WO2023074825A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2023074825A1
WO2023074825A1 PCT/JP2022/040264 JP2022040264W WO2023074825A1 WO 2023074825 A1 WO2023074825 A1 WO 2023074825A1 JP 2022040264 W JP2022040264 W JP 2022040264W WO 2023074825 A1 WO2023074825 A1 WO 2023074825A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
control
turned
rotor
current
Prior art date
Application number
PCT/JP2022/040264
Other languages
French (fr)
Japanese (ja)
Inventor
健太 原田
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Publication of WO2023074825A1 publication Critical patent/WO2023074825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to a working machine having a brushless motor.
  • a brushless motor is used as a drive source for a working machine such as an electric tool.
  • a sensorless control system is known as a control system for a brushless motor using an inverter circuit.
  • Vector control is known as control for efficiently driving a brushless motor.
  • the rotational position of the rotor is detected from the current flowing through the stator coil without providing a position sensor such as a Hall IC.
  • the rotor of the brushless motor performs inertial rotation.
  • the sensorless control method when estimating the rotor position from the current flowing through the brushless motor to execute vector control, the current cannot be measured when all the switching elements are off, so the rotor position cannot be estimated. Therefore, even if the operation unit is turned on again while the rotor is inertially rotating, the current position of the rotor cannot be estimated. In this case, for example, in order to prevent an abnormal operation, it is necessary to perform special control such as stopping the brushless motor once by applying a brake and then re-accelerating the motor. As a result, it takes time to reaccelerate the brushless motor when the operation unit is turned on again.
  • An object of the present invention is to solve at least one of the following problems 1 and 2.
  • [Problem 1] To provide a work machine in which a brushless motor of a sensorless control system is controlled by vector control, in which the time required for re-acceleration of the brushless motor when the operation unit is turned on again can be shortened.
  • [Problem 2] To provide a work machine having a sensorless control type brushless motor that can reduce the number of revolutions of the brushless motor while detecting currents flowing through a plurality of stator coils when an operation unit is turned off. .
  • An aspect of the present invention is a brushless motor including a rotor and a stator having a plurality of stator coils, and instructing to start the brushless motor when turned on, and starting the brushless motor when turned off.
  • a driving circuit having a plurality of switching elements and outputting a driving voltage to the plurality of stator coils; and a plurality of current detecting portions detecting the current flowing through each of the plurality of stator coils.
  • a control unit that controls the drive circuit by vector control based on the currents detected by the plurality of current detection units, wherein the control unit is operated after the operation unit is turned off.
  • the drive circuit is controlled by vector control so that the rotation speed of the brushless motor increases without stopping the brushless motor when the operation unit is turned on before the brushless motor stops.
  • a working machine characterized by: Another aspect of the present invention is a brushless motor comprising a rotor and a stator having a plurality of stator coils; a drive circuit having a plurality of switching elements and outputting a drive voltage to the plurality of stator coils; and a plurality of current detection units for detecting currents flowing through each of the plurality of stator coils.
  • the work machine is characterized in that it is configured to control the drive circuit based on the applied current.
  • the present invention may be expressed as "electric working machine”, “electric tool”, “electrical equipment”, etc., and those expressed in such terms are also effective as aspects of the present invention.
  • FIG. 1 is a plan view of a working machine 1 according to an embodiment of the present invention
  • FIG. FIG. 2 is a side cross-sectional view of the working machine 1
  • FIG. 3 is an axial view of the brushless motor 6 of FIG. 2 with a stator coil 3h omitted
  • FIG. 2 is a view of the stator of the brushless motor 6 viewed from the axial direction
  • FIG. 2 is a circuit block diagram of a control device 40 for the brushless motor 6; Schematic diagram showing the definition of a dq coordinate system in vector control. An explanatory diagram of an example of a current vector Idq in the dq coordinate system and its current phase angle ⁇ .
  • (A) is a diagram showing an example of current vectors Iu, Iv, and Iw of each phase of U, V, and W, and a current vector Iuvw synthesized from them.
  • (A) is an explanatory diagram showing an example of a target voltage vector in vector control and a method of synthesizing the target voltage vector.
  • (B) is an on/off time chart of the switching elements Q1 to Q6 for generating the target voltage vector;
  • (A) is a time chart of the rotation speed and current of the brushless motor 6 and the duty ratio of the PWM signal for controlling the inverter circuit 42 in the operation example 1 of the working machine 1;
  • (B) is a time chart of the rotation speed and current of the brushless motor 6 and the duty ratio of the control signal of the inverter circuit 42 in the operation example 2 (comparative operation example) of the working machine 1;
  • (A) is a time chart of the rotation speed of the brushless motor 6 in the operation example 3 of the working machine 1;
  • (B) is a time chart of the rotation speed of the brushless motor 6 in the operation example 4 of the working machine 1;
  • 4 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the inertia of the tip tool is kept constant and the current vector is changed.
  • B) is when the current vector is set to I2
  • C is when the current vector is set to I3.
  • 4 is a time chart showing rotation speed, DC ring voltage, q-axis current, and d-axis current when the current vector is constant regardless of the inertia of the tip tool; is small.
  • 4 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the current vector is changed according to the inertia of the tip tool; is small.
  • the present embodiment relates to a working machine 1.
  • FIG. Referring to FIG. 1, the front-rear, up-down, and left-right directions of the working machine 1 that are orthogonal to each other are defined.
  • the work machine 1 is an AC-driven grinder (disk grinder), which is an example of an electric power tool, and operates with power supplied from an external AC power supply 60 (FIG. 5).
  • the work machine 1 includes a grindstone 2 as a rotating tool (tip tool), and is used for grinding work, cutting work, and the like.
  • a work machine 1 includes a housing 3 and a gear case 4 .
  • the housing 3 is, for example, a resin molding having a substantially cylindrical shape as a whole.
  • a power cord 62 extends from the rear end of the housing 3 for connection to an AC power supply 60 (FIG. 5).
  • the gear case 4 has a case body 10 made of metal such as an aluminum alloy, and a packing gland 11 that closes the opening of the case body 10 .
  • the case body 10 is attached to the front end of the housing 3 .
  • the work machine 1 includes a brushless motor 6 and a fan 8 inside a housing 3 .
  • the fan 8 is for cooling the brushless motor 6 and the like, is provided on the output shaft 6a of the brushless motor 6, and rotates integrally with the output shaft 6a. Fan 8 is positioned in front of brushless motor 6 .
  • a first bevel gear 21 is provided at the front end of the output shaft 6a.
  • Two bearings (a needle bearing 12 and a ball bearing 13) are provided inside the gear case 4, and the spindle 20 is rotatably held by these bearings.
  • the spindle 20 is perpendicular to the output shaft 6 a of the brushless motor 6 .
  • One end of the spindle 20 penetrates the packing gland 11 and protrudes to the outside.
  • the other end of the spindle 20 is positioned inside the gear case 4 .
  • a second bevel gear 22 is provided at the other end of the spindle 20 .
  • the second bevel gear 22 meshes with the first bevel gear 21 .
  • the rotation of the brushless motor 6 is transmitted to the spindle 20 after the rotation direction is changed by 90 degrees by the first bevel gear 21 and the second bevel gear 22 and the rotation speed is reduced. That is, the spindle 20 is rotationally driven by the brushless motor 6 .
  • the grindstone 2 is fixed to the spindle 20 by a wheel washer and a lock nut, and rotates integrally with the spindle 20 .
  • the wheel guard 14 is attached to the packing gland 11 and covers approximately half of the grindstone 2 to prevent scattering of cutting powder, sparks, etc. generated during grinding.
  • the spindle 20 and grindstone 2 are examples of the output section.
  • Spindle 20 is an example of a tip tool attachment.
  • the grindstone 2 is an example of a load part, a tip tool, and a rotating tool.
  • the work machine 1 includes a switch 5 as an operation unit for a user to instruct starting and stopping of the brushless motor 6 .
  • the switch 5 is exposed on the left side surface of the housing 3 .
  • power is supplied from the AC power supply 60 (FIG. 3) to the brushless motor 6, and the output shaft 6a of the brushless motor 6 rotates.
  • the spindle 20 connected to the output shaft 6a by the first bevel gear 21 and the second bevel gear 22 rotates, and the grindstone 2 fixed to the spindle 20 rotates.
  • the working machine 1 includes a board 9 inside the housing 3 .
  • the board 9 is positioned behind the brushless motor 6 .
  • the substrate 9 mounts a plurality of switching elements 15 forming an inverter circuit 42 (FIG. 5), which will be described later.
  • a plurality of switching elements 15 correspond to switching elements Q1 to Q6 shown in FIG.
  • Board 9 mounts each member of control device 40 shown in FIG. 5 except for brushless motor 6 .
  • the brushless motor 6 includes a rotor core 6b that is provided around an output shaft 6a and rotates integrally with the output shaft 6a, a plurality of rotor magnets (permanent magnets) 6c that are inserted and held in the rotor core 6b, and magnets that surround the outer periphery of the rotor core 6b. It includes a stator core 6e provided and a plurality of stator coils 6h provided on the stator core 6e.
  • the rotor core 6b and the rotor magnet 6c constitute a rotor of the brushless motor 6 (hereinafter referred to as "rotor").
  • the stator core 6e and the stator coil 6h constitute the stator of the brushless motor 6. As shown in FIG.
  • the brushless motor 6 here has a 4-pole, 6-slot configuration, with four rotor magnets 6c and six stator coils 6h.
  • the stator core 6e includes a cylindrical (annular) yoke portion 6f and a plurality of salient pole portions (teeth portions) 6g projecting radially inward from the yoke portion 6f.
  • a stator coil 6h is provided for each salient pole portion 6g.
  • the stator coil 6h has U-phase coils U1 and U2, V-phase coils V1 and V2, and W-phase coils W1 and W2.
  • the stator coils 6h are arranged in the axial direction of the brushless motor 6 in the order of V-phase coil V2, U-phase coil U1, W-phase coil W2, V-phase coil V1, U-phase coil U2, and W-phase coil W1.
  • the stator coil 6h of each phase is Y-connected (star-connected) as shown in FIG.
  • FIG. 5 is a circuit block diagram of the control device 40 that controls the brushless motor 6. As shown in FIG. In FIG. 5, two stator coils 6h for each phase of the brushless motor 6 are simply shown as one.
  • the control device 40 has a control section 41 , an inverter circuit 42 as a drive circuit, a voltage detection circuit 43 , an amplifier circuit 44 and a rectifier circuit 61 .
  • the rectifier circuit 61 includes, for example, a diode bridge and a smoothing capacitor, and converts alternating current supplied from the alternating current power supply 60 to direct current.
  • the voltage detection circuit 43 detects the output voltage of the rectifier circuit 61 (voltage on the input side of the inverter circuit 42 ) and transmits it to the control section 41 .
  • the inverter circuit 42 converts the DC power output from the rectifier circuit 61 into drive power for the brushless motor 6 and supplies the drive power to the brushless motor 6 (outputs a drive voltage to the stator coil 6h).
  • Inverter circuit 42 includes three-phase bridge-connected switching elements Q1-Q6. Switching elements Q1-Q3 are upper switching elements, and switching elements Q4-Q6 are lower switching elements.
  • Switching elements Q1 and Q4 are connected to one end of the U-phase coil.
  • Switching element Q1 is a U-phase upper switching element
  • switching element Q4 is a U-phase lower switching element.
  • Switching elements Q2 and Q5 are connected to one end of the V-phase coil.
  • Switching element Q2 is a V-phase upper switching element
  • switching element Q5 is a V-phase lower switching element.
  • Switching elements Q3 and Q6 are connected to one end of the W-phase coil.
  • Switching element Q3 is a W-phase upper switching element
  • switching element Q6 is a W-phase lower switching element.
  • the shunt resistors Ru, Rv, and Rw are examples of current detection units, and are provided on the low potential side of the paths of the currents (currents of each phase) flowing through the stator coils 6h of the U, V, and W phases. Converts phase current to voltage (detects current in each phase).
  • the amplifier circuit 44 amplifies the voltage across each of the shunt resistors Ru, Rv, and Rw, and transmits the amplified voltage to the control unit 41 as a current detection signal for each of the U, V, and W phases.
  • the control unit 41 includes, for example, a microcontroller and a driver IC, and controls the inverter circuit 42, that is, the switching element Q1, while monitoring the output voltage of the rectifier circuit 61 and the current of each phase according to the operation of the switch 5 by the user.
  • the driving of the brushless motor 6 is controlled through the ON/OFF control of Q6.
  • the control unit 41 detects the rotational position of the rotor (hereinafter referred to as “rotor position”) and the angular velocity of the rotor (hereinafter referred to as “rotor angular velocity”) based on the voltage on the input side of the inverter circuit 42 and the current of each phase without a sensor.
  • the control unit 41 can specify the number of rotations of the brushless motor 6, that is, the number of rotations of the rotor (hereinafter, “rotor number of rotations”) from the rotor angular velocity.
  • Drive control of the brushless motor 6 by the controller 41 is, for example, vector control.
  • Vector control is also called Space Vector Pulse Width Modulation (SVPWM).
  • SVPWM Space Vector Pulse Width Modulation
  • FIG. 6 is a schematic diagram showing the definition of the dq coordinate system in vector control.
  • FIG. 7 is an explanatory diagram of an example of the current vector Idq in the dq coordinate system and its current phase angle ⁇ .
  • An electrical angle is used in the description of vector control. Since the brushless motor 6 has a 4-pole, 6-slot configuration, the mechanical angle of 180 degrees of the brushless motor 6 corresponds to the electrical angle of 360 degrees.
  • FIG. 6 shows a schematic view of the configuration of the brushless motor 6 for a mechanical angle of 180 degrees, which is expanded to 360 degrees.
  • One rotation of the brushless motor 6 (rotation of 360 electrical degrees) in FIG. 6 corresponds to a mechanical half rotation of the brushless motor 6 (180 mechanical degrees).
  • the brushless motor 6 has a direction of a current vector Idq (current phase The angle ⁇ ) changes the torque and speed characteristics. If the current vector Idq can be controlled so that the torque and rotation speed characteristics are appropriate, the brushless motor 6 can be driven with high efficiency. Vector control is to control the current vector Idq.
  • the current vector Idq in the dq coordinate system is defined by the central axes (u-, v-, and w-axes) of the stator coils 6h of the U, V, and W phases of the inverter circuit 42 shown in FIG.
  • the current vector Iuvw obtained by synthesizing the current vectors Iu, Iv, and Iw of each phase on the uvw coordinate system is converted to the dq coordinate system as shown in FIG. 8(B). Therefore, in order to perform vector control, it is necessary to control the currents of the U, V, and W phases.
  • the inverter circuit 42 switching elements Q1 to Q6 ) must be controlled.
  • the energization pattern of the inverter circuit 42 includes upper (high side) and lower sides of each phase of U, V, and W. There are eight energization patterns depending on which of the (low side) switching elements is to be energized.
  • FIGS. 9A and 9B also show the voltage components of each phase, which are the basis of the final voltage vector.
  • switching elements Q1, Q5, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the positive direction (U direction) of the U axis.
  • switching elements Q1, Q2, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the minus direction (W ⁇ direction) of the W axis.
  • the switching elements Q2, Q4, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector directed in the positive direction (V direction) of the V axis.
  • switching elements Q2, Q3, and Q4 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the negative direction (U- direction) of the U axis.
  • switching elements Q3, Q4, and Q5 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the positive direction (W direction) of the W axis.
  • the switching elements Q1, Q3, and Q5 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the negative direction (V- direction) of the V-axis.
  • the lower switching elements Q4, Q5, and Q6 are on, and the others are off.
  • the upper switching elements Q1, Q2, and Q3 are on, and the others are off.
  • 0 vector is applied to the brushless motor 6 (stator coil 6h).
  • One of the energization patterns 7 and 8 corresponds to the first state, and the other corresponds to the second state.
  • a voltage vector by each of the energization patterns 1 to 8 is hereinafter referred to as a "base vector". Since the voltage vector that can be applied in a single energization pattern is limited to the direction of the basis vector, it is necessary to synthesize and output two or more basis vectors in order to apply a voltage vector in an arbitrary direction.
  • FIG. 11A shows an example of a method of generating a target voltage vector by synthesizing basis vectors.
  • the target voltage vector can be decomposed into a U direction basis vector (energization pattern 1), a W-direction basis vector (energization pattern 2), and a 0 vector basis vector (energization patterns 7 and 8). Therefore, if the energization patterns 1, 2, 7, and 8 of the inverter circuit 42 are continued for a period of time (t1, t2, t7, t8) corresponding to the ratio of the length of each basis vector, the target voltage vector is output. can do.
  • a basis vector of 0 vectors is required for adjustment of the absolute value (length) of the voltage vector.
  • FIG. 11(B) is a time chart of on/off of the switching elements Q1 to Q6 for generating the target voltage vector shown in FIG. 11(A).
  • the currents of the U, V, and W phases are detected to specify the rotor position and rotor angular velocity.
  • a voltage vector to be applied to the brushless motor 6 (stator coil 6h) is set according to the specified rotor position and rotor angular velocity.
  • the voltage vector is set by pulse width modulation (PWM) applied to each of the U, V, and W phases.
  • PWM pulse width modulation
  • each phase is driven so that the time ratio of each energization pattern within one cycle of PWM is t1:t2:t7:t8, as shown in FIG. 11(B). (the duty ratio of the PWM signal applied to each control terminal of the switching elements Q1 to Q6), the target voltage vector shown in FIG. 11A can be output.
  • SVPWM an arbitrary target voltage vector is output in this way.
  • Fig. 12(A) shows the rotor rotation speed, the current flowing through the stator coil 6h (hereinafter referred to as "motor current"), and the PWM signal for controlling the inverter circuit 42 in operation example 1 of the working machine 1.
  • 4 is a time chart of a duty ratio (hereinafter referred to as "duty ratio");
  • the duty ratio is such that, among the energization patterns of the inverter circuit 42, the energization patterns (patterns 1 to 6 shown in FIGS. 9A to 9F) that give driving force to the brushless motor 6 are refers to the ratio of The same applies to FIG. 12(B), which will be described later.
  • the control unit 41 When the switch 5 is turned on at time t11, the control unit 41 first performs initial position estimation control, and then performs open loop control.
  • the initial position estimating control is control to turn on/off the switching elements Q1 to Q6 in a predetermined pattern, and to estimate the initial position of the rotor from the current of each phase at that time.
  • Open-loop control increases the rotor speed by increasing the switching speed of the ON/OFF pattern of the switching elements Q1 to Q6 while controlling the current constant without relying on the feedback of the rotor position in the low speed range. be.
  • the initial position estimation control corresponds to the first control
  • the open loop control corresponds to the second control.
  • Acceleration control is control for increasing the rotor speed toward a target value by increasing the duty ratio while detecting the rotor position. Motor current drops when transitioning from open-loop control to acceleration control. Acceleration control corresponds to the third control.
  • Constant speed control is control that keeps the rotor speed constant while detecting the rotor position.
  • the load applied to the brushless motor 6 is constant, and in constant speed control, the controller 41 maintains the rotor rotation speed at the target rotation speed by fixing the duty ratio.
  • the control unit 41 maintains the rotor rotation speed at the target rotation speed by changing the duty ratio. Motor current decreases when shifting from acceleration control to constant speed control. Constant speed control corresponds to the fourth control.
  • Deceleration control is control that reduces the duty ratio to a predetermined value and reduces the rotor rotation speed at a deceleration smaller than the inertial rotation. As the duty ratio decreases, the motor current also decreases. Deceleration control corresponds to the fifth control.
  • the predetermined value is a duty ratio within a range of duty ratios in which a detectable motor current flows, such as the lowest duty ratio within the range or a duty ratio in the vicinity thereof.
  • the predetermined value is, for example, 10% or less.
  • the controller 41 continues to control the inverter circuit 42 with the reduced duty ratio. That is, in the deceleration control, the control unit 41 is configured to reduce and continue the output of the drive voltage from the inverter circuit 42 to the stator coil 6h to decelerate the rotor (reduce the rotor rotation speed). In other words, the control unit 41 is configured to output a drive voltage from the inverter circuit 42 to the stator coil 6h so as to decrease the rotation speed of the rotor.
  • the control unit 41 detects (estimates) the rotor position even during execution of deceleration control. Since the output of the drive voltage from the inverter circuit 42 to the stator coil 6h is continued, the control unit 41 can detect the rotor position based on the motor current even during execution of deceleration control.
  • the control unit 41 executes deceleration control when the rotor rotation speed exceeds a predetermined rotation speed. This is because the deceleration control is performed only within the rotation speed range in which the detection accuracy of the rotor position can be kept high. When the rotor position is detected without a sensor, the rotor position detection error increases in the low speed range.
  • the predetermined number of revolutions is, for example, 600 rpm.
  • control unit 41 determines that the switch 5 is turned off and that the rotor rotation speed exceeds a predetermined rotation speed as conditions necessary for starting and continuing deceleration control.
  • the control unit 41 may reduce the duty ratio to a predetermined value gradually or stepwise instead of reducing it all at once as in the illustrated example.
  • the duty ratio may not be increased at once, but may be increased gradually or step by step.
  • the controller 41 shifts from deceleration control to acceleration control. Since the control unit 41 detects the rotor position even during execution of deceleration control, it can immediately shift to acceleration control when the switch 5 is turned on.
  • the control unit 41 increases the duty ratio when shifting from deceleration control to acceleration control. Along with this, the output of the drive voltage from the inverter circuit 42 to the stator coil 6h increases, and the motor current rises.
  • the control parameter for example, duty ratio increase mode
  • the controller 41 shifts from acceleration control to constant speed control.
  • FIG. 12(B) shows the rotor rotation speed, motor current, and duty ratio of the PWM signal for controlling the inverter circuit 42 in operation example 2 (comparative operation example) of the work machine 1. It is a time chart. The control for the period from time t11 to t14 in FIG. 12B is the same as the control for the period from time t11 to t14 in FIG. 12A.
  • Inertia rotation control is control to decelerate the rotor by inertia rotation by turning off all of the switching elements Q1 to Q6.
  • the control unit 41 stops the rotor and then re-drives the rotor, as will be described later.
  • the switch 5 When the switch 5 is turned on at time t15 when the rotor rotation speed exceeds a predetermined rotation speed, the control unit 41 stops the rotor and then re-drives the rotor, as will be described later.
  • all of the switching elements Q1 to Q6 are off, and the rotor position cannot be detected based on the motor current. Therefore, in order to prevent malfunction, the rotor must be stopped and then driven again.
  • the control unit 41 shifts from the inertial rotation control to the brake control.
  • Brake control is control for reducing the rotor speed at deceleration greater than inertial rotation.
  • the control unit 41 turns off the switching elements Q1 to Q3, turns on at least one of the switching elements Q4 to Q6, and applies an electrical braking force (braking force) to the rotor.
  • the control unit 41 When the rotor stops at time t17, the control unit 41 performs initial position estimation control and open loop control (t17 to t18), acceleration control (t18 to t19), constant speed control (t19 to ) in order. Since the rotor is stopped and then driven again, the time t19 at which the constant speed control is started in the operation example 2 is delayed from the time t16 at which the constant speed control is started in the operation example 1.
  • FIG. 13(A) is a time chart of the rotor rotation speed in Operation Example 3 of the working machine 1.
  • FIG. The control for the period from time t11 to t14 in FIG. 12A is the same as the control for the period from time t11 to t14 in FIG. 12A.
  • the control unit 41 shifts from constant speed control to deceleration control as in the first operation example.
  • the controller 41 transitions from deceleration control to brake control.
  • the contents of the brake control are the same as those described in the operation example 2.
  • FIG. 13(B) is a time chart of the rotor rotation speed in Operation Example 4 of the working machine 1.
  • FIG. The control for the period before time t21 in FIG. 13B is the same as the control for the period before time t21 in FIG. 13A.
  • the controller 41 shifts from deceleration control to inertial rotation control.
  • the contents of the inertial rotation control are the same as those described in the operation example 2.
  • the rotor stops at time t25. Inertia rotation control corresponds to the sixth control.
  • FIG. 13(C) is a time chart of the rotor rotation speed in Operation Example 5 of the working machine 1 .
  • the control for the period before time t21 in FIG. 13(C) is the same as the control for the period before time t21 in FIGS. 13(A) and (B).
  • the control unit 41 shifts from deceleration control to inertial rotation control, as in the case of Operation Example 4.
  • the control unit 41 When the switch 5 is turned on at time t26, the control unit 41 performs control to stop the rotor and then re-drive it, as will be described later. Specifically, at time t26, the control unit 41 transitions from inertial rotation control to brake control. When the rotor stops at time t31, the control unit 41 performs initial position estimation control and open loop control (t31 to t32), acceleration control (t32 to t33), constant speed control (t33 to ) in order.
  • FIG. 14 is a time chart of the rotor rotation speed in Operation Example 6 of the working machine 1 .
  • the control for the period before time t14 in FIG. 14 is the same as the control for the period before time t14 in FIG. 12(A).
  • the contents of the deceleration control starting at time t14 are different from those in operation examples 1 and 3-5.
  • the control unit 41 makes the deceleration of the rotor in a predetermined rotation speed range including the resonance point 1 and the predetermined rotation speed range including the resonance point 2 larger than the deceleration of the rotor in other rotation speed ranges. .
  • Resonance points 1 and 2 are rotor rotation speeds at which vibration and noise increase due to the mechanical configuration of work machine 1 . Deceleration can be adjusted by a duty ratio. Vibration and noise can be suppressed by increasing the deceleration of the rotor at the resonance points 1 and 2 and at the rotor rotational speeds in the vicinity thereof.
  • FIG. 15 is a control flow chart of the working machine 1.
  • the control unit 41 executes an initialization process when activated (S1). If the switch 5 is on (YES in S2), the controller 41 proceeds to determine whether or not the rotor speed exceeds the first threshold (S3).
  • the first threshold is, for example, 600 rpm.
  • the controller 41 proceeds to determine whether the rotor is in a stopped state (S4). When the rotor is in a stopped state (YES in S4), the control unit 41 performs open loop control (S6) after executing the initial position estimation control (S5). If the rotor is not stopped (NO in S4), the controller 41 performs open loop control (S6).
  • step S7 acceleration control is performed if the rotor rotation speed has not reached the target rotation speed, and constant speed control is performed if it has reached the target rotation speed.
  • the controller 41 proceeds to determine whether or not the rotor speed exceeds the second threshold (S8).
  • the second threshold value corresponds to the predetermined number of rotations described above. If the rotor speed is not equal to or less than the second threshold (NO in S8), the controller 41 performs deceleration control (S9).
  • the control unit 41 stops energizing the brushless motor 6 (S12), and performs inertial rotation control or brake control (S13).
  • the controller 41 performs brake control (S16).
  • the controller 41 returns to S2.
  • the control unit 41 detects the motor current (S10) and estimates the rotor position (S11 ) and return to S2.
  • the controller 41 performs deceleration control. .
  • deceleration control the control unit 41 reduces and continues the output of the drive voltage from the inverter circuit 42 to the stator coil 6h to decelerate the rotor.
  • the control unit 41 outputs a drive voltage from the inverter circuit 42 to the stator coil 6h so as to decrease the rotation speed of the rotor.
  • control unit 41 can detect the rotor position (position information of the brushless motor 6) sensorlessly based on the motor current even during execution of deceleration control, and can smoothly respond to control changes during execution of deceleration control.
  • the power tool is a work machine that works while applying a load, the switching elements and the motor generate heat. malfunctions, etc., can be avoided.
  • the control unit 41 shifts from deceleration control to inertial rotation control or brake control when the rotor rotation speed becomes equal to or less than a predetermined rotation speed.
  • the deceleration can be increased and the power consumption can be suppressed at a rotational speed equal to or lower than a predetermined rotational speed at which highly accurate detection of the rotor position is difficult.
  • the control unit 41 is configured to stop the rotor and then accelerate it when the switch 5 is turned off while the rotor speed is equal to or less than a predetermined speed. As a result, it is possible to suppress abnormal operation associated with re-acceleration from a state in which the rotor position cannot be detected.
  • the control unit 41 is configured to increase or decrease the drive voltage output from the inverter circuit 42 to the stator coil 6h by controlling the duty ratio of the PWM signal input to the control terminals of the switching elements Q1 to Q6. . Therefore, highly accurate control is possible with a simple configuration.
  • the deceleration force (braking force) can be adjusted by using the original current vector during acceleration (current vector for powering) during deceleration.
  • torque in the direction of deceleration always acts on the rotating portion due to factors such as mechanical loss, albeit slightly.
  • the current to be applied during deceleration is selected within a range in which the deceleration torque is greater than the generated torque (generated torque ⁇ above deceleration torque).
  • the first quadrant is the region shown in FIG. 7 (the positive region of the d-axis and the positive region of the q-axis).
  • the second quadrant is a negative d-axis region and a positive q-axis region (the region above the d-axis and on the left side of the q-axis in FIG. 7).
  • the third quadrant is a negative d-axis region and a negative q-axis region (the region below the d-axis and on the left side of the q-axis in FIG. 7).
  • the fourth quadrant is a region of positive d-axis and negative q-axis (lower side of d-axis and right side of q-axis in FIG. 7).
  • FIG. 16 is a diagram showing the range of current vectors in the dq coordinate system during deceleration control.
  • the q-axis component increases in the plus (positive) direction (above the d-axis line in the drawing), the generated torque increases. That is, the deceleration becomes moderate.
  • the q-axis component increases in the negative (negative) direction (below the d-axis line in the drawing), the generated torque in the opposite direction increases, making it easier to generate regenerative energy. Therefore, in deceleration control, it is preferable to set the current vector within the first quadrant or the second quadrant (hatched area in the figure). That is, the current vectors I1 and I2 in FIG.
  • the 16 can be set as the current vector Idq for deceleration control, but the current vector I3 is in the third quadrant, so it is not preferable to set it. It should be noted that the apparent induced voltage decreases as the d-axis component increases in the negative direction (to the left in the drawing). Also, ⁇ indicates the angle of the current vector I with respect to the d-axis.
  • FIG. 17 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the inertia of the tip tool is constant and the current vector is changed. If the reference (zero) for the q-axis current and the d-axis current in FIG. The distance corresponds to the magnitude of the current vector. That is, the value increases as the distance from the time axis increases in the plus direction (upward direction) or in the negative direction (downward direction). The difference between the current vectors I1 and I2 due to deceleration control is the magnitude of generated torque. As can be seen from FIG.
  • FIG. 18 is a time chart showing rotation speed, DC ring voltage, q-axis current, d and d-axis current when the current vector is constant regardless of the inertia of the tip tool. Note that in FIG. 18, as in FIG. 17, the magnitude of the current vector is based on the time axis.
  • the torque generated from the brushless motor 6 is constant, so the deceleration torque (deceleration force) of the tip tool is also substantially constant. As a result, the torque applied to the tip shaft (spindle 20) can be kept constant below a predetermined value.
  • FIG. 19 is a time chart showing rotation speed, DC link voltage, q-axis current and d-axis current when the current vector is changed according to the inertia of the tip tool. Note that in FIG. 19 as well as in FIGS. 17 and 18, the magnitude of the current vector is based on the time axis. If the inertia is large, a current vector that makes the q-axis current small is selected (set) ((A) in the figure), and if the inertia is small, a current vector that makes the q-axis current large is selected (set) ( (B)). As a result, the time required for deceleration can be made constant. However, when the inertia is large, the torque for deceleration becomes large, so the reaction to the operator becomes larger than when the inertia is small.
  • connection method of the stator coil 6h may be delta connection instead of Y connection.
  • the number of poles of the rotor and the number of slots of the stator of the brushless motor 6, that is, the number of rotor magnets 6c and the number of stator coils 6h are arbitrary.
  • the brushless motor 6 may have a two-pole, three-slot configuration.
  • the shunt resistors Ru, Rv, and Rw may be provided on the high potential side of the current path of each phase. In this case, the current of each phase should be detected when the switching elements Q1 to Q6 are controlled by the energization pattern 8 shown in FIG. 10(B).
  • the current vector may be set to the third quadrant (current vector I3 in FIG. 16) or fourth quadrant.
  • the current vector I3 is set in the third quadrant to start deceleration control.
  • the voltage of the smoothing capacitor is detected, and when the voltage of the smoothing capacitor becomes equal to or higher than a first predetermined value (for example, the rated voltage of the smoothing capacitor) due to regenerative energy, the current vector is set to the first quadrant or the second quadrant (current vectors I1, I2). to suppress the generation of regenerative energy, and then repeat the control to restore the current vector when the voltage of the smoothing capacitor becomes less than the first predetermined value or a second predetermined value smaller than the first predetermined value. good.
  • a first predetermined value for example, the rated voltage of the smoothing capacitor
  • the duty ratio, the threshold value of the rotor speed, and the like given as specific numerical values in the embodiments do not limit the scope of the invention, and can be arbitrarily changed according to the required specifications.
  • the work machine of the present invention may be of a cordless type that operates with power from a battery pack.
  • the working machine of the present invention may be one other than the grinder exemplified in the embodiment.
  • Inverter circuit (drive circuit) 43 Voltage detection circuit 44 Amplifier circuit 60 AC power supply 61 Diode bridge (full-wave rectifier circuit) 62 Power cord Q1 to Q6 Switching elements Ru, Rv, Rw: shunt resistor (current detector).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Provided is a work machine capable of estimating position information of a brushless motor from a current, even when an operation unit is in an off state. A control unit 41 transitions from constant speed control to deceleration control when a switch 5 is turned off at a time t14. The deceleration control is for decreasing a duty ratio to a prescribed value (for example, 10%) and decreasing a rotor rotational speed at a smaller deceleration than inertial rotation. The control unit 41 performs the deceleration control when the rotor rotational speed exceeds a prescribed rotational speed. The control unit 41 detects (estimates) the rotor position on the basis of the motor current even when performing deceleration control, and transitions from the deceleration control to acceleration control when the switch 5 is turned on during the deceleration control.

Description

作業機work machine
本発明は、ブラシレスモータを備える作業機に関する。 The present invention relates to a working machine having a brushless motor.
電動工具等の作業機の駆動源として、ブラシレスモータが用いられる。インバータ回路を利用したブラシレスモータの制御方式として、センサレス制御方式が知られている。また、ブラシレスモータを効率的に駆動させるための制御として、ベクトル制御が知られている。センサレス制御方式でベクトル制御を実行する場合は、ホールIC等の位置センサを設けずに、ステータコイルに流れる電流によりロータの回転位置を検出する。 A brushless motor is used as a drive source for a working machine such as an electric tool. A sensorless control system is known as a control system for a brushless motor using an inverter circuit. Vector control is known as control for efficiently driving a brushless motor. When vector control is executed by the sensorless control method, the rotational position of the rotor is detected from the current flowing through the stator coil without providing a position sensor such as a Hall IC.
国際公開第2016/067811号WO2016/067811
ブラシレスモータの制御において、操作部がオフになった場合にインバータ回路のスイッチング素子を全てオフにすると、ブラシレスモータのロータ(回転子)は惰性回転を行うことになる。センサレス制御方式において、ベクトル制御を実行するためにブラシレスモータに流れる電流からロータの位置を推定する場合、スイッチング素子が全てオフの状態では電流を測定できないため、ロータの位置を推定することができない。そのため、ロータの惰性回転中に再度操作部がオンされてもロータの現在位置が推定できない。この場合には、例えば異常動作を防止するため、ブラシレスモータに一旦ブレーキをかけて停止させてから再加速するような特殊な制御を行う必要がある。その結果、操作部が再度オンされた際のブラシレスモータの再加速に時間がかかってしまう。 In the control of the brushless motor, if all the switching elements of the inverter circuit are turned off when the operation unit is turned off, the rotor of the brushless motor performs inertial rotation. In the sensorless control method, when estimating the rotor position from the current flowing through the brushless motor to execute vector control, the current cannot be measured when all the switching elements are off, so the rotor position cannot be estimated. Therefore, even if the operation unit is turned on again while the rotor is inertially rotating, the current position of the rotor cannot be estimated. In this case, for example, in order to prevent an abnormal operation, it is necessary to perform special control such as stopping the brushless motor once by applying a brake and then re-accelerating the motor. As a result, it takes time to reaccelerate the brushless motor when the operation unit is turned on again.
本発明は、下記の課題1、2の少なくともいずれかの解決を目的とする。・課題1…センサレス制御方式のブラシレスモータをベクトル制御によって制御する作業機において、操作部が再度オンされた際のブラシレスモータの再加速に要する時間を短縮することができる作業機を提供すること。・課題2…センサレス制御方式のブラシレスモータを有する作業機において、操作部をオフすると、複数のステータコイルに流れる電流を検出しながらブラシレスモータの回転数を低下させることができる作業機を提供すること。 An object of the present invention is to solve at least one of the following problems 1 and 2. [Problem 1] To provide a work machine in which a brushless motor of a sensorless control system is controlled by vector control, in which the time required for re-acceleration of the brushless motor when the operation unit is turned on again can be shortened. [Problem 2] To provide a work machine having a sensorless control type brushless motor that can reduce the number of revolutions of the brushless motor while detecting currents flowing through a plurality of stator coils when an operation unit is turned off. .
本発明のある態様は、ロータと、複数のステータコイルを有するステータと、を備えたブラシレスモータと、オンされたときに前記ブラシレスモータの起動を指示するとともに、オフされたときに前記ブラシレスモータの停止を指示する操作部と、複数のスイッチング素子を有し、前記複数のステータコイルに駆動電圧を出力する駆動回路と、前記複数のステータコイルのそれぞれに流れる電流を検出する複数の電流検出部と、前記複数の電流検出部で検出された電流に基づいて前記駆動回路をベクトル制御によって制御する制御部と、を備えた作業機であって、前記制御部は、前記操作部がオフされてから前記ブラシレスモータが停止するまでの間に前記操作部がオンされると、前記ブラシレスモータが停止することなく前記ブラシレスモータの回転数が上昇するよう前記駆動回路をベクトル制御によって制御するよう構成される、ことを特徴とする、作業機である。本発明の別の態様は、ロータと、複数のステータコイルを有するステータと、を備えたブラシレスモータと、オンされたときに前記ブラシレスモータの起動を指示するとともに、オフされたときに前記ブラシレスモータの停止を指示する操作部と、複数のスイッチング素子を有し、前記複数のステータコイルに駆動電圧を出力する駆動回路と、前記複数のステータコイルのそれぞれに流れる電流を検出する複数の電流検出部と、前記複数の電流検出部で検出された電流に基づいて前記駆動回路を制御する制御部と、を備えた作業機であって、前記制御部は、前記操作部がオフされると、前記駆動電圧として前記ブラシレスモータの回転数が低下するような電圧が前記複数のステータコイルに出力されるよう前記駆動回路を制御し、前記操作部がオフされた状態で前記複数の電流検出部で検出された電流に基づいて前記駆動回路を制御するよう構成される、ことを特徴とする、作業機である。 An aspect of the present invention is a brushless motor including a rotor and a stator having a plurality of stator coils, and instructing to start the brushless motor when turned on, and starting the brushless motor when turned off. a driving circuit having a plurality of switching elements and outputting a driving voltage to the plurality of stator coils; and a plurality of current detecting portions detecting the current flowing through each of the plurality of stator coils. and a control unit that controls the drive circuit by vector control based on the currents detected by the plurality of current detection units, wherein the control unit is operated after the operation unit is turned off. The drive circuit is controlled by vector control so that the rotation speed of the brushless motor increases without stopping the brushless motor when the operation unit is turned on before the brushless motor stops. , is a working machine characterized by: Another aspect of the present invention is a brushless motor comprising a rotor and a stator having a plurality of stator coils; a drive circuit having a plurality of switching elements and outputting a drive voltage to the plurality of stator coils; and a plurality of current detection units for detecting currents flowing through each of the plurality of stator coils. and a control section that controls the drive circuit based on the currents detected by the plurality of current detection sections, wherein the control section controls, when the operation section is turned off, the The drive circuit is controlled so that a drive voltage that reduces the rotation speed of the brushless motor is output to the plurality of stator coils, and the plurality of current detection units detects the current when the operation unit is turned off. The work machine is characterized in that it is configured to control the drive circuit based on the applied current.
本発明は「電動作業機」や「電動工具」、「電気機器」等と表現されてもよく、そのように表現されたものも本発明の態様として有効である。 The present invention may be expressed as "electric working machine", "electric tool", "electrical equipment", etc., and those expressed in such terms are also effective as aspects of the present invention.
本発明によれば、上記の課題1、2の少なくともいずれかを解決できる。 According to the present invention, at least one of the problems 1 and 2 can be solved.
本発明の実施の形態に係る作業機1の平面図。1 is a plan view of a working machine 1 according to an embodiment of the present invention; FIG. 作業機1の側断面図。FIG. 2 is a side cross-sectional view of the working machine 1; 図2のブラシレスモータ6を、ステータコイル3hを省略した状態で軸方向から見た図。FIG. 3 is an axial view of the brushless motor 6 of FIG. 2 with a stator coil 3h omitted; ブラシレスモータ6のステータ(固定子)を軸方向から見た図。FIG. 2 is a view of the stator of the brushless motor 6 viewed from the axial direction; ブラシレスモータ6の制御装置40の回路ブロック図。FIG. 2 is a circuit block diagram of a control device 40 for the brushless motor 6; ベクトル制御におけるdq座標系の定義を示す模式図。Schematic diagram showing the definition of a dq coordinate system in vector control. dq座標系における電流ベクトルIdqの一例とその電流位相角βの説明図。An explanatory diagram of an example of a current vector Idq in the dq coordinate system and its current phase angle β. (A)は、U、V、Wの各相の電流ベクトルIu、Iv、Iwの一例とそれらを合成した電流ベクトルIuvwを示す図。(B)は、電流ベクトルIdq(=Iuvw)及びそのd成分とq成分である電流ベクトルId、Iqを示す図。(A) is a diagram showing an example of current vectors Iu, Iv, and Iw of each phase of U, V, and W, and a current vector Iuvw synthesized from them. (B) is a diagram showing a current vector Idq (=Iuvw) and current vectors Id and Iq which are its d component and q component. ベクトル制御におけるスイッチング素子Q1~Q6のオンオフの組合せのパターン1~6及びそれぞれにおける出力電圧ベクトルの説明図。Explanatory diagrams of patterns 1 to 6 of ON/OFF combinations of switching elements Q1 to Q6 in vector control and output voltage vectors in each. ベクトル制御におけるスイッチング素子Q1~Q6のオンオフの組合せのパターン7~8及びそれぞれにおける出力電圧ベクトルの説明図。FIG. 8 is an explanatory diagram of patterns 7 to 8 of ON/OFF combinations of switching elements Q1 to Q6 in vector control and output voltage vectors in each of them; (A)は、ベクトル制御における目的電圧ベクトル及びその合成方法の一例を示す説明図。(B)は、当該目的電圧ベクトルを生成するためのスイッチング素子Q1~Q6のオンオフのタイムチャート。(A) is an explanatory diagram showing an example of a target voltage vector in vector control and a method of synthesizing the target voltage vector. (B) is an on/off time chart of the switching elements Q1 to Q6 for generating the target voltage vector; (A)は、作業機1の動作例1におけるブラシレスモータ6の回転数及び電流、並びにインバータ回路42の制御用のPWM信号のデューティ比のタイムチャート。(B)は、作業機1の動作例2(比較動作例)におけるブラシレスモータ6の回転数及び電流、並びにインバータ回路42の制御信号のデューティ比のタイムチャート。(A) is a time chart of the rotation speed and current of the brushless motor 6 and the duty ratio of the PWM signal for controlling the inverter circuit 42 in the operation example 1 of the working machine 1; (B) is a time chart of the rotation speed and current of the brushless motor 6 and the duty ratio of the control signal of the inverter circuit 42 in the operation example 2 (comparative operation example) of the working machine 1; (A)は、作業機1の動作例3におけるブラシレスモータ6の回転数のタイムチャート。(B)は、作業機1の動作例4におけるブラシレスモータ6の回転数のタイムチャート。(C)は、作業機1の動作例5におけるブラシレスモータ6の回転数のタイムチャート。(A) is a time chart of the rotation speed of the brushless motor 6 in the operation example 3 of the working machine 1; (B) is a time chart of the rotation speed of the brushless motor 6 in the operation example 4 of the working machine 1; (C) is a time chart of the number of rotations of the brushless motor 6 in Example 5 of operation of the working machine 1; 作業機1の動作例6におけるブラシレスモータ6の回転数のタイムチャート。10 is a time chart of the number of rotations of the brushless motor 6 in Operation Example 6 of the working machine 1; 作業機1の制御フローチャート。4 is a control flowchart of the working machine 1; 減速制御時の電流ベクトルの説明図。Explanatory drawing of the current vector at the time of deceleration control. 先端工具のイナーシャを一定とし電流ベクトルを変化させた場合の回転数、DCリンク電圧、q軸電流及びd軸電流を示すタイムチャートであり、(A)は電流ベクトルをI1に設定した場合、(B)は電流ベクトルをI2に設定した場合、(C)は電流ベクトルをI3に設定した場合である。4 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the inertia of the tip tool is kept constant and the current vector is changed. B) is when the current vector is set to I2, and (C) is when the current vector is set to I3. 先端工具のイナーシャによらず電流ベクトルを一定とした場合の回転数、DCリング電圧、q軸電流及びd軸電流を示すタイムチャートであり、(A)はイナーシャが大きい場合、(B)はイナーシャが小さい場合である。4 is a time chart showing rotation speed, DC ring voltage, q-axis current, and d-axis current when the current vector is constant regardless of the inertia of the tip tool; is small. 先端工具のイナーシャに応じて電流ベクトルを変化させた場合の回転数、DCリンク電圧、q軸電流及びd軸電流を示すタイムチャートであり、(A)はイナーシャが大きい場合、(B)はイナーシャが小さい場合である。4 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the current vector is changed according to the inertia of the tip tool; is small.
以下において、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。実施の形態は、発明を限定するものではなく例示である。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the same or equivalent constituent elements, members, etc. shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. The embodiments are illustrative rather than limiting of the invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
本実施の形態は、作業機1に関する。図1により、作業機1における互いに直交する前後、上下、左右方向を定義する。作業機1は、電動工具の一例であるAC駆動のグラインダ(ディスクグラインダ)であり、外部の交流電源60(図5)からの供給電力で動作する。作業機1は、回転具(先端工具)としての砥石2を備え、研削作業や切断作業等に用いられる。作業機1は、ハウジング3と、ギヤケース4と、を備える。 The present embodiment relates to a working machine 1. FIG. Referring to FIG. 1, the front-rear, up-down, and left-right directions of the working machine 1 that are orthogonal to each other are defined. The work machine 1 is an AC-driven grinder (disk grinder), which is an example of an electric power tool, and operates with power supplied from an external AC power supply 60 (FIG. 5). The work machine 1 includes a grindstone 2 as a rotating tool (tip tool), and is used for grinding work, cutting work, and the like. A work machine 1 includes a housing 3 and a gear case 4 .
ハウジング3は、全体として略円筒形状を成す例えば樹脂成形体である。ハウジング3の後端部から、交流電源60(図5)に接続するための電源コード62が延びる。ギヤケース4は、例えばアルミ合金等の金属製のケース本体10と、ケース本体10の開口部を塞ぐパッキングランド11と、を有する。ケース本体10は、ハウジング3の前端部に取り付けられる。 The housing 3 is, for example, a resin molding having a substantially cylindrical shape as a whole. A power cord 62 extends from the rear end of the housing 3 for connection to an AC power supply 60 (FIG. 5). The gear case 4 has a case body 10 made of metal such as an aluminum alloy, and a packing gland 11 that closes the opening of the case body 10 . The case body 10 is attached to the front end of the housing 3 .
作業機1は、ハウジング3の内部に、ブラシレスモータ6及びファン8を備える。ファン8は、ブラシレスモータ6等の冷却用であって、ブラシレスモータ6の出力軸6aに設けられ、出力軸6aと一体に回転する。ファン8は、ブラシレスモータ6の前方に位置する。出力軸6aの前端部に、第1ベベルギヤ21が設けられる。 The work machine 1 includes a brushless motor 6 and a fan 8 inside a housing 3 . The fan 8 is for cooling the brushless motor 6 and the like, is provided on the output shaft 6a of the brushless motor 6, and rotates integrally with the output shaft 6a. Fan 8 is positioned in front of brushless motor 6 . A first bevel gear 21 is provided at the front end of the output shaft 6a.
ギヤケース4の内部には、2つの軸受(ニードルベアリング12及びボールベアリング13)が設けられ、これら軸受によってスピンドル20が回転自在に保持される。スピンドル20は、ブラシレスモータ6の出力軸6aと直交する。スピンドル20の一端は、パッキングランド11を貫通して外部に突出する。スピンドル20の他端は、ギヤケース4内に位置する。 Two bearings (a needle bearing 12 and a ball bearing 13) are provided inside the gear case 4, and the spindle 20 is rotatably held by these bearings. The spindle 20 is perpendicular to the output shaft 6 a of the brushless motor 6 . One end of the spindle 20 penetrates the packing gland 11 and protrudes to the outside. The other end of the spindle 20 is positioned inside the gear case 4 .
スピンドル20の他端には第2ベベルギヤ22が設けられる。第2ベベルギヤ22は、第1ベベルギヤ21と噛み合う。ブラシレスモータ6の回転は、第1ベベルギヤ21及び第2ベベルギヤ22によって回転方向が90度変換されるとともに、回転速度が減速されてスピンドル20に伝達される。すなわち、スピンドル20はブラシレスモータ6によって回転駆動される。 A second bevel gear 22 is provided at the other end of the spindle 20 . The second bevel gear 22 meshes with the first bevel gear 21 . The rotation of the brushless motor 6 is transmitted to the spindle 20 after the rotation direction is changed by 90 degrees by the first bevel gear 21 and the second bevel gear 22 and the rotation speed is reduced. That is, the spindle 20 is rotationally driven by the brushless motor 6 .
砥石2は、ホイルワッシャ及びロックナットによってスピンドル20に固定され、スピンドル20と一体的に回転する。ホイルガード14は、パッキングランド11に取り付けられて砥石2の約半分を覆い、研削作業時に発生する切削粉や火花等の飛散を防止する。スピンドル20及び砥石2は、出力部の例示である。スピンドル20は先端工具取付部の例示である。砥石2は負荷部、先端工具、回転工具の例示である。 The grindstone 2 is fixed to the spindle 20 by a wheel washer and a lock nut, and rotates integrally with the spindle 20 . The wheel guard 14 is attached to the packing gland 11 and covers approximately half of the grindstone 2 to prevent scattering of cutting powder, sparks, etc. generated during grinding. The spindle 20 and grindstone 2 are examples of the output section. Spindle 20 is an example of a tip tool attachment. The grindstone 2 is an example of a load part, a tip tool, and a rotating tool.
作業機1は、ブラシレスモータ6の起動及び停止をユーザが指示するための操作部としてのスイッチ5を備える。スイッチ5は、ハウジング3の左部側面に露出する。ユーザがスイッチ5を操作すると、交流電源60(図3)からブラシレスモータ6に電力が供給され、ブラシレスモータ6の出力軸6aが回転する。出力軸6aの回転により、第1ベベルギヤ21及び第2ベベルギヤ22によって出力軸6aに連結されているスピンドル20が回転し、スピンドル20に固定されている砥石2が回転する。 The work machine 1 includes a switch 5 as an operation unit for a user to instruct starting and stopping of the brushless motor 6 . The switch 5 is exposed on the left side surface of the housing 3 . When the user operates the switch 5, power is supplied from the AC power supply 60 (FIG. 3) to the brushless motor 6, and the output shaft 6a of the brushless motor 6 rotates. As the output shaft 6a rotates, the spindle 20 connected to the output shaft 6a by the first bevel gear 21 and the second bevel gear 22 rotates, and the grindstone 2 fixed to the spindle 20 rotates.
作業機1は、ハウジング3内に、基板9を備える。基板9は、ブラシレスモータ6の後方に位置する。基板9は、後述のインバータ回路42(図5)を成す複数のスイッチング素子15を搭載する。複数のスイッチング素子15は、図5に示すスイッチング素子Q1~Q6に対応する。基板9は、図5に示す制御装置40のうちブラシレスモータ6を除く各部材を搭載する。 The working machine 1 includes a board 9 inside the housing 3 . The board 9 is positioned behind the brushless motor 6 . The substrate 9 mounts a plurality of switching elements 15 forming an inverter circuit 42 (FIG. 5), which will be described later. A plurality of switching elements 15 correspond to switching elements Q1 to Q6 shown in FIG. Board 9 mounts each member of control device 40 shown in FIG. 5 except for brushless motor 6 .
ブラシレスモータ6は、出力軸6aの周囲に設けられて出力軸6aと一体に回転するロータコア6b、ロータコア6bに挿入保持された複数のロータマグネット(永久磁石)6c、ロータコア6bの外周を囲むように設けられたステータコア6e、及び、ステータコア6eに設けられた複数のステータコイル6hを含む。ロータコア6bとロータマグネット6cは、ブラシレスモータ6のロータ(以下「ロータ」)を構成する。ステータコア6eとステータコイル6hは、ブラシレスモータ6のステータを構成する。ブラシレスモータ6は、ここでは4極6スロット構成であり、ロータマグネット6cは4個、ステータコイル6hは6個である。 The brushless motor 6 includes a rotor core 6b that is provided around an output shaft 6a and rotates integrally with the output shaft 6a, a plurality of rotor magnets (permanent magnets) 6c that are inserted and held in the rotor core 6b, and magnets that surround the outer periphery of the rotor core 6b. It includes a stator core 6e provided and a plurality of stator coils 6h provided on the stator core 6e. The rotor core 6b and the rotor magnet 6c constitute a rotor of the brushless motor 6 (hereinafter referred to as "rotor"). The stator core 6e and the stator coil 6h constitute the stator of the brushless motor 6. As shown in FIG. The brushless motor 6 here has a 4-pole, 6-slot configuration, with four rotor magnets 6c and six stator coils 6h.
ステータコア6eは、図3に示すように、円筒状(環状)のヨーク部6fと、ヨーク部6fから径方向内側に突出する複数の突極部(ティース部)6gと、を含む。各突極部6gに、ステータコイル6hが設けられる。図4に示すように、ステータコイル6hは、U相コイルU1、U2、V相コイルV1、V2、及びW相コイルW1、W2を有する。ステータコイル6hは、ブラシレスモータ6の軸周り方向において、V相コイルV2、U相コイルU1、W相コイルW2、V相コイルV1、U相コイルU2、W相コイルW1の順に設けられている。各相のステータコイル6hは、図5に示すようにY結線(スター結線)される。 As shown in FIG. 3, the stator core 6e includes a cylindrical (annular) yoke portion 6f and a plurality of salient pole portions (teeth portions) 6g projecting radially inward from the yoke portion 6f. A stator coil 6h is provided for each salient pole portion 6g. As shown in FIG. 4, the stator coil 6h has U-phase coils U1 and U2, V-phase coils V1 and V2, and W-phase coils W1 and W2. The stator coils 6h are arranged in the axial direction of the brushless motor 6 in the order of V-phase coil V2, U-phase coil U1, W-phase coil W2, V-phase coil V1, U-phase coil U2, and W-phase coil W1. The stator coil 6h of each phase is Y-connected (star-connected) as shown in FIG.
図5は、ブラシレスモータ6を制御する制御装置40の回路ブロック図である。図5では、ブラシレスモータ6の各相に2つずつ存在するステータコイル6hを簡略的に1つで示している。制御装置40は、制御部41、駆動回路としてのインバータ回路42、電圧検出回路43、増幅回路44、及び整流回路61を有する。 FIG. 5 is a circuit block diagram of the control device 40 that controls the brushless motor 6. As shown in FIG. In FIG. 5, two stator coils 6h for each phase of the brushless motor 6 are simply shown as one. The control device 40 has a control section 41 , an inverter circuit 42 as a drive circuit, a voltage detection circuit 43 , an amplifier circuit 44 and a rectifier circuit 61 .
整流回路61は、例えばダイオードブリッジ及び平滑コンデンサを含み、交流電源60から供給される交流を直流に変換する。電圧検出回路43は、整流回路61の出力電圧(インバータ回路42の入力側の電圧)を検出し、制御部41に送信する。インバータ回路42は、整流回路61の出力する直流電力を、ブラシレスモータ6の駆動電力に変換し、ブラシレスモータ6に供給する(ステータコイル6hに駆動電圧を出力する)。インバータ回路42は、三相ブリッジ接続されたスイッチング素子Q1~Q6を含む。スイッチング素子Q1~Q3は上側スイッチング素子であり、スイッチング素子Q4~Q6は下側スイッチング素子である。 The rectifier circuit 61 includes, for example, a diode bridge and a smoothing capacitor, and converts alternating current supplied from the alternating current power supply 60 to direct current. The voltage detection circuit 43 detects the output voltage of the rectifier circuit 61 (voltage on the input side of the inverter circuit 42 ) and transmits it to the control section 41 . The inverter circuit 42 converts the DC power output from the rectifier circuit 61 into drive power for the brushless motor 6 and supplies the drive power to the brushless motor 6 (outputs a drive voltage to the stator coil 6h). Inverter circuit 42 includes three-phase bridge-connected switching elements Q1-Q6. Switching elements Q1-Q3 are upper switching elements, and switching elements Q4-Q6 are lower switching elements.
スイッチング素子Q1、Q4は、U相コイルの一端に接続される。スイッチング素子Q1はU相上側スイッチング素子であり、スイッチング素子Q4はU相下側スイッチング素子である。スイッチング素子Q2、Q5は、V相コイルの一端に接続される。スイッチング素子Q2はV相上側スイッチング素子であり、スイッチング素子Q5はV相下側スイッチング素子である。スイッチング素子Q3、Q6は、W相コイルの一端に接続される。スイッチング素子Q3はW相上側スイッチング素子であり、スイッチング素子Q6はW相下側スイッチング素子である。 Switching elements Q1 and Q4 are connected to one end of the U-phase coil. Switching element Q1 is a U-phase upper switching element, and switching element Q4 is a U-phase lower switching element. Switching elements Q2 and Q5 are connected to one end of the V-phase coil. Switching element Q2 is a V-phase upper switching element, and switching element Q5 is a V-phase lower switching element. Switching elements Q3 and Q6 are connected to one end of the W-phase coil. Switching element Q3 is a W-phase upper switching element, and switching element Q6 is a W-phase lower switching element.
シャント抵抗Ru、Rv、Rwは、電流検出部の例示であり、それぞれU、V、Wの各相のステータコイル6hに流れる電流(各相の電流)の経路の低電位側に設けられ、各相の電流を電圧に変換する(各相の電流を検出する)。増幅回路44は、シャント抵抗Ru、Rv、Rwの各両端の電圧を増幅し、U、V、Wの各相の電流検出信号として制御部41に送信する。 The shunt resistors Ru, Rv, and Rw are examples of current detection units, and are provided on the low potential side of the paths of the currents (currents of each phase) flowing through the stator coils 6h of the U, V, and W phases. Converts phase current to voltage (detects current in each phase). The amplifier circuit 44 amplifies the voltage across each of the shunt resistors Ru, Rv, and Rw, and transmits the amplified voltage to the control unit 41 as a current detection signal for each of the U, V, and W phases.
制御部41は、例えばマイクロコントローラやドライバICを含み、ユーザによるスイッチ5の操作に応じて、整流回路61の出力電圧及び各相の電流を監視しながら、インバータ回路42の制御、すなわちスイッチング素子Q1~Q6のオンオフの制御を通じて、ブラシレスモータ6の駆動を制御する。 The control unit 41 includes, for example, a microcontroller and a driver IC, and controls the inverter circuit 42, that is, the switching element Q1, while monitoring the output voltage of the rectifier circuit 61 and the current of each phase according to the operation of the switch 5 by the user. The driving of the brushless motor 6 is controlled through the ON/OFF control of Q6.
制御部41は、ロータの回転位置(以下「ロータ位置」)及びロータの角速度(以下「ロータ角速度」)を、インバータ回路42の入力側の電圧と各相の電流に基づき、センサレスで検出する。制御部41は、ロータ角速度により、ブラシレスモータ6の回転数、すなわちロータの回転数(以下「ロータ回転数」)を特定できる。 The control unit 41 detects the rotational position of the rotor (hereinafter referred to as "rotor position") and the angular velocity of the rotor (hereinafter referred to as "rotor angular velocity") based on the voltage on the input side of the inverter circuit 42 and the current of each phase without a sensor. The control unit 41 can specify the number of rotations of the brushless motor 6, that is, the number of rotations of the rotor (hereinafter, "rotor number of rotations") from the rotor angular velocity.
制御部41によるブラシレスモータ6の駆動制御は、例えばベクトル制御である。ベクトル制御は、空間ベクトルパルス幅変調(SVPWM:Space Vector Pulse Width Modulation)とも呼ばれる。 Drive control of the brushless motor 6 by the controller 41 is, for example, vector control. Vector control is also called Space Vector Pulse Width Modulation (SVPWM).
図6は、ベクトル制御におけるdq座標系の定義を示す模式図である。図7は、dq座標系における電流ベクトルIdqの一例とその電流位相角βの説明図である。なお、ベクトル制御の説明には電気角を用いる。ブラシレスモータ6は4極6スロット構成のため、ブラシレスモータ6の機械角180度は電気角360度に対応する。図6では、ブラシレスモータ6の機械角180度分の構成を360度に展開した模式図で示している。図6におけるブラシレスモータ6の1周(電気角360度分の回転)は、ブラシレスモータ6の機械的な半周(機械角180度)に対応する。 FIG. 6 is a schematic diagram showing the definition of the dq coordinate system in vector control. FIG. 7 is an explanatory diagram of an example of the current vector Idq in the dq coordinate system and its current phase angle β. An electrical angle is used in the description of vector control. Since the brushless motor 6 has a 4-pole, 6-slot configuration, the mechanical angle of 180 degrees of the brushless motor 6 corresponds to the electrical angle of 360 degrees. FIG. 6 shows a schematic view of the configuration of the brushless motor 6 for a mechanical angle of 180 degrees, which is expanded to 360 degrees. One rotation of the brushless motor 6 (rotation of 360 electrical degrees) in FIG. 6 corresponds to a mechanical half rotation of the brushless motor 6 (180 mechanical degrees).
ブラシレスモータ6は、ロータマグネット6cが作る磁束の方向をd軸、それと磁気的に直交する方向をq軸としたdq座標系(図6)における、電流ベクトルIdqの方向(図7に示す電流位相角β)によって、トルクや回転数の特性が変化する。トルクや回転数の特性が適切になるように電流ベクトルIdqを制御することができれば、ブラシレスモータ6を高効率で駆動することが可能となる。ベクトル制御は、電流ベクトルIdqを制御することである。 The brushless motor 6 has a direction of a current vector Idq (current phase The angle β) changes the torque and speed characteristics. If the current vector Idq can be controlled so that the torque and rotation speed characteristics are appropriate, the brushless motor 6 can be driven with high efficiency. Vector control is to control the current vector Idq.
dq座標系における電流ベクトルIdqは、図8(A)に示す、インバータ回路42のU、V、Wの各相のステータコイル6hの中心軸(u軸、v軸、w軸)を三軸とするuvw座標系上で各相の電流ベクトルIu、Iv、Iwを合成した電流ベクトルIuvwを、図8(B)に示すようにdq座標系へ変換した電流ベクトルを指す。このため、ベクトル制御を行うためには、U、V、Wの各相の電流の制御が必要である。U、V、Wの各相の電流を制御するには、uvw座標系上で任意方向の電圧ベクトルをブラシレスモータ6(ステータコイル6h)に印加できるように、インバータ回路42(スイッチング素子Q1~Q6)のスイッチング制御を行う必要がある。 The current vector Idq in the dq coordinate system is defined by the central axes (u-, v-, and w-axes) of the stator coils 6h of the U, V, and W phases of the inverter circuit 42 shown in FIG. The current vector Iuvw obtained by synthesizing the current vectors Iu, Iv, and Iw of each phase on the uvw coordinate system is converted to the dq coordinate system as shown in FIG. 8(B). Therefore, in order to perform vector control, it is necessary to control the currents of the U, V, and W phases. In order to control the current of each phase of U, V, and W, the inverter circuit 42 (switching elements Q1 to Q6 ) must be controlled.
インバータ回路42の通電パターンには、図9(A)~(F)及び図10(A)~(B)に示すように、U、V、Wの各相の上側(ハイサイド)、下側(ローサイド)のどちらのスイッチング素子を通電させるかによって、8つの通電パターンが存在する。図9(A),(B)では、最終的な電圧ベクトルの元になった各相の電圧成分を併せて示している。 As shown in FIGS. 9A to 9F and 10A to 10B, the energization pattern of the inverter circuit 42 includes upper (high side) and lower sides of each phase of U, V, and W. There are eight energization patterns depending on which of the (low side) switching elements is to be energized. FIGS. 9A and 9B also show the voltage components of each phase, which are the basis of the final voltage vector.
図9(A)に示す通電パターン1では、スイッチング素子Q1、Q5、Q6がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとU軸のプラス方向(U方向)を向いた電圧ベクトルが得られる。 In energization pattern 1 shown in FIG. 9A, switching elements Q1, Q5, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the positive direction (U direction) of the U axis.
図9(B)に示す通電パターン2では、スイッチング素子Q1、Q2、Q6がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとW軸のマイナス方向(W-方向)を向いた電圧ベクトルが得られる。 In energization pattern 2 shown in FIG. 9B, switching elements Q1, Q2, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the minus direction (W− direction) of the W axis.
図9(C)に示す通電パターン3では、スイッチング素子Q2、Q4、Q6がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとV軸のプラス方向(V方向)を向いた電圧ベクトルが得られる。 In the energization pattern 3 shown in FIG. 9C, the switching elements Q2, Q4, and Q6 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector directed in the positive direction (V direction) of the V axis.
図9(D)に示す通電パターン4では、スイッチング素子Q2、Q3、Q4がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとU軸のマイナス方向(U-方向)を向いた電圧ベクトルが得られる。 In energization pattern 4 shown in FIG. 9D, switching elements Q2, Q3, and Q4 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the negative direction (U- direction) of the U axis.
図9(E)に示す通電パターン5では、スイッチング素子Q3、Q4、Q5がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとW軸のプラス方向(W方向)を向いた電圧ベクトルが得られる。 In energization pattern 5 shown in FIG. 9(E), switching elements Q3, Q4, and Q5 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the positive direction (W direction) of the W axis.
図9(F)に示す通電パターン6では、スイッチング素子Q1、Q3、Q5がオンで、それ以外はオフである。この場合、各相の電圧ベクトルを合成するとV軸のマイナス方向(V-方向)を向いた電圧ベクトルが得られる。 In the energization pattern 6 shown in FIG. 9(F), the switching elements Q1, Q3, and Q5 are on, and the others are off. In this case, combining the voltage vectors of the respective phases yields a voltage vector oriented in the negative direction (V- direction) of the V-axis.
このように、通電パターン1~6では、60度間隔で向きが異なる電圧ベクトルがブラシレスモータ6(ステータコイル6h)に印加される。 Thus, in the energization patterns 1 to 6, voltage vectors with different directions are applied to the brushless motor 6 (stator coil 6h) at intervals of 60 degrees.
図10(A)に示す通電パターン7では、下側のスイッチング素子Q4、Q5、Q6がオンで、それ以外はオフである。図10(B)に示す通電パターン8では、上側のスイッチング素子Q1、Q2、Q3がオンで、それ以外はオフである。通電パターン7、8では、0ベクトルがブラシレスモータ6(ステータコイル6h)に印加される。通電パターン7、8の一方が第1状態、他方が第2状態に対応する。 In the energization pattern 7 shown in FIG. 10A, the lower switching elements Q4, Q5, and Q6 are on, and the others are off. In the energization pattern 8 shown in FIG. 10B, the upper switching elements Q1, Q2, and Q3 are on, and the others are off. In the energization patterns 7 and 8, 0 vector is applied to the brushless motor 6 (stator coil 6h). One of the energization patterns 7 and 8 corresponds to the first state, and the other corresponds to the second state.
以下、通電パターン1~8の各々による電圧ベクトルを「基底ベクトル」と呼ぶ。単一の通電パターンで印加できる電圧ベクトルは基底ベクトルの方向に限られるため、任意方向の電圧ベクトルを印加するには、2つ以上の基底ベクトルを合成して出力する必要がある。 A voltage vector by each of the energization patterns 1 to 8 is hereinafter referred to as a "base vector". Since the voltage vector that can be applied in a single energization pattern is limited to the direction of the basis vector, it is necessary to synthesize and output two or more basis vectors in order to apply a voltage vector in an arbitrary direction.
図11(A)は、基底ベクトルの合成による目的電圧ベクトルの生成方法の一例を示す。この例では、目的電圧ベクトルは、U方向の基底ベクトル(通電パターン1)、W-方向の基底ベクトル(通電パターン2)、及び0ベクトルの基底ベクトル(通電パターン7、8)に分解できる。このため、インバータ回路42の通電パターン1、2、7、8を、それぞれの基底ベクトルの長さの割合に応じた時間(t1、t2、t7、t8)だけ持続すれば、目的電圧ベクトルを出力することができる。0ベクトルの基底ベクトルは、電圧ベクトルの絶対値(長さ)の調整のために必要となる。 FIG. 11A shows an example of a method of generating a target voltage vector by synthesizing basis vectors. In this example, the target voltage vector can be decomposed into a U direction basis vector (energization pattern 1), a W-direction basis vector (energization pattern 2), and a 0 vector basis vector (energization patterns 7 and 8). Therefore, if the energization patterns 1, 2, 7, and 8 of the inverter circuit 42 are continued for a period of time (t1, t2, t7, t8) corresponding to the ratio of the length of each basis vector, the target voltage vector is output. can do. A basis vector of 0 vectors is required for adjustment of the absolute value (length) of the voltage vector.
図11(B)は、図11(A)に示す目的電圧ベクトルを生成するためのスイッチング素子Q1~Q6のオンオフのタイムチャートである。ベクトル制御においては、図11(B)の左端の時点(すなわち1回目の通電パターン7の時点)において、U、V、Wの各相の電流を検出してロータ位置及びロータ角速度を特定する。そして特定されたロータ位置及びロータ角速度に応じて、ブラシレスモータ6(ステータコイル6h)に印加すべき電圧ベクトルを設定する。電圧ベクトルは、U、V、Wの各相に印加される電圧をそれぞれパルス幅変調(PWM:Pulse Width Modulation)することにより設定される。そして図11(B)の右端の時点(すなわち2回目の通電パターン7の時点)において、再びU、V、Wの各相の電流を検出してロータ位置及びロータ角速度を特定し、特定されたロータ位置及びロータ角速度に応じて、ブラシレスモータ6(ステータコイル6h)に印加すべき電圧ベクトルを設定しなおす。よって、図11(B)の左端の時点から図11(B)の右端の時点までがパルス幅変調(PWM)の1周期であり、空間ベクトルパルス幅変調(SVPWM)の1周期となる。U、V、Wの各相をPWMで駆動する場合、図11(B)のようにPWMの1周期内の各通電パターンの時間の比率がt1:t2:t7:t8となるように各相のデューティ比(スイッチング素子Q1~Q6の各制御端子に印加するPWM信号のデューティ比)を設定すれば、図11(A)に示す目的電圧ベクトルを出力できる。SVPWMでは、このようにして任意の目的電圧ベクトルを出力する。 FIG. 11(B) is a time chart of on/off of the switching elements Q1 to Q6 for generating the target voltage vector shown in FIG. 11(A). In vector control, at the leftmost point in FIG. 11B (that is, at the point of the first energization pattern 7), the currents of the U, V, and W phases are detected to specify the rotor position and rotor angular velocity. Then, a voltage vector to be applied to the brushless motor 6 (stator coil 6h) is set according to the specified rotor position and rotor angular velocity. The voltage vector is set by pulse width modulation (PWM) applied to each of the U, V, and W phases. Then, at the rightmost point in FIG. 11B (that is, at the point of the second energization pattern 7), the currents of the U, V, and W phases are detected again to specify the rotor position and the rotor angular velocity. The voltage vector to be applied to the brushless motor 6 (stator coil 6h) is reset according to the rotor position and rotor angular velocity. Therefore, one cycle of pulse width modulation (PWM) is from the left end of FIG. 11(B) to the right end of FIG. 11(B), which is one cycle of space vector pulse width modulation (SVPWM). When the U, V, and W phases are driven by PWM, each phase is driven so that the time ratio of each energization pattern within one cycle of PWM is t1:t2:t7:t8, as shown in FIG. 11(B). (the duty ratio of the PWM signal applied to each control terminal of the switching elements Q1 to Q6), the target voltage vector shown in FIG. 11A can be output. In SVPWM, an arbitrary target voltage vector is output in this way.
(動作例1) 図12(A)は、作業機1の動作例1におけるロータ回転数、ステータコイル6hに流れる電流(以下「モータ電流」)、及び、インバータ回路42の制御用のPWM信号のデューティ比(以下「デューティ比」)のタイムチャートである。本図において、デューティ比は、PWMの1周期において、インバータ回路42の通電パターンのうちブラシレスモータ6に駆動力を与える通電パターン(図9(A)~(F)に示すパターン1~6)が占める比率をいう。後述の図12(B)においても同様である。 (Operation example 1) Fig. 12(A) shows the rotor rotation speed, the current flowing through the stator coil 6h (hereinafter referred to as "motor current"), and the PWM signal for controlling the inverter circuit 42 in operation example 1 of the working machine 1. 4 is a time chart of a duty ratio (hereinafter referred to as "duty ratio"); In this figure, the duty ratio is such that, among the energization patterns of the inverter circuit 42, the energization patterns (patterns 1 to 6 shown in FIGS. 9A to 9F) that give driving force to the brushless motor 6 are refers to the ratio of The same applies to FIG. 12(B), which will be described later.
時刻t11においてスイッチ5がオンされると、制御部41は、まず初期位置推定制御を行い、その後オープンループ制御を行う。初期位置推定制御は、スイッチング素子Q1~Q6を所定パターンでオンオフし、そのときの各相の電流によりロータの初期位置を推定する制御である。オープンループ制御は、低回転域においてロータ位置のフィードバックによらずに、電流を一定に制御しながらスイッチング素子Q1~Q6のオンオフのパターンの切り替え速度を上げることでロータ回転数を高めていく制御である。初期位置推定制御は第1制御に相当し、オープンループ制御は第2制御に相当する。 When the switch 5 is turned on at time t11, the control unit 41 first performs initial position estimation control, and then performs open loop control. The initial position estimating control is control to turn on/off the switching elements Q1 to Q6 in a predetermined pattern, and to estimate the initial position of the rotor from the current of each phase at that time. Open-loop control increases the rotor speed by increasing the switching speed of the ON/OFF pattern of the switching elements Q1 to Q6 while controlling the current constant without relying on the feedback of the rotor position in the low speed range. be. The initial position estimation control corresponds to the first control, and the open loop control corresponds to the second control.
時刻t12においてオープンループ制御が終了すると、制御部41は加速制御を行う。加速制御は、ロータ位置を検出しながらデューティ比を高めてロータ回転数を目標値に向けて高めていく制御である。オープンループ制御から加速制御への移行時に、モータ電流が低下する。加速制御は第3制御に相当する。 When the open loop control ends at time t12, the controller 41 performs acceleration control. Acceleration control is control for increasing the rotor speed toward a target value by increasing the duty ratio while detecting the rotor position. Motor current drops when transitioning from open-loop control to acceleration control. Acceleration control corresponds to the third control.
時刻t13においてロータ回転数が目標回転数に達すると、制御部41は、加速制御から定速度制御に移行する。定速度制御は、ロータ位置を検出しながらロータ回転数を一定に保つ制御である。図示の例ではブラシレスモータ6にかかる負荷が一定で、定速度制御において制御部41は、デューティ比を一定とすることでロータ回転数を目標回転数に維持している。負荷が変動する場合、制御部41は、デューティ比を変化させることでロータ回転数を目標回転数に維持する。加速制御から定速度制御への移行時に、モータ電流が低下する。定速度制御は第4制御に相当する。 When the rotor speed reaches the target speed at time t13, the controller 41 shifts from acceleration control to constant speed control. Constant speed control is control that keeps the rotor speed constant while detecting the rotor position. In the illustrated example, the load applied to the brushless motor 6 is constant, and in constant speed control, the controller 41 maintains the rotor rotation speed at the target rotation speed by fixing the duty ratio. When the load fluctuates, the control unit 41 maintains the rotor rotation speed at the target rotation speed by changing the duty ratio. Motor current decreases when shifting from acceleration control to constant speed control. Constant speed control corresponds to the fourth control.
時刻t14においてスイッチ5がオフされると、制御部41は、定速度制御から減速制御に移行する。減速制御は、デューティ比を所定値まで低下させ、惰性回転よりも小さい減速度でロータ回転数を低下させる制御である。デューティ比の低下に伴い、モータ電流も低下する。減速制御は第5制御に相当する。 When the switch 5 is turned off at time t14, the controller 41 shifts from constant speed control to deceleration control. Deceleration control is control that reduces the duty ratio to a predetermined value and reduces the rotor rotation speed at a deceleration smaller than the inertial rotation. As the duty ratio decreases, the motor current also decreases. Deceleration control corresponds to the fifth control.
所定値は、検出可能な大きさのモータ電流が流れるデューティ比の範囲内のデューティ比であり、例えば当該範囲内の最も低いデューティ比あるいはその近傍のデューティ比である。所定値は、具体的には例えば10%ないしそれ以下である。 The predetermined value is a duty ratio within a range of duty ratios in which a detectable motor current flows, such as the lowest duty ratio within the range or a duty ratio in the vicinity thereof. Specifically, the predetermined value is, for example, 10% or less.
制御部41は、減速制御では、低下させたデューティ比でインバータ回路42の制御を継続する。すなわち、制御部41は、減速制御では、インバータ回路42からステータコイル6hへの駆動電圧の出力を減少させて継続させ、ロータを減速するよう(ロータ回転数を低下させるよう)構成される。言い換えると、制御部41は、ロータの回転数を減少させるように、インバータ回路42からステータコイル6hへの駆動電圧を出力するよう構成される。 In deceleration control, the controller 41 continues to control the inverter circuit 42 with the reduced duty ratio. That is, in the deceleration control, the control unit 41 is configured to reduce and continue the output of the drive voltage from the inverter circuit 42 to the stator coil 6h to decelerate the rotor (reduce the rotor rotation speed). In other words, the control unit 41 is configured to output a drive voltage from the inverter circuit 42 to the stator coil 6h so as to decrease the rotation speed of the rotor.
制御部41は、減速制御の実行中にも、ロータ位置の検出(推定)を行う。インバータ回路42からステータコイル6hへの駆動電圧の出力を継続させているため、制御部41は、減速制御の実行中にも、モータ電流に基づいてロータ位置を検出できる。 The control unit 41 detects (estimates) the rotor position even during execution of deceleration control. Since the output of the drive voltage from the inverter circuit 42 to the stator coil 6h is continued, the control unit 41 can detect the rotor position based on the motor current even during execution of deceleration control.
制御部41は、ロータ回転数が所定の回転数を超えている場合に減速制御を実行する。これは、ロータ位置の検出精度が高く保てる回転数範囲に限定して減速制御を行うためである。センサレスでロータ位置を検出する場合、低回転域ではロータ位置の検出の誤差が大きくなる。所定の回転数は、例えば600rpmである。 The control unit 41 executes deceleration control when the rotor rotation speed exceeds a predetermined rotation speed. This is because the deceleration control is performed only within the rotation speed range in which the detection accuracy of the rotor position can be kept high. When the rotor position is detected without a sensor, the rotor position detection error increases in the low speed range. The predetermined number of revolutions is, for example, 600 rpm.
このように、制御部41は、スイッチ5がオフされていること及びロータ回転数が所定の回転数を超えていることを、減速制御の開始及び継続に必要な条件とする。減速制御において制御部41は、デューティ比を所定値に向けて、図示の例のように一気に低下させることに替えて、徐々に又は段階的に低下させてもよい。なお、加速制御の領域でも同様に、デューティ比を一気に増加させず、徐々に又は段階的に増加させてもよい。 In this way, the control unit 41 determines that the switch 5 is turned off and that the rotor rotation speed exceeds a predetermined rotation speed as conditions necessary for starting and continuing deceleration control. In deceleration control, the control unit 41 may reduce the duty ratio to a predetermined value gradually or stepwise instead of reducing it all at once as in the illustrated example. Similarly, in the area of acceleration control, the duty ratio may not be increased at once, but may be increased gradually or step by step.
時刻t15においてロータ回転数が所定の回転数を超えているときにスイッチ5がオンされると、制御部41は、減速制御から加速制御に移行する。制御部41は、減速制御の実行中にもロータ位置を検出しているため、スイッチ5がオンされると直ちに加速制御に移行できる。制御部41は、減速制御から加速制御への移行時に、デューティ比を上昇させる。これに伴い、インバータ回路42からステータコイル6hへの駆動電圧の出力が増加してモータ電流が上昇する。減速制御の実行中のスイッチ5のオンによる再加速においては、停止状態からの加速の場合と異なる加速特性となるように、制御パラメータ(例えばデューティ比の上昇態様)を変えてもよい。時刻t16においてロータ回転数が目標回転数に達すると、制御部41は、加速制御から定速度制御に移行する。 When the switch 5 is turned on at time t15 when the rotor speed exceeds the predetermined speed, the controller 41 shifts from deceleration control to acceleration control. Since the control unit 41 detects the rotor position even during execution of deceleration control, it can immediately shift to acceleration control when the switch 5 is turned on. The control unit 41 increases the duty ratio when shifting from deceleration control to acceleration control. Along with this, the output of the drive voltage from the inverter circuit 42 to the stator coil 6h increases, and the motor current rises. In reacceleration by turning on the switch 5 during execution of deceleration control, the control parameter (for example, duty ratio increase mode) may be changed so that the acceleration characteristic differs from that in the case of acceleration from a stopped state. When the rotor speed reaches the target speed at time t16, the controller 41 shifts from acceleration control to constant speed control.
(動作例2:比較動作例) 図12(B)は、作業機1の動作例2(比較動作例)におけるロータ回転数、モータ電流、並びにインバータ回路42の制御用のPWM信号のデューティ比のタイムチャートである。図12(B)の時刻t11~t14までの期間の制御は、図12(A)の時刻t11~t14までの期間の制御と同様である。 (Operation example 2: Comparative operation example) Fig. 12(B) shows the rotor rotation speed, motor current, and duty ratio of the PWM signal for controlling the inverter circuit 42 in operation example 2 (comparative operation example) of the work machine 1. It is a time chart. The control for the period from time t11 to t14 in FIG. 12B is the same as the control for the period from time t11 to t14 in FIG. 12A.
時刻t14においてスイッチ5がオフされると、制御部41は、定速度制御から惰性回転制御に移行する。惰性回転制御は、スイッチング素子Q1~Q6を全てオフにしてロータを惰性回転させて減速させる制御である。 When the switch 5 is turned off at time t14, the controller 41 shifts from constant speed control to inertial rotation control. Inertia rotation control is control to decelerate the rotor by inertia rotation by turning off all of the switching elements Q1 to Q6.
時刻t15においてロータ回転数が所定の回転数を超えているときにスイッチ5がオンされると、制御部41は、後述のようにロータを停止させてから再駆動する制御を行う。惰性回転のときはスイッチング素子Q1~Q6が全てオフでモータ電流に基づくロータ位置の検出ができないため、誤動作防止のためにはロータを停止させてから再駆動する必要がある。 When the switch 5 is turned on at time t15 when the rotor rotation speed exceeds a predetermined rotation speed, the control unit 41 stops the rotor and then re-drives the rotor, as will be described later. During inertial rotation, all of the switching elements Q1 to Q6 are off, and the rotor position cannot be detected based on the motor current. Therefore, in order to prevent malfunction, the rotor must be stopped and then driven again.
時刻t15において制御部41は、惰性回転制御からブレーキ制御に移行する。ブレーキ制御は、惰性回転よりも大きい減速度でロータ回転数を低下させる制御である。制御部41は、ブレーキ制御では、例えば、スイッチング素子Q1~Q3をオフとし、スイッチング素子Q4~Q6の少なくとも1つをオンとし、ロータに電気的なブレーキ力(制動力)をかける。 At time t15, the control unit 41 shifts from the inertial rotation control to the brake control. Brake control is control for reducing the rotor speed at deceleration greater than inertial rotation. In brake control, for example, the control unit 41 turns off the switching elements Q1 to Q3, turns on at least one of the switching elements Q4 to Q6, and applies an electrical braking force (braking force) to the rotor.
時刻t17においてロータが停止すると、制御部41は、時刻t11からの制御と同様に、初期位置推定制御及びオープンループ制御(t17~t18)、加速制御(t18~t19)、定速度制御(t19~)を順に実行する。ロータを停止させてから再駆動する関係で、動作例2において定速度制御を開始する時刻t19は、動作例1で定速度制御を開始する時刻t16に対して遅れる。 When the rotor stops at time t17, the control unit 41 performs initial position estimation control and open loop control (t17 to t18), acceleration control (t18 to t19), constant speed control (t19 to ) in order. Since the rotor is stopped and then driven again, the time t19 at which the constant speed control is started in the operation example 2 is delayed from the time t16 at which the constant speed control is started in the operation example 1. FIG.
(動作例3) 図13(A)は、作業機1の動作例3におけるロータ回転数のタイムチャートである。図12(A)の時刻t11~t14までの期間の制御は、図12(A)の時刻t11~t14までの期間の制御と同様である。時刻t14においてスイッチ5がオフされると、制御部41は、動作例1の場合と同様に定速度制御から減速制御に移行する。時刻t21においてロータ回転数が所定の回転数まで低下すると、制御部41は、減速制御からブレーキ制御に移行する。ブレーキ制御の内容は動作例2で説明したものと同様である。時刻t22においてロータが停止する。ブレーキ制御は第6制御に相当する。 (Operation Example 3) FIG. 13(A) is a time chart of the rotor rotation speed in Operation Example 3 of the working machine 1. FIG. The control for the period from time t11 to t14 in FIG. 12A is the same as the control for the period from time t11 to t14 in FIG. 12A. When the switch 5 is turned off at time t14, the control unit 41 shifts from constant speed control to deceleration control as in the first operation example. When the rotor speed drops to a predetermined speed at time t21, the controller 41 transitions from deceleration control to brake control. The contents of the brake control are the same as those described in the operation example 2. The rotor stops at time t22. Brake control corresponds to the sixth control.
(動作例4) 図13(B)は、作業機1の動作例4におけるロータ回転数のタイムチャートである。図13(B)の時刻t21以前の期間の制御は、図13(A)の時刻t21以前の期間の制御と同様である。時刻t21においてロータ回転数が所定の回転数まで低下すると、制御部41は、減速制御から惰性回転制御に移行する。惰性回転制御の内容は動作例2で説明したものと同様である。時刻t25においてロータが停止する。惰性回転制御は第6制御に相当する。 (Operation Example 4) FIG. 13(B) is a time chart of the rotor rotation speed in Operation Example 4 of the working machine 1. FIG. The control for the period before time t21 in FIG. 13B is the same as the control for the period before time t21 in FIG. 13A. When the rotor rotation speed decreases to a predetermined rotation speed at time t21, the controller 41 shifts from deceleration control to inertial rotation control. The contents of the inertial rotation control are the same as those described in the operation example 2. The rotor stops at time t25. Inertia rotation control corresponds to the sixth control.
(動作例5) 図13(C)は、作業機1の動作例5におけるロータ回転数のタイムチャートである。図13(C)の時刻t21以前の期間の制御は、図13(A),(B)の時刻t21以前の期間の制御と同様である。時刻t21においてロータ回転数が所定の回転数まで低下すると、制御部41は、動作例4の場合と同様に減速制御から惰性回転制御に移行する。 (Operation Example 5) FIG. 13(C) is a time chart of the rotor rotation speed in Operation Example 5 of the working machine 1 . The control for the period before time t21 in FIG. 13(C) is the same as the control for the period before time t21 in FIGS. 13(A) and (B). When the rotor rotation speed drops to a predetermined rotation speed at time t21, the control unit 41 shifts from deceleration control to inertial rotation control, as in the case of Operation Example 4. FIG.
時刻t26においてスイッチ5がオンされると、制御部41は、後述のようにロータを停止させてから再駆動する制御を行う。具体的には、時刻t26において制御部41は、惰性回転制御からブレーキ制御に移行する。時刻t31においてロータが停止すると、制御部41は、時刻t11からの制御と同様に、初期位置推定制御及びオープンループ制御(t31~t32)、加速制御(t32~t33)、定速度制御(t33~)を順に実行する。 When the switch 5 is turned on at time t26, the control unit 41 performs control to stop the rotor and then re-drive it, as will be described later. Specifically, at time t26, the control unit 41 transitions from inertial rotation control to brake control. When the rotor stops at time t31, the control unit 41 performs initial position estimation control and open loop control (t31 to t32), acceleration control (t32 to t33), constant speed control (t33 to ) in order.
(動作例6) 図14は、作業機1の動作例6におけるロータ回転数のタイムチャートである。図14の時刻t14以前の期間の制御は、図12(A)の時刻t14以前の期間の制御と同様である。本動作例では、時刻t14から開始する減速制御の内容が、動作例1、3~5と異なる。制御部41は、減速制御において、共振点1を含む所定回転数範囲、及び共振点2を含む所定回転数範囲におけるロータの減速度を、他の回転数範囲におけるロータの減速度よりも大きくする。共振点1、2は、作業機1の機械構成の関係で振動や騒音が大きくなるロータ回転数である。減速度は、デューティ比によって調節できる。共振点1、2及びその近傍のロータ回転数においてロータの減速度を大きくすることで、振動や騒音を抑制できる。 (Operation Example 6) FIG. 14 is a time chart of the rotor rotation speed in Operation Example 6 of the working machine 1 . The control for the period before time t14 in FIG. 14 is the same as the control for the period before time t14 in FIG. 12(A). In this operation example, the contents of the deceleration control starting at time t14 are different from those in operation examples 1 and 3-5. In the deceleration control, the control unit 41 makes the deceleration of the rotor in a predetermined rotation speed range including the resonance point 1 and the predetermined rotation speed range including the resonance point 2 larger than the deceleration of the rotor in other rotation speed ranges. . Resonance points 1 and 2 are rotor rotation speeds at which vibration and noise increase due to the mechanical configuration of work machine 1 . Deceleration can be adjusted by a duty ratio. Vibration and noise can be suppressed by increasing the deceleration of the rotor at the resonance points 1 and 2 and at the rotor rotational speeds in the vicinity thereof.
(制御フロー) 図15は、作業機1の制御フローチャートである。制御部41は、起動すると初期化処理を実行する(S1)。制御部41は、スイッチ5がオンの場合(S2のYES)、ロータ回転数が第1閾値を超えているか否かの判断(S3)に進む。第1閾値は、例えば600rpmである。 (Control Flow) FIG. 15 is a control flow chart of the working machine 1. FIG. The control unit 41 executes an initialization process when activated (S1). If the switch 5 is on (YES in S2), the controller 41 proceeds to determine whether or not the rotor speed exceeds the first threshold (S3). The first threshold is, for example, 600 rpm.
制御部41は、ロータ回転数が第1閾値を超えていない場合(S3のNO)、ロータが停止状態か否かの判断(S4)に進む。制御部41は、ロータが停止状態の場合(S4のYES)、初期位置推定制御(S5)の実行後、オープンループ制御を行う(S6)。制御部41は、ロータが停止状態でない場合(S4のNO)、オープンループ制御を行う(S6)。 If the rotor rotation speed does not exceed the first threshold (NO in S3), the controller 41 proceeds to determine whether the rotor is in a stopped state (S4). When the rotor is in a stopped state (YES in S4), the control unit 41 performs open loop control (S6) after executing the initial position estimation control (S5). If the rotor is not stopped (NO in S4), the controller 41 performs open loop control (S6).
制御部41は、ロータ回転数が第1閾値を超えている場合(S3のYES)、加速制御又は定速度制御を行う(S7)。S7は、ロータ回転数が目標回転数に達していなければ加速制御、達していれば定速度制御となる。 If the rotor speed exceeds the first threshold (YES in S3), the controller 41 performs acceleration control or constant speed control (S7). In step S7, acceleration control is performed if the rotor rotation speed has not reached the target rotation speed, and constant speed control is performed if it has reached the target rotation speed.
制御部41は、スイッチ5がオフの場合(S2のNO)、ロータ回転数が第2閾値を超えているか否かの判断(S8)に進む。第2閾値は、前述の所定の回転数に対応する。制御部41は、ロータ回転数が第2閾値以下でない場合(S8のNO)、減速制御を行う(S9)。制御部41は、ロータ回転数が第2閾値以下の場合(S8のYES)、ブラシレスモータ6への通電を停止し(S12)、惰性回転制御又はブレーキ制御を行う(S13)。制御部41は、ロータの停止前に(S14のNO)スイッチ5がオンされると(S15のYES)、ブレーキ制御を行う(S16)。制御部41は、ロータが停止すると(S14のYES)、S2に戻る。 If the switch 5 is off (NO in S2), the controller 41 proceeds to determine whether or not the rotor speed exceeds the second threshold (S8). The second threshold value corresponds to the predetermined number of rotations described above. If the rotor speed is not equal to or less than the second threshold (NO in S8), the controller 41 performs deceleration control (S9). When the rotor rotation speed is equal to or less than the second threshold (YES in S8), the control unit 41 stops energizing the brushless motor 6 (S12), and performs inertial rotation control or brake control (S13). When the switch 5 is turned on (NO in S14) before the rotor stops (YES in S15), the controller 41 performs brake control (S16). When the rotor stops (YES in S14), the controller 41 returns to S2.
制御部41は、オープンループ制御(S6)、加速制御又は定速度制御(S7)、並びに減速制御(S9)の各々の実行中にモータ電流を検出し(S10)、ロータ位置を推定し(S11)、S2に戻る。 The control unit 41 detects the motor current (S10) and estimates the rotor position (S11 ) and return to S2.
本実施の形態によれば、下記の効果を奏することができる。 According to this embodiment, the following effects can be obtained.
(1) 制御部41は、スイッチ5がオンされブラシレスモータ6が回転している状態でスイッチ5がオフされた場合において、ロータ回転数が所定の回転数を超えている場合、減速制御を行う。制御部41は、減速制御では、インバータ回路42からステータコイル6hへの駆動電圧の出力を減少させて継続させ、ロータを減速する。言い換えると、制御部41は、ロータの回転数を減少させるように、インバータ回路42からステータコイル6hへの駆動電圧を出力する。このため制御部41は、減速制御の実行中にもモータ電流に基づいてセンサレスでロータ位置(ブラシレスモータ6の位置情報)を検出でき、減速制御の実行中の制御変更にスムーズに対応できる。また、電動工具は負荷をかけながら作業を行う作業機であるからスイッチング素子やモータが発熱するが、センサレス制御によれば、発熱の影響によってロータの位置検出素子(例えばホール素子)等の構成部品の誤動作等の不具合を回避することができる。 (1) When the switch 5 is turned on and the brushless motor 6 is rotating and the switch 5 is turned off, if the rotor rotation speed exceeds a predetermined rotation speed, the controller 41 performs deceleration control. . In deceleration control, the control unit 41 reduces and continues the output of the drive voltage from the inverter circuit 42 to the stator coil 6h to decelerate the rotor. In other words, the control unit 41 outputs a drive voltage from the inverter circuit 42 to the stator coil 6h so as to decrease the rotation speed of the rotor. Therefore, the control unit 41 can detect the rotor position (position information of the brushless motor 6) sensorlessly based on the motor current even during execution of deceleration control, and can smoothly respond to control changes during execution of deceleration control. In addition, since the power tool is a work machine that works while applying a load, the switching elements and the motor generate heat. malfunctions, etc., can be avoided.
(2) 制御部41は、減速制御の実行中にスイッチ5がオンされると、減速制御から加速制御に移行し、インバータ回路42からステータコイル6hへの駆動電圧の出力を、スイッチ5がオンされたときの駆動電圧の出力から増加させる。これにより、ロータは停止することなく再加速する。このため、ロータを一旦停止してから再加速する場合と比較して、ロータ回転数を目標回転数まで迅速に高められる。ユーザとしては、砥石2の再加速がスムーズになる(再加速に要する時間が短縮される)ため、作業性が良い。 (2) When the switch 5 is turned on during execution of deceleration control, the control unit 41 shifts from deceleration control to acceleration control, and outputs the driving voltage from the inverter circuit 42 to the stator coil 6h. is increased from the output of the drive voltage when This causes the rotor to reaccelerate without stopping. Therefore, compared to the case where the rotor is temporarily stopped and then accelerated again, the rotor rotation speed can be quickly increased to the target rotation speed. For the user, reacceleration of the grindstone 2 becomes smooth (the time required for reacceleration is shortened), so workability is good.
(3) 制御部41は、ロータ回転数が所定の回転数以下になると、減速制御から惰性回転制御又はブレーキ制御に移行する。これにより、ロータ位置の高精度な検出が困難な所定の回転数以下において減速度を大きくし且つ消費電力を抑制できる。 (3) The control unit 41 shifts from deceleration control to inertial rotation control or brake control when the rotor rotation speed becomes equal to or less than a predetermined rotation speed. As a result, the deceleration can be increased and the power consumption can be suppressed at a rotational speed equal to or lower than a predetermined rotational speed at which highly accurate detection of the rotor position is difficult.
(4) 制御部41は、ロータ回転数が所定の回転数以下の状態でスイッチ5がオフになった場合、ロータを停止させてから加速させるよう構成される。これにより、ロータ位置が検出できない状態からの再加速に伴う異常動作を抑制できる。 (4) The control unit 41 is configured to stop the rotor and then accelerate it when the switch 5 is turned off while the rotor speed is equal to or less than a predetermined speed. As a result, it is possible to suppress abnormal operation associated with re-acceleration from a state in which the rotor position cannot be detected.
(5) 制御部41は、スイッチング素子Q1~Q6の制御端子に入力するPWM信号のデューティ比を制御することで、インバータ回路42からステータコイル6hへの駆動電圧の出力を増減させるよう構成される。このため、簡単な構成で高精度な制御が可能となる。 (5) The control unit 41 is configured to increase or decrease the drive voltage output from the inverter circuit 42 to the stator coil 6h by controlling the duty ratio of the PWM signal input to the control terminals of the switching elements Q1 to Q6. . Therefore, highly accurate control is possible with a simple configuration.
更に、スイッチ5がオフされた後の減速制御において、電流ベクトルIdqを制御することで、次のように減速時の特性を制御することができる。(1) 電流ベクトルをdq座標系上の第1象限又は第2象限に限定する。これにより、本来の加速時の電流ベクトル(力行を行う電流ベクトル)を減速時に利用することにより減速力(制動力)を調整することができる。なお、この制御の前提として、回転部にはメカロス等の要因から、わずかではあるが常に減速方向のトルクが作用している。また、減速時に加える電流は、発生トルクより減速トルクが大きくなる(発生トルク<上記減速トルク)範囲で選択する。更に、回生動作(回生エネルギー)による平滑コンデンサ(整流回路61に含まれる)の電圧上昇を抑制することができる。なお、第1象限は、図7に示す領域(d軸のプラスとq軸のプラスの領域)である。第2象限は、d軸のマイナスとq軸のプラスの領域(図7においてd軸の上側且つq軸の左側の領域)である。第3象限は、d軸のマイナスとq軸のマイナスの領域(図7においてd軸の下側且つq軸の左側の領域)である。第4象限は、d軸のプラスとq軸のマイナスの領域(図7においてd軸の下側且つq軸の右側)である。 Furthermore, by controlling the current vector Idq in the deceleration control after the switch 5 is turned off, it is possible to control the characteristics during deceleration as follows. (1) Limit the current vector to the first or second quadrant on the dq coordinate system. As a result, the deceleration force (braking force) can be adjusted by using the original current vector during acceleration (current vector for powering) during deceleration. As a premise of this control, torque in the direction of deceleration always acts on the rotating portion due to factors such as mechanical loss, albeit slightly. Also, the current to be applied during deceleration is selected within a range in which the deceleration torque is greater than the generated torque (generated torque<above deceleration torque). Furthermore, it is possible to suppress the voltage rise of the smoothing capacitor (included in the rectifier circuit 61) due to the regenerative operation (regenerative energy). Note that the first quadrant is the region shown in FIG. 7 (the positive region of the d-axis and the positive region of the q-axis). The second quadrant is a negative d-axis region and a positive q-axis region (the region above the d-axis and on the left side of the q-axis in FIG. 7). The third quadrant is a negative d-axis region and a negative q-axis region (the region below the d-axis and on the left side of the q-axis in FIG. 7). The fourth quadrant is a region of positive d-axis and negative q-axis (lower side of d-axis and right side of q-axis in FIG. 7).
(2) 先端工具(回転具)のイナーシャ(慣性)によらず、すなわち、スピンドルに取り付けられる先端工具によらず、電流ベクトル(減速力)を一定にする。これにより、略一定のトルクで減速させることができる。なお、これはメカロス等による減速トルクが一定の場合を前提としている。この制御を応用し、所定の値以下のトルクで減速させることで先端工具の緩みや作業者の手元への反動を抑制することができる。 (2) Make the current vector (deceleration force) constant regardless of the inertia of the tip tool (rotating tool), that is, regardless of the tip tool attached to the spindle. As a result, it is possible to decelerate with a substantially constant torque. Note that this assumes that the deceleration torque due to mechanical loss or the like is constant. By applying this control and decelerating with a torque equal to or less than a predetermined value, it is possible to suppress loosening of the tip tool and reaction to the operator's hand.
(3) 先端工具のイナーシャ(取り付けられる先端工具)に応じて電流ベクトルの角度を変える。これにより、イナーシャによらず一定時間で減速することができる。 (3) Change the angle of the current vector according to the inertia of the tip tool (attached tip tool). As a result, it is possible to decelerate for a certain period of time regardless of inertia.
まず上記(1)の特徴について説明する。図16は、減速制御時のdq座標系における電流ベクトルの範囲を示した図である。q軸成分がプラス(正)の方向(図中のd軸ラインより上側)に大きいほど発生トルクが大きくなる。すなわち、減速が緩やかになる。反対に、q軸成分がマイナス(負)の方向(図中のd軸ラインより下側)に大きいほど逆方向の発生トルクが大きくなり、回生エネルギーが発生し易くなる。よって、減速制御においては、電流ベクトルを第1象限又は第2象限内(図中の斜線領域)に設定することが好ましい。すなわち、図16の電流ベクトルI1及びI2は減速制御の電流ベクトルIdqとして設定することができるが、電流ベクトルI3は第3象限となるため設定することは好ましくない。なお、d軸成分がマイナスの方向(図中の左方向)に大きいほど見かけ上の誘起電圧が下がる。また、βはd軸に対する電流ベクトルIの角度を示す。 First, the feature (1) will be described. FIG. 16 is a diagram showing the range of current vectors in the dq coordinate system during deceleration control. As the q-axis component increases in the plus (positive) direction (above the d-axis line in the drawing), the generated torque increases. That is, the deceleration becomes moderate. Conversely, as the q-axis component increases in the negative (negative) direction (below the d-axis line in the drawing), the generated torque in the opposite direction increases, making it easier to generate regenerative energy. Therefore, in deceleration control, it is preferable to set the current vector within the first quadrant or the second quadrant (hatched area in the figure). That is, the current vectors I1 and I2 in FIG. 16 can be set as the current vector Idq for deceleration control, but the current vector I3 is in the third quadrant, so it is not preferable to set it. It should be noted that the apparent induced voltage decreases as the d-axis component increases in the negative direction (to the left in the drawing). Also, β indicates the angle of the current vector I with respect to the d-axis.
図17は、先端工具のイナーシャを一定とし電流ベクトルを変化させた場合の回転数、DCリンク電圧、q軸電流及びd軸電流を示すタイムチャートである。なお、図17においてq軸電流及びd軸電流に対する基準(零)を時間軸とすると、図中の時間軸より上側はプラスの方向、下側はマイナスの方向となり、時間軸(基準)からの距離が電流ベクトルの大きさに相当する。すなわち、時間軸からプラス方向(上方向)又はマイナス方向(下方向)に離れるほど大きい値となる。減速制御による電流ベクトルI1とI2の違いは発生トルクの大きさである。図17からも分かるように、q軸成分が電流ベクトルI1の方が電流ベクトルI2よりも大きいため発生トルク(正回転させるためのトルク)が大きくなる。発生トルクが大きい場合は小さい場合よりもブレーキが効きにくく減速が緩やかになる。よって、時刻t14でスイッチ5がオフされると減速制御に移行するが、図17(A)の電流ベクトルI1に設定した方が図17(B)の電流ベクトルI2に設定したよりも緩やかに減速する特性となる。なお、電流ベクトルI3のような第3象限の電流ベクトルや第4象限の電流ベクトルを減速制御に利用した場合、図17(C)に示すように、回生エネルギーが発生して平滑コンデンサの電圧であるDCリンク電圧(コンデンサ電圧)の上昇を引き起こし、平滑コンデンサ等の素子の破壊を招く恐れがある。 FIG. 17 is a time chart showing rotation speed, DC link voltage, q-axis current, and d-axis current when the inertia of the tip tool is constant and the current vector is changed. If the reference (zero) for the q-axis current and the d-axis current in FIG. The distance corresponds to the magnitude of the current vector. That is, the value increases as the distance from the time axis increases in the plus direction (upward direction) or in the negative direction (downward direction). The difference between the current vectors I1 and I2 due to deceleration control is the magnitude of generated torque. As can be seen from FIG. 17, since the q-axis component of the current vector I1 is larger than that of the current vector I2, the generated torque (torque for forward rotation) is larger. When the generated torque is large, the brake is less effective than when the generated torque is small, and the deceleration becomes gentler. Therefore, when the switch 5 is turned off at time t14, the deceleration control shifts to deceleration control, but setting the current vector I1 in FIG. It becomes the characteristic to do. Note that when a current vector in the third quadrant such as the current vector I3 or a current vector in the fourth quadrant is used for deceleration control, as shown in FIG. It may cause an increase in a certain DC link voltage (capacitor voltage), which may lead to destruction of elements such as a smoothing capacitor.
次に上記(2)の特徴について説明する。図18は、先端工具のイナーシャによらず電流ベクトルを一定とした場合の回転数、DCリング電圧、q軸電流、d及びd軸電流を示すタイムチャートである。なお、図18も図17と同様、電流ベクトルの大きさは時間軸を基準としている。電流ベクトルが一定となるように制御した場合、ブラシレスモータ6からの発生トルクは一定となるため、先端工具の減速トルク(減速力)も略一定になる。これにより、先端軸(スピンドル20)にかかるトルクを所定値以下で一定トルクにすることができる。よって、スピンドル20における先端工具(砥石2)の緩みを抑制することができ、また作業者の手元への反動も一定以下に抑制することができる。ただし、減速力が一定となるため、減速にかかる時間はイナーシャが大きいほど大きくなる。 Next, the feature (2) above will be described. FIG. 18 is a time chart showing rotation speed, DC ring voltage, q-axis current, d and d-axis current when the current vector is constant regardless of the inertia of the tip tool. Note that in FIG. 18, as in FIG. 17, the magnitude of the current vector is based on the time axis. When the current vector is controlled to be constant, the torque generated from the brushless motor 6 is constant, so the deceleration torque (deceleration force) of the tip tool is also substantially constant. As a result, the torque applied to the tip shaft (spindle 20) can be kept constant below a predetermined value. Therefore, it is possible to suppress the loosening of the tip tool (grindstone 2) on the spindle 20, and to suppress the recoil toward the hand of the operator to a certain level or less. However, since the deceleration force is constant, the time required for deceleration increases as the inertia increases.
次に上記(3)の特徴について説明する。図19は、先端工具のイナーシャに応じて電流ベクトルを変化させた場合の回転数、DCリンク電圧、q軸電流及びd軸電流を示すタイムチャートである。なお、図19も図17、図18と同様、電流ベクトルの大きさは時間軸を基準としている。イナーシャが大きい場合はq軸電流が小さくなる電流ベクトルを選択(設定)し(同図(A))、イナーシャが小さい場合にはq軸電流が大きくなる電流ベクトルを選択(設定)する(同図(B))。これにより、減速にかかる時間を一定とすることができる。ただし、イナーシャが大きい場合には減速のためのトルクが大きくなるため、作業者への反動が、イナーシャが小さい場合と比較して大きくなる。 Next, the feature (3) above will be described. FIG. 19 is a time chart showing rotation speed, DC link voltage, q-axis current and d-axis current when the current vector is changed according to the inertia of the tip tool. Note that in FIG. 19 as well as in FIGS. 17 and 18, the magnitude of the current vector is based on the time axis. If the inertia is large, a current vector that makes the q-axis current small is selected (set) ((A) in the figure), and if the inertia is small, a current vector that makes the q-axis current large is selected (set) ( (B)). As a result, the time required for deceleration can be made constant. However, when the inertia is large, the torque for deceleration becomes large, so the reaction to the operator becomes larger than when the inertia is small.
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 Although the present invention has been described above with reference to the embodiments, it will be understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiments within the scope of the claims. By the way. Modifications will be discussed below.
ステータコイル6hの結線方式は、Y結線に替えて、デルタ結線としてもよい。ブラシレスモータ6のロータの極数とステータのスロット数、すなわちロータマグネット6cの数とステータコイル6hの数は任意である。例えば、ブラシレスモータ6は、2極3スロット構成でもよい。 The connection method of the stator coil 6h may be delta connection instead of Y connection. The number of poles of the rotor and the number of slots of the stator of the brushless motor 6, that is, the number of rotor magnets 6c and the number of stator coils 6h are arbitrary. For example, the brushless motor 6 may have a two-pole, three-slot configuration.
シャント抵抗Ru、Rv、Rwは、各相の電流経路の高電位側に設けてもよい。この場合、各相の電流は、図10(B)に示す通電パターン8でスイッチング素子Q1~Q6を制御しているときに検出するとよい。 The shunt resistors Ru, Rv, and Rw may be provided on the high potential side of the current path of each phase. In this case, the current of each phase should be detected when the switching elements Q1 to Q6 are controlled by the energization pattern 8 shown in FIG. 10(B).
平滑コンデンサ等の素子が回生エネルギーで破損する恐れがない場合は、電流ベクトルを第3象限(図16の電流ベクトルI3)や第4象限に設定してもよい。この場合、例えば、第3象限に電流ベクトルI3として設定して減速制御を開始する。平滑コンデンサの電圧を検出し、回生エネルギーによって平滑コンデンサの電圧が第1所定値(例えば平滑コンデンサの定格電圧)以上になったら、電流ベクトルを第1象限又は第2象限(電流ベクトルI1、I2)に変更して回生エネルギーの発生を抑え、その後、平滑コンデンサの電圧が第1所定値又は第1所定値より小さい第2所定値未満になったら電流ベクトルを元に戻す制御を繰り返すようにしてもよい。 If there is no risk of damage to elements such as smoothing capacitors due to regenerative energy, the current vector may be set to the third quadrant (current vector I3 in FIG. 16) or fourth quadrant. In this case, for example, the current vector I3 is set in the third quadrant to start deceleration control. The voltage of the smoothing capacitor is detected, and when the voltage of the smoothing capacitor becomes equal to or higher than a first predetermined value (for example, the rated voltage of the smoothing capacitor) due to regenerative energy, the current vector is set to the first quadrant or the second quadrant (current vectors I1, I2). to suppress the generation of regenerative energy, and then repeat the control to restore the current vector when the voltage of the smoothing capacitor becomes less than the first predetermined value or a second predetermined value smaller than the first predetermined value. good.
実施の形態で具体的な数値として例示したデューティ比やロータ回転数の閾値等は、発明の範囲を何ら限定するものではなく、要求される仕様に合わせて任意に変更できる。 The duty ratio, the threshold value of the rotor speed, and the like given as specific numerical values in the embodiments do not limit the scope of the invention, and can be arbitrarily changed according to the required specifications.
本発明の作業機は、電池パックの電力で動作するコードレスタイプであってもよい。本発明の作業機は、実施の形態で例示したグラインダ以外のものであってもよい。 The work machine of the present invention may be of a cordless type that operates with power from a battery pack. The working machine of the present invention may be one other than the grinder exemplified in the embodiment.
1…作業機、2…砥石(回転具)、3…ハウジング、4…ギヤケース、5…スイッチ(操作部)、6…ブラシレスモータ、6a…出力軸、6b…ロータコア、6c…ロータマグネット、6e…ステータコア、6h…ステータコイル、6f…ヨーク部、6g…突極部(ティース部)、8…ファン、9…基板、10…ケース本体、11…パッキングランド、12…ニードルベアリング、13…ボールベアリング、14…ホイルガード、15…スイッチング素子、20…スピンドル、21…第1のベベルギヤ、22…第2のベベルギヤ、40…制御装置(ブラシレスモータの制御装置)、41…制御部(マイコン)、42…インバータ回路(駆動回路)、43…電圧検出回路、44…増幅回路、60…交流電源、61…ダイオードブリッジ(全波整流回路)、62…電源コード、Q1~Q6…スイッチング素子、Ru,Rv,Rw…シャント抵抗(電流検出部)。 DESCRIPTION OF SYMBOLS 1... Working machine, 2... Grindstone (rotary tool), 3... Housing, 4... Gear case, 5... Switch (operation part), 6... Brushless motor, 6a... Output shaft, 6b... Rotor core, 6c... Rotor magnet, 6e... Stator core, 6h... Stator coil, 6f... Yoke part, 6g... Salient pole part (teeth part), 8... Fan, 9... Substrate, 10... Case body, 11... Packing gland, 12... Needle bearing, 13... Ball bearing, DESCRIPTION OF SYMBOLS 14... Wheel guard 15... Switching element 20... Spindle 21... First bevel gear 22... Second bevel gear 40... Control device (brushless motor control device) 41... Control unit (microcomputer) 42... Inverter circuit (drive circuit) 43 Voltage detection circuit 44 Amplifier circuit 60 AC power supply 61 Diode bridge (full-wave rectifier circuit) 62 Power cord Q1 to Q6 Switching elements Ru, Rv, Rw: shunt resistor (current detector).

Claims (15)

  1. ロータと、複数のステータコイルを有するステータと、を備えたブラシレスモータと、
    オンされたときに前記ブラシレスモータの起動を指示するとともに、オフされたときに前記ブラシレスモータの停止を指示する操作部と、
    複数のスイッチング素子を有し、前記複数のステータコイルに駆動電圧を出力する駆動回路と、
    前記複数のステータコイルのそれぞれに流れる電流を検出する複数の電流検出部と、
    前記複数の電流検出部で検出された電流に基づいて前記駆動回路をベクトル制御によって制御する制御部と、
    を備えた作業機であって、
    前記制御部は、前記操作部がオフされてから前記ブラシレスモータが停止するまでの間に前記操作部がオンされると、前記ブラシレスモータが停止することなく前記ブラシレスモータの回転数が上昇するよう前記駆動回路をベクトル制御によって制御するよう構成される、
    ことを特徴とする、作業機。
    a brushless motor comprising a rotor and a stator having a plurality of stator coils;
    an operation unit that instructs to start the brushless motor when turned on and instructs to stop the brushless motor when turned off;
    a driving circuit having a plurality of switching elements and outputting a driving voltage to the plurality of stator coils;
    a plurality of current detection units that detect a current flowing through each of the plurality of stator coils;
    a control unit that controls the drive circuit by vector control based on the currents detected by the plurality of current detection units;
    A working machine comprising
    The control unit is configured to increase the rotation speed of the brushless motor without stopping the brushless motor when the operation unit is turned on after the operation unit is turned off until the brushless motor stops. configured to control the drive circuit by vector control;
    A work machine characterized by:
  2. ロータと、複数のステータコイルを有するステータと、を備えたブラシレスモータと、
    オンされたときに前記ブラシレスモータの起動を指示するとともに、オフされたときに前記ブラシレスモータの停止を指示する操作部と、
    複数のスイッチング素子を有し、前記複数のステータコイルに駆動電圧を出力する駆動回路と、
    前記複数のステータコイルのそれぞれに流れる電流を検出する複数の電流検出部と、
    前記複数の電流検出部で検出された電流に基づいて前記駆動回路を制御する制御部と、
    を備えた作業機であって、
    前記制御部は、前記操作部がオフされると、前記駆動電圧として前記ブラシレスモータの回転数が低下するような電圧が前記複数のステータコイルに出力されるよう前記駆動回路を制御し、前記操作部がオフされた状態で前記複数の電流検出部で検出された電流に基づいて前記駆動回路を制御するよう構成される、
    ことを特徴とする作業機。
    a brushless motor comprising a rotor and a stator having a plurality of stator coils;
    an operation unit that instructs to start the brushless motor when turned on and instructs to stop the brushless motor when turned off;
    a driving circuit having a plurality of switching elements and outputting a driving voltage to the plurality of stator coils;
    a plurality of current detection units that detect a current flowing through each of the plurality of stator coils;
    a control unit that controls the drive circuit based on the currents detected by the plurality of current detection units;
    A working machine comprising
    The control unit controls the drive circuit so that, when the operation unit is turned off, a voltage that reduces the rotation speed of the brushless motor is output to the plurality of stator coils as the drive voltage, and the operation unit is turned off. configured to control the drive circuit based on the currents detected by the plurality of current detection units when the unit is turned off;
    A work machine characterized by:
  3. 請求項1又は2に記載の作業機であって、
    前記制御部は、前記操作部がオフされると前記ブラシレスモータの回転数が低下するように前記駆動回路を制御し、さらに前記操作部のオフが維持されると前記ブラシレスモータが停止するよう前記駆動回路を制御するよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    The control unit controls the drive circuit so that the rotational speed of the brushless motor decreases when the operation unit is turned off, and further controls the brushless motor so that the brushless motor stops when the operation unit is kept off. configured to control a drive circuit;
    A work machine characterized by:
  4. 請求項1又は2に記載の作業機であって、
    前記制御部は、前記操作部がオフされて前記ブラシレスモータの回転数が前記所定の回転数以下に低下するまでの間に前記操作部がオンされると、前記ブラシレスモータの回転数が増加するように前記駆動回路を制御し、
    前記制御部は、前記操作部がオフされて前記ブラシレスモータの回転数が前記所定の回転数以下に低下した後に前記操作部がオンされると、前記ブラシレスモータを停止させてから再び起動させて、前記ブラシレスモータの回転数が増加するよう前記駆動回路を制御するよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    The control unit increases the rotation speed of the brushless motor when the operation unit is turned on after the operation unit is turned off until the rotation speed of the brushless motor drops below the predetermined rotation speed. controlling the drive circuit such that
    The control unit stops and then restarts the brushless motor when the operation unit is turned on after the operation unit is turned off and the rotation speed of the brushless motor drops below the predetermined rotation speed. , configured to control the drive circuit to increase the rotation speed of the brushless motor;
    A work machine characterized by:
  5. 請求項1又は2に記載の作業機であって、
    前記制御部は、前記スイッチング素子の制御端子にPWM信号を入力し、前記PWM信号のデューティ比を制御することで、前記駆動回路からの前記駆動電圧の出力を増減させるよう構成され、
    前記操作部がオンされ前記ブラシレスモータが回転している状態で前記操作部がオフされた場合、前記制御部は、前記デューティ比を0ではない所定値に向けて、徐々に、段階的に、又は一気に低下させるよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    The control unit is configured to input a PWM signal to a control terminal of the switching element and control the duty ratio of the PWM signal to increase or decrease the output of the drive voltage from the drive circuit,
    When the operation unit is turned off while the operation unit is turned on and the brushless motor is rotating, the control unit gradually and stepwise increases the duty ratio toward a predetermined value other than 0. or configured to drop in bursts,
    A work machine characterized by:
  6. 請求項5に記載の作業機であって、
    前記制御部は、前記操作部がオフされて前記ブラシレスモータの回転数が前記所定の回転数以下に低下すると、前記ブラシレスモータにブレーキをかけて前記ブラシレスモータを停止させるか、又は、前記複数のスイッチング素子をオフにして前記ブラシレスモータを停止するよう前記駆動回路を制御するよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 5,
    When the operation unit is turned off and the number of revolutions of the brushless motor drops below the predetermined number of revolutions, the control unit applies a brake to the brushless motor to stop the brushless motor, or stops the brushless motor. configured to control the drive circuit to turn off a switching element to stop the brushless motor;
    A work machine characterized by:
  7. 請求項1又は2に記載の作業機であって、
    前記ブラシレスモータにより駆動される出力部を有し、
    前記操作部がオンされ前記ブラシレスモータが回転している状態で前記操作部がオフされた場合、前記制御部は、前記ロータを前記所定の回転数以下になるまで減速させる過程で、所定の回転数範囲における前記ロータの減速度を他の回転数範囲における前記ロータの減速度よりも大きくするよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    Having an output unit driven by the brushless motor,
    When the operation portion is turned off while the operation portion is turned on and the brushless motor is rotating, the control portion causes the rotor to rotate at a predetermined rotation speed during the process of decelerating the rotor to the predetermined rotation speed or less. configured to cause the deceleration of the rotor in a number range to be greater than the deceleration of the rotor in other speed ranges;
    A work machine characterized by:
  8. 請求項1又は2に記載の作業機であって、
    前記ブラシレスモータが停止している状態で前記操作部がオンされた場合において、前記制御部は、前記複数のスイッチング素子を所定のパターンでオンオフさせる第1制御を実行し、
    前記制御部は、前記第1制御を実行した後、前記電流を一定に制御しながら前記複数のスイッチング素子のオンオフのパターンの切り替え速度を上げる第2制御を実行する、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    When the operation unit is turned on while the brushless motor is stopped, the control unit performs first control to turn on and off the plurality of switching elements in a predetermined pattern,
    After executing the first control, the control unit executes a second control that increases the switching speed of the on-off pattern of the plurality of switching elements while controlling the current to be constant.
    A work machine characterized by:
  9. 請求項8に記載の作業機であって、
    前記制御部は、前記第2制御を実行した後、前記電流に基づいて前記ロータの位置を検出しながら前記複数のスイッチング素子のPWM信号のデューティ比を高める第3制御を実行する、
    ことを特徴とする作業機。
    The working machine according to claim 8,
    After executing the second control, the control unit executes a third control that increases the duty ratio of the PWM signal of the plurality of switching elements while detecting the position of the rotor based on the current.
    A work machine characterized by:
  10. 請求項1又は2に記載の作業機であって、
    前記制御部は、前記複数の電流検出部で検出した電流に基づいて、ベクトル制御の座標系における電流ベクトルを制御することで前記ブラシレスモータの減速力を制御するよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    The control unit is configured to control the deceleration force of the brushless motor by controlling a current vector in a vector control coordinate system based on the currents detected by the plurality of current detection units.
    A work machine characterized by:
  11. 請求項10に記載の作業機であって、
    前記座標系は、前記ブラシレスモータが作る磁束の方向をd軸、それと磁気的に直交する方向をq軸としたdq座標系であり、
    前記dq座標系において、前記電流ベクトルを前記q軸の正の方向に大きくすると前記ブラシレスモータの駆動力が大きくなるよう構成され、
    前記ブラシレスモータに加わる負荷を一定とした場合、前記ブラシレスモータの駆動力が大きいほど前記減速力が小さくなるよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 10,
    The coordinate system is a dq coordinate system in which the d-axis is the direction of the magnetic flux generated by the brushless motor and the q-axis is the direction magnetically perpendicular to the d-axis,
    In the dq coordinate system, increasing the current vector in the positive direction of the q axis increases the driving force of the brushless motor,
    When the load applied to the brushless motor is constant, the greater the driving force of the brushless motor, the smaller the deceleration force.
    A work machine characterized by:
  12. 請求項10に記載の作業機であって、
    前記電流ベクトルが固定された状態における前記ブラシレスモータの減速時間は、前記ブラシレスモータに加わる負荷に応じて異なるよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 10,
    The deceleration time of the brushless motor when the current vector is fixed is configured to vary according to the load applied to the brushless motor.
    A work machine characterized by:
  13. 請求項10に記載の作業機であって、
    前記ブラシレスモータに加わる負荷に応じて前記電流ベクトルを制御することで前記ブラシレスモータの減速時間が一定になるよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 10,
    The deceleration time of the brushless motor is configured to be constant by controlling the current vector according to the load applied to the brushless motor.
    A work machine characterized by:
  14. 請求項13に記載の作業機であって、
    前記座標系は、前記ブラシレスモータが作る磁束の方向をd軸、それと磁気的に直交する方向をq軸としたdq座標系であり、
    前記dq座標系において、前記電流ベクトルを前記q軸の正の方向に大きくすると前記ブラシレスモータの駆動力が大きくなるよう構成され、
    前記ブラシレスモータに加わる負荷が大きい場合は小さい場合よりも、前記q軸の正の方向の大きさが小さい前記電流ベクトルとするよう構成される、
    ことを特徴とする作業機。
    The working machine according to claim 13,
    The coordinate system is a dq coordinate system in which the d-axis is the direction of the magnetic flux generated by the brushless motor and the q-axis is the direction magnetically perpendicular to the d-axis,
    In the dq coordinate system, increasing the current vector in the positive direction of the q axis increases the driving force of the brushless motor,
    When the load applied to the brushless motor is large, the current vector has a smaller magnitude in the positive direction of the q-axis than when the load is small.
    A work machine characterized by:
  15. 請求項1又は2に記載の作業機であって、
    前記ブラシレスモータの回転により作業する先端工具が取り付けられる先端工具取付部を有する、
    ことを特徴とする作業機。
    The working machine according to claim 1 or 2,
    Having a tip tool mounting part to which a tip tool that works by rotating the brushless motor is attached,
    A work machine characterized by:
PCT/JP2022/040264 2021-10-29 2022-10-27 Work machine WO2023074825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178366 2021-10-29
JP2021178366 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074825A1 true WO2023074825A1 (en) 2023-05-04

Family

ID=86159955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040264 WO2023074825A1 (en) 2021-10-29 2022-10-27 Work machine

Country Status (1)

Country Link
WO (1) WO2023074825A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155783A (en) * 1985-12-26 1987-07-10 Teac Co Stop device for revolution of motor
JP2003333887A (en) * 2002-05-10 2003-11-21 Matsushita Electric Ind Co Ltd Motor driver for laundry apparatus
JP2016107510A (en) * 2014-12-05 2016-06-20 キヤノン株式会社 Image formation apparatus
WO2016098563A1 (en) * 2014-12-18 2016-06-23 日立工機株式会社 Electric power tool
JP2017131097A (en) * 2016-01-15 2017-07-27 パナソニックIpマネジメント株式会社 Turbo compressor device
JP2020198661A (en) * 2019-05-30 2020-12-10 工機ホールディングス株式会社 Power tool
JP2021000710A (en) * 2019-06-24 2021-01-07 パナソニックIpマネジメント株式会社 Power tool
JP2021079509A (en) * 2019-11-21 2021-05-27 パナソニックIpマネジメント株式会社 Electric tool, control method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155783A (en) * 1985-12-26 1987-07-10 Teac Co Stop device for revolution of motor
JP2003333887A (en) * 2002-05-10 2003-11-21 Matsushita Electric Ind Co Ltd Motor driver for laundry apparatus
JP2016107510A (en) * 2014-12-05 2016-06-20 キヤノン株式会社 Image formation apparatus
WO2016098563A1 (en) * 2014-12-18 2016-06-23 日立工機株式会社 Electric power tool
JP2017131097A (en) * 2016-01-15 2017-07-27 パナソニックIpマネジメント株式会社 Turbo compressor device
JP2020198661A (en) * 2019-05-30 2020-12-10 工機ホールディングス株式会社 Power tool
JP2021000710A (en) * 2019-06-24 2021-01-07 パナソニックIpマネジメント株式会社 Power tool
JP2021079509A (en) * 2019-11-21 2021-05-27 パナソニックIpマネジメント株式会社 Electric tool, control method, and program

Similar Documents

Publication Publication Date Title
US9590552B2 (en) Motor drive device and electric compressor
JP6414603B2 (en) Electric tool
JP4406552B2 (en) Electric motor control device
US20090315492A1 (en) Motor control unit and air conditioner having the same
JP2007259550A (en) Controller of motor
JP2007259551A (en) Controller of motor
JP7086214B2 (en) Motor control device
US20010007416A1 (en) Device and method for determining step-out of synchronous motor
JP4475903B2 (en) Motor control device
JPWO2018100942A1 (en) Electric tool
JP2006304462A (en) Motor drive system and control method for permanent magnet motor
JP2005117861A (en) Discharge controller, discharge controlling method, and its program
WO2015075806A1 (en) Power conversion device and control method for permanent magnet synchronous motor
WO2023074825A1 (en) Work machine
JP2019208329A (en) Sensorless vector control device and sensorless vector control method
JP2006288109A (en) Servo motor controller
JP2004147430A (en) Sensorless drive control method and drive control system of electric motor
JP2007282367A (en) Motor driving controller
JPH09327192A (en) Controller for synchronous motor
JP2017213614A (en) Electric tool
WO2021215083A1 (en) Electric tool system, control method, and program
JP5092328B2 (en) Motor control device and motor control method
WO2023243362A1 (en) Motor driving device and work machine
JP2006129663A5 (en)
CN107482965B (en) Control device for synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE