WO2023074626A1 - Optical laminate, infrared information acquisition system, and meeting support system - Google Patents

Optical laminate, infrared information acquisition system, and meeting support system Download PDF

Info

Publication number
WO2023074626A1
WO2023074626A1 PCT/JP2022/039537 JP2022039537W WO2023074626A1 WO 2023074626 A1 WO2023074626 A1 WO 2023074626A1 JP 2022039537 W JP2022039537 W JP 2022039537W WO 2023074626 A1 WO2023074626 A1 WO 2023074626A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
optical
main surface
filter layer
optical filter
Prior art date
Application number
PCT/JP2022/039537
Other languages
French (fr)
Japanese (ja)
Inventor
麻未 川口
雄大 沼田
祥一 松田
美由 東山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023074626A1 publication Critical patent/WO2023074626A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/15Conference systems

Definitions

  • the present invention relates to an optical laminate, an infrared information acquisition system, and a conference support system, and in particular, an optical laminate capable of transmitting infrared rays and limiting the transmission of visible light.
  • the present invention relates to an infrared information acquisition system that acquires information using infrared rays and a conference support system that uses such an infrared information acquisition system.
  • Optical stacks are used, for example, as projection screens and/or whiteboards.
  • the optical layered body is typically sheet-like.
  • sheet-like is used to mean including plate-like or film-like, regardless of the rigidity (flexibility) and thickness of the sheet.
  • the present inventor has conceived of a system that, for example, uses facial expression recognition technology to estimate the user's emotions, and uses information about the estimated emotions to support meetings aimed at, for example, brainstorming.
  • a highly accurate face image is required, which increases the number of cameras to be arranged.
  • the facial expression is also affected.
  • Patent Document 4 discloses that an optical camouflage filter that blocks visible light and transmits near-infrared rays is used in a face recognition system (see FIG. 2F), it does not disclose the use of multiple light receivers. Not even suggested. Further, Patent Document 4 discloses an optical camouflage filter with an ink-receptive coating, but does not disclose or suggest a whiteboard having a writing layer on which writing and erasing can be repeated.
  • An optical laminate having a first main surface and a second main surface opposite to the first main surface, It has an optical filter layer that transmits infrared rays and diffuses and transmits visible light, When the first main surface side is brighter than the second main surface side, an object placed on the second main surface side and spaced apart from the second main surface side is viewed from the first main surface side. make it impossible, An optical layered body having a linear transmittance of 40% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less.
  • the optical layered body can make the object invisible from the first main surface side when the distance from the second main surface to the object is 9 cm or more. Further, according to one embodiment, the optical layered body can make the object invisible from the first main surface side even if the distance from the second main surface to the object is 1 cm.
  • the optical filter layer has a matrix and fine particles that serve as light scatterers dispersed in the matrix, and has a linearity of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less.
  • the transmittance curve of the visible light wavelength region of the optical filter layer has a curve portion where the linear transmittance monotonically decreases from the long wavelength side to the short wavelength side, and the curve portion is on the long wavelength side as the incident angle increases.
  • FIG. 13 an optical laminate according to any one of items 1 to 12; a plurality of infrared detection devices disposed on the second main surface side of the optical laminate and spaced apart from the second main surface and arranged to receive infrared rays through the optical laminate; Infrared information acquisition system.
  • An infrared information acquisition system according to item 13, further comprising at least one infrared light source device arranged to emit infrared rays toward the second main surface of the optical laminate.
  • the at least one infrared light source device includes a first infrared light source device and a second infrared light source device, and the first infrared light source device and the second infrared light source device are different from each other on the second main surface of the optical stack.
  • Infrared information according to any one of items 13 to 15, further comprising a position sensor and configured to selectively operate one of the plurality of infrared detection devices according to the output of the position sensor. acquisition system.
  • each of said plurality of infrared detection devices is a three-dimensional sensor or camera.
  • An infrared information acquisition system according to any one of items 13 to 17; a facial expression recognition device that recognizes facial expressions of a user based on infrared information acquired through the optical layered body by the infrared information acquisition system;
  • a meeting support system comprising: a first storage device that stores information on the facial expression recognized by the facial expression recognition device in association with the position and acquisition time of the optical layered body.
  • the optical laminate further has a writing layer disposed on the first main surface side of the optical filter layer, a pattern recognition device that recognizes a pattern formed using infrared absorbing ink on the writing layer of the optical layered body based on the infrared information acquired through the optical layered body by the infrared information acquisition system; 19.
  • FIG. 23 further comprising a projection device disposed on the second main surface side of the optical layered body and configured to emit visible light toward the optical layered body;
  • the projection device is configured to form a predetermined pattern of visible light on the second main surface of the optical layered body based on the facial expression information recognized by the facial expression recognition device.
  • a meeting support system according to any one of items 18 to 23, further comprising a communication device and configured to output the visible light pattern formed by the projection device via the communication device.
  • an expression (or emotion) of a user is estimated from a facial image of a user without being visually recognized by the user, and information about the estimated expression (emotion) is provided.
  • a conference support system is provided for supporting a conference. Further, according to the embodiments of the present invention, there are provided a visible light shielding IR transmissive sheet, a projection screen, an optical laminate used as a whiteboard, and an infrared information acquisition system, which are preferably used in such a conference support system.
  • FIG. 1 is a schematic diagram showing an example of a state in which an optical layered body 100 is used as a projection screen/whiteboard 100 in a meeting support system according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example configuration of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention
  • FIG. 1 schematically illustrates the configuration and optical properties of a projection screen/whiteboard 100 according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing a configuration example of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention
  • 4 is a flow chart showing an example of operation of the conference support system 300 according to the embodiment of the present invention
  • 4 is a flow chart showing another example of the operation of the conference support system 300 according to the embodiment of the present invention
  • 9 is a flow chart showing still another example of the operation of the conference support system 300 according to the embodiment of the present invention
  • 2 is a schematic cross-sectional view of an optical filter layer 110
  • FIG. FIG. 4 is a diagram showing an example of a cross-sectional TEM image of the optical filter layer 110
  • 4 is a graph normalized by the maximum transmittance, showing an example of the incident angle dependence of the linear transmittance spectrum of the optical filter layer 110.
  • optical laminates according to embodiments of the present invention can be used as visible light blocking IR transmissive sheets, projection screens, and whiteboards.
  • the optical layered body, the infrared information acquisition system, and the conference support system according to the embodiments of the present invention are not limited to those exemplified below.
  • FIG. 1 schematically shows an example of a state in which an optical laminate 100 is used as a projection screen/whiteboard 100 in a meeting support system according to an embodiment of the present invention.
  • FIG. 2 schematically shows a configuration example of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention.
  • the optical laminate 100 exemplified here can be used as a rear projection type projection screen and also as a whiteboard.
  • the substrate layer 120 and/or the writing layer 130 may be omitted if used only as an IR transmitting sheet or projection screen.
  • the optical layered body 100 may be referred to as a whiteboard 100 hereinafter.
  • the whiteboard 100 has an optical filter layer 110, a base layer 120 supporting the optical filter layer 110, and a writing layer 130 disposed on the optical filter layer 110, as will be described later with reference to FIG. .
  • the optical filter layer 110 transmits infrared rays and diffusely transmits visible light.
  • the whiteboard 100 has a first major surface (front) 12s and a second major surface (back) 14s opposite the first major surface 12s, and the substrate layer 120 is the second major surface of the optical filter layer 110.
  • the writing layer 130 is arranged on the main surface 14s, and the writing layer 130 is arranged on the first main surface 12s side of the optical filter layer 110 .
  • the space FS on the side of the first main surface 12s of the whiteboard 100 is called the front side space FS
  • the space RS on the side of the second main surface 14s is sometimes called the back side space RS.
  • the writing layer 130 may be a known layer having a writing surface on which writing and erasing can be repeated. Examples of known layers include a hard coat layer and a glass layer.
  • the optical filter layer 110 as will be described later with reference to FIGS. 8, 9 and 10, the optical filter described in International Application PCT/JP2021/010413 filed by the present applicant is preferably used as the optical filter layer 110. However, it is not limited to this, and an optical filter having a high linear transmittance of infrared rays and a high diffuse reflectance of visible light, for example, an optical camouflage filter described in Patent Document 4 can also be used.
  • infrared radiation includes at least light (electromagnetic waves) with a wavelength in the range of 780 nm or more and 2000 nm or less.
  • visible light refers to light within the range of 400 nm or more and less than 780 nm.
  • the optical laminate When used as a visible light shielding IR transmitting sheet, it may further have a decorative layer arranged on the front side of the optical filter layer.
  • the decorative layer can have a design that matches the surrounding design.
  • the design of the decorative layer is not particularly limited and may be, for example, a wood grain pattern, a tile pattern, or a single color.
  • the design of the decorative layer is preferably composed of a material that transmits infrared rays. (colorant such as ink) may be used.
  • the decorative layer can be formed, for example, on the optical filter layer by a known method such as printing.
  • the decorative layer can also be formed by laminating a film or the like having a design.
  • a visible light shielding IR transmissive sheet can, for example, prevent participants from seeing infrared detection devices or position sensors when placing them around or to the side of a projection screen or whiteboard.
  • a visible light shielding IR transmissive sheet can, for example, prevent participants from seeing infrared detection devices or position sensors when placing them around or to the side of a projection screen or whiteboard.
  • a decorative layer with a wood grain tone is used, it is possible to provide a space that is familiar to the interior and allows participants to be in a natural state.
  • the protective layer may be formed on the optical filter layer 110, or may be formed on the decorative layer when the decorative layer is provided on the front side of the optical filter layer.
  • the protective layer may be, for example, a known hardcoat layer, antiglare layer, antireflection layer, and/or antifouling layer.
  • An adhesive layer (including a pressure-sensitive adhesive layer) may be provided between the layers that make up the optical laminate, if necessary.
  • the plurality of layers may have a base layer for supporting the layer that expresses the function of each layer.
  • the base material layer is appropriately selected so as not to impair the optical properties of the optical layered body.
  • the whiteboard 100 is preferably used in a meeting for the purpose of brainstorming, for example, where the whiteboard is utilized by a plurality of users P1, P2 and P3.
  • the user P1 or the like writes various patterns such as characters, symbols, and illustrations on the writing surface of the whiteboard 100 using, for example, a marker.
  • the user P1 or the like writes various patterns on the sticky note 12 using a marker or the like, and sticks the sticky note 12 on the writing surface of the whiteboard 100 .
  • the size of the whiteboard 100 is not particularly limited, and for example, it may be arranged over the entire inner wall surface of the room.
  • the sticky note 12 preferably has an optical filter layer with a high linear transmittance of infrared rays and a high diffuse reflectance of visible light, and has a known writing layer on the optical filter layer.
  • Inks used for markers and the like may or may not transmit infrared rays. When ink that does not transmit infrared rays is used, various patterns written with a marker or the like can be obtained by an infrared detection device. On the other hand, if ink that transmits infrared rays is used, the image of the user P1 or the like can be obtained by the infrared detection device without being blocked by various patterns written using a marker or the like.
  • the infrared transmittance of ink can be set arbitrarily. A plurality of types of ink with different infrared transmittances may be prepared and used according to the purpose.
  • the infrared information acquisition system 200 according to the embodiment of the present invention, as shown in FIG. of infrared detectors 210a and 210b.
  • hollow arrows represent visible light VL and simple arrows represent infrared IR.
  • the infrared information acquisition system 200 has a plurality of infrared detection devices 210a and 210b, it is possible to acquire an image of the user P1 or the like with high accuracy. For example, a high-definition image can be acquired by dividing the area of the whiteboard 100, providing infrared detection devices 210a and 210b, etc. for each area, and emitting infrared rays toward different areas. can be done.
  • infrared information includes various patterns written on the writing surface of the whiteboard 100, image information obtained from the user P1, etc., three-dimensional information (shape information, distance information), and the like.
  • a known infrared detection device may be selected according to the required information.
  • the infrared detectors 210a, 210b are, for example, three-dimensional sensors or cameras. There is no limit to the number and arrangement of infrared detectors.
  • the infrared information acquisition system 200 may further include infrared light source devices 220a and 220b arranged on the back side of the whiteboard 100 so as to emit infrared rays toward the whiteboard 100.
  • a plurality of infrared light source devices 220a and 220b may be arranged corresponding to a plurality of infrared detection devices 210a and 210b.
  • the operations of the infrared light source devices 220a and 220b may be synchronized with the operations of the infrared detection devices 210a and 210b.
  • the infrared information acquisition system 200 may further have a position sensor 230 .
  • the position sensor 230 can be configured to selectively operate one of the plurality of infrared detection devices 210a and 210b.
  • the position sensor 230 identifies a user who is close to the whiteboard 100, operates only one of the infrared light source devices 220a and 220b according to the position of the user, and detects the infrared detection devices 210a and 210b.
  • 210b may be activated (eg, see FIG. 7).
  • the conference support system has an infrared information acquisition system 200 and a computer 500.
  • the computer 500 operates as a facial expression recognition device (for example, the facial expression recognition device 513 in FIG. 4) that recognizes the user's facial expression based on infrared information acquired via the whiteboard 100 by the infrared information acquisition system 200, for example. and a storage device 520 capable of storing the facial expression information recognized by the facial expression recognition device in association with the position of the whiteboard 100 and acquisition time.
  • the facial expression recognition device may be configured to further estimate an emotion based on facial expression information. Alternatively, emotion information corresponding to facial expression information may be stored in storage device 520 in advance.
  • the computer 500 can also control the infrared information acquisition system 200 .
  • the processor 510 is a pattern recognition device (for example, a 4) as a pattern recognizer 514). Information on the pattern recognized by the pattern recognition device is stored in the storage device 52 in association with the position of the whiteboard 100 and the acquisition time.
  • the processor 510 may also act as a character conversion device (eg, 515 in FIG. 4) that converts the recognized pattern information into character information.
  • Infrared absorbing inks are widely available commercially, for example, inks containing carbon, oil-based inks, dyes or pigments.
  • the processor 510 can also operate as a motion recognition device (for example, the motion recognition device 516 in FIG. 4) that recognizes the user's motion based on the infrared information acquired via the whiteboard 100 by the infrared information acquisition system. .
  • a motion recognition device for example, the motion recognition device 516 in FIG. 4
  • the processor 510 also operates as an image processing device (for example, the image processing device 512 in FIG. 4) that performs various image processing based on the infrared information acquired via the whiteboard 100 by the infrared information acquisition system. can.
  • Processor 510 can perform various operations according to a program (software). The operations performed by the processor 510 may vary depending on the signals (information) output from the infrared detectors 210a, 210b.
  • Programs for controlling processor 510 may be stored in storage device 520, for example.
  • the computer 500 may further have an output device (eg, the communication/input/output device 530 in FIG. 4) that outputs various information obtained by the processor 510.
  • the information to be output may be information stored in storage device 520 .
  • information about facial expressions (emotions) can be displayed, for example, on the computer screens of people participating in a meeting via a network.
  • the whiteboard 100 is configured to forward scatter visible light incident from the back, and also functions as a rear projection type projection screen.
  • the conference support system 300 may further include projection devices 310 a and 310 b arranged behind the whiteboard 100 and configured to emit visible light toward the whiteboard 100 .
  • projection devices 310 a and 310 b arranged behind the whiteboard 100 and configured to emit visible light toward the whiteboard 100 .
  • an example of having two projection devices 310a and 310b corresponding to different regions of the whiteboard 100 is shown, but the number of projection devices may be one, or three or more projection devices may be provided. .
  • Projection devices 310a and 310b form a predetermined visible light pattern (pattern 100R in FIG. 1) on the back surface of whiteboard 100, for example, based on facial expression (or emotion) information recognized by the facial expression recognition device.
  • the pattern may be, for example, a pattern of colors corresponding to a recognized facial expression (emotion).
  • the area onto which the pattern is projected includes, for example, the area on whiteboard 100 where the facial expression (emotion) is obtained. Further, by projecting and sharing the information written on the whiteboard 100, it is possible to produce an effect as if the users exist in the same space even if they are remote.
  • FIG. 3 is a diagram schematically illustrating the construction and optical properties of a projection screen/whiteboard 100 according to an embodiment of the invention.
  • the whiteboard 100 has an optical filter layer 110 , a base layer 120 supporting the optical filter layer 110 , and a writing layer 130 arranged on the optical filter layer 110 .
  • the optical filter layer 110 has a linear transmittance of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less, and diffusely reflects visible light. Details of the optical filter layer 110 will be described later with reference to FIGS.
  • the base material layer 120 has mechanical strength as a whiteboard and has a high infrared transmittance.
  • the base layer 120 may be formed of transparent plastic such as acrylic resin, for example.
  • the thickness of the base material layer 120 is, for example, about 2 ⁇ m or more and about 10 cm or less.
  • the writing layer 130 is, for example, a hard coat layer or a glass layer.
  • the thickness of the writing layer 130 is, for example, about 2 ⁇ m or more and about 1 cm or less.
  • the substrate layer 120 and/or the writing layer 130 may be omitted when used only as a visible light blocking IR transmitting sheet or projection screen.
  • the white arrow represents visible light VL
  • the simple arrow represents infrared light IR.
  • Ambient light incident on the whiteboard 100 from the writing layer 130 side, that is, from the user P1 side includes visible light VLa and infrared light IRa.
  • Visible light VLa is backscattered (diffuse reflected) at the optical filter layer 110 (VLabs).
  • the backscattered (diffuse reflected) visible light VLabs allows the whiteboard 100 to appear isotropically white.
  • the transmitted visible light VLat is less intense than the backscattered (diffuse reflected) visible light VLabs.
  • the intensity of the transmitted infrared rays IRat is greater than that of the reflected infrared rays IRar.
  • Reflected infrared IRar includes backscattered (diffuse reflected) infrared.
  • the transmitted infrared rays IRotrt are received by the infrared detection device 210a or the like. From the received infrared rays, the facial image of the user P1 or the like and infrared information on the actions can be obtained. Similarly, infrared information is obtained that includes the pattern written on the writing surface of whiteboard 100 .
  • the infrared light source device 220a and the like can be omitted and the reflected infrared rays IRar can be used.
  • more accurate infrared information can be obtained by using the infrared rays IRo emitted from the infrared light source device 220a or the like.
  • infrared rays IRo having a predetermined pattern for example, a pattern of many dots
  • infrared information with higher accuracy can be obtained.
  • infrared information with higher accuracy can be obtained.
  • infrared information with higher accuracy can be obtained.
  • the infrared rays IRa contained in the ambient light may be reduced.
  • the visible light VLp emitted from the projection device 310a enters the optical filter layer 110, becomes forward scattered visible light VLpfs, and is visually recognized by the user P1 and the like.
  • no infrared rays are emitted from the projection device 310a.
  • the whiteboard 100 can hide the infrared detection devices 210a and 210b, the infrared light source devices 220a and 220b, and/or the projection devices 310a and 310b, the computer 500, and the position sensor 230, for example, from the user.
  • the computer 500 does not necessarily need to be placed in the same space (room) as the user.
  • the rear space RS can be made darker than the front space FS.
  • the brightness (illuminance) of the space is measured, for example, at a height of 100 cm from the floor, with the receiver of an illuminometer (for example, Spectromaster C-800 manufactured by Sekonic Co., Ltd.) facing upward (ceiling towards).
  • the illuminance of the front side space FS is about 300 lux or more, and the illuminance of the back side space RS can be easily reduced to less than about 200 lux.
  • the transmitted visible light VLat that is incident on the whiteboard 100 from the first main surface 12s and transmitted is strong, for example, it hits the infrared detector 210a, is reflected, and is transmitted through the whiteboard 100 again.
  • the infrared detection device 210a may be visually recognized by the user when reaching the first main surface 12s side.
  • the whiteboard 100 can prevent this.
  • the whiteboard 100 sees the object from the first main surface 12s side, as will be described later with an embodiment. You can make it impossible. Also, even if the distance from the second main surface 14s to the object is 1 cm, the object can be made invisible from the first main surface 12s side.
  • the visible light linear transmittance of such a whiteboard 100 is, for example, 20.0% or less. Also, the visible light diffuse transmittance of the whiteboard 100 is higher than the linear transmittance by, for example, 2% or more.
  • the diffuse transmittance of visible light of the whiteboard 100 is, for example, 10.0% or more and 40.0% or less.
  • optical filter layer 110 By controlling the thickness of the optical filter layer 110, optical characteristics such as infrared linear transmittance, visible light linear transmittance, and visible light diffuse reflectance can be adjusted.
  • a semi-reflective layer that partially reflects visible light also referred to as a “visible light transmissive reflective layer” is provided on the second main surface 14s side of the optical filter layer 110. Further provision can adjust the visible light in-line transmittance and/or the visible light diffuse reflectance. At this time, a semi-reflective layer having polarization selectivity may be used.
  • the whiteboard 100 can form a projected image having a sufficient luminance difference on the first principal surface 12s when the image is projected onto the second principal surface 14s.
  • a general projection screen for example, PRS-KBHD80 manufactured by Sanwa Supply Co., Ltd.
  • a checkered pattern with a black-and-white luminance difference of 235 cd/cm 2 is used as the second pattern.
  • a projection image having a luminance difference of 20 cd/cm 2 or more between black and white can be formed on the first main surface 12s.
  • the contrast ratio black and white luminance difference
  • FIG. 4 shows a block diagram of a configuration example of the infrared information acquisition system 200 and the conference support system 300 according to the embodiment of the present invention.
  • the infrared information acquisition system 200 has a whiteboard 100, infrared detection devices 210a and 210b, and infrared light source devices 220a and 220b.
  • the infrared detection device 210a operates in synchronization with the infrared light source device 220a
  • the infrared detection device 210b operates in synchronization with the infrared light source device 220b.
  • the infrared information acquisition system 200 further has a position sensor 230, and depending on the position of the user detected by the position sensor 230, infrared detection device 210a and infrared light source device 220a or infrared detection device 210b and infrared light source device 220b. operates selectively.
  • Infrared information acquisition system 200 is controlled by computer 500 .
  • the conference support system 300 has a projection device 310 and a speaker 320 in addition to the infrared information acquisition system 200 .
  • Conference support system 300 is also controlled by computer 500 .
  • Computer 500 includes, for example, processor 510 , storage device 520 , communication/input/output device 530 , operating unit 540 and display device 550 .
  • the processor 510 variously processes the infrared information obtained from the infrared detectors 210 a and 210 b via the communication/input/output device 530 .
  • the processor 510 By installing programs (software) stored in the storage device 520, for example, the processor 510 operates as an image processing device 512, a facial expression recognition device 513, a pattern recognition device 514, a character conversion device 515, and a motion recognition device 516. can operate as A known program can be used as a program for executing each process.
  • the storage device 520 stores the processing results of the processor 510 (e.g., facial expression (emotion) information, motion information, patterns and character information formed on the whiteboard 100 using infrared absorbing ink) at the position of the whiteboard 100 and acquires them. It can be stored in association with time.
  • Computer 500 can be managed and controlled by a user using operation unit 540 and display device 550 .
  • Meeting support system 300 forms a predetermined pattern of visible light (which may include an image) on the back of whiteboard 100 by projection device 310 based on facial expression (emotion) information obtained by processing of processor 510 . do. Also, the conference support system 300 can output a predetermined sound from the speaker 320 based on the facial expression (emotion) information obtained by the processing of the processor 510 . These visual and/or audible effects aid in meetings such as brainstorming. Also, facial expression (emotion) information obtained by the processing of the processor 510 can be shared, for example, with people participating in the conference via a network. Also, facial expression (emotion) information can be associated with patterns and character information formed on the whiteboard 100 using infrared absorbing ink.
  • FIG. Emotional information and character information can be associated by performing each step of the flow chart shown in FIG.
  • a visual effect can be given by the projection device in association with the action.
  • the whiteboard 100 is divided into left and right regions, and the infrared light source device and the imaging device as the infrared detection device provided for each region are selectively selected according to the position of the user. can be operated.
  • FIG. 5 is a flow chart showing an example of the operation of the conference support system 300 according to the embodiment of the present invention. The following steps are performed.
  • Step S11 Infrared rays IR1 are emitted from the rear surface of the optical layered body 100 from the infrared light source device 220a.
  • Step S12 Infrared detection device 210a acquires the image of user P1 as image data IMG1.
  • the image data IMG1 recognizes not only the user P1, but also a plurality of people such as the user P2 and the user P3, and acquires their respective images.
  • Step S13 The obtained object signal IMG1 is taken into the computer 500, and the image processing device 512 in the processor 510 performs face extraction processing via the communication/input/output device 530.
  • Step S14 The face information is stored in the storage device 520 .
  • Step S15 The obtained face information is compared with the emotion reference code stored in advance in the facial expression recognition device 513 to estimate the emotion.
  • Step S21 Infrared rays IR2 are emitted from the rear surface of the optical layered body 100 from the infrared light source device 220b.
  • Step S22 The infrared detection device 210b acquires the design or characters written directly on the sticky note 12 or the optical layered body 100 as image data IMG2.
  • the image data IMG2 may be used to obtain user information as well as information on the optical layered body.
  • Step S23 The obtained signal IMG2 is taken into the computer 500, and the pattern recognition device 514 in the processor 510 through the communication/input/output device 530 extracts characters and patterns.
  • Step S24 Character and design information is stored in the storage device 520 .
  • Step S25 The obtained character and pattern information is collated with the character reference code stored in advance in the character conversion device 515 to estimate the character.
  • Step S26 A predetermined display code corresponding to the emotion obtained in step S15 is reflected in the character information obtained in step S25, and the display code is sent from the display control device 517 to the projection device 310 and the speaker 320 via the communication/input/output device 530. to reflect the emotion code in the character display method.
  • the emotion code may be expressed by changing the color of the characters, or by combining the color, brightness, blinking, etc. of the lighting. Also, it may be reflected in the voice.
  • Step S27 The obtained information is shared with a remote system using the communication/input/output device 530, and the information is reflected on the projection device 310 and the speaker 320 at each location.
  • FIG. 6 is a flow chart showing another example of the operation of the conference support system 300 according to the embodiment of the present invention. The following steps are performed.
  • Step S31 The position sensor 230 emits an infrared ray L1.
  • Step S32 A position sensor 230 detects the motion/body position.
  • Step S33 A short history of detected motions is matched with stored motions by motion recognition device 516 in computer 500 and stored.
  • Step S34 Infer more complex motions from the tracked motions and match them with the stored motions.
  • Step S35 Whether or not the motion has meaning is determined by comparing it with the stored motion.
  • Step S36 Emotions are estimated by comparing actions and basic chords. Emotions may be feelings such as surprise, joy, or anger, or may be emphasis on meetings such as importance or attention. Emotions are read from actions, a predetermined display code is reflected, and the emotion code is reflected by the projection device 310 or the speaker 320 from the display control device 517 via the communication/input/output device 530 . As a method of expressing the emotion code, the color of the characters may be changed, or the color of the lighting, the illuminance, blinking, etc. may be combined. Also, it may be reflected in the voice.
  • the optical filter layer 110 preferably used in the optical laminate (visible light shielding IR transmitting sheet, projection screen or whiteboard) according to the embodiment of the present invention is an optical filter layer containing a matrix and fine particles dispersed in the matrix. 110, the fine particles form at least colloidal amorphous aggregates, and have a linear transmittance of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less. For example, it is possible to obtain the optical filter layer 110 having a linear transmittance of 60% or more for light with wavelengths of 950 nm and 1550 nm.
  • the wavelength range of light (near infrared rays) in which the in-line transmittance of the optical filter layer 110 is 60% or more is preferably, for example, 810 nm or more and 1700 nm or less, more preferably 840 nm or more and 1650 nm or less.
  • both the matrix and the fine particles are preferably transparent to visible light (hereinafter simply referred to as "transparent").
  • the optical filter layer 110 can appear white.
  • the optical filter layer 110 contains colloidal amorphous aggregates.
  • a colloidal amorphous aggregate refers to an aggregate of colloidal particles (particle size of 1 nm to 1 ⁇ m) that does not have long-range order and does not cause Bragg reflection.
  • colloidal particles When colloidal particles are distributed in a long-range order, they become so-called colloidal crystals (a type of photonic crystal), which is in contrast to Bragg reflection. That is, the fine particles (colloidal particles) included in the optical filter layer 110 do not form a diffraction grating.
  • the microparticles included in the optical filter layer 110 include monodisperse microparticles having an average particle diameter of 1/10 or more of the wavelength of infrared rays. That is, the average particle diameter of the fine particles is preferably at least 80 nm or more, preferably 150 nm or more, and more preferably 200 nm or more for infrared rays having a wavelength in the range of 780 nm or more and 2000 nm or less. Two or more monodisperse microparticles having different average particle diameters may be included. Individual microparticles are preferably approximately spherical.
  • fine particles are also used to mean aggregates of fine particles, and monodisperse fine particles mean that the coefficient of variation (value expressed as a percentage of standard deviation/average particle size) is 20% or less, Preferably 10% or less, more preferably 1 to 5%.
  • the optical filter layer 110 uses particles having a particle diameter (particle diameter, equivalent volume sphere diameter) equal to or greater than 1/10 of the wavelength, thereby increasing the linear transmittance of infrared rays.
  • the average particle size was obtained here based on a three-dimensional SEM image.
  • a focused ion beam scanning electron microscope hereinafter referred to as "FIB-SEM”
  • FIB-SEM focused ion beam scanning electron microscope
  • FIB accelerating voltage: 30 kV
  • the resulting three-dimensional image was binarized using the segmentation function of analysis software (AVIZO manufactured by Thermo Fisher Scientific) to extract the image of the fine particles.
  • AVIZO segmentation function of analysis software
  • the Separate object operation was performed, and then the volume of each microparticle was calculated. Assuming that each particle is a sphere, the diameter equivalent to volume sphere was calculated, and the value obtained by averaging the particle diameters of the fine particles was taken as the average particle diameter.
  • the optical filter layer 110 has a wavelength range of 780 nm or more and 2000 nm or less by adjusting any one of the refractive index of the particles and the matrix, the average particle size of the particles, the volume fraction, the distribution (degree of aperiodicity) and the thickness. 60% or more of the linear transmittance for light of at least part of the wavelengths.
  • the optical filter layer 110 can appear white.
  • L * measured by the SCE method on the CIE1976 color space is preferably 20 or more, more preferably 40 or more, even more preferably 50 or more, and particularly preferably 60 or more. If L * is 20 or more, it can be said to be substantially white. The upper limit of L * is 100, for example.
  • the optical filter layer 110 includes a matrix 112 transparent to visible light and transparent fine particles 114 dispersed in the transparent matrix 112 .
  • Fine particles 114 behave as light scatterers.
  • the optical filter layer 110 includes a layer in which fine particles 114 serving as light scatterers are dispersed in a matrix 112 .
  • Microparticles 114 may, for example, constitute at least colloidal amorphous aggregates. At this time, other fine particles may be included that do not disturb the colloidal amorphous aggregates formed by the fine particles 114 .
  • the optical filter layer 110 has a substantially flat surface, as schematically shown in FIG.
  • substantially flat surface refers to a surface that does not have an uneven structure large enough to scatter (diffract) or diffusely reflect visible light or infrared light.
  • the optical filter layer 110 is, for example, film-like, but is not limited to this.
  • the transparent fine particles 114 are silica fine particles, for example.
  • silica fine particles for example, silica fine particles synthesized by the Stover method can be used.
  • fine particles inorganic fine particles other than silica fine particles may be used, and resin fine particles may be used.
  • resin fine particles for example, fine particles made of at least one of polystyrene and polymethyl methacrylate are preferable, and fine particles made of crosslinked polystyrene, crosslinked polymethyl methacrylate or crosslinked styrene-methyl methacrylate copolymer are preferable. More preferred.
  • fine particles for example, polystyrene fine particles or polymethyl methacrylate fine particles synthesized by emulsion polymerization can be appropriately used.
  • Hollow silica fine particles and hollow resin fine particles containing air can also be used.
  • Fine particles made of an inorganic material have the advantage of being excellent in heat resistance and light resistance.
  • the volume fraction of the whole fine particles (including the matrix and fine particles) is preferably 6% or more and 60% or less, more preferably 20% or more and 50% or less, and even more preferably 20% or more and 40% or less.
  • the transparent microparticles 114 may have optical isotropy.
  • matrix 112 examples include, but are not limited to, acrylics (eg, polymethyl methacrylate, polymethyl acrylate), polycarbonates, polyesters, poly(diethylene glycol bisallyl carbonate), polyurethanes, epoxies, and polyimides. .
  • the matrix 112 is preferably formed using a curable resin (thermosetting or photocurable), and is preferably formed using a photocurable resin from the viewpoint of mass productivity.
  • Various (meth)acrylates can be used as the photocurable resin.
  • (Meth)acrylates preferably include bifunctional or trifunctional (meth)acrylates.
  • the matrix 112 preferably has optical isotropy. When a curable resin containing a polyfunctional monomer is used, the matrix 112 having a crosslinked structure can be obtained, so heat resistance and light resistance can be improved.
  • the optical filter layer 110 in which the matrix 112 is made of a resin material may be flexible and film-like.
  • the thickness of the optical filter layer 110 is, for example, 10 ⁇ m or more and 10 mm or less. If the thickness of the optical filter layer 110 is, for example, 10 ⁇ m or more and 1 mm or less, or further 10 ⁇ m or more and 500 ⁇ m or less, the flexibility can be exhibited remarkably.
  • hydrophilic monomers include polyethylene glycol (meth)acrylate, polyethylene glycol di(meth)acrylate, polyethylene glycol tri(meth)acrylate, polypropylene glycol (meth)acrylate, polypropylene glycol di(meth)acrylate, polypropylene glycol tri(meth)acrylate, ) acrylate, 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate, acrylamide, methylenebisacrylamide, ethoxylated bisphenol A di(meth)acrylate, but not limited to .
  • These monomers may be used singly or in combination of two or more.
  • the two or more types of monomers may include a monofunctional monomer and a multifunctional monomer, or may include two or more types of multifunctional monomers.
  • photopolymerization initiators include carbonyl compounds such as benzoin ether, benzophenone, anthraquinone, thioxane, ketal, and acetophenone; sulfur compounds such as disulfide and dithiocarbamate; organic peroxides such as benzoyl peroxide; azo compounds; complexes, polysilane compounds, dye sensitizers, and the like.
  • the amount to be added is preferably 0.05 to 3 parts by mass, more preferably 0.05 to 1 part by mass, based on 100 parts by mass of the mixture of the fine particles and the monomer.
  • refractive index difference is 0.01 or more. is preferably 0.6 or less, more preferably 0.03 or more, and more preferably 0.11 or less. If the refractive index difference is less than 0.03, the scattering intensity becomes weak, making it difficult to obtain desired optical properties. In addition, if the refractive index difference exceeds 0.11, the in-line infrared transmittance may decrease.
  • the linear transmittance of infrared rays can be adjusted by reducing the thickness. can be done.
  • the infrared in-line transmittance can also be adjusted, for example, by controlling the thickness and refractive index difference of the optical filter layer.
  • it can be used by overlapping with a filter that absorbs infrared rays.
  • the refractive index for visible light can be represented by the refractive index for light of 546 nm, for example.
  • the refractive index refers to the refractive index for light of 546 nm.
  • FIG. 9 is a diagram showing a cross-sectional TEM image of the optical filter layer 110.
  • the white circles in the TEM image in the figure are the silica fine particles, and the black circles are traces of the silica fine particles falling off.
  • silica fine particles are dispersed almost uniformly.
  • FIG. 10 is a graph normalized by the maximum transmittance, showing the incident angle dependency of the linear transmittance spectrum of the optical filter layer 110.
  • FIG. Looking at the transmittance curve of the optical filter layer 110 shown in FIG. 10, the curve portion where the linear transmittance monotonously increases from visible light to infrared rays shifts to the longer wavelength side (about 50 nm) as the incident angle increases. there is In other words, the curve portion where the linear transmittance monotonously decreases from infrared to visible light shifts to the long wavelength side as the incident angle increases.
  • This characteristic incident angle dependence is considered to be due to the fact that the silica fine particles contained in the optical film form colloidal amorphous aggregates.
  • Examples 1 to 5 and Comparative Examples 1 to 3 of the optical filter layer and the optical laminate having the optical filter layer described in the above international application will be described.
  • the optical filter of Example 6 (having an optical filter layer formed on a PET film) described in the above-mentioned international application with the thickness of the optical filter layer changed to 200 ⁇ m was used.
  • the effect of the PET film on the optical properties is slight, and the optical properties are almost the same as those of an optical laminate in which an optical filter layer is formed directly on a semi-reflective layer formed of a material that partially reflects visible light. are the same.
  • a semi-reflective layer that partially reflects visible light has transmission and reflection properties that reflect part of incident visible light and transmit the remaining visible light.
  • the visible light transmittance of the semi-reflective layer is preferably 10% to 70%, more preferably 15% to 65%, even more preferably 20% to 60%.
  • the reflectance of the semi-reflective layer is preferably 30% or higher, more preferably 40% or higher, and even more preferably 45% or higher. With respect to infrared rays, it preferably has a transmittance characteristic of 10% or more, more preferably 15% or more, and still more preferably 20% or more.
  • the semi-reflective layer for example, a half mirror, a reflective polarizer, a louver film, or the like can be used.
  • a multi-layer laminate in which two or more dielectric films having different refractive indices are laminated can be used.
  • Such half mirrors preferably have a metallic luster.
  • Materials for forming the dielectric film include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (eg, polyethylene terephthalate (PET)), and the like.
  • a multilayer laminate of dielectric films reflects a part of incident light at an interface due to the difference in refractive index between the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light by adjusting the thickness of the dielectric film and adjusting the degree of interference between the two lights.
  • the thickness of the half mirror made of a multilayer laminate of dielectric films can be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • a commercially available product such as Toray's product name "Picasus” can be used.
  • a reflective polarizer has the function of transmitting polarized light in a specific polarization state (polarization direction) and reflecting light in other polarization states.
  • the reflective polarizer may be linearly polarized or circularly polarized, but linearly polarized is preferred.
  • the linear polarization separation type reflective polarizer is arranged so that the reflection axis direction is substantially parallel to the absorption axis direction of the absorption polarizer (specifically, the first polarizer and the second polarizer). placed.
  • linearly polarized light separation type reflective polarizer for example, the one described in JP-A-9-507308 can be used.
  • examples of commercially available products include Nitto Denko's trade name "APCF", 3M trade name "DBEF”, and 3M trade name "APF”.
  • a commercially available product may be used as it is, or a commercially available product may be used after secondary processing (for example, stretching).
  • Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film in which cholesteric liquid crystal is fixed and a ⁇ /4 plate. A wire grid type polarizing layer can also be used.
  • optical properties of the optical layered bodies of Examples 1 to 5 are shown in Table 1, and the results of evaluating the optical properties of the optical layered bodies of Comparative Examples 1 to 3 are shown in Table 2.
  • Evaluation of performance as a projection screen was performed as follows. Using a short-focus projector (Ricoh Co., Ltd., PJWX4152N), when projected onto a general projection screen (Sanwa Supply Co., Ltd. PRS-KBHD80), the black and white luminance difference is 235 cd / cm 2 optically. The black and white luminance difference (cd/cm 2 ) of the projected image formed on the front surface (first main surface 12s) when projected onto the rear surface (second main surface 14s) of the laminate was determined. The length of one side of the squares forming the black and white checkered pattern was 5 mm. LUMINANCEMETER LS-150 manufactured by Konica Minolta Japan, Inc. was used to measure luminance.
  • the illuminance of the back side space RS was about 160 lux, and the illuminance of the front side space FS was 542 lux. These illuminances were measured at a height of 100 cm from the floor surface with the light receiver of an illuminometer (Spectromaster C-800 manufactured by Sekonic Co., Ltd.) facing upward. Each sample of the optical laminate was also placed at a height of about 100 cm from the floor.
  • VIS non-visibility is defined as good (OK) when an object (for example, an infrared detector product) cannot be clearly seen through each optical filter, and bad (NG) when an object can be clearly seen.
  • good (OK) when an object (for example, an infrared detector product) cannot be clearly seen through each optical filter
  • NG bad
  • the ISO 12233 resolution chart was used as the object, and the evaluation was performed by changing the distance from the second main surface of the optical layered body to the object to 0 cm, 1 cm, 3 cm, and 9 cm. The smaller the distance from the object to the second main surface, the easier it is to visually recognize the object, and the greater the distance, the harder it is to visually recognize the object.
  • VIS diffuse transmittance and VIS direct transmittance represent the average transmittance (%) of visible light in the wavelength range of 350 nm or more and 780 nm or less, and IR linear transmittance is infrared rays (near infrared rays) in the wavelength range of 780 nm or more and 1350 nm or less. represents the average transmittance (%) of The diffuse transmittance is the transmittance measured with the optical layered body placed in the opening of the integrating sphere, and the visibility when the optical layered body is in contact with an object (for example, an infrared detector) (distance is 0 cm).
  • an object for example, an infrared detector
  • the linear transmittance is the transmittance measured in a state where the optical laminate is placed at a certain distance (for example, 20 cm) from the opening of the integrating sphere, and the optical laminate is placed away from the object. Correlates with visibility in condition.
  • a spectrometer an ultraviolet-visible-near-infrared spectrophotometer UH4150 (manufactured by Hitachi High-Tech Science Co., Ltd.) was used, and measurements were performed at intervals of 1 nm.
  • Comparative Example 1 is a cloudy plastic plate (made of polystyrene, thickness 0.5 mm).
  • the projected checkered pattern image has a black and white luminance difference as large as 134 cd/cm 2 , and can be used as a projection screen.
  • the VIS in-line transmittance is low and the object is placed at a distance of at least 1 cm, the object can be made invisible.
  • the IR straight-line transmittance was low, and the IR visibility was NG even at 0 cm. In other words, infrared information (for example, a user's facial image) cannot be acquired via the optical layered body of Comparative Example 1.
  • Comparative Example 2 corresponds to Comparative Example A described in the above international application and corresponds to the optical article described in JP-A-2013-65052.
  • the black and white luminance difference of the projected checkerboard pattern image is as low as 7.4 cd/cm 2 , and it is difficult to use it as a projection screen.
  • the VIS linear transmittance is as low as 11%, and the VIS non-visibility is good, but the IR linear transmittance is as low as 33%, and the IR visibility is OK only at 0 cm. difficult to fully recognize.
  • Comparative Example 3 is an optical layered body having a metal thin film, and does not transmit visible light or infrared light. Therefore, it cannot be used as a projection screen. Also, the VIS non-visibility is OK, but the IR visibility is NG regardless of the distance.
  • Table 1 As can be seen from Table 1, all of Examples 1 to 5 have a black-and-white luminance difference of 20 cd/cm 2 or more in the projected checkered pattern image, and all of them can be used as projection screens.
  • the VIS in-line transmittance is 20% or less in either case, and the object can be made invisible by arranging it at a distance of at least 1 cm from the object.
  • all of them have an IR linear transmittance of 40% or more, and all of them have an OK IR visibility.
  • Example 1 is the optical filter described above (having a thickness of 200 ⁇ m in Example 6 of the above international application) and has a high in-line IR transmittance.
  • the VIS in-line transmittance is 20% or less, and the object can be made invisible by placing it at a distance of at least 1 cm from the object.
  • the VIS diffuse transmittance is as high as 39% and the color is white.
  • the black and white luminance difference of the projected checkerboard pattern image is as high as 160 cd/cm 2 , indicating that it can be used as a projection screen.
  • Example 2 is an optical laminate having the above optical filter and a linearly polarized light separation type reflective polarizer.
  • Example 3 is an optical laminate having the above optical filter and a wire grid type polarized light reflecting layer.
  • Examples 2 and 3 have a semi-reflective layer with polarization selectivity. Although non-polarized light is projected here, the black and white luminance difference of the projected checkerboard pattern image can be improved by projecting linearly polarized light.
  • Example 4 is an optical laminate having the above optical filter and a half mirror composed of a dielectric multilayer film so as to transmit infrared rays.
  • Example 5 is an optical laminate having the above optical filter and a half mirror composed of a dielectric multilayer film with visible light transmittance adjusted to 50%.
  • the IR linear transmittance is preferably 50% or more, more preferably 60% or more, further preferably 80% or more.
  • Optical laminates with large black and white luminance difference and high IR linear transmittance tend to be inferior in VIS non-visibility, but are at least 1 cm from the object. Spaced apart, objects can be made invisible. Since the infrared detector and the projection device are not placed close to the optical laminate at a distance of less than 1 cm, there is no practical problem. Therefore, considering the distance between the object and the optical stack, it is also possible to use an optical stack with a better black-and-white luminance difference and/or IR in-line transmittance of the projected checkerboard pattern image. By adjusting the optical properties of the optical filter layer and/or the semi-reflective layer, the projected checkerboard image black and white luminance difference and/or the IR linear transmittance can be improved.
  • a meeting support system for supporting a meeting for the purpose of brainstorming for example, a visible light shielding IR transmission sheet suitably used for such a meeting support system, a projection screen, an optical system used as a whiteboard A laminate and an infrared information acquisition system are provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Telephonic Communication Services (AREA)
  • Drawing Aids And Blackboards (AREA)

Abstract

A meeting support system (300) comprises: an infrared information acquisition system (200); a facial expression recognition device (513) that recognizes a facial expression of each user (P1, P2, P3), on the basis of infrared information acquired through an optical laminate (100) by the infrared information acquisition system; and a storage device (520) that stores information about the facial expression recognized by the facial expression recognition device, in association with a position of the optical laminate and the acquisition time. The optical laminate has an optical filter layer (110) that transmits infrared rays, and diffuses and transmits visible light. The infrared information acquisition system comprises the optical laminate, and a plurality of infrared detection devices (210a).

Description

光学積層体、赤外線情報取得システム、および会議支援システムOptical Stacks, Infrared Information Acquisition Systems, and Conference Support Systems
 本発明は、光学積層体、赤外線情報取得システム、および会議支援システムに関し、特に、赤外線を透過し、可視光の透過を制限することが可能な光学積層体、このような光学積層体を透過した赤外線を用いて情報を取得する赤外線情報取得システムおよびこのような赤外線情報取得システムを用いる会議支援システムに関する。光学積層体は、例えば、投影スクリーンおよび/またはホワイトボードとして用いられる。光学積層体は、典型的には、シート状である。ここで、「シート状」は、板状またはフィルム状を含む意味に用い、シートの剛性(柔軟性)および厚さを問わない。 TECHNICAL FIELD The present invention relates to an optical laminate, an infrared information acquisition system, and a conference support system, and in particular, an optical laminate capable of transmitting infrared rays and limiting the transmission of visible light. The present invention relates to an infrared information acquisition system that acquires information using infrared rays and a conference support system that uses such an infrared information acquisition system. Optical stacks are used, for example, as projection screens and/or whiteboards. The optical layered body is typically sheet-like. Here, the term "sheet-like" is used to mean including plate-like or film-like, regardless of the rigidity (flexibility) and thickness of the sheet.
 近年、カメラで取得した画像から人を識別する顔認識技術が様々な技術分野で利用されている。最近では、顔認識技術をさらに発展させ、顔の画像から、様々な表情を認識する表情認識技術の研究開発が進められている(例えば、特許文献1、2)。表情認識技術は、表情に基づいて様々な感情を推定する技術に応用される(例えば、特許文献3)。 In recent years, face recognition technology that identifies people from images captured by cameras has been used in various technical fields. Recently, face recognition technology has been further developed, and research and development of facial expression recognition technology for recognizing various facial expressions from facial images is underway (for example, Patent Documents 1 and 2). Facial expression recognition technology is applied to techniques for estimating various emotions based on facial expressions (for example, Patent Document 3).
特開2014-41587号公報JP 2014-41587 A 国際公開第2019/102619号WO2019/102619 特開2016-149063号公報JP 2016-149063 A 特開2019-509510号公報(国際公開第2017/1246649号)JP 2019-509510 A (International Publication No. 2017/1246649)
 本発明者は、例えば、表情認識技術を用いて利用者の感情を推定し、推定した感情に関する情報を利用して、例えばブレーンストーミングを目的とする会議を支援するシステムを着想した。このとき、利用者の顔の画像から多様な表情を認識するためには、精度の高い顔画像が必要となり、配置するカメラの数が増える。そうすると、利用者はカメラを意識する結果、表情にも影響がでる。また、ホワイトボードまたは電子黒板を利用する場合、ホワイトボードまたは電子黒板に向かっているときの顔の画像を取得することは難しい。さらには、ホワイトボードに筆記された情報を光学的に取得するには、利用者が影となるという問題もある。 The present inventor has conceived of a system that, for example, uses facial expression recognition technology to estimate the user's emotions, and uses information about the estimated emotions to support meetings aimed at, for example, brainstorming. At this time, in order to recognize various facial expressions from the user's face image, a highly accurate face image is required, which increases the number of cameras to be arranged. Then, as a result of the user being conscious of the camera, the facial expression is also affected. Also, when using a whiteboard or an electronic blackboard, it is difficult to obtain an image of the face while facing the whiteboard or electronic blackboard. Furthermore, there is a problem that the user becomes a shadow when optically acquiring the information written on the whiteboard.
 特許文献4には、可視光を遮断し、近赤外線を透過する光学カモフラージュフィルタが顔認識システム(図2F参照)に用いられることが開示されているものの、複数の受光器を用いることは開示も示唆もされていない。また、特許文献4には、インク受容コーティングが施された光学カモフラージュフィルタは開示されているが、筆記と消去とが繰り返し可能な筆記層を有するホワイトボードは開示も示唆もされていない。 Although Patent Document 4 discloses that an optical camouflage filter that blocks visible light and transmits near-infrared rays is used in a face recognition system (see FIG. 2F), it does not disclose the use of multiple light receivers. Not even suggested. Further, Patent Document 4 discloses an optical camouflage filter with an ink-receptive coating, but does not disclose or suggest a whiteboard having a writing layer on which writing and erasing can be repeated.
 本発明の実施形態によると、以下の項目に記載の解決手段が提供される。 According to the embodiments of the present invention, solutions described in the following items are provided.
[項目1]
 第1主面と、前記第1主面の反対側の第2主面を有する光学積層体であって、
 赤外線を透過し、可視光を拡散透過する光学フィルタ層を有し、
 前記第1主面側が前記第2主面側よりも明るいとき、前記第2主面側に、前記第2主面と離間して配置された物体を前記第1主面側から視認することをできなくし、
 780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対し40%以上の直線透過率を有する、光学積層体。
[Item 1]
An optical laminate having a first main surface and a second main surface opposite to the first main surface,
It has an optical filter layer that transmits infrared rays and diffuses and transmits visible light,
When the first main surface side is brighter than the second main surface side, an object placed on the second main surface side and spaced apart from the second main surface side is viewed from the first main surface side. make it impossible,
An optical layered body having a linear transmittance of 40% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less.
 ある実施形態よると、前記光学積層体は、前記第2主面から前記物体までの距離が9cm以上のとき、前記物体を前記第1主面側から視認することをできなくできる。また、ある実施形態によると、前記光学積層体は、前記第2主面から前記物体までの距離が1cmであっても、前記物体を前記第1主面側から視認することをできなくできる。 According to one embodiment, the optical layered body can make the object invisible from the first main surface side when the distance from the second main surface to the object is 9 cm or more. Further, according to one embodiment, the optical layered body can make the object invisible from the first main surface side even if the distance from the second main surface to the object is 1 cm.
[項目2]
 前記第2主面に、白黒の輝度差が235cd/cmの市松模様を投影したとき、前記第1主面に白黒の輝度差が20cd/cm以上の投影画像を形成することができる、光学積層体。
[Item 2]
When a checkered pattern with a black-and-white luminance difference of 235 cd/cm 2 is projected onto the second principal surface, a projection image having a black-and-white luminance difference of 20 cd/cm 2 or more can be formed on the first principal surface. Optical laminate.
[項目3]
 可視光の直線透過率が20.0%以下である、項目1または2に記載の光学積層体。
[Item 3]
3. The optical laminate according to item 1 or 2, having a linear transmittance of visible light of 20.0% or less.
[項目4]
 可視光の拡散透過率が10.0%以上40.0%以下である、項目1から3のいずれかに記載の光学積層体。
[Item 4]
4. The optical laminate according to any one of items 1 to 3, wherein the diffuse transmittance of visible light is 10.0% or more and 40.0% or less.
[項目5]
 前記光学フィルタ層の第2主面側に配置され、可視光を部分的に反射する半反射層をさらに有する、項目1から4のいずれかに記載の光学積層体。
[Item 5]
5. The optical laminate according to any one of items 1 to 4, further comprising a semi-reflecting layer arranged on the second main surface side of the optical filter layer and partially reflecting visible light.
[項目6]
 前記半反射層は、偏光選択性を有している、項目5に記載の光学積層体。
[Item 6]
6. The optical laminate according to item 5, wherein the semi-reflective layer has polarization selectivity.
[項目7]
 前記光学フィルタ層の前記第1主面側に配置された加飾層をさらに有する、項目1から6のいずれかに記載の光学積層体。
[Item 7]
7. The optical laminate according to any one of items 1 to 6, further comprising a decorative layer arranged on the first main surface side of the optical filter layer.
[項目8]
 前記光学フィルタ層の前記第1主面側に配置された表面保護層をさらに有する、項目1から7のいずれかに記載の光学積層体。
[Item 8]
8. The optical laminate according to any one of items 1 to 7, further comprising a surface protective layer disposed on the first main surface side of the optical filter layer.
[項目9]
 前記光学フィルタ層の前記第1主面側に配置された筆記層と、
 前記光学フィルタ層の前記第2主面側に配置された基材層と
をさらに有する、項目1から6のいずれかに記載の光学積層体。
[Item 9]
a writing layer disposed on the first main surface side of the optical filter layer;
7. The optical layered body according to any one of items 1 to 6, further comprising a substrate layer arranged on the second main surface side of the optical filter layer.
[項目10]
 前記光学フィルタ層は、マトリクスと、前記マトリクス中に分散された光散乱体となる微粒子とを有し、780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対し60%以上の直線透過率を有する、項目1から9のいずれかに光学積層体。
[Item 10]
The optical filter layer has a matrix and fine particles that serve as light scatterers dispersed in the matrix, and has a linearity of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less. The optical stack of any of items 1 through 9, having transmittance.
[項目11]
 前記微粒子は、少なくともコロイドアモルファス集合体を構成している、項目10に記載の光学積層体。
[Item 11]
11. An optical laminate according to item 10, wherein the fine particles constitute at least colloidal amorphous aggregates.
[項目12]
 前記光学フィルタ層の可視光の波長領域の透過率曲線は、長波長側から短波長側にかけて直線透過率が単調に減少する曲線部分を有し、前記曲線部分は入射角の増大につれて長波長側にシフトする、項目10または11に記載の光学積層体。
[Item 12]
The transmittance curve of the visible light wavelength region of the optical filter layer has a curve portion where the linear transmittance monotonically decreases from the long wavelength side to the short wavelength side, and the curve portion is on the long wavelength side as the incident angle increases. 12. The optical layered product according to item 10 or 11, wherein the optical laminate shifts to
[項目13]
 項目1から12のいずれかに記載の光学積層体と、
 前記光学積層体の前記第2主面側に、前記第2主面と離間して配置され、前記光学積層体を介して赤外線を受けるように配置された、複数の赤外線検出装置と
を有する、赤外線情報取得システム。
[Item 13]
an optical laminate according to any one of items 1 to 12;
a plurality of infrared detection devices disposed on the second main surface side of the optical laminate and spaced apart from the second main surface and arranged to receive infrared rays through the optical laminate; Infrared information acquisition system.
[項目14]
 前記光学積層体の前記第2主面に向けて赤外線を出射するように配置された少なくとも1つの赤外線光源装置をさらに備える、項目13に記載の赤外線情報取得システム。
[Item 14]
14. An infrared information acquisition system according to item 13, further comprising at least one infrared light source device arranged to emit infrared rays toward the second main surface of the optical laminate.
[項目15]
 前記少なくとも1つの赤外線光源装置は、第1赤外線光源装置および第2赤外線光源装置を含み、前記第1赤外線光源装置および第2赤外線光源装置は、前記光学積層体の前記第2主面の互いに異なる領域に向けて赤外線を出射するように構成されている、項目14に記載の赤外線情報取得システム。
[Item 15]
The at least one infrared light source device includes a first infrared light source device and a second infrared light source device, and the first infrared light source device and the second infrared light source device are different from each other on the second main surface of the optical stack. 15. An infrared information acquisition system according to item 14, configured to emit infrared light toward an area.
[項目16]
 位置センサをさらに有し、前記位置センサの出力に応じて、前記複数の赤外線検出装置のいずれかを選択的に動作させるように構成されている、項目13から15のいずれかに記載の赤外線情報取得システム。
[Item 16]
16. Infrared information according to any one of items 13 to 15, further comprising a position sensor and configured to selectively operate one of the plurality of infrared detection devices according to the output of the position sensor. acquisition system.
[項目17]
 前記複数の赤外線検出装置のそれぞれは、3次元センサまたはカメラである、項目13から16のいずれかに記載の赤外線情報取得システム。
[Item 17]
17. The infrared information acquisition system according to any one of items 13 to 16, wherein each of said plurality of infrared detection devices is a three-dimensional sensor or camera.
[項目18]
 項目13から17のいずれかに記載の赤外線情報取得システムと、
 前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、利用者の表情を認識する表情認識装置と、
 前記表情認識装置によって認識された表情の情報を前記光学積層体の位置および取得時間と関連付けて記憶する第1の記憶装置とを有する、会議支援システム。
[Item 18]
an infrared information acquisition system according to any one of items 13 to 17;
a facial expression recognition device that recognizes facial expressions of a user based on infrared information acquired through the optical layered body by the infrared information acquisition system;
A meeting support system, comprising: a first storage device that stores information on the facial expression recognized by the facial expression recognition device in association with the position and acquisition time of the optical layered body.
[項目19]
 前記光学積層体は、前記光学フィルタ層の前記第1主面側に配置された筆記層をさらに有し、
 前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、前記光学積層体の前記筆記層上に赤外線吸収インクを用いて形成されたパターンを認識するパターン認識装置と、
 前記パターン認識装置によって認識されたパターンの情報を前記光学積層体の位置および取得時間と関連付けて記憶する第2の記憶装置とをさらに有する、項目18に記載の会議支援システム。
[Item 19]
The optical laminate further has a writing layer disposed on the first main surface side of the optical filter layer,
a pattern recognition device that recognizes a pattern formed using infrared absorbing ink on the writing layer of the optical layered body based on the infrared information acquired through the optical layered body by the infrared information acquisition system;
19. The meeting support system according to item 18, further comprising a second storage device that stores information of the pattern recognized by the pattern recognition device in association with the position and acquisition time of the optical layered body.
[項目20]
 前記認識されたパターンの情報を文字情報に変換する文字変換装置をさらに有する、項目19に記載の会議支援システム。
[Item 20]
20. The meeting support system according to item 19, further comprising a character conversion device that converts the recognized pattern information into character information.
[項目21]
 前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、利用者の動作を認識する動作認識装置をさらに備える、項目18から20のいずれかに記載の会議支援システム。
[Item 21]
21. The conference support system according to any one of items 18 to 20, further comprising a motion recognition device that recognizes a user's motion based on the infrared information acquired through the optical laminate by the infrared information acquisition system.
[項目22]
 前記表情認識装置によって認識された前記表情の情報を出力する出力装置をさらに有する、項目18から21のいずれか1項に記載の会議支援システム。
[Item 22]
22. The meeting support system according to any one of items 18 to 21, further comprising an output device that outputs information on the facial expression recognized by the facial expression recognition device.
[項目23]
 前記光学積層体の前記第2主面側に配置され、前記光学積層体に向けて可視光を出射するように構成された投影装置をさらに有し、
 前記投影装置は、前記表情認識装置によって認識された前記表情の情報に基づいて、予め決められた可視光のパターンを前記光学積層体の前記第2主面に形成するように構成されている、項目18から22のいずれかに記載の会議支援システム。
[Item 23]
further comprising a projection device disposed on the second main surface side of the optical layered body and configured to emit visible light toward the optical layered body;
The projection device is configured to form a predetermined pattern of visible light on the second main surface of the optical layered body based on the facial expression information recognized by the facial expression recognition device. 23. A meeting support system according to any one of items 18-22.
[項目24]
 通信装置をさらに有し、前記投影装置が形成する前記可視光のパターンを前記通信装置を介して出力するように構成されている、項目18から23のいずれかに記載の会議支援システム。
[Item 24]
24. A meeting support system according to any one of items 18 to 23, further comprising a communication device and configured to output the visible light pattern formed by the projection device via the communication device.
 本発明の実施形態によると、例えばブレーンストーミングを目的とする会議において、利用者に視認されない状態で、利用者の顔画像から表情(または感情)を推定し、推定した表情(感情)に関する情報を利用して、会議を支援する会議支援システムが提供される。また、本発明の実施形態によると、そのような会議支援システムに好適に用いられる可視光遮光IR透過シート、投影スクリーン、ホワイトボードとして用いられる光学積層体および赤外線情報取得システムが提供される。 According to an embodiment of the present invention, for example, in a meeting for brainstorming, an expression (or emotion) of a user is estimated from a facial image of a user without being visually recognized by the user, and information about the estimated expression (emotion) is provided. A conference support system is provided for supporting a conference. Further, according to the embodiments of the present invention, there are provided a visible light shielding IR transmissive sheet, a projection screen, an optical laminate used as a whiteboard, and an infrared information acquisition system, which are preferably used in such a conference support system.
本発明の実施形態による会議支援システムにおいて、光学積層体100を投影スクリーン/ホワイトボード100として利用している状態の例を示す模式図である。1 is a schematic diagram showing an example of a state in which an optical layered body 100 is used as a projection screen/whiteboard 100 in a meeting support system according to an embodiment of the present invention; FIG. 本発明の実施形態による赤外線情報取得システム200および会議支援システム300の構成の例を示す模式図である。1 is a schematic diagram showing an example configuration of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention; FIG. 本発明の実施形態による投影スクリーン/ホワイトボード100の構成および光学特性を模式的に示す図である。1 schematically illustrates the configuration and optical properties of a projection screen/whiteboard 100 according to an embodiment of the present invention; FIG. 本発明の実施形態による赤外線情報取得システム200および会議支援システム300の構成例を示すブロックダイアグラムである。1 is a block diagram showing a configuration example of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention; 本発明の実施形態による会議支援システム300の動作の例を示すフローチャートである。4 is a flow chart showing an example of operation of the conference support system 300 according to the embodiment of the present invention; 本発明の実施形態による会議支援システム300の動作の他の例を示すフローチャートである。4 is a flow chart showing another example of the operation of the conference support system 300 according to the embodiment of the present invention; 本発明の実施形態による会議支援システム300の動作のさらに他の例を示すフローチャートである。9 is a flow chart showing still another example of the operation of the conference support system 300 according to the embodiment of the present invention; 光学フィルタ層110の模式的な断面図である。2 is a schematic cross-sectional view of an optical filter layer 110; FIG. 光学フィルタ層110の断面TEM像の例を示す図である。FIG. 4 is a diagram showing an example of a cross-sectional TEM image of the optical filter layer 110; 最大透過率で規格化したグラフであり、光学フィルタ層110の直線透過率スペクトルの入射角依存性の例を示す図である。4 is a graph normalized by the maximum transmittance, showing an example of the incident angle dependence of the linear transmittance spectrum of the optical filter layer 110. FIG.
 以下、図面を参照して、本発明の実施形態による光学積層体、赤外線情報取得システムおよび会議支援システムを説明する。本発明の実施形態による光学積層体は、可視光遮光IR透過シート、投影スクリーン、ホワイトボードとして利用され得る。本発明の実施形態による光学積層体、赤外線情報取得システムおよび会議支援システムは、以下で例示するものに限定されない。 An optical laminate, an infrared information acquisition system, and a conference support system according to embodiments of the present invention will be described below with reference to the drawings. Optical laminates according to embodiments of the present invention can be used as visible light blocking IR transmissive sheets, projection screens, and whiteboards. The optical layered body, the infrared information acquisition system, and the conference support system according to the embodiments of the present invention are not limited to those exemplified below.
 図1に、本発明の実施形態による会議支援システムにおいて、光学積層体100を投影スクリーン/ホワイトボード100として利用している状態の例を模式的に示す。図2に、本発明の実施形態による赤外線情報取得システム200および会議支援システム300の構成の例を模試的に示す。ここで例示する光学積層体100は、背面投影型の投影スクリーンとして利用でき、かつ、ホワイトボードとして利用できるものを例示するが、例えば、赤外線検出器を利用者が視認できないようにする可視光遮光IR透過シートまたは投影スクリーンとしてのみ利用する場合には、基材層120および/または筆記層130(図3参照)を省略され得る。以下では、光学積層体100をホワイトボード100ということがある。 FIG. 1 schematically shows an example of a state in which an optical laminate 100 is used as a projection screen/whiteboard 100 in a meeting support system according to an embodiment of the present invention. FIG. 2 schematically shows a configuration example of an infrared information acquisition system 200 and a conference support system 300 according to an embodiment of the present invention. The optical laminate 100 exemplified here can be used as a rear projection type projection screen and also as a whiteboard. The substrate layer 120 and/or the writing layer 130 (see FIG. 3) may be omitted if used only as an IR transmitting sheet or projection screen. The optical layered body 100 may be referred to as a whiteboard 100 hereinafter.
 ホワイトボード100は、図3を参照して後述するように、光学フィルタ層110と、光学フィルタ層110を支持する基材層120と、光学フィルタ層110上に配置された筆記層130とを有する。光学フィルタ層110は、赤外線を透過し、可視光を拡散透過する。ホワイトボード100は、第1主面(前面)12sと、第1主面12sの反対側の第2主面(背面)14sとを有し、基材層120は、光学フィルタ層110の第2主面14sに配置されており、筆記層130は、光学フィルタ層110の第1主面12s側に配置されている。ホワイトボード100の第1主面12s側の空間FSを前面側空間FSと呼び、第2主面14s側の空間RSを背面側空間RSと呼ぶことがある。 The whiteboard 100 has an optical filter layer 110, a base layer 120 supporting the optical filter layer 110, and a writing layer 130 disposed on the optical filter layer 110, as will be described later with reference to FIG. . The optical filter layer 110 transmits infrared rays and diffusely transmits visible light. The whiteboard 100 has a first major surface (front) 12s and a second major surface (back) 14s opposite the first major surface 12s, and the substrate layer 120 is the second major surface of the optical filter layer 110. The writing layer 130 is arranged on the main surface 14s, and the writing layer 130 is arranged on the first main surface 12s side of the optical filter layer 110 . The space FS on the side of the first main surface 12s of the whiteboard 100 is called the front side space FS, and the space RS on the side of the second main surface 14s is sometimes called the back side space RS.
 筆記層130は、筆記と消去とが繰り返し可能な筆記表面を有する公知の層であってよい。公知の層の例として、ハードコート層やガラス層等があげられる。光学フィルタ層110としては、図8、図9および図10を参照して後述する様に、本出願人による国際出願PCT/JP2021/010413に記載の光学フィルタを光学フィルタ層110として好適に用いられるが、これに限られず、赤外線の直線透過率が高く、可視光の拡散反射率が高い光学フィルタ、例えば、特許文献4に記載の光学カモフラージュフィルタを用いることもできる。なお、本明細書において、「赤外線」は、波長が780nm以上2000nm以下の範囲内の光(電磁波)を少なくとも含むものとする。また、「可視光」は400nm以上780nm未満の範囲内の光をいう。 The writing layer 130 may be a known layer having a writing surface on which writing and erasing can be repeated. Examples of known layers include a hard coat layer and a glass layer. As the optical filter layer 110, as will be described later with reference to FIGS. 8, 9 and 10, the optical filter described in International Application PCT/JP2021/010413 filed by the present applicant is preferably used as the optical filter layer 110. However, it is not limited to this, and an optical filter having a high linear transmittance of infrared rays and a high diffuse reflectance of visible light, for example, an optical camouflage filter described in Patent Document 4 can also be used. In this specification, "infrared radiation" includes at least light (electromagnetic waves) with a wavelength in the range of 780 nm or more and 2000 nm or less. Moreover, "visible light" refers to light within the range of 400 nm or more and less than 780 nm.
 なお、光学積層体を可視光遮光IR透過シートとして用いる場合、光学フィルタ層の前面側に配置された加飾層をさらに有してもよい。加飾層は、周囲の意匠と調和する意匠を有し得る。加飾層が有する意匠は、例えば、木目模様やタイル模様、また単色等、特に制限はない。加飾層が有する意匠は、赤外線を透過する材料で構成されていることが好ましいが、意匠を構成するパターンが少ない、あるいは、厚さが小さい場合には、赤外線を十分に透過するので、通常の材料(インク等の色材)を用いてもよい。加飾層は、例えば、光学フィルタ層上に、例えば印刷等の公知の方法で形成され得る。加飾層は、また、意匠が有するフィルム等を貼り合わせることによって形成され得る。 When the optical laminate is used as a visible light shielding IR transmitting sheet, it may further have a decorative layer arranged on the front side of the optical filter layer. The decorative layer can have a design that matches the surrounding design. The design of the decorative layer is not particularly limited and may be, for example, a wood grain pattern, a tile pattern, or a single color. The design of the decorative layer is preferably composed of a material that transmits infrared rays. (colorant such as ink) may be used. The decorative layer can be formed, for example, on the optical filter layer by a known method such as printing. The decorative layer can also be formed by laminating a film or the like having a design.
 可視光遮光IR透過シートは、例えば、投影スクリーンまたはホワイトボードの周辺または側方に赤外線検出装置や位置センサを配置する際に、これらを参加者に視認されないようにできる。例えば、木目調の加飾層を用いると、インテリアとして馴染みやすく、参加者が自然体でいられるような空間を提供することができる。 A visible light shielding IR transmissive sheet can, for example, prevent participants from seeing infrared detection devices or position sensors when placing them around or to the side of a projection screen or whiteboard. For example, if a decorative layer with a wood grain tone is used, it is possible to provide a space that is familiar to the interior and allows participants to be in a natural state.
 光学フィルタ層の前面側に配置された保護層をさらに有してもよい。保護層は、光学フィルタ層110上に形成されてもよいし、光学フィルタ層の前面側に加飾層を有する場合には、加飾層上に形成されてもよい。保護層は、例えば、公知のハードコート層、アンチグレア層、反射防止層、および/または、防汚層であってもよい。 You may further have a protective layer arranged on the front side of the optical filter layer. The protective layer may be formed on the optical filter layer 110, or may be formed on the decorative layer when the decorative layer is provided on the front side of the optical filter layer. The protective layer may be, for example, a known hardcoat layer, antiglare layer, antireflection layer, and/or antifouling layer.
 光学積層体を構成する複数の層の間には、必要に応じて、接着剤層(粘着剤層を含む)が設けられ得る。また、複数の層は、各層の機能を発現する層を支持するための基材層を有し得る。基材層は、光学積層体の光学特性を損なわないように適宜選択される。 An adhesive layer (including a pressure-sensitive adhesive layer) may be provided between the layers that make up the optical laminate, if necessary. Also, the plurality of layers may have a base layer for supporting the layer that expresses the function of each layer. The base material layer is appropriately selected so as not to impair the optical properties of the optical layered body.
 図1に示すように、ホワイトボード100は、複数の利用者P1、P2およびP3によって、ホワイトボードが活用される、例えばブレーンストーミングを目的とする会議に好適に用いられる。利用者P1等は、ホワイトボード100の筆記表面に、例えば、マーカー等を用いて文字・記号・イラストなどの種々のパターンを書く。あるいは、利用者P1等は、マーカー等を用いて種々のパターンを付箋12に書き、その付箋12をホワイトボード100の筆記表面に貼り付ける。ホワイトボード100の大きさに特に制限はなく、例えば、部屋の内壁面の全面にわたって配置してもよい。 As shown in FIG. 1, the whiteboard 100 is preferably used in a meeting for the purpose of brainstorming, for example, where the whiteboard is utilized by a plurality of users P1, P2 and P3. The user P1 or the like writes various patterns such as characters, symbols, and illustrations on the writing surface of the whiteboard 100 using, for example, a marker. Alternatively, the user P1 or the like writes various patterns on the sticky note 12 using a marker or the like, and sticks the sticky note 12 on the writing surface of the whiteboard 100 . The size of the whiteboard 100 is not particularly limited, and for example, it may be arranged over the entire inner wall surface of the room.
 付箋12は、光学フィルタ層110と同様に、赤外線の直線透過率が高く、可視光の拡散反射率が高い光学フィルタ層を有することが好ましく、光学フィルタ層上には公知の筆記層を有していることが好ましい。マーカー等に使用されるインクは、赤外線を透過するものであっても、または透過しないものであってもよい。赤外線を透過しないインクを使用すると、マーカー等を用いて書かれた種々のパターンを赤外線検出装置で取得することができる。一方、赤外線を透過するインクを使用すると、利用者P1等の画像を、マーカー等を用いて書かれた種々のパターンに遮られることなく、赤外線検出装置で取得することができる。インクの赤外線透過率は任意に設定できる。赤外線透過率の異なる複数種類のインクを準備して、目的に応じて使い分けてもよい。 Like the optical filter layer 110, the sticky note 12 preferably has an optical filter layer with a high linear transmittance of infrared rays and a high diffuse reflectance of visible light, and has a known writing layer on the optical filter layer. preferably. Inks used for markers and the like may or may not transmit infrared rays. When ink that does not transmit infrared rays is used, various patterns written with a marker or the like can be obtained by an infrared detection device. On the other hand, if ink that transmits infrared rays is used, the image of the user P1 or the like can be obtained by the infrared detection device without being blocked by various patterns written using a marker or the like. The infrared transmittance of ink can be set arbitrarily. A plurality of types of ink with different infrared transmittances may be prepared and used according to the purpose.
 本発明の実施形態による赤外線情報取得システム200は、図2に示すように、ホワイトボード100と、ホワイトボード100の背面側に配置され、ホワイトボード100を介して赤外線を受けるように配置された複数の赤外線検出装置210a、210bを有している。図2において、白抜き矢印は可視光VLを表し、単純な矢印は赤外線IRを表している。赤外線情報取得システム200は、複数の赤外線検出装置210a、210bを有するので、利用者P1等の画像を高い精度で取得することができる。例えば、ホワイトボード100の領域を分割して、領域毎に赤外線検出装置210a、210b等を設け、互いに異なる領域に向けて赤外線を出射するように構成することによって、高精細な画像を取得することができる。また、特定の利用者P1等の画像を異なる角度から取得することによって、例えば、顔の形状を精密に測定することができる。あるいは、例えば、動作検出用、顔画像取得用など、目的に応じて、異なる種類の赤外線検出装置を配置してもよい。また、ホワイトボード100の筆記表面に焦点を合わせた赤外線検出装置およびホワイトボード100から例えば20cmから50cmの距離に焦点を合わせた赤外線検出装置などを配置してもよい。本明細書において、「赤外線情報」は、ホワイトボード100の筆記表面に書かれた種々のパターンおよび利用者P1等から得られる画像情報や3次元情報(形状情報、距離情報)などを包含する。求められる情報に応じて、公知の赤外線検出装置を選択すればよい。赤外線検出装置210a、210bは、例えば、3次元センサまたはカメラである。赤外線検出装置の個数や配置に制限はない。 The infrared information acquisition system 200 according to the embodiment of the present invention, as shown in FIG. of infrared detectors 210a and 210b. In FIG. 2, hollow arrows represent visible light VL and simple arrows represent infrared IR. Since the infrared information acquisition system 200 has a plurality of infrared detection devices 210a and 210b, it is possible to acquire an image of the user P1 or the like with high accuracy. For example, a high-definition image can be acquired by dividing the area of the whiteboard 100, providing infrared detection devices 210a and 210b, etc. for each area, and emitting infrared rays toward different areas. can be done. Also, by acquiring images of a specific user P1 or the like from different angles, for example, the shape of the face can be precisely measured. Alternatively, for example, different types of infrared detection devices may be arranged according to purposes such as motion detection and face image acquisition. Also, an infrared detection device focused on the writing surface of the whiteboard 100 and an infrared detection device focused at a distance of, for example, 20 cm to 50 cm from the whiteboard 100 may be arranged. In this specification, "infrared information" includes various patterns written on the writing surface of the whiteboard 100, image information obtained from the user P1, etc., three-dimensional information (shape information, distance information), and the like. A known infrared detection device may be selected according to the required information. The infrared detectors 210a, 210b are, for example, three-dimensional sensors or cameras. There is no limit to the number and arrangement of infrared detectors.
 赤外線情報取得システム200は、ここで例示するように、ホワイトボード100の背面側に、ホワイトボード100に向けて赤外線を出射するように配置された赤外線光源装置220a、220bをさらに備えてもよい。例えば、複数の赤外線光源装置220a、220bを複数の赤外線検出装置210a、210bに対応させて配置してもよい。このとき、例えば、赤外線光源装置220a、220bの動作と、赤外線検出装置210a、210bとの動作を同期させてもよい。 As illustrated here, the infrared information acquisition system 200 may further include infrared light source devices 220a and 220b arranged on the back side of the whiteboard 100 so as to emit infrared rays toward the whiteboard 100. For example, a plurality of infrared light source devices 220a and 220b may be arranged corresponding to a plurality of infrared detection devices 210a and 210b. At this time, for example, the operations of the infrared light source devices 220a and 220b may be synchronized with the operations of the infrared detection devices 210a and 210b.
 赤外線情報取得システム200は、位置センサ230をさらに有してもよい。このとき、位置センサ230の出力に応じて、複数の赤外線検出装置210a、210bのいずれかを選択的に動作させるように構成され得る。例えば、位置センサ230が、ホワイトボード100に近接している利用者を特定し、その利用者の位置に応じて、赤外線光源装置220a、220bの内の一方だけを動作させ、赤外線検出装置210a、210bの内の対応する一方だけを動作させるようにしてもよい(例えば、図7参照)。 The infrared information acquisition system 200 may further have a position sensor 230 . At this time, according to the output of the position sensor 230, it can be configured to selectively operate one of the plurality of infrared detection devices 210a and 210b. For example, the position sensor 230 identifies a user who is close to the whiteboard 100, operates only one of the infrared light source devices 220a and 220b according to the position of the user, and detects the infrared detection devices 210a and 210b. 210b may be activated (eg, see FIG. 7).
 会議支援システムは、赤外線情報取得システム200と、コンピュータ500とを有している。コンピュータ500は、例えば、赤外線情報取得システム200によってホワイトボード100を介して取得した赤外線情報に基づいて、利用者の表情を認識する表情認識装置(例えば、図4中の表情認識装置513)として動作するプロセッサ510と、表情認識装置によって認識された表情の情報をホワイトボード100の位置および取得時間と関連付けて記憶することができる記憶装置520とを有している。表情認識装置は、表情の情報に基づいて、さらに感情を推定するように構成されていてもよい。あるいは、表情情報に対応する感情情報をあらかじめ記憶装置520に記憶しておいてもよい。なお、コンピュータ500は、赤外線情報取得システム200の制御をも行うことができる。 The conference support system has an infrared information acquisition system 200 and a computer 500. The computer 500 operates as a facial expression recognition device (for example, the facial expression recognition device 513 in FIG. 4) that recognizes the user's facial expression based on infrared information acquired via the whiteboard 100 by the infrared information acquisition system 200, for example. and a storage device 520 capable of storing the facial expression information recognized by the facial expression recognition device in association with the position of the whiteboard 100 and acquisition time. The facial expression recognition device may be configured to further estimate an emotion based on facial expression information. Alternatively, emotion information corresponding to facial expression information may be stored in storage device 520 in advance. Note that the computer 500 can also control the infrared information acquisition system 200 .
 プロセッサ510は、赤外線情報取得システム200によってホワイトボードを介して取得した赤外線情報に基づいて、ホワイトボードの筆記層上に赤外線吸収インクを用いて形成されたパターンを認識するパターン認識装置(例えば、図4中のパターン認識装置514)としても動作し得る。パターン認識装置によって認識されたパターンの情報は、ホワイトボード100の位置および取得時間と関連付けて記憶装置52に記憶される。プロセッサ510は、認識されたパターンの情報を文字情報に変換する文字変換装置(例えば、図4中の515)としても動作し得る。赤外線吸収インクは、例えば、カーボン、油性インク、染料または顔料を含むインクで市販されているものを広く利用できる。 The processor 510 is a pattern recognition device (for example, a 4) as a pattern recognizer 514). Information on the pattern recognized by the pattern recognition device is stored in the storage device 52 in association with the position of the whiteboard 100 and the acquisition time. The processor 510 may also act as a character conversion device (eg, 515 in FIG. 4) that converts the recognized pattern information into character information. Infrared absorbing inks are widely available commercially, for example, inks containing carbon, oil-based inks, dyes or pigments.
 プロセッサ510は、赤外線情報取得システムによってホワイトボード100を介して取得した赤外線情報に基づいて、利用者の動作を認識する動作認識装置(例えば、図4中の動作認識装置516)としても動作し得る。 The processor 510 can also operate as a motion recognition device (for example, the motion recognition device 516 in FIG. 4) that recognizes the user's motion based on the infrared information acquired via the whiteboard 100 by the infrared information acquisition system. .
 プロセッサ510は、このほか、赤外線情報取得システムによってホワイトボード100を介して取得した赤外線情報に基づいて、種々の画像処理を行う画像処理装置(例えば、図4中の画像処理装置512)としても動作し得る。プロセッサ510は、プログラム(ソフトウェア)によって、種々の動作を行い得る。プロセッサ510が行う動作は、赤外線検出装置210a、210bの出力される信号(情報)によって異なり得る。プロセッサ510を制御するプログラムは、例えば、記憶装置520に記憶され得る。 The processor 510 also operates as an image processing device (for example, the image processing device 512 in FIG. 4) that performs various image processing based on the infrared information acquired via the whiteboard 100 by the infrared information acquisition system. can. Processor 510 can perform various operations according to a program (software). The operations performed by the processor 510 may vary depending on the signals (information) output from the infrared detectors 210a, 210b. Programs for controlling processor 510 may be stored in storage device 520, for example.
 コンピュータ500は、プロセッサ510によって得られた種々の情報を出力する出力装置(例えば、図4中の通信/入出力装置530)をさらに有し得る。出力される情報は、記憶装置520に記憶された情報であってもよい。例えば、表情(感情)に関する情報は、例えば、ネットワークを介して会議に参加している人のコンピュータの画面に表示され得る。 The computer 500 may further have an output device (eg, the communication/input/output device 530 in FIG. 4) that outputs various information obtained by the processor 510. The information to be output may be information stored in storage device 520 . For example, information about facial expressions (emotions) can be displayed, for example, on the computer screens of people participating in a meeting via a network.
 ホワイトボード100は、背面から入射された可視光を前方散乱させるように構成されており、背面投影型の投影スクリーンとしても機能する。会議支援システム300は、ホワイトボード100の背面側に配置され、ホワイトボード100に向けて可視光を出射するように構成された投影装置310a、310bをさらに有し得る。ここでは、ホワイトボード100の異なる領域に対応して2つの投影装置310a、310bを有する例を示しているが、投影装置は1つでもよく、また、3以上の投影装置を有してもよい。 The whiteboard 100 is configured to forward scatter visible light incident from the back, and also functions as a rear projection type projection screen. The conference support system 300 may further include projection devices 310 a and 310 b arranged behind the whiteboard 100 and configured to emit visible light toward the whiteboard 100 . Here, an example of having two projection devices 310a and 310b corresponding to different regions of the whiteboard 100 is shown, but the number of projection devices may be one, or three or more projection devices may be provided. .
 投影装置310a、310bは、例えば、表情認識装置によって認識された表情(または感情)の情報に基づいて、予め決められた可視光のパターン(図1のパターン100R)をホワイトボード100の背面に形成するように構成されている。パターンは、例えば、認識された表情(感情)に対応した色のパターンであってよい。パターンが投影される領域は、たとえば、その表情(感情)が得られたホワイトボード100上の領域を包含する。また、ホワイトボード100上に記入された情報を投影し、共有することで遠隔であっても同じ空間に存在しているかのように演出することが出来る。 Projection devices 310a and 310b form a predetermined visible light pattern (pattern 100R in FIG. 1) on the back surface of whiteboard 100, for example, based on facial expression (or emotion) information recognized by the facial expression recognition device. is configured to The pattern may be, for example, a pattern of colors corresponding to a recognized facial expression (emotion). The area onto which the pattern is projected includes, for example, the area on whiteboard 100 where the facial expression (emotion) is obtained. Further, by projecting and sharing the information written on the whiteboard 100, it is possible to produce an effect as if the users exist in the same space even if they are remote.
 次に、図3を参照する。図3は、本発明の実施形態による投影スクリーン/ホワイトボード100の構成および光学特性を模式的に示す図である。 Next, refer to Figure 3. FIG. 3 is a diagram schematically illustrating the construction and optical properties of a projection screen/whiteboard 100 according to an embodiment of the invention.
 図3に示すように、ホワイトボード100は、光学フィルタ層110と、光学フィルタ層110を支持する基材層120と、光学フィルタ層110上に配置された筆記層130とを有する。光学フィルタ層110は、780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対し60%以上の直線透過率を有し、可視光を拡散反射する。光学フィルタ層110の詳細は、図8、図9および図10を参照して後述する。基材層120は、ホワイトボードとしての機械強度を有し、高い赤外線透過率を有する。基材層120は、例えば、アクリル樹脂などの透明なプラスチックで形成され得る。基材層120の厚さは例えば、約2μm以上約10cm以下である。筆記層130は、例えば、ハードコート層またはガラス層である。筆記層130の厚さは、例えば、約2μm以上約1cm以下である。可視光遮光IR透過シートまたは投影スクリーンとしてのみ利用する場合には基材層120および/または筆記層130は省略され得る。 As shown in FIG. 3 , the whiteboard 100 has an optical filter layer 110 , a base layer 120 supporting the optical filter layer 110 , and a writing layer 130 arranged on the optical filter layer 110 . The optical filter layer 110 has a linear transmittance of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less, and diffusely reflects visible light. Details of the optical filter layer 110 will be described later with reference to FIGS. The base material layer 120 has mechanical strength as a whiteboard and has a high infrared transmittance. The base layer 120 may be formed of transparent plastic such as acrylic resin, for example. The thickness of the base material layer 120 is, for example, about 2 μm or more and about 10 cm or less. The writing layer 130 is, for example, a hard coat layer or a glass layer. The thickness of the writing layer 130 is, for example, about 2 μm or more and about 1 cm or less. The substrate layer 120 and/or the writing layer 130 may be omitted when used only as a visible light blocking IR transmitting sheet or projection screen.
 図3において、白抜き矢印は可視光VLを表し、単純な矢印は赤外線IRを表している。ホワイトボード100に筆記層130側から、すなわち利用者P1側から入射する周囲光は、可視光VLaと赤外線IRaとを含んでいる。可視光VLaは、光学フィルタ層110で後方散乱(拡散反射)される(VLabs)。後方散乱(拡散反射)された可視光VLabsによって、ホワイトボード100は、等方的に白色を呈することができる。透過可視光VLatは、後方散乱(拡散反射)可視光VLabsよりも強度が小さい。一方、光学フィルタ層110の赤外線透過率は高いので、透過赤外線IRatは、反射赤外線IRarよりも強度が大きい。反射赤外線IRarは後方散乱(拡散反射)赤外線を含んでいる。 In FIG. 3, the white arrow represents visible light VL, and the simple arrow represents infrared light IR. Ambient light incident on the whiteboard 100 from the writing layer 130 side, that is, from the user P1 side includes visible light VLa and infrared light IRa. Visible light VLa is backscattered (diffuse reflected) at the optical filter layer 110 (VLabs). The backscattered (diffuse reflected) visible light VLabs allows the whiteboard 100 to appear isotropically white. The transmitted visible light VLat is less intense than the backscattered (diffuse reflected) visible light VLabs. On the other hand, since the infrared transmittance of the optical filter layer 110 is high, the intensity of the transmitted infrared rays IRat is greater than that of the reflected infrared rays IRar. Reflected infrared IRar includes backscattered (diffuse reflected) infrared.
 赤外線光源装置220a等から出射された赤外線IRoは、赤外線透過率の高い光学フィルタ層110を透過する(透過赤外線IRot)。透過赤外線IRotの一部は、利用者P1で反射され(反射赤外線IRotr)、再び、光学フィルタ層110を透過する(透過赤外線IRotrt)。この透過赤外線IRotrtを赤外線検出装置210a等で受光する。受光した赤外線から、利用者P1等の顔画像や動作の赤外線情報が得られる。同様に、ホワイトボード100の筆記表面に書かれたパターンを含む赤外線情報が得られる。 The infrared rays IRo emitted from the infrared light source device 220a or the like pass through the optical filter layer 110 with high infrared transmittance (transmitted infrared rays IRot). Part of the transmitted infrared radiation IRot is reflected by the user P1 (reflected infrared radiation IRotr) and is transmitted through the optical filter layer 110 again (transmitted infrared radiation IRotrt). The transmitted infrared rays IRotrt are received by the infrared detection device 210a or the like. From the received infrared rays, the facial image of the user P1 or the like and infrared information on the actions can be obtained. Similarly, infrared information is obtained that includes the pattern written on the writing surface of whiteboard 100 .
 周囲の赤外線IRaが十分に強い場合には、赤外線光源装置220a等を省略し、反射赤外線IRarを利用することができる。ただし、赤外線光源装置220a等から出射される赤外線IRoを利用する方が精度の高い赤外線情報を得ることができる。さらに、所定のパターン(例えば、多数のドットパターン)を有する赤外線IRoを出射することによって、さらに精度の高い赤外線情報を得ることができる。また、赤外線光源装置220a等の動作と、赤外線検出装置210a等の動作とを同期させることによっても、さらに精度の高い赤外線情報を得ることができる。もちろん、これらを組み合わせることによって、一層精度を高い赤外線情報を得ることができる。このとき、周囲光に含まれる赤外線IRaを低減してもよい。 When the ambient infrared rays IRa are sufficiently strong, the infrared light source device 220a and the like can be omitted and the reflected infrared rays IRar can be used. However, more accurate infrared information can be obtained by using the infrared rays IRo emitted from the infrared light source device 220a or the like. Further, by emitting infrared rays IRo having a predetermined pattern (for example, a pattern of many dots), infrared information with higher accuracy can be obtained. Also, by synchronizing the operation of the infrared light source device 220a and the like with the operation of the infrared detection device 210a and the like, infrared information with higher accuracy can be obtained. Of course, by combining these, infrared information with higher accuracy can be obtained. At this time, the infrared rays IRa contained in the ambient light may be reduced.
 一方、投影装置310aから出射された可視光VLpは、光学フィルタ層110に入射し、前方散乱可視光VLpfsとなり、利用者P1等に視認される。投影装置310aから赤外線は出射されないことが好ましい。 On the other hand, the visible light VLp emitted from the projection device 310a enters the optical filter layer 110, becomes forward scattered visible light VLpfs, and is visually recognized by the user P1 and the like. Preferably, no infrared rays are emitted from the projection device 310a.
 ホワイトボード100は、利用者から、例えば、赤外線検出装置210a、210b、赤外線光源装置220a、220b、および/または投影装置310a、310b、コンピュータ500、位置センサ230を視認されなくすることができる。なお、コンピュータ500は、利用者と同じ空間(部屋)に配置される必要は必ずしもない。 The whiteboard 100 can hide the infrared detection devices 210a and 210b, the infrared light source devices 220a and 220b, and/or the projection devices 310a and 310b, the computer 500, and the position sensor 230, for example, from the user. Note that the computer 500 does not necessarily need to be placed in the same space (room) as the user.
 ホワイトボード100の前面側空間FSに利用者がいるので、背面側空間RSを前面側空間FSよりも暗くすることができる。このとき空間の明るさ(照度)は、例えば、床面から100cmの高さの位置で、照度計(例えば、株式会社セコニック製のスペクトロマスターC-800)の受光器を上に向けて(天井に向けて)測定する。例えば、前面側空間FSの照度は約300ルクス以上であり、背面側空間RSの照度を約200ルクス未満に低減させることは容易にできる。このような照度差があるとき、第1主面12sからホワイトボード100に入射し、透過した透過可視光VLatが強いと、例えば、赤外線検出装置210aに当たり、反射され、再びホワイトボード100を透過し、第1主面12s側に至ると、利用者に赤外線検出装置210aが視認されることがある。ホワイトボード100は、これを防止することができる。 Since the user is in the front space FS of the whiteboard 100, the rear space RS can be made darker than the front space FS. At this time, the brightness (illuminance) of the space is measured, for example, at a height of 100 cm from the floor, with the receiver of an illuminometer (for example, Spectromaster C-800 manufactured by Sekonic Co., Ltd.) facing upward (ceiling towards). For example, the illuminance of the front side space FS is about 300 lux or more, and the illuminance of the back side space RS can be easily reduced to less than about 200 lux. When there is such an illuminance difference, if the transmitted visible light VLat that is incident on the whiteboard 100 from the first main surface 12s and transmitted is strong, for example, it hits the infrared detector 210a, is reflected, and is transmitted through the whiteboard 100 again. , the infrared detection device 210a may be visually recognized by the user when reaching the first main surface 12s side. The whiteboard 100 can prevent this.
 ホワイトボード100は、後に実施例を示して説明するように、第2主面14sから物体(例えば赤外線検出装置210a)までの距離が9cm以上のとき、物体を第1主面12s側から視認することをできなくすることができる。また、第2主面14sから物体までの距離が1cmであっても物体を第1主面12s側から視認できなくすることもできる。このようなホワイトボード100の可視光直線透過率は例えば20.0%以下である。また、ホワイトボード100の可視光拡散透過率の方が直線透過率よりも例えば2%以上高い。また、ホワイトボード100の可視光の拡散透過率は例えば10.0%以上40.0%以下である。 When the distance from the second main surface 14s to the object (for example, the infrared detection device 210a) is 9 cm or more, the whiteboard 100 sees the object from the first main surface 12s side, as will be described later with an embodiment. You can make it impossible. Also, even if the distance from the second main surface 14s to the object is 1 cm, the object can be made invisible from the first main surface 12s side. The visible light linear transmittance of such a whiteboard 100 is, for example, 20.0% or less. Also, the visible light diffuse transmittance of the whiteboard 100 is higher than the linear transmittance by, for example, 2% or more. The diffuse transmittance of visible light of the whiteboard 100 is, for example, 10.0% or more and 40.0% or less.
 光学フィルタ層110の厚さ等を制御することによって、赤外線直線透過率、可視光直線透過率、可視光拡散反射率等の光学的な特性を調整することができる。また、光学フィルタ層110に加えて、光学フィルタ層110の第2主面14s側に、可視光を部分的に反射する半反射層(「可視光透過性反射層」ということもある。)をさらに設けることによって、可視光直線透過率および/または可視光拡散反射率を調整することができる。このとき、偏光選択性を有する半反射層を用いてもよい。 By controlling the thickness of the optical filter layer 110, optical characteristics such as infrared linear transmittance, visible light linear transmittance, and visible light diffuse reflectance can be adjusted. In addition to the optical filter layer 110, a semi-reflective layer that partially reflects visible light (also referred to as a “visible light transmissive reflective layer”) is provided on the second main surface 14s side of the optical filter layer 110. Further provision can adjust the visible light in-line transmittance and/or the visible light diffuse reflectance. At this time, a semi-reflective layer having polarization selectivity may be used.
 ホワイトボード100は、第2主面14sに画像を投影したときに、十分な輝度差を有する投影画像を第1主面12sに形成することができる。後に実施例を示して説明するように、例えば、一般的な投影スクリーン(例えば、サンワサプライ社製のPRS-KBHD80)に投影したときに、白黒の輝度差が235cd/cmとなる市松模様を第2主面14sに投影したとき、第1主面12sに白黒の輝度差が20cd/cm以上の投影画像を形成することができる。偏光選択性を有する半反射層を備えるホワイトボード100を用い、偏光を投影できる投影装置を用いることによって、コントラスト比(白黒輝度差)を向上させることができる。 The whiteboard 100 can form a projected image having a sufficient luminance difference on the first principal surface 12s when the image is projected onto the second principal surface 14s. As will be described later with examples, for example, when projected onto a general projection screen (for example, PRS-KBHD80 manufactured by Sanwa Supply Co., Ltd.), a checkered pattern with a black-and-white luminance difference of 235 cd/cm 2 is used as the second pattern. When projected onto the second main surface 14s, a projection image having a luminance difference of 20 cd/cm 2 or more between black and white can be formed on the first main surface 12s. The contrast ratio (black and white luminance difference) can be improved by using a whiteboard 100 with a polarization-selective semi-reflective layer and using a projection device capable of projecting polarized light.
 図4に、本発明の実施形態による赤外線情報取得システム200および会議支援システム300の構成例のブロックダイアグラムを示す。 FIG. 4 shows a block diagram of a configuration example of the infrared information acquisition system 200 and the conference support system 300 according to the embodiment of the present invention.
 赤外線情報取得システム200は、ホワイトボード100、赤外線検出装置210a、210bおよび赤外線光源装置220a、220bを有している。赤外線検出装置210aは赤外線光源装置220aと同期して動作し、赤外線検出装置210bは赤外線光源装置220bと同期して動作する。赤外線情報取得システム200は、位置センサ230をさらに有し、位置センサ230が検知した利用者の位置に応じて、赤外線検出装置210aおよび赤外線光源装置220aか、赤外線検出装置210bおよび赤外線光源装置220bかのいずれかだけが選択的に動作する。赤外線情報取得システム200は、コンピュータ500によって制御される。 The infrared information acquisition system 200 has a whiteboard 100, infrared detection devices 210a and 210b, and infrared light source devices 220a and 220b. The infrared detection device 210a operates in synchronization with the infrared light source device 220a, and the infrared detection device 210b operates in synchronization with the infrared light source device 220b. The infrared information acquisition system 200 further has a position sensor 230, and depending on the position of the user detected by the position sensor 230, infrared detection device 210a and infrared light source device 220a or infrared detection device 210b and infrared light source device 220b. operates selectively. Infrared information acquisition system 200 is controlled by computer 500 .
 会議支援システム300は、赤外線情報取得システム200に加え、投影装置310およびスピーカー320を有している。会議支援システム300もコンピュータ500によって制御される。コンピュータ500は、例えば、プロセッサ510、記憶装置520、通信/入出力装置530、操作ユニット540および表示装置550を有している。通信/入出力装置530を介して、赤外線検出装置210a、210bから取得した赤外線情報をプロセッサ510で種々に処理する。プロセッサ510は、例えば、記憶装置520に記憶されているプログラム(ソフトウェア)をイントールすることによって、例えば、画像処理装置512、表情認識装置513、パターン認識装置514、文字変換装置515、動作認識装置516として動作することができる。それぞれの処理を実行するプログラムは、公知のプログラムを用いることができる。記憶装置520は、プロセッサ510の処理結果(例えば、表情(感情)の情報、動作の情報、ホワイトボード100に赤外線吸収インクを用いて形成されたパターンおよび文字情報)をホワイトボード100の位置および取得時間と関連付けて記憶することができる。コンピュータ500は、操作ユニット540および表示装置550を用いて、使用者によって管理・制御され得る。 The conference support system 300 has a projection device 310 and a speaker 320 in addition to the infrared information acquisition system 200 . Conference support system 300 is also controlled by computer 500 . Computer 500 includes, for example, processor 510 , storage device 520 , communication/input/output device 530 , operating unit 540 and display device 550 . The processor 510 variously processes the infrared information obtained from the infrared detectors 210 a and 210 b via the communication/input/output device 530 . By installing programs (software) stored in the storage device 520, for example, the processor 510 operates as an image processing device 512, a facial expression recognition device 513, a pattern recognition device 514, a character conversion device 515, and a motion recognition device 516. can operate as A known program can be used as a program for executing each process. The storage device 520 stores the processing results of the processor 510 (e.g., facial expression (emotion) information, motion information, patterns and character information formed on the whiteboard 100 using infrared absorbing ink) at the position of the whiteboard 100 and acquires them. It can be stored in association with time. Computer 500 can be managed and controlled by a user using operation unit 540 and display device 550 .
 会議支援システム300は、プロセッサ510の処理によって得られた表情(感情)の情報に基づいて、予め決められた可視光のパターン(画像を含み得る)を投影装置310によってホワイトボード100の背面に形成する。また、会議支援システム300は、プロセッサ510の処理によって得られた表情(感情)の情報に基づいて、予め決められた音をスピーカー320から出すことができる。これらの視覚的および/または音響的な効果によって、ブレーンストーミングなどの会議を支援する。また、プロセッサ510の処理によって得られた表情(感情)の情報は、例えば、ネットワークを介して会議に参加している人と共有され得る。また、表情(感情)の情報は、ホワイトボード100に赤外線吸収インクを用いて形成されたパターンおよび文字情報と関連付けられ得る。 Meeting support system 300 forms a predetermined pattern of visible light (which may include an image) on the back of whiteboard 100 by projection device 310 based on facial expression (emotion) information obtained by processing of processor 510 . do. Also, the conference support system 300 can output a predetermined sound from the speaker 320 based on the facial expression (emotion) information obtained by the processing of the processor 510 . These visual and/or audible effects aid in meetings such as brainstorming. Also, facial expression (emotion) information obtained by the processing of the processor 510 can be shared, for example, with people participating in the conference via a network. Also, facial expression (emotion) information can be associated with patterns and character information formed on the whiteboard 100 using infrared absorbing ink.
 会議支援システム300の動作の例を図5、図6および図7を参照して説明する。図5に示すフローチャートの各工程を行うことによって、感情情報と文字情報とを関連付けることができる。図6に示すフローチャートの各工程を行うことによって、動作に関連づけて投影装置によって視覚効果を与えることができる。図7に示すフローチャートの各工程を行うことによって、ホワイトボード100を左右領域に分け、領域毎に設けた赤外線光源装置および赤外線検出装置としての撮像装置を、利用者の位置に応じて、選択的に動作させることができる。 An example of the operation of the conference support system 300 will be described with reference to FIGS. 5, 6 and 7. FIG. Emotional information and character information can be associated by performing each step of the flow chart shown in FIG. By performing each step of the flow chart shown in FIG. 6, a visual effect can be given by the projection device in association with the action. By performing each step of the flow chart shown in FIG. 7, the whiteboard 100 is divided into left and right regions, and the infrared light source device and the imaging device as the infrared detection device provided for each region are selectively selected according to the position of the user. can be operated.
 図5は、本発明の実施形態による会議支援システム300の動作の例を示すフローチャートである。以下の工程を行う。 FIG. 5 is a flow chart showing an example of the operation of the conference support system 300 according to the embodiment of the present invention. The following steps are performed.
 (ステップS11)
 赤外線光源装置220aより光学積層体100の背面から赤外線IR1を出射する。
(Step S11)
Infrared rays IR1 are emitted from the rear surface of the optical layered body 100 from the infrared light source device 220a.
 (ステップS12)
 赤外線検出装置210aは、利用者P1の像を画像データIMG1として取得する。画像データIMG1は、利用者P1に限らず利用者P2や利用者P3等複数の人を認識し、それぞれの画像を取得する。
(Step S12)
Infrared detection device 210a acquires the image of user P1 as image data IMG1. The image data IMG1 recognizes not only the user P1, but also a plurality of people such as the user P2 and the user P3, and acquires their respective images.
 (ステップS13)
 得られた被写体信号IMG1をコンピュータ500に取り込み、通信/入出力装置530を介してプロセッサ510内にある画像処理装置512にて顔の抽出処理を行う。
(Step S13)
The obtained object signal IMG1 is taken into the computer 500, and the image processing device 512 in the processor 510 performs face extraction processing via the communication/input/output device 530. FIG.
 (ステップS14)
 記憶装置520に顔情報を記憶する。
(Step S14)
The face information is stored in the storage device 520 .
 (ステップS15)
 得られた顔情報をあらかじめ表情認識装置513に記憶されている感情基準コードと照らし合わせ、感情を推定する。
(Step S15)
The obtained face information is compared with the emotion reference code stored in advance in the facial expression recognition device 513 to estimate the emotion.
 (ステップS21)
 赤外線光源装置220bより光学積層体100の背面から赤外線IR2を出射する。
(Step S21)
Infrared rays IR2 are emitted from the rear surface of the optical layered body 100 from the infrared light source device 220b.
 (ステップS22)
 赤外線検出装置210bは、付箋12や光学積層体100に直接記入された図柄や文字を画像データIMG2として取得する。画像データIMG2は、光学積層体上の情報に限らず、利用者の情報を取得するのに用いても良い。
(Step S22)
The infrared detection device 210b acquires the design or characters written directly on the sticky note 12 or the optical layered body 100 as image data IMG2. The image data IMG2 may be used to obtain user information as well as information on the optical layered body.
 (ステップS23)
 得られた信号IMG2をコンピュータ500に取り込み、通信/入出力装置530を介してプロセッサ510内にあるパターン認識装置514にて文字や図柄の抽出処理を行う。
(Step S23)
The obtained signal IMG2 is taken into the computer 500, and the pattern recognition device 514 in the processor 510 through the communication/input/output device 530 extracts characters and patterns.
 (ステップS24)
 記憶装置520に文字や図柄情報を記憶する。
(Step S24)
Character and design information is stored in the storage device 520 .
 (ステップS25)
 得られた文字や図柄情報をあらかじめ文字変換装置515に記憶されている文字基準コードと照らし合わせ、文字を推定する。
(Step S25)
The obtained character and pattern information is collated with the character reference code stored in advance in the character conversion device 515 to estimate the character.
 (ステップS26)
 ステップS25で得られた文字情報にステップS15で得られた感情に合わせてあらかじめ決められた表示コードを反映し、表示制御装置517から通信/入出力装置530を介し、投影装置310やスピーカー320にて文字の表示方法に感情コードを反映する。感情コードの表現方法としては、文字の色を変えてもいいし、照明の色や照度・点滅等を組み合わせてもよい。また、音声に反映してもよい。
(Step S26)
A predetermined display code corresponding to the emotion obtained in step S15 is reflected in the character information obtained in step S25, and the display code is sent from the display control device 517 to the projection device 310 and the speaker 320 via the communication/input/output device 530. to reflect the emotion code in the character display method. The emotion code may be expressed by changing the color of the characters, or by combining the color, brightness, blinking, etc. of the lighting. Also, it may be reflected in the voice.
 (ステップS27)
 得られた情報を通信/入出力装置530を用いて遠隔システムと情報共有を行い、それぞれの場所での投影装置310やスピーカー320に情報を反映する。
(Step S27)
The obtained information is shared with a remote system using the communication/input/output device 530, and the information is reflected on the projection device 310 and the speaker 320 at each location.
 図6は、本発明の実施形態による会議支援システム300の動作の他の例を示すフローチャートである。以下の工程を行う。 FIG. 6 is a flow chart showing another example of the operation of the conference support system 300 according to the embodiment of the present invention. The following steps are performed.
 (ステップS31)
 位置センサ230より赤外線L1を出射する。
(Step S31)
The position sensor 230 emits an infrared ray L1.
 (ステップS32)
 位置センサ230にて動作/身体の位置を検出する。
(Step S32)
A position sensor 230 detects the motion/body position.
 (ステップS33)
 検出された動作の短い履歴をコンピュータ500内の動作認識装置516にて記憶された動作と照合し、記憶する。
(Step S33)
A short history of detected motions is matched with stored motions by motion recognition device 516 in computer 500 and stored.
 (ステップS34)
 追跡された動作からより複雑な動作を推測し、記憶された動作と照合する。
(Step S34)
Infer more complex motions from the tracked motions and match them with the stored motions.
 (ステップS35)
 動作に意味はあるか否かを記憶された動作と照らし合わせ判断する。
(Step S35)
Whether or not the motion has meaning is determined by comparing it with the stored motion.
 (ステップS36)
 動作と基本コードを比較し、感情を推定する。感情とは、驚きや喜び、怒りといった心情であっても良いし、重要度や注目度といった会議の強調であっても良い。感情を動作から読み取り、あらかじめ決められた表示コードを反映し、表示制御装置517から通信/入出力装置530を介し、投影装置310やスピーカー320にて感情コードを反映する。感情コードの表現方法としては、文字の色を変えてもよいし、照明の色や照度・点滅等を組み合わせてもよい。また、音声に反映してもよい。
(Step S36)
Emotions are estimated by comparing actions and basic chords. Emotions may be feelings such as surprise, joy, or anger, or may be emphasis on meetings such as importance or attention. Emotions are read from actions, a predetermined display code is reflected, and the emotion code is reflected by the projection device 310 or the speaker 320 from the display control device 517 via the communication/input/output device 530 . As a method of expressing the emotion code, the color of the characters may be changed, or the color of the lighting, the illuminance, blinking, etc. may be combined. Also, it may be reflected in the voice.
 次に、図8、図9および図10を参照して、光学フィルタ層110の詳細を説明する。 Next, details of the optical filter layer 110 will be described with reference to FIGS. 8, 9 and 10. FIG.
 本発明の実施形態による光学積層体(可視光遮光IR透過シート、投影スクリーンまたはホワイトボード)に好適に用いられる光学フィルタ層110は、マトリクスと、マトリクス中に分散された微粒子とを含む光学フィルタ層110であって、微粒子は、少なくともコロイドアモルファス集合体を構成しており、780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対する直線透過率が60%以上である。例えば、波長が950nmおよび1550nmの光に対する直線透過率が60%以上の光学フィルタ層110を得ることができる。光学フィルタ層110の直線透過率が60%以上である光(近赤外線)の波長範囲は、例えば810nm以上1700nm以下であることが好ましく、840nm以上1650nm以下であることがさらに好ましい。ここで、マトリクスおよび微粒子はともに、可視光に対して透明(以下、単に「透明」という。)であることが好ましい。光学フィルタ層110は、白色を呈し得る。 The optical filter layer 110 preferably used in the optical laminate (visible light shielding IR transmitting sheet, projection screen or whiteboard) according to the embodiment of the present invention is an optical filter layer containing a matrix and fine particles dispersed in the matrix. 110, the fine particles form at least colloidal amorphous aggregates, and have a linear transmittance of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less. For example, it is possible to obtain the optical filter layer 110 having a linear transmittance of 60% or more for light with wavelengths of 950 nm and 1550 nm. The wavelength range of light (near infrared rays) in which the in-line transmittance of the optical filter layer 110 is 60% or more is preferably, for example, 810 nm or more and 1700 nm or less, more preferably 840 nm or more and 1650 nm or less. Here, both the matrix and the fine particles are preferably transparent to visible light (hereinafter simply referred to as "transparent"). The optical filter layer 110 can appear white.
 光学フィルタ層110は、コロイドアモルファス集合体を含む。コロイドアモルファス集合体とは、コロイド粒子(粒径1nm~1μm)の集合体で、長距離秩序を有さず、ブラッグ反射を起こさない集合体をいう。コロイド粒子が長距離秩序を有するように分布すると、いわゆるコロイド結晶(フォトニック結晶の一種)となり、ブラッグ反射が起きるのと対照的である。すなわち、光学フィルタ層110が有する微粒子(コロイド粒子)は、回折格子を形成しない。 The optical filter layer 110 contains colloidal amorphous aggregates. A colloidal amorphous aggregate refers to an aggregate of colloidal particles (particle size of 1 nm to 1 μm) that does not have long-range order and does not cause Bragg reflection. When colloidal particles are distributed in a long-range order, they become so-called colloidal crystals (a type of photonic crystal), which is in contrast to Bragg reflection. That is, the fine particles (colloidal particles) included in the optical filter layer 110 do not form a diffraction grating.
 光学フィルタ層110が含む微粒子は、平均粒径が赤外線の波長の10分の1以上の単分散の微粒子を含む。すなわち、波長が780nm以上2000nm以下の範囲内の赤外線に対して、微粒子の平均粒径は少なくとも80nm以上であることが好ましく、150nm以上であることが好ましく、200nm以上であることがさらに好ましい。平均粒径が異なる2以上の単分散の微粒子を含んでもよい。個々の微粒子はほぼ球形であることが好ましい。なお、本明細書において、微粒子(複数)は、微粒子の集合体の意味でも用い、単分散の微粒子とは、変動係数(標準偏差/平均粒径を百分率で表した値)が20%以下、好ましくは10%以下、より好ましくは1~5%のものをいう。光学フィルタ層110は、粒径(粒子直径、体積球相当径)が波長の10分の1以上の粒子を利用することで、赤外線の直線透過率を高くする。 The microparticles included in the optical filter layer 110 include monodisperse microparticles having an average particle diameter of 1/10 or more of the wavelength of infrared rays. That is, the average particle diameter of the fine particles is preferably at least 80 nm or more, preferably 150 nm or more, and more preferably 200 nm or more for infrared rays having a wavelength in the range of 780 nm or more and 2000 nm or less. Two or more monodisperse microparticles having different average particle diameters may be included. Individual microparticles are preferably approximately spherical. In the present specification, fine particles (plurality) are also used to mean aggregates of fine particles, and monodisperse fine particles mean that the coefficient of variation (value expressed as a percentage of standard deviation/average particle size) is 20% or less, Preferably 10% or less, more preferably 1 to 5%. The optical filter layer 110 uses particles having a particle diameter (particle diameter, equivalent volume sphere diameter) equal to or greater than 1/10 of the wavelength, thereby increasing the linear transmittance of infrared rays.
 平均粒径は、ここでは、3次元SEM像に基づいて求めた。具体的には、集束イオンビーム走査型電子顕微鏡(以下、「FIB-SEM」という。)として、FEI社製の型番Helios G4 UXを用いて、連続断面SEM像を取得し、連続画像位置を補正した後、3次元像を再構築した。詳細には、SEMによる断面反射電子像の取得とFIB(加速電圧:30kV)加工とを50nm間隔で100回繰り返し、3次元像を再構築した。得られた3次元像について、解析ソフト(Thermo Fisher Scientific社製のAVIZO)のSegmention機能を用いて2値化を行い、微粒子の像を抽出した。次に、個々の微粒子を識別するために、Separate object操作を実施した後、各微粒子の体積を算出した。各粒子を球と仮定し、体積球相当径を算出し、微粒子の粒径を平均した値を平均粒径とした。 The average particle size was obtained here based on a three-dimensional SEM image. Specifically, as a focused ion beam scanning electron microscope (hereinafter referred to as "FIB-SEM"), a model number Helios G4 UX manufactured by FEI is used to acquire continuous cross-sectional SEM images and correct the continuous image position. After that, the three-dimensional image was reconstructed. Specifically, acquisition of a cross-sectional backscattered electron image by SEM and FIB (accelerating voltage: 30 kV) processing were repeated 100 times at intervals of 50 nm to reconstruct a three-dimensional image. The resulting three-dimensional image was binarized using the segmentation function of analysis software (AVIZO manufactured by Thermo Fisher Scientific) to extract the image of the fine particles. Next, in order to identify individual microparticles, the Separate object operation was performed, and then the volume of each microparticle was calculated. Assuming that each particle is a sphere, the diameter equivalent to volume sphere was calculated, and the value obtained by averaging the particle diameters of the fine particles was taken as the average particle diameter.
 光学フィルタ層110は、微粒子およびマトリクスの屈折率、微粒子の平均粒径、体積分率、分布(非周期性の程度)および厚さのいずれかを調整することによって、780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対する直線透過率を60%以上とする。 The optical filter layer 110 has a wavelength range of 780 nm or more and 2000 nm or less by adjusting any one of the refractive index of the particles and the matrix, the average particle size of the particles, the volume fraction, the distribution (degree of aperiodicity) and the thickness. 60% or more of the linear transmittance for light of at least part of the wavelengths.
 光学フィルタ層110は、白色を呈し得る。ここで、白色とは、標準光をD65光源としたときのCIE1931色度図上のx、y座標がそれぞれ0.25≦x≦0.40、0.25≦y≦0.40の範囲内にあるものをいう。もちろん、x=0.333、y=0.333に近いほど白色度は高く、好ましくは、0.28≦x≦0.37、0.28≦y≦0.37であり、さらに好ましくは0.30≦x≦0.35、0.30≦y≦0.35である。また、CIE1976色空間上のSCE方式で測定したLは20以上であることが好ましく、40以上であることがより好ましく、50以上がさらに好ましく、60以上であることが特に好ましい。Lが20以上であれば概ね白色と言える。Lの上限値は例えば100である。 The optical filter layer 110 can appear white. Here, white means that the x and y coordinates on the CIE1931 chromaticity diagram when the standard light is D65 light source are within the range of 0.25 ≤ x ≤ 0.40 and 0.25 ≤ y ≤ 0.40. refers to what is in Of course, the closer to x = 0.333 and y = 0.333, the higher the whiteness, preferably 0.28 ≤ x ≤ 0.37, 0.28 ≤ y ≤ 0.37, more preferably 0 .30≤x≤0.35 and 0.30≤y≤0.35. Also, L * measured by the SCE method on the CIE1976 color space is preferably 20 or more, more preferably 40 or more, even more preferably 50 or more, and particularly preferably 60 or more. If L * is 20 or more, it can be said to be substantially white. The upper limit of L * is 100, for example.
 図8に、光学フィルタ層110の模式的な断面図を示す。光学フィルタ層110は、可視光に対して透明なマトリクス112と、透明なマトリクス112中に分散された透明な微粒子114とを含む。微粒子114は光散乱体として振る舞う。光学フィルタ層110は、マトリクス112中に光散乱体となる微粒子114が分散された層を含む。微粒子114は、例えば、少なくともコロイドアモルファス集合体を構成し得る。このとき、微粒子114が構成するコロイドアモルファス集合体を乱さない他の微粒子を含んでもよい。 A schematic cross-sectional view of the optical filter layer 110 is shown in FIG. The optical filter layer 110 includes a matrix 112 transparent to visible light and transparent fine particles 114 dispersed in the transparent matrix 112 . Fine particles 114 behave as light scatterers. The optical filter layer 110 includes a layer in which fine particles 114 serving as light scatterers are dispersed in a matrix 112 . Microparticles 114 may, for example, constitute at least colloidal amorphous aggregates. At this time, other fine particles may be included that do not disturb the colloidal amorphous aggregates formed by the fine particles 114 .
 光学フィルタ層110は、図8に模式的に示すように、実質的に平坦な表面を有している。ここで、実質的に平坦な表面とは、可視光や赤外線を散乱(回折)または拡散反射させるような大きさの凹凸構造を有しない表面をいう。なお、光学フィルタ層110は、例えば、フィルム状であるが、これに限られない。 The optical filter layer 110 has a substantially flat surface, as schematically shown in FIG. Here, the term "substantially flat surface" refers to a surface that does not have an uneven structure large enough to scatter (diffract) or diffusely reflect visible light or infrared light. Note that the optical filter layer 110 is, for example, film-like, but is not limited to this.
 透明な微粒子114は、例えば、シリカ微粒子である。シリカ微粒子として、例えばストーバー法により合成されたシリカ微粒子を用いることができる。また微粒子として、シリカ微粒子以外の無機微粒子を用いてよく、樹脂微粒子を用いてもよい。樹脂微粒子としては、例えば、ポリスチレンおよびポリメタクリル酸メチルのうちの少なくとも1種からなる微粒子が好ましく、架橋したポリスチレン、架橋したポリメタクリル酸メチルまたは架橋したスチレン-メタクリル酸メチル共重合体からなる微粒子がさらに好ましい。なお、このような微粒子としては、例えば、エマルション重合により合成されたポリスチレン微粒子又はポリメタクリル酸メチル微粒子を適宜用いることができる。また、空気を含んだ中空シリカ微粒子および中空樹脂微粒子を用いることもできる。なお、無機材料で形成されている微粒子は、耐熱性・耐光性に優れるという利点を有する。微粒子の全体(マトリクスおよび微粒子を含む)に対する体積分率は、6%以上60%以下が好ましく、20%以上50%以下がより好ましく、20%以上40%以下がさらに好ましい。透明な微粒子114は光学的等方性を有してもよい。 The transparent fine particles 114 are silica fine particles, for example. As the silica fine particles, for example, silica fine particles synthesized by the Stover method can be used. As the fine particles, inorganic fine particles other than silica fine particles may be used, and resin fine particles may be used. As the resin fine particles, for example, fine particles made of at least one of polystyrene and polymethyl methacrylate are preferable, and fine particles made of crosslinked polystyrene, crosslinked polymethyl methacrylate or crosslinked styrene-methyl methacrylate copolymer are preferable. More preferred. As such fine particles, for example, polystyrene fine particles or polymethyl methacrylate fine particles synthesized by emulsion polymerization can be appropriately used. Hollow silica fine particles and hollow resin fine particles containing air can also be used. Fine particles made of an inorganic material have the advantage of being excellent in heat resistance and light resistance. The volume fraction of the whole fine particles (including the matrix and fine particles) is preferably 6% or more and 60% or less, more preferably 20% or more and 50% or less, and even more preferably 20% or more and 40% or less. The transparent microparticles 114 may have optical isotropy.
 マトリクス112は、例えば、アクリル樹脂(例えば、ポリメタクリル酸メチル、ポリアクリル酸メチル)、ポリカーボネート、ポリエステル、ポリ(ジエチレングリコールビスアリルカーボネート)、ポリウレタン、エポキシ樹脂、ポリイミドを挙げられるが、これらに限られない。マトリクス112は、硬化性樹脂(熱硬化性または光硬化性)を用いて形成することが好ましく、量産性の観点から光硬化性樹脂を用いて形成することが好ましい。光硬化性樹脂としては、種々の(メタ)アクリレートを用いることができる。(メタ)アクリレートは、2官能または3官能以上の(メタ)アクリレートを含むことが好ましい。また、マトリクス112は光学的等方性を有していることが好ましい。多官能モノマーを含む硬化性樹脂を用いると、架橋構造を有するマトリクス112が得られるので、耐熱性および耐光性を向上させることができる。 Examples of matrix 112 include, but are not limited to, acrylics (eg, polymethyl methacrylate, polymethyl acrylate), polycarbonates, polyesters, poly(diethylene glycol bisallyl carbonate), polyurethanes, epoxies, and polyimides. . The matrix 112 is preferably formed using a curable resin (thermosetting or photocurable), and is preferably formed using a photocurable resin from the viewpoint of mass productivity. Various (meth)acrylates can be used as the photocurable resin. (Meth)acrylates preferably include bifunctional or trifunctional (meth)acrylates. Also, the matrix 112 preferably has optical isotropy. When a curable resin containing a polyfunctional monomer is used, the matrix 112 having a crosslinked structure can be obtained, so heat resistance and light resistance can be improved.
 マトリクス112が樹脂材料で形成された光学フィルタ層110は、柔軟性を有するフィルム状であり得る。光学フィルタ層110の厚さは、例えば、10μm以上10mm以下である。光学フィルタ層110の厚さが、例えば、10μm以上1mm以下、さらには10μm以上500μm以下であれば、柔軟性を顕著に発揮することができる。 The optical filter layer 110 in which the matrix 112 is made of a resin material may be flexible and film-like. The thickness of the optical filter layer 110 is, for example, 10 μm or more and 10 mm or less. If the thickness of the optical filter layer 110 is, for example, 10 μm or more and 1 mm or less, or further 10 μm or more and 500 μm or less, the flexibility can be exhibited remarkably.
 微粒子として、表面が親水性のシリカ微粒子を用いる場合、例えば親水性のモノマーを光硬化することによって形成することが好ましい。親水性モノマーとして、例えば、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールトリ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールトリ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、あるいは、2-ヒドロキシプロピル(メタ)アクリレート、アクリルアミド、メチレンビスアクリルアミド、エトキシ化ビスフェノールAジ(メタ)アクリレートを挙げることができるが、これらに限られない。またこれらのモノマーは1種類を単独で用いてもよいし、または2種類以上を混合して用いてもよい。もちろん、2種類以上のモノマーは、単官能モノマーと多官能モノマーとを含んでもよく、あるいは、2種類以上の多官能モノマーを含んでもよい。 When silica fine particles with hydrophilic surfaces are used as the fine particles, it is preferable to form them, for example, by photocuring a hydrophilic monomer. Examples of hydrophilic monomers include polyethylene glycol (meth)acrylate, polyethylene glycol di(meth)acrylate, polyethylene glycol tri(meth)acrylate, polypropylene glycol (meth)acrylate, polypropylene glycol di(meth)acrylate, polypropylene glycol tri(meth)acrylate, ) acrylate, 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate, acrylamide, methylenebisacrylamide, ethoxylated bisphenol A di(meth)acrylate, but not limited to . These monomers may be used singly or in combination of two or more. Of course, the two or more types of monomers may include a monofunctional monomer and a multifunctional monomer, or may include two or more types of multifunctional monomers.
 これらのモノマーは光重合開始剤を適宜用いて硬化反応させることができる。光重合開始剤としては、例えばベンゾインエーテル、ベンゾフェノン、アントラキノン、チオキサン、ケタール、アセトフェノン等のカルボニル化合物や、ジスルフィド、ジチオカーバメート等のイオウ化合物、過酸化ベンゾイル等の有機過酸化物、アゾ化合物、遷移金属錯体、ポリシラン化合物、色素増感剤等が挙げられる。添加量は微粒子とモノマーとの混合物100質量部に対して0.05質量部以上3質量部以下が好ましく、0.05質量部以上1質量部以下がさらに好ましい。 These monomers can be cured using a photopolymerization initiator as appropriate. Examples of photopolymerization initiators include carbonyl compounds such as benzoin ether, benzophenone, anthraquinone, thioxane, ketal, and acetophenone; sulfur compounds such as disulfide and dithiocarbamate; organic peroxides such as benzoyl peroxide; azo compounds; complexes, polysilane compounds, dye sensitizers, and the like. The amount to be added is preferably 0.05 to 3 parts by mass, more preferably 0.05 to 1 part by mass, based on 100 parts by mass of the mixture of the fine particles and the monomer.
 可視光に対するマトリクスの屈折率をn、微粒子の屈折率をnとするとき、|n-n|(以下、単に屈折率差ということがある。)が0.01以上であることが好ましく、0.6以下であることが好ましく、0.03以上であることがより好ましく、0.11以下であることがより好ましい。屈折率差が0.03よりも小さいと散乱強度が弱くなり、所望の光学特性が得られにくくなる。また、屈折率差が0.11を超えると、赤外線の直線透過率が低下することがある。また、例えば、ジルコニア微粒子(屈折率2.13)とアクリル樹脂とを用いることで、屈折率差を0.6にした場合は、厚さを小さくすることによって赤外線の直線透過率を調整することができる。このように、赤外線の直線透過率は、例えば、光学フィルタ層の厚さと屈折率差とを制御することによって、調整することもできる。また、用途に応じて、赤外線を吸収するフィルタと重ねて用いることもできる。なお、可視光に対する屈折率は例えば546nmの光に対する屈折率で代表され得る。ここでは、特に断らない限り、屈折率は546nmの光に対する屈折率をいう。 Where n M is the refractive index of the matrix with respect to visible light, and n P is the refractive index of the fine particles, |n M −n P | (hereinafter sometimes simply referred to as refractive index difference) is 0.01 or more. is preferably 0.6 or less, more preferably 0.03 or more, and more preferably 0.11 or less. If the refractive index difference is less than 0.03, the scattering intensity becomes weak, making it difficult to obtain desired optical properties. In addition, if the refractive index difference exceeds 0.11, the in-line infrared transmittance may decrease. Further, for example, by using zirconia fine particles (refractive index: 2.13) and acrylic resin, if the difference in refractive index is set to 0.6, the linear transmittance of infrared rays can be adjusted by reducing the thickness. can be done. Thus, the infrared in-line transmittance can also be adjusted, for example, by controlling the thickness and refractive index difference of the optical filter layer. In addition, depending on the application, it can be used by overlapping with a filter that absorbs infrared rays. Note that the refractive index for visible light can be represented by the refractive index for light of 546 nm, for example. Here, unless otherwise specified, the refractive index refers to the refractive index for light of 546 nm.
 図9は、光学フィルタ層110の断面TEM像を示す図である。図中のTEM像における白い円はシリカ微粒子であり、黒い円はシリカ微粒子が抜け落ちた跡である。光学フィルタ層110の断面TEM像に示されるように、シリカ微粒子がほぼ均一に分散している。 FIG. 9 is a diagram showing a cross-sectional TEM image of the optical filter layer 110. FIG. The white circles in the TEM image in the figure are the silica fine particles, and the black circles are traces of the silica fine particles falling off. As shown in the cross-sectional TEM image of the optical filter layer 110, silica fine particles are dispersed almost uniformly.
 図10は、最大透過率で規格化したグラフであり、光学フィルタ層110の直線透過率スペクトルの入射角依存性を示す図である。図10に示される光学フィルタ層110の透過率曲線を見ると、可視光から赤外線にかけて直線透過率が単調に上昇する曲線部分が、入射角の増大につれて長波長側にシフト(約50nm)している。言い換えると、赤外線から可視光にかけて直線透過率が単調に減少する曲線部分が、入射角の増大につれて長波長側にシフトする。この特徴的な入射角依存性は、光学フィルムに含まれるシリカ微粒子がコロイドアモルファス集合体を構成していることに起因すると考えられる。なお、光学フィルタ層110の構造や光学特性、製造方法の詳細は、本出願人による国際出願PCT/JP2021/010413に記載されている。国際出願PCT/JP2021/010413の開示内容のすべてを参照により本明細書に援用する。図9および図10、上記国際出願に記載の実施例1の結果である。 FIG. 10 is a graph normalized by the maximum transmittance, showing the incident angle dependency of the linear transmittance spectrum of the optical filter layer 110. FIG. Looking at the transmittance curve of the optical filter layer 110 shown in FIG. 10, the curve portion where the linear transmittance monotonously increases from visible light to infrared rays shifts to the longer wavelength side (about 50 nm) as the incident angle increases. there is In other words, the curve portion where the linear transmittance monotonously decreases from infrared to visible light shifts to the long wavelength side as the incident angle increases. This characteristic incident angle dependence is considered to be due to the fact that the silica fine particles contained in the optical film form colloidal amorphous aggregates. Details of the structure, optical characteristics, and manufacturing method of the optical filter layer 110 are described in International Application PCT/JP2021/010413 filed by the present applicant. The entire disclosure of International Application PCT/JP2021/010413 is incorporated herein by reference. Figures 9 and 10 are the results of Example 1 described in the above international application.
 次に、上記国際出願に記載されている光学フィルタ層およびそれを有する光学積層体の例(実施例1~5および比較例1~3)を説明する。ここでは、上記国際出願に記載の実施例6の光学フィルタ(PETフィルム上に光学フィルタ層を形成したもの)の光学フィルタ層の厚さを200μmにしたものを用いた。なお、PETフィルムの光学特性への影響はわずかであり、可視光を部分的に反射する材料で形成された半反射層上に、直接、光学フィルタ層を形成した光学積層体と光学特性はほぼ同じである。 Next, examples (Examples 1 to 5 and Comparative Examples 1 to 3) of the optical filter layer and the optical laminate having the optical filter layer described in the above international application will be described. Here, the optical filter of Example 6 (having an optical filter layer formed on a PET film) described in the above-mentioned international application with the thickness of the optical filter layer changed to 200 μm was used. In addition, the effect of the PET film on the optical properties is slight, and the optical properties are almost the same as those of an optical laminate in which an optical filter layer is formed directly on a semi-reflective layer formed of a material that partially reflects visible light. are the same.
 可視光を部分的に反射する半反射層(可視光透過性反射層)は、入射する可視光の一部を反射し、残りの可視光を透過させる透過特性および反射特性を有する。半反射層の可視光の透過率は、好ましくは10%~70%、より好ましくは15%~65%、さらに好ましくは20%~60%である。半反射層の反射率は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは45%以上である。赤外線に関しては、好ましくは10%以上、より好ましくは15%以上、さらに好ましくは20%以上の透過率特性を有する。半反射層としては、例えば、ハーフミラー、反射型偏光子、ルーバーフィルム等を用いることができる。 A semi-reflective layer that partially reflects visible light (visible light transmissive reflective layer) has transmission and reflection properties that reflect part of incident visible light and transmit the remaining visible light. The visible light transmittance of the semi-reflective layer is preferably 10% to 70%, more preferably 15% to 65%, even more preferably 20% to 60%. The reflectance of the semi-reflective layer is preferably 30% or higher, more preferably 40% or higher, and even more preferably 45% or higher. With respect to infrared rays, it preferably has a transmittance characteristic of 10% or more, more preferably 15% or more, and still more preferably 20% or more. As the semi-reflective layer, for example, a half mirror, a reflective polarizer, a louver film, or the like can be used.
 ハーフミラーとしては、例えば、屈折率の異なる2以上の誘電体膜が積層された多層積層体を用いることができる。このようなハーフミラーは、好ましくは金属様光沢を有する。誘電体膜の形成材料としては、金属酸化物、金属窒化物、金属フッ化物、熱可塑性樹脂(例えば、ポリエチレンテレフタレート(PET))等が挙げられる。誘電体膜の多層積層体は、積層した誘電体膜の屈折率差によって、界面で入射光の一部を反射させる。誘電体膜の厚さによって、入射光と反射光との位相を変化させ、2つの光の干渉の程度を調整することにより、反射率を調整することができる。誘電体膜の多層積層体からなるハーフミラーの厚さは、例えば50μm以上200μm以下であり得る。このようなハーフミラーとしては、例えば、東レ社製の商品名「ピカサス」等の市販品を用いることができる。 As the half mirror, for example, a multi-layer laminate in which two or more dielectric films having different refractive indices are laminated can be used. Such half mirrors preferably have a metallic luster. Materials for forming the dielectric film include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (eg, polyethylene terephthalate (PET)), and the like. A multilayer laminate of dielectric films reflects a part of incident light at an interface due to the difference in refractive index between the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light by adjusting the thickness of the dielectric film and adjusting the degree of interference between the two lights. The thickness of the half mirror made of a multilayer laminate of dielectric films can be, for example, 50 μm or more and 200 μm or less. As such a half mirror, for example, a commercially available product such as Toray's product name "Picasus" can be used.
 反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子は、直線偏光分離型または円偏光分離型であり得るが、直線偏光分離型が好ましい。直線偏光分離型の反射型偏光子は、反射軸方向が吸収型偏光子(具体的には、第1の偏光子および第2の偏光子)の吸収軸方向と実質的に平行になるように配置される。 A reflective polarizer has the function of transmitting polarized light in a specific polarization state (polarization direction) and reflecting light in other polarization states. The reflective polarizer may be linearly polarized or circularly polarized, but linearly polarized is preferred. The linear polarization separation type reflective polarizer is arranged so that the reflection axis direction is substantially parallel to the absorption axis direction of the absorption polarizer (specifically, the first polarizer and the second polarizer). placed.
 直線偏光分離型の反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。市販品としては、例えば、日東電工社製の商品名「APCF」、3M社製の商品名「DBEF」、3M社製の商品名「APF」が挙げられる。また、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。円偏光分離型の反射型偏光子としては、例えば、コレステリック液晶を固定化したフィルムとλ/4板との積層体が挙げられる。また、ワイヤーグリッド型の偏光層を用いることもできる。 As the linearly polarized light separation type reflective polarizer, for example, the one described in JP-A-9-507308 can be used. Examples of commercially available products include Nitto Denko's trade name "APCF", 3M trade name "DBEF", and 3M trade name "APF". Moreover, a commercially available product may be used as it is, or a commercially available product may be used after secondary processing (for example, stretching). Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film in which cholesteric liquid crystal is fixed and a λ/4 plate. A wire grid type polarizing layer can also be used.
 表1に実施例1~5の光学積層体の光学特性、表2に比較例1~3の光学積層体の光学特性を評価した結果を説明する。 The optical properties of the optical layered bodies of Examples 1 to 5 are shown in Table 1, and the results of evaluating the optical properties of the optical layered bodies of Comparative Examples 1 to 3 are shown in Table 2.
 投影スクリーンとしての性能の評価は、以下の様にして行った。短焦点プロジェクタ(リコー株式会社製、PJWX4152N)を用いて、一般的な投影スクリーン(サンワサプライ社製のPRS-KBHD80)に投影したときに、白黒の輝度差が235cd/cmとなる市松模様を光学積層体の背面(第2主面14s)に投影したとき、前面(第1主面12s)に形成される投影画像の白黒の輝度差(cd/cm)を求めた。白黒の市松模様を構成する正方形の一辺の長さは5mmであった。輝度の測定には、コニカミノルタジャパン株式会社製のLUMINANCEMETER LS-150を用いた。背面側空間RSの照度は約160ルクス、前面側空間FSの照度は542ルクスであった。これらの照度は、床面から100cmの高さの位置で、照度計(株式会社セコニック製のスペクトロマスターC-800)の受光器を上に向けて測定した。光学積層体の各試料も床面から約100cmの高さの位置に配置した。 Evaluation of performance as a projection screen was performed as follows. Using a short-focus projector (Ricoh Co., Ltd., PJWX4152N), when projected onto a general projection screen (Sanwa Supply Co., Ltd. PRS-KBHD80), the black and white luminance difference is 235 cd / cm 2 optically. The black and white luminance difference (cd/cm 2 ) of the projected image formed on the front surface (first main surface 12s) when projected onto the rear surface (second main surface 14s) of the laminate was determined. The length of one side of the squares forming the black and white checkered pattern was 5 mm. LUMINANCEMETER LS-150 manufactured by Konica Minolta Japan, Inc. was used to measure luminance. The illuminance of the back side space RS was about 160 lux, and the illuminance of the front side space FS was 542 lux. These illuminances were measured at a height of 100 cm from the floor surface with the light receiver of an illuminometer (Spectromaster C-800 manufactured by Sekonic Co., Ltd.) facing upward. Each sample of the optical laminate was also placed at a height of about 100 cm from the floor.
 VIS非視認性は、各光学フィルタを介して、物体(例えば赤外線検出装置商品)を明確に視認できない場合を良(OK)として、物体を明確に視認できる場合を不良(NG)としている。IR視認性は、例えば、赤外線カメラを用いて、各光学フィルタを介して、対象物を明確に視認できる場合を良(OK)として、対象物を明確に視認できない場合を不良(NG)としている。ここでは、対象物としてISO12233解像度チャートを用い、光学積層体の第2主面から対象物までの距離を0cm、1cm、3cmおよび9cmと異ならせて、評価を行った。対象物と第2主面からの距離が小さいほど対象物は視認されやすく、距離が大きいほど視認されにくい。 VIS non-visibility is defined as good (OK) when an object (for example, an infrared detector product) cannot be clearly seen through each optical filter, and bad (NG) when an object can be clearly seen. For IR visibility, for example, using an infrared camera, through each optical filter, the object can be clearly visually recognized as good (OK), and the object cannot be clearly visually recognized as bad (NG). . Here, the ISO 12233 resolution chart was used as the object, and the evaluation was performed by changing the distance from the second main surface of the optical layered body to the object to 0 cm, 1 cm, 3 cm, and 9 cm. The smaller the distance from the object to the second main surface, the easier it is to visually recognize the object, and the greater the distance, the harder it is to visually recognize the object.
 VIS拡散透過率およびVIS直過率は、350nm以上780nm以下の波長範囲の可視光の平均透過率(%)を表し、IR直線透過率は、780nm以上1350nm以下の波長範囲の赤外線(近赤外線)の平均透過率(%)を表している。拡散透過率は、光学積層体を積分球の開口部に配置した状態で測定した透過率であり、光学積層体が対象物(例えば赤外線検出装置)に接触した状態(距離が0cm)における視認性と相関する。一方、直線透過率とは、光学積層体を積分球の開口部から一定の距離(例えば20cm)離して配置した状態で測定した透過率であり、光学積層体が対象物から離れて配置された状態における視認性と相関する。なお、分光器として、紫外可視近赤外分光光度計UH4150(株式会社日立ハイテクサイエンス製)を用い、1nm間隔にて測定を行った。 VIS diffuse transmittance and VIS direct transmittance represent the average transmittance (%) of visible light in the wavelength range of 350 nm or more and 780 nm or less, and IR linear transmittance is infrared rays (near infrared rays) in the wavelength range of 780 nm or more and 1350 nm or less. represents the average transmittance (%) of The diffuse transmittance is the transmittance measured with the optical layered body placed in the opening of the integrating sphere, and the visibility when the optical layered body is in contact with an object (for example, an infrared detector) (distance is 0 cm). correlates with On the other hand, the linear transmittance is the transmittance measured in a state where the optical laminate is placed at a certain distance (for example, 20 cm) from the opening of the integrating sphere, and the optical laminate is placed away from the object. Correlates with visibility in condition. As a spectrometer, an ultraviolet-visible-near-infrared spectrophotometer UH4150 (manufactured by Hitachi High-Tech Science Co., Ltd.) was used, and measurements were performed at intervals of 1 nm.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 まず、表2を参照して、比較例の光学積層体の光学特性を説明する。 First, with reference to Table 2, the optical properties of the optical layered body of the comparative example will be described.
 比較例1は、白濁したプラスチック板(ポリスチレン製、厚さが0.5mm)である。投影市松模様画像白黒輝度差は、134cd/cmと大きく、投影スクリーンとして利用できる。また、VIS直線透過率が低く、物体と少なくとも1cm以上離間して配置すれば、物体を見えなくすることができる。しかしながら、IR直線透過率が低く、IR視認性は0cmですらNGであった。すなわち、比較例1の光学積層体を介して、赤外線情報(例えば利用者の顔画像)を取得することができない。 Comparative Example 1 is a cloudy plastic plate (made of polystyrene, thickness 0.5 mm). The projected checkered pattern image has a black and white luminance difference as large as 134 cd/cm 2 , and can be used as a projection screen. In addition, if the VIS in-line transmittance is low and the object is placed at a distance of at least 1 cm, the object can be made invisible. However, the IR straight-line transmittance was low, and the IR visibility was NG even at 0 cm. In other words, infrared information (for example, a user's facial image) cannot be acquired via the optical layered body of Comparative Example 1.
 比較例2は、上記国際出願に記載の比較例Aに対応し、特開2013-65052号公報に記載の光学物品に相当する。比較例1は、投影市松模様画像白黒輝度差が7.4cd/cmと低く、投影スクリーンとして利用することは難しい。VIS直線透過率が11%と低く、VIS非視認性は良好であるが、IR直線透過率が33%と低く、IR視認性は0cmの場合だけOKで、光学積層体から離れている物体を十分に認識することは難しい。 Comparative Example 2 corresponds to Comparative Example A described in the above international application and corresponds to the optical article described in JP-A-2013-65052. In Comparative Example 1, the black and white luminance difference of the projected checkerboard pattern image is as low as 7.4 cd/cm 2 , and it is difficult to use it as a projection screen. The VIS linear transmittance is as low as 11%, and the VIS non-visibility is good, but the IR linear transmittance is as low as 33%, and the IR visibility is OK only at 0 cm. difficult to fully recognize.
 比較例3は、金属薄膜を有する光学積層体であり、可視光も赤外線も透過しない。したがって、投影スクリーンとして利用はできない。また、VIS非視認性はOKであるが、IR視認性は距離に拘わらずNGである。 Comparative Example 3 is an optical layered body having a metal thin film, and does not transmit visible light or infrared light. Therefore, it cannot be used as a projection screen. Also, the VIS non-visibility is OK, but the IR visibility is NG regardless of the distance.
 次に、表1を参照する。表1からわかるように、実施例1~5は、いずれも投影市松模様画像白黒輝度差は20cd/cm以上あり、いずれも投影スクリーンとして利用できる。また、いずれもVIS直線透過率は20%以下であり、物体と少なくとも1cm以上離間して配置すれば、物体を見えなくすることができる。また、いずれもIR直線透過率は40%以上であり、IR視認性はいずれもOKである。 Next, refer to Table 1. As can be seen from Table 1, all of Examples 1 to 5 have a black-and-white luminance difference of 20 cd/cm 2 or more in the projected checkered pattern image, and all of them can be used as projection screens. In addition, the VIS in-line transmittance is 20% or less in either case, and the object can be made invisible by arranging it at a distance of at least 1 cm from the object. Moreover, all of them have an IR linear transmittance of 40% or more, and all of them have an OK IR visibility.
 実施例1は、上述した光学フィルタ(上記国際出願の実施例6の厚さを200μmとしたもの)であり、高いIR直線透過率を有している。VIS直線透過率は20%以下であり、物体と少なくとも1cm以上離間して配置すれば、物体を見えなくすることができる。また、VIS拡散透過率が39%と高く、白色を呈することがわかる。投影市松模様画像白黒輝度差は、160cd/cmと高く、投影スクリーンとして利用できることがわかる。 Example 1 is the optical filter described above (having a thickness of 200 μm in Example 6 of the above international application) and has a high in-line IR transmittance. The VIS in-line transmittance is 20% or less, and the object can be made invisible by placing it at a distance of at least 1 cm from the object. In addition, it can be seen that the VIS diffuse transmittance is as high as 39% and the color is white. The black and white luminance difference of the projected checkerboard pattern image is as high as 160 cd/cm 2 , indicating that it can be used as a projection screen.
 実施例2は、上記光学フィルタと直線偏光分離型の反射型偏光子とを有する光学積層体である。 Example 2 is an optical laminate having the above optical filter and a linearly polarized light separation type reflective polarizer.
 実施例3は、上記光学フィルタとワイヤーグリッド型偏光反射層とを有する光学積層体である。 Example 3 is an optical laminate having the above optical filter and a wire grid type polarized light reflecting layer.
 実施例2および3は、偏光選択性を有する半反射層を有している。ここでは、非偏光の光を投影したが、直線偏光を投影することによって、投影市松模様画像白黒輝度差を向上させることができる。 Examples 2 and 3 have a semi-reflective layer with polarization selectivity. Although non-polarized light is projected here, the black and white luminance difference of the projected checkerboard pattern image can be improved by projecting linearly polarized light.
 実施例4は、上記光学フィルタと赤外線を透過するように誘電体多層膜で構成されたハーフミラーとを有する光学積層体である。 Example 4 is an optical laminate having the above optical filter and a half mirror composed of a dielectric multilayer film so as to transmit infrared rays.
 実施例5は、上記光学フィルタと、可視光の透過率が50%に調整された誘電体多層膜で構成されたハーフミラーとを有する光学積層体である。 Example 5 is an optical laminate having the above optical filter and a half mirror composed of a dielectric multilayer film with visible light transmittance adjusted to 50%.
 光学積層体を介して、利用者の顔画像等の赤外線情報を取得するためには、光学積層体から数十cm以上離れた位置の対象物を正確に認識できることが好ましく、IR直線透過率は、50%以上であることが好ましく、60%以上であることがさらに好ましく、80%以上であることがさらに好ましい。 In order to acquire infrared information such as a user's face image through the optical layered body, it is preferable that an object at a position several tens of cm or more away from the optical layered body can be accurately recognized, and the IR linear transmittance is , is preferably 50% or more, more preferably 60% or more, further preferably 80% or more.
 投影市松模様画像白黒輝度差が大きく、かつIR直線透過率が高い光学積層体(例えば、実施例1、2および4)は、VIS非視認性に劣る傾向にはあるが、物体と少なくとも1cm以上離間して配置すれば、物体を見えなくすることができる。赤外線検出器や投影装置を1cm未満の距離に光学積層体に近接させて配置することはないので、実用上問題となることはない。したがって、物体と光学積層体との距離を考慮して、投影市松模様画像白黒輝度差および/またはIR直線透過率が一層優れた光学積層体を用いることもできる。光学フィルタ層および/または半反射層の光学特性を調整することによって、投影市松模様画像白黒輝度差および/またはIR直線透過率を向上させることができる。 Optical laminates with large black and white luminance difference and high IR linear transmittance (e.g., Examples 1, 2 and 4) tend to be inferior in VIS non-visibility, but are at least 1 cm from the object. Spaced apart, objects can be made invisible. Since the infrared detector and the projection device are not placed close to the optical laminate at a distance of less than 1 cm, there is no practical problem. Therefore, considering the distance between the object and the optical stack, it is also possible to use an optical stack with a better black-and-white luminance difference and/or IR in-line transmittance of the projected checkerboard pattern image. By adjusting the optical properties of the optical filter layer and/or the semi-reflective layer, the projected checkerboard image black and white luminance difference and/or the IR linear transmittance can be improved.
 本発明の実施形態によると、例えばブレーンストーミングを目的とする会議を支援する会議支援システム、そのような会議支援システムに好適に用いられる可視光遮光IR透過シート、投影スクリーン、ホワイトボードとして用いられる光学積層体および赤外線情報取得システムが提供される。 According to an embodiment of the present invention, for example, a meeting support system for supporting a meeting for the purpose of brainstorming, a visible light shielding IR transmission sheet suitably used for such a meeting support system, a projection screen, an optical system used as a whiteboard A laminate and an infrared information acquisition system are provided.

Claims (24)

  1.  第1主面と、前記第1主面の反対側の第2主面を有する光学積層体であって、
     赤外線を透過し、可視光を拡散透過する光学フィルタ層を有し、
     前記第1主面側が前記第2主面側よりも明るいとき、前記第2主面側に、前記第2主面と離間して配置された物体を前記第1主面側から視認することをできなくし、
     780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対し40%以上の直線透過率を有する、光学積層体。
    An optical laminate having a first main surface and a second main surface opposite to the first main surface,
    It has an optical filter layer that transmits infrared rays and diffuses and transmits visible light,
    When the first main surface side is brighter than the second main surface side, an object placed on the second main surface side and spaced apart from the second main surface side is viewed from the first main surface side. make it impossible,
    An optical layered body having a linear transmittance of 40% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less.
  2.  前記第2主面に、白黒の輝度差が235cd/cmの市松模様を投影したとき、前記第1主面に白黒の輝度差が20cd/cm以上の投影画像を形成することができる、光学積層体。 When a checkered pattern with a black-and-white luminance difference of 235 cd/cm 2 is projected onto the second principal surface, a projection image having a black-and-white luminance difference of 20 cd/cm 2 or more can be formed on the first principal surface. Optical laminate.
  3.  可視光の直線透過率が20.0%以下である、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, which has a linear transmittance of visible light of 20.0% or less.
  4.  可視光の拡散透過率が10.0%以上40.0%以下である、請求項1から3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the diffuse transmittance of visible light is 10.0% or more and 40.0% or less.
  5.  前記光学フィルタ層の第2主面側に配置され、可視光を部分的に反射する半反射層をさらに有する、請求項1から4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, further comprising a semi-reflecting layer arranged on the second main surface side of the optical filter layer and partially reflecting visible light.
  6.  前記半反射層は、偏光選択性を有している、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the semi-reflective layer has polarization selectivity.
  7.  前記光学フィルタ層の前記第1主面側に配置された加飾層をさらに有する、請求項1から6のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, further comprising a decorative layer arranged on the first main surface side of the optical filter layer.
  8.  前記光学フィルタ層の前記第1主面側に配置された表面保護層をさらに有する、請求項1から7のいずれか1項に記載の光学積層体。 The optical layered body according to any one of claims 1 to 7, further comprising a surface protective layer disposed on the first main surface side of the optical filter layer.
  9.  前記光学フィルタ層の前記第1主面側に配置された筆記層と、
     前記光学フィルタ層の前記第2主面側に配置された基材層と
    をさらに有する、請求項1から6のいずれか1項に記載の光学積層体。
    a writing layer disposed on the first main surface side of the optical filter layer;
    The optical laminate according to any one of claims 1 to 6, further comprising a substrate layer arranged on the second main surface side of the optical filter layer.
  10.  前記光学フィルタ層は、マトリクスと、前記マトリクス中に分散された光散乱体となる微粒子とを有し、780nm以上2000nm以下の波長範囲内の少なくとも一部の波長の光に対し60%以上の直線透過率を有する、請求項1から9のいずれか1項に記載の光学積層体。 The optical filter layer has a matrix and fine particles that serve as light scatterers dispersed in the matrix, and has a linearity of 60% or more for light of at least part of the wavelength range of 780 nm or more and 2000 nm or less. The optical laminate according to any one of claims 1 to 9, which has transmittance.
  11.  前記微粒子は、少なくともコロイドアモルファス集合体を構成している、請求項10に記載の光学積層体。 The optical laminate according to claim 10, wherein the fine particles constitute at least colloidal amorphous aggregates.
  12.  前記光学フィルタ層の可視光の波長領域の透過率曲線は、長波長側から短波長側にかけて直線透過率が単調に減少する曲線部分を有し、前記曲線部分は入射角の増大につれて長波長側にシフトする、請求項10または11に記載の光学積層体。 The transmittance curve of the visible light wavelength region of the optical filter layer has a curve portion where the linear transmittance monotonically decreases from the long wavelength side to the short wavelength side, and the curve portion is on the long wavelength side as the incident angle increases. 12. The optical stack according to claim 10 or 11, which shifts to .
  13.  請求項1から12のいずれか1項に記載の光学積層体と、
     前記光学積層体の前記第2主面側に、前記第2主面と離間して配置され、前記光学積層体を介して赤外線を受けるように配置された、複数の赤外線検出装置と
    を有する、赤外線情報取得システム。
    an optical laminate according to any one of claims 1 to 12;
    a plurality of infrared detection devices disposed on the second main surface side of the optical laminate and spaced apart from the second main surface and arranged to receive infrared rays through the optical laminate; Infrared information acquisition system.
  14.  前記光学積層体の前記第2主面に向けて赤外線を出射するように配置された少なくとも1つの赤外線光源装置をさらに備える、請求項13に記載の赤外線情報取得システム。 The infrared information acquisition system according to claim 13, further comprising at least one infrared light source device arranged to emit infrared rays toward said second main surface of said optical layered body.
  15.  前記少なくとも1つの赤外線光源装置は、第1赤外線光源装置および第2赤外線光源装置を含み、前記第1赤外線光源装置および第2赤外線光源装置は、前記光学積層体の前記第2主面の互いに異なる領域に向けて赤外線を出射するように構成されている、請求項14に記載の赤外線情報取得システム。 The at least one infrared light source device includes a first infrared light source device and a second infrared light source device, and the first infrared light source device and the second infrared light source device are different from each other on the second main surface of the optical stack. 15. The infrared information acquisition system of Claim 14, configured to emit infrared light toward an area.
  16.  位置センサをさらに有し、前記位置センサの出力に応じて、前記複数の赤外線検出装置のいずれかを選択的に動作させるように構成されている、請求項13から15のいずれか1項に記載の赤外線情報取得システム。 16. Any one of claims 13 to 15, further comprising a position sensor, configured to selectively operate one of the plurality of infrared detection devices according to the output of the position sensor. infrared information acquisition system.
  17.  前記複数の赤外線検出装置のそれぞれは、3次元センサまたはカメラである、請求項13から16のいずれか1項に記載の赤外線情報取得システム。 The infrared information acquisition system according to any one of claims 13 to 16, wherein each of said plurality of infrared detection devices is a three-dimensional sensor or camera.
  18.  請求項13から17のいずれか1項に記載の赤外線情報取得システムと、
     前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、利用者の表情を認識する表情認識装置と、
     前記表情認識装置によって認識された表情の情報を前記光学積層体の位置および取得時間と関連付けて記憶する第1の記憶装置とを有する、会議支援システム。
    An infrared information acquisition system according to any one of claims 13 to 17;
    a facial expression recognition device that recognizes facial expressions of a user based on infrared information acquired through the optical layered body by the infrared information acquisition system;
    A meeting support system, comprising: a first storage device that stores information on the facial expression recognized by the facial expression recognition device in association with the position and acquisition time of the optical layered body.
  19.  前記光学積層体は、前記光学フィルタ層の前記第1主面側に配置された筆記層をさらに有し、
     前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、前記光学積層体の前記筆記層上に赤外線吸収インクを用いて形成されたパターンを認識するパターン認識装置と、
     前記パターン認識装置によって認識されたパターンの情報を前記光学積層体の位置および取得時間と関連付けて記憶する第2の記憶装置とをさらに有する、請求項18に記載の会議支援システム。
    The optical laminate further has a writing layer disposed on the first main surface side of the optical filter layer,
    a pattern recognition device that recognizes a pattern formed using infrared absorbing ink on the writing layer of the optical layered body based on the infrared information acquired through the optical layered body by the infrared information acquisition system;
    19. The meeting support system according to claim 18, further comprising a second storage device that stores information on the pattern recognized by said pattern recognition device in association with the position of said optical layered body and acquisition time.
  20.  前記認識されたパターンの情報を文字情報に変換する文字変換装置をさらに有する、請求項19に記載の会議支援システム。 The meeting support system according to claim 19, further comprising a character conversion device that converts the information of the recognized pattern into character information.
  21.  前記赤外線情報取得システムによって前記光学積層体を介して取得した赤外線情報に基づいて、利用者の動作を認識する動作認識装置をさらに備える、請求項18から20のいずれか1項に記載の会議支援システム。 21. The conference support according to any one of claims 18 to 20, further comprising a motion recognition device that recognizes a user's motion based on infrared information acquired through said optical layered body by said infrared information acquisition system. system.
  22.  前記表情認識装置によって認識された前記表情の情報を出力する出力装置をさらに有する、請求項18から21のいずれか1項に記載の会議支援システム。 The meeting support system according to any one of claims 18 to 21, further comprising an output device for outputting information on said facial expression recognized by said facial expression recognition device.
  23.  前記光学積層体の前記第2主面側に配置され、前記光学積層体に向けて可視光を出射するように構成された投影装置をさらに有し、
     前記投影装置は、前記表情認識装置によって認識された前記表情の情報に基づいて、予め決められた可視光のパターンを前記光学積層体の前記第2主面に形成するように構成されている、請求項18から22のいずれか1項に記載の会議支援システム。
    further comprising a projection device disposed on the second main surface side of the optical layered body and configured to emit visible light toward the optical layered body;
    The projection device is configured to form a predetermined pattern of visible light on the second main surface of the optical layered body based on the facial expression information recognized by the facial expression recognition device. A meeting support system according to any one of claims 18 to 22.
  24.  通信装置をさらに有し、前記投影装置が形成する前記可視光のパターンを前記通信装置を介して出力するように構成されている、請求項18から23のいずれか1項に記載の会議支援システム。
     
    24. A meeting support system according to any one of claims 18 to 23, further comprising a communication device, configured to output said visible light pattern formed by said projection device via said communication device. .
PCT/JP2022/039537 2021-10-28 2022-10-24 Optical laminate, infrared information acquisition system, and meeting support system WO2023074626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163272797P 2021-10-28 2021-10-28
US63/272,797 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074626A1 true WO2023074626A1 (en) 2023-05-04

Family

ID=86157832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039537 WO2023074626A1 (en) 2021-10-28 2022-10-24 Optical laminate, infrared information acquisition system, and meeting support system

Country Status (2)

Country Link
TW (1) TW202329037A (en)
WO (1) WO2023074626A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239583A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Communication terminal unit, method of controlling communication of communication terminal unit, and communication control program
US20110265110A1 (en) * 2010-04-23 2011-10-27 Weinblatt Lee S Audience Monitoring System Using Facial Recognition
JP2013065052A (en) * 2008-08-20 2013-04-11 Tokai Kogaku Kk Optical article for infrared communication and light receiving unit for infrared communication
CN104463113A (en) * 2014-11-28 2015-03-25 福建星网视易信息系统有限公司 Face recognition method and device and access control system
CN104657720A (en) * 2015-03-08 2015-05-27 无锡桑尼安科技有限公司 Film type detection method based on audience film-watching expression recognition
JP2019509510A (en) * 2016-01-21 2019-04-04 スリーエム イノベイティブ プロパティズ カンパニー Optical camouflage filter
WO2021187430A1 (en) * 2020-03-16 2021-09-23 日東電工株式会社 Optical filter, method for producing same and optical module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065052A (en) * 2008-08-20 2013-04-11 Tokai Kogaku Kk Optical article for infrared communication and light receiving unit for infrared communication
JP2010239583A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Communication terminal unit, method of controlling communication of communication terminal unit, and communication control program
US20110265110A1 (en) * 2010-04-23 2011-10-27 Weinblatt Lee S Audience Monitoring System Using Facial Recognition
CN104463113A (en) * 2014-11-28 2015-03-25 福建星网视易信息系统有限公司 Face recognition method and device and access control system
CN104657720A (en) * 2015-03-08 2015-05-27 无锡桑尼安科技有限公司 Film type detection method based on audience film-watching expression recognition
JP2019509510A (en) * 2016-01-21 2019-04-04 スリーエム イノベイティブ プロパティズ カンパニー Optical camouflage filter
WO2021187430A1 (en) * 2020-03-16 2021-09-23 日東電工株式会社 Optical filter, method for producing same and optical module

Also Published As

Publication number Publication date
TW202329037A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP7438267B2 (en) optical camouflage filter
CN103052898B (en) Comprise multilayer film and the goods of matte surface layer
JP6917378B2 (en) Multi-view display and related systems and methods
US7835078B2 (en) Reflecting screen, method of manufacturing the same, and reflection-type projection system
CN103109213B (en) Light diffusion element, the polarization plates of band light diffusion element, polarization element and use its liquid crystal indicator
US20100195201A1 (en) Screen
JP2019507899A (en) Optical camouflage filter
JP2012514774A (en) Dry erasable projection article and system
TW201248260A (en) Backlight and liquid crystal display device
TW201235692A (en) Microlens laminate capable of providing floating image
TW202101065A (en) Display with underlying decorative layer
US9268146B2 (en) User interface with a composite image that floats
WO2023074626A1 (en) Optical laminate, infrared information acquisition system, and meeting support system
WO2014203850A1 (en) Laminate, method for producing laminate, light guide body for light source devices, and light source device
JPH0996705A (en) Light diffusion sheet, edge light type surface light source using the same and liquid crystal display device
US10845508B2 (en) Optical stack including embedded diffuse surface
CN110546556B (en) Multi-layer display and method for forming the same
WO2023080016A1 (en) Optical multilayer body and system
CN112331079A (en) Display panel and display device
JP6164000B2 (en) Transmission screen and video display system
TW409196B (en) Transmission-type screen
CN107111410A (en) Display including heat mirror
WO2023054505A1 (en) Storage structure, inventory management system, and inventory management method
WO2023008087A1 (en) Infrared security system, infrared light emission control system, and design unit
WO2023243181A1 (en) Aerial floating video information display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE