through the rotating shaft through-hole 24B of the main body case 20B and extends to the first housing chamber 31B. The rotating shaft 64 is rotatably supported by the main body case 20B via a plurality of bearings 66 . A magnet 11 is attached to a portion of the rotary shaft 64 located in the first storage chamber 31B. That is, the second relay gear 95 is attached to the first end 641 positioned inside the pedestal housing chamber 41 among both ends of the rotating shaft 64, and the second end positioned inside the first housing chamber 31B is mounted. A magnet 11 is attached to 642 . It can be said that the second end portion 642 is arranged on the outside of the base member 40B on the main body case 20B side.
 <本実施形態における作用及び効果>
 本実施形態では、上記第1実施形態と同等の作用及び効果に加え、以下の効果をさらに得ることができる。
<Actions and effects of the present embodiment>
In this embodiment, the following effects can be obtained in addition to the same functions and effects as those of the first embodiment.
 台座内収容室41内に第1中継ギヤ91を配置することによって、電気モータ50の動力伝達経路を2つに分岐している。そして、直動変換機構70に伝える経路とは別の経路に配置されている回転軸64の回転を回転角センサ13で検出している。これにより、電気モータ50として回転角センサを内蔵した電気モータを採用しなくてもよくなる。 The power transmission path of the electric motor 50 is branched into two by arranging the first relay gear 91 in the pedestal housing chamber 41 . The rotation angle sensor 13 detects the rotation of the rotating shaft 64 arranged on a path different from the path for transmitting the motion to the direct-acting conversion mechanism 70 . This eliminates the need to use an electric motor with a built-in rotation angle sensor as the electric motor 50 .
 (変更例)
 上記複数の実施形態は、以下のように変更して実施することができる。上記複数の実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
The multiple embodiments described above can be implemented with the following modifications. The multiple embodiments described above and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・第1実施形態において、図5に示すように、第2従動ギヤ63を、駆動ギヤ61ではなく第1従動ギヤ62と噛み合わせることができるように配置してもよい。
 ・回転角センサを、第2従動ギヤ63の回転角及び回転速度を検出できるように配置してもよい。この場合、回転軸64を省略できる。
- In the first embodiment, as shown in FIG. 5, the second driven gear 63 may be arranged so as to mesh with the first driven gear 62 instead of the drive gear 61.
- A rotation angle sensor may be arranged so as to detect the rotation angle and rotation speed of the second driven gear 63 . In this case, the rotating shaft 64 can be omitted.
 ・回転角センサ13は、回転角及び回転速度を検出できるのであれば、磁気センサ以外のセンサを採用してもよい。例えば、ホールセンサを回転角センサ13として採用してもよい。 · The rotation angle sensor 13 may employ a sensor other than a magnetic sensor as long as it can detect the rotation angle and rotation speed. For example, a Hall sensor may be employed as the rotation angle sensor 13 .
 ・第1実施形態及び第2実施形態において、電気モータ50として、回転角センサを内蔵したものを採用してもよい。この場合、回転角センサ13を設けなくてもよいため、運動伝達機構60は第2従動ギヤ63及び回転軸64を省略できる。 · In the first and second embodiments, the electric motor 50 may include a rotation angle sensor. In this case, since the rotation angle sensor 13 does not have to be provided, the motion transmission mechanism 60 can omit the second driven gear 63 and the rotating shaft 64 .
 ・仮想平面HA上でモータ像P50の一部が機構像P70と重なるように電気モータ50が配置されているのであれば、軸間距離L1はモータ半径L50と機構半径L70との何れよりも短くてもよい。 If the electric motor 50 is arranged so that a portion of the motor image P50 overlaps the mechanism image P70 on the virtual plane HA, the inter-axis distance L1 is shorter than both the motor radius L50 and the mechanism radius L70. may
 ・電気モータ50が直動変換機構70と同軸に配置されていないのであれば、仮想平面HA上でモータ像P50が機構像P70と重ならないように電気モータ50を配置してもよい。この場合、直動変換機構70から比較的離れて電気モータ50が配置されることになる。そのため、運動伝達機構は、駆動ギヤ61と第1従動ギヤ62との間の動力伝達経路に、少なくとも1つの中継ギヤを配置した構成であってもよい。 · If the electric motor 50 is not arranged coaxially with the linear motion conversion mechanism 70, the electric motor 50 may be arranged so that the motor image P50 does not overlap the mechanism image P70 on the virtual plane HA. In this case, the electric motor 50 is arranged relatively far from the linear motion conversion mechanism 70 . Therefore, the motion transmission mechanism may have a configuration in which at least one intermediate gear is arranged in the power transmission path between the drive gear 61 and the first driven gear 62 .
 ・上記実施形態では、出力軸54が直動変換機構70の軸線70aと平行となるように電気モータ50が配置されているが、これに限らない。例えば、出力軸54が直動変換機構70の軸線70aとほぼ平行であれば、出力軸54が軸線70aに対して傾斜していてもよい。 · In the above embodiment, the electric motor 50 is arranged so that the output shaft 54 is parallel to the axis 70a of the linear motion conversion mechanism 70, but this is not the only option. For example, if the output shaft 54 is substantially parallel to the axis 70a of the linear motion converting mechanism 70, the output shaft 54 may be inclined with respect to the axis 70a.
 ・モータハウジング51に加えて出力軸54も直動変換機構70よりも後退方向Z2に位置するように、電気モータ50を配置してもよい。
 ・電動シリンダ装置は、例えば図6に示すように出力軸54が直動変換機構70の軸線70aと直交するように、又は出力軸54が直動変換機構70の軸線70aとほぼ直交するように、電気モータ50が配置された構成であってもよい。これらのような構成の場合、直動変換機構70よりも後退方向Z2に電気モータ50を配置できる。
- The electric motor 50 may be arranged so that the output shaft 54 in addition to the motor housing 51 is located in the backward direction Z2 relative to the linear motion conversion mechanism 70 .
・The electric cylinder device is configured so that the output shaft 54 is orthogonal to the axis 70a of the linear motion conversion mechanism 70, or the output shaft 54 is substantially orthogonal to the axis 70a of the linear motion conversion mechanism 70, as shown in FIG. , the electric motor 50 may be arranged. In the case of such a configuration, the electric motor 50 can be arranged in the backward direction Z2 with respect to the linear motion conversion mechanism 70 .
 ・運動伝達機構60は、互いに噛み合う複数のギヤを有する構成であれば、当該複数のギヤのうち少なくとも1つは平歯ギヤでなくてもよい。駆動ギヤ61及び第1従動ギヤ62として、例えば図6に示すようにかさ歯ギヤを採用してもよいし、はす歯ギヤを採用してもよい。 · As long as the motion transmission mechanism 60 has a plurality of gears that mesh with each other, at least one of the plurality of gears need not be a spur gear. As the driving gear 61 and the first driven gear 62, for example, bevel gears may be employed as shown in FIG. 6, or helical gears may be employed.
 ・運動伝達機構は、電気モータ50の回転運動を直動変換機構70に伝達できるのであれば、ベルトやチェーンを用いて動力伝達を行うものであってもよい。
 ・シリンダ機構80はスプリング84を省略した構成でもよい。
As long as the motion transmission mechanism can transmit the rotary motion of the electric motor 50 to the linear motion conversion mechanism 70, the motion transmission mechanism may use a belt or a chain to transmit power.
- The cylinder mechanism 80 may have a configuration in which the spring 84 is omitted.
 ・本体ケース20,20A,20Bは、基板収容ケース30,30Bが取り付けられる第1本体側面21と、台座部材40,40A,40Bが取り付けられる第2本体側面22とを有するのであれば、直方体以外の他の形状であってもよい。 ・If the main body cases 20, 20A, 20B have a first main body side surface 21 to which the substrate housing cases 30, 30B are attached and a second main body side surface 22 to which the base members 40, 40A, 40B are attached, they are other than rectangular parallelepipeds. Other shapes may be used.
 ・直動変換機構70を直動変換機構70の径方向に投影した像の外にモータハウジング51を配置できるのであれば、図1に示した位置とは異なる位置にモータハウジング51が配置されてもよい。例えば、直動変換機構70よりも前進方向Z1にモータハウジング51が配置されてもよい。 If the motor housing 51 can be arranged outside the image of the linear motion conversion mechanism 70 projected in the radial direction of the linear motion conversion mechanism 70, the motor housing 51 can be arranged at a position different from the position shown in FIG. good too. For example, the motor housing 51 may be arranged in the forward direction Z1 from the linear motion conversion mechanism 70 .
 ・第2実施形態及び第3実施形態において、運動伝達機構として遊星歯車機構を採用してもよい。
 ・電動シリンダ装置を、ホイールシリンダ110とは別のものを液体の供給対象とする装置に具体化してもよい。
- In 2nd Embodiment and 3rd Embodiment, you may employ|adopt a planetary gear mechanism as a motion transmission mechanism.
- The electric cylinder device may be embodied as a device to which liquid is to be supplied, other than the wheel cylinder 110 .

Claims (5)

  1.  電気モータのステータ及びロータがモータハウジング内に収容され、前記ロータと一体に回転する出力軸が前記モータハウジングから外部に突出し、前記出力軸の回転運動が運動伝達機構により直動変換機構に伝達され、前記直動変換機構の回転部の回転運動が前記直動変換機構の直動部の直線運動に変換され、シリンダ内のピストンが前記直動変換機構の前記直動部の直線運動により駆動される電動シリンダ装置であって、
     前記出力軸の軸線と前記回転部の軸線とがずれた位置に、前記電気モータと前記直動変換機構とが配置され、前記直動変換機構を前記直動変換機構の径方向に投影した像の外に前記モータハウジングが位置している
     電動シリンダ装置。
    A stator and a rotor of an electric motor are housed in a motor housing, an output shaft that rotates together with the rotor protrudes from the motor housing, and rotational motion of the output shaft is transmitted to a linear motion conversion mechanism by a motion transmission mechanism. , the rotary motion of the rotary portion of the linear motion conversion mechanism is converted into the linear motion of the linear motion portion of the linear motion conversion mechanism, and the piston in the cylinder is driven by the linear motion of the linear motion portion of the linear motion conversion mechanism. An electric cylinder device that
    The electric motor and the linear motion converting mechanism are arranged at positions where the axis of the output shaft and the axis of the rotating part are shifted, and an image of the linear motion converting mechanism projected in the radial direction of the linear motion converting mechanism. The motor housing is located outside the electric cylinder device.
  2.  前記電気モータを前記直動変換機構に対して前記出力軸の方向に投影したとき、前記電気モータを投影した像の一部と前記直動変換機構が重なるように前記電気モータが配置されている
     請求項1に記載の電動シリンダ装置。
    The electric motor is arranged such that when the electric motor is projected onto the linear motion conversion mechanism in the direction of the output shaft, the linear motion conversion mechanism partially overlaps the projected image of the electric motor. The electric cylinder device according to claim 1.
  3.  前記運動伝達機構は、
     前記出力軸に設けられている駆動ギヤと、
     前記回転部に連結されており、前記駆動ギヤの回転に応じて回転する第1従動ギヤと、
     前記駆動ギヤ又は前記第1従動ギヤと噛み合っており、前記駆動ギヤの回転に応じて回転する第2従動ギヤと、
     前記第2従動ギヤと一体に回転する回転軸と、
     前記回転軸の回転角を検出する回転角検出部と、を備える
     請求項1又は請求項2に記載の電動シリンダ装置。
    The motion transmission mechanism is
    a driving gear provided on the output shaft;
    a first driven gear that is connected to the rotating portion and rotates according to the rotation of the driving gear;
    a second driven gear that meshes with the drive gear or the first driven gear and rotates according to the rotation of the drive gear;
    a rotating shaft that rotates integrally with the second driven gear;
    The electric cylinder device according to claim 1 or 2, further comprising a rotation angle detection section that detects the rotation angle of the rotating shaft.
  4.  前記直動変換機構を支持する本体ケースと、
     前記本体ケースと前記モータハウジングとの間に配置されており、内部に前記運動伝達機構が収容されている台座部材と、
     前記本体ケースを挟んで前記台座部材の反対側に配置されている制御基板と、を備え、
     前記台座部材の外側面は、前記出力軸を中心とする径方向において前記ステータよりも外側に位置しており、
     前記電気モータの信号線は、前記台座部材内及び前記本体ケース内を通って前記制御基板に電気的に接続されており、
     前記台座部材内では、前記出力軸を中心とする径方向において前記ステータよりも外側に前記信号線が配置されている
     請求項1に記載の電動シリンダ装置。
    a body case that supports the linear motion conversion mechanism;
    a pedestal member disposed between the body case and the motor housing and housing the motion transmission mechanism therein;
    a control board arranged on the opposite side of the base member across the main body case,
    the outer surface of the base member is located outside the stator in a radial direction about the output shaft,
    A signal line of the electric motor is electrically connected to the control board through the inside of the base member and the inside of the main body case,
    The electric cylinder device according to claim 1, wherein the signal line is arranged outside the stator in a radial direction about the output shaft in the base member.
  5.  前記直動変換機構を支持する本体ケースと、
     前記本体ケースと前記モータハウジングとの間に配置されており、内部に前記運動伝達機構が収容されている台座部材と、
     前記出力軸の延びる方向に沿って延びる軸であって、前記台座部材の内部において前記出力軸に連結され、前記出力軸の回転に同期して回転する回転軸と、
     前記回転軸の回転角を検出する回転角検出部と、を備え、
     前記台座部材の外側面は、前記出力軸を中心とする径方向において前記ステータよりも外側に位置しており、
     前記回転軸の第1端部は、前記台座部材の内部において前記出力軸を中心とする径方向における前記ステータよりも外側に位置しており、
     前記回転軸の第2端部は前記台座部材の前記本体ケース側の外部に配置されているとともに、当該第2端部に前記回転角検出部が取り付けられている
     請求項1に記載の電動シリンダ装置。
    a body case that supports the linear motion conversion mechanism;
    a pedestal member disposed between the body case and the motor housing and housing the motion transmission mechanism therein;
    a rotating shaft that extends along the direction in which the output shaft extends, is connected to the output shaft inside the base member, and rotates in synchronization with the rotation of the output shaft;
    a rotation angle detection unit that detects the rotation angle of the rotation shaft,
    the outer surface of the base member is located outside the stator in a radial direction about the output shaft,
    a first end of the rotating shaft is positioned outside the stator in a radial direction about the output shaft inside the base member;
    2. The electric cylinder according to claim 1, wherein a second end of said rotating shaft is disposed outside said main body case side of said base member, and said rotation angle detector is attached to said second end. Device.
PCT/JP2022/040611 2021-10-29 2022-10-31 Electric cylinder device WO2023074891A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021177818 2021-10-29
JP2021-177818 2021-10-29
JP2022-173057 2022-10-28
JP2022173057A JP2023067844A (en) 2021-10-29 2022-10-28 Electric cylinder device

Publications (1)

Publication Number Publication Date
WO2023074891A1 true WO2023074891A1 (en) 2023-05-04

Family

ID=86159505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040611 WO2023074891A1 (en) 2021-10-29 2022-10-31 Electric cylinder device

Country Status (1)

Country Link
WO (1) WO2023074891A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089598A (en) * 2000-09-12 2002-03-27 Asmo Co Ltd Disc brake device
WO2019073750A1 (en) * 2017-10-13 2019-04-18 日立オートモティブシステムズ株式会社 Electrically operated brake device
WO2020090376A1 (en) * 2018-11-01 2020-05-07 日立オートモティブシステムズ株式会社 Electric parking brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089598A (en) * 2000-09-12 2002-03-27 Asmo Co Ltd Disc brake device
WO2019073750A1 (en) * 2017-10-13 2019-04-18 日立オートモティブシステムズ株式会社 Electrically operated brake device
WO2020090376A1 (en) * 2018-11-01 2020-05-07 日立オートモティブシステムズ株式会社 Electric parking brake device

Similar Documents

Publication Publication Date Title
JP2012147541A (en) Electromechanical device, and actuator, motor, robot, and robot hand using the same
US7966907B2 (en) Finger joint mechanism
US8714041B2 (en) Transmission
CN105865679B (en) Torque angle sensor
US20110147143A1 (en) Electronic parking brake actuator
CN103358316A (en) Hollow driving module
JP2017198322A (en) Driving device
JP2012070558A (en) Electromechanical device, and actuator and motor using the same
JP2013099191A (en) Electro-mechanical device, actuator using the same, motor, robot and robot hand
JP7172823B2 (en) rotary actuator
CN109311508B (en) Actuator for steering device
WO2017163908A1 (en) Electrically driven actuator
JP2014011931A (en) Electro-mechanical device, actuator using the same, motor, robot and robot hand
CN116325447A (en) Driving motor having brushless DC motor and rotary actuator using the same
CN109891723B (en) Electric actuator
WO2023074891A1 (en) Electric cylinder device
JP2022091762A (en) Motor unit
CN214699142U (en) Actuator for vehicle
JP2023067844A (en) Electric cylinder device
JP2013129311A (en) Motor drive force transmission device
KR20160025381A (en) Motor and power transmission apparatus including the same
JP2021046136A (en) Turning device
US11433532B2 (en) Robot joint structure
WO2023074905A1 (en) Electric braking device
US20190048975A1 (en) Speed reducer and actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887216

Country of ref document: EP

Kind code of ref document: A1