WO2023074782A1 - Aircraft fuel supply system - Google Patents

Aircraft fuel supply system Download PDF

Info

Publication number
WO2023074782A1
WO2023074782A1 PCT/JP2022/040097 JP2022040097W WO2023074782A1 WO 2023074782 A1 WO2023074782 A1 WO 2023074782A1 JP 2022040097 W JP2022040097 W JP 2022040097W WO 2023074782 A1 WO2023074782 A1 WO 2023074782A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
engine
pump
amount
fuel supply
Prior art date
Application number
PCT/JP2022/040097
Other languages
French (fr)
Japanese (ja)
Inventor
正人 ▲高▼井
遼祐 大島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023074782A1 publication Critical patent/WO2023074782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/30Fuel systems for specific fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/30Control of fuel supply characterised by variable fuel pump output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels

Definitions

  • the present disclosure relates to an aircraft fuel supply system.
  • Patent Document 1 in a fuel supply system for a jet engine used in an aircraft or the like, a flow rate control unit feeds jet fuel discharged from a pump into a device at a set flow rate, while sending surplus jet fuel back to the inlet side of the pump. What was done is disclosed.
  • Patent Document 1 The boiling point of hydrogen is extremely low compared to conventionally known jet fuel. For this reason, there is a possibility that the fuel system of Patent Document 1 cannot be used as it is for the fuel supply system of an aircraft equipped with an engine that uses hydrogen as fuel.
  • one aspect of the present disclosure aims to suppress excess hydrogen fuel on the downstream side of a pump in a fuel supply system for an aircraft equipped with an engine that uses hydrogen as fuel.
  • An aircraft fuel supply system for supplying hydrogen fuel to an aircraft equipped with a hydrogen-fueled engine, the fuel supply system comprising: a fuel tank that stores hydrogen fuel; A pump for taking out hydrogen fuel from the fuel tank, the pump taking out an amount of hydrogen fuel corresponding to the number of revolutions of a rotation mechanism of the pump, and a propulsion force for the aircraft by burning the hydrogen fuel taken out from the pump. a transmission that drives the rotation mechanism of the pump so that the rotation speed of the rotation mechanism of the pump can be changed; and a control device that controls the transmission based on the required fuel amount of the engine. , provided.
  • FIG. 1 is a block diagram showing the configuration of an aircraft fuel supply system according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of the fuel supply system shown in FIG. 1 in more detail.
  • FIG. 3 is a diagram showing the configuration of a fuel supply system according to Modification 1.
  • FIG. 4 is a diagram showing the configuration of a fuel supply system according to Modification 2.
  • FIG. 5 is a diagram showing the configuration of a fuel supply system according to Modification 3.
  • FIG. FIG. 6 is a block diagram showing the configuration of an aircraft fuel supply system according to the second embodiment.
  • FIG. 7 is a diagram showing in more detail the configuration of the fuel supply system shown in FIG.
  • FIG. 8 is a block diagram for explaining the configuration of an aircraft fuel supply system compared with the embodiment.
  • liquid hydrogen stored in a fuel tank passes through a fuel supply line of the aircraft, and finally becomes gaseous hydrogen of a predetermined pressure, or , is supplied to the engine's combustor as liquid hydrogen. Further, the liquid hydrogen stored in the fuel tank is converted into gaseous hydrogen by the vaporizer, passes through the fuel supply line of the aircraft, becomes gaseous hydrogen of a predetermined pressure, and is supplied to the engine combustor.
  • FIG. 1 In fuel supply system 100 , jet fuel is stored in fuel tank 101 and jet fuel is supplied to gas turbine engine 103 by pump 102 . When excess jet fuel to the gas turbine engine 103 occurs, excess jet fuel is supplied from a portion 105 of the fuel supply line downstream of the pump 102 to a portion 104 of the fuel supply line upstream of the pump 102 through the bypass line 106. return.
  • the present disclosure discloses a system that does not employ the bypass line 106, or even if the bypass line 106 is employed, suppresses the amount of fuel returned to the upstream portion 104 of the fuel supply line from the pump 102 through the bypass line 106.
  • the present disclosure person found the above problem, and in order to solve the above problem, the present disclosure person controlled the rotation speed of the pump according to the required fuel amount of the engine, so that an appropriate amount of hydrogen fuel was supplied.
  • FIG. 1 is a block diagram showing the configuration of an aircraft fuel supply system 1A according to the first embodiment.
  • the fuel supply system 1A includes a fuel tank 2 that stores hydrogen fuel, a pump 3, and a gas turbine engine 4 that uses hydrogen as fuel.
  • the gas turbine engine 4 may also be referred to simply as the engine 4 hereinafter.
  • Pump 3 supplies hydrogen fuel in fuel tank 2 to engine 4 .
  • the engine 4 burns the hydrogen fuel supplied from the pump 3 to obtain propulsion for the aircraft.
  • the fuel supply system 1A includes a transmission 5 for changing the rotation speed of the pump 3.
  • the transmission 5 can change the rotation speed of the rotation mechanism of the pump 3 .
  • the transmission 5 drives the rotating mechanism of the pump 3 .
  • the transmission 5 is a continuously variable transmission (CVT). Further, the transmission 5 changes the speed of the power of the engine 4 and transmits it to the rotating mechanism. Further, the transmission 5 is controlled by a control device 6 (see FIG. 2), which will be described later.
  • FIG. 2 is a diagram showing in more detail the configuration of the fuel supply system 1A shown in FIG.
  • the gas turbine engine 4 includes a rotating shaft 11, a fan 12, a compressor 13, a combustor 14, a turbine 15, and a casing 16.
  • the rotating shaft 11 extends in the longitudinal direction of the gas turbine engine 4 .
  • the fan 12 is connected to the front portion of the rotating shaft 11 and rotates together with the rotating shaft 11 .
  • Compressor 13 , combustor 14 and turbine 15 are arranged in this order from front to back along rotating shaft 11 .
  • the casing 16 is a tubular body having an axis aligned with the rotation axis of the rotating shaft 11 and accommodates the rotating shaft 11 , the fan 12 , the compressor 13 , the combustor 14 and the turbine 15 .
  • the gas turbine engine 4 is, for example, a twin-shaft gas turbine engine.
  • the compressor 13 has a low-pressure compressor 13a and a high-pressure compressor 13b arranged behind the low-pressure compressor 13a.
  • the turbine 15 has a low pressure turbine 15a and a high pressure turbine 15b arranged in front of the low pressure turbine 15a.
  • the rotary shaft 11 has a low pressure shaft 11a connecting the low pressure compressor 13a to the low pressure turbine 15a and a high pressure shaft 11b connecting the high pressure compressor 13b to the high pressure turbine 15b.
  • the high-pressure shaft 11b is a tubular shaft having a hollow space inside.
  • the low pressure shaft 11a is inserted through the hollow space of the high pressure shaft 11b.
  • the low-pressure turbine 15a is connected to the fan 12 arranged in front of the compressor 13 via the low-pressure shaft 11a.
  • the radially outer side of the fan 12 is covered with a tubular fan case 17 .
  • a cylindrical bypass is formed between the casing 16 and the fan case 17 . The air sucked by the fan 12 flows through the bypass passage and is jetted rearward to generate a driving force.
  • the fuel tank 2 and the pump 3 are connected by a first fuel supply passage 21.
  • the pump 3 and the combustor 14 of the engine 4 are connected by a second fuel supply passage 22 .
  • the first fuel supply path 21 and the second fuel supply path 22 are paths configured by piping, equipment for circulating hydrogen, and the like.
  • the fuel tank 2 stores liquefied hydrogen as fuel.
  • the pump 3 takes out hydrogen fuel from the fuel tank 2.
  • the pump 3 has a rotating mechanism, and supplies an amount of hydrogen fuel corresponding to the rotation speed of the rotating mechanism of the pump 3 .
  • the state of hydrogen can be liquid, gas, or supercritical.
  • the hydrogen pressurized by the pump 3 may be liquefied hydrogen or hydrogen gas obtained by vaporizing liquefied hydrogen.
  • the pipes, devices, and the like that constitute the pump 3 as well as the first fuel supply path 21 and the second fuel supply path 22 can adopt structures that correspond to the state of hydrogen flowing through them.
  • the transmission 5 is a continuously variable transmission.
  • transmission 5 transmits power from gas turbine engine 4 to pump 3 . That is, the power of the gas turbine engine 4 is transmitted to the rotating mechanism of the pump 3 via the transmission 5 .
  • a power extracting shaft 31 is mechanically connected to the rotating shaft 11 of the engine 4 via a gear 32 .
  • a radially extending power extraction shaft 31 is mechanically connected to the low-pressure shaft 11 a of the gas turbine engine 4 via a bevel gear 32 . That is, the power extraction shaft 31 rotates in conjunction with the low pressure shaft 11a.
  • the power extraction shaft 31 may be mechanically connected to the high pressure shaft 11b and rotated in conjunction with the high pressure shaft 11b.
  • the power extraction shaft 31 is mechanically connected to an input shaft of a continuously variable transmission, which is the transmission 5 .
  • the output shaft 33 of the continuously variable transmission which is the transmission 5 is mechanically connected to the rotation mechanism of the pump 3 . That is, the continuously variable transmission, which is the transmission device 5, changes the speed of the power from the low-pressure shaft 11a of the gas turbine engine 4 to an appropriate rotation speed, and then transmits the changed power to the pump 3 to operate the pump 3. rotationally driven.
  • the transmission 5 is controlled by the control device 6.
  • the control device 6 suppresses excess hydrogen fuel in the second fuel supply passage 22 downstream of the pump 3 based on the amount of fuel to be supplied to the engine 4, that is, the amount of fuel requested by the engine 4.
  • the transmission 5 is controlled.
  • an appropriate amount of hydrogen fuel can be supplied to the engine 4 by controlling the rotational speed of the pump 3 according to the amount of fuel requested by the engine 4 .
  • the required fuel amount of the engine 4, which is the amount of fuel to be supplied to the engine 4, is the amount of fuel required for the operation of the engine 4.
  • the requested fuel amount of the engine 4 is a fuel amount corresponding to the requested output of the engine 4 .
  • the required amount of fuel for the engine 4 may be a specific amount or an amount within a certain range.
  • the control device 6 includes an arithmetic circuit, a memory circuit, an input/output interface, and the like.
  • an arithmetic circuit includes a processor such as a central processing unit (CPU).
  • the memory circuit includes memories such as RAM and ROM.
  • the memory stores a program for controlling the operation of the transmission 5, and the processor reads out and executes the program stored in the memory to perform various processes.
  • the control device 6 is, for example, a computer.
  • control device 6 controls not only the transmission 5 but also the engine 4 . That is, the control device 6 is an integration of a transmission control device that controls the transmission 5 and an engine control device that controls the engine 4 .
  • the controller 6 calculates the required fuel amount of the engine 4 from the engine operating conditions, and controls the transmission 5 based on the calculation result.
  • the required amount of fuel for the engine 4 can be calculated in advance, and an appropriate amount of hydrogen fuel can be supplied to the engine 4 .
  • the engine operating conditions are conditions determined by, for example, the required rotation speed of the engine 4 and the required load of the engine 4 .
  • the engine operating condition may be a condition determined by either the required rotation speed of the engine 4 or the required load of the engine 4 .
  • the parameters that define the engine operating conditions may include one or both of the required rotational speed of the engine 4 and the required load of the engine 4, as well as other parameters.
  • Other parameters include the actual rotation speed of the engine 4, the inlet temperature of the compressor 13, the outlet temperature of the compressor 13, the inlet pressure of the compressor 13, the outlet pressure of the compressor 13, the turbine inlet temperature, and the like. . These parameters are detected, for example, by various sensors mounted on the aircraft.
  • the control device 6 calculates the required fuel amount of the engine 4 to be supplied by the pump 3 from the parameters indicating the engine operating conditions.
  • the control device 6 determines the rotation speed of the rotation mechanism of the pump 3 so that the amount of fuel supplied, which is the discharge amount of the pump 3, becomes an appropriate amount according to the calculated required fuel amount of the engine 4 .
  • the control device 6 controls the gear ratio of the transmission 5 so that the rotation mechanism of the pump 3 rotates at the determined number of rotations.
  • the amount of fuel supplied, which is the discharge amount of the pump 3 may be a specific amount or may be an amount within a certain range.
  • the control device 6 compares, for example, the calculated requested fuel amount of the engine 4 with the current discharge amount of the pump 3 .
  • the control device 6 determines that the current discharge amount of the pump 3 is smaller than the calculated required fuel amount of the engine 4, the control device 6 controls the transmission device 5 so that the discharge amount of the pump 3 increases. Further, when the control device 6 determines that the current discharge amount of the pump 3 is larger than the calculated requested fuel amount of the engine 4, the control device 6 controls the transmission device 5 so that the discharge amount of the pump 3 becomes smaller.
  • the controller 6 calculates the current discharge amount of the pump 3 from the current rotation speed of the pump 3 .
  • the control device 6 controls the transmission device 5 in accordance with the required fuel amount of the engine 4 so that the rotation speed of the pump 3 corresponds to the required fuel amount of the engine 4. . Therefore, an appropriate amount of hydrogen fuel can be supplied from the pump 3 to the engine 4 . Therefore, it is possible to prevent the amount of hydrogen fuel from becoming excessive on the downstream side of the pump 3 .
  • the transmission 5 is a continuously variable transmission
  • the gear ratio of the continuously variable transmission can be changed continuously rather than stepwise. That is, the rotation speed of the pump 3 corresponding to the output rotation speed of the continuously variable transmission can be controlled continuously rather than stepwise. Therefore, it is possible to effectively prevent the amount of hydrogen fuel from becoming excessive on the downstream side of the pump 3 .
  • the transmission 5 changes the speed of the power of the engine 4 and transmits it to the rotating mechanism. Since power is extracted from the rotating shaft 11 of the engine 4 and complicated motion control is not required, devices for motion control can be omitted, and the weight of the aircraft can be reduced.
  • the transmission 5 is a continuously variable transmission, the weight of the transmission itself can be reduced compared to using other types of transmissions.
  • FIG. 3 is a diagram showing the configuration of a fuel supply system 1B according to Modification 1. As shown in FIG. In addition, in descriptions of Modification 1, Modifications 2 and 3, and a second embodiment described later, the same reference numerals are given to components that are substantially the same as in the above-described first embodiment, and the description is duplicated. are omitted or simplified.
  • a flow rate sensor 23 is arranged in the second fuel supply path 22 .
  • the flow rate sensor 23 detects the amount of hydrogen fuel flowing through the second fuel supply path 22 .
  • the flow rate sensor 23 detects the amount of fuel supplied to the combustor 14 of the engine 4 through the second fuel supply path 22 per unit time.
  • the flow sensor 23 is electrically connected to the controller 6 . Information on the amount of fuel detected by the flow rate sensor 23 is sent to the control device 6 .
  • the current discharge amount of the pump 3 can be detected by the flow rate sensor 23 . That is, in the first embodiment, the current discharge amount of the pump 3 is calculated from the current rotation speed of the pump 3, etc., but in the first modification, the current discharge amount of the pump 3 is calculated by the flow rate sensor 23. To detect.
  • the control device 6 controls the transmission 5 based on the requested fuel amount of the engine 4 and the fuel amount detected by the flow sensor 23 .
  • the control device 6 calculates the required fuel amount of the engine 4.
  • the control device 6 also receives information on the amount of fuel from the flow sensor 23 .
  • the controller 6 may perform feedback control to control the transmission 5 so that the amount of fuel detected by the flow sensor 23 matches the calculated amount of fuel requested by the engine 4 .
  • the amount of fuel supplied to the engine 4 can be controlled to fall within an appropriate range.
  • control device 6 may perform the same control as in the first embodiment. That is, the controller 6 compares the calculated required fuel amount of the engine 4 with the fuel amount detected by the flow sensor 23 . When the controller 6 determines that the amount of fuel detected by the flow rate sensor 23 is smaller than the calculated amount of fuel requested by the engine 4, the controller 6 controls the transmission 5 so that the discharge amount of the pump 3 increases. Further, when the controller 6 determines that the fuel amount detected by the flow sensor 23 is larger than the calculated required fuel amount of the engine 4, the controller 6 controls the transmission 5 so that the discharge amount of the pump 3 is reduced. do.
  • the control device 5 can acquire the current discharge amount of the pump 3 with high accuracy. Therefore, an appropriate amount of hydrogen fuel corresponding to the amount of fuel requested by the engine 4 can be supplied from the pump 3 to the engine 4. As a result, the amount of hydrogen fuel on the downstream side of the pump 3 becomes surplus. can be suppressed.
  • FIG. 4 is a diagram showing the configuration of a fuel supply system 1C according to Modification 2. As shown in FIG. Modification 2 differs from Modification 1 in that a pressure sensor 24 is arranged in the second fuel supply path 22 in addition to the flow rate sensor 23 .
  • the pressure sensor 24 detects the pressure of hydrogen fuel in the second fuel supply passage 22 .
  • Pressure sensor 24 is electrically connected to controller 6 . Pressure information detected by the pressure sensor 24 is sent to the control device 6 .
  • the required fuel pressure of the engine 4 which is the fuel pressure that the pump 3 should supply to the engine 4, is the fuel pressure required for stable operation of the engine 4.
  • the required fuel pressure of the engine 4 may be a specific pressure or may be a pressure within a certain range.
  • the control device 6 controls the transmission 5 based on the required fuel amount and required fuel pressure of the engine 4, the fuel amount detected by the flow rate sensor 23, and the pressure detected by the pressure sensor 24.
  • the control device 6 controls the transmission device 5 so that the pressure detected by the pressure sensor 24, that is, the pressure of the hydrogen fuel supplied to the engine 4, is maintained at the required fuel pressure.
  • control device 6 monitors whether the pressure detected by the pressure sensor 24 is the required fuel pressure. When it is determined that the pressure detected by the pressure sensor 24 is not the required fuel pressure, the control device 6 performs feedback control to control the transmission 5 so that the pressure detected by the pressure sensor 24 matches the required fuel pressure. can be executed.
  • the control device 6 determines whether or not the fuel amount detected by the flow rate sensor 23 matches the calculated required fuel amount of the engine 4. Regardless, the transmission 5 is controlled so that the discharge pressure of the pump 3 matches the required fuel pressure.
  • the flow rate sensor 23 may have the function of detecting the pressure of hydrogen fuel in the second fuel supply path 22 instead of the fuel supply system 1C including the pressure sensor 24 .
  • the control device 6 may control the transmission 5 based on the required fuel amount and required fuel pressure of the engine 4 and the fuel amount and pressure detected by the flow sensor 23 .
  • FIG. 4 is a diagram showing the configuration of a fuel supply system 1D according to Modification 3. As shown in FIG. Modification 3 differs from Modification 1 in that a fuel control valve 25 is arranged in the second fuel supply path 22 .
  • the fuel control valve 25 adjusts the amount of hydrogen fuel supplied to the engine 4.
  • the fuel control valve 25 is electrically connected to the control device 6 and controlled by the control device 6 .
  • the fuel control valve 25 is, for example, a flow control valve.
  • the fuel control valve 25 is arranged in the portion between the pump 3 and the flow rate sensor 23 in the second fuel supply passage 22 . That is, in Modification 3, the flow rate sensor 23 detects the amount of hydrogen fuel passing through the fuel control valve 25, that is, the amount of hydrogen fuel flowing in the portion downstream of the fuel control valve 25 in the second fuel supply path 22. .
  • the controller 6 controls the transmission 5 and the fuel control valve 25 based on the amount of fuel requested by the engine 4 and the amount of fuel detected by the flow sensor 23 .
  • control device 6 controls the fuel control valve 25 so that the amount of fuel detected by the flow rate sensor 23 matches the calculated required fuel amount of the engine 4 . Therefore, an appropriate amount of hydrogen fuel can be supplied from the pump 3 to the engine 4 according to the amount of fuel requested by the engine 4 .
  • controller 6 controls the transmission 5 so that the fuel amount detected by the flow sensor 23 matches the calculated required fuel amount of the engine 4 . Therefore, it is possible to prevent the amount of hydrogen fuel in the portion between the pump 3 and the fuel control valve 25 in the second fuel supply passage 22 from becoming excessive.
  • FIG. 6 is a block diagram showing the configuration of an aircraft fuel supply system according to the second embodiment.
  • This embodiment differs from the first embodiment in that the transmission 7 for changing the rotation speed of the pump 3 is an electric motor. That is, the pump 3 and the electric motor 7 constitute one electric pump.
  • FIG. 7 is a diagram showing in more detail the configuration of the fuel supply system shown in FIG.
  • the transmission 7 is an electric motor
  • the power of the engine 4 is not transmitted to the transmission 7 .
  • the transmission 7 is controlled by the control device 6 .
  • the control device 6 can control the rotation speed of the pump 3 by controlling the rotation speed of the electric motor that is the transmission 7 .
  • the method of controlling the transmission device 7 by the control device 6 and the method of acquiring the required fuel amount of the engine 4 to be supplied by the pump 3 are the same as in the first embodiment, so descriptions thereof will be omitted.
  • the pump may be, for example, a mechanical system, an electric system, or a combination of these systems.
  • the transmission does not have to be a continuously variable transmission, and may be a stepped transmission.
  • the transmission may or may not use the power of the rotating shaft of the engine.
  • the transmission may be a planetary gear mechanism.
  • the transmission may be a continuously variable transmission (CVT; Continuously Variable Transmission) powered by the engine, or an infinite transmission (IVT; Infinitely Variable Transmission) including a CVT.
  • the continuously variable transmission is, for example, a toroidal continuously variable transmission. If the pump is driven by engine power, the speed of the pump can be controlled using a transmission such as a CVT.
  • the transmission may be a hydraulic continuously variable transmission.
  • the hydraulic continuously variable transmission includes, for example, a hydrostatic static transmission and a hydraulic mechanical transmission.
  • the transmission may be built into the pump or may be external to the pump.
  • control device is a combination of the transmission control device that controls the transmission and the engine control device that controls the engine.
  • the aircraft may also have an engine control unit that In this case, the control device that controls the transmission may receive information indicating the requested fuel amount of the engine from the engine control device without calculating the requested fuel amount of the engine.
  • ASICs Application Specific Integrated Circuits
  • a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware or the processor.
  • a fuel supply system for supplying hydrogen fuel to the engine, a fuel tank that stores hydrogen fuel; a pump for taking out hydrogen fuel from the fuel tank, the pump taking out an amount of hydrogen fuel corresponding to the rotation speed of a rotation mechanism of the pump; the engine that burns hydrogen fuel taken from the pump to obtain propulsion for the aircraft; a transmission that drives the rotation mechanism of the pump so that the rotation speed of the rotation mechanism of the pump can be changed; and a control device that controls the transmission based on the amount of fuel requested by the engine.
  • the aircraft is equipped with an engine control device for controlling the engine in addition to the control device, 6.
  • An aircraft fueling system according to any one of items 1 to 5, wherein the control device receives information indicative of the requested fuel amount of the engine from the engine control device.
  • [Item 8] a fuel supply channel that directs hydrogen fuel from the pump to the engine; Further comprising a flow rate sensor arranged in the fuel supply path for detecting the amount of hydrogen fuel flowing through the fuel supply path, 8.
  • the control device controls the transmission based on the amount of fuel requested by the engine and the amount of fuel detected by the flow rate sensor.
  • the flow sensor has a function of detecting the pressure of hydrogen fuel in the fuel supply path, or the fuel supply system further includes a pressure sensor that detects the pressure of hydrogen fuel in the fuel supply path, The control device controls the transmission based on a required fuel amount and a required fuel pressure of the engine, a fuel amount detected by the flow sensor, and a pressure detected by the flow sensor or the pressure sensor. , item 8.

Abstract

An aircraft fuel supply system according to the one aspect of the present disclosure supplies a hydrogen fuel to a hydrogen-fueled engine installed onboard an aircraft, the aircraft fuel supply system comprising: a fuel tank storing the hydrogen fuel; a pump that feeds out the hydrogen fuel from the fuel tank, the pump feeding out a quantity of the hydrogen fuel according to the rotation rate of a rotating mechanism of the pump; an engine that burns the hydrogen fuel fed out from the pump to provide propulsion to the aircraft; a speed change device that drives the rotating mechanism of the pump so that the rotation rate of the rotating mechanism of the pump is changeable; and a control device that controls the speed change mechanism on the basis of a requested fuel quantity of the engine.

Description

航空機の燃料供給システムaircraft fuel supply system
 本開示は、航空機の燃料供給システムに関する。 The present disclosure relates to an aircraft fuel supply system.
 特許文献1に、航空機等に用いられるジェットエンジンの燃料供給システムにおいて、ポンプから吐出されるジェット燃料を流量制御ユニットにより設定流量だけ機器へ送り込みつつ、余剰なジェット燃料をポンプの入口側に送り返すようにしたものが開示されている。 In Patent Document 1, in a fuel supply system for a jet engine used in an aircraft or the like, a flow rate control unit feeds jet fuel discharged from a pump into a device at a set flow rate, while sending surplus jet fuel back to the inlet side of the pump. What was done is disclosed.
特開2004-197573号公報Japanese Patent Application Laid-Open No. 2004-197573
 水素の沸点は、従来から知られるジェット燃料と比べて極めて低い。このため、水素を燃料とするエンジンを搭載した航空機の燃料供給システムに対して、特許文献1の燃料システムをそのまま採用できない可能性がある。 The boiling point of hydrogen is extremely low compared to conventionally known jet fuel. For this reason, there is a possibility that the fuel system of Patent Document 1 cannot be used as it is for the fuel supply system of an aircraft equipped with an engine that uses hydrogen as fuel.
 そこで、本開示の一態様は、水素を燃料とするエンジンを搭載した航空機の燃料供給システムにおいて、ポンプの下流側で水素燃料の量が余剰となることを抑制することを目的とする。 Therefore, one aspect of the present disclosure aims to suppress excess hydrogen fuel on the downstream side of a pump in a fuel supply system for an aircraft equipped with an engine that uses hydrogen as fuel.
 本開示の一態様に係る航空機の燃料供給システムは、水素を燃料とするエンジンを搭載した航空機において、前記エンジンに水素燃料を供給する燃料供給システムであって、水素燃料を貯留する燃料タンクと、前記燃料タンクから水素燃料を取り出すポンプであって、前記ポンプの回転機構の回転数に応じた量の水素燃料を取り出すポンプと、前記ポンプから取り出された水素燃料を燃焼させて前記航空機の推進力を得る前記エンジンと、前記ポンプの回転機構の回転数を変更可能に、前記ポンプの回転機構を駆動する変速装置と、前記エンジンの要求燃料量に基づいて、前記変速装置を制御する制御装置と、を備える。 An aircraft fuel supply system according to an aspect of the present disclosure is a fuel supply system for supplying hydrogen fuel to an aircraft equipped with a hydrogen-fueled engine, the fuel supply system comprising: a fuel tank that stores hydrogen fuel; A pump for taking out hydrogen fuel from the fuel tank, the pump taking out an amount of hydrogen fuel corresponding to the number of revolutions of a rotation mechanism of the pump, and a propulsion force for the aircraft by burning the hydrogen fuel taken out from the pump. a transmission that drives the rotation mechanism of the pump so that the rotation speed of the rotation mechanism of the pump can be changed; and a control device that controls the transmission based on the required fuel amount of the engine. , provided.
 本開示の一態様によれば、水素を燃料とするエンジンを搭載した航空機の燃料供給システムにおいて、ポンプの下流側で水素燃料の量が余剰となることを抑制することができる。 According to one aspect of the present disclosure, in a fuel supply system for an aircraft equipped with an engine that uses hydrogen as fuel, it is possible to suppress excess hydrogen fuel on the downstream side of the pump.
図1は、第1実施形態に係る航空機の燃料供給システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an aircraft fuel supply system according to the first embodiment. 図2は、図1に示す燃料供給システムの構成をより詳細に示す図である。FIG. 2 is a diagram showing the configuration of the fuel supply system shown in FIG. 1 in more detail. 図3は、変形例1に係る燃料供給システムの構成を示す図である。FIG. 3 is a diagram showing the configuration of a fuel supply system according to Modification 1. As shown in FIG. 図4は、変形例2に係る燃料供給システムの構成を示す図である。FIG. 4 is a diagram showing the configuration of a fuel supply system according to Modification 2. As shown in FIG. 図5は、変形例3に係る燃料供給システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of a fuel supply system according to Modification 3. As shown in FIG. 図6は、第2実施形態に係る航空機の燃料供給システムの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of an aircraft fuel supply system according to the second embodiment. 図7は、図6に示す燃料供給システムの構成をより詳細に示す図である。FIG. 7 is a diagram showing in more detail the configuration of the fuel supply system shown in FIG. 図8は、実施形態と比較される航空機の燃料供給システムの構成を説明するためのブロック図である。FIG. 8 is a block diagram for explaining the configuration of an aircraft fuel supply system compared with the embodiment.
 (本開示の構成に至った経緯)
 まず本開示の構成に至った経緯について説明する。航空機では、エンジンの燃料をポンプで昇圧し、昇圧された燃料がエンジンに供給される。航空機におけるエンジンへの燃料供給システムにおいて、従来のジェット燃料では、ポンプがエンジンの動力によって駆動される。この種のシステムにおいて、ポンプからの供給燃料量がエンジンの要求燃料量を上回る場合がある。上記の特許文献1に記載された燃料供給システムでは、ポンプからの供給燃料量がエンジンの要求燃料量を上回る場合には、ポンプより下流の余剰なジェット燃料を、バイパスラインを通してポンプより上流側に戻すことが可能である。
(Circumstances leading to the composition of this disclosure)
First, the circumstances leading to the configuration of the present disclosure will be described. In an aircraft, fuel for the engine is pressurized by a pump, and the pressurized fuel is supplied to the engine. In a fuel supply system to an engine in an aircraft, with conventional jet fuel, the pump is driven by the power of the engine. In this type of system, the amount of fuel supplied by the pump may exceed the amount of fuel requested by the engine. In the fuel supply system described in Patent Document 1, when the amount of fuel supplied from the pump exceeds the amount of fuel required by the engine, excess jet fuel downstream of the pump is transferred to the upstream side of the pump through a bypass line. It is possible to return.
 水素を燃料とするエンジンを搭載した水素航空機の燃料供給システムでは、例えば、燃料タンクに貯蔵された液体水素が、機体の燃料供給ラインを通り、最終的に所定圧力の気体水素となって、または、液体水素のままエンジンの燃焼器に供給される。また、燃料タンクに貯蔵された液体水素が、気化器により気体水素とされて、機体の燃料供給ラインを通り、所定圧力の気体水素となってエンジンの燃焼器へ供給される。 In the fuel supply system of a hydrogen aircraft equipped with an engine that uses hydrogen as fuel, for example, liquid hydrogen stored in a fuel tank passes through a fuel supply line of the aircraft, and finally becomes gaseous hydrogen of a predetermined pressure, or , is supplied to the engine's combustor as liquid hydrogen. Further, the liquid hydrogen stored in the fuel tank is converted into gaseous hydrogen by the vaporizer, passes through the fuel supply line of the aircraft, becomes gaseous hydrogen of a predetermined pressure, and is supplied to the engine combustor.
 後述する本開示に係る実施形態と比較するため、図8に、エンジン103を搭載した従来の航空機の燃料供給システム100を示す。燃料供給システム100においては、燃料タンク101にジェット燃料が貯留され、ポンプ102によりジェット燃料がガスタービンエンジン103に供給される。ガスタービンエンジン103への余剰なジェット燃料が生じた場合、燃料供給ラインにおけるポンプ102より下流側部分105から、バイパスライン106を通して、燃料供給ラインにおけるポンプ102より上流側部分104に余剰なジェット燃料を戻す。 For comparison with embodiments according to the present disclosure, which will be described later, FIG. In fuel supply system 100 , jet fuel is stored in fuel tank 101 and jet fuel is supplied to gas turbine engine 103 by pump 102 . When excess jet fuel to the gas turbine engine 103 occurs, excess jet fuel is supplied from a portion 105 of the fuel supply line downstream of the pump 102 to a portion 104 of the fuel supply line upstream of the pump 102 through the bypass line 106. return.
 水素を燃料とするエンジンを搭載した航空機に、このような従来の燃料供給システムの構成をそのまま採用した場合、水素燃料がバイパスライン106を流れる間に、水素燃料の温度が上がり膨張して、燃料供給ラインにおけるポンプ102より上流側部分104に、水素燃料をポンプ102で供給できなくなる可能性がある。 If such a configuration of a conventional fuel supply system is adopted as it is for an aircraft equipped with an engine that uses hydrogen as fuel, while the hydrogen fuel flows through the bypass line 106, the temperature of the hydrogen fuel rises and expands, resulting in fuel A portion 104 of the supply line upstream of the pump 102 may fail to supply hydrogen fuel to the pump 102 .
 このため、本開示者は、バイパスライン106を採用しないシステム、あるいは、バイパスライン106を採用する場合であってもバイパスライン106を通じて燃料供給ラインにおけるポンプ102より上流側部分104に戻す燃料量を抑制することができるシステムが望ましいと考えた。以上のような問題を本開示者は見出し、本開示者は、上記の問題を解決するため、エンジンの要求燃料量に応じてポンプの回転数を制御することで、適切な量の水素燃料をエンジンへ供給する燃料供給システムを考案するに至った。 For this reason, the present disclosure discloses a system that does not employ the bypass line 106, or even if the bypass line 106 is employed, suppresses the amount of fuel returned to the upstream portion 104 of the fuel supply line from the pump 102 through the bypass line 106. I thought it would be desirable to have a system that could The present disclosure person found the above problem, and in order to solve the above problem, the present disclosure person controlled the rotation speed of the pump according to the required fuel amount of the engine, so that an appropriate amount of hydrogen fuel was supplied. I have devised a fuel supply system for supplying fuel to the engine.
 (第1実施形態)
 図1は、第1実施形態に係る航空機の燃料供給システム1Aの構成を示すブロック図である。なお、図1および後述の図6において、一点鎖線は動力の伝達経路を示している。上述した図8も同様である。燃料供給システム1Aは、水素燃料を貯留する燃料タンク2と、ポンプ3と、水素を燃料とするガスタービンエンジン4とを備える。以下、ガスタービンエンジン4は、単にエンジン4とも称し得る。ポンプ3は、燃料タンク2の水素燃料をエンジンに4に供給する。エンジン4は、ポンプ3から供給された水素燃料を燃焼させて航空機の推進力を得る。
(First embodiment)
FIG. 1 is a block diagram showing the configuration of an aircraft fuel supply system 1A according to the first embodiment. In FIG. 1 and FIG. 6, which will be described later, dashed lines indicate power transmission paths. The same applies to FIG. 8 described above. The fuel supply system 1A includes a fuel tank 2 that stores hydrogen fuel, a pump 3, and a gas turbine engine 4 that uses hydrogen as fuel. The gas turbine engine 4 may also be referred to simply as the engine 4 hereinafter. Pump 3 supplies hydrogen fuel in fuel tank 2 to engine 4 . The engine 4 burns the hydrogen fuel supplied from the pump 3 to obtain propulsion for the aircraft.
 燃料供給システム1Aは、ポンプ3の回転数を変更するための変速装置5を備える。変速装置5は、ポンプ3の回転機構の回転数を変更可能である。変速装置5は、ポンプ3の回転機構を駆動する。本実施形態において、変速装置5は、無段変速機(CVT;Continuously Variable Transmission)である。また、変速装置5は、エンジン4の動力を変速して回転機構に伝達する。また、変速装置5は、後述する制御装置6(図2参照)により制御される。 The fuel supply system 1A includes a transmission 5 for changing the rotation speed of the pump 3. The transmission 5 can change the rotation speed of the rotation mechanism of the pump 3 . The transmission 5 drives the rotating mechanism of the pump 3 . In this embodiment, the transmission 5 is a continuously variable transmission (CVT). Further, the transmission 5 changes the speed of the power of the engine 4 and transmits it to the rotating mechanism. Further, the transmission 5 is controlled by a control device 6 (see FIG. 2), which will be described later.
 図2を参照して、燃料供給システム1Aの詳細について説明する。図2は、図1に示す燃料供給システム1Aの構成をより詳細に示す図である。 Details of the fuel supply system 1A will be described with reference to FIG. FIG. 2 is a diagram showing in more detail the configuration of the fuel supply system 1A shown in FIG.
 ガスタービンエンジン4は、回転軸11、ファン12、圧縮機13、燃焼器14、タービン15、およびケーシング16を備える。回転軸11は、ガスタービンエンジン4の前後方向に延びる。ファン12は、回転軸11の前部に接続され、回転軸11と共に回転する。圧縮機13、燃焼器14およびタービン15は、この順に前方から後方に向けて回転軸11に沿って並んでいる。ケーシング16は、回転軸11の回転軸線と一致する軸線を有する筒状物であり、回転軸11、ファン12、圧縮機13、燃焼器14およびタービン15を収容している。 The gas turbine engine 4 includes a rotating shaft 11, a fan 12, a compressor 13, a combustor 14, a turbine 15, and a casing 16. The rotating shaft 11 extends in the longitudinal direction of the gas turbine engine 4 . The fan 12 is connected to the front portion of the rotating shaft 11 and rotates together with the rotating shaft 11 . Compressor 13 , combustor 14 and turbine 15 are arranged in this order from front to back along rotating shaft 11 . The casing 16 is a tubular body having an axis aligned with the rotation axis of the rotating shaft 11 and accommodates the rotating shaft 11 , the fan 12 , the compressor 13 , the combustor 14 and the turbine 15 .
 ガスタービンエンジン4は、例えば、二軸ガスタービンエンジンである。圧縮機13は、低圧圧縮機13aと、低圧圧縮機13aの後方に配置された高圧圧縮機13bとを有する。タービン15は、低圧タービン15aと、低圧タービン15aの前方に配置された高圧タービン15bとを有する。回転軸11は、低圧圧縮機13aを低圧タービン15aに連結する低圧軸11aと、高圧圧縮機13bを高圧タービン15bに連結する高圧軸11bとを有する。高圧軸11bは、内部に中空空間を有する筒状軸である。低圧軸11aは、高圧軸11bの中空空間に挿通されている。低圧タービン15aは、圧縮機13の前方に配置されたファン12に低圧軸11aを介して連結されている。 The gas turbine engine 4 is, for example, a twin-shaft gas turbine engine. The compressor 13 has a low-pressure compressor 13a and a high-pressure compressor 13b arranged behind the low-pressure compressor 13a. The turbine 15 has a low pressure turbine 15a and a high pressure turbine 15b arranged in front of the low pressure turbine 15a. The rotary shaft 11 has a low pressure shaft 11a connecting the low pressure compressor 13a to the low pressure turbine 15a and a high pressure shaft 11b connecting the high pressure compressor 13b to the high pressure turbine 15b. The high-pressure shaft 11b is a tubular shaft having a hollow space inside. The low pressure shaft 11a is inserted through the hollow space of the high pressure shaft 11b. The low-pressure turbine 15a is connected to the fan 12 arranged in front of the compressor 13 via the low-pressure shaft 11a.
 ファン12の径方向外側は、筒状のファンケース17により覆われている。ケーシング16とファンケース17との間には、円筒状のバイパス路が形成されている。ファン12により吸い込まれた空気は、このバイパス路を流れて後方に噴出されて推進力を発生する。 The radially outer side of the fan 12 is covered with a tubular fan case 17 . A cylindrical bypass is formed between the casing 16 and the fan case 17 . The air sucked by the fan 12 flows through the bypass passage and is jetted rearward to generate a driving force.
 燃料タンク2とポンプ3とは、第1燃料供給路21により接続されている。ポンプ3とエンジン4の燃焼器14とは、第2燃料供給路22により接続されている。第1燃料供給路21および第2燃料供給路22は、配管や水素を流通する機器などにより構成された経路である。 The fuel tank 2 and the pump 3 are connected by a first fuel supply passage 21. The pump 3 and the combustor 14 of the engine 4 are connected by a second fuel supply passage 22 . The first fuel supply path 21 and the second fuel supply path 22 are paths configured by piping, equipment for circulating hydrogen, and the like.
 燃料タンク2は、液化水素を燃料として貯留する。 The fuel tank 2 stores liquefied hydrogen as fuel.
 ポンプ3は、燃料タンク2から水素燃料を取り出す。ポンプ3は、回転機構を有し、ポンプ3の回転機構の回転数に応じた量の水素燃料を供給する。なお、水素の状態は、液体、気体、超臨界がありうる。例えば、ポンプ3により昇圧される水素は、液化水素でもよいし、液化水素が気化した水素ガスである。ポンプ3、並びに、第1燃料供給路21および第2燃料供給路22を構成する配管や機器などは、それらを流通する水素の状態に対応した構造のものを採用し得る。 The pump 3 takes out hydrogen fuel from the fuel tank 2. The pump 3 has a rotating mechanism, and supplies an amount of hydrogen fuel corresponding to the rotation speed of the rotating mechanism of the pump 3 . The state of hydrogen can be liquid, gas, or supercritical. For example, the hydrogen pressurized by the pump 3 may be liquefied hydrogen or hydrogen gas obtained by vaporizing liquefied hydrogen. The pipes, devices, and the like that constitute the pump 3 as well as the first fuel supply path 21 and the second fuel supply path 22 can adopt structures that correspond to the state of hydrogen flowing through them.
 変速装置5は、無段変速機である。本実施形態において、変速装置5は、ガスタービンエンジン4からの動力をポンプ3へ伝達する。すなわち、ポンプ3の回転機構に、ガスタービンエンジン4の動力が変速装置5を介して伝達される。エンジン4の回転軸11には、動力抽出軸31がギヤ32を介して機械的に接続されている。 The transmission 5 is a continuously variable transmission. In this embodiment, transmission 5 transmits power from gas turbine engine 4 to pump 3 . That is, the power of the gas turbine engine 4 is transmitted to the rotating mechanism of the pump 3 via the transmission 5 . A power extracting shaft 31 is mechanically connected to the rotating shaft 11 of the engine 4 via a gear 32 .
 具体的には、ガスタービンエンジン4の低圧軸11aには、径方向に延びた動力抽出軸31がベベルギヤ32を介して機械的に接続されている。すなわち、動力抽出軸31は、低圧軸11aに連動して回転する。なお、動力抽出軸31は、高圧軸11bに機械的に接続され、高圧軸11bに連動して回転してもよい。動力抽出軸31は、変速装置5である無段変速機の入力軸に機械的に接続されている。変速装置5である無段変速機の出力軸33は、ポンプ3の回転機構に機械的に接続されている。すなわち、変速装置5である無段変速機は、ガスタービンエンジン4の低圧軸11aからの動力を適切な回転数に変速したうえで、その変速された動力をポンプ3に伝達してポンプ3を回転駆動する。 Specifically, a radially extending power extraction shaft 31 is mechanically connected to the low-pressure shaft 11 a of the gas turbine engine 4 via a bevel gear 32 . That is, the power extraction shaft 31 rotates in conjunction with the low pressure shaft 11a. Note that the power extraction shaft 31 may be mechanically connected to the high pressure shaft 11b and rotated in conjunction with the high pressure shaft 11b. The power extraction shaft 31 is mechanically connected to an input shaft of a continuously variable transmission, which is the transmission 5 . The output shaft 33 of the continuously variable transmission which is the transmission 5 is mechanically connected to the rotation mechanism of the pump 3 . That is, the continuously variable transmission, which is the transmission device 5, changes the speed of the power from the low-pressure shaft 11a of the gas turbine engine 4 to an appropriate rotation speed, and then transmits the changed power to the pump 3 to operate the pump 3. rotationally driven.
 変速装置5は、制御装置6により制御される。制御装置6は、エンジン4に供給すべき燃料量、すなわち、エンジン4の要求燃料量に基づいて、ポンプ3より下流である第2燃料供給路22の水素燃料が余剰となることが抑制されるよう、変速装置5を制御する。これにより、エンジン4の要求燃料量に応じて、ポンプ3の回転数を制御することにより、適切な量の水素燃料をエンジン4へ供給することができる。 The transmission 5 is controlled by the control device 6. The control device 6 suppresses excess hydrogen fuel in the second fuel supply passage 22 downstream of the pump 3 based on the amount of fuel to be supplied to the engine 4, that is, the amount of fuel requested by the engine 4. Thus, the transmission 5 is controlled. As a result, an appropriate amount of hydrogen fuel can be supplied to the engine 4 by controlling the rotational speed of the pump 3 according to the amount of fuel requested by the engine 4 .
 エンジン4に供給すべき燃料量であるエンジン4の要求燃料量とは、エンジン4の運転に必要となる燃料量である。例えば、エンジン4の要求燃料量は、エンジン4の要求出力に応じた燃料量である。エンジン4の要求燃料量は、特定の量である場合もあれば、一定範囲の量である場合もある。 The required fuel amount of the engine 4, which is the amount of fuel to be supplied to the engine 4, is the amount of fuel required for the operation of the engine 4. For example, the requested fuel amount of the engine 4 is a fuel amount corresponding to the requested output of the engine 4 . The required amount of fuel for the engine 4 may be a specific amount or an amount within a certain range.
 制御装置6は、演算回路、記憶回路、入出力インターフェースなどを含む。例えば、演算回路は、中央演算処理装置(CPU)などのプロセッサを含む。記憶回路は、RAMやROMなどのメモリを含む。メモリには、変速装置5の動作を制御するためのプログラムが記憶されており、プロセッサがメモリに記憶されたプログラムを読み出して実行することで、各種の処理を行う。制御装置6は、例えば、コンピュータである。 The control device 6 includes an arithmetic circuit, a memory circuit, an input/output interface, and the like. For example, an arithmetic circuit includes a processor such as a central processing unit (CPU). The memory circuit includes memories such as RAM and ROM. The memory stores a program for controlling the operation of the transmission 5, and the processor reads out and executes the program stored in the memory to perform various processes. The control device 6 is, for example, a computer.
 本実施形態において、制御装置6は、変速装置5だけでなく、エンジン4も制御する。すなわち、制御装置6は、変速装置5を制御する変速機制御装置とエンジン4を制御するエンジン制御装置とが統合したものである。 In this embodiment, the control device 6 controls not only the transmission 5 but also the engine 4 . That is, the control device 6 is an integration of a transmission control device that controls the transmission 5 and an engine control device that controls the engine 4 .
 本実施形態では、制御装置6は、エンジン4の要求燃料量をエンジン運転条件から計算し、その計算結果に基づいて変速装置5を制御する。これにより、エンジン4の要求燃料量を事前に計算し、適切な量の水素燃料をエンジン4へ供給することができる。 In this embodiment, the controller 6 calculates the required fuel amount of the engine 4 from the engine operating conditions, and controls the transmission 5 based on the calculation result. As a result, the required amount of fuel for the engine 4 can be calculated in advance, and an appropriate amount of hydrogen fuel can be supplied to the engine 4 .
 本実施形態において、エンジン運転条件は、例えば、エンジン4の要求回転速度およびエンジン4の要求負荷によって定められる条件である。ただし、エンジン運転条件は、これに限定されない。例えば、エンジン運転条件は、エンジン4の要求回転速度およびエンジン4の要求負荷のいずれか一方により定められる条件であってもよい。また、例えば、エンジン運転条件を定めるパラメータは、エンジン4の要求回転速度およびエンジン4の要求負荷の一方または双方に加え、その他のパラメータが含まれてもよい。その他のパラメータとしては、エンジン4の実際の回転速度、圧縮機13の入口温度、圧縮機13の出口温度、圧縮機13の入口圧力、圧縮機13の出口圧力、タービン入口温度などが例示される。これらのパラメータは、例えば、航空機に搭載された各種センサにより検知される。 In the present embodiment, the engine operating conditions are conditions determined by, for example, the required rotation speed of the engine 4 and the required load of the engine 4 . However, the engine operating conditions are not limited to this. For example, the engine operating condition may be a condition determined by either the required rotation speed of the engine 4 or the required load of the engine 4 . Further, for example, the parameters that define the engine operating conditions may include one or both of the required rotational speed of the engine 4 and the required load of the engine 4, as well as other parameters. Other parameters include the actual rotation speed of the engine 4, the inlet temperature of the compressor 13, the outlet temperature of the compressor 13, the inlet pressure of the compressor 13, the outlet pressure of the compressor 13, the turbine inlet temperature, and the like. . These parameters are detected, for example, by various sensors mounted on the aircraft.
 制御装置6は、エンジン運転条件を示すパラメータから、ポンプ3が供給すべきエンジン4の要求燃料量を計算する。制御装置6は、ポンプ3の吐出量である供給燃料量が、計算したエンジン4の要求燃料量に応じた適切な量になるように、ポンプ3の回転機構の回転数を決定する。制御装置6は、決定した回転数でポンプ3の回転機構が回転するように、変速装置5の変速比を制御する。ポンプ3の吐出量である供給燃料量は、特定の量である場合もあれば、一定範囲の量である場合もある。 The control device 6 calculates the required fuel amount of the engine 4 to be supplied by the pump 3 from the parameters indicating the engine operating conditions. The control device 6 determines the rotation speed of the rotation mechanism of the pump 3 so that the amount of fuel supplied, which is the discharge amount of the pump 3, becomes an appropriate amount according to the calculated required fuel amount of the engine 4 . The control device 6 controls the gear ratio of the transmission 5 so that the rotation mechanism of the pump 3 rotates at the determined number of rotations. The amount of fuel supplied, which is the discharge amount of the pump 3, may be a specific amount or may be an amount within a certain range.
 制御装置6は、例えば、計算したエンジン4の要求燃料量と、ポンプ3の現在の吐出量とを比較する。制御装置6は、ポンプ3の現在の吐出量が、計算したエンジン4の要求燃料量より小さいと判定した場合には、ポンプ3の吐出量が大きくなるように変速装置5を制御する。また、制御装置6は、ポンプ3の現在の吐出量が、計算したエンジン4の要求燃料量より大きいと判定した場合には、ポンプ3の吐出量が小さくなるように変速装置5を制御する。なお、本実施形態では、制御装置6が、ポンプ3の現在の吐出量を、現在のポンプ3の回転数から算出する。 The control device 6 compares, for example, the calculated requested fuel amount of the engine 4 with the current discharge amount of the pump 3 . When the control device 6 determines that the current discharge amount of the pump 3 is smaller than the calculated required fuel amount of the engine 4, the control device 6 controls the transmission device 5 so that the discharge amount of the pump 3 increases. Further, when the control device 6 determines that the current discharge amount of the pump 3 is larger than the calculated requested fuel amount of the engine 4, the control device 6 controls the transmission device 5 so that the discharge amount of the pump 3 becomes smaller. In this embodiment, the controller 6 calculates the current discharge amount of the pump 3 from the current rotation speed of the pump 3 .
 以上に説明した構成によれば、エンジン4の要求燃料量に応じて、制御装置6が、変速装置5を制御して、ポンプ3の回転数がエンジン4の要求燃料量に応じたものとなる。このため、ポンプ3から適切な量の水素燃料をエンジン4へ供給することができる。このため、ポンプ3の下流側で水素燃料の量が余剰となることを抑制できる。 According to the configuration described above, the control device 6 controls the transmission device 5 in accordance with the required fuel amount of the engine 4 so that the rotation speed of the pump 3 corresponds to the required fuel amount of the engine 4. . Therefore, an appropriate amount of hydrogen fuel can be supplied from the pump 3 to the engine 4 . Therefore, it is possible to prevent the amount of hydrogen fuel from becoming excessive on the downstream side of the pump 3 .
 また、本実施形態では、変速装置5が無段変速機であるため、無段変速機の変速比を段階的ではなく連続的に変更可能である。すなわち、無段変速機の出力回転数に対応するポンプ3の回転数を、段階的ではなく連続的に制御できる。このため、ポンプ3より下流側で水素燃料の量が余剰となることを効果的に抑制することができる。 Also, in the present embodiment, since the transmission 5 is a continuously variable transmission, the gear ratio of the continuously variable transmission can be changed continuously rather than stepwise. That is, the rotation speed of the pump 3 corresponding to the output rotation speed of the continuously variable transmission can be controlled continuously rather than stepwise. Therefore, it is possible to effectively prevent the amount of hydrogen fuel from becoming excessive on the downstream side of the pump 3 .
 また、本実施形態では、変速装置5は、エンジン4の動力を変速して回転機構に伝達する。エンジン4の回転軸11から動力を抽出し、複雑な動作制御を必要としないので、動作制御用の機器を省略することができ、航空機の軽量化を図ることができる。 Also, in the present embodiment, the transmission 5 changes the speed of the power of the engine 4 and transmits it to the rotating mechanism. Since power is extracted from the rotating shaft 11 of the engine 4 and complicated motion control is not required, devices for motion control can be omitted, and the weight of the aircraft can be reduced.
 また、変速装置5が無段変速機であるため、その他のタイプの変速装置を用いるよりも、変速装置自体の重量の軽量化を図ることができる。 Also, since the transmission 5 is a continuously variable transmission, the weight of the transmission itself can be reduced compared to using other types of transmissions.
 (変形例1)
 図3は、変形例1に係る燃料供給システム1Bの構成を示す図である。なお、変形例1並びに後述の変形例2,3および第2実施形態の説明において、上述した第1実施形態と実質的に同一の構成要素に対しては同一の符号を付し、重複する説明は省略または簡略化される。
(Modification 1)
FIG. 3 is a diagram showing the configuration of a fuel supply system 1B according to Modification 1. As shown in FIG. In addition, in descriptions of Modification 1, Modifications 2 and 3, and a second embodiment described later, the same reference numerals are given to components that are substantially the same as in the above-described first embodiment, and the description is duplicated. are omitted or simplified.
 本変形例1では、第2燃料供給路22に、流量センサ23が配置されている。流量センサ23は、第2燃料供給路22を流れる水素燃料の燃料量を検出する。例えば、流量センサ23は、第2燃料供給路22を通じてエンジン4の燃焼器14に供給される単位時間当たりの燃料量を検出する。流量センサ23は、制御装置6に電気的に接続されている。流量センサ23により検出された燃料量の情報は、制御装置6に送られる。 In Modification 1, a flow rate sensor 23 is arranged in the second fuel supply path 22 . The flow rate sensor 23 detects the amount of hydrogen fuel flowing through the second fuel supply path 22 . For example, the flow rate sensor 23 detects the amount of fuel supplied to the combustor 14 of the engine 4 through the second fuel supply path 22 per unit time. The flow sensor 23 is electrically connected to the controller 6 . Information on the amount of fuel detected by the flow rate sensor 23 is sent to the control device 6 .
 すなわち、本変形例1では、流量センサ23によりポンプ3の現在の吐出量を検出できる。つまり、上記第1実施形態では、ポンプ3の現在の吐出量を、現在のポンプ3の回転数などから算出したが、本変形例1では、ポンプ3の現在の吐出量を、流量センサ23により検出する。 That is, in Modification 1, the current discharge amount of the pump 3 can be detected by the flow rate sensor 23 . That is, in the first embodiment, the current discharge amount of the pump 3 is calculated from the current rotation speed of the pump 3, etc., but in the first modification, the current discharge amount of the pump 3 is calculated by the flow rate sensor 23. To detect.
 制御装置6は、エンジン4の要求燃料量と、流量センサ23により検出された燃料量に基づいて、変速装置5を制御する。 The control device 6 controls the transmission 5 based on the requested fuel amount of the engine 4 and the fuel amount detected by the flow sensor 23 .
 制御装置6は、例えば、エンジン4の要求燃料量を計算する。また、制御装置6は、流量センサ23から燃料量の情報を受信する。制御装置6は、流量センサ23により検出される燃料量が、計算したエンジン4の要求燃料量に一致するように、変速装置5を制御するフィードバック制御を実行してもよい。これにより、エンジン4への供給燃料量が適切な範囲に収まるように制御することができる。 The control device 6, for example, calculates the required fuel amount of the engine 4. The control device 6 also receives information on the amount of fuel from the flow sensor 23 . The controller 6 may perform feedback control to control the transmission 5 so that the amount of fuel detected by the flow sensor 23 matches the calculated amount of fuel requested by the engine 4 . As a result, the amount of fuel supplied to the engine 4 can be controlled to fall within an appropriate range.
 制御装置6は、例えば、上記第1実施形態と同様の制御を行ってもよい。すなわち、制御装置6は、計算したエンジン4の要求燃料量と、流量センサ23により検出された燃料量とを比較する。制御装置6は、流量センサ23により検出された燃料量が、計算したエンジン4の要求燃料量より小さいと判定した場合には、ポンプ3の吐出量が大きくなるように変速装置5を制御する。また、制御装置6は、流量センサ23により検出された燃料量が、計算したエンジン4の要求燃料量より大きいと判定した場合には、ポンプ3の吐出量が小さくなるように変速装置5を制御する。 For example, the control device 6 may perform the same control as in the first embodiment. That is, the controller 6 compares the calculated required fuel amount of the engine 4 with the fuel amount detected by the flow sensor 23 . When the controller 6 determines that the amount of fuel detected by the flow rate sensor 23 is smaller than the calculated amount of fuel requested by the engine 4, the controller 6 controls the transmission 5 so that the discharge amount of the pump 3 increases. Further, when the controller 6 determines that the fuel amount detected by the flow sensor 23 is larger than the calculated required fuel amount of the engine 4, the controller 6 controls the transmission 5 so that the discharge amount of the pump 3 is reduced. do.
 本変形例1でも上記第1実施形態と同様の効果が得られる。 The same effects as in the first embodiment can be obtained in the first modification.
 本変形例1では、制御装置5が、精度よくポンプ3の現在の吐出量を取得できる。このため、エンジン4の要求燃料量に応じた適切な量の水素燃料をポンプ3からエンジン4へ供給することができ、その結果、ポンプ3の下流側での水素燃料の量が余剰になることを抑制することができる。 In Modification 1, the control device 5 can acquire the current discharge amount of the pump 3 with high accuracy. Therefore, an appropriate amount of hydrogen fuel corresponding to the amount of fuel requested by the engine 4 can be supplied from the pump 3 to the engine 4. As a result, the amount of hydrogen fuel on the downstream side of the pump 3 becomes surplus. can be suppressed.
 (変形例2)
 図4は、変形例2に係る燃料供給システム1Cの構成を示す図である。変形例2は、第2燃料供給路22に、流量センサ23に加えて、圧力センサ24が配置されている点で、変形例1と異なる。
(Modification 2)
FIG. 4 is a diagram showing the configuration of a fuel supply system 1C according to Modification 2. As shown in FIG. Modification 2 differs from Modification 1 in that a pressure sensor 24 is arranged in the second fuel supply path 22 in addition to the flow rate sensor 23 .
 圧力センサ24は、第2燃料供給路22における水素燃料の圧力を検出する。圧力センサ24は、制御装置6に電気的に接続されている。圧力センサ24により検出された圧力情報は、制御装置6に送られる。 The pressure sensor 24 detects the pressure of hydrogen fuel in the second fuel supply passage 22 . Pressure sensor 24 is electrically connected to controller 6 . Pressure information detected by the pressure sensor 24 is sent to the control device 6 .
 ポンプ3がエンジン4に供給すべき燃料圧力であるエンジン4の要求燃料圧力とは、エンジン4の安定的な運転に必要となる燃料圧力である。エンジン4の要求燃料圧力は、特定の圧力である場合もあれば、一定範囲の圧力である場合もある。 The required fuel pressure of the engine 4, which is the fuel pressure that the pump 3 should supply to the engine 4, is the fuel pressure required for stable operation of the engine 4. The required fuel pressure of the engine 4 may be a specific pressure or may be a pressure within a certain range.
 制御装置6は、エンジン4の要求燃料量および要求燃料圧力と、流量センサ23により検出された燃料量と、圧力センサ24により検出された圧力とに基づいて、変速装置5を制御する。制御装置6は、圧力センサ24により検出された圧力、すなわち、エンジン4に供給される水素燃料の圧力が、要求燃料圧力に保たれるように、変速装置5を制御する。 The control device 6 controls the transmission 5 based on the required fuel amount and required fuel pressure of the engine 4, the fuel amount detected by the flow rate sensor 23, and the pressure detected by the pressure sensor 24. The control device 6 controls the transmission device 5 so that the pressure detected by the pressure sensor 24, that is, the pressure of the hydrogen fuel supplied to the engine 4, is maintained at the required fuel pressure.
 制御装置6は、例えば、圧力センサ24により検出された圧力が要求燃料圧力か否かを監視する。圧力センサ24により検出された圧力が要求燃料圧力でないと判定した場合、制御装置6は、圧力センサ24により検出される圧力が、要求燃料圧力に一致するように、変速装置5を制御するフィードバック制御を実行し得る。 For example, the control device 6 monitors whether the pressure detected by the pressure sensor 24 is the required fuel pressure. When it is determined that the pressure detected by the pressure sensor 24 is not the required fuel pressure, the control device 6 performs feedback control to control the transmission 5 so that the pressure detected by the pressure sensor 24 matches the required fuel pressure. can be executed.
 圧力センサ24により検出された圧力が要求燃料圧力でないと判定した場合、制御装置6は、流量センサ23により検出される燃料量が、計算したエンジン4の要求燃料量に一致しているか否かに関わらず、ポンプ3の吐出圧力が要求燃料圧力に一致するように変速装置5を制御する。 When it is determined that the pressure detected by the pressure sensor 24 is not the required fuel pressure, the control device 6 determines whether or not the fuel amount detected by the flow rate sensor 23 matches the calculated required fuel amount of the engine 4. Regardless, the transmission 5 is controlled so that the discharge pressure of the pump 3 matches the required fuel pressure.
 本変形例2では、エンジン4の要求燃料量に応じた適切な量の水素燃料を供給しつつ、エンジン4の要求燃料圧力に応じた適切な圧力に調整できるため、第2燃料供給路22から燃焼器14内へ安定的に水素燃料を供給できる。 In the present modified example 2, while supplying an appropriate amount of hydrogen fuel according to the required fuel amount of the engine 4, it is possible to adjust the pressure to an appropriate amount according to the required fuel pressure of the engine 4, so from the second fuel supply path 22 Hydrogen fuel can be stably supplied into the combustor 14 .
 燃料供給システム1Cが圧力センサ24を備える代わりに、流量センサ23が、第2燃料供給路22における水素燃料の圧力を検出する機能を有してもよい。制御装置6は、エンジン4の要求燃料量および要求燃料圧力と、流量センサ23により検出された燃料量および圧力とに基づいて、変速装置5を制御してもよい。 The flow rate sensor 23 may have the function of detecting the pressure of hydrogen fuel in the second fuel supply path 22 instead of the fuel supply system 1C including the pressure sensor 24 . The control device 6 may control the transmission 5 based on the required fuel amount and required fuel pressure of the engine 4 and the fuel amount and pressure detected by the flow sensor 23 .
 (変形例3)
 図4は、変形例3に係る燃料供給システム1Dの構成を示す図である。変形例3は、第2燃料供給路22に、燃料制御弁25が配置されている点で、変形例1と異なる。
(Modification 3)
FIG. 4 is a diagram showing the configuration of a fuel supply system 1D according to Modification 3. As shown in FIG. Modification 3 differs from Modification 1 in that a fuel control valve 25 is arranged in the second fuel supply path 22 .
 燃料制御弁25は、エンジン4に供給される水素燃料の量を調整する。燃料制御弁25は、制御装置6に電気的に接続されており、制御装置6により制御される。燃料制御弁25は、例えば、流量制御弁である。 The fuel control valve 25 adjusts the amount of hydrogen fuel supplied to the engine 4. The fuel control valve 25 is electrically connected to the control device 6 and controlled by the control device 6 . The fuel control valve 25 is, for example, a flow control valve.
 燃料制御弁25は、第2燃料供給路22におけるポンプ3と流量センサ23との間の部分に配置されている。すなわち、本変形例3では、流量センサ23は、燃料制御弁25を通過する水素燃料の量、つまり第2燃料供給路22における燃料制御弁25より下流側部分を流れる水素燃料の量を検出する。 The fuel control valve 25 is arranged in the portion between the pump 3 and the flow rate sensor 23 in the second fuel supply passage 22 . That is, in Modification 3, the flow rate sensor 23 detects the amount of hydrogen fuel passing through the fuel control valve 25, that is, the amount of hydrogen fuel flowing in the portion downstream of the fuel control valve 25 in the second fuel supply path 22. .
 制御装置6は、エンジン4の要求燃料量と、流量センサ23により検出された燃料量に基づいて、変速装置5および燃料制御弁25を制御する。 The controller 6 controls the transmission 5 and the fuel control valve 25 based on the amount of fuel requested by the engine 4 and the amount of fuel detected by the flow sensor 23 .
 制御装置6は、例えば、流量センサ23により検出される燃料量が、計算したエンジン4の要求燃料量に一致するように、燃料制御弁25を制御する。このため、エンジン4の要求燃料量に応じた適切な量の水素燃料をポンプ3からエンジン4へ供給することができる。 For example, the control device 6 controls the fuel control valve 25 so that the amount of fuel detected by the flow rate sensor 23 matches the calculated required fuel amount of the engine 4 . Therefore, an appropriate amount of hydrogen fuel can be supplied from the pump 3 to the engine 4 according to the amount of fuel requested by the engine 4 .
 さらに、制御装置6は、流量センサ23により検出される燃料量が、計算したエンジン4の要求燃料量に一致するように、変速装置5を制御する。このため、第2燃料供給路22におけるポンプ3と燃料制御弁25との間の部分の水素燃料の量が余剰となることを抑制することができる。 Further, the controller 6 controls the transmission 5 so that the fuel amount detected by the flow sensor 23 matches the calculated required fuel amount of the engine 4 . Therefore, it is possible to prevent the amount of hydrogen fuel in the portion between the pump 3 and the fuel control valve 25 in the second fuel supply passage 22 from becoming excessive.
 (第2実施形態)
 図6は、第2実施形態に係る航空機の燃料供給システムの構成を示すブロック図である。本実施形態では、ポンプ3の回転数を変更するための変速装置7が、電動モータである点で、第1実施形態と異なる。すなわち、ポンプ3と電動モータ7とは、1つの電動ポンプを構成している。
(Second embodiment)
FIG. 6 is a block diagram showing the configuration of an aircraft fuel supply system according to the second embodiment. This embodiment differs from the first embodiment in that the transmission 7 for changing the rotation speed of the pump 3 is an electric motor. That is, the pump 3 and the electric motor 7 constitute one electric pump.
 図7は、図6に示す燃料供給システムの構成をより詳細に示す図である。本実施形態では、変速装置7が、電動モータであるため、変速装置7にエンジン4の動力は伝達されない。変速装置7は、制御装置6により制御される。制御装置6は、変速装置7である電動モータのモータ回転数を制御することで、ポンプ3の回転数を制御することができる。 FIG. 7 is a diagram showing in more detail the configuration of the fuel supply system shown in FIG. In this embodiment, since the transmission 7 is an electric motor, the power of the engine 4 is not transmitted to the transmission 7 . The transmission 7 is controlled by the control device 6 . The control device 6 can control the rotation speed of the pump 3 by controlling the rotation speed of the electric motor that is the transmission 7 .
 制御装置6による変速装置7の制御方法やポンプ3が供給すべきエンジン4の要求燃料量の取得方法について、第1実施形態と同様であるため、説明を省略する。 The method of controlling the transmission device 7 by the control device 6 and the method of acquiring the required fuel amount of the engine 4 to be supplied by the pump 3 are the same as in the first embodiment, so descriptions thereof will be omitted.
 本実施形態でも第1実施形態と同様の効果が得られる。なお、本実施形態にも、上述の変形例1,2,3をそれぞれ適用し得る。 The same effects as in the first embodiment can be obtained in this embodiment as well. Modifications 1, 2, and 3 described above can also be applied to this embodiment.
 以上のような構成とすることで、バイパスラインを採用しないシステム、あるいは、バイパスラインを採用する場合であってもバイパスラインを通じて燃料供給ラインにおけるポンプより上流側部分に戻す燃料量を抑制することができるシステムとすることができる。すなわち、余剰な水素燃料がバイパスラインを循環する間に水素燃料の温度が上がって、膨張することでポンプにより昇圧できなくなるという問題を解消することができる。 With the above configuration, even in a system that does not employ a bypass line, or even if a bypass line is employed, it is possible to suppress the amount of fuel returned to the upstream portion of the fuel supply line from the pump through the bypass line. It can be a system that can That is, it is possible to solve the problem that the temperature of the hydrogen fuel rises while the surplus hydrogen fuel circulates through the bypass line, and the hydrogen fuel expands to prevent the pressure from being increased by the pump.
 (その他の実施形態)
 本開示は前述した実施形態に限定されるものではなく、その構成を変更、追加、又は削除することができる。
(Other embodiments)
The present disclosure is not limited to the above-described embodiments, and configurations thereof may be changed, added, or deleted.
 ポンプは、例えば、機械方式でもよいし、電動方式でもよいし、これらを組合せた方式であってもよい。 The pump may be, for example, a mechanical system, an electric system, or a combination of these systems.
 変速装置は、無段変速機でなくてもよく、有段変速機でもよい。変速装置は、エンジンの回転軸の動力を用いるものでもよいし、用いないものでもよい。更に、変速装置は、遊星歯車機構であってもよい。 The transmission does not have to be a continuously variable transmission, and may be a stepped transmission. The transmission may or may not use the power of the rotating shaft of the engine. Furthermore, the transmission may be a planetary gear mechanism.
 変速装置は、エンジンを動力とした無段変速機(CVT;Continuously Variable Transmission)や、CVTを含む無限変速機(IVT;Infinitely Variable Transmission)であってもよい。無段変速機としては、例えば、トロイダル無段変速機である。ポンプがエンジンの動力によって駆動される場合には、CVT等の変速機を用いてポンプの回転数を制御することができる。また、変速装置は、油圧式無段変速機であってもよい。油圧式無段変速機としては、例えば、静油圧式無段変速機(Hydraulic Static Transmission)、油圧機械式無段変速機(Hydraulic Mechanical Transmission)である。 The transmission may be a continuously variable transmission (CVT; Continuously Variable Transmission) powered by the engine, or an infinite transmission (IVT; Infinitely Variable Transmission) including a CVT. The continuously variable transmission is, for example, a toroidal continuously variable transmission. If the pump is driven by engine power, the speed of the pump can be controlled using a transmission such as a CVT. Alternatively, the transmission may be a hydraulic continuously variable transmission. The hydraulic continuously variable transmission includes, for example, a hydrostatic static transmission and a hydraulic mechanical transmission.
 変速装置は、ポンプに内蔵されてもよいし、ポンプに対して外付けでもよい。 The transmission may be built into the pump or may be external to the pump.
 上記実施形態では、制御装置が、変速装置を制御する変速機制御装置とエンジンを制御するエンジン制御装置とが統合したものであったが、変速装置を制御する制御装置とは別に、エンジンを制御するエンジン制御装置が航空機に搭載されていてもよい。この場合、変速装置を制御する制御装置は、エンジンの要求燃料量を計算せずに、エンジン制御装置からエンジンの要求燃料量を示す情報を受信してもよい。 In the above embodiment, the control device is a combination of the transmission control device that controls the transmission and the engine control device that controls the engine. The aircraft may also have an engine control unit that In this case, the control device that controls the transmission may receive information indicating the requested fuel amount of the engine from the engine control device without calculating the requested fuel amount of the engine.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、または、それらの任意の組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウエアであるか、または、列挙された機能を実行するようにプログラムされたハードウエアである。ハードウエアは、本明細書に開示されているハードウエアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウエアであってもよい。ハードウエアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウエアとソフトウエアの組み合わせであり、ソフトウエアはハードウエアまたはプロセッサの構成に使用される。 The functionality of the elements disclosed herein may be performed by general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, or any of them configured or programmed to perform the disclosed functions. can be implemented using a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions. The hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. A circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware or the processor.
 [開示項目]
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
 [項目1]
 水素を燃料とするエンジンを搭載した航空機において、前記エンジンに水素燃料を供給する燃料供給システムであって、
 水素燃料を貯留する燃料タンクと、
 前記燃料タンクから水素燃料を取り出すポンプであって、前記ポンプの回転機構の回転数に応じた量の水素燃料を取り出すポンプと、
 前記ポンプから取り出された水素燃料を燃焼させて前記航空機の推進力を得る前記エンジンと、
 前記ポンプの回転機構の回転数を変更可能に、前記ポンプの回転機構を駆動する変速装置と、
 前記エンジンの要求燃料量に基づいて、前記変速装置を制御する制御装置と、を備える、航空機の燃料供給システム。
[Item 1]
In an aircraft equipped with a hydrogen-fueled engine, a fuel supply system for supplying hydrogen fuel to the engine,
a fuel tank that stores hydrogen fuel;
a pump for taking out hydrogen fuel from the fuel tank, the pump taking out an amount of hydrogen fuel corresponding to the rotation speed of a rotation mechanism of the pump;
the engine that burns hydrogen fuel taken from the pump to obtain propulsion for the aircraft;
a transmission that drives the rotation mechanism of the pump so that the rotation speed of the rotation mechanism of the pump can be changed;
and a control device that controls the transmission based on the amount of fuel requested by the engine.
 [項目2]
 前記変速装置は、無段変速機である、項目1に記載の航空機の燃料供給システム。
[Item 2]
An aircraft fueling system according to item 1, wherein the transmission is a continuously variable transmission.
 [項目3]
 前記無段変速機は、前記エンジンの動力を変速して前記ポンプの回転機構に伝達する、項目2に記載の航空機の燃料供給システム。
[Item 3]
3. The aircraft fuel supply system according to item 2, wherein the continuously variable transmission changes the speed of power of the engine and transmits it to the rotating mechanism of the pump.
 [項目4]
 前記変速装置は、電動モータである、項目1に記載の航空機の燃料供給システム。
[Item 4]
An aircraft fueling system according to item 1, wherein the transmission is an electric motor.
 [項目5]
 前記変速装置は、油圧式無段変速機である、項目2に記載の航空機の燃料供給システム。
[Item 5]
3. Aircraft fueling system according to item 2, wherein the transmission is a hydraulic continuously variable transmission.
 [項目6]
 前記制御装置は、前記エンジンの要求燃料量をエンジン運転条件から計算する、項目1乃至5のいずれかに記載の航空機の燃料供給システム。
[Item 6]
6. An aircraft fuel supply system according to any one of items 1 to 5, wherein the control device calculates the required amount of fuel for the engine from engine operating conditions.
 [項目7]
 前記航空機には、前記制御装置に加えて、前記エンジンを制御するエンジン制御装置が搭載されており、
 前記制御装置は、前記エンジン制御装置から、前記エンジンの要求燃料量を示す情報を受信する、項目1乃至5のいずれかに記載の航空機の燃料供給システム。
[Item 7]
The aircraft is equipped with an engine control device for controlling the engine in addition to the control device,
6. An aircraft fueling system according to any one of items 1 to 5, wherein the control device receives information indicative of the requested fuel amount of the engine from the engine control device.
 [項目8]
 前記ポンプから前記エンジンに水素燃料を導く燃料供給路と、
 前記燃料供給路に配置された、前記燃料供給路を流れる水素燃料の燃料量を検出する流量センサを更に備え、
 前記制御装置は、前記エンジンの要求燃料量と、前記流量センサにより検出された燃料量に基づいて、前記変速装置を制御する、項目1乃至7のいずれかに記載の航空機の燃料供給システム。
[Item 8]
a fuel supply channel that directs hydrogen fuel from the pump to the engine;
Further comprising a flow rate sensor arranged in the fuel supply path for detecting the amount of hydrogen fuel flowing through the fuel supply path,
8. The aircraft fuel supply system according to any one of items 1 to 7, wherein the control device controls the transmission based on the amount of fuel requested by the engine and the amount of fuel detected by the flow rate sensor.
 [項目9]
 前記流量センサが、前記燃料供給路における水素燃料の圧力を検出する機能を有し、または、前記燃料供給システムが、前記燃料供給路における水素燃料の圧力を検出する圧力センサを更に備え、
 前記制御装置は、前記エンジンの要求燃料量および要求燃料圧力と、前記流量センサにより検出された燃料量と、前記流量センサまたは圧力センサにより検出された圧力とに基づいて、前記変速装置を制御する、項目8に記載の航空機の燃料供給システム。
[Item 9]
The flow sensor has a function of detecting the pressure of hydrogen fuel in the fuel supply path, or the fuel supply system further includes a pressure sensor that detects the pressure of hydrogen fuel in the fuel supply path,
The control device controls the transmission based on a required fuel amount and a required fuel pressure of the engine, a fuel amount detected by the flow sensor, and a pressure detected by the flow sensor or the pressure sensor. , item 8.
 [項目10]
 前記制御装置は、前記エンジンの要求燃料量をエンジン運転条件から計算する、項目8または9に記載の航空機の燃料供給システム。
 
 
[Item 10]
10. An aircraft fueling system according to item 8 or 9, wherein the controller calculates the required fuel quantity of the engine from engine operating conditions.

Claims (10)

  1.  水素を燃料とするエンジンを搭載した航空機において、前記エンジンに水素燃料を供給する燃料供給システムであって、
     水素燃料を貯留する燃料タンクと、
     前記燃料タンクから水素燃料を取り出すポンプであって、前記ポンプの回転機構の回転数に応じた量の水素燃料を取り出すポンプと、
     前記ポンプから取り出された水素燃料を燃焼させて前記航空機の推進力を得る前記エンジンと、
     前記ポンプの回転機構の回転数を変更可能に、前記ポンプの回転機構を駆動する変速装置と、
     前記エンジンの要求燃料量に基づいて、前記変速装置を制御する制御装置と、を備える、航空機の燃料供給システム。
    In an aircraft equipped with a hydrogen-fueled engine, a fuel supply system for supplying hydrogen fuel to the engine,
    a fuel tank that stores hydrogen fuel;
    a pump for taking out hydrogen fuel from the fuel tank, the pump taking out an amount of hydrogen fuel corresponding to the rotation speed of a rotation mechanism of the pump;
    the engine that burns hydrogen fuel taken from the pump to obtain propulsion for the aircraft;
    a transmission that drives the rotation mechanism of the pump so that the rotation speed of the rotation mechanism of the pump can be changed;
    and a control device that controls the transmission based on the amount of fuel requested by the engine.
  2.  前記変速装置は、無段変速機である、請求項1に記載の航空機の燃料供給システム。 The aircraft fuel supply system according to claim 1, wherein the transmission is a continuously variable transmission.
  3.  前記無段変速機は、前記エンジンの動力を変速して前記ポンプの回転機構に伝達する、請求項2に記載の航空機の燃料供給システム。 The aircraft fuel supply system according to claim 2, wherein the continuously variable transmission changes the speed of the power of the engine and transmits it to the rotating mechanism of the pump.
  4.  前記変速装置は、電動モータである、請求項1に記載の航空機の燃料供給システム。 The aircraft fuel supply system according to claim 1, wherein the transmission is an electric motor.
  5.  前記変速装置は、油圧式無段変速機である、請求項2に記載の航空機の燃料供給システム。 The aircraft fuel supply system according to claim 2, wherein the transmission is a hydraulic continuously variable transmission.
  6.  前記制御装置は、前記エンジンの要求燃料量をエンジン運転条件から計算する、請求項1に記載の航空機の燃料供給システム。 The aircraft fuel supply system according to claim 1, wherein the control device calculates the required amount of fuel for the engine from engine operating conditions.
  7.  前記航空機には、前記制御装置に加えて、前記エンジンを制御するエンジン制御装置が搭載されており、
     前記制御装置は、前記エンジン制御装置から、前記エンジンの要求燃料量を示す情報を受信する、請求項1乃至5のいずれかに記載の航空機の燃料供給システム。
    The aircraft is equipped with an engine control device for controlling the engine in addition to the control device,
    6. The aircraft fuel supply system according to any one of claims 1 to 5, wherein said control device receives information indicating a required fuel amount of said engine from said engine control device.
  8.  前記ポンプから前記エンジンに水素燃料を導く燃料供給路と、
     前記燃料供給路に配置された、前記燃料供給路を流れる水素燃料の燃料量を検出する流量センサを更に備え、
     前記制御装置は、前記エンジンの要求燃料量と、前記流量センサにより検出された燃料量に基づいて、前記変速装置を制御する、請求項1に記載の航空機の燃料供給システム。
    a fuel supply channel that directs hydrogen fuel from the pump to the engine;
    Further comprising a flow rate sensor arranged in the fuel supply path for detecting the amount of hydrogen fuel flowing through the fuel supply path,
    2. The aircraft fuel supply system according to claim 1, wherein the controller controls the transmission based on the amount of fuel requested by the engine and the amount of fuel detected by the flow rate sensor.
  9.  前記流量センサが、前記燃料供給路における水素燃料の圧力を検出する機能を有し、または、前記燃料供給システムが、前記燃料供給路における水素燃料の圧力を検出する圧力センサを更に備え、
     前記制御装置は、前記エンジンの要求燃料量および要求燃料圧力と、前記流量センサにより検出された燃料量と、前記流量センサまたは圧力センサにより検出された圧力とに基づいて、前記変速装置を制御する、請求項8に記載の航空機の燃料供給システム。
    The flow sensor has a function of detecting the pressure of hydrogen fuel in the fuel supply path, or the fuel supply system further includes a pressure sensor that detects the pressure of hydrogen fuel in the fuel supply path,
    The control device controls the transmission based on a required fuel amount and a required fuel pressure of the engine, a fuel amount detected by the flow sensor, and a pressure detected by the flow sensor or the pressure sensor. 9. An aircraft fuel supply system according to claim 8.
  10.  前記制御装置は、前記エンジンの要求燃料量をエンジン運転条件から計算する、請求項8または9に記載の航空機の燃料供給システム。 10. The aircraft fuel supply system according to claim 8 or 9, wherein the control device calculates the required amount of fuel for the engine from engine operating conditions.
PCT/JP2022/040097 2021-10-27 2022-10-27 Aircraft fuel supply system WO2023074782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021175935 2021-10-27
JP2021-175935 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074782A1 true WO2023074782A1 (en) 2023-05-04

Family

ID=86159927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040097 WO2023074782A1 (en) 2021-10-27 2022-10-27 Aircraft fuel supply system

Country Status (1)

Country Link
WO (1) WO2023074782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189583A (en) * 1995-12-12 1997-07-22 Lucas Ind Plc Flow sensor and fuel control apparatus
US20160076461A1 (en) * 2014-09-15 2016-03-17 The Boeing Company Dual fuel gas turbine thrust and power control
US20200088098A1 (en) * 2018-09-14 2020-03-19 United Technologies Corporation Hybrid expander cycle with pre-compression cooling and turbo-generator
US20200088099A1 (en) * 2018-09-14 2020-03-19 United Technologies Corporation Hybrid expander cycle with turbo-generator and cooled power electronics
US20200300180A1 (en) * 2019-03-20 2020-09-24 United Technologies Corporation Variable transmission driven fuel pump for a gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189583A (en) * 1995-12-12 1997-07-22 Lucas Ind Plc Flow sensor and fuel control apparatus
US20160076461A1 (en) * 2014-09-15 2016-03-17 The Boeing Company Dual fuel gas turbine thrust and power control
US20200088098A1 (en) * 2018-09-14 2020-03-19 United Technologies Corporation Hybrid expander cycle with pre-compression cooling and turbo-generator
US20200088099A1 (en) * 2018-09-14 2020-03-19 United Technologies Corporation Hybrid expander cycle with turbo-generator and cooled power electronics
US20200300180A1 (en) * 2019-03-20 2020-09-24 United Technologies Corporation Variable transmission driven fuel pump for a gas turbine engine

Similar Documents

Publication Publication Date Title
US8276360B2 (en) Dual-pump fuel system and method for starting a gas turbine engine
US8286432B2 (en) Electric power generating turbine engine fuel supply system
US7840336B2 (en) Control system for gas turbine aeroengine
US6353790B1 (en) Gas turbine aeroengine control system
RU2398124C2 (en) Gas turbine engine fuel feed device with adjustable fuel flow rate
EP3051103B1 (en) Fuel system
US8127548B2 (en) Hybrid electrical/mechanical turbine engine fuel supply system
JP5465950B2 (en) Control device for aircraft gas turbine engine
US20100003148A1 (en) Assistance and emergency backup for the electrical drive of a fuel pump in a turbine engine
US20010054290A1 (en) Low-cost general aviation fuel control system
US5299920A (en) Fixed geometry variable displacement pump system
US20180050812A1 (en) Aircraft fuel pump systems
WO2023074782A1 (en) Aircraft fuel supply system
US20070125905A1 (en) Control apparatus and control method for aircraft
US7599767B2 (en) Control apparatus and control method for aircraft
US7560881B2 (en) Electric drive fuel control system and method
US7725236B2 (en) Maneuver based aircraft gas turbine engine speed control
KR20140133453A (en) Gas dosage control for gas engine
CN113513413A (en) System and method for preventing accidental aircraft engine shut-down
CN111971463B (en) Feed forward control of a fuel supply circuit of a turbomachine
US11815034B2 (en) Circuit for supplying fuel to a turbomachine
JP2009047158A (en) Method and apparatus for controlling steam cycle
RU2183759C2 (en) Lox/liquid hydrogen engine
KR200287600Y1 (en) Boil off gas dumping system
JP7429337B2 (en) compressed air supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887107

Country of ref document: EP

Kind code of ref document: A1