WO2023074659A1 - Bonding joint for bonding to resin, bonding joint manufacturing method, and metal-resin bonding structure - Google Patents

Bonding joint for bonding to resin, bonding joint manufacturing method, and metal-resin bonding structure Download PDF

Info

Publication number
WO2023074659A1
WO2023074659A1 PCT/JP2022/039634 JP2022039634W WO2023074659A1 WO 2023074659 A1 WO2023074659 A1 WO 2023074659A1 JP 2022039634 W JP2022039634 W JP 2022039634W WO 2023074659 A1 WO2023074659 A1 WO 2023074659A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
resin
bonding
mold
metal
Prior art date
Application number
PCT/JP2022/039634
Other languages
French (fr)
Japanese (ja)
Inventor
達也 鈴木
健裕 小池
Original Assignee
中央可鍛工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央可鍛工業株式会社 filed Critical 中央可鍛工業株式会社
Priority to CN202280068097.2A priority Critical patent/CN118076450A/en
Publication of WO2023074659A1 publication Critical patent/WO2023074659A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding

Definitions

  • the technical field of this specification relates to a joint structure between metal and resin.
  • Patent Document 1 knurling is applied to the surface of the metal, and the resin is joined to the jagged edges of the knurling. Further, in the bearing device as a joint structure of metal and resin disclosed in Patent Document 2, the bearing portion and the bolt hole forming portion are made of metal, and the bracket connecting the bearing portion and the bolt hole forming portion is made of resin. . As a result, the weight of the bearing device is reduced.
  • Patent Document 2 is a patent application filed by the applicant of the present application.
  • JP 2018-115679 A Japanese Patent Application Laid-Open No. 2020-012502
  • the problem to be solved by the technology of the present specification was made in view of the above points, and aims to provide a joint structure of metal and resin with increased joint strength.
  • a joint joint to be joined to a resin is formed of a metal, has a joint surface to be joined to a resin on its surface, has a fine uneven shape formed on the joint surface, and has an arithmetic shape of the fine uneven shape. It is characterized by having an average roughness Ra of 10 to 300 ⁇ m.
  • the area where the joint surface and the resin are in contact can be increased, and the resin that enters the fine irregularities of the joint surface has an effect as an anchor. Therefore, the bonding strength between the metal and the resin can be increased.
  • a groove-shaped concave portion may be formed in the joint surface.
  • the groove-shaped recess forms a rough uneven shape on the bonding surface, and the resin enters the rough uneven shape, so that the bonding strength between the metal and the resin can be increased.
  • the joint surface may be a substantially cylindrical shape with a side surface, and the concave portion may be formed in the circumferential direction of the side surface.
  • resin can be joined to the substantially cylindrical joining joint over the circumferential direction of the side surface.
  • the constricted portion formed in the circumferential direction by the recess may have a radial cross-section that is substantially polygonal.
  • the constricted portion formed by the concave portion and the resin entering the concave portion are fitted in a substantially polygonal shape, the joint strength between the metal and the resin is increased against the rotation of the joint in the circumferential direction. can be enhanced.
  • a method for manufacturing a bonded joint is a method for manufacturing a bonded joint described above, By forming the mold for casting the joint joint from coarse aggregate, a fine uneven shape is formed on the surface of the mold, It is characterized in that fine irregularities are formed on the surface of the bonded joint cast from the mold.
  • the average particle diameter (median diameter d50) of the aggregate may be 200 to 2000 ⁇ m.
  • the metal-resin joint structure according to the embodiment of the present specification includes the above joint joint, a resin bracket covering the joint surface of the joint and fixing the joint, the base being made of a resin; characterized by having
  • the joining joint and the resin bracket can be firmly joined.
  • the joint strength between metal and resin can be enhanced.
  • FIG. 1 is a perspective view of an embodiment bonding joint; FIG. It is a front view of the joint joint. 3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. FIG. 3 is a cross-sectional view of a mold for casting the joint joint; FIG. 11 is a perspective view of a joint structure using the same joint joint; FIG. 3 is a front view of a bearing device using the joint joint; It is a top view of the same bearing device.
  • the joint 1 of the embodiment is used as an insert member (insert collar, insert nut), and as shown in FIG. , and has a hourglass shape with a constricted portion 14 between both bottom surfaces 12 .
  • the upper and lower ends 15 of the side surface 11 and the recessed portions 13 form a rough uneven shape 101, and the side surface 11 including the recessed portions 13 becomes the joint surface 10 with the resin.
  • the joint surface 10 is formed with a fine uneven shape 100 having an arithmetic mean roughness Ra of 10 to 300 ⁇ m.
  • the joint 1 can strengthen the joint with the resin.
  • the joint 1 of the embodiment includes the shaft bearing portion 201 and the bolt hole forming portion (the joint 1 ) is made of metal, and the bracket (resin bracket 2) connecting the shaft bearing portion 201 and the bolt hole formation portion is made of resin.
  • the orientation of the joint 1 is defined as the direction of the axis that connects the centers of the bottom surfaces 12, and U is up and D is down. show.
  • the axis connecting the centers of both bottom surfaces 12 may be expressed as a radial direction and a circumferential direction.
  • the joining joint 1 is made of metal, and as the metal, specifically, spheroidal graphite cast iron product FCD500 (JIS G 5502:2007) is used.
  • the spheroidal graphite cast iron product has excellent tensile strength and heat resistance, and is excellent in durability as the joint 1 .
  • 12 types of aluminum alloy die casting ADC12 JIS H 5302:2006 was used.
  • the ADC 12 is excellent in mechanical properties, machinability and castability.
  • the joining joint 1, which will be described later in detail, was manufactured by casting using a mold, which can be manufactured at a low cost and is suitable for mass production.
  • the joining joint 1 of the embodiment has a single groove-shaped concave portion 13 formed along the circumference of a substantially cylindrical side surface 11, and the upper and lower ends of each groove. 15, 15 are thick, and the constricted portion 14 in the center in the vertical direction is constricted to form a drum shape.
  • the joining joint 1 has a rough uneven shape 101 formed by upper and lower ends 15 and 15 and a constricted portion 14 in the center in the vertical direction. Due to the rough uneven shape 101, when the joining joint 1 is fixed to the resin bracket 2 as shown in FIG.
  • the outer circumferential corner forming the concave portion 13 is formed with a chamfered portion 13a that is rounded inwardly, and the inner circumferential corner is roundedly chamfered outwardly as a chamfered portion 13b. is formed.
  • the stress applied to the resin can be dispersed by the chamfered portions 13a and 13b.
  • the constricted portion 14 has a substantially rectangular cross section in the radial direction. Since the cross section of the constricted portion 14 is substantially square, when the joint 1 is fixed to the resin bracket 2, the constricted portion 14 formed by the recess 13 and the resin entering the recess 13 are substantially square. Because of the fitting, the bonding strength between the metal and the resin can be increased against the rotation of the bonding joint in the circumferential direction. A chamfered portion 14a that is rounded inward is formed at a vertical outward corner portion that forms a substantially rectangular shape of the constricted portion 14. As shown in FIG. When the joint 1 is fixed to the resin bracket 2, the stress applied to the resin can be dispersed by the chamfered portion 14a.
  • the upper and lower bottom surfaces 12 of the joining joint 1 are circular, and a screw hole 16 is passed through the center on the vertical axis. Through the screw holes 16, the joint joint 1 can be joined to other members by means of screws or the like.
  • the screw hole 16 may be a circular hole without threads or a non-threaded hole such as a polygonal hole.
  • the side surface 11 including the concave portion 13 of the joint 1 of the embodiment serves as the joint surface 10 that joins with the resin of the resin bracket 2 .
  • the bonding surface 10 is formed with a fine uneven shape 100 having an arithmetic mean roughness Ra of about 90 ⁇ m. Since fine irregularities 100 with an arithmetic mean roughness Ra of about 90 ⁇ m are formed on the joint surface 10, when the joint 1 is joined to the resin of the resin bracket 2, the resin enters the fine irregularities 100 and the anchor As a result, the bond between the joint 1 and the resin can be strengthened.
  • the fine irregularities 100 with an arithmetic mean roughness Ra of about 90 ⁇ m are formed by forming the mold 3 for casting the joint 1 from coarse aggregates 32 ( FIG. 4 ), which will be described later in detail, so that the surface of the mold 3 A fine uneven shape 100 is formed on the mold 3 , and the fine uneven shape 100 is transferred to the side surface 11 of the joint 1 cast from the mold 3 .
  • the welded joint 1 is manufactured by casting using a mold 3, and in the method for manufacturing the welded joint 1 of the embodiment, the method for manufacturing the mold 3 for casting the welded joint 1 and the method for manufacturing the welded joint 1 using the mold 3 will be described separately. do.
  • the method of manufacturing the mold 3 includes a primary mold creation step of creating a primary mold by replicating the master model (3D data) from the master model (3D data) of the joint 1, and a fine uneven shape on the surface using coarse aggregate 32 from the primary mold. and a mold making step for making a secondary mold (mold 3) having 100.
  • a primary mold made of metal (or resin) was created by duplicating the master model of the joint 1 from the master model using a general-purpose method.
  • the mold 3 (secondary mold) was formed by injecting a molding agent for forming a gas-hardening sand mold so as to mold the primary mold.
  • the molding agent for forming the gas-curable sand mold was hardened using a cold box method, which is a type of gas-hardening molding method in which gas is passed through the molding agent to harden it, and the mold 3 was molded.
  • the molding agent is prepared by mixing the aggregate 32, the resin and the curing agent. (JIS G 5901:2016) was used, and the resin and curing agent used were general-purpose resins and curing agents used in the cold box method.
  • the molding agent contained 98.4% aggregate 32, 0.8% resin, and 0.8% curing agent. Since the molding agent is formed from roughly coarse aggregates 32, the mold 3 formed from the molding agent has a fine uneven shape 100 whose surface shape is the shape (grain size) of the aggregates 32. .
  • the manufacturing method of the welded joint 1 using the mold 3 consists of a pouring step of pouring molten metal into the mold 3 and an unframing step of removing the welded joint 1 by breaking the frame.
  • molten metal is poured into the mold 3, cooled and solidified to form the joint 1.
  • Pouring is performed by a general-purpose method.
  • the bonded joint 1 is unframed from the mold 3, unnecessary materials such as burrs are removed, and the bottom surface 12 is machined to eliminate the fine irregularities 100 of the bottom surface 12, so that the bonded joint 1 can be used. It was assumed that it was possible.
  • the bonded joint 1 manufactured in this manner has a fine uneven shape 100 formed on the bonding surface 10 of the side surface 11 . Further, a rough concave-convex shape 101 is formed by the upper and lower end portions 15 , 15 of the circumferential groove-shaped concave portion 13 of the side surface 11 of the joint 1 and the central constricted portion 14 in the vertical direction.
  • the joint 1 can adjust the size of the fine concave-convex shape 100 only by changing the size of the aggregate 32 forming the mold 3 .
  • a joint structure of metal and resin using the joint 1 of the embodiment will be described.
  • a joint structure in which a joint 1 is used in a bolt hole forming portion that is joined to a vehicle body will be described as an example of a bearing device that rotatably supports a shaft of a vehicle.
  • the bearing device 200 includes an annular shaft bearing portion 201 through which a shaft is inserted via a bearing, and a joint joint into which bolts are inserted to fix the shaft bearing portion 201 to a fixed portion. 1 and a bracket that connects the shaft bearing portion 201 and the joint 1, the shaft bearing portion 201 and the joint 1 are made of metal, and the bracket (resin A bracket 2) is made of resin. As a result, the weight of the bearing device 200 is reduced.
  • the resin bracket 2 integrally connects the shaft bearing portion 201 and the joining joint 1, is made of a resin mixture, and is molded by a molding die. Two resins were used separately for the resins used in the resin mixture. One of the resins used was a polyamide resin that is a thermoplastic resin, and the other resin was a phenolic resin that is a thermosetting resin. By using a polyamide resin or a phenol resin as the resin used in the resin mixture, the resin bracket 2 can be made excellent in heat resistance and mechanical strength.
  • the resin mixture used for the resin bracket 2 was mixed with glass fibers as fibers to form a fiber mixed resin. Mixing fibers into the resin mixture can reduce curing shrinkage of the resin and increase physical strength.
  • the mixing ratio of the fibers in the fiber mixed resin was set to 40% by mass in order to efficiently increase the physical strength.
  • the joining joint 1 used in the bearing device 200 has the fine concave-convex shape 100 formed on the joint surface 10 of the side surface 11 including the concave portion 13, so that the joint between the resin bracket 2 and the resin can be strengthened. . Further, as shown in FIG. 5, the joint 1 has a rough irregular shape 101 formed by the upper and lower ends 15, 15 and the concave portion 13 in the center in the vertical direction. On the other hand, the anti-disengagement effect is enhanced, and since the cross section in the radial direction of the constricted portion 14 is substantially square, the anti-rotation effect is enhanced.
  • joining joint 1 of the embodiment and the connection structure of metal and resin can be implemented even if the configuration is changed to the following forms.
  • the iron alloy (cast iron) used for forming the joint 1 the spheroidal graphite cast iron FCD500 was used, but the spheroidal graphite cast iron products (FCD350, FCD400 , FCD450, FCD600, FCD700, FCD800) can be used. This is because it has excellent mechanical strength.
  • ADC12 was used as the aluminum alloy die casting used to form the bonded joint 1, but aluminum alloy die castings (ADC1, ADC3, ADC5, ADC6, ADC10, ADC10Z, ADC12Z, ADC14) can be used.
  • the radial cross section of the constricted portion 14 is substantially square, but the radial cross section of the constricted portion 14 may be substantially triangular to substantially hexagonal. This is because the effect of preventing the resin bracket 2 from coming off and the effect of preventing rotation can be enhanced.
  • the radial cross-section of the constricted portion 14 can also be circular.
  • one groove-shaped concave portion 13 is provided over the circumferential direction of the side surface 11, but one to three groove-shaped concave portions 13 can be provided in the vertical direction. . This is because the effect of preventing the resin bracket 2 from coming off can be enhanced. Note that if the number exceeds three, the structure of the joint 1 may become complicated. As another embodiment, one or two groove-shaped recesses 13 can be provided in the vertical direction.
  • the joining joint 1 of the embodiment is a substantially cylindrical insert member (insert collar, insert nut), it is not limited to the insert member, and can be used as long as it is used for joining metal and resin. .
  • the shape is not limited to a substantially cylindrical shape, and may be, for example, a conical shape, a prismatic shape, a pyramidal shape, or the like.
  • the mold 3 is formed by a gas-hardening sand mold, but the mold 3 can also be formed by a green sand mold, a self-hardening sand mold, a thermosetting sand mold, or the like.
  • the aggregate 32 mixed with the molding agent for forming the gas-hardening sand mold serving as the mold 3 is used for the mold with the sieve having the largest aggregate mass and having a nominal opening of 1180 ⁇ m.
  • Silica sand No. 3 average particle size (median size d50): 1500 ⁇ m) was used, but aggregates 32 with an average particle size of 200 to 2000 ⁇ m can be used. This is because it is possible to form the fine unevenness 100 that strengthens the bonding with the resin. If the average particle diameter of the aggregate is less than 200 ⁇ m, the fine irregularities 100 become finer, and there is a possibility that the bonding with the resin cannot be strengthened. On the other hand, if it exceeds 2000 ⁇ m, the strength of the mold 3 may deteriorate.
  • the average particle size of aggregate 32 can be between 600 and 1700 ⁇ m.
  • the aggregate 32 mixed with the molding agent for forming the gas-hardening sand mold serving as the mold 3 is used for the mold with the sieve having the largest aggregate mass and having a nominal opening of 1180 ⁇ m.
  • Silica sand No. 3 was used, but any size of silica sand from No. 6 to No. 3 can be used. In another embodiment, the size of the silica can be No. 4 to No. 3 foundry silica.
  • the aggregate 32 calcium carbonate powder, selvene (pulverized sanitary ware), crushed stone powder, etc. can be used as long as they have the same average particle size.
  • the molding agent for forming the gas-hardening sand mold that serves as the mold 3 contains 98.4% aggregate 32, 0.8% resin, and 0.8% curing agent. However, any molding agent containing 70 to 99% aggregate 32, 0.5 to 15% resin, and 0.5 to 15% curing agent can be used. can. In another embodiment, the molding compound may contain 90-99% aggregate 32, 0.5-5% resin, and 0.5-5% hardener.
  • Polyamide resin is used as the thermoplastic resin of the resin mixture forming the resin bracket 2 in the embodiment, but thermoplastic resins such as polypropylene, polyvinyl chloride, polystyrene, acrylic resin, polycarbonate resin, and ABS resin having excellent heat resistance can be used. Resin can be used.
  • thermosetting resin of the resin mixture forming the resin bracket 2 phenolic resin is used in the embodiment, but thermosetting resin such as amino resin and urea resin can also be used. It is because it is excellent in heat resistance.
  • glass fibers which are inorganic fibers
  • fibers of the fiber-mixed resin which is a resin mixture forming the resin bracket 2.
  • inorganic fibers such as carbon fibers, metal fibers, and ceramic fibers, cellulose fibers, and acrylic fibers are also used.
  • polyamide fibers, polyester fibers and the like can also be used.
  • the mixing ratio of fibers in the fiber mixed resin is 40% by mass in the embodiment, it can be used as long as it is 10 to 70% by mass. If the mixing ratio is less than 10% by mass, the strength may not be sufficiently increased. On the other hand, if it exceeds 70% by mass, the density of the fiber-mixed resin increases, and there is a risk that the weight of the bearing device 200 cannot be reduced. It is more preferably 20 to 60% by mass, still more preferably 30 to 50% by mass.
  • the fiber-mixed resin is a polyamide resin or a phenolic resin mixed with 40% by mass of glass fiber, but a commercially available product can also be used.
  • Commercially available glass fiber mixed resins include A1022GFL15, A1022GFL, A1030GFL, A1030GFL45, A1022GFL60 (A), EX-8406G30, A175S, A190S, A192S, A690S (manufactured by Unitika Ltd.), CM1011G-15, CM1001.
  • G-15 CM1001G-20, CM1011G-30, CM1016G-30, CM1011G-45, CM1012G-45N, CM3001G-15, CM3006G-15, CM3001G-30, CM3006G-30, CM3001G-45, CM3006G-45 (manufactured by Toray Industries, Inc.) ) can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

The present invention provides a metal-resin bonding structure having increased bonding strength. A bonding joint 1 is formed in a drum shape having a groove-shaped recessed section 13 that is formed in the circumferential direction of a substantially cylindrical metal side surface 11a, and a curved section 14 that curves between two bottom surfaces 12. The recessed section 13 and upper and lower end sections 15 of the side surface 11 form a coarse relief shape 101, and the side surface 11 including the recessed section 13 serves as a bonding surface 10. A fine relief shape 100 having an arithmetic mean roughness Ra of 10-300 μm is formed on the bonding surface 10. By forming the coarse relief shape 101 and the fine relief shape 100 on the bonding surface 10, the bonding joint 1 strongly bonds with a resin.

Description

樹脂に接合する接合継手、接合継手の製造方法、及び、金属と樹脂の接合構造JOINT JOINT TO BE JOINTED WITH RESIN, METHOD FOR MANUFACTURING JOINT JOINT, AND JOINT STRUCTURE BETWEEN METAL AND RESIN
 本明細書の技術分野は、金属と樹脂の接合構造に関する。 The technical field of this specification relates to a joint structure between metal and resin.
 従来から、金属と樹脂の接合構造が知られている。特許文献1の金属と樹脂の接合構造では、金属表面にローレット加工を施し、ローレット加工のぎざぎざに樹脂を接合させている。また、特許文献2の金属と樹脂の接合構造としての軸受装置は、軸受部とボルト孔形成部が金属から形成され、軸受部とボルト孔形成部とを連結するブラケットが樹脂から形成されている。これにより、軸受装置は、軽量化が図られている。なお、特許文献2は、本願の出願人による特許出願である。 Conventionally, the joint structure of metal and resin has been known. In the joint structure of metal and resin disclosed in Patent Document 1, knurling is applied to the surface of the metal, and the resin is joined to the jagged edges of the knurling. Further, in the bearing device as a joint structure of metal and resin disclosed in Patent Document 2, the bearing portion and the bolt hole forming portion are made of metal, and the bracket connecting the bearing portion and the bolt hole forming portion is made of resin. . As a result, the weight of the bearing device is reduced. Patent Document 2 is a patent application filed by the applicant of the present application.
特開2018-115679号公報JP 2018-115679 A 特開2020-012502号公報Japanese Patent Application Laid-Open No. 2020-012502
 これら特許文献に記載の従来の金属と樹脂の接合構造には、金属と樹脂との接合強度をより高めたいという要望がある。  In the conventional metal-resin bonding structures described in these patent documents, there is a demand to increase the bonding strength between the metal and the resin.
 本明細書の技術が解決しようとする課題は、上述の点に鑑みてなされたものであり、接合強度が高められた金属と樹脂の接合構造を提供することを目的とする。 The problem to be solved by the technology of the present specification was made in view of the above points, and aims to provide a joint structure of metal and resin with increased joint strength.
 本明細書の実施形態に係る樹脂に接合する接合継手は、金属から形成され、表面に樹脂と接合する接合面を有し、該接合面に微細凹凸形状が形成され、該微細凹凸形状の算術平均粗さRaが10~300μmであることを特徴とする。 A joint joint to be joined to a resin according to an embodiment of the present specification is formed of a metal, has a joint surface to be joined to a resin on its surface, has a fine uneven shape formed on the joint surface, and has an arithmetic shape of the fine uneven shape. It is characterized by having an average roughness Ra of 10 to 300 μm.
 本明細書の実施形態に係る樹脂に接合する接合継手によれば、接合面と樹脂とが接する面積を増大させることができ、かつ、接合面の微細凹凸形状に入り込む樹脂がアンカーとしての効果を発揮するため、金属と樹脂との接合強度を高めるものとすることができる。 According to the joint to be joined to resin according to the embodiment of the present specification, the area where the joint surface and the resin are in contact can be increased, and the resin that enters the fine irregularities of the joint surface has an effect as an anchor. Therefore, the bonding strength between the metal and the resin can be increased.
 ここで、上記接合継手において、前記接合面に、溝状の凹部が形成されているものとすることができる。 Here, in the joint joint, a groove-shaped concave portion may be formed in the joint surface.
 これによれば、溝状の凹部によって接合面に粗い凹凸形状が形成され、樹脂が粗い凹凸形状に入り込むため、金属と樹脂との接合強度を高めるものとすることができる。 According to this, the groove-shaped recess forms a rough uneven shape on the bonding surface, and the resin enters the rough uneven shape, so that the bonding strength between the metal and the resin can be increased.
 また、上記接合継手において、前記接合面が側面となる略円筒形状をなし、前記凹部が該側面の周方向に形成されているものとすることができる。 Further, in the above joint, the joint surface may be a substantially cylindrical shape with a side surface, and the concave portion may be formed in the circumferential direction of the side surface.
 これによれば、略円筒形状の接合継手に、側面の周方向に渡って樹脂を接合させることができる。 According to this, resin can be joined to the substantially cylindrical joining joint over the circumferential direction of the side surface.
 また、上記接合継手において、前記凹部によって周方向に形成されたくびれ部の半径方向の断面が、略多角形であるものとすることができる。 Further, in the joint joint described above, the constricted portion formed in the circumferential direction by the recess may have a radial cross-section that is substantially polygonal.
 これによれば、凹部によって形成されたくびれ部と、凹部に入り込んだ樹脂とが、略多角形で嵌合するため、接合継手の周方向の回転に対して、金属と樹脂との接合強度を高めるものとすることができる。 According to this, since the constricted portion formed by the concave portion and the resin entering the concave portion are fitted in a substantially polygonal shape, the joint strength between the metal and the resin is increased against the rotation of the joint in the circumferential direction. can be enhanced.
 ここで、本明細書の実施形態に係る接合継手の製造方法は、上記に記載の接合継手の製造方法であって、
 前記接合継手を鋳造する鋳型が粗い骨材から形成されることによって、該鋳型の表面に微細凹凸形状が形成され、
 該鋳型から鋳造された接合継手の表面に微細凹凸形状が形成されることを特徴とする。
Here, a method for manufacturing a bonded joint according to an embodiment of the present specification is a method for manufacturing a bonded joint described above,
By forming the mold for casting the joint joint from coarse aggregate, a fine uneven shape is formed on the surface of the mold,
It is characterized in that fine irregularities are formed on the surface of the bonded joint cast from the mold.
 本明細書の実施形態に係る接合継手の製造方法によれば、粗い骨材の粒度によって、表面に微細凹凸形状を有する鋳型を形成することができるため、微細凹凸形状を安価に形成することができる。 According to the method for manufacturing a bonded joint according to the embodiment of the present specification, it is possible to form a mold having fine irregularities on the surface due to the grain size of the coarse aggregate, so that the fine irregularities can be formed at low cost. can.
 また、上記接合継手の製造方法において、前記骨材の平均粒子径(メジアン径d50)が200~2000μmであるものとすることができる。 Further, in the method for manufacturing a bonded joint described above, the average particle diameter (median diameter d50) of the aggregate may be 200 to 2000 μm.
 これによれば、接合面に、樹脂との接合強度を高める微細凹凸形状を形成することができる。 According to this, it is possible to form a fine irregular shape on the joint surface to increase the joint strength with the resin.
 ここで、本明細書の実施形態に係る金属と樹脂の接合構造は、上記接合継手と、
 該接合継手の前記接合面を被覆し、該接合継手を固設する樹脂を母体とする樹脂ブラケットと、
 を有することを特徴とする。
Here, the metal-resin joint structure according to the embodiment of the present specification includes the above joint joint,
a resin bracket covering the joint surface of the joint and fixing the joint, the base being made of a resin;
characterized by having
 本明細書の実施形態に係る金属と樹脂の接合構造によれば、接合継手と樹脂ブラケットとを強固に接合することができる。 According to the joint structure of metal and resin according to the embodiment of the present specification, the joining joint and the resin bracket can be firmly joined.
 本明細書の実施形態に係る接合継手によれば、金属と樹脂との接合強度が高められたものとすることができる。 According to the joint according to the embodiment of the present specification, the joint strength between metal and resin can be enhanced.
実施形態の接合継手の斜視図である。1 is a perspective view of an embodiment bonding joint; FIG. 同接合継手の正面図である。It is a front view of the joint joint. 図2のIII-III線位置の断面図である。3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. 同接合継手を鋳造する鋳型の断面図である。FIG. 3 is a cross-sectional view of a mold for casting the joint joint; 同接合継手が使用された接合構造の斜視図である。FIG. 11 is a perspective view of a joint structure using the same joint joint; 同接合継手が使用された軸受装置の正面図である。FIG. 3 is a front view of a bearing device using the joint joint; 同軸受装置の平面図である。It is a top view of the same bearing device.
 以下、本明細書の実施形態に係る樹脂に接合する接合継手を図面に基づいて説明する。しかし、本明細書の技術は、これら実施形態に限定されるものではない。実施形態の接合継手1は、インサート部材(インサートカラー、インサートナット)として使用されるものであり、図1に示すように、略円筒状の金属の側面11の周方向に、溝状の凹部13が形成され、両底面12の間がくびれたくびれ部14を有する鼓形状となっている。側面11の上下の端部15と凹部13とが粗凹凸形状101を形成し、凹部13を含めた側面11が樹脂との接合面10となる。接合面10には、算術平均粗さRaが10~300μmの微細凹凸形状100が形成されている。接合面10に、粗凹凸形状101と微細凹凸形状100とが形成されていることにより、接合継手1は、樹脂との接合を強固にすることができるものである。また、実施形態の接合継手1は、図6、7に示すように、前述した特許文献2(特開2020-012502号公報)に記載の、シャフト軸受部201とボルト孔形成部(接合継手1)が金属から形成され、シャフト軸受部201とボルト孔形成部とを連結するブラケット(樹脂ブラケット2)が樹脂から形成された、軸受装置、のボルト孔形成部として使用することができる。これにより、金属と樹脂の接合構造としての軸受装置は、軽量化を図ることができる。なお、本明細書において、接合継手1の向きは、図1に示すように、それぞれの底面12の中心を結ぶ軸の方向を上下方向とし、図示で使用する、Uは上、Dは下を示す。また、両底面12の中心を結ぶ軸に対して、半径方向、周方向と表現することがある。 Hereafter, joints to be joined to resin according to embodiments of the present specification will be described based on the drawings. However, the technology of this specification is not limited to these embodiments. The joint 1 of the embodiment is used as an insert member (insert collar, insert nut), and as shown in FIG. , and has a hourglass shape with a constricted portion 14 between both bottom surfaces 12 . The upper and lower ends 15 of the side surface 11 and the recessed portions 13 form a rough uneven shape 101, and the side surface 11 including the recessed portions 13 becomes the joint surface 10 with the resin. The joint surface 10 is formed with a fine uneven shape 100 having an arithmetic mean roughness Ra of 10 to 300 μm. By forming the coarse irregularities 101 and the fine irregularities 100 on the joint surface 10, the joint 1 can strengthen the joint with the resin. In addition, as shown in FIGS. 6 and 7, the joint 1 of the embodiment includes the shaft bearing portion 201 and the bolt hole forming portion (the joint 1 ) is made of metal, and the bracket (resin bracket 2) connecting the shaft bearing portion 201 and the bolt hole formation portion is made of resin. As a result, the weight of the bearing device as a joint structure of metal and resin can be reduced. In this specification, as shown in FIG. 1, the orientation of the joint 1 is defined as the direction of the axis that connects the centers of the bottom surfaces 12, and U is up and D is down. show. In addition, the axis connecting the centers of both bottom surfaces 12 may be expressed as a radial direction and a circumferential direction.
 接合継手1は、金属から形成され、金属として、具体的には、球状黒鉛鋳鉄品FCD500(JIS G 5502:2007)を使用した。球状黒鉛鋳鉄品は、優れた引張強さと耐熱性を有し、接合継手1として耐久性に優れるものである。また、別の実施形態として、アルミニウム合金ダイカスト12種ADC12(JIS H 5302:2006)を使用した。ADC12は、機械的性質、被削性、鋳造性に優れるものである。接合継手1は、詳しくは後述するが、安価に製造でき、大量生産に適した、鋳型による鋳造によって製造した。 The joining joint 1 is made of metal, and as the metal, specifically, spheroidal graphite cast iron product FCD500 (JIS G 5502:2007) is used. The spheroidal graphite cast iron product has excellent tensile strength and heat resistance, and is excellent in durability as the joint 1 . Also, as another embodiment, 12 types of aluminum alloy die casting ADC12 (JIS H 5302:2006) was used. The ADC 12 is excellent in mechanical properties, machinability and castability. The joining joint 1, which will be described later in detail, was manufactured by casting using a mold, which can be manufactured at a low cost and is suitable for mass production.
 実施形態の接合継手1は、図1~3に示すように、略円筒状の側面11の周方向の一周に渡って、1本の溝状の凹部13が形成され、上下のそれぞれの端部15、15が太く、上下方向の中央のくびれ部14がくびれた、鼓形状となっている。接合継手1は、上下のそれぞれの端部15、15と、上下方向の中央のくびれ部14とによって、粗凹凸形状101が形成されている。粗凹凸形状101によって、図5に示す如く、接合継手1が樹脂ブラケット2に固設されたとき、凹部に樹脂が入り込み、接合継手1は、抜け防止効果が高められる。 As shown in FIGS. 1 to 3, the joining joint 1 of the embodiment has a single groove-shaped concave portion 13 formed along the circumference of a substantially cylindrical side surface 11, and the upper and lower ends of each groove. 15, 15 are thick, and the constricted portion 14 in the center in the vertical direction is constricted to form a drum shape. The joining joint 1 has a rough uneven shape 101 formed by upper and lower ends 15 and 15 and a constricted portion 14 in the center in the vertical direction. Due to the rough uneven shape 101, when the joining joint 1 is fixed to the resin bracket 2 as shown in FIG.
 図2に示すように、凹部13を形成する周方向の出隅部は、内側に丸く面取りされた面取り部13aが形成され、周方向の入隅部は、外側にまるく面取りされた面取り部13bが形成されている。面取り部13a、面取り部13bによって、接合継手1が樹脂ブラケット2に固設されたとき、樹脂にかかる応力を分散させることができる。 As shown in FIG. 2, the outer circumferential corner forming the concave portion 13 is formed with a chamfered portion 13a that is rounded inwardly, and the inner circumferential corner is roundedly chamfered outwardly as a chamfered portion 13b. is formed. When the joining joint 1 is fixed to the resin bracket 2, the stress applied to the resin can be dispersed by the chamfered portions 13a and 13b.
 くびれ部14は、図3に示すように、半径方向の断面が略四角形となっている。くびれ部14の断面が略四角形であることによって、接合継手1が樹脂ブラケット2に固設されたとき、凹部13によって形成されたくびれ部14と、凹部13に入り込んだ樹脂とが、略四角形で嵌合するため、接合継手の周方向の回転に対して、金属と樹脂との接合強度を高めることができる。くびれ部14の略四角形を形成する上下方向の出隅部は、内側に丸く面取りされた面取り部14aが形成されている。面取り部14aによって、接合継手1が樹脂ブラケット2に固設されたとき、樹脂にかかる応力を分散させることができる。 As shown in FIG. 3, the constricted portion 14 has a substantially rectangular cross section in the radial direction. Since the cross section of the constricted portion 14 is substantially square, when the joint 1 is fixed to the resin bracket 2, the constricted portion 14 formed by the recess 13 and the resin entering the recess 13 are substantially square. Because of the fitting, the bonding strength between the metal and the resin can be increased against the rotation of the bonding joint in the circumferential direction. A chamfered portion 14a that is rounded inward is formed at a vertical outward corner portion that forms a substantially rectangular shape of the constricted portion 14. As shown in FIG. When the joint 1 is fixed to the resin bracket 2, the stress applied to the resin can be dispersed by the chamfered portion 14a.
 接合継手1の上下それぞれの底面12は、円形をなし、中心の上下方向の軸上に、螺子孔16が貫通されている。螺子孔16によって、接合継手1は、螺子などによって他部材と接合されることができる。なお、螺子孔16は、ねじ山のない丸孔や多角形などの異形孔とすることもできる。 The upper and lower bottom surfaces 12 of the joining joint 1 are circular, and a screw hole 16 is passed through the center on the vertical axis. Through the screw holes 16, the joint joint 1 can be joined to other members by means of screws or the like. The screw hole 16 may be a circular hole without threads or a non-threaded hole such as a polygonal hole.
 実施形態の接合継手1の凹部13を含めた側面11は、樹脂ブラケット2の樹脂と接合する接合面10となる。接合面10には、算術平均粗さRaが約90μmの微細凹凸形状100が形成されている。接合面10に、算術平均粗さRaが約90μmの微細凹凸形状100が形成されていることによって、接合継手1が樹脂ブラケット2の樹脂と接合したとき、樹脂が微細凹凸形状100に入り込み、アンカーとしての効果を発揮するため、接合継手1と樹脂との結合を強固なものとすることができる。 The side surface 11 including the concave portion 13 of the joint 1 of the embodiment serves as the joint surface 10 that joins with the resin of the resin bracket 2 . The bonding surface 10 is formed with a fine uneven shape 100 having an arithmetic mean roughness Ra of about 90 μm. Since fine irregularities 100 with an arithmetic mean roughness Ra of about 90 μm are formed on the joint surface 10, when the joint 1 is joined to the resin of the resin bracket 2, the resin enters the fine irregularities 100 and the anchor As a result, the bond between the joint 1 and the resin can be strengthened.
 算術平均粗さRaが約90μmの微細凹凸形状100は、詳しくは後述するが、接合継手1を鋳造する鋳型3が、粗い骨材32(図4)から形成されることによって、鋳型3の表面に微細凹凸形状100が形成され、鋳型3から鋳造される接合継手1の側面11に、微細凹凸形状100が転写されることによって形成される。 The fine irregularities 100 with an arithmetic mean roughness Ra of about 90 μm are formed by forming the mold 3 for casting the joint 1 from coarse aggregates 32 ( FIG. 4 ), which will be described later in detail, so that the surface of the mold 3 A fine uneven shape 100 is formed on the mold 3 , and the fine uneven shape 100 is transferred to the side surface 11 of the joint 1 cast from the mold 3 .
 次に、実施形態の接合継手1の製造方法について説明する。接合継手1は鋳型3による鋳造によって製造され、実施形態の接合継手1製造方法は、接合継手1を鋳造する鋳型3の製造方法と、鋳型3を用いた接合継手1の製造方法について分けて説明する。 Next, a method for manufacturing the joint 1 of the embodiment will be described. The welded joint 1 is manufactured by casting using a mold 3, and in the method for manufacturing the welded joint 1 of the embodiment, the method for manufacturing the mold 3 for casting the welded joint 1 and the method for manufacturing the welded joint 1 using the mold 3 will be described separately. do.
 鋳型3の製造方法は、接合継手1のマスターモデル(3Dデータ)からマスターモデルを複製した一次型を作成する一次型作成工程と、一次型から、粗い骨材32を用いて表面に微細凹凸形状100を有する二次型(鋳型3)を作成する鋳型作成工程と、から構成される。 The method of manufacturing the mold 3 includes a primary mold creation step of creating a primary mold by replicating the master model (3D data) from the master model (3D data) of the joint 1, and a fine uneven shape on the surface using coarse aggregate 32 from the primary mold. and a mold making step for making a secondary mold (mold 3) having 100.
 一次型作成工程では、汎用の方法によって、接合継手1のマスターモデルからマスターモデルを複製した、金属(または樹脂)からなる一次型を作成した。 In the primary mold creation process, a primary mold made of metal (or resin) was created by duplicating the master model of the joint 1 from the master model using a general-purpose method.
 鋳型作成工程では、図4に示すように、鋳型3(二次型)は、一次型を型取りするように、ガス硬化性砂型を形成する型成形剤を注入し、成形した。ガス硬化性砂型を形成する型成形剤は、型成形剤にガスを通して硬化させるガス硬化造型法の一種であるコールドボックス法を用いて硬化させ、鋳型3を成形した。 In the mold making process, as shown in FIG. 4, the mold 3 (secondary mold) was formed by injecting a molding agent for forming a gas-hardening sand mold so as to mold the primary mold. The molding agent for forming the gas-curable sand mold was hardened using a cold box method, which is a type of gas-hardening molding method in which gas is passed through the molding agent to harden it, and the mold 3 was molded.
 型成形剤は、骨材32とレジンと硬化剤とを混合することによって作成し、骨材32は、骨材の質量が最も大きいふるいの公称目開きが1180μmの鋳型用けい砂3.5号(JIS G 5901:2016)を使用し、レジンと硬化剤は、コールドボックス法に用いる汎用のレジンと硬化剤を使用した。型成形剤は、骨材32が98.4%、レジンが0.8%、硬化剤が0.8%含有するものとした。型成形剤がほぼ粗い骨材32から形成されているため、型成形剤から形成される鋳型3は、その表面形状が骨材32の形状(粒度)からなる微細凹凸形状100が形成されている。 The molding agent is prepared by mixing the aggregate 32, the resin and the curing agent. (JIS G 5901:2016) was used, and the resin and curing agent used were general-purpose resins and curing agents used in the cold box method. The molding agent contained 98.4% aggregate 32, 0.8% resin, and 0.8% curing agent. Since the molding agent is formed from roughly coarse aggregates 32, the mold 3 formed from the molding agent has a fine uneven shape 100 whose surface shape is the shape (grain size) of the aggregates 32. .
 鋳型3を用いた接合継手1の製造方法は、鋳型3に、溶融金属を注湯する注湯工程と、解枠して接合継手1を取り出す解枠工程と、から構成される。 The manufacturing method of the welded joint 1 using the mold 3 consists of a pouring step of pouring molten metal into the mold 3 and an unframing step of removing the welded joint 1 by breaking the frame.
 注湯工程では、溶融した金属を鋳型3に注湯し、冷やして固化させて、接合継手1を成形させる。注湯は、汎用の方法によって行なう。 In the pouring process, molten metal is poured into the mold 3, cooled and solidified to form the joint 1. Pouring is performed by a general-purpose method.
 解枠工程では、接合継手1を鋳型3から解枠し、バリなどの不要物を取り除き、底面12を機械加工することによって、底面12の微細凹凸形状100をなくし、接合継手1を使用することができるものとした。 In the unframing step, the bonded joint 1 is unframed from the mold 3, unnecessary materials such as burrs are removed, and the bottom surface 12 is machined to eliminate the fine irregularities 100 of the bottom surface 12, so that the bonded joint 1 can be used. It was assumed that it was possible.
 このようにして製造された接合継手1は、側面11の接合面10に、微細凹凸形状100が形成される。また、接合継手1の側面11の周方向の溝状の凹部13によって、上下のそれぞれの端部15、15と、上下方向の中央のくびれ部14とによって、粗凹凸形状101が形成される。なお、接合継手1は、鋳型3を形成する骨材32の大きさを変更するだけで、微細凹凸形状100の大きさを調整することができるものである。 The bonded joint 1 manufactured in this manner has a fine uneven shape 100 formed on the bonding surface 10 of the side surface 11 . Further, a rough concave-convex shape 101 is formed by the upper and lower end portions 15 , 15 of the circumferential groove-shaped concave portion 13 of the side surface 11 of the joint 1 and the central constricted portion 14 in the vertical direction. The joint 1 can adjust the size of the fine concave-convex shape 100 only by changing the size of the aggregate 32 forming the mold 3 .
 次に、実施形態の接合継手1が使用された金属と樹脂の接合構造について説明する。実施形態では、車両のシャフトを回動可能に支持する軸受装置について、車体に接合するボルト孔形成部に接合継手1が使用された接合構造、を例に説明する。 Next, a joint structure of metal and resin using the joint 1 of the embodiment will be described. In the embodiments, a joint structure in which a joint 1 is used in a bolt hole forming portion that is joined to a vehicle body will be described as an example of a bearing device that rotatably supports a shaft of a vehicle.
 図6、7に示すように、軸受装置200は、ベアリングを介してシャフトが挿通される円環状のシャフト軸受部201と、シャフト軸受部201を被固定部に固定するボルトが挿入される接合継手1と、シャフト軸受部201と接合継手1とを連結するブラケットと、を備え、シャフト軸受部201と接合継手1が金属から形成され、シャフト軸受部201と接合継手1とを連結するブラケット(樹脂ブラケット2)が樹脂から形成されている。これにより、軸受装置200は軽量化が図られている。 As shown in FIGS. 6 and 7, the bearing device 200 includes an annular shaft bearing portion 201 through which a shaft is inserted via a bearing, and a joint joint into which bolts are inserted to fix the shaft bearing portion 201 to a fixed portion. 1 and a bracket that connects the shaft bearing portion 201 and the joint 1, the shaft bearing portion 201 and the joint 1 are made of metal, and the bracket (resin A bracket 2) is made of resin. As a result, the weight of the bearing device 200 is reduced.
 樹脂ブラケット2は、シャフト軸受部201と接合継手1とを一体的に連結するものであり、樹脂混合物から形成され、成形型によって成形される。樹脂混合物に使用される樹脂には、2種類の樹脂をそれぞれ別々に使用した。樹脂の一つは、熱可塑性樹脂であるポリアミド樹脂、樹脂のもう一つは、熱硬化性樹脂であるフェノール樹脂を使用した。樹脂混合物に使用される樹脂に、ポリアミド樹脂又はフェノール樹脂を使用することにより、樹脂ブラケット2は、耐熱性と機械的強度に優れるものとすることができる。 The resin bracket 2 integrally connects the shaft bearing portion 201 and the joining joint 1, is made of a resin mixture, and is molded by a molding die. Two resins were used separately for the resins used in the resin mixture. One of the resins used was a polyamide resin that is a thermoplastic resin, and the other resin was a phenolic resin that is a thermosetting resin. By using a polyamide resin or a phenol resin as the resin used in the resin mixture, the resin bracket 2 can be made excellent in heat resistance and mechanical strength.
 樹脂ブラケット2に使用する樹脂混合物には、繊維としてガラス繊維を混入させ、繊維混合樹脂とした。樹脂混合物に繊維を混入させることにより、樹脂の硬化収縮を減少させることができ、また、物理的強度を高めることができる。繊維混合樹脂における繊維の混入割合は、効率よく物理的強度を高めるために40質量%とした。 The resin mixture used for the resin bracket 2 was mixed with glass fibers as fibers to form a fiber mixed resin. Mixing fibers into the resin mixture can reduce curing shrinkage of the resin and increase physical strength. The mixing ratio of the fibers in the fiber mixed resin was set to 40% by mass in order to efficiently increase the physical strength.
 軸受装置200に使用された接合継手1は、凹部13を含めた側面11の接合面10に微細凹凸形状100が形成されているため、樹脂ブラケット2の樹脂との接合を強固にすることができる。また、図5に示すように、接合継手1は、上下のそれぞれの端部15、15と、上下方向の中央の凹部13とによって、粗凹凸形状101が形成されているため、樹脂ブラケット2に対して、抜け防止効果が高められ、くびれ部14の半径方向の断面が略四角形であるため、回転防止効果が高められている。 The joining joint 1 used in the bearing device 200 has the fine concave-convex shape 100 formed on the joint surface 10 of the side surface 11 including the concave portion 13, so that the joint between the resin bracket 2 and the resin can be strengthened. . Further, as shown in FIG. 5, the joint 1 has a rough irregular shape 101 formed by the upper and lower ends 15, 15 and the concave portion 13 in the center in the vertical direction. On the other hand, the anti-disengagement effect is enhanced, and since the cross section in the radial direction of the constricted portion 14 is substantially square, the anti-rotation effect is enhanced.
 なお、実施形態の接合継手1、金属と樹脂の接続構造は、その構成を以下のような形態に変更しても実施することができる。 It should be noted that the joining joint 1 of the embodiment and the connection structure of metal and resin can be implemented even if the configuration is changed to the following forms.
 実施形態の接合継手1では、接合継手1の成形に使用した鉄合金(鋳鉄)として、球状黒鉛鋳鉄品FCD500を使用したが、JIS G 5502:2001に規定された球状黒鉛鋳鉄品(FCD350、FCD400、FCD450、FCD600、FCD700、FCD800)であれば使用することができる。機械的強度に優れるためである。 In the joint 1 of the embodiment, as the iron alloy (cast iron) used for forming the joint 1, the spheroidal graphite cast iron FCD500 was used, but the spheroidal graphite cast iron products (FCD350, FCD400 , FCD450, FCD600, FCD700, FCD800) can be used. This is because it has excellent mechanical strength.
 実施形態の接合継手1では、接合継手1の成形に使用したアルミニウム合金ダイカストとして、ADC12を使用したが、JIS H 5302:2006に規定されたアルミニウム合金ダイカスト(ADC1、ADC3、ADC5、ADC6、ADC10、ADC10Z、ADC12Z、ADC14)であれば使用することができる。 In the bonded joint 1 of the embodiment, ADC12 was used as the aluminum alloy die casting used to form the bonded joint 1, but aluminum alloy die castings (ADC1, ADC3, ADC5, ADC6, ADC10, ADC10Z, ADC12Z, ADC14) can be used.
 実施形態の接合継手1では、くびれ部14の半径方向の断面を略四角形としたが、くびれ部14の半径方向の断面は、略三角形から略六角形とすることができる。樹脂ブラケット2に対して、抜け防止効果や回転防止効果を高めることができるためである。なお、くびれ部14の半径方向の断面は、円形とすることもできる。 In the joint 1 of the embodiment, the radial cross section of the constricted portion 14 is substantially square, but the radial cross section of the constricted portion 14 may be substantially triangular to substantially hexagonal. This is because the effect of preventing the resin bracket 2 from coming off and the effect of preventing rotation can be enhanced. The radial cross-section of the constricted portion 14 can also be circular.
 実施形態の接合継手1では、側面11の周方向の一周に渡って、溝状の凹部13を1本設けたが、溝状の凹部13は、上下方向に、1~3本設けることができる。樹脂ブラケット2に対して、抜け防止効果を高めることができるためである。なお、3本を超える場合には、接合継手1の構造が複雑となるおそれがある。別の実施形態として、溝状の凹部13は、上下方向に、1~2本設けることができる。 In the joint 1 of the embodiment, one groove-shaped concave portion 13 is provided over the circumferential direction of the side surface 11, but one to three groove-shaped concave portions 13 can be provided in the vertical direction. . This is because the effect of preventing the resin bracket 2 from coming off can be enhanced. Note that if the number exceeds three, the structure of the joint 1 may become complicated. As another embodiment, one or two groove-shaped recesses 13 can be provided in the vertical direction.
 実施形態の接合継手1は、略円筒形状のインサート部材(インサートカラー、インサートナット)としたが、インサート部材に限られるものではなく、金属と樹脂の接合に用いるものであれば使用することができる。また、形状は、略円筒形状に限られず、例えば、円錐形状、角柱形状、角錐形状などとすることができる。 Although the joining joint 1 of the embodiment is a substantially cylindrical insert member (insert collar, insert nut), it is not limited to the insert member, and can be used as long as it is used for joining metal and resin. . Moreover, the shape is not limited to a substantially cylindrical shape, and may be, for example, a conical shape, a prismatic shape, a pyramidal shape, or the like.
 実施形態の接合継手1の製造方法では、鋳型3をガス硬化性砂型によって成形したが、鋳型3は、生砂型、自硬性砂型、熱硬化性砂型などによっても成形することもできる。 In the method of manufacturing the joint 1 of the embodiment, the mold 3 is formed by a gas-hardening sand mold, but the mold 3 can also be formed by a green sand mold, a self-hardening sand mold, a thermosetting sand mold, or the like.
 実施形態の接合継手1の製造方法では、鋳型3となるガス硬化性砂型を形成する型成形剤に混合する骨材32に、骨材の質量が最も大きいふるいの公称目開きが1180μmの鋳型用けい砂3号(平均粒子径(メジアン径d50):1500μm)を使用したが、骨材32の平均粒子径は、200~2000μmであれば使用することができる。樹脂との接合を強固にする微細凹凸形状100を形成することができるためである。骨材の平均粒子径が200μm未満である場合には、微細凹凸形状100が細かくなり、樹脂との接合を強固にすることができないおそれがある。一方、2000μmを超えると、鋳型3の強度が劣るおそれがある。別の実施形態として、骨材32の平均粒子径は、600~1700μmとすることができる。 In the method for manufacturing the joint 1 of the embodiment, the aggregate 32 mixed with the molding agent for forming the gas-hardening sand mold serving as the mold 3 is used for the mold with the sieve having the largest aggregate mass and having a nominal opening of 1180 μm. Silica sand No. 3 (average particle size (median size d50): 1500 μm) was used, but aggregates 32 with an average particle size of 200 to 2000 μm can be used. This is because it is possible to form the fine unevenness 100 that strengthens the bonding with the resin. If the average particle diameter of the aggregate is less than 200 μm, the fine irregularities 100 become finer, and there is a possibility that the bonding with the resin cannot be strengthened. On the other hand, if it exceeds 2000 μm, the strength of the mold 3 may deteriorate. As another embodiment, the average particle size of aggregate 32 can be between 600 and 1700 μm.
 実施形態の接合継手1の製造方法では、鋳型3となるガス硬化性砂型を形成する型成形剤に混合する骨材32に、骨材の質量が最も大きいふるいの公称目開きが1180μmの鋳型用けい砂3号を使用したが、けい砂は、鋳型用けい砂6号から鋳型用けい砂3号の大きさであれば使用することができる。別の実施形態として、けい砂の大きさは、鋳型用けい砂4号から鋳型用けい砂3号とすることができる。また、骨材32は、同等の平均粒子径であれば、炭酸カルシウム粉、セルベン(衛生陶器粉砕物)、砕石粉などであっても使用することができる。 In the method for manufacturing the joint 1 of the embodiment, the aggregate 32 mixed with the molding agent for forming the gas-hardening sand mold serving as the mold 3 is used for the mold with the sieve having the largest aggregate mass and having a nominal opening of 1180 μm. Silica sand No. 3 was used, but any size of silica sand from No. 6 to No. 3 can be used. In another embodiment, the size of the silica can be No. 4 to No. 3 foundry silica. Further, as the aggregate 32, calcium carbonate powder, selvene (pulverized sanitary ware), crushed stone powder, etc. can be used as long as they have the same average particle size.
 実施形態の接合継手1の製造方法では、鋳型3となるガス硬化性砂型を形成する型成形剤に、骨材32が98.4%、レジンが0.8%、硬化剤が0.8%含有するものを使用したが、型成形剤は、骨材32が70~99%、レジンが0.5~15%、硬化剤が0.5~15%含有するものであれば使用することができる。別の実施形態として、型成形剤は、骨材32が90~99%、レジンが0.5~5%、硬化剤が0.5~5%含有するものとすることができる。 In the method for manufacturing the joint 1 of the embodiment, the molding agent for forming the gas-hardening sand mold that serves as the mold 3 contains 98.4% aggregate 32, 0.8% resin, and 0.8% curing agent. However, any molding agent containing 70 to 99% aggregate 32, 0.5 to 15% resin, and 0.5 to 15% curing agent can be used. can. In another embodiment, the molding compound may contain 90-99% aggregate 32, 0.5-5% resin, and 0.5-5% hardener.
 樹脂ブラケット2を形成する樹脂混合物の熱可塑性樹脂として、実施形態では、ポリアミド樹脂を使用したが、耐熱性に優れる、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、アクリル樹脂、ポリカーボネート樹脂、ABS樹脂などの熱可塑性樹脂を使用することができる。 Polyamide resin is used as the thermoplastic resin of the resin mixture forming the resin bracket 2 in the embodiment, but thermoplastic resins such as polypropylene, polyvinyl chloride, polystyrene, acrylic resin, polycarbonate resin, and ABS resin having excellent heat resistance can be used. Resin can be used.
 樹脂ブラケット2を形成する樹脂混合物の熱硬化性樹脂として、実施形態では、フェノール樹脂を使用したが、アミノ樹脂、ユリア樹脂などの熱硬化性樹脂を使用することができる。耐熱性に優れるためである。 As the thermosetting resin of the resin mixture forming the resin bracket 2, phenolic resin is used in the embodiment, but thermosetting resin such as amino resin and urea resin can also be used. It is because it is excellent in heat resistance.
 樹脂ブラケット2を形成する樹脂混合物である繊維混合樹脂の繊維として、実施形態では、無機繊維であるガラス繊維を使用したが、炭素繊維、金属繊維、セラミック繊維などの無機繊維、セルロース繊維、アクリル繊維、ポリアミド繊維、ポリエステル繊維などの有機繊維も使用することができる。 In the embodiment, glass fibers, which are inorganic fibers, are used as fibers of the fiber-mixed resin, which is a resin mixture forming the resin bracket 2. However, inorganic fibers such as carbon fibers, metal fibers, and ceramic fibers, cellulose fibers, and acrylic fibers are also used. , polyamide fibers, polyester fibers and the like can also be used.
 繊維混合樹脂における繊維の混入割合は、実施形態では、40質量%としたが、10~70質量%であれば、使用することができる。混入割合が10質量%未満だと、強度を十分に高めることができないおそれがある。一方、70質量%を超えると、繊維混合樹脂の密度が増し、軸受装置200の軽量化を図ることができないおそれがある。より好ましくは、20~60質量%であり、さらに好ましくは、30~50質量%である。 Although the mixing ratio of fibers in the fiber mixed resin is 40% by mass in the embodiment, it can be used as long as it is 10 to 70% by mass. If the mixing ratio is less than 10% by mass, the strength may not be sufficiently increased. On the other hand, if it exceeds 70% by mass, the density of the fiber-mixed resin increases, and there is a risk that the weight of the bearing device 200 cannot be reduced. It is more preferably 20 to 60% by mass, still more preferably 30 to 50% by mass.
 繊維混合樹脂は、実施形態では、樹脂がポリアミド樹脂又はフェノール樹脂であり、ガラス繊維を40質量%混合されたものを使用したが、市販品であっても使用することができる。ガラス繊維混合樹脂の市販品として、A1022GFL15、A1022GFL、A1030GFL、A1030GFL45、A1022GFL60(A)、EX-8406G30、A175S、A190S、A192S、A690S(以上、ユニチカ株式会社製)、CM1011G-15、CM1001G-15、CM1001G-20、CM1011G-30、CM1016G-30、CM1011G-45、CM1012G-45N、CM3001G-15、CM3006G-15、CM3001G-30、CM3006G-30、CM3001G-45、CM3006G-45(以上、東レ株式会社製)などを使用することができる。 In the embodiment, the fiber-mixed resin is a polyamide resin or a phenolic resin mixed with 40% by mass of glass fiber, but a commercially available product can also be used. Commercially available glass fiber mixed resins include A1022GFL15, A1022GFL, A1030GFL, A1030GFL45, A1022GFL60 (A), EX-8406G30, A175S, A190S, A192S, A690S (manufactured by Unitika Ltd.), CM1011G-15, CM1001. G-15, CM1001G-20, CM1011G-30, CM1016G-30, CM1011G-45, CM1012G-45N, CM3001G-15, CM3006G-15, CM3001G-30, CM3006G-30, CM3001G-45, CM3006G-45 (manufactured by Toray Industries, Inc.) ) can be used.
 1…接合継手、2…樹脂ブラケット、3…鋳型、3a…側面部分、10…接合面、11…側面、12…底面、13…凹部、13a…面取り部、13b…面取り部、14…くびれ部、14a…面取り部、15…端部、16…螺子孔、32…骨材、100…微細凹凸形状、101…粗凹凸形状、200…軸受装置、201…シャフト軸受部。


                                                                        
DESCRIPTION OF SYMBOLS 1... Joint joint 2... Resin bracket 3... Mold 3a... Side part 10... Joint surface 11... Side surface 12... Bottom surface 13... Recessed part 13a... Chamfered part 13b... Chamfered part 14... Constricted part , 14a... Chamfered portion 15... End portion 16... Screw hole 32... Aggregate 100... Fine uneven shape 101... Rough uneven shape 200... Bearing device 201... Shaft bearing portion.


Claims (7)

  1.  金属から形成され、表面に樹脂と接合する接合面を有し、該接合面に微細凹凸形状が形成され、該微細凹凸形状の算術平均粗さRaが10~300μmであることを特徴とする接合継手。 A joint characterized by being formed of a metal, having a bonding surface to be bonded to a resin on the surface, forming a fine uneven shape on the bonding surface, and having an arithmetic mean roughness Ra of 10 to 300 μm of the fine uneven shape fittings.
  2.  前記接合面に、溝状の凹部が形成されていることを特徴とする請求項1に記載の接合継手。 The joining joint according to claim 1, characterized in that a groove-shaped concave portion is formed in the joining surface.
  3.  前記接合面が側面となる略円筒形状をなし、前記凹部が該側面の周方向に形成されていることを特徴とする請求項2に記載の接合継手。 The joining joint according to claim 2, characterized in that the joint surface has a substantially cylindrical shape that serves as a side surface, and the concave portion is formed in the circumferential direction of the side surface.
  4.  前記凹部によって周方向に形成されたくびれ部の半径方向の断面が、略多角形であることを特徴とする請求項3に記載の接合継手。 The joining joint according to claim 3, characterized in that the radial cross-section of the constriction formed in the circumferential direction by the recess is substantially polygonal.
  5.  請求項1に記載の接合継手の製造方法であって、
     前記接合継手を鋳造する鋳型が粗い骨材から形成されることによって、該鋳型の表面に微細凹凸形状が形成され、
     該鋳型から鋳造された接合継手の表面に微細凹凸形状が形成されることを特徴とする接合継手の製造方法。
    A method for manufacturing a bonded joint according to claim 1,
    By forming the mold for casting the joint joint from coarse aggregate, a fine uneven shape is formed on the surface of the mold,
    A method for manufacturing a bonded joint, characterized in that fine irregularities are formed on the surface of the bonded joint cast from the mold.
  6.  前記骨材の平均粒子径(メジアン径d50)が200~2000μmであることを特徴とする請求項5に記載の接合継手の製造方法。 The method for producing a welded joint according to claim 5, wherein the aggregate has an average particle size (median size d50) of 200 to 2000 µm.
  7.  請求項1に記載の接合継手と、
     該接合継手の前記接合面を被覆し、該接合継手を固設する樹脂を母体とする樹脂ブラケットと、
     を有することを特徴とする金属と樹脂の接合構造。
                                                                            
    a joint joint according to claim 1;
    a resin bracket covering the joint surface of the joint and fixing the joint, the base being made of a resin;
    A joint structure of metal and resin, characterized by having
PCT/JP2022/039634 2021-10-28 2022-10-25 Bonding joint for bonding to resin, bonding joint manufacturing method, and metal-resin bonding structure WO2023074659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068097.2A CN118076450A (en) 2021-10-28 2022-10-25 Joint joint joined to resin, method for producing joint, and metal-resin joint structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176969A JP7414787B2 (en) 2021-10-28 2021-10-28 Joining joint to be joined to resin and method for manufacturing joining joint
JP2021-176969 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074659A1 true WO2023074659A1 (en) 2023-05-04

Family

ID=86157821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039634 WO2023074659A1 (en) 2021-10-28 2022-10-25 Bonding joint for bonding to resin, bonding joint manufacturing method, and metal-resin bonding structure

Country Status (3)

Country Link
JP (1) JP7414787B2 (en)
CN (1) CN118076450A (en)
WO (1) WO2023074659A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117711A1 (en) * 2015-01-23 2016-07-28 古河電気工業株式会社 Composite of metal member and resin mold, and metal member for forming composite with resin mold
JP2019035482A (en) * 2017-08-18 2019-03-07 Ntn株式会社 Power transmission shaft
WO2022019339A1 (en) * 2020-07-22 2022-01-27 三井化学株式会社 Metal member, metal-resin composite, and method for producing metal member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117711A1 (en) * 2015-01-23 2016-07-28 古河電気工業株式会社 Composite of metal member and resin mold, and metal member for forming composite with resin mold
JP2019035482A (en) * 2017-08-18 2019-03-07 Ntn株式会社 Power transmission shaft
WO2022019339A1 (en) * 2020-07-22 2022-01-27 三井化学株式会社 Metal member, metal-resin composite, and method for producing metal member

Also Published As

Publication number Publication date
JP2023066298A (en) 2023-05-15
JP7414787B2 (en) 2024-01-16
CN118076450A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
US8028739B2 (en) Inserts with holes for damped products and methods of making and using the same
US20200114600A1 (en) Exercise weight structure
CN1092586C (en) Bicycle hollow crank arm and its producing method
CA2771357C (en) Knuckle for a railway car coupler
JP4033147B2 (en) Casting method and casting for castings
US20070090685A1 (en) Wheel for motorcycle and production method thereof
US20060254743A1 (en) Method for the production of a lost-foam casting model for a light metal cylinder liner
US10352381B2 (en) Brake discs
WO2023074659A1 (en) Bonding joint for bonding to resin, bonding joint manufacturing method, and metal-resin bonding structure
KR20060045504A (en) Cap nut for envelopment casting, casting including the cap nut and method of enveloping the cap nut in casting
CN106232317A (en) There is hollow cylindrical screw element and the manufacture method thereof of thread groove
KR100740280B1 (en) A light pole composed of the strengthened structure and it's manufacturing method
KR100806481B1 (en) Lining support plate and associated production method
JP4033165B2 (en) Casting cap nut and casting method using cast cap nut
CN216618471U (en) Plastic composite belt pulley and mounting structure thereof
JP7045950B2 (en) Bearing equipment
KR200435770Y1 (en) A light pole composed of the strengthened structure
JP2002293104A (en) Light type wheel for automobile and method for manufacturing thereof
JP3502084B2 (en) Core for casting and method of manufacturing the same
JP3738564B2 (en) Molded body having insert member for rotational torque resistance
KR20220126596A (en) Manufacturing method of brake disk
JPH09132003A (en) Drum hub made from casting
CN100340386C (en) Cast iron tile and method for the production of cast iron tile
US20040163256A1 (en) Method for producing a light-alloy bearing bush with a rough external surface
JP2004138154A (en) Brake disk made of light alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886986

Country of ref document: EP

Kind code of ref document: A1