WO2023074759A1 - Imaging apparatus, vehicle lamp fitting, and vehicle - Google Patents

Imaging apparatus, vehicle lamp fitting, and vehicle Download PDF

Info

Publication number
WO2023074759A1
WO2023074759A1 PCT/JP2022/040006 JP2022040006W WO2023074759A1 WO 2023074759 A1 WO2023074759 A1 WO 2023074759A1 JP 2022040006 W JP2022040006 W JP 2022040006W WO 2023074759 A1 WO2023074759 A1 WO 2023074759A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
image
imaging apparatus
restored image
tdgi
Prior art date
Application number
PCT/JP2022/040006
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 鳥居
祐太 春瀬
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023074759A1 publication Critical patent/WO2023074759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present disclosure relates to an imaging device using ghost imaging.
  • An object identification system that senses the position and type of objects around the vehicle is used for automated driving and automatic control of headlamp light distribution.
  • An object identification system includes a sensor and a processor that analyzes the output of the sensor. Sensors are selected from cameras, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), millimeter-wave radar, ultrasonic sonar, etc., taking into consideration the application, required accuracy, and cost.
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • millimeter-wave radar ultrasonic sonar
  • Ghost imaging illuminates an object while randomly switching the intensity distribution (pattern) of illumination light, and measures the light detection intensity of the reflected light for each pattern.
  • the light detection intensity is the integral of energy or intensity over a plane, not the intensity distribution. Correlation calculation between the corresponding pattern and the light detection intensity is then performed to reconstruct a restored image of the object.
  • the correlation function of Equation (1) is used for correlation in ghost imaging.
  • br is the detected intensity value obtained when the illumination light having the r-th intensity distribution is irradiated.
  • FIG. 1 is a time chart showing sensing of one frame of an imaging device.
  • correlation calculation requires an average value ⁇ b> of M detection intensities b 1 to b M obtained for M illumination light irradiations.
  • the average value ⁇ b> is calculated and the correlation calculation is started.
  • a photodetector is used for measuring the photodetection intensity.
  • Ambient light ie, noise component
  • the intensity of ambient light is constant during the irradiation period T during which irradiation is performed M times, the influence of noise is cancelled.
  • the intensity of ambient light fluctuates during the irradiation period T, the effect of noise is not canceled, and the image quality of the reconstructed image deteriorates.
  • this problem becomes significant when the distance between the noise light source and the moving body changes.
  • the present disclosure has been made in this context, and one exemplary purpose of certain aspects thereof is to provide an imaging apparatus that is more tolerant of temporally varying noise.
  • An imaging device includes an illumination device that illuminates a field of view with illumination light having a spatially random intensity distribution, a photodetector that measures reflected light from an object, and an output of the photodetector. and an arithmetic processing unit that performs correlation calculation between the detected intensity and the intensity distribution of the illumination light and reconstructs a restored image of the object, and is switchable between a first mode and a second mode, and performs arithmetic processing in the first mode.
  • the apparatus generates an intermediate image by performing correlation calculation each time the illumination light is irradiated n times (n ⁇ 2), synthesizes k intermediate images (k ⁇ 2), generates a restored image, and generates a second
  • the illumination light contains pairs of patterns whose intensity distributions are complementary.
  • dynamic switching between the two modes according to the measurement scene can improve resistance to temporally varying noise.
  • FIG. 4 is a time chart showing sensing of one frame by the imaging device; 1 is a diagram showing an imaging device according to Embodiment 1; FIG. 4 is a time chart for explaining the operation of the imaging apparatus in TDGI mode; FIG. 11 is a diagram illustrating another sequence in TDGI mode; FIG. 5(a) is a diagram showing the influence of noise in batch restoration, and FIG. 5(b) is a diagram showing the influence of noise in division restoration.
  • FIG. 6(a) shows a target image
  • FIG. 6(b) shows an image obtained by batch restoration and division restoration when noise does not exist.
  • FIG. 10 is a diagram showing a restored image G(x, y) obtained by collective restoration and divisional restoration when linear noise exists; 4 is a time chart for explaining the IPGI mode operation of the imaging device; FIGS. 9A and 9B are diagrams showing restored images obtained by the TDGI mode and the IPGI mode.
  • 2 is a block diagram of an imaging device according to Embodiment 2; FIG. FIGS. 11A and 11B are diagrams showing restored images obtained by the TDGI mode, IPGI mode, and TDGI-IPGI hybrid mode.
  • 1 is a block diagram of an object identification system;
  • FIG. 1 is a block diagram of a vehicle with an object identification system;
  • FIG. 1 is a block diagram showing a vehicle lamp equipped with an object detection system; FIG.
  • An imaging device includes an illumination device that illuminates a field of view with illumination light having a spatially random intensity distribution, a photodetector that measures reflected light from an object, and detection based on the output of the photodetector. and an arithmetic processing unit that performs correlation calculation between the intensity and the intensity distribution of the illumination light and reconstructs the restored image of the object, and is switchable between the first mode and the second mode.
  • the arithmetic processing unit performs correlation calculation each time illumination light is irradiated n times (n ⁇ 2) to generate an intermediate image, and synthesizes the latest k intermediate images (k ⁇ 2). , to generate the restored image.
  • the illumination light comprises pairs of patterns whose intensity distributions are complementary.
  • the correlation calculation is performed by dividing n irradiations into units, so that the amount of noise change per correlation calculation can be reduced, the restoration accuracy can be increased, and the image quality can be improved.
  • the restoration image generation time can be shortened.
  • the second mode it is possible to cancel the noise when measuring with illumination light having a certain intensity distribution and when measuring with illumination light complementary thereto, thereby improving the image quality.
  • the first mode is called “Time Divisional ghost Imaging (TDGI) mode”
  • the second mode is also called “Inverse Pattern ghost Imaging (IPGI) mode”.
  • the intensity distribution is random in this specification does not mean that it is completely random, but it is sufficient if it is random enough to reconstruct an image in ghost imaging. Therefore, “random” in this specification can include a certain degree of regularity therein. Also, “random” does not require unpredictability, but may be predictable and reproducible.
  • the arithmetic processing unit may synthesize the latest k intermediate images to generate a restored image. This makes it possible to increase the update rate of the restored image in the first mode.
  • the processing unit performs correlation calculation each time the illumination light is emitted n times to generate an intermediate image, synthesizes the latest k intermediate images, and generates a restored image. may be generated. This makes it possible to increase the update rate of the restored image even in the second mode.
  • Image quality is improved by selecting the first mode when the noise included in the output of the photodetector is relatively small and selecting the second mode when the noise included in the output of the photodetector is relatively large. It can be improved.
  • the image quality of the restored image obtained in the first mode deteriorates, the image quality can be improved by switching to the second mode.
  • a classifier classifier
  • the identification rate based on the restored image obtained by the first mode is lowered, it is assumed that the image quality is degraded, and switching to the second mode can improve the image quality and thus the identification rate.
  • FIG. 2 is a diagram showing the imaging device 100 according to the first embodiment.
  • Imaging device 100 is a correlation function image sensor that uses the principle of ghost imaging (also called single-pixel imaging), and includes illumination device 110 , photodetector 120 and arithmetic processing device 130 .
  • Imaging device 100 is also referred to as a quantum radar camera.
  • the illumination device 110 is a pseudo thermal light source, generates illumination light S1 having a spatial intensity distribution I(x, y) that can be regarded as substantially random, and irradiates the object OBJ.
  • the illumination light S1 is sequentially irradiated a plurality of M times while randomly changing its intensity distribution.
  • the number of times of irradiation M is the number of times that the original image can be restored in a conventional imaging method (batch restoration described later).
  • Illumination device 110 includes light source 112 , patterning device 114 and pattern generator 132 .
  • Light source 112 produces light S0 having a uniform intensity distribution.
  • a laser, a light emitting diode, or the like may be used as the light source 112 .
  • the wavelength and spectrum of the illumination light S1 are not particularly limited, and may be white light having multiple or continuous spectra, or monochromatic light including a predetermined wavelength.
  • the wavelength of the illumination light S1 may be infrared or ultraviolet.
  • the patterning device 114 has a plurality of pixels arranged in a matrix, and is configured to be able to spatially modulate the light intensity distribution I based on a combination of ON and OFF of the plurality of pixels.
  • a pixel in an ON state is called an ON pixel
  • a pixel in an OFF state is called an OFF pixel.
  • each pixel takes only two values (1, 0) of ON and OFF, but it is not limited to this and may take intermediate gradations.
  • a reflective DMD Digital Micromirror Device
  • a transmissive liquid crystal device can be used as the patterning device 114 .
  • a pattern signal PTN image data generated by a pattern generator 132 is applied to the patterning device 114 .
  • Sensing by the imaging apparatus 100 is performed with M patterned irradiations as one set, and one restored image is generated corresponding to the M patterned irradiations.
  • One sensing based on M pattern irradiations is called one frame. That is, one frame includes M time slots.
  • Photodetector 120 measures reflected light from object OBJ and outputs detection signal Dr.
  • the detection signal Dr is a spatial integrated value of light energy (or intensity) incident on the photodetector 120 when the object OBJ is irradiated with illumination light having the intensity distribution Ir . Therefore, the photodetector 120 can use a single-pixel photodetector.
  • the photodetector 120 outputs a plurality of detection signals D 1 to D M respectively corresponding to a plurality of M intensity distributions I 1 to I M .
  • the processor 130 includes a pattern generator 132 , a reconstruction processor 134 and a mode controller 136 .
  • the reconstruction processing unit 134 performs correlation calculation between a plurality of intensity distributions (also referred to as random patterns) I 1 to I M and a plurality of detected intensities b 1 to b M to generate a restored image G(x, y) of the object OBJ. to reconfigure.
  • the detected intensities b 1 -b M are based on the detected signals D 1 -D M .
  • the relationship between the detected intensity and the detected signal may be determined in consideration of the type and system of the photodetector 120 .
  • the detection signal Dr represents the amount of light received at a certain time (or minute time), that is, an instantaneous value.
  • the detection signal Dr may be sampled multiple times during the irradiation period, and the detection strength b r may be the integrated value, average value, or maximum value of all sampled values of the detection signal Dr.
  • some of all sampled values may be selected, and the integrated value, average value, or maximum value of the selected sampled values may be used. Selection of a plurality of sampled values may be performed, for example, by extracting the order x-th to y-th counting from the maximum value, excluding sampled values lower than an arbitrary threshold, or You may extract the sampling value of the small range.
  • the output Dr of the photodetector 120 can be directly used as the detection intensity br .
  • the conversion from the detection signal Dr to the detection intensity b r may be performed by the processing unit 130 or may be performed outside the processing unit 130 .
  • the arithmetic processing unit 130 can be implemented by combining a processor (hardware) such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), or microcomputer, and a software program executed by the processor (hardware).
  • processor hardware
  • processing unit 130 may be a combination of multiple processors.
  • the arithmetic processing unit 130 may be composed only of hardware.
  • the functions of the arithmetic processing unit 130 may be realized by software processing, hardware processing, or a combination of software processing and hardware processing.
  • software processing is implemented by combining processors (hardware) such as CPUs (Central Processing Units), MPUs (Micro Processing Units), microcomputers, and software programs executed by the processors (hardware).
  • processors hardware
  • hardware processing is implemented by hardware such as ASIC (Application Specific Integrated Circuit), controller IC, and FPGA (Field Programmable Gate Array).
  • the imaging apparatus 100 is configured to be switchable between a first mode (TDGI mode) and a second mode (IPGI mode).
  • the mode controller 136 adaptively switches between the TDGI mode and the IPGI mode according to the sensing environment.
  • the TDGI mode and the IPGI mode will be described below.
  • the reconstructed image generation processing in the reconstruction processing unit 134 of the arithmetic processing unit 130 is performed by dividing M times of irradiation into a plurality of k (k ⁇ 2) units. Specifically, the reconstruction processing unit 134 performs correlation calculation for each divided unit to generate an intermediate image M j (x, y). Then, the k intermediate images M 1 to M k (x, y) obtained for the k units are combined to generate the final restored image G TDGI (x, y).
  • Equation (2) I r is the r-th intensity distribution
  • b r is the value of the r-th detected intensity
  • ⁇ b r [j] > is the average value of the detected intensity b r measured in the j-th unit.
  • the j-th term on the right side of equation (2) represents the intermediate image M j (x, y) of the j-th unit. Therefore, the restored image G TDGI (x, y) is synthesized by simply adding the corresponding pixels of the plurality of intermediate images M j (x, y). Note that the combining method is not limited to simple addition, and weighted addition or other processing may be performed.
  • the pattern generator 132 In the second mode, the pattern generator 132 generates a pattern signal PTN such that the illumination light S1 contains a pair of patterns I(x,y), Î(x,y) whose intensity distributions are complementary. .
  • a first pattern group containing M patterns and a second pattern group containing M patterns are irradiated.
  • the pattern I r (x, y) included in the first pattern group and the pattern I r (x, y) corresponding to the pattern I r (x, y) in the second pattern group (referred to as an inverted pattern) I r (x, y) are Complementary relationship.
  • Complementary means that corresponding pixels are complementary.
  • the intensity distribution is multi-gradation (0 to MAX)
  • the pixel value of a pixel with the pattern I r (x, y) is A (0 ⁇ A ⁇ MAX)
  • the inverted pattern I r ⁇ (x, y ) is MAX-A.
  • the irradiation order of the first pattern group and the second pattern group is not particularly limited. may be physically adjacent to each other.
  • the first pattern group may be irradiated first, followed by the second pattern group.
  • the reconstruction processing unit 134 of the arithmetic processing device 130 generates the restored image G IPGI (x, y) by the correlation calculation represented by Equation (3).
  • a correlation calculation is performed between a plurality of non-inverted patterns I 1 (x, y) to I M (x, y) and a plurality of detection intensities b 1 to b M , and a plurality of inverted patterns I 1 ⁇ (x, y) to A correlation calculation is performed between I M ⁇ (x,y) and a plurality of detected intensities b 1 ⁇ ⁇ b M ⁇ , and the sum of the two correlation results represents the reconstructed image G IPGI (x,y).
  • the configuration of the imaging apparatus 100 is as described above. Next, operations in the TDGI mode and the IPGI mode will be described.
  • FIG. 3 is a time chart explaining the operation of the imaging apparatus 100 in TDGI mode.
  • the reconstruction image is generated by dividing it into k units each containing n irradiations.
  • the first unit includes the 1st to nth irradiations, the detected intensities b 1 to bn corresponding to the n irradiations are generated, and their average value ⁇ b r [1] > is generated. Then, correlation calculation is performed using the detected intensities b 1 to b n , their average value ⁇ b r [1] >, and the intensity distributions I n+1 to I 2n , and the intermediate image M 1 (x, y) is generated.
  • the second unit contains the n+1 to 2n exposures, and the detected intensities b n+1 to b 2n corresponding to the n exposures are generated and their average value ⁇ b r [2] > is generated. Then, correlation calculation is performed using the detected intensities b n+1 to b 2n , their average values ⁇ b r [2] >, and the intensity distributions I n+1 to I 2n , and the intermediate image M 2 (x, y) is generated.
  • the j-th unit includes (j-1)n+1 to jn-th irradiation, and the detection intensities b (j-1)n+1 to b jn corresponding to the n-th irradiation are generated, and their average A value ⁇ b r [j] > is generated. Then, correlation calculation is performed using the detected intensities b (j ⁇ 1)n+1 to b jn , their average values ⁇ b r [j] >, and the intensity distributions I (j ⁇ 1)n+1 to I jn , An intermediate image M j (x,y) is generated.
  • the last k-th unit contains the (k ⁇ 1)n+1 to kn-th irradiations, and the detected intensities b (k ⁇ 1)n+1 to b kn corresponding to the n irradiations are generated, and their average ⁇ b r [k] > is generated. Then, correlation calculation is performed using the detected intensities b (k ⁇ 1)n+1 to b kn , their average values ⁇ b r [k] >, and the intensity distributions I (k ⁇ 1)n+1 to I kn , An intermediate image M k (x,y) is generated.
  • a final restored image G(x, y) is generated by synthesizing the k intermediate images M 1 (x, y) to M k (x, y).
  • the above is the operation of the TDGI mode.
  • the TDGI mode by dividing the correlation calculation into units and performing it, the amount of noise change per correlation calculation can be reduced, the restoration accuracy can be increased, and the image quality can be improved.
  • correlation calculation can be started without waiting for the completion of M irradiations, the time required to generate a restored image can be shortened.
  • Imaging using correlation calculation for each unit based on Equation (2) is hereinafter referred to as segmentation reconstruction.
  • conventional imaging using correlation calculation based on equation (1) is referred to as collective reconstruction.
  • linear noise For example, consider noise that monotonously increases over time (referred to as linear noise). Such linear noise can occur in cases where the distance between the noise source and the photodetector approaches over time.
  • FIG. 4 is a diagram explaining another sequence in the TDGI mode.
  • the illumination light is continuously emitted, and the correlation calculation is performed every n times of irradiation to generate the intermediate image M(x, y).
  • a restored image G(x, y) is generated by synthesizing the latest k intermediate images M(x, y).
  • the restored image G(x, y) can be updated every n times of irradiation, so the update rate can be increased.
  • FIG. 5(a) is a diagram showing the influence of noise in batch restoration
  • FIG. 5(b) is a diagram showing the influence of noise in division restoration.
  • the horizontal axis represents the irradiation pattern number, that is, the time.
  • the integrated value over all irradiation can be obtained by multiplying the value of equation (5) by k, which is kn 2 ⁇ /4.
  • FIG. 6(a) shows a target image
  • FIG. 6(b) shows an image obtained by batch restoration and division restoration when noise does not exist.
  • M 100000 is required in order to restore the original target image to a recognizable degree, and the same is true for segmented restoration.
  • FIG. 7 is a diagram showing a restored image G(x, y) obtained by collective restoration and divisional restoration when linear noise exists.
  • FIG. 8 is a time chart for explaining the operation of the imaging apparatus 100 in IPGI mode.
  • a first pattern group I 1 ( x, y) to I M ( x, y) and the second pattern group I 1 ⁇ (x, y) to I M ⁇ (x, y) are alternately irradiated in a time division manner.
  • Each irradiation with the non-inverted pattern I r (x, y) produces a detected intensity b r
  • each irradiation with the inverted pattern I r ⁇ (x, y) produces a detected intensity b r ⁇ .
  • Each detection strength b r , b r ⁇ includes a noise component ⁇ .
  • the reconstruction processing unit 134 obtains detection intensities b 1 to b M , detection intensities b 1 ⁇ to b M ⁇ , non-inverted patterns I 1 (x, y) to I M (x, y ), I 1 ⁇ (x, y) to I M ⁇ (x, y), calculate the synthetic correlation formula of equation (3), and generate the final restored image G IPGI (x, y) .
  • Equation (8) holds.
  • equation (9) is obtained.
  • b r and b r ⁇ are represented by the sum of the true signal component (subscripted with (true)) due to the reflected light and the noise component ⁇ .
  • b r and b r ⁇ contain the same noise component ⁇ r .
  • b r b r(true) + ⁇ r
  • b r ⁇ b r (true) ⁇ + ⁇ r
  • Figs. 9(a) and (b) are diagrams showing restored images obtained by the TDGI mode and the IPGI mode.
  • a conventional image (GI) based on equation (1) is shown.
  • the number of pattern irradiation times M in the TDGI mode is 10000, and the number n of one unit is four.
  • the number M of pattern irradiations in the IPGI mode is 5000, and the total number of irradiations is the same as 10000 times in the TDGI mode.
  • sine wave noise of 120 Hz is generated when the pattern switching frequency is 20 kHz.
  • the noise SD value standard deviation is varied between 1000 and 10000 in 10 steps.
  • the image quality in TDGI mode and IPGI mode is improved regardless of the size of the noise compared to the image quality obtained by normal correlation calculation based on Equation (1).
  • the image quality of the TDGI mode is higher than that of the IPGI mode, although the total number of irradiation times is the same. . This is because the information obtained in the non-inverted pattern and the inverted pattern in the IPGI mode is mathematically equivalent (redundant), so the actual number of irradiations is half that in the TDGI mode. .
  • the number of times of irradiation in TDGI mode is 500
  • the number of times of irradiation in IPGI mode is 250 ⁇ 2
  • the noise SD value is changed in 10 steps between 100 and 1000.
  • a high-quality restored image can be obtained by adaptively selecting the TDGI mode and the IPGI mode according to the sensing environment.
  • the method of mode selection by the mode controller 136 is not particularly limited, and a mode that provides higher image quality under certain circumstances may be selected.
  • the mode controller 136 may monitor the detection signal D or the detection intensity b output from the photodetector 120 and select a mode according to the characteristics of the noise contained therein.
  • the mode can be selected based on the noise intensity, noise waveform (sine wave, random noise, rectangular noise, impulse noise), and noise frequency. Preliminary measurements and simulations allow us to know the tendency of which mode should be selected for what kind of noise.
  • mode controller 136 may be implemented by machine learning.
  • the mode controller 136 may select a mode based on the image quality of the restored image generated by the reconstruction processing unit 134. For example, when a good image quality is obtained in a certain mode, that mode may be continued, and when the image quality deteriorates, the opposite mode may be selected. If the TDGI mode is selected by default and the quality of the resulting decompressed image is degraded, the IPGI mode may be selected.
  • the discriminator or classifier When the restored image generated by the imaging apparatus 100 is input to a discriminator or classifier and the type (class/category) of the object included in the restored image is detected, the discriminator or classifier should be detected. When the object can no longer be detected, it may be assumed that the image quality has deteriorated, and the mode may be switched.
  • FIG. 10 is a block diagram of an imaging device 100A according to the second embodiment.
  • the imaging apparatus 100A can switch between two modes, a TDGI mode as a first mode and a TDGI-IPGI hybrid mode as a second mode.
  • the TDGI-IPGI hybrid mode will be explained.
  • the irradiation pattern of the illumination light S1 is the same as the irradiation pattern in the IPGI mode, and the arithmetic processing by the reconstruction processing unit 134 is the same as the arithmetic processing in the TDGI mode.
  • the pattern of illumination light S1 in the TDGI-IPGI mode includes a set of non-inverted patterns and inverted patterns.
  • the reconstruction processing unit 134 performs correlation calculation each time the illumination light is emitted n times to generate an intermediate image, and synthesizes the latest k intermediate images to generate a restored image.
  • FIGS. 11(a) and (b) are diagrams showing restored images obtained by the TDGI mode, IPGI mode, and TDGI-IPGI hybrid mode.
  • the TDGI-IPGI hybrid mode it is possible to obtain the same image quality as in the IPGI mode.
  • the restored image can be updated each time the measurement of one unit is completed. That is, the frame rate can be improved compared to the IPGI mode.
  • switching between the TDGI mode and the IPGI mode in Embodiment 1 it is necessary to switch both the irradiation pattern and the arithmetic processing.
  • switching between the TDGI mode and the TDGI-IPGI hybrid mode in the second embodiment has the advantage that only the irradiation pattern needs to be changed, and there is no need to switch the arithmetic processing.
  • the TDGI mode and the TDGI-IPGI hybrid mode are switched depending on the situation, but in the third embodiment, the two modes can be seamlessly switched continuously. That is, there is an intermediate stage between the TDGI mode and the TDGI-IPGI hybrid mode.
  • the restored image may be generated by synthesizing the x intermediate images obtained for the x units and the (kx) intermediate images obtained for the (kx) units.
  • the TDGI mode and the TDGI-IPGI hybrid mode are selected by time division, and the intermediate images obtained in the two modes are synthesized to generate the restored image.
  • the mode controller 136 changes the parameter x, that is, the ratio of time division, between 0 and k so as to obtain higher image quality according to the sensing environment.
  • Modification 1 In the embodiment, the number of times of irradiation for each unit is equal, but this is not the only option, and the number of times of irradiation for each unit may not be equal.
  • the unit number k is fixed, but the unit number k may be dynamically controlled. Image quality can be further improved by selecting the optimum number of units k according to the noise fluctuation speed and noise waveform.
  • illumination device 110 is configured by a combination of light source 112 and patterning device 114, but this is not the only option.
  • the illumination device 110 is composed of an array of multiple semiconductor light sources (LEDs (light emitting diodes) and LDs (laser diodes)) arranged in a matrix, and can control the on/off (or brightness) of each semiconductor light source.
  • LEDs light emitting diodes
  • LDs laser diodes
  • FIG. 12 is a block diagram of the object identification system 10. As shown in FIG. This object identification system 10 is mounted on a vehicle such as an automobile or a motorcycle, and determines types (categories) of objects OBJ existing around the vehicle.
  • the object identification system 10 includes an imaging device 100 and an arithmetic processing device 40 . As described above, the imaging apparatus 100 generates the restored image G of the object OBJ by irradiating the object OBJ with the illumination light S1 and measuring the reflected light S2.
  • the arithmetic processing device 40 processes the output image G of the imaging device 100 and determines the position and type (category) of the object OBJ.
  • the classifier 42 of the arithmetic processing unit 40 receives the image G as an input and determines the position and type of the object OBJ contained therein.
  • Classifier 42 is implemented based on a model generated by machine learning.
  • the algorithm of the classifier 42 is not particularly limited, YOLO (You Only Look Once), SSD (Single Shot MultiBox Detector), R-CNN (Region-based Convolutional Neural Network), SPPnet (Spatial Pyramid Pooling), Faster R-CNN , DSSD (Deconvolution-SSD), Mask R-CNN, etc., or algorithms that will be developed in the future.
  • the above is the configuration of the object identification system 10.
  • the imaging device 100 as a sensor for the object identification system 10, the following advantages can be obtained.
  • the imaging device 100 that is, the quantum radar camera
  • the noise immunity is greatly improved. For example, when it is raining, snowing, or driving in fog, it is difficult to recognize the object OBJ with the naked eye. A restored image G can be obtained.
  • the calculation delay can be reduced. This can provide low latency sensing. Particularly in in-vehicle applications, there are cases where the object OBJ moves at high speed.
  • FIG. 13 is a block diagram of an automobile equipped with the object identification system 10.
  • FIG. Automobile 300 includes headlights 302L and 302R. Imaging device 100 is built into at least one of headlights 302L and 302R. The headlight 302 is positioned at the extreme end of the vehicle body and is the most advantageous location for installing the imaging apparatus 100 in terms of detecting surrounding objects.
  • FIG. 14 is a block diagram showing a vehicle lamp 200 including an object detection system 210.
  • the vehicle lamp 200 constitutes a lamp system 310 together with a vehicle-side ECU 304 .
  • a vehicle lamp 200 includes a light source 202 , a lighting circuit 204 and an optical system 206 .
  • the vehicle lamp 200 is provided with an object detection system 210 .
  • Object detection system 210 corresponds to object identification system 10 described above and includes imaging device 100 and arithmetic processing device 40 .
  • Information on the object OBJ detected by the processing unit 40 may be used for light distribution control of the vehicle lamp 200 .
  • the lamp-side ECU 208 generates an appropriate light distribution pattern based on the information about the type and position of the object OBJ generated by the arithmetic processing unit 40 .
  • the lighting circuit 204 and the optical system 206 operate so as to obtain the light distribution pattern generated by the lamp-side ECU 208 .
  • Information regarding the object OBJ detected by the processing unit 40 may be transmitted to the vehicle-side ECU 304 .
  • the vehicle-side ECU may perform automatic driving based on this information.
  • the present disclosure relates to an imaging device using ghost imaging.
  • Object 10 Object identification system 40
  • Arithmetic processor 42 Classifier 100
  • Imaging device 110 ... Illuminator 112
  • Light source 114 ... Patterning device 120
  • Photodetector 130 ... Arithmetic processing Apparatus 132
  • Pattern generator 134 Reconfiguration processor 136 Mode controller 200 Vehicle lamp 202 Light source 204 Lighting circuit 206 Optical system 300 Automobile 302 Headlamp 304: Vehicle-side ECU, 310: Lamp system.

Abstract

In an imaging apparatus 100, an illuminating apparatus 110 sequentially emits, M times (M≥2), illuminating light having a spatially random intensity distribution. An arithmetic processing apparatus 130: divides the M emissions into a plurality k (k≥s) of units; performs a correlation calculation for each divided unit to generate an intermediate image; and combines the k intermediate images obtained for the k units to generate a restored image G (x, y).

Description

イメージング装置、車両用灯具、車両Imaging device, vehicle lamp, vehicle
 本開示は、ゴーストイメージングを利用したイメージング装置に関する。 The present disclosure relates to an imaging device using ghost imaging.
 自動運転やヘッドランプの配光の自動制御のために、車両の周囲に存在する物体の位置および種類をセンシングする物体識別システムが利用される。物体識別システムは、センサと、センサの出力を解析する演算処理装置を含む。センサは、カメラ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ミリ波レーダ、超音波ソナーなどの中から、用途、要求精度やコストを考慮して選択される。 An object identification system that senses the position and type of objects around the vehicle is used for automated driving and automatic control of headlamp light distribution. An object identification system includes a sensor and a processor that analyzes the output of the sensor. Sensors are selected from cameras, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), millimeter-wave radar, ultrasonic sonar, etc., taking into consideration the application, required accuracy, and cost.
 イメージング装置(センサ)のひとつとして、ゴーストイメージングの原理を利用したものが知られている。ゴーストイメージングは、照明光の強度分布(パターン)をランダムに切り替えながら物体に照射し、パターンごとに反射光の光検出強度を測定する。光検出強度はある平面にわたるエネルギーあるいは強度の積分値であり、強度分布ではない。そして、対応するパターンと光検出強度との相関計算を行い、物体の復元画像を再構成(reconstruct)する。 As one of the imaging devices (sensors), one that uses the principle of ghost imaging is known. Ghost imaging illuminates an object while randomly switching the intensity distribution (pattern) of illumination light, and measures the light detection intensity of the reflected light for each pattern. The light detection intensity is the integral of energy or intensity over a plane, not the intensity distribution. Correlation calculation between the corresponding pattern and the light detection intensity is then performed to reconstruct a restored image of the object.
特許第6412673号公報Japanese Patent No. 6412673 国際公開WO2020/218282号International publication WO2020/218282 国際公開WO2021/079810号International publication WO2021/079810
 本発明者らは、イメージング装置について検討した結果、以下の課題を認識するに至った。ゴーストイメージングにおける相関には、式(1)の相関関数が用いられる。照明光のIはr番目(r=1,2…,M)の強度分布であり、bはr番目の強度分布を有する照明光を照射したときに得られる検出強度の値である。
Figure JPOXMLDOC01-appb-M000001
As a result of studying the imaging apparatus, the inventors came to recognize the following problems. The correlation function of Equation (1) is used for correlation in ghost imaging. Ir of the illumination light is the r-th (r=1, 2, . . . , M) intensity distribution, and br is the detected intensity value obtained when the illumination light having the r-th intensity distribution is irradiated.
Figure JPOXMLDOC01-appb-M000001
 図1は、イメージング装置の1フレームのセンシングを示すタイムチャートである。式(1)から分かるように、相関計算には、M回の照明光の照射に対して得られるM個の検出強度b~bの平均値<b>が必要である。 FIG. 1 is a time chart showing sensing of one frame of an imaging device. As can be seen from equation (1), correlation calculation requires an average value <b> of M detection intensities b 1 to b M obtained for M illumination light irradiations.
 したがってM回の照射の完了後に、平均値<b>を算出して、相関計算を開始することとなる。ここで、光検出強度の測定には光検出器が用いられる。光検出器には、物体からの反射光(すなわち信号成分)に加えて、外乱光(すなわちノイズ成分)が入射する。外乱光の強度が、M回の照射を行う照射期間Tの間、一定であれば、ノイズの影響はキャンセルされる。ところが、外乱光の強度が照射期間Tの間に変動すると、ノイズの影響がキャンセルされないため、再構成した画像の画質が低下する。たとえば、イメージング装置を自動車などの移動体に搭載した場合に、ノイズ光源と移動体の距離が変化するような場合に、この問題が顕著となる。 Therefore, after completing M irradiations, the average value <b> is calculated and the correlation calculation is started. Here, a photodetector is used for measuring the photodetection intensity. Ambient light (ie, noise component) enters the photodetector in addition to the reflected light (ie, signal component) from the object. If the intensity of ambient light is constant during the irradiation period T during which irradiation is performed M times, the influence of noise is cancelled. However, when the intensity of ambient light fluctuates during the irradiation period T, the effect of noise is not canceled, and the image quality of the reconstructed image deteriorates. For example, when the imaging apparatus is mounted on a moving body such as an automobile, this problem becomes significant when the distance between the noise light source and the moving body changes.
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、時間的に変動するノイズに対する耐性を高めたイメージング装置の提供にある。 The present disclosure has been made in this context, and one exemplary purpose of certain aspects thereof is to provide an imaging apparatus that is more tolerant of temporally varying noise.
 本開示のある態様のイメージング装置は、空間的にランダムな強度分布を有する照明光を視野に照射する照明装置と、物体からの反射光を測定する光検出器と、光検出器の出力にもとづく検出強度と照明光の強度分布の相関計算を行い、物体の復元画像を再構成する演算処理装置と、を備え、第1モードと第2モードが切りかえ可能であり、第1モードにおいて、演算処理装置は、照明光をn回(n≧2)照射するたびに相関計算を行い中間画像を生成し、k個(k≧2)の中間画像を合成して、復元画像を生成し、第2モードにおいて、照明光は、強度分布が相補的であるパターンのペアを含む。 An imaging device according to one aspect of the present disclosure includes an illumination device that illuminates a field of view with illumination light having a spatially random intensity distribution, a photodetector that measures reflected light from an object, and an output of the photodetector. and an arithmetic processing unit that performs correlation calculation between the detected intensity and the intensity distribution of the illumination light and reconstructs a restored image of the object, and is switchable between a first mode and a second mode, and performs arithmetic processing in the first mode. The apparatus generates an intermediate image by performing correlation calculation each time the illumination light is irradiated n times (n≧2), synthesizes k intermediate images (k≧2), generates a restored image, and generates a second In the mode, the illumination light contains pairs of patterns whose intensity distributions are complementary.
 本開示のある態様によれば、2つのモードを、測定シーンに応じて動的に切り替えることを時間的に変動するノイズに対する耐性を高めることができる。 According to an aspect of the present disclosure, dynamic switching between the two modes according to the measurement scene can improve resistance to temporally varying noise.
イメージング装置の1フレームのセンシングを示すタイムチャートである。4 is a time chart showing sensing of one frame by the imaging device; 実施形態1に係るイメージング装置を示す図である。1 is a diagram showing an imaging device according to Embodiment 1; FIG. イメージング装置のTDGIモードの動作を説明するタイムチャートである。4 is a time chart for explaining the operation of the imaging apparatus in TDGI mode; TDGIモードの別のシーケンスを説明する図である。FIG. 11 is a diagram illustrating another sequence in TDGI mode; 図5(a)は、一括復元におけるノイズの影響を示す図であり、図5(b)は、分割復元におけるノイズの影響を示す図である。FIG. 5(a) is a diagram showing the influence of noise in batch restoration, and FIG. 5(b) is a diagram showing the influence of noise in division restoration. 図6(a)は、ターゲット画像を、図6(b)は、ノイズが存在しないときの、一括復元と分割復元により得られる画像を示す図である。FIG. 6(a) shows a target image, and FIG. 6(b) shows an image obtained by batch restoration and division restoration when noise does not exist. 線形ノイズが存在するときの、一括復元と分割復元により得られる復元画像G(x,y)を示す図である。FIG. 10 is a diagram showing a restored image G(x, y) obtained by collective restoration and divisional restoration when linear noise exists; イメージング装置のIPGIモードの動作を説明するタイムチャートである。4 is a time chart for explaining the IPGI mode operation of the imaging device; 図9(a)、(b)は、TDGIモードとIPGIモードによって得られる復元画像を示す図である。FIGS. 9A and 9B are diagrams showing restored images obtained by the TDGI mode and the IPGI mode. 実施形態2に係るイメージング装置のブロック図である。2 is a block diagram of an imaging device according to Embodiment 2; FIG. 図11(a)、(b)は、TDGIモード、IPGIモード、TDGI-IPGIハイブリッドモードによって得られる復元画像を示す図である。FIGS. 11A and 11B are diagrams showing restored images obtained by the TDGI mode, IPGI mode, and TDGI-IPGI hybrid mode. 物体識別システムのブロック図である。1 is a block diagram of an object identification system; FIG. 物体識別システムを備える自動車のブロック図である。1 is a block diagram of a vehicle with an object identification system; FIG. 物体検出システムを備える車両用灯具を示すブロック図である。1 is a block diagram showing a vehicle lamp equipped with an object detection system; FIG.
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。 An overview of some exemplary embodiments of the present disclosure is provided. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. This summary is not a comprehensive overview of all possible embodiments, and it is intended to neither identify key elements of all embodiments nor delineate the scope of some or all aspects. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.
 一実施形態に係るイメージング装置は、空間的にランダムな強度分布を有する照明光を視野に照射する照明装置と、物体からの反射光を測定する光検出器と、光検出器の出力にもとづく検出強度と照明光の強度分布の相関計算を行い、物体の復元画像を再構成する演算処理装置と、を備え、第1モードと第2モードが切りかえ可能である。第1モードにおいて、演算処理装置は、照明光をn回(n≧2)照射するたびに相関計算を行い中間画像を生成し、最新のk個(k≧2)の中間画像を合成して、復元画像を生成する。第2モードにおいて、照明光は、強度分布が相補的であるパターンのペアを含む。 An imaging device according to one embodiment includes an illumination device that illuminates a field of view with illumination light having a spatially random intensity distribution, a photodetector that measures reflected light from an object, and detection based on the output of the photodetector. and an arithmetic processing unit that performs correlation calculation between the intensity and the intensity distribution of the illumination light and reconstructs the restored image of the object, and is switchable between the first mode and the second mode. In the first mode, the arithmetic processing unit performs correlation calculation each time illumination light is irradiated n times (n≧2) to generate an intermediate image, and synthesizes the latest k intermediate images (k≧2). , to generate the restored image. In the second mode, the illumination light comprises pairs of patterns whose intensity distributions are complementary.
 第1モードでは、相関計算をn回の照射をユニットとして分割して行うことで、相関計算1回当たりのノイズ変化量を減らすことができ、復元精度を高めて画質を改善できる。また、M回の照射の完了を待たずに、相関計算を開始できるため、復元画像の生成時間を短縮できる。第2モードでは、ある強度分布の照明光で測定したときと、それと相補的な照明光で測定したときのノイズを打ち消すことができ、画質を改善できる。 In the first mode, the correlation calculation is performed by dividing n irradiations into units, so that the amount of noise change per correlation calculation can be reduced, the restoration accuracy can be increased, and the image quality can be improved. In addition, since the correlation calculation can be started without waiting for the completion of M irradiations, the restoration image generation time can be shortened. In the second mode, it is possible to cancel the noise when measuring with illumination light having a certain intensity distribution and when measuring with illumination light complementary thereto, thereby improving the image quality.
 本明細書において、第1モードを、「時分割ゴーストイメージング(TDGI:Time Divisional Ghost Imaging)モード」と称し、第2モードを、「逆パターンイメージング(IPGI:Inverse Pattern Ghost Imaging)モード」とも称する。 In this specification, the first mode is called "Time Divisional Ghost Imaging (TDGI) mode", and the second mode is also called "Inverse Pattern Ghost Imaging (IPGI) mode".
 本明細書における「強度分布がランダム」とは、完全なランダムであることを意味するものではなく、ゴーストイメージングにおいて画像を再構築できる程度に、ランダムであればよい。したがって本明細書における「ランダム」は、その中にある程度の規則性を内包することができる。また「ランダム」は、予測不能であることを要求するものではなく、予想可能、再生可能であってもよい。 "The intensity distribution is random" in this specification does not mean that it is completely random, but it is sufficient if it is random enough to reconstruct an image in ghost imaging. Therefore, "random" in this specification can include a certain degree of regularity therein. Also, "random" does not require unpredictability, but may be predictable and reproducible.
 一実施形態において、第1モードにおいて、演算処理装置は、新たな中間画像を生成するたびに、最新のk個の中間画像を合成して、復元画像を生成してもよい。これにより、第1モードにおいて、復元画像の更新レートを高めることができる。 In one embodiment, in the first mode, each time a new intermediate image is generated, the arithmetic processing unit may synthesize the latest k intermediate images to generate a restored image. This makes it possible to increase the update rate of the restored image in the first mode.
 一実施形態において、第2モードにおいて、演算処理装置は、照明光をn回、照射するたびに相関計算を行い中間画像を生成し、最新のk個の中間画像を合成して、復元画像を生成してもよい。これにより、第2モードにおいても、復元画像の更新レートを高めることができる。 In one embodiment, in the second mode, the processing unit performs correlation calculation each time the illumination light is emitted n times to generate an intermediate image, synthesizes the latest k intermediate images, and generates a restored image. may be generated. This makes it possible to increase the update rate of the restored image even in the second mode.
 一実施形態において、光検出器の出力にもとづいて、第1モードと第2モードとが切りかえ可能であってもよい。光検出器の出力に含まれるノイズが相対的に小さいときに第1モードを選択し、光検出器の出力に含まれるノイズが相対的に大きいときに第2モードを選択することで、画質を改善できる。 In one embodiment, it may be possible to switch between the first mode and the second mode based on the output of the photodetector. Image quality is improved by selecting the first mode when the noise included in the output of the photodetector is relatively small and selecting the second mode when the noise included in the output of the photodetector is relatively large. It can be improved.
 一実施形態において、復元画像の画質にもとづいて、第1モードと第2モードとが切りかえ可能であってもよい。第1モードにより得られる復元画像の画質が劣化したときに、第2モードに切りかえることにより、画質を改善できる。 In one embodiment, it may be possible to switch between the first mode and the second mode based on the quality of the restored image. When the image quality of the restored image obtained in the first mode deteriorates, the image quality can be improved by switching to the second mode.
 一実施形態において、復元画像にもとづく識別器(分類器)による識別率にもとづいて、第1モードと第2モードとが切りかえ可能であってもよい。第1モードにより得られる復元画像にもとづく識別率が低下したときに、画質の劣化と推定して、第2モードに切りかえることにより画質を改善でき、ひいては識別率を改善できる。 In one embodiment, it may be possible to switch between the first mode and the second mode based on the identification rate of a classifier (classifier) based on the restored image. When the identification rate based on the restored image obtained by the first mode is lowered, it is assumed that the image quality is degraded, and switching to the second mode can improve the image quality and thus the identification rate.
(実施形態)
 以下、本発明を好適な実施形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
(embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on preferred embodiments with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting the invention, and not all features and combinations thereof described in the embodiments are necessarily essential to the invention.
(実施形態1)
 図2は、実施形態1に係るイメージング装置100を示す図である。イメージング装置100はゴーストイメージング(シングルピクセルイメージングともいう)の原理を用いた相関関数イメージセンサであり、照明装置110、光検出器120および演算処理装置130を備える。イメージング装置100を、量子レーダカメラとも称する。
(Embodiment 1)
FIG. 2 is a diagram showing the imaging device 100 according to the first embodiment. Imaging device 100 is a correlation function image sensor that uses the principle of ghost imaging (also called single-pixel imaging), and includes illumination device 110 , photodetector 120 and arithmetic processing device 130 . Imaging device 100 is also referred to as a quantum radar camera.
 照明装置110は、疑似熱光源であり、実質的にランダムとみなしうる空間強度分布I(x,y)を有する照明光S1を生成し、物体OBJに照射する。照明光S1は、その強度分布を複数のM回、ランダムに変化させながらシーケンシャルに照射される。照射回数Mは、従来のイメージング方式(後述の一括復元)において、元の画像を復元しうる程度の回数である。 The illumination device 110 is a pseudo thermal light source, generates illumination light S1 having a spatial intensity distribution I(x, y) that can be regarded as substantially random, and irradiates the object OBJ. The illumination light S1 is sequentially irradiated a plurality of M times while randomly changing its intensity distribution. The number of times of irradiation M is the number of times that the original image can be restored in a conventional imaging method (batch restoration described later).
 照明装置110は、光源112、パターニングデバイス114およびパターン発生器132を含む。光源112は、均一な強度分布を有する光S0を生成する。光源112は、レーザや発光ダイオードなどを用いてもよい。照明光S1の波長やスペクトルは特に限定されず、複数のあるいは連続スペクトルを有する白色光であってもよいし、所定の波長を含む単色光であってもよい。照明光S1の波長は、赤外あるいは紫外であってもよい。 Illumination device 110 includes light source 112 , patterning device 114 and pattern generator 132 . Light source 112 produces light S0 having a uniform intensity distribution. A laser, a light emitting diode, or the like may be used as the light source 112 . The wavelength and spectrum of the illumination light S1 are not particularly limited, and may be white light having multiple or continuous spectra, or monochromatic light including a predetermined wavelength. The wavelength of the illumination light S1 may be infrared or ultraviolet.
 パターニングデバイス114は、マトリクス状に配置される複数の画素を有し、複数の画素のオン、オフの組み合わせにもとづいて、光の強度分布Iを空間的に変調可能に構成される。本明細書においてオン状態の画素をオン画素、オフ状態の画素をオフ画素という。なお、以下の説明では理解の容易化のために、各画素は、オンとオフの2値(1,0)のみをとるものとするがその限りでなく、中間的な階調をとってもよい。 The patterning device 114 has a plurality of pixels arranged in a matrix, and is configured to be able to spatially modulate the light intensity distribution I based on a combination of ON and OFF of the plurality of pixels. In this specification, a pixel in an ON state is called an ON pixel, and a pixel in an OFF state is called an OFF pixel. In the following description, for ease of understanding, it is assumed that each pixel takes only two values (1, 0) of ON and OFF, but it is not limited to this and may take intermediate gradations.
 パターニングデバイス114としては、反射型のDMD(Digital Micromirror Device)や透過型の液晶デバイスを用いることができる。パターニングデバイス114には、パターン発生器132が発生するパターン信号PTN(画像データ)が与えられている。 A reflective DMD (Digital Micromirror Device) or a transmissive liquid crystal device can be used as the patterning device 114 . A pattern signal PTN (image data) generated by a pattern generator 132 is applied to the patterning device 114 .
 パターン発生器132は、照明光S1の強度分布Iを指定するパターン信号PTNを発生し、タイムスロットごとに、時間とともにパターン信号PTNを切り替える(r=1,2,…M)。これにより、光S0がタイムスロットごとに異なるパターンで空間的に変調され、照明光S1が生成される。イメージング装置100によるセンシングは、M個のパターン照射を1セットとして行われ、M個のパターン照射に対応して1個の復元画像が生成される。M個のパターン照射にもとづく1回のセンシングを1フレームと称する。つまり1フレームは、M個のタイムスロットを含む。 The pattern generator 132 generates a pattern signal PTN r that specifies the intensity distribution Ir of the illumination light S1, and switches the pattern signal PTN r over time for each time slot (r=1, 2, . . . M). Thereby, the light S0 is spatially modulated with a different pattern for each time slot to generate the illumination light S1. Sensing by the imaging apparatus 100 is performed with M patterned irradiations as one set, and one restored image is generated corresponding to the M patterned irradiations. One sensing based on M pattern irradiations is called one frame. That is, one frame includes M time slots.
 光検出器120は、物体OBJからの反射光を測定し、検出信号Dを出力する。検出信号Dは、強度分布Iを有する照明光を物体OBJに照射したときに、光検出器120に入射する光エネルギー(あるいは強度)の空間的な積分値である。したがって光検出器120は、シングルピクセルの光検出器(フォトディテクタ)を用いることができる。光検出器120からは、複数M通りの強度分布I~Iそれぞれに対応する複数の検出信号D~Dが出力される。 Photodetector 120 measures reflected light from object OBJ and outputs detection signal Dr. The detection signal Dr is a spatial integrated value of light energy (or intensity) incident on the photodetector 120 when the object OBJ is irradiated with illumination light having the intensity distribution Ir . Therefore, the photodetector 120 can use a single-pixel photodetector. The photodetector 120 outputs a plurality of detection signals D 1 to D M respectively corresponding to a plurality of M intensity distributions I 1 to I M .
 演算処理装置130は、パターン発生器132、再構成処理部134、モードコントローラ136を含む。再構成処理部134は、複数の強度分布(ランダムパターンともいう)I~Iと、複数の検出強度b~bの相関計算を行い、物体OBJの復元画像G(x,y)を再構成する。 The processor 130 includes a pattern generator 132 , a reconstruction processor 134 and a mode controller 136 . The reconstruction processing unit 134 performs correlation calculation between a plurality of intensity distributions (also referred to as random patterns) I 1 to I M and a plurality of detected intensities b 1 to b M to generate a restored image G(x, y) of the object OBJ. to reconfigure.
 検出強度b~bは、検出信号D~Dにもとづいている。検出強度と検出信号の関係は、光検出器120の種類や方式などを考慮して定めればよい。 The detected intensities b 1 -b M are based on the detected signals D 1 -D M . The relationship between the detected intensity and the detected signal may be determined in consideration of the type and system of the photodetector 120 .
 ある強度分布Iの照明光S1を、ある照射期間にわたり照射するとする。また検出信号Dは、ある時刻(あるいは微小時間)の受光量、すなわち瞬時値を表すとする。この場合、照射期間において検出信号Dを複数回サンプリングし、検出強度bを、検出信号Dの全サンプリング値の積分値、平均値あるいは最大値としてもよい。あるいは、全サンプリング値のうちのいくつかを選別し、選別したサンプリング値の積分値や平均値、最大値を用いてもよい。複数のサンプリング値の選別は、たとえば最大値から数えて序列x番目からy番目を抽出してもよいし、任意のしきい値より低いサンプリング値を除外してもよいし、信号変動の大きさが小さい範囲のサンプリング値を抽出してもよい。 Assume that illumination light S1 having a certain intensity distribution Ir is emitted for a certain irradiation period. It is also assumed that the detection signal Dr represents the amount of light received at a certain time (or minute time), that is, an instantaneous value. In this case, the detection signal Dr may be sampled multiple times during the irradiation period, and the detection strength b r may be the integrated value, average value, or maximum value of all sampled values of the detection signal Dr. Alternatively, some of all sampled values may be selected, and the integrated value, average value, or maximum value of the selected sampled values may be used. Selection of a plurality of sampled values may be performed, for example, by extracting the order x-th to y-th counting from the maximum value, excluding sampled values lower than an arbitrary threshold, or You may extract the sampling value of the small range.
 光検出器120として、カメラのように露光時間が設定可能なデバイスを用いる場合には、光検出器120の出力Dをそのまま、検出強度bとすることができる。 When a device such as a camera whose exposure time can be set is used as the photodetector 120, the output Dr of the photodetector 120 can be directly used as the detection intensity br .
 検出信号Dから検出強度bへの変換は、演算処理装置130が実行してもよいし、演算処理装置130の外部で行ってもよい。 The conversion from the detection signal Dr to the detection intensity b r may be performed by the processing unit 130 or may be performed outside the processing unit 130 .
 演算処理装置130は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、マイコンなどのプロセッサ(ハードウェア)と、プロセッサ(ハードウェア)が実行するソフトウェアプログラムの組み合わせで実装することができる。演算処理装置130は、複数のプロセッサの組み合わせであってもよい。あるいは演算処理装置130はハードウェアのみで構成してもよい。 The arithmetic processing unit 130 can be implemented by combining a processor (hardware) such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), or microcomputer, and a software program executed by the processor (hardware). Processing unit 130 may be a combination of multiple processors. Alternatively, the arithmetic processing unit 130 may be composed only of hardware.
 演算処理装置130の機能は、ソフトウェア処理で実現してもよいし、ハードウェア処理で実現してもよいし、ソフトウェア処理とハードウェア処理の組み合わせで実現してもよい。ソフトウェア処理は、具体的には、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、マイコンなどのプロセッサ(ハードウェア)と、プロセッサ(ハードウェア)が実行するソフトウェアプログラムの組み合わせで実装される。なお演算処理装置130は、複数のプロセッサの組み合わせであってもよい。ハードウェア処理は具体的には、ASIC(Application Specific Integrated Circuit)やコントローラIC、FPGA(Field Programmable Gate Array)などのハードウェアで実装される。 The functions of the arithmetic processing unit 130 may be realized by software processing, hardware processing, or a combination of software processing and hardware processing. Specifically, software processing is implemented by combining processors (hardware) such as CPUs (Central Processing Units), MPUs (Micro Processing Units), microcomputers, and software programs executed by the processors (hardware). Note that the arithmetic processing unit 130 may be a combination of multiple processors. Specifically, hardware processing is implemented by hardware such as ASIC (Application Specific Integrated Circuit), controller IC, and FPGA (Field Programmable Gate Array).
 イメージング装置100は、第1モード(TDGIモード)と、第2モード(IPGIモード)と、が切りかえ可能に構成される。モードコントローラ136は、センシングの環境に応じて、TDGIモードとIPGIモードを適応的に切りかえる。 The imaging apparatus 100 is configured to be switchable between a first mode (TDGI mode) and a second mode (IPGI mode). The mode controller 136 adaptively switches between the TDGI mode and the IPGI mode according to the sensing environment.
 以下、TDGIモードとIPGIモードについて説明する。  The TDGI mode and the IPGI mode will be described below.
(TDGIモード)
 演算処理装置130の再構成処理部134における復元画像の生成処理は、M回の照射を複数k個(k≧2)のユニットに分割して行われる。具体的には再構成処理部134は、分割したユニットごとに相関計算を行って中間画像M(x,y)を生成する。そしてk個のユニットについて得られたk個の中間画像M~M(x,y)を合成し、最終的な復元画像GTDGI(x,y)を生成する。
(TDGI mode)
The reconstructed image generation processing in the reconstruction processing unit 134 of the arithmetic processing unit 130 is performed by dividing M times of irradiation into a plurality of k (k≧2) units. Specifically, the reconstruction processing unit 134 performs correlation calculation for each divided unit to generate an intermediate image M j (x, y). Then, the k intermediate images M 1 to M k (x, y) obtained for the k units are combined to generate the final restored image G TDGI (x, y).
 簡単のため、各ユニットの照射回数nは等しくM/kであるとする。この場合の復元画像GTDGI(x,y)は、式(2)で表される。Iは、r番目の強度分布であり、bはr番目の検出強度の値であり、<b [j]>は、j番目のユニットにおいて測定された検出強度bの平均値である。
Figure JPOXMLDOC01-appb-M000002
For simplicity, it is assumed that the number of irradiation times n of each unit is equal to M/k. The restored image G TDGI (x, y) in this case is represented by Equation (2). I r is the r-th intensity distribution, b r is the value of the r-th detected intensity, and <b r [j] > is the average value of the detected intensity b r measured in the j-th unit. be.
Figure JPOXMLDOC01-appb-M000002
 式(2)の右辺のj番目の項は、j番目のユニットの中間画像M(x,y)を表す。したがって、復元画像GTDGI(x,y)は、複数の中間画像M(x,y)の対応する画素同士を単純加算することにより合成されている。なお、合成の方法は単純加算に限定されず、重み付け加算やその他の処理を行ってもよい。 The j-th term on the right side of equation (2) represents the intermediate image M j (x, y) of the j-th unit. Therefore, the restored image G TDGI (x, y) is synthesized by simply adding the corresponding pixels of the plurality of intermediate images M j (x, y). Note that the combining method is not limited to simple addition, and weighted addition or other processing may be performed.
 言い換えると、演算処理装置130は、n=M/k回の照射ごとに相関計算を行う。そして、k個の中間画像M(x,y)を合成することにより、復元画像GTDGI(x,y)を生成する。 In other words, the processor 130 performs the correlation calculation every n=M/k irradiations. Then, a restored image G TDGI (x, y) is generated by synthesizing the k intermediate images M(x, y).
(IPGIモード)
 第2モードにおいて、パターン発生器132は、照明光S1が強度分布が相補的であるパターンのペアI(x,y),I^(x,y)を含むように、パターン信号PTNを生成する。
(IPGI mode)
In the second mode, the pattern generator 132 generates a pattern signal PTN such that the illumination light S1 contains a pair of patterns I(x,y), Î(x,y) whose intensity distributions are complementary. .
 IPGIモードでは、M個のパターンを含む第1パターン群と、M個のパターンを含む第2パターン群が照射される。第1パターン群に含まれるパターンI(x,y)と、第2パターン群のうち、パターンI(x,y)と対応するパターン(反転パターンという)I^(x,y)は相補的な関係にある。相補的であるとは、対応する画素同士が相補的であることをいう。 In IPGI mode, a first pattern group containing M patterns and a second pattern group containing M patterns are irradiated. The pattern I r (x, y) included in the first pattern group and the pattern I r (x, y) corresponding to the pattern I r (x, y) in the second pattern group (referred to as an inverted pattern) I r (x, y) are Complementary relationship. Complementary means that corresponding pixels are complementary.
 強度分布が2階調(1,0の二値)の場合、パターンI(x,y)のある画素の画素値が1であるとき、反転パターンI^(x,y)の同じ画素の画素値は0であり、パターンI(x,y)のある画素の画素値が0であるとき、反転パターンI^(x,y)の同じ画素の画素値は1である。 When the intensity distribution has two gradations (binary values of 1 and 0), when the pixel value of a pixel with the pattern I r (x, y) is 1, the same pixel of the inverted pattern I r (x, y) is 0, and when the pixel value of a pixel in the pattern I r (x, y) is 0, the pixel value of the same pixel in the inverse pattern I r (x, y) is 1.
 強度分布が多階調(0~MAX)の場合、パターンI(x,y)のある画素の画素値がA(0≦A≦MAX)であるとき、反転パターンI^(x,y)の同じ画素の画素値はMAX-Aである。 When the intensity distribution is multi-gradation (0 to MAX), when the pixel value of a pixel with the pattern I r (x, y) is A (0≦A≦MAX), the inverted pattern I r ^(x, y ) is MAX-A.
 第1パターン群および第2パターン群の照射順序は特に限定されないが、たとえば、互いに相補的な関係にある非反転パターンI(x,y)と反転パターンI^(x,y)は時間的に隣接していてもよい。 The irradiation order of the first pattern group and the second pattern group is not particularly limited. may be physically adjacent to each other.
 あるいは、第1パターン群を先行して照射し、それに続いて第2パターン群を照射してもよい。 Alternatively, the first pattern group may be irradiated first, followed by the second pattern group.
 非反転パターンI(x,y)を照射した結果得られる検出強度をbとし、反転パターンI^(x,y)を照射した結果得られる検出強度をb^とする。第2モードにおいて、演算処理装置130の再構成処理部134は、式(3)で表される相関計算によって、復元画像GIPGI(x,y)を生成する。
Figure JPOXMLDOC01-appb-M000003
Let b r be the detected intensity obtained as a result of irradiation with the non-inverted pattern I r (x, y), and let b r ^ be the detected intensity obtained as a result of irradiation with the inverted pattern I r ^(x, y). In the second mode, the reconstruction processing unit 134 of the arithmetic processing device 130 generates the restored image G IPGI (x, y) by the correlation calculation represented by Equation (3).
Figure JPOXMLDOC01-appb-M000003
 すなわち複数の非反転パターンI(x,y)~I(x,y)と複数の検出強度b~bの相関計算を行い、複数の反転パターンI^(x,y)~I^(x,y)と複数の検出強度b^~b^の相関計算を行い、2つの相関結果の合計が、復元画像GIPGI(x,y)を表す。 That is, a correlation calculation is performed between a plurality of non-inverted patterns I 1 (x, y) to I M (x, y) and a plurality of detection intensities b 1 to b M , and a plurality of inverted patterns I 1 ^(x, y) to A correlation calculation is performed between I M ̂(x,y) and a plurality of detected intensities b 1 ̂˜b M ̂, and the sum of the two correlation results represents the reconstructed image G IPGI (x,y).
 以上がイメージング装置100の構成である。続いてTDGIモード、IPGIモードそれぞれの動作を説明する。 The configuration of the imaging apparatus 100 is as described above. Next, operations in the TDGI mode and the IPGI mode will be described.
 図3は、イメージング装置100のTDGIモードの動作を説明するタイムチャートである。図3では、パターニングデバイス114の全画素数はp=4×4=16画素で表され、1枚の復元画像G(x,y)の生成(1フレームの撮影)に関して、M個のランダムパターンI~Iが生成される。 FIG. 3 is a time chart explaining the operation of the imaging apparatus 100 in TDGI mode. In FIG. 3, the total number of pixels of the patterning device 114 is represented by p=4×4=16 pixels, and M random pattern I 1 to I M are generated.
 復元画像の生成は、それぞれがn回の照射を含むk個のユニットに分割して行われる。 The reconstruction image is generated by dividing it into k units each containing n irradiations.
 1個目のユニットは、1~n回目の照射を含み、n回の照射に対応する検出強度b~bが生成され、それらの平均値<b [1]>が生成される。そして、検出強度b~bと、それらの平均値<b [1]>と、強度分布In+1~I2nと、用いて相関計算を行い、中間画像M(x,y)が生成される。 The first unit includes the 1st to nth irradiations, the detected intensities b 1 to bn corresponding to the n irradiations are generated, and their average value <b r [1] > is generated. Then, correlation calculation is performed using the detected intensities b 1 to b n , their average value <b r [1] >, and the intensity distributions I n+1 to I 2n , and the intermediate image M 1 (x, y) is generated.
 2個目のユニットは、n+1~2n回目の照射を含み、n回の照射に対応する検出強度bn+1~b2nが生成され、それらの平均値<b [2]>が生成される。そして、検出強度bn+1~b2nと、それらの平均値<b [2]>と、強度分布In+1~I2nと、用いて相関計算を行い、中間画像M(x,y)が生成される。 The second unit contains the n+1 to 2n exposures, and the detected intensities b n+1 to b 2n corresponding to the n exposures are generated and their average value <b r [2] > is generated. Then, correlation calculation is performed using the detected intensities b n+1 to b 2n , their average values <b r [2] >, and the intensity distributions I n+1 to I 2n , and the intermediate image M 2 (x, y) is generated.
 同様にしてj個目のユニットは、(j-1)n+1~jn回目の照射を含み、n回の照射に対応する検出強度b(j-1)n+1~bjnが生成され、それらの平均値<b [j]>が生成される。そして、検出強度b(j-1)n+1~bjnと、それらの平均値<b [j]>と、強度分布I(j-1)n+1~Ijnと、用いて相関計算を行い、中間画像M(x,y)が生成される。 Similarly, the j-th unit includes (j-1)n+1 to jn-th irradiation, and the detection intensities b (j-1)n+1 to b jn corresponding to the n-th irradiation are generated, and their average A value <b r [j] > is generated. Then, correlation calculation is performed using the detected intensities b (j−1)n+1 to b jn , their average values <b r [j] >, and the intensity distributions I (j−1)n+1 to I jn , An intermediate image M j (x,y) is generated.
 最後のk番目のユニットは、(k-1)n+1~kn回目の照射を含み、n回の照射に対応する検出強度b(k-1)n+1~bknが生成され、それらの平均値<b [k]>が生成される。そして、検出強度b(k-1)n+1~bknと、それらの平均値<b [k]>と、強度分布I(k-1)n+1~Iknと、用いて相関計算を行い、中間画像M(x,y)が生成される。 The last k-th unit contains the (k−1)n+1 to kn-th irradiations, and the detected intensities b (k−1)n+1 to b kn corresponding to the n irradiations are generated, and their average < b r [k] > is generated. Then, correlation calculation is performed using the detected intensities b (k−1)n+1 to b kn , their average values <b r [k] >, and the intensity distributions I (k−1)n+1 to I kn , An intermediate image M k (x,y) is generated.
 そして、k個の中間画像M(x,y)~M(x,y)を合成することにより、最終的な復元画像G(x,y)が生成される。 A final restored image G(x, y) is generated by synthesizing the k intermediate images M 1 (x, y) to M k (x, y).
 以上がTDGIモードの動作である。TDGIモードによれば、相関計算をユニット単位に分割して行うことで、相関計算1回当たりのノイズ変化量を減らすことができ、復元精度を高めて画質を改善できる。また、M回の照射の完了を待たずに、相関計算を開始できるため、復元画像を生成するのに要する時間を短縮できる。 The above is the operation of the TDGI mode. According to the TDGI mode, by dividing the correlation calculation into units and performing it, the amount of noise change per correlation calculation can be reduced, the restoration accuracy can be increased, and the image quality can be improved. In addition, since correlation calculation can be started without waiting for the completion of M irradiations, the time required to generate a restored image can be shortened.
 以下、TDGIモードによるノイズ耐性の改善について説明する。以下では、式(2)にもとづくユニットごとの相関計算を利用したイメージングを分割復元と称する。また式(1)にもとづく相関計算を利用した従来のイメージングを一括復元と称する。  In the following, the improvement of noise resistance in the TDGI mode will be described. Imaging using correlation calculation for each unit based on Equation (2) is hereinafter referred to as segmentation reconstruction. Also, conventional imaging using correlation calculation based on equation (1) is referred to as collective reconstruction.
 たとえば、時間的に単調増加するノイズ(線形ノイズと称する)を考える。このような線形ノイズは、ノイズ光源と光検出器との距離が、時間とともに接近するようなケースにおいて生じうる。 For example, consider noise that monotonously increases over time (referred to as linear noise). Such linear noise can occur in cases where the distance between the noise source and the photodetector approaches over time.
 図4は、TDGIモードの別のシーケンスを説明する図である。図4の例では、照明光を照射し続け、n回の照射ごとに相関計算を行い、中間画像M(x,y)を生成する。そして、中間画像M(x,y)を生成するたびに、最新のk個の中間画像M(x,y)を合成することにより、復元画像G(x,y)を生成する。このシーケンスによれば、n回の照射ごとに、復元画像G(x,y)を更新できるため、更新レートを高めることができる。 FIG. 4 is a diagram explaining another sequence in the TDGI mode. In the example of FIG. 4, the illumination light is continuously emitted, and the correlation calculation is performed every n times of irradiation to generate the intermediate image M(x, y). Then, every time an intermediate image M(x, y) is generated, a restored image G(x, y) is generated by synthesizing the latest k intermediate images M(x, y). According to this sequence, the restored image G(x, y) can be updated every n times of irradiation, so the update rate can be increased.
 続いてTDGIモードのノイズについて説明する。図5(a)は、一括復元におけるノイズの影響を示す図であり、図5(b)は、分割復元におけるノイズの影響を示す図である。横軸は照射パターンの番号、すなわち時間を表す。σは、r番目のパターンを照射しているときのノイズ強度を表し、ここでは、σ=α×rにしたがって増加するものとする。 Next, noise in the TDGI mode will be explained. FIG. 5(a) is a diagram showing the influence of noise in batch restoration, and FIG. 5(b) is a diagram showing the influence of noise in division restoration. The horizontal axis represents the irradiation pattern number, that is, the time. σ r represents the noise intensity when illuminating the r-th pattern, where it increases according to σ r =α×r.
 図5(a)を参照する。一括復元を行う場合、各パターン照射時に検出されるノイズの強度bとノイズの平均値<σ>の差分Δσ(=σ-<σ>)の絶対値|Δσ|の全照射にわたる積算値は、ハッチングを付した面積に相当し、以下の式(4)で表される。
 Σ|Δσ|=2×1/2×(kn/2)×(knα/2)=nαk/4  …(4)
Please refer to FIG. When collective restoration is performed , the absolute value | Δσ r | The integrated value over irradiation corresponds to the hatched area and is expressed by the following equation (4).
Σ|Δσ r |=2×1/2×(kn/2)×(knα/2)=n 2 αk 2 /4 (4)
 図5(b)を参照する。ここではk=5としている。分割復元を行う場合、j番目のユニットにおける差分Δσ(=σ-<σ [j]>)の絶対値|Δσ|の積算値Σ|Δσ|は、ハッチングを付した面積に相当し、式(5)で表される。
 Σ|Δσ|=2×1/2×(n/2)×(nα/2)=nα/4 …(5)
 全照射にわたる積算値は、式(5)の値をk倍すればよく、knα/4となる。
Please refer to FIG. Here, k=5. In the case of division restoration, the integrated value Σ|Δσ r | of the absolute value | Δσ r | of the difference Δσ r (=σ r −<σ r [j] >) in the j-th unit is the hatched area. It corresponds and is represented by Formula (5).
Σ|Δσ r |=2×1/2×(n/2)×(nα/2)=n 2 α/4 (5)
The integrated value over all irradiation can be obtained by multiplying the value of equation (5) by k, which is kn 2 α/4.
 このように、分割復元を行うことにより、ノイズ強度差分の絶対値|Δσ|の積算値が小さくなり、ノイズ耐性を高めることができる。 In this way, by performing division and restoration, the integrated value of the absolute value |Δσ r | of the noise intensity difference can be reduced, and the noise immunity can be improved.
 続いて、一括復元と分割復元に関するシミュレーション結果を説明する。
 図6(a)は、ターゲット画像を、図6(b)は、ノイズが存在しないときの、一括復元と分割復元により得られる画像を示す図である。シミュレーションは、M=1000,M=10000,M=100000について行った。またユニット数kは10としている。
Next, the simulation results for collective restoration and divided restoration will be described.
FIG. 6(a) shows a target image, and FIG. 6(b) shows an image obtained by batch restoration and division restoration when noise does not exist. The simulation was performed for M=1000, M=10000 and M=100000. Also, the number of units k is assumed to be 10.
 一括復元では、元のターゲット画像を認識しうる程度に復元するためには、M=100000が必要であり、分割復元においても同様である。M=100000において、最終的に得られる復元画像の精度は、一括復元と分割復元とで同等であると言える。 In batch restoration, M = 100000 is required in order to restore the original target image to a recognizable degree, and the same is true for segmented restoration. When M=100000, it can be said that the accuracy of the finally obtained restored image is the same between batch restoration and divisional restoration.
 図7は、線形ノイズが存在するときの、一括復元と分割復元により得られる復元画像G(x,y)を示す図である。総照射回数は、M=100000であり、検出強度の平均値は、<b>=1000である。ノイズの係数αは、0,0.01,0.1,1の4通りで計算している。α=0はノイズがない場合に相当する。分割復元に関しては、k=10,100,1000の場合について計算している。 FIG. 7 is a diagram showing a restored image G(x, y) obtained by collective restoration and divisional restoration when linear noise exists. The total number of irradiation times is M=100000, and the average value of the detected intensity is <b r >=1000. The noise coefficient α is calculated in four ways: 0, 0.01, 0.1, and 1. α=0 corresponds to no noise. As for split reconstruction, calculations are made for k=10, 100, and 1000.
 図7のシミュレーション結果から分かる通り、分割数kを高めるほど、ノイズ耐性が高まることが分かる。 As can be seen from the simulation results in FIG. 7, the higher the number of divisions k, the higher the noise resistance.
(IPGI)
 図8は、イメージング装置100のIPGIモードの動作を説明するタイムチャートである。
(IPGI)
FIG. 8 is a time chart for explaining the operation of the imaging apparatus 100 in IPGI mode.
 互いに相補的な関係にある2つのパターンI(x,y)とI^(x,y)が時間的に連続するように、第1パターン群I(x,y)~I(x,y)と第2パターン群I^(x,y)~I^(x,y)が交互に時分割で照射されるものとする。 A first pattern group I 1 ( x, y) to I M ( x, y) and the second pattern group I 1 ̂(x, y) to I M ̂(x, y) are alternately irradiated in a time division manner.
 非反転パターンI(x,y)を照射するごとに、検出強度bが生成され、反転パターンI^(x,y)を照射するごとに、検出強度b^が生成される。各検出強度b、b^には、ノイズ成分σが含まれる。再構成処理部134は、r=1~Mについて得られる検出強度b~b、検出強度b^~b^、非反転パターンI(x,y)~I(x,y)、I^(x,y)~I^(x,y)にもとづいて、式(3)の合成相関式を計算し、最終的な復元画像GIPGI(x,y)を生成する。 Each irradiation with the non-inverted pattern I r (x, y) produces a detected intensity b r , and each irradiation with the inverted pattern I r ̂(x, y) produces a detected intensity b r ̂. Each detection strength b r , b r ^ includes a noise component σ. The reconstruction processing unit 134 obtains detection intensities b 1 to b M , detection intensities b 1 ^ to b M ^, non-inverted patterns I 1 (x, y) to I M (x, y ), I 1 ̂(x, y) to I M ̂(x, y), calculate the synthetic correlation formula of equation (3), and generate the final restored image G IPGI (x, y) .
 続いてIPGIモードの利点を説明する。 Next, I will explain the advantages of IPGI mode.
 いま強度分布は、0,1の2値を取るものとする。このとき、非反転パターンI(x,y)と反転パターンI^(x,y)には式(6)が成り立つ。
Figure JPOXMLDOC01-appb-M000004
Assume now that the intensity distribution takes two values of 0 and 1. At this time, the non-inverted pattern I r (x, y) and the inverted pattern I r ^(x, y) hold the formula (6).
Figure JPOXMLDOC01-appb-M000004
 式(6)を、式(3)を代入すると、式(7)を得る。
Figure JPOXMLDOC01-appb-M000005
Substituting equation (3) into equation (6) yields equation (7).
Figure JPOXMLDOC01-appb-M000005
 <b^>は、b^の平均値であるから、式(8)が成り立つ。
Figure JPOXMLDOC01-appb-M000006
Since <b r ^ > is the average value of b r ^, Equation (8) holds.
Figure JPOXMLDOC01-appb-M000006
 式(8)を式(7)に代入して整理すると、式(9)を得る。
Figure JPOXMLDOC01-appb-M000007
By substituting equation (8) into equation (7) and arranging, equation (9) is obtained.
Figure JPOXMLDOC01-appb-M000007
 ここでbとb^を、反射光に起因する真の信号成分(添え字に(true)を付す)とノイズ成分σの和で表すとする。bとb^に同じノイズ成分σが含まれるとする。
 b=br(true)+σ
 b^=br(true)^+σ
Here, b r and b r ^ are represented by the sum of the true signal component (subscripted with (true)) due to the reflected light and the noise component σ. Suppose b r and b r ^ contain the same noise component σ r .
b r =b r(true)r
b r ^ = b r (true) ^ + σ r
 これを式(9)に代入すると、式(10)を得る。
Figure JPOXMLDOC01-appb-M000008
Substituting this into equation (9) yields equation (10).
Figure JPOXMLDOC01-appb-M000008
 式(9)から分かるように、最終的に得られた画像GIPGI(x,y)では、ノイズ成分同士が相殺し合うため、信号成分br(true)、br(true)^のみを含んでいる。したがって画質を改善することができる。 As can be seen from Equation (9), in the finally obtained image G IPGI (x, y), the noise components cancel each other out, so only the signal components b r(true) and b r(true) ̂ are contains. Therefore, image quality can be improved.
 図9(a)、(b)は、TDGIモードとIPGIモードによって得られる復元画像を示す図である。比較のために、式(1)にもとづく従来の画像(GI)を示す。図9(a)では、TDGIモードにおけるパターンの照射回数Mは10000とし、1ユニットの枚数nは4としている。IPGIモードにおけるパターンの照射回数Mは5000とし、トータルの照射回数をTDGIモードの10000回と揃えている。パターンの切りかえ周波数を20kHzとしたときに、120Hzの正弦波ノイズが発生した状況を想定している。ノイズのSD値(標準偏差)は、1000~10000の間を10段階で変化させている。  Figs. 9(a) and (b) are diagrams showing restored images obtained by the TDGI mode and the IPGI mode. For comparison, a conventional image (GI) based on equation (1) is shown. In FIG. 9A, the number of pattern irradiation times M in the TDGI mode is 10000, and the number n of one unit is four. The number M of pattern irradiations in the IPGI mode is 5000, and the total number of irradiations is the same as 10000 times in the TDGI mode. It is assumed that sine wave noise of 120 Hz is generated when the pattern switching frequency is 20 kHz. The noise SD value (standard deviation) is varied between 1000 and 10000 in 10 steps.
 TDGIモードとIPGIモードの画質は、式(1)にもとづく通常の相関計算で得られる画質に比べて、ノイズの大小にかかわらず、改善されている。 The image quality in TDGI mode and IPGI mode is improved regardless of the size of the noise compared to the image quality obtained by normal correlation calculation based on Equation (1).
 ノイズレベルが小さい領域では、TDGIモードとIPGIモードの画質を比較すると、トータルの照射回数は同じであるにもかかわらず、TDGIモードの画質の方が、IPGIモードの画質よりも、高画質である。これは、IPGIモードにおける、非反転パターンと反転パターンで得られる情報は、数学的には等価(冗長)であるため、実質的な照射回数は、TDGIモードの半分であることに起因している。 In a region where the noise level is low, when comparing the image quality of the TDGI mode and the IPGI mode, the image quality of the TDGI mode is higher than that of the IPGI mode, although the total number of irradiation times is the same. . This is because the information obtained in the non-inverted pattern and the inverted pattern in the IPGI mode is mathematically equivalent (redundant), so the actual number of irradiations is half that in the TDGI mode. .
 反対に、ノイズレベルが大きい領域では、IPGIモードの画質の方が、TDGIモードの画質よりも、高画質である。これは、IPGIモードにおけるノイズのキャンセルの効果が顕著となるからである。 On the contrary, in areas where the noise level is high, the image quality in IPGI mode is higher than that in TDGI mode. This is because the effect of noise cancellation in the IPGI mode is remarkable.
 図9(b)では、TDGIモードの照射回数を500、IPGIモードの照射回数を250×2とし、ノイズのSD値を100~1000の間で10段階で変化させている。 In FIG. 9(b), the number of times of irradiation in TDGI mode is 500, the number of times of irradiation in IPGI mode is 250×2, and the noise SD value is changed in 10 steps between 100 and 1000.
 図9(b)の状況では、ノイズレベルが小さいため、TDGIモードの方が画質がよいという結果が得られている。 In the situation of FIG. 9(b), the noise level is small, so the result is that the image quality is better in the TDGI mode.
 本実施形態によれば、センシングの環境に応じて、TDGIモードとIPGIモードを適応的に選択することで、高画質な復元画像を得ることができる。 According to this embodiment, a high-quality restored image can be obtained by adaptively selecting the TDGI mode and the IPGI mode according to the sensing environment.
 モードコントローラ136によるモード選択の方式は特に限定されず、ある環境下で、より高い画質が得られるモードを選択すればよい。 The method of mode selection by the mode controller 136 is not particularly limited, and a mode that provides higher image quality under certain circumstances may be selected.
 たとえばモードコントローラ136は、光検出器120の出力である検出信号Dあるいは検出強度bを監視し、それに含まれるノイズの特性に応じて、モードを選択してもよい。ノイズの特性としては、ノイズ強度のほか、ノイズの波形(正弦波、ランダムノイズ、矩形ノイズ、インパルスノイズ)、ノイズの周波数にもとづいて、モードを選択すればよい。どのようなノイズに対して、どのモードを選択すべきかは、事前の測定やシミュレーションによって傾向を知ることができる。あるいは機械学習によって、モードコントローラ136を実装してもよい。 For example, the mode controller 136 may monitor the detection signal D or the detection intensity b output from the photodetector 120 and select a mode according to the characteristics of the noise contained therein. As for the characteristics of the noise, the mode can be selected based on the noise intensity, noise waveform (sine wave, random noise, rectangular noise, impulse noise), and noise frequency. Preliminary measurements and simulations allow us to know the tendency of which mode should be selected for what kind of noise. Alternatively, mode controller 136 may be implemented by machine learning.
 モードコントローラ136は、再構成処理部134が生成する復元画像の画質にもとづいて、モードを選択してもよい。たとえば、あるモードにおいて、良好な画質が得られている場合、そのモードを継続し、画質が劣化した場合、それと反対のモードを選択するようにしてもよい。デフォルトで、TDGIモードを選択するようにし、その結果得られる復元画像の画質が低下した場合、IPGIモードを選択してもよい。 The mode controller 136 may select a mode based on the image quality of the restored image generated by the reconstruction processing unit 134. For example, when a good image quality is obtained in a certain mode, that mode may be continued, and when the image quality deteriorates, the opposite mode may be selected. If the TDGI mode is selected by default and the quality of the resulting decompressed image is degraded, the IPGI mode may be selected.
 イメージング装置100によって生成した復元画像を識別器や分類器に入力し、復元画像に含まれる物体の種類(クラス・カテゴリー)を検出する場合には、識別器や分類器によって、本来検知されるべき物体が検知できなくなった場合に、画質が劣化したものと推定して、モードを切りかえてもよい。 When the restored image generated by the imaging apparatus 100 is input to a discriminator or classifier and the type (class/category) of the object included in the restored image is detected, the discriminator or classifier should be detected. When the object can no longer be detected, it may be assumed that the image quality has deteriorated, and the mode may be switched.
(実施形態2)
 図10は、実施形態2に係るイメージング装置100Aのブロック図である。イメージング装置100Aは、第1モードであるTDGIモードと、第2モードであるTDGI-IPGIハイブリッドモードと、の2モードが切りかえ可能となっている。
(Embodiment 2)
FIG. 10 is a block diagram of an imaging device 100A according to the second embodiment. The imaging apparatus 100A can switch between two modes, a TDGI mode as a first mode and a TDGI-IPGI hybrid mode as a second mode.
 TDGI-IPGIハイブリッドモードについて説明する。TDGI-IPGIハイブリッドモードでは、照明光S1の照射パターンは、IPGIモードの照射パターンと同様であり、再構成処理部134による演算処理が、TDGIモードの演算処理と同様である。  The TDGI-IPGI hybrid mode will be explained. In the TDGI-IPGI hybrid mode, the irradiation pattern of the illumination light S1 is the same as the irradiation pattern in the IPGI mode, and the arithmetic processing by the reconstruction processing unit 134 is the same as the arithmetic processing in the TDGI mode.
 つまりTDGI-IPGIモードにおける照明光S1のパターンは、非反転パターンと反転パターンのセットを含んでいる。一方、再構成処理部134は、照明光をn回、照射するたびに相関計算を行い中間画像を生成し、最新のk個の中間画像を合成して、復元画像を生成する。 That is, the pattern of illumination light S1 in the TDGI-IPGI mode includes a set of non-inverted patterns and inverted patterns. On the other hand, the reconstruction processing unit 134 performs correlation calculation each time the illumination light is emitted n times to generate an intermediate image, and synthesizes the latest k intermediate images to generate a restored image.
 図11(a)、(b)は、TDGIモード、IPGIモード、TDGI-IPGIハイブリッドモードによって得られる復元画像を示す図である。TDGI-IPGIハイブリッドモードでは、IPGIモードと同程度の画質を得ることができる。 FIGS. 11(a) and (b) are diagrams showing restored images obtained by the TDGI mode, IPGI mode, and TDGI-IPGI hybrid mode. In the TDGI-IPGI hybrid mode, it is possible to obtain the same image quality as in the IPGI mode.
 またTDGI-IPGIハイブリッドモードでは、図4に示す処理を採用することにより、1ユニットの測定が終了するたびに、復元画像を更新することができる。つまり、IPGIモードに比べて、フレームレートを改善することができる。 Also, in the TDGI-IPGI hybrid mode, by adopting the processing shown in FIG. 4, the restored image can be updated each time the measurement of one unit is completed. That is, the frame rate can be improved compared to the IPGI mode.
 また、実施形態1におけるTDGIモードとIPGIモードの切りかえの場合、照射パターンと演算処理の両方を切りかえる必要がある。これに対して、実施形態2におけるTDGIモードと、TDGI-IPGIハイブリッドモードの切りかえでは、照射パターンのみを変更すればよく、演算処理については切りかえる必要がなくなるという利点もある。 Also, when switching between the TDGI mode and the IPGI mode in Embodiment 1, it is necessary to switch both the irradiation pattern and the arithmetic processing. On the other hand, switching between the TDGI mode and the TDGI-IPGI hybrid mode in the second embodiment has the advantage that only the irradiation pattern needs to be changed, and there is no need to switch the arithmetic processing.
(実施形態3)
 実施形態2では、TDGIモードと、TDGI-IPGIハイブリッドモードを、状況に応じて切りかえたが、実施形態3では、2つのモードを連続的にシームレスに切りかえ可能である。つまり、TDGIモードと、TDGI-IPGIハイブリッドモードの中間的な段階が存在する。
(Embodiment 3)
In the second embodiment, the TDGI mode and the TDGI-IPGI hybrid mode are switched depending on the situation, but in the third embodiment, the two modes can be seamlessly switched continuously. That is, there is an intermediate stage between the TDGI mode and the TDGI-IPGI hybrid mode.
 すなわち、TDGIモードと、TDGI-IPGIハイブリッドモードのユニット数がkであるとする。中間的な段階では、kユニットのうちのxユニットが、TDGIモードに割り当てられ、残りの(k-x)ユニットが、TDGI-IPGIハイブリッドモードに割り当てられる。そして、x個のユニットについて得られるx個の中間画像と、(k-x)個のユニットについて得られる(k-x)個の中間画像を合成することにより、復元画像を生成してもよい。言い換えると、TDGIモードとTDGI-IPGIハイブリッドモードを時分割で選択し、2つのモードで得られる中間画像を合成して、復元画像を生成する。 That is, let k be the number of units in the TDGI mode and the TDGI-IPGI hybrid mode. In an intermediate stage, x units out of k units are assigned to TDGI mode and the remaining (kx) units are assigned to TDGI-IPGI hybrid mode. Then, the restored image may be generated by synthesizing the x intermediate images obtained for the x units and the (kx) intermediate images obtained for the (kx) units. . In other words, the TDGI mode and the TDGI-IPGI hybrid mode are selected by time division, and the intermediate images obtained in the two modes are synthesized to generate the restored image.
 モードコントローラ136は、センシングの環境に応じて、より高画質が得られるように、パラメータx、つまり時分割の比率を、0~kの間で変化させる。 The mode controller 136 changes the parameter x, that is, the ratio of time division, between 0 and k so as to obtain higher image quality according to the sensing environment.
 この実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 It should be understood by those skilled in the art that this embodiment is an example, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention. . Such modifications will be described below.
(変形例1)
 実施形態では、ユニットごとの照射回数が等しいものとしたが、その限りでなく、ユニットごとの照射回数は等しくなくてもよい。
(Modification 1)
In the embodiment, the number of times of irradiation for each unit is equal, but this is not the only option, and the number of times of irradiation for each unit may not be equal.
(変形例2)
 また実施形態では、ユニット数kが一定であるとしたが、ユニット数kを動的に制御してもよい。ノイズの変動速度やノイズの波形に応じて、最適なユニット数kを選択することで、画質をより改善できる。
(Modification 2)
Also, in the embodiment, the unit number k is fixed, but the unit number k may be dynamically controlled. Image quality can be further improved by selecting the optimum number of units k according to the noise fluctuation speed and noise waveform.
(変形例3)
 実施形態では、照明装置110を、光源112とパターニングデバイス114の組み合わせで構成したがその限りでない。たとえば照明装置110は、マトリクス状に配置される複数の半導体光源(LED(発光ダイオード)やLD(レーザダイオード))のアレイで構成し、個々の半導体光源のオン、オフ(あるいは輝度)を制御可能に構成してもよい。
(Modification 3)
In the embodiment, illumination device 110 is configured by a combination of light source 112 and patterning device 114, but this is not the only option. For example, the illumination device 110 is composed of an array of multiple semiconductor light sources (LEDs (light emitting diodes) and LDs (laser diodes)) arranged in a matrix, and can control the on/off (or brightness) of each semiconductor light source. can be configured to
(用途)
 続いてイメージング装置100の用途を説明する。図12は、物体識別システム10のブロック図である。この物体識別システム10は、自動車やバイクなどの車両に搭載され、車両の周囲に存在する物体OBJの種類(カテゴリ)を判定する。
(Application)
Next, the application of the imaging apparatus 100 will be described. FIG. 12 is a block diagram of the object identification system 10. As shown in FIG. This object identification system 10 is mounted on a vehicle such as an automobile or a motorcycle, and determines types (categories) of objects OBJ existing around the vehicle.
 物体識別システム10は、イメージング装置100と、演算処理装置40を備える。イメージング装置100は、上述のように、物体OBJに照明光S1を照射し、反射光S2を測定することにより、物体OBJの復元画像Gを生成する。 The object identification system 10 includes an imaging device 100 and an arithmetic processing device 40 . As described above, the imaging apparatus 100 generates the restored image G of the object OBJ by irradiating the object OBJ with the illumination light S1 and measuring the reflected light S2.
 演算処理装置40は、イメージング装置100の出力画像Gを処理し、物体OBJの位置および種類(カテゴリ)を判定する。 The arithmetic processing device 40 processes the output image G of the imaging device 100 and determines the position and type (category) of the object OBJ.
 演算処理装置40の分類器42は、画像Gを入力として受け、それに含まれる物体OBJの位置および種類を判定する。分類器42は、機械学習によって生成されたモデルにもとづいて実装される。分類器42のアルゴリズムは特に限定されないが、YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)、R-CNN(Region-based Convolutional Neural Network)、SPPnet(Spatial Pyramid Pooling)、Faster R-CNN、DSSD(Deconvolution -SSD)、Mask R-CNNなどを採用することができ、あるいは、将来開発されるアルゴリズムを採用できる。 The classifier 42 of the arithmetic processing unit 40 receives the image G as an input and determines the position and type of the object OBJ contained therein. Classifier 42 is implemented based on a model generated by machine learning. Although the algorithm of the classifier 42 is not particularly limited, YOLO (You Only Look Once), SSD (Single Shot MultiBox Detector), R-CNN (Region-based Convolutional Neural Network), SPPnet (Spatial Pyramid Pooling), Faster R-CNN , DSSD (Deconvolution-SSD), Mask R-CNN, etc., or algorithms that will be developed in the future.
 以上が物体識別システム10の構成である。物体識別システム10のセンサとして、イメージング装置100を用いることで、以下の利点を得ることができる。 The above is the configuration of the object identification system 10. By using the imaging device 100 as a sensor for the object identification system 10, the following advantages can be obtained.
 イメージング装置100すなわち量子レーダカメラを用いることで、ノイズ耐性が格段に高まる。たとえば、降雨時、降雪時、あるいは霧の中を走行する場合、肉眼では物体OBJを認識しにくいが、イメージング装置100を用いることで、雨、雪、霧の影響を受けずに、物体OBJの復元画像Gを得ることができる。 By using the imaging device 100, that is, the quantum radar camera, the noise immunity is greatly improved. For example, when it is raining, snowing, or driving in fog, it is difficult to recognize the object OBJ with the naked eye. A restored image G can be obtained.
 また、イメージング装置100を用いることで、計算遅延を小さくできる。これにより低遅延のセンシングを提供できる。特に車載用途では物体OBJが高速に移動するケースがあるため、低遅延のセンシングがもたらす恩恵は、非常に大きい。 Also, by using the imaging apparatus 100, the calculation delay can be reduced. This can provide low latency sensing. Particularly in in-vehicle applications, there are cases where the object OBJ moves at high speed.
 図13は、物体識別システム10を備える自動車のブロック図である。自動車300は、前照灯302L,302Rを備える。イメージング装置100は、前照灯302L,302Rの少なくとも一方に内蔵される。前照灯302は、車体の最も先端に位置しており、周囲の物体を検出する上で、イメージング装置100の設置箇所として最も有利である。 FIG. 13 is a block diagram of an automobile equipped with the object identification system 10. FIG. Automobile 300 includes headlights 302L and 302R. Imaging device 100 is built into at least one of headlights 302L and 302R. The headlight 302 is positioned at the extreme end of the vehicle body and is the most advantageous location for installing the imaging apparatus 100 in terms of detecting surrounding objects.
 図14は、物体検出システム210を備える車両用灯具200を示すブロック図である。車両用灯具200は、車両側ECU304とともに灯具システム310を構成する。車両用灯具200は、光源202、点灯回路204、光学系206を備える。さらに車両用灯具200には、物体検出システム210が設けられる。物体検出システム210は、上述の物体識別システム10に対応しており、イメージング装置100および演算処理装置40を含む。 FIG. 14 is a block diagram showing a vehicle lamp 200 including an object detection system 210. FIG. The vehicle lamp 200 constitutes a lamp system 310 together with a vehicle-side ECU 304 . A vehicle lamp 200 includes a light source 202 , a lighting circuit 204 and an optical system 206 . Furthermore, the vehicle lamp 200 is provided with an object detection system 210 . Object detection system 210 corresponds to object identification system 10 described above and includes imaging device 100 and arithmetic processing device 40 .
 演算処理装置40が検出した物体OBJに関する情報は、車両用灯具200の配光制御に利用してもよい。具体的には、灯具側ECU208は、演算処理装置40が生成する物体OBJの種類とその位置に関する情報にもとづいて、適切な配光パターンを生成する。点灯回路204および光学系206は、灯具側ECU208が生成した配光パターンが得られるように動作する。 Information on the object OBJ detected by the processing unit 40 may be used for light distribution control of the vehicle lamp 200 . Specifically, the lamp-side ECU 208 generates an appropriate light distribution pattern based on the information about the type and position of the object OBJ generated by the arithmetic processing unit 40 . The lighting circuit 204 and the optical system 206 operate so as to obtain the light distribution pattern generated by the lamp-side ECU 208 .
 また演算処理装置40が検出した物体OBJに関する情報は、車両側ECU304に送信してもよい。車両側ECUは、この情報にもとづいて、自動運転を行ってもよい。 Information regarding the object OBJ detected by the processing unit 40 may be transmitted to the vehicle-side ECU 304 . The vehicle-side ECU may perform automatic driving based on this information.
 実施形態にもとづき、具体的な語句を用いて本発明を説明したが、実施形態は、本発明の原理、応用の一側面を示しているにすぎず、実施形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiments, the embodiments merely show one aspect of the principle and application of the present invention, and the embodiments are defined in the scope of claims. Many modifications and changes in arrangement are permitted without departing from the spirit of the present invention.
 本開示は、ゴーストイメージングを利用したイメージング装置に関する。 The present disclosure relates to an imaging device using ghost imaging.
OBJ…物体、10…物体識別システム、40…演算処理装置、42…分類器、100…イメージング装置、110…照明装置、112…光源、114…パターニングデバイス、120…光検出器、130…演算処理装置、132…パターン発生器、134…再構成処理部、136…モードコントローラ、200…車両用灯具、202…光源、204…点灯回路、206…光学系、300…自動車、302…前照灯、304…車両側ECU、310…灯具システム。 OBJ... Object 10... Object identification system 40... Arithmetic processor 42... Classifier 100... Imaging device 110... Illuminator 112... Light source 114... Patterning device 120... Photodetector 130... Arithmetic processing Apparatus 132 Pattern generator 134 Reconfiguration processor 136 Mode controller 200 Vehicle lamp 202 Light source 204 Lighting circuit 206 Optical system 300 Automobile 302 Headlamp 304: Vehicle-side ECU, 310: Lamp system.

Claims (10)

  1.  空間的にランダムな強度分布を有する照明光を視野に照射する照明装置と、
     物体からの反射光を測定する光検出器と、
     前記光検出器の出力にもとづく検出強度と前記照明光の強度分布の相関計算を行い、前記物体の復元画像を再構成する演算処理装置と、
     を備え、第1モードと第2モードが切りかえ可能であり、
     前記第1モードにおいて、前記演算処理装置は、前記照明光をn回(n≧2)照射するたびに相関計算を行い中間画像を生成し、k個(k≧2)の中間画像を合成して、前記復元画像を生成し、
     前記第2モードにおいて、前記照明光は、強度分布が相補的であるパターンのペアを含むことを特徴とするイメージング装置。
    an illumination device that illuminates a field of view with illumination light having a spatially random intensity distribution;
    a photodetector that measures reflected light from an object;
    an arithmetic processing unit that performs correlation calculation between the detected intensity based on the output of the photodetector and the intensity distribution of the illumination light, and reconstructs a restored image of the object;
    and can be switched between the first mode and the second mode,
    In the first mode, the arithmetic processing unit performs correlation calculation each time the illumination light is irradiated n times (n≧2) to generate an intermediate image, and synthesizes k intermediate images (k≧2). to generate the restored image,
    The imaging apparatus, wherein in the second mode, the illumination light includes a pair of patterns having complementary intensity distributions.
  2.  前記第1モードにおいて、前記演算処理装置は、新たな中間画像を生成するたびに、最新のk個の中間画像を合成して、前記復元画像を生成することを特徴とする請求項1に記載のイメージング装置。 2. The method according to claim 1, wherein, in said first mode, each time a new intermediate image is generated, said arithmetic processing unit synthesizes the latest k intermediate images to generate said restored image. imaging equipment.
  3.  前記第2モードにおいて、前記演算処理装置は、前記照明光をn回、照射するたびに相関計算を行い中間画像を生成し、最新のk個の中間画像を合成して、前記復元画像を生成することを特徴とする請求項1に記載のイメージング装置。 In the second mode, the arithmetic processing unit performs correlation calculation every time the illumination light is emitted n times to generate an intermediate image, synthesizes the latest k intermediate images, and generates the restored image. 2. The imaging apparatus of claim 1, wherein:
  4.  前記光検出器の出力にもとづいて、前記第1モードと前記第2モードとが切りかえ可能であることを特徴とする請求項1から3のいずれかに記載のイメージング装置。 The imaging apparatus according to any one of claims 1 to 3, wherein switching between the first mode and the second mode is possible based on the output of the photodetector.
  5.  前記復元画像の画質にもとづいて、前記第1モードと前記第2モードとが切りかえ可能であることを特徴とする請求項1から3のいずれかに記載のイメージング装置。 The imaging apparatus according to any one of claims 1 to 3, wherein switching between the first mode and the second mode is possible based on the image quality of the restored image.
  6.  前記復元画像にもとづく識別器による識別率にもとづいて、前記第1モードと前記第2モードとが切りかえ可能であることを特徴とする請求項1から3のいずれかに記載のイメージング装置。 The imaging apparatus according to any one of claims 1 to 3, wherein switching between the first mode and the second mode is possible based on a discrimination rate by a classifier based on the restored image.
  7.  前記第1モードと前記第2モードを時分割で選択し、2つのモードで得られる中間画像を合成して、前記復元画像を生成することを特徴とする請求項3に記載のイメージング装置。 4. The imaging apparatus according to claim 3, wherein the first mode and the second mode are selected in a time division manner, intermediate images obtained in the two modes are synthesized, and the restored image is generated.
  8.  前記第1モードと前記第2モードの時分割の比率を適応的に変化させることを特徴とする請求項7に記載のイメージング装置。 The imaging apparatus according to claim 7, wherein the ratio of time division between the first mode and the second mode is adaptively changed.
  9.  請求項1から8のいずれかに記載のイメージング装置を備えることを特徴とする車両用灯具。 A vehicle lamp comprising the imaging device according to any one of claims 1 to 8.
  10.  請求項1から8のいずれかに記載のイメージング装置を備えることを特徴とする車両。 A vehicle comprising the imaging device according to any one of claims 1 to 8.
PCT/JP2022/040006 2021-10-27 2022-10-26 Imaging apparatus, vehicle lamp fitting, and vehicle WO2023074759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175715 2021-10-27
JP2021175715 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074759A1 true WO2023074759A1 (en) 2023-05-04

Family

ID=86158050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040006 WO2023074759A1 (en) 2021-10-27 2022-10-26 Imaging apparatus, vehicle lamp fitting, and vehicle

Country Status (1)

Country Link
WO (1) WO2023074759A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525952A (en) * 2014-07-31 2017-09-07 レイセオン カンパニー Linear mode calculation sensing laser radar
JP2019095376A (en) * 2017-11-27 2019-06-20 倉敷紡績株式会社 Image processing system
WO2020137908A1 (en) * 2018-12-27 2020-07-02 株式会社小糸製作所 Lighting fixture for vehicle, and vehicle
WO2020218282A1 (en) * 2019-04-22 2020-10-29 株式会社小糸製作所 Imaging device, vehicle light, automobile, and imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525952A (en) * 2014-07-31 2017-09-07 レイセオン カンパニー Linear mode calculation sensing laser radar
JP2019095376A (en) * 2017-11-27 2019-06-20 倉敷紡績株式会社 Image processing system
WO2020137908A1 (en) * 2018-12-27 2020-07-02 株式会社小糸製作所 Lighting fixture for vehicle, and vehicle
WO2020218282A1 (en) * 2019-04-22 2020-10-29 株式会社小糸製作所 Imaging device, vehicle light, automobile, and imaging method

Similar Documents

Publication Publication Date Title
WO2020218282A1 (en) Imaging device, vehicle light, automobile, and imaging method
CN110709281B (en) Vehicle lamp, and control device and control method thereof
JP7463297B2 (en) In-vehicle imaging devices, vehicle lighting, automobiles
JP7408572B2 (en) Vehicle lights and vehicles
US11275288B2 (en) Ballistic light modulations for image enhancement through fog
US20220132022A1 (en) Imaging device
JP7252755B2 (en) Active sensors, object identification systems, vehicles, vehicle lighting
WO2021079810A1 (en) Imaging device, vehicle lamp, vehicle, and imaging method
US20230009034A1 (en) Imaging apparatus
WO2023074759A1 (en) Imaging apparatus, vehicle lamp fitting, and vehicle
WO2022091972A1 (en) Imaging device, vehicle lighting fixture, and vehicle
WO2023085329A1 (en) Imaging system, sensor unit, vehicle lamp fitting, and vehicle
WO2022044961A1 (en) Imaging device, imaging method, vehicle lamp, and vehicle
WO2023085328A1 (en) Imaging device, imaging method, vehicular lamp, and vehicle
WO2022270476A1 (en) Imaging device, vehicle lamp, and vehicle
JP7395511B2 (en) Imaging device, its processing unit, vehicle lighting, vehicle, sensing method
WO2021079811A1 (en) Imaging device, vehicular lamp, vehicle, and imaging method
WO2022102775A1 (en) Sensing device, vehicular lamp, and vehicle
CN116457700A (en) Sensing device, vehicle lamp, and vehicle
JP2023055317A (en) Imaging system and imaging method
CN111965664A (en) Light emitting device, imaging system, and emission light modulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887084

Country of ref document: EP

Kind code of ref document: A1