WO2023074787A1 - 水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法 - Google Patents

水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法 Download PDF

Info

Publication number
WO2023074787A1
WO2023074787A1 PCT/JP2022/040123 JP2022040123W WO2023074787A1 WO 2023074787 A1 WO2023074787 A1 WO 2023074787A1 JP 2022040123 W JP2022040123 W JP 2022040123W WO 2023074787 A1 WO2023074787 A1 WO 2023074787A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
supply line
refrigerant
coolant
hydrogen
Prior art date
Application number
PCT/JP2022/040123
Other languages
English (en)
French (fr)
Inventor
正人 ▲高▼井
遼祐 大島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2023556627A priority Critical patent/JPWO2023074787A1/ja
Publication of WO2023074787A1 publication Critical patent/WO2023074787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/30Fuel systems for specific fuels

Definitions

  • the present disclosure relates to a precooling system and method for a fuel supply line of a hydrogen aircraft.
  • a hydrogen aircraft is an aircraft equipped with an engine whose fuel is partially or wholly hydrogen (for example, Patent Document 1).
  • a hydrogen aircraft is equipped with a fuel tank that stores hydrogen fuel, an engine for hydrogen combustion, and a fuel supply line that sends fuel from the fuel tank to the engine's combustor.
  • the fuel supply line is provided with, for example, an engine pump that pressurizes the fuel, a filter, a flow control valve, a heat exchanger, and the like.
  • the fuel stored in the fuel tank is liquid hydrogen, for example. Liquid hydrogen in the fuel tank is supplied to the engine's combustor through a fuel supply line laid in the aircraft.
  • the hydrogen fuel flowing from the fuel tank to the fuel supply line the temperature rises while passing through the fuel supply line, and may become unsuitable for use in the engine.
  • a small temperature difference between the hydrogen fuel and the fuel supply line is desirable.
  • a precooling system for a fuel supply line of a hydrogen aircraft includes: An engine that uses hydrogen as fuel, a fuel tank that stores the fuel, and a fuel supply line that supplies the fuel from the fuel tank to the engine, wherein the fuel tank or the fuel supply line has a coolant supply port.
  • a precooling system for the fuel supply line of a hydrogen aircraft having a refrigerant recovery port located downstream of the fuel flow from the refrigerant supply port, a coolant supply line that supplies coolant to the coolant supply port; a refrigerant recovery line for recovering the refrigerant from the refrigerant recovery port,
  • the fuel is supplied by supplying the refrigerant from the refrigerant supply line to the fuel supply line through the refrigerant supply port and recovering the refrigerant supplied to the fuel supply line from the refrigerant recovery line through the refrigerant recovery port. It pre-cools the line.
  • a method for precooling a fuel supply line of a hydrogen aircraft includes: A method for precooling a fuel supply line of a hydrogen aircraft comprising an engine using hydrogen as fuel, a fuel tank storing the fuel, and a fuel supply line supplying the fuel from the fuel tank to the engine, connecting a coolant supply line and a coolant supply port arranged in the fuel tank or the fuel supply line; connecting a refrigerant recovery line and a refrigerant recovery port arranged in the fuel supply line and arranged downstream of the flow of the fuel from the refrigerant supply port; The fuel supply line supplies a refrigerant from the refrigerant supply line through the refrigerant supply port to the fuel supply line and recovers the refrigerant supplied to the fuel supply line from the refrigerant recovery line through the refrigerant recovery port. pre-cooling the
  • a hydrogen aircraft includes: a hydrogen fueled engine; a fuel tank that stores the fuel; a fuel supply line that supplies the fuel from the fuel tank to the engine, The fuel tank or the fuel supply line has a coolant supply port to which a coolant is supplied, The fuel supply line has a refrigerant recovery port arranged downstream of the flow of the fuel from the refrigerant supply port to recover the refrigerant, The fuel supply line is precooled by the coolant supplied from the coolant supply port, flowing through the fuel supply line and recovered from the coolant recovery port.
  • a pre-cooling facility includes: An engine that uses hydrogen as fuel, a fuel tank that stores the fuel, and a fuel supply line that supplies the fuel from the fuel tank to the engine, wherein the fuel tank or the fuel supply line has a coolant supply port.
  • a pre-cooling facility for pre-cooling the fuel supply line of a hydrogen aircraft having a refrigerant recovery port in which the fuel supply line is arranged downstream from the refrigerant supply port, a coolant supply line connected to the coolant supply port; a refrigerant recovery line connected to the refrigerant recovery port,
  • the fuel supply line supplies a refrigerant from the refrigerant supply line through the refrigerant supply port to the fuel supply line and recovers the refrigerant supplied to the fuel supply line from the refrigerant recovery line through the refrigerant recovery port. is pre-cooled.
  • the temperature difference between the hydrogen fuel and the fuel supply line can be suppressed, and the hydrogen fuel can be stably supplied to the engine through the fuel supply line.
  • FIG. 1 is a system diagram of a fuel supply line and its precooling system for a hydrogen-powered aircraft according to the first embodiment of the present disclosure.
  • FIG. 2 is a system diagram of a fuel supply line of a hydrogen-powered aircraft and its precooling system according to Modification 1 of the first embodiment of the present disclosure.
  • FIG. 3 is a system diagram of a fuel supply line of a hydrogen-powered aircraft and its precooling system according to Modification 2 of the first embodiment of the present disclosure.
  • FIG. 4 is a system diagram of a fuel supply line of a hydrogen-powered aircraft and its precooling system according to the second embodiment of the present disclosure.
  • FIG. 1 is a system diagram of a precooling system 2 for a fuel supply line 3 of a hydrogen aircraft 1 according to the first embodiment of the present disclosure.
  • the precooling system 2 according to the present disclosure is used, for example, to precool the fuel supply line 3 that connects the fuel tank 5 and the engine 6 before starting the engine 6 of the hydrogen aircraft 1 .
  • the hydrogen-powered aircraft 1 includes an engine 6 that uses hydrogen as fuel F, a fuel tank 5 that stores the fuel F, and a fuel supply line 3 that sends the fuel F from the fuel tank 5 to the engine 6 .
  • the fuel F stored in the fuel tank 5 is liquid, gaseous, or supercritical hydrogen.
  • the engine 6 has a combustor 61 that burns hydrogen as the fuel F, and the fuel F in the fuel tank 5 is supplied to the engine 6 through the fuel supply line 3 .
  • the fuel supply line 3 forms a flow path for the fuel F from the outlet 51 of the fuel tank 5 to the inlet 62 of the engine 6.
  • the inlet 62 of the engine 6 is, for example, the inlet of a pipe leading to the combustor 61 inside the engine 6 .
  • the fuel supply line 3 includes a first shutoff valve 31, a booster pump 32, a check valve 33, a second shutoff valve 34, an engine pump 35, a fuel filter 36, a flow meter 37, a flow control valve 38, and a third shutoff valve.
  • a valve 39 and a heat exchanger 40 are arranged from upstream to downstream. These elements of the fuel supply line 3 can be permuted as appropriate. These elements of the fuel supply line 3 are connected by piping or the like.
  • upstream and downstream are based on the flow direction of the fuel F.
  • the engine pump 35 boosts the fuel F to a predetermined pressure required for the fuel F by the engine 6 .
  • the heat exchanger 40 may be omitted from the fuel supply line 3 when the fuel F passing through the third shutoff valve 39 is gaseous.
  • the fuel supply line 3 is provided with a coolant supply port 41 and a coolant recovery port 42 located downstream of the coolant supply port 41 .
  • the coolant supply port 41 is arranged upstream of the engine pump 35 of the fuel supply line 3
  • the coolant recovery port 42 is arranged downstream of the engine pump 35 of the fuel supply line 3 .
  • the coolant supply port 41 is arranged on the upstream side of the fuel supply line 3 .
  • the coolant supply port 41 is arranged in the fuel supply line 3 between the outlet 51 of the fuel tank 5 and the first shutoff valve 31 .
  • the refrigerant recovery port 42 be arranged further downstream in the fuel supply line 3 .
  • the refrigerant recovery port 42 is arranged upstream of the heat exchanger 40 .
  • the refrigerant recovery port 42 is arranged between the third shutoff valve 39 and the heat exchanger 40 in the fuel supply line 3 .
  • the pre-cooling system 2 comprises a refrigerant pump 22 , a refrigerant supply line 23 and a refrigerant recovery line 24 .
  • a refrigerant pump 22 , a refrigerant supply line 23 , and a refrigerant recovery line 24 are provided in the precooling equipment 21 .
  • the precooling facility 21 is a facility that supplies coolant to the coolant supply line 23 .
  • the pre-cooling facility 21 may be, for example, fixed on or in the ground, or may be movable. Moreover, the plurality of devices that constitute the precooling facility 21 may be arranged apart from each other.
  • the refrigerant pump 22 may also serve as the engine pump 35 of the hydrogen aircraft 1 .
  • a refrigerant supply source 211 is provided in the precooling facility 21 , and the refrigerant supply source 211 supplies the refrigerant M to the refrigerant supply line 23 .
  • the coolant supply source 211 may be a container containing the coolant M, or may be a pipe or the like for introducing the coolant M from the outside.
  • the coolant M is, for example, liquid, gaseous, or supercritical hydrogen.
  • the coolant M may be in a different state from the fuel F stored in the fuel tank 5 .
  • the coolant M may be a substance different from the fuel F. From the viewpoint of reducing the temperature difference between the fuel supply line 3 and the fuel F contained in the fuel tank 5, it is preferable that the coolant M and the fuel F are the same substance.
  • a refrigerant treatment system 212 is provided in the precooling equipment 21 , and the refrigerant M is sent from the refrigerant recovery line 24 to the refrigerant treatment system 212 .
  • the refrigerant treatment system 212 treats the refrigerant M that has returned to the pre-cooling facility 21 through the refrigerant recovery line 24 after flowing through the fuel supply line 3 . After flowing through the fuel supply line 3, the temperature of the coolant M may rise and expand.
  • the refrigerant processing system 212 is configured, for example, to cool the refrigerant M returned from the refrigerant recovery line 24 and return it to the refrigerant supply source 211 .
  • the refrigerant treatment system 212 may be configured to store or dispose of the refrigerant M returned from the refrigerant recovery line 24, or use the returned refrigerant M for purposes other than cooling the fuel supply line 3. may be configured to process
  • the refrigerant supply source 211 of the precooling equipment 21 and the refrigerant supply port 41 are connected by the refrigerant supply line 23 .
  • the coolant supply line 23 is detachable from the coolant supply port 41 .
  • the refrigerant recovery port 42 and the refrigerant treatment system 212 of the precooling equipment 21 are connected by a refrigerant recovery line 24 .
  • the refrigerant recovery line 24 is detachable from the refrigerant recovery port 42 .
  • the refrigerant pump 22 is a pump arranged in the refrigerant supply line 23 or the refrigerant recovery line 24 in this embodiment.
  • the coolant pump 22 may also serve as the engine pump 35 of the fuel supply line 3 .
  • both the engine pump 35 of the fuel supply line 3 and the pump arranged in the refrigerant supply line 23 or the refrigerant recovery line 24 may be used as the refrigerant pump 22 .
  • the precooling system 2 precools the fuel supply line 3 that connects the fuel tank 5 and the engine 6 before starting the engine 6 of the hydrogen aircraft 1, thereby reducing the temperature difference between the hydrogen fuel and the fuel supply line 3. can be suppressed. Therefore, hydrogen fuel can be stably supplied to the engine 6 through the fuel supply line 3 . Further, the coolant M that has passed through the fuel supply line 3 is returned to the fuel tank 5 as it is, or is recovered by the coolant recovery line 24 without being sent to the engine 6. and the engine 6 can be prevented.
  • the precooling system 2 since the precooling system 2 is detachable from the hydrogen aircraft 1, it can be connected to the fuel supply line 3 when precooling the fuel supply line 3. Therefore, equipment for pre-cooling the fuel supply line 3 from the hydrogen aircraft 1 can be omitted, and the weight of the hydrogen aircraft 1 can be reduced.
  • Pre-cooling method of fuel supply line 3 A method of precooling the fuel supply line 3 of the hydrogen aircraft 1 using the precooling system 2 of the first embodiment will be described. Pre-cooling of the fuel supply line 3 is performed, for example, before starting the engine 6 .
  • the precooling method for the fuel supply line 3 includes the following steps. (i) The coolant supply line 23 is connected to the coolant supply port 41 , and the coolant recovery line 24 is connected to the coolant recovery port 42 . Here, it is preferable that the coolant supply line 23 is connected after the coolant recovery line 24 is connected.
  • the coolant pump 22 is activated; Here, the outlet 51 of the fuel tank 5 and the inlet of the heat exchanger 40 are closed, and the first shutoff valve 31, the second shutoff valve 34 and the third shutoff valve 39 are open.
  • the refrigerant pump 22 is stopped.
  • the connection between the refrigerant supply port 41 and the refrigerant supply line 23 is released, and the connection between the refrigerant recovery port 42 and the refrigerant recovery line 24 is released.
  • the first shutoff valve 31, the second shutoff valve 34, and the third shutoff valve 39 are closed.
  • step (ii) the operation of the refrigerant pump 22 causes the refrigerant M in the refrigerant supply source 211 of the precooling equipment 21 to flow through the refrigerant supply line 23, the fuel supply line 3, and the refrigerant recovery line 24 in order, It is returned to the refrigerant treatment system 212 of the precooling equipment 21 .
  • the fuel supply line 3 is precooled by the coolant M flowing through the fuel supply line 3 .
  • the engine pump 35 is started.
  • the inlet of the heat exchanger 40, the first shutoff valve 31, the second shutoff valve 34, and the third shutoff valve 39 are open.
  • the fuel F in the fuel tank 5 is supplied to the engine 6 through the fuel supply line 3 .
  • the fuel supply line 3 can suppress an increase in the temperature of the fuel F when the engine 6 of the hydrogen aircraft 1 is started.
  • the fuel F can be stably supplied from the fuel tank 5 through the fuel supply line 3 to the engine 6 at a temperature suitable for use in the engine 6 from the time the engine 6 is started.
  • the coolant supply port 41 is provided in the fuel supply line 3, and the coolant M does not pass through the fuel tank 5. Since the inside of the fuel tank 5 is excluded from the flow path of the coolant M in this way, the fuel F and the coolant M do not mix inside the fuel tank 5 . As a result, the fuel supply line 3 can be precooled while maintaining the fuel F in the fuel tank 5 at a low temperature.
  • the inside of the fuel tank 5 can be regarded as upstream of the engine pump 35 of the fuel supply line 3 in the flow of the fuel F, and the fuel tank 5 may be used as a part of the flow path of the coolant M.
  • FIG. 2 is a system diagram of the fuel supply line 3 and its precooling system 2 of the hydrogen-powered aircraft 1 according to Modification 1 of the first embodiment.
  • the fuel tank 5 is provided with a coolant supply port 41 .
  • the coolant supply port 41 may be shared with the fuel inlet of the fuel tank 5 .
  • substantially the same members as those of the above-described first embodiment are denoted by the same reference numerals in the drawings, and descriptions thereof are omitted.
  • FIG. 3 is a system diagram of the fuel supply line 3 and its precooling system 2 of the hydrogen-powered aircraft 1 according to Modification 2 of the first embodiment.
  • the refrigerant recovery port 42 is arranged downstream of the heat exchanger 40 in the fuel supply line 3 .
  • bypass line 43 is connected to the fuel supply line 3 to bypass the heat exchanger 40 and flow the coolant M from upstream to downstream of the heat exchanger 40 .
  • Bypass line 43 may be passed by fuel F during operation of engine 6 .
  • a refrigerant recovery port 42 is arranged downstream of the bypass line 43 in the fuel supply line 3 .
  • the fuel supply line 3 includes a device such as the heat exchanger 40 that does not require precooling
  • a flow path is formed so as to bypass the device that does not require precooling, and the coolant M flows to supply the fuel.
  • a portion of the line 3 that requires precooling can be precooled.
  • FIG. 4 is a system diagram of the fuel supply line 3 and its precooling system 2A of the hydrogen-powered aircraft 1 according to the second embodiment.
  • substantially the same members as those of the first embodiment described above are denoted by the same reference numerals in the drawings, and descriptions thereof are omitted.
  • Liquid hydrogen is stored as fuel F in the fuel tank 5 of the hydrogen aircraft 1 shown in FIG.
  • Gaseous hydrogen (which can be called boil-off gas) generated by vaporization of liquid hydrogen stays in the upper part of the fuel tank 5 .
  • a refrigerant supply line 23 is connected to the fuel tank 5 for discharging gaseous hydrogen generated by vaporization of the fuel F from within the fuel tank 5 to the fuel supply line 3 .
  • the fuel tank 5 is connected to the coolant recovery port 42 through the coolant supply line 23 .
  • a boil-off gas line may be connected to the fuel tank 5, the boil-off gas line and the refrigerant supply line 23 may be connected, and the fuel tank 5 may be connected to the refrigerant recovery port 42 through the boil-off gas line and the refrigerant supply line 23.
  • gaseous hydrogen generated by vaporization of the fuel F in the fuel tank 5 is used as the coolant M.
  • the pre-cooling system 2A includes a refrigerant pump 22, a refrigerant supply line 23, and a refrigerant recovery line 24.
  • the refrigerant pump 22 may be shared with the engine pump 35 or may be arranged in the precooling facility 21 .
  • the coolant pump 22 may be omitted.
  • the coolant supply line 23 may be arranged in the hydrogen aircraft 1 or may be arranged in the pre-cooling facility 21 .
  • a refrigerant recovery line 24 is arranged in the pre-cooling facility 21 .
  • the coolant recovery port 42 is arranged downstream of the engine pump 35 in the fuel supply line 3 .
  • the coolant supply line 23 and the coolant supply port 41 are connected.
  • the coolant supply line 23 is provided in the hydrogen aircraft 1
  • the coolant supply line 23 is connected to the coolant supply port 41 in advance, and a valve or the like is installed so that the coolant supply line 23 and the coolant supply port 41 communicate with each other. may be manipulated.
  • the outlet 51 of the fuel tank 5 and the inlet of the heat exchanger 40 are closed, and the first shutoff valve 31, the second shutoff valve 34, and the third shutoff valve 39 are opened. be done.
  • the refrigerant pump 22 causes the gaseous hydrogen generated in the fuel tank 5 to flow as the refrigerant M through the refrigerant supply line 23, the refrigerant supply port 41, the fuel supply line 3, the refrigerant recovery port 42, and the refrigerant recovery line 24 in order. It is recovered to the processing system 212 . In this manner, since the gaseous hydrogen generated by vaporization of the fuel F flows through the fuel supply line 3 as the coolant M, the fuel F in the fuel tank 5 can be kept at a low temperature and the fuel supply line 3 can be precooled.
  • the precooling system 2A for the fuel supply line 3 of the hydrogen aircraft 1 according to the second embodiment can be applied simultaneously with the precooling system 2 for the fuel supply line 3 of the hydrogen aircraft 1 according to the first embodiment. That is, the boil-off gas of the fuel F stored in the fuel tank 5 is supplied as the coolant M to the fuel supply line 3, and the coolant M stored in the coolant supply source 211 is supplied to the fuel supply line 3, so that the fuel supply line 3 , the refrigerant M may be recovered to the refrigerant treatment system 212 through the refrigerant recovery line 24 . Accordingly, one or both of the precooling systems 2 and 2A can be used to precool the fuel supply line 3 depending on the conditions of the fuel supply line 3, the fuel F stored in the fuel tank 5, the precooling facility 21, and the like.
  • the precooling systems 2, 2A of the fuel supply line 3 of the hydrogen aircraft 1 are An engine 6 that uses hydrogen as fuel F, a fuel tank 5 that stores the fuel F, and a fuel supply line 3 that supplies the fuel F from the fuel tank 5 to the engine 6.
  • the fuel tank 5 or the fuel supply line 3 supplies a coolant.
  • the coolant M is supplied from the coolant supply line 23 to the fuel supply line 3 through the coolant supply port 41, and the coolant M supplied to the fuel supply line 3 is recovered from the coolant recovery line 24 through the coolant recovery port 42. 3 is precooled.
  • the fuel supply line 3 that sends the fuel F to the engine 6 is pre-cooled by the coolant M, so that the fuel F and the fuel supply line 3 can suppress the temperature difference between Therefore, hydrogen, which is the fuel F, can be stably supplied to the engine 6 through the fuel supply line 3 . Further, the coolant M that has passed through the fuel supply line 3 is returned to the fuel tank 5 as it is, or is recovered by the coolant recovery line 24 without being sent to the engine 6. and the engine 6 can be prevented.
  • the precooling system 2, 2A of the fuel supply line 3 of the hydrogen aircraft 1 according to the second item of the present disclosure is the precooling system 2 according to the first item, further comprising a coolant pump 22 that supplies the coolant M. .
  • the fuel supply line 3 can be quickly cooled.
  • the precooling system 2, 2A of the fuel supply line 3 of the hydrogen aircraft 1 according to the third item of the present disclosure is a coolant supply line that is detachable from the fuel supply line 3 in the precooling system 2 according to the first or second item. 23 and a precooling facility 21 in which a refrigerant recovery line 24 is arranged.
  • the weight of the hydrogen aircraft 1 can be reduced.
  • the precooling system 2, 2A of the fuel supply line 3 of the hydrogen aircraft 1 supplies the coolant M to the coolant supply line 23 in the precooling system 2 according to any one of the first to third items. and a refrigerant treatment system 212 for cooling, storing, or discarding the refrigerant M recovered by the refrigerant recovery line 24 .
  • the weight of the hydrogen aircraft 1 can be reduced.
  • the precooling system 2, 2A of the fuel supply line 3 of the hydrogen aircraft 1 according to the fifth item of the present disclosure is the fuel F stored in the fuel tank 5 in the precooling system 2 according to any one of the first to fourth items.
  • the refrigerant M is gaseous hydrogen generated by vaporization of the liquid hydrogen
  • the refrigerant supply port 41 is arranged in the fuel supply line 3
  • the fuel tank 5 is connected to the refrigerant supply line 23.
  • the gaseous hydrogen is supplied to the fuel supply line 3 through the coolant supply port 41 .
  • the gaseous hydrogen generated by the vaporization of the fuel F in the fuel tank 5 flows through the fuel supply line 3 as the coolant M, the gaseous hydrogen of the fuel F generated in the fuel tank 5 can be effectively used. Further, since the coolant M does not pass through the fuel tank 5, the fuel supply line 3 can be precooled while maintaining the fuel F in the fuel tank 5 at a low temperature.
  • the precooling system 2 of the fuel supply line 3 of the hydrogen aircraft 1 according to the sixth item of the present disclosure is the precooling system 2 according to any one of the first to fourth items, wherein the refrigerant M is a liquid, gas, or supercritical state hydrogen.
  • the temperature difference between the fuel supply line 3 and the fuel F contained in the fuel tank 5 can be made smaller. Also, contamination of the fuel supply line 3 can be reduced.
  • a precooling method for the fuel supply line 3 of the hydrogen aircraft 1 includes: A method for precooling a fuel supply line 3 of a hydrogen aircraft 1 having an engine 6 using hydrogen as fuel F, a fuel tank 5 storing the fuel F, and a fuel supply line 3 supplying the fuel F from the fuel tank 5 to the engine 6 There is connecting the coolant supply line 23 and the coolant supply port 41 arranged in the fuel tank 5 or the fuel supply line 3; connecting the refrigerant recovery line 24 and the refrigerant recovery port 42 arranged in the fuel supply line 3 and arranged downstream of the flow of the fuel F from the refrigerant supply port 41; precooling the fuel supply line 3 by supplying the coolant M from the coolant supply line 23 to the fuel supply line 3 through the coolant supply port 41 and recovering the coolant M from the coolant recovery line 24 through the coolant recovery port 42; includes.
  • the fuel supply line 3 that sends the fuel F to the engine 6 is precooled by the coolant M. temperature difference can be suppressed. Therefore, hydrogen, which is the fuel F, can be stably supplied to the engine 6 through the fuel supply line 3 . Further, the coolant M that has passed through the fuel supply line 3 is returned to the fuel tank 5 as it is, or is recovered by the coolant recovery line 24 without being sent to the engine 6. and the engine 6 can be prevented.
  • the precooling method for the fuel supply line 3 of the hydrogen aircraft 1 according to the eighth item of the present disclosure is the precooling method according to the seventh item, in which the refrigerant supply line 23 is connected after the refrigerant recovery line 24 is connected. be.
  • the fuel supply line 3 can be safely precooled.
  • a precooling method for the fuel supply line 3 of the hydrogen aircraft 1 according to the ninth item of the present disclosure is the precooling method according to the seventh or eighth item, wherein the fuel F stored in the fuel tank 5 is liquid hydrogen, and the refrigerant M is gaseous hydrogen generated by vaporization of liquid hydrogen, the coolant supply port 41 is arranged in the fuel supply line 3, the fuel tank 5 is connected to the coolant supply line 23, and the gaseous hydrogen is supplied through the coolant supply port 41. is supplied to the fuel supply line 3.
  • the gaseous hydrogen generated by the vaporization of the fuel F in the fuel tank 5 flows through the fuel supply line 3 as the coolant M, the gaseous hydrogen of the fuel F generated in the fuel tank 5 can be effectively used. Since the coolant M does not pass through the fuel tank 5, the fuel supply line 3 can be pre-cooled while keeping the fuel F in the fuel tank 5 at a low temperature.
  • the precooling method for the fuel supply line 3 of the hydrogen aircraft 1 according to the tenth item of the present disclosure is the precooling method according to the seventh or eighth item, wherein the coolant M is liquid, gaseous, or supercritical hydrogen. It is.
  • the temperature difference between the fuel supply line 3 and the fuel F contained in the fuel tank 5 can be made smaller. Also, contamination of the fuel supply line 3 can be reduced.
  • the hydrogen aircraft 1 is an engine 6 using hydrogen as fuel F; a fuel tank 5 for storing fuel F; a fuel supply line 3 for supplying fuel F from the fuel tank 5 to the engine 6,
  • the fuel tank 5 or the fuel supply line 3 has a coolant supply port 41 to which the coolant M is supplied,
  • the fuel supply line 3 has a coolant recovery port 42 arranged downstream of the coolant supply port 41 in the flow of the fuel F to recover the coolant M,
  • the fuel supply line 3 is precooled by the coolant M supplied from the coolant supply port 41 , flowing through the fuel supply line 3 and recovered from the coolant recovery port 42 .
  • the fuel supply line 3 that sends the fuel F to the engine 6 is precooled by the coolant M, so that the fuel F and the fuel supply line 3 can suppress the temperature difference between Therefore, hydrogen, which is the fuel F, can be stably supplied to the engine 6 through the fuel supply line 3 . Further, the coolant M that has passed through the fuel supply line 3 is returned to the fuel tank 5 as it is, or is recovered by the coolant recovery line 24 without being sent to the engine 6. and the engine 6 can be prevented.
  • the fuel supply line 3 has an engine pump 35 that pressurizes the fuel F, and the coolant supply port 41 is provided from the engine pump 35. , and the refrigerant recovery port 42 is arranged downstream of the engine pump 35 .
  • the fuel supply line 3 is precooled. Therefore, for example, when the engine 6 is started, the temperature of the fuel F flowing into the fuel supply line 3 is suppressed, and the engine pump 35 reduces the fuel F to a predetermined pressure. It is boosted stably. Therefore, for example, when starting the engine 6 of the hydrogen-powered aircraft 1 , hydrogen, which is the fuel F, can be stably supplied to the engine 6 through the fuel supply line 3 .
  • the hydrogen aircraft 1 according to the thirteenth item of the present disclosure is the hydrogen aircraft 1 according to the eleventh or twelfth item, wherein the fuel supply line 3 has a heat exchanger 40 for vaporizing the fuel F, and the refrigerant recovery port 42 is It is arranged upstream of the heat exchanger 40 in the fuel supply line 3 .
  • the fuel supply line 3 can be precooled while avoiding cooling by not flowing the coolant M.
  • the precooling equipment 21 includes An engine 6 that uses hydrogen as fuel F, a fuel tank 5 that stores the fuel F, and a fuel supply line 3 that supplies the fuel F from the fuel tank 5 to the engine 6.
  • the fuel tank 5 or the fuel supply line 3 supplies a coolant.
  • the coolant M is supplied from the coolant supply line 23 to the fuel supply line 3 through the coolant supply port 41, and the coolant M is recovered from the coolant recovery line 24 through the coolant recovery port 42, thereby precooling the fuel supply line 3. .
  • the precooling equipment 21 according to the fifteenth item of the present disclosure is the precooling equipment 21 according to the fourteenth item.
  • a refrigerant processing system 212 for cooling, storing, or discarding the refrigerant M is further provided.
  • the fuel supply line 3 that sends the fuel F to the engine 6 is precooled by the coolant M. Therefore, the temperature difference between the fuel F and the fuel supply line 3 can be suppressed. Therefore, hydrogen, which is the fuel F, can be stably supplied to the engine 6 through the fuel supply line 3 . Further, the coolant M that has passed through the fuel supply line 3 is returned to the fuel tank 5 as it is, or is recovered by the coolant recovery line 24 without being sent to the engine 6. and the engine 6 can be prevented. Furthermore, since the pre-cooling equipment 21 is configured independently of the hydrogen aircraft 1 , equipment necessary for pre-cooling the fuel supply line 3 can be omitted from the hydrogen aircraft 1 , and the weight of the hydrogen aircraft 1 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

水素航空機は、水素を燃料とするエンジン、燃料を貯蔵する燃料タンク、及び、燃料タンクからエンジンへ燃料を供給する燃料供給ラインを備え、燃料タンク又は燃料供給ラインが冷媒供給口を有し、燃料供給ラインが冷媒供給口より燃料の流れの下流に配置された冷媒回収口を有する。この水素航空機の燃料供給ラインの予冷システムは、冷媒供給口へ冷媒を供給する冷媒供給ラインと、冷媒回収口から冷媒を回収する冷媒回収ラインと、を備え、冷媒供給ラインから冷媒供給口を通じて燃料供給ラインに冷媒を供給するとともに、冷媒回収ラインから冷媒回収口を通じて燃料供給ラインに供給した冷媒を回収することによって、燃料供給ラインを予冷する。

Description

水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法
 本開示は、水素航空機の燃料供給ラインの予冷システム及び予冷方法に関する。
 近年、水素航空機の開発が進められている。水素航空機は、燃料の一部又は全部が水素であるエンジンを搭載した航空機である(例えば、特許文献1)。
 水素航空機には、水素燃料を貯蔵した燃料タンクと、水素燃焼向けのエンジンと、燃料タンクからエンジンの燃焼器へ燃料を送る燃料供給ラインとが搭載される。燃料供給ラインには、例えば、燃料を昇圧するエンジンポンプ、フィルタ、流量制御弁、及び熱交換器等が設けられている。燃料タンクに貯蔵された燃料は、例えば、液体水素である。燃料タンクの液体水素は、航空機内に敷設された燃料供給ラインを通り、エンジンの燃焼器へ供給される。
米国特許出願公開第2015/0336680号明細書
 水素航空機の燃料供給ラインにおいて、燃料タンクに貯蔵された水素燃料と燃料供給ラインに温度差がある場合(例えば、水素航空機のエンジンの始動前)、燃料タンクから燃料供給ラインへ流入した水素燃料は、燃料供給ラインを通過する間に温度が上昇し、エンジンでの使用に適さない温度になるおそれがある。水素燃料と燃料供給ラインとの温度差は、小さいことが望ましい。
 上記課題を解決するために、本開示の一態様に係る水素航空機の燃料供給ラインの予冷システムは、
水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備え、前記燃料タンク又は前記燃料供給ラインが冷媒供給口を有し、前記燃料供給ラインが前記冷媒供給口より前記燃料の流れの下流に配置された冷媒回収口を有する水素航空機の前記燃料供給ラインの予冷システムであって、
前記冷媒供給口へ冷媒を供給する冷媒供給ラインと、
前記冷媒回収口から前記冷媒を回収する冷媒回収ラインと、を備え、
前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに前記冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷するものである。
 本開示の一態様に係る水素航空機の燃料供給ラインの予冷方法は、
水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備える水素航空機の燃料供給ラインの予冷方法であって、
冷媒供給ラインと前記燃料タンク又は前記燃料供給ラインに配置された冷媒供給口とを接続すること、
冷媒回収ラインと前記燃料供給ラインに配置され、前記冷媒供給口より前記燃料の流れの下流に配置された冷媒回収口とを接続すること、及び、
前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷すること、を含むものである。
 本開示の一態様に係る水素航空機は、
水素を燃料とするエンジンと、
前記燃料を貯蔵する燃料タンクと、
前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインと、を備え、
前記燃料タンク又は前記燃料供給ラインは、冷媒が供給される冷媒供給口を有し、
前記燃料供給ラインは、前記冷媒供給口より前記燃料の流れの下流に配置されて前記冷媒を回収する冷媒回収口を有し、
前記冷媒供給口から供給され、前記燃料供給ラインを流れて前記冷媒回収口から回収される前記冷媒によって前記燃料供給ラインが予冷されるものである。
 本開示の一態様に係る予冷用設備は、
水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備え、前記燃料タンク又は前記燃料供給ラインが冷媒供給口を有し、前記燃料供給ラインが前記冷媒供給口より下流に配置された冷媒回収口を有する水素航空機の前記燃料供給ラインを予冷する予冷用設備であって、
前記冷媒供給口と接続される冷媒供給ラインと、
前記冷媒回収口と接続される冷媒回収ラインと、を備え、
前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷するものである。
 本開示の一態様によれば、水素燃料と燃料供給ラインとの温度差を抑制し、燃料供給ラインを通じてエンジンへ安定して水素燃料を供給できる。
図1は、本開示の第1実施形態に係る水素航空機の燃料供給ラインとその予冷システムの系統図である。 図2は、本開示の第1実施形態の変形例1に係る水素航空機の燃料供給ラインとその予冷システムの系統図である。 図3は、本開示の第1実施形態の変形例2に係る水素航空機の燃料供給ラインとその予冷システムの系統図である。 図4は、本開示の第2実施形態に係る水素航空機の燃料供給ラインとその予冷システムの系統図である。
[第1実施形態]
 図1は、本開示の第1実施形態に係る水素航空機1の燃料供給ライン3の予冷システム2の系統図である。本開示に係る予冷システム2は、例えば、水素航空機1のエンジン6の始動前に、燃料タンク5とエンジン6とを接続する燃料供給ライン3を予冷するために利用される。
〔水素航空機1の構成例〕
 水素航空機1は、水素を燃料Fとするエンジン6と、燃料Fを貯蔵した燃料タンク5と、燃料タンク5からエンジン6へ燃料Fを送る燃料供給ライン3とを備える。燃料タンク5に貯蔵されている燃料Fは、液体、気体、又は超臨界状態の水素である。エンジン6は燃料Fとして水素を燃焼する燃焼器61を備え、燃料タンク5の燃料Fは燃料供給ライン3を通じてエンジン6へ供給される。
 燃料供給ライン3は、燃料タンク5の出口51からエンジン6の入口62までの燃料Fの流路を形成している。エンジン6の入口62は、例えば、エンジン6内の燃焼器61へ繋がる配管の入口である。燃料供給ライン3には、第1シャットオフバルブ31、ブースタポンプ32、チェックバルブ33、第2シャットオフバルブ34、エンジンポンプ35、燃料フィルタ36、流量計37、流量制御バルブ38、第3シャットオフバルブ39、及び熱交換器40が、上流から下流へ向かって配置されている。燃料供給ライン3のこれらの要素は、適宜、順序を入れ替えることができる。燃料供給ライン3のこれらの要素の間は配管等で接続されている。なお、本明細書において「上流」及び「下流」は、燃料Fの流れ方向を基準としている。エンジンポンプ35は、エンジン6で燃料Fに対し要求される所定の圧力まで、燃料Fを昇圧する。第3シャットオフバルブ39を通過する燃料Fが気体である場合には、燃料供給ライン3から熱交換器40が省略されてもよい。
 燃料供給ライン3には、冷媒供給口41と、冷媒供給口41よりも下流に配置された冷媒回収口42とが設けられている。好ましくは、冷媒供給口41は燃料供給ライン3のエンジンポンプ35よりも上流に配置され、冷媒回収口42は燃料供給ライン3のエンジンポンプ35より下流に配置される。冷媒供給口41は、燃料供給ライン3のうち、より上流側に配置されることが更に好ましい。本実施形態において冷媒供給口41は、燃料供給ライン3のうち燃料タンク5の出口51と第1シャットオフバルブ31の間に配置されている。
 冷媒回収口42は、燃料供給ライン3のうち、より下流側に配置されることが好ましい。燃料供給ライン3が熱交換器40を含む場合には、冷媒回収口42は熱交換器40よりも上流に配置される。本実施形態において冷媒回収口42は、燃料供給ライン3のうち第3シャットオフバルブ39と熱交換器40の間に配置されている。
〔予冷システム2の構成例〕
 予冷システム2は、冷媒ポンプ22、冷媒供給ライン23、及び、冷媒回収ライン24を備える。
 冷媒ポンプ22、冷媒供給ライン23、及び冷媒回収ライン24は、予冷用設備21に設けられている。予冷用設備21は、冷媒供給ライン23に冷媒を供給する設備である。予冷用設備21は、例えば、地上又は地中に固定されていてもよいし、可動であってもよい。また、予冷用設備21を構成する複数の機器は互いに離間して配置されていてもよい。冷媒ポンプ22は、水素航空機1のエンジンポンプ35と兼ねてもよい。
 予冷用設備21には、冷媒供給源211が設けられており、冷媒供給源211は、冷媒供給ライン23に冷媒Mを供給する。冷媒供給源211は、冷媒Mが収容された容器であってもよいし、外部から冷媒Mを導入する配管等であってもよい。冷媒Mは、例えば、液体、気体、又は超臨界状態の水素である。冷媒Mは、燃料タンク5に収容されている燃料Fと状態が異なっていてもよい。冷媒Mは燃料Fと異なる物質であってもよい。なお、燃料供給ライン3と燃料タンク5に収容されている燃料Fとの温度差をより小さくする観点から、冷媒Mと燃料Fは同じ物質であることが好ましい。
 予冷用設備21には、冷媒処理系統212が設けられており、冷媒回収ライン24から冷媒処理系統212へ冷媒Mが送られる。冷媒処理系統212は、燃料供給ライン3を流れた後、冷媒回収ライン24を通じて予冷用設備21へ戻ってきた冷媒Mを処理する。燃料供給ライン3を流れた後の冷媒Mは、温度が上昇し、膨張していることがある。冷媒処理系統212は、例えば、冷媒回収ライン24より戻ってきた冷媒Mを冷却して、冷媒供給源211へ還すように構成されている。冷媒処理系統212は、冷媒回収ライン24より戻ってきた冷媒Mを貯蔵又は廃棄するように構成されていてもよいし、戻ってきた冷媒Mを燃料供給ライン3の冷却とは別の用途のために処理するように構成されていてもよい。
 予冷用設備21の冷媒供給源211と冷媒供給口41は、冷媒供給ライン23よって接続される。冷媒供給ライン23は、冷媒供給口41に対し着脱可能である。冷媒回収口42と予冷用設備21の冷媒処理系統212とは、冷媒回収ライン24によって接続される。冷媒回収ライン24は、冷媒回収口42に対し着脱可能である。冷媒ポンプ22は、本実施形態においては冷媒供給ライン23又は冷媒回収ライン24に配置されたポンプである。冷媒ポンプ22は、燃料供給ライン3のエンジンポンプ35と兼ねてもよい。或いは、冷媒ポンプ22として、燃料供給ライン3のエンジンポンプ35と、冷媒供給ライン23又は冷媒回収ライン24に配置されたポンプとの両方が用いられてもよい。
 予冷システム2は、例えば、水素航空機1のエンジン6の始動前に、燃料タンク5とエンジン6とを接続する燃料供給ライン3を予冷することで、水素燃料と燃料供給ライン3との温度差を抑制できる。よって、燃料供給ライン3を通じてエンジン6へ安定して水素燃料を供給できる。また、燃料供給ライン3を通過した冷媒Mは燃料タンク5へそのまま戻されたり、エンジン6へ送られたりせずに冷媒回収ライン24によって回収されるので、温度が上昇した冷媒Mが燃料タンク5やエンジン6に流入することを防止できる。
 また、予冷システム2は、水素航空機1から着脱可能であるため、燃料供給ライン3を予冷する際に燃料供給ライン3に接続することができる。よって、水素航空機1から燃料供給ライン3の予冷のための機器が省略可能であり、水素航空機1を軽量化できる。
〔燃料供給ライン3の予冷方法〕
 第1実施形態の予冷システム2を用いた、水素航空機1の燃料供給ライン3の予冷方法を説明する。燃料供給ライン3の予冷は、例えば、エンジン6の始動前に行われる。燃料供給ライン3の予冷方法は、次の工程を含む。
(i)冷媒供給口41に冷媒供給ライン23が接続され、冷媒回収口42に冷媒回収ライン24が接続される。ここで、冷媒回収ライン24が接続された後に、冷媒供給ライン23が接続されることが好ましい。
(ii)冷媒ポンプ22が起動される。ここで、燃料タンク5の出口51及び熱交換器40の入口は閉止されており、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39は開放されている。
(iii)燃料供給ライン3が所定温度になった場合、又は、所定の予冷時間が経過した場合、冷媒ポンプ22が停止される。
(iv)冷媒供給口41と冷媒供給ライン23の接続が解除され、冷媒回収口42と冷媒回収ライン24の接続が解除される。ここで、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39は閉止されている。
 上記の工程(ii)において、冷媒ポンプ22の稼働によって、予冷用設備21の冷媒供給源211の冷媒Mが、冷媒供給ライン23、燃料供給ライン3、及び、冷媒回収ライン24を順に流れて、予冷用設備21の冷媒処理系統212へ戻される。冷媒Mが燃料供給ライン3を流れることによって、燃料供給ライン3が予冷される。
 燃料供給ライン3が予冷された後、エンジンポンプ35が起動される。ここで、熱交換器40の入口、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39は開放されている。これにより、燃料タンク5の燃料Fが燃料供給ライン3を通じてエンジン6へ供給される。このように、予冷システム2で燃料供給ライン3が予冷されることによって、水素航空機1のエンジン6の始動時において、燃料供給ライン3は燃料Fの温度の上昇を抑制できる。その結果、水素航空機1では、エンジン6の始動時より、燃料タンク5から燃料供給ライン3を通じエンジン6へ、エンジン6での使用に適した温度で、燃料Fを安定して供給できる。
 図1に示す水素航空機1では、燃料供給ライン3に冷媒供給口41が設けられており、冷媒Mは燃料タンク5を通らない。このように、燃料タンク5内が冷媒Mの流路から除外されることによって、燃料Fと冷媒Mが燃料タンク5内で混ざらない。これにより、燃料タンク5内の燃料Fを低温に保持しつつ、燃料供給ライン3を予冷できる。なお、燃料タンク5内は燃料Fの流れにおいて燃料供給ライン3のエンジンポンプ35の上流と見做すことができ、燃料タンク5が冷媒Mの流路の一部として利用されてもよい。
〔変形例1〕
 図2は、第1実施形態の変形例1に係る水素航空機1の燃料供給ライン3とその予冷システム2の系統図である。図2に示す変形例1では、燃料タンク5には、冷媒供給口41が設けられている。冷媒供給口41は、燃料タンク5の燃料入口と共用されてもよい。なお、変形例1及び変形例2の説明において、前述の第1実施形態と実質的に同一の部材には図面に同一の符号を付し、説明を省略する。
 図2に示す変形例1では、燃料供給ライン3の予冷時には、燃料タンク5の出口51は開放され、熱交換器40の入口は閉止され、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39は開放された状態で、冷媒ポンプ22が起動される。これにより、冷媒供給源211の冷媒Mは、冷媒供給ライン23、燃料タンク5内、燃料供給ライン3、及び冷媒回収ライン24を順に流れて、冷媒処理系統212へ回収される。
〔変形例2〕
 図3は、第1実施形態の変形例2に係る水素航空機1の燃料供給ライン3とその予冷システム2の系統図である。図3に示す変形例2では、冷媒回収口42が燃料供給ライン3の熱交換器40よりも下流に配置されている。
 図3に示す変形例2では、燃料供給ライン3に熱交換器40を回避して、熱交換器40の上流から下流へ冷媒Mを流すバイパスライン43が接続されている。バイパスライン43は、エンジン6の作動中、燃料Fが通過してもよい。そして、燃料供給ライン3において、バイパスライン43より下流に冷媒回収口42が配置されている。
 変形例2において、燃料供給ライン3の予冷時には、冷媒Mが熱交換器40を通らずにバイパスライン43を通るように燃料供給ライン3の流路が切り替えられ、且つ、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39が開放された状態で、冷媒ポンプ22が起動される。これにより、冷媒供給源211の冷媒Mは、冷媒供給ライン23、燃料タンク5、燃料供給ライン3、及び冷媒回収ライン24を順に流れて、冷媒処理系統212へ回収される。燃料供給ライン3を流れる冷媒Mは、バイパスライン43を流れて、熱交換器40には流れない。このように、燃料供給ライン3が熱交換器40などの予冷を要しない機器を有する場合に、予冷を要しない機器をバイパスするように流路を形成し、冷媒Mを流すことによって、燃料供給ライン3のうち、予冷が必要な部分を予冷することができる。
[第2実施形態]
 図4は、第2実施形態に係る水素航空機1の燃料供給ライン3とその予冷システム2Aの系統図である。なお、本実施形態の説明においては、前述の第1実施形態と実質的に同一の部材には図面に同一の符号を付し、説明を省略する。
 図4に示す水素航空機1の燃料タンク5には、燃料Fとして液体水素が収容されている。燃料タンク5内の上部には、液体水素の気化によって生じた気体水素(ボイルオフガスと称し得る)が滞留している。燃料タンク5には、燃料タンク5内から燃料Fの気化によって生じた気体水素を燃料供給ライン3に排出する冷媒供給ライン23が接続されている。燃料タンク5は、冷媒供給ライン23を通じて冷媒回収口42と接続されている。なお、燃料タンク5にボイルオフガスラインが接続され、ボイルオフガスラインと冷媒供給ライン23とが接続され、燃料タンク5は、ボイルオフガスライン及び冷媒供給ライン23を通じて冷媒回収口42と接続されてもよい。第2実施形態に係る予冷システム2Aでは、冷媒Mとして燃料タンク5で燃料Fの気化によって生じた気体水素を利用する。
 予冷システム2Aは、冷媒ポンプ22と、冷媒供給ライン23、及び、冷媒回収ライン24を備える。冷媒ポンプ22は、エンジンポンプ35と共用されてもよいし、予冷用設備21に配置されてもよい。冷媒ポンプ22は、省略されてもよい。冷媒供給ライン23は、水素航空機1に配置されてもよいし、予冷用設備21に配置されてもよい。冷媒回収ライン24は、予冷用設備21に配置される。冷媒回収口42は、燃料供給ライン3のエンジンポンプ35よりも下流に配置されている。
 燃料供給ライン3の予冷を開始するにあたり、冷媒供給ライン23と冷媒供給口41とが接続される。冷媒供給ライン23が水素航空機1に設けられている場合は、冷媒供給ライン23は予め冷媒供給口41と接続されており、冷媒供給ライン23と冷媒供給口41とが連通されるように弁などが操作されてもよい。そして、燃料供給ライン3の予冷時には、燃料タンク5の出口51及び熱交換器40の入口は閉止され、第1シャットオフバルブ31、第2シャットオフバルブ34、及び第3シャットオフバルブ39は開放される。冷媒ポンプ22により、燃料タンク5内で生じた気体水素が冷媒Mとして、冷媒供給ライン23、冷媒供給口41、燃料供給ライン3、冷媒回収口42、及び冷媒回収ライン24を順に流れて、冷媒処理系統212へ回収される。このように、燃料Fの気化によって生じた気体水素が冷媒Mとして燃料供給ライン3を流れるので、燃料タンク5内の燃料Fを低温に保持しつつ、燃料供給ライン3を予冷できる。
 なお、第2実施形態に係る水素航空機1の燃料供給ライン3の予冷システム2Aは、第1実施形態に係る水素航空機1の燃料供給ライン3の予冷システム2と同時に適用できる。即ち、燃料タンク5に貯蔵された燃料Fのボイルオフガスを冷媒Mとして燃料供給ライン3へ供給するとともに、冷媒供給源211に貯蔵された冷媒Mを燃料供給ライン3へ供給して、燃料供給ライン3を流れたのち、冷媒回収ライン24を通じて、冷媒Mを冷媒処理系統212へ回収してもよい。これにより、燃料供給ライン3、燃料タンク5に貯留された燃料F、予冷用設備21などの状況に応じて、予冷システム2及び2Aの一方又は両方を使用し、燃料供給ライン3を予冷できる。
〔総括〕
 本開示の第1の項目に係る水素航空機1の燃料供給ライン3の予冷システム2,2Aは、
水素を燃料Fとするエンジン6、燃料Fを貯蔵する燃料タンク5、及び、燃料タンク5からエンジン6へ燃料Fを供給する燃料供給ライン3を備え、燃料タンク5又は燃料供給ライン3が冷媒供給口41を有し、燃料供給ライン3が冷媒供給口41より燃料Fの流れの下流に配置された冷媒回収口42を有する水素航空機1の燃料供給ライン3の予冷システム2であって、
冷媒供給口41へ冷媒Mを供給する冷媒供給ライン23と、
冷媒回収口42から冷媒Mを回収する冷媒回収ライン24と、を備え、
冷媒供給ライン23から冷媒供給口41を通じて燃料供給ライン3に冷媒Mを供給するとともに、冷媒回収ライン24から冷媒回収口42を通じて燃料供給ライン3に供給した冷媒Mを回収することによって、燃料供給ライン3を予冷するものである。
 上記の予冷システム2によれば、例えば、水素航空機1のエンジン6の始動前に、当該エンジン6へ燃料Fを送る燃料供給ライン3が冷媒Mによって予冷されるので、燃料Fと燃料供給ライン3との温度差を抑制できる。よって、燃料供給ライン3を通じて、燃料Fである水素をエンジン6へ安定して供給できる。また、燃料供給ライン3を通過した冷媒Mは燃料タンク5へそのまま戻されたり、エンジン6へ送られたりせずに冷媒回収ライン24によって回収されるので、温度が上昇した冷媒Mが燃料タンク5やエンジン6に流入することを防止できる。
 本開示の第2の項目に係る水素航空機1の燃料供給ライン3の予冷システム2,2Aは、第1の項目に係る予冷システム2において、冷媒Mを供給する冷媒ポンプ22を更に備えるものである。
 冷媒ポンプ22が冷媒Mを供給することで、燃料供給ライン3を速やかに冷却できる。
 本開示の第3の項目に係る水素航空機1の燃料供給ライン3の予冷システム2,2Aは、第1又は2の項目に係る予冷システム2において、燃料供給ライン3から着脱可能である冷媒供給ライン23及び冷媒回収ライン24が配置されている予冷用設備21を備えるものである。
 水素航空機1から冷媒供給ライン23及び冷媒回収ライン24を省略して、水素航空機1を軽量化できる。
 本開示の第4の項目に係る水素航空機1の燃料供給ライン3の予冷システム2,2Aは、第1乃至3のいずれかの項目に係る予冷システム2において、冷媒供給ライン23に冷媒Mを供給する冷媒供給源211と、冷媒回収ライン24により回収した冷媒Mを冷却、貯蔵又は廃棄する冷媒処理系統212と、を有する予冷用設備21を更に備えるものである。
 水素航空機1から冷媒供給源211及び冷媒処理系統212を省略して、水素航空機1を軽量化できる。
 本開示の第5の項目に係る水素航空機1の燃料供給ライン3の予冷システム2,2Aは、第1乃至4のいずれかの項目に係る予冷システム2において、燃料タンク5に貯蔵された燃料Fが液体水素であって、冷媒Mが液体水素の気化により生じた気体水素であり、冷媒供給口41は、燃料供給ライン3に配置されており、燃料タンク5は、冷媒供給ライン23と接続し、冷媒供給口41を通じて、気体水素を燃料供給ライン3に供給するものである。
 燃料タンク5内の燃料Fの気化によって生じた気体水素が冷媒Mとして燃料供給ライン3を流れるので、燃料タンク5で生じた燃料Fの気体水素を有効に利用できる。また、冷媒Mは燃料タンク5を通らないので、燃料タンク5内の燃料Fを低温に保持しつつ、燃料供給ライン3を予冷できる。
 本開示の第6の項目に係る水素航空機1の燃料供給ライン3の予冷システム2は、第1乃至4のいずれかの項目に係る予冷システム2において、冷媒Mは、液体、気体、又は超臨界状態の水素であるものである。
 冷媒Mとして燃料Fと同じ物質が用いられることによって、燃料供給ライン3と燃料タンク5に収容されている燃料Fとの温度差をより小さくできる。また、燃料供給ライン3の汚染を低減できる。
 本開示の第7の項目に係る水素航空機1の燃料供給ライン3の予冷方法は、
水素を燃料Fとするエンジン6、燃料Fを貯蔵する燃料タンク5、及び、燃料タンク5からエンジン6へ燃料Fを供給する燃料供給ライン3を備える水素航空機1の燃料供給ライン3の予冷方法であって、
冷媒供給ライン23と燃料タンク5又は燃料供給ライン3に配置された冷媒供給口41とを接続すること、
冷媒回収ライン24と燃料供給ライン3に配置され、冷媒供給口41より燃料Fの流れの下流に配置された冷媒回収口42とを接続すること、及び、
冷媒供給ライン23から冷媒供給口41を通じて燃料供給ライン3に冷媒Mを供給するとともに、冷媒回収口42を通じて冷媒回収ライン24より冷媒Mを回収することによって、燃料供給ライン3を予冷すること、を含むものである。
 上記の予冷方法によれば、例えば、水素航空機1のエンジン6の始動前に、当該エンジン6へ燃料Fを送る燃料供給ライン3が冷媒Mによって予冷されるので、燃料Fと燃料供給ライン3との温度差を抑制できる。よって、燃料供給ライン3を通じて、燃料Fである水素をエンジン6へ安定して供給できる。また、燃料供給ライン3を通過した冷媒Mは燃料タンク5へそのまま戻されたり、エンジン6へ送られたりせずに冷媒回収ライン24によって回収されるので、温度が上昇した冷媒Mが燃料タンク5やエンジン6に流入することを防止できる。
 本開示の第8の項目に係る水素航空機1の燃料供給ライン3の予冷方法は、第7の項目に係る予冷方法において、冷媒回収ライン24を接続した後に、冷媒供給ライン23を接続するものである。
 冷媒回収ライン24を接続し、冷媒を回収する経路を確保した後に、冷媒供給ライン23を接続することで、燃料供給ライン3を安全に予冷できる。
 本開示の第9の項目に係る水素航空機1の燃料供給ライン3の予冷方法は、第7又は8の項目に係る予冷方法において、燃料タンク5に貯蔵された燃料Fが液体水素であり、冷媒Mが液体水素の気化により生じた気体水素であり、冷媒供給口41は、燃料供給ライン3に配置されており、燃料タンク5は、冷媒供給ライン23と接続され、冷媒供給口41を通じて気体水素を燃料供給ライン3に供給するものである。
 燃料タンク5内の燃料Fの気化によって生じた気体水素が冷媒Mとして燃料供給ライン3を流れるので、燃料タンク5で生じた燃料Fの気体水素を有効に利用できる。冷媒Mは燃料タンク5を通らないので、燃料タンク5内の燃料Fを低温に保持しつつ、燃料供給ライン3を予冷できる。
 本開示の第10の項目に係る水素航空機1の燃料供給ライン3の予冷方法は、第7又は8の項目に係る予冷方法において、冷媒Mは、液体、気体、又は超臨界状態の水素であるものである。
 冷媒Mとして燃料Fと同じ物質が用いられることによって、燃料供給ライン3と燃料タンク5に収容されている燃料Fとの温度差をより小さくできる。また、燃料供給ライン3の汚染を低減できる。
 本開示の第11の項目に係る水素航空機1は、
水素を燃料Fとするエンジン6と、
燃料Fを貯蔵する燃料タンク5と、
燃料タンク5からエンジン6へ燃料Fを供給する燃料供給ライン3と、を備え、
燃料タンク5又は燃料供給ライン3は、冷媒Mが供給される冷媒供給口41を有し、
燃料供給ライン3は、冷媒供給口41より燃料Fの流れの下流に配置されて冷媒Mを回収する冷媒回収口42を有し、
冷媒供給口41から供給され、燃料供給ライン3を流れて冷媒回収口42から回収される冷媒Mによって燃料供給ライン3が予冷されるものである。
 上記の水素航空機1によれば、例えば、水素航空機1のエンジン6の始動前に、当該エンジン6へ燃料Fを送る燃料供給ライン3が冷媒Mによって予冷されるので、燃料Fと燃料供給ライン3との温度差を抑制できる。よって、燃料供給ライン3を通じて、燃料Fである水素をエンジン6へ安定して供給できる。また、燃料供給ライン3を通過した冷媒Mは燃料タンク5へそのまま戻されたり、エンジン6へ送られたりせずに冷媒回収ライン24によって回収されるので、温度が上昇した冷媒Mが燃料タンク5やエンジン6に流入することを防止できる。
 本開示の第12の項目に係る水素航空機1は、第11の項目に係る水素航空機1において燃料供給ライン3は燃料Fを昇圧するエンジンポンプ35を有し、冷媒供給口41はエンジンポンプ35よりも上流に配置され、冷媒回収口42はエンジンポンプ35よりも下流に配置されているものである。
 上記水素航空機1では、燃料供給ライン3が予冷されるので、例えば、エンジン6の始動時に、燃料供給ライン3へ流入した燃料Fの温度が抑制され、エンジンポンプ35によって燃料Fは所定の圧力まで安定して昇圧される。よって、例えば、水素航空機1のエンジン6の始動時において、燃料供給ライン3を通じて、燃料Fである水素をエンジン6へ安定して供給できる。
 本開示の第13の項目に係る水素航空機1は、第11又は12の項目に係る水素航空機1において、燃料供給ライン3は燃料Fを気化する熱交換器40を有し、冷媒回収口42が燃料供給ライン3のうち熱交換器40よりも上流に配置されているものである。
 燃料供給ライン3のうち予冷を要しない要素については、冷媒Mを流さないようにして冷却を回避しつつ、燃料供給ライン3を予冷できる。
 本開示の第14の項目に係る予冷用設備21は、
水素を燃料Fとするエンジン6、燃料Fを貯蔵する燃料タンク5、及び、燃料タンク5からエンジン6へ燃料Fを供給する燃料供給ライン3を備え、燃料タンク5又は燃料供給ライン3が冷媒供給口41を有し、燃料供給ライン3が冷媒供給口41より下流に配置された冷媒回収口42を有する水素航空機1の燃料供給ライン3を予冷する予冷用設備21であって、
冷媒供給口41と接続される冷媒供給ライン23と、
冷媒回収口42と接続される冷媒回収ライン24と、を備え、
冷媒供給ライン23から冷媒供給口41を通じて燃料供給ライン3に冷媒Mを供給するとともに、冷媒回収口42を通じて冷媒回収ライン24より冷媒Mを回収することによって、燃料供給ライン3を予冷するものである。
 本開示の第15の項目に係る予冷用設備21は、第14の項目に係る予冷用設備21において、冷媒供給ライン23に冷媒Mを供給する冷媒供給源211と、冷媒回収ライン24により回収した冷媒Mを冷却、貯蔵又は廃棄する冷媒処理系統212と、を更に備えるものである。
 上記第14及び上記第15の項目に係る予冷用設備21によれば、例えば、水素航空機1のエンジン6の始動前に、当該エンジン6へ燃料Fを送る燃料供給ライン3が冷媒Mによって予冷されるので、燃料Fと燃料供給ライン3との温度差を抑制できる。よって、燃料供給ライン3を通じて、燃料Fである水素をエンジン6へ安定して供給できる。また、燃料供給ライン3を通過した冷媒Mは燃料タンク5へそのまま戻されたり、エンジン6へ送られたりせずに冷媒回収ライン24によって回収されるので、温度が上昇した冷媒Mが燃料タンク5やエンジン6に流入することを防止できる。更に、予冷用設備21が水素航空機1から独立して構成されることによって、水素航空機1から燃料供給ライン3の予冷に必要な機器を省略し、水素航空機1を軽量化できる。
 本開示は、例示及び説明の目的で提示されたものであり、本開示を本明細書に開示される形態に限定することを意図するものではない。例えば、前述の詳細な説明では、本開示の様々な特徴は、本開示を合理化する目的で2つの実施形態に纏められているが、複数の特徴のうち幾つかが組み合わされてもよい。また、本開示に含まれる複数の特徴は、上記で論じたもの以外の代替の実施形態、構成、又は態様に組み合わされてもよい。

Claims (15)

  1.  水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備え、前記燃料タンク又は前記燃料供給ラインが冷媒供給口を有し、前記燃料供給ラインが前記冷媒供給口より前記燃料の流れの下流に配置された冷媒回収口を有する水素航空機の前記燃料供給ラインの予冷システムであって、
     前記冷媒供給口へ冷媒を供給する冷媒供給ラインと、
     前記冷媒回収口から前記冷媒を回収する冷媒回収ラインと、を備え、
     前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに前記冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷する、
    水素航空機の燃料供給ラインの予冷システム。
  2.  前記冷媒を供給する冷媒ポンプを更に備える、
    請求項1に記載の水素航空機の燃料供給ラインの予冷システム。
  3.  前記燃料供給ラインから着脱可能である前記冷媒供給ライン及び前記冷媒回収ラインが配置されている予冷用設備を備える、
    請求項1又は2に記載の水素航空機の燃料供給ラインの予冷システム。
  4.  前記冷媒供給ラインに前記冷媒を供給する冷媒供給源と、
     前記冷媒回収ラインにより回収した前記冷媒を冷却、貯蔵又は廃棄する冷媒処理系統と、を有する予冷用設備を更に備える、
    請求項1又は2に記載の水素航空機の燃料供給ラインの予冷システム。
  5.  前記燃料タンクに貯蔵された前記燃料が液体水素であって、前記冷媒が前記液体水素の気化により生じた気体水素であり、
     前記冷媒供給口は、前記燃料供給ラインに配置されており、
     前記燃料タンクは、前記冷媒供給ラインと接続し、前記冷媒供給口を通じて、前記気体水素を前記燃料供給ラインに供給する、
    請求項1又は2に記載の水素航空機の燃料供給ラインの予冷システム。
  6.  前記冷媒は、液体、気体、又は超臨界状態の水素である、
    請求項1又は2に記載の水素航空機の燃料供給ラインの予冷システム。
  7.  水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備える水素航空機の燃料供給ラインの予冷方法であって、
     冷媒供給ラインと前記燃料タンク又は前記燃料供給ラインに配置された冷媒供給口とを接続すること、
     冷媒回収ラインと前記燃料供給ラインに配置され、前記冷媒供給口より前記燃料の流れの下流に配置された冷媒回収口とを接続すること、及び、
     前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷すること、を含む、
    水素航空機の燃料供給ラインの予冷方法。
  8.  前記冷媒回収ラインを接続した後に、前記冷媒供給ラインを接続する、
    請求項7に記載の水素航空機の燃料供給ラインの予冷方法。
  9.  前記燃料タンクに貯蔵された前記燃料が液体水素であり、前記冷媒が前記液体水素の気化により生じた気体水素であり、
     前記冷媒供給口は、前記燃料供給ラインに配置されており、
     前記燃料タンクは、前記冷媒供給ラインと接続され、前記冷媒供給口を通じて前記気体水素を前記燃料供給ラインに供給する、
    請求項7又は8に記載の水素航空機の燃料供給ラインの予冷方法。
  10.  前記冷媒は、液体、気体、又は超臨界状態の水素である、
    請求項7又は8に記載の水素航空機の燃料供給ラインの予冷方法。
  11.  水素を燃料とするエンジンと、
     前記燃料を貯蔵する燃料タンクと、
     前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインと、を備え、
     前記燃料タンク又は前記燃料供給ラインは、冷媒が供給される冷媒供給口を有し、
     前記燃料供給ラインは、前記冷媒供給口より前記燃料の流れの下流に配置されて前記冷媒を回収する冷媒回収口を有し、
     前記冷媒供給口から供給され、前記燃料供給ラインを流れて前記冷媒回収口から回収される前記冷媒によって前記燃料供給ラインが予冷される、
    水素航空機。
  12.  前記燃料供給ラインは前記燃料を昇圧するエンジンポンプを有し、
     前記冷媒供給口は前記エンジンポンプよりも上流に配置され、前記冷媒回収口は前記エンジンポンプよりも下流に配置されている、
    請求項11に記載の水素航空機。
  13.  前記燃料供給ラインは前記燃料を気化する熱交換器を有し、
     前記冷媒回収口が前記燃料供給ラインのうち前記熱交換器よりも上流に配置されている、
    請求項11又は12に記載の水素航空機。
  14.  水素を燃料とするエンジン、前記燃料を貯蔵する燃料タンク、及び、前記燃料タンクから前記エンジンへ前記燃料を供給する燃料供給ラインを備え、前記燃料タンク又は前記燃料供給ラインが冷媒供給口を有し、前記燃料供給ラインが前記冷媒供給口より下流に配置された冷媒回収口を有する水素航空機の前記燃料供給ラインを予冷する予冷用設備であって、
     前記冷媒供給口と接続される冷媒供給ラインと、
     前記冷媒回収口と接続される冷媒回収ラインと、を備え、
     前記冷媒供給ラインから前記冷媒供給口を通じて前記燃料供給ラインに冷媒を供給するとともに、前記冷媒回収ラインから前記冷媒回収口を通じて前記燃料供給ラインに供給した前記冷媒を回収することによって、前記燃料供給ラインを予冷する、
    予冷用設備。
  15.  前記冷媒供給ラインに前記冷媒を供給する冷媒供給源と、
     前記冷媒回収ラインにより回収した前記冷媒を冷却、貯蔵又は廃棄する冷媒処理系統と、を更に備える、
    請求項14に記載の予冷用設備。
PCT/JP2022/040123 2021-10-27 2022-10-27 水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法 WO2023074787A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023556627A JPWO2023074787A1 (ja) 2021-10-27 2022-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175929 2021-10-27
JP2021175929 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074787A1 true WO2023074787A1 (ja) 2023-05-04

Family

ID=86159941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040123 WO2023074787A1 (ja) 2021-10-27 2022-10-27 水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法

Country Status (2)

Country Link
JP (1) JPWO2023074787A1 (ja)
WO (1) WO2023074787A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150336680A1 (en) 2014-05-23 2015-11-26 Airbus Operations Gmbh Tank System For The Cryogenic Storage Of Hydrogen, And Aircraft With A Tank System For The Cryogenic Storage Of Hydrogen
DE102017223803A1 (de) * 2017-12-27 2019-06-27 Siemens Aktiengesellschaft Elektrisches Antriebssystem, Fahrzeug und Verfahren zum Antrieb eines Fahrzeugs
WO2020079419A1 (en) * 2018-10-15 2020-04-23 Gkn Aerospace Services Limited Aircraft prime mover system, method of operation and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150336680A1 (en) 2014-05-23 2015-11-26 Airbus Operations Gmbh Tank System For The Cryogenic Storage Of Hydrogen, And Aircraft With A Tank System For The Cryogenic Storage Of Hydrogen
DE102017223803A1 (de) * 2017-12-27 2019-06-27 Siemens Aktiengesellschaft Elektrisches Antriebssystem, Fahrzeug und Verfahren zum Antrieb eines Fahrzeugs
WO2020079419A1 (en) * 2018-10-15 2020-04-23 Gkn Aerospace Services Limited Aircraft prime mover system, method of operation and use

Also Published As

Publication number Publication date
JPWO2023074787A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
JP6475871B2 (ja) 船舶の燃料ガス供給システム
KR101688705B1 (ko) 저장조의 압력 상승 억제 장치, 이것을 구비한 압력 상승 억제 시스템, 이 억제 방법, 이것을 구비한 액화 가스 운반선 및 이것을 구비한 액화 가스 저장 설비
KR101751340B1 (ko) 연료가스 공급시스템
KR101711997B1 (ko) 연료공급시스템
KR101784842B1 (ko) 연료가스 공급시스템
JP3586501B2 (ja) 低温液体及びそのボイルオフガスの処理方法及び装置
WO2013175906A1 (ja) 液体水素貯槽から発生するボイルオフガスの再液化方法
JP6843099B2 (ja) 船舶の蒸発ガス処理装置および処理方法
KR101751331B1 (ko) 연료가스 공급시스템
KR20170033649A (ko) 액화가스 재기화 시스템
CN109579429B (zh) 多产品液化方法和系统
KR20170049663A (ko) 액화가스 재기화 시스템
WO2023074787A1 (ja) 水素航空機、予冷用設備、並びに、水素航空機の燃料供給ラインの予冷システム及び予冷方法
KR102619112B1 (ko) 액화천연가스 운반선의 연료공급장치
US20220307731A1 (en) System, method and apparatus for the regeneration of nitrogen energy within a closed loop cryogenic system
KR20210119984A (ko) 수송 탱크를 충전하기 위한 방법 및 충전 장치
GB2564879A (en) Liquiefying a gaseous medium
JP2019035502A5 (ja)
KR101751339B1 (ko) 연료가스 공급시스템
US11014039B2 (en) Nitrogen service supply system
KR101995003B1 (ko) 액화가스 연료 선박의 연료 공급 시스템
KR101945525B1 (ko) 액화가스 연료 선박의 연료 공급시스템
KR20160096564A (ko) 증발가스 처리장치
KR101751337B1 (ko) 연료가스 공급시스템
KR101751332B1 (ko) 연료가스 공급시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556627

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022887112

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022887112

Country of ref document: EP

Effective date: 20240527