WO2023074621A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2023074621A1
WO2023074621A1 PCT/JP2022/039522 JP2022039522W WO2023074621A1 WO 2023074621 A1 WO2023074621 A1 WO 2023074621A1 JP 2022039522 W JP2022039522 W JP 2022039522W WO 2023074621 A1 WO2023074621 A1 WO 2023074621A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
expansion valve
indoor
temperature
Prior art date
Application number
PCT/JP2022/039522
Other languages
French (fr)
Japanese (ja)
Inventor
聡乃 守谷
裕記 藤岡
裕 伊藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280071455.5A priority Critical patent/CN118159790A/en
Publication of WO2023074621A1 publication Critical patent/WO2023074621A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • An air conditioner that performs a reheat dehumidification operation in which dehumidified air is heated by causing one of two heat exchangers provided in an indoor unit to function as a condenser and the other to function as an evaporator.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-34140
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-34140
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-34140 does not disclose a suitable method for controlling the degree of opening of the electronic expansion valve in the indoor unit during execution of the reheat dehumidifying operation.
  • the air conditioner of the first aspect includes a first unit, a second unit, a refrigerant circuit, and a controller.
  • the first unit has a compressor and a first heat exchanger.
  • the second unit has a second heat exchanger, an expansion valve and a third heat exchanger.
  • the compressor, the first heat exchanger, the second heat exchanger, the expansion valve and the third heat exchanger are connected in a ring, and the refrigerant circulates.
  • the control unit controls the refrigerant circuit to perform a first operation in which the first heat exchanger and the second heat exchanger function as condensers and the third heat exchanger functions as an evaporator.
  • the expansion valve has a first member and a second member that adjust the degree of opening of the expansion valve.
  • the second member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is within the first range.
  • the first member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is greater than the first range.
  • the control unit controls the expansion valve to adjust the degree of opening by the second member so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet during execution of the first operation.
  • this air conditioner when the reheating dehumidification operation is performed in which the air dehumidified by the third heat exchanger is heated by the second heat exchanger, the refrigerant in the third heat exchanger is in a wet state.
  • the degree of opening of the expansion valve is controlled in the control region.
  • the air conditioner of the second aspect is the air conditioner of the first aspect, further comprising a discharge pipe and a first temperature sensor.
  • the discharge pipe is connected to the discharge side of the compressor, through which refrigerant compressed by the compressor flows.
  • a first temperature sensor detects the temperature of the discharge pipe.
  • the controller adjusts the degree of opening by the second member based on the temperature detected by the first temperature sensor so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet during execution of the first operation. I do.
  • this air conditioner when the reheat dehumidification operation is executed, the wet state of the refrigerant in the third heat exchanger is estimated based on the temperature of the discharge pipe of the compressor, and the degree of opening of the expansion valve is controlled. As a result, this air conditioner can improve the effect of reheating air in the second heat exchanger when the reheat dehumidification operation is performed.
  • the air conditioner of the third aspect is the air conditioner of the second aspect, further comprising a second temperature sensor and a third temperature sensor.
  • a second temperature sensor detects the temperature of the first heat exchanger.
  • a third temperature sensor detects the temperature of a pipe connecting the expansion valve and the third heat exchanger.
  • the controller calculates the target temperature of the discharge pipe based on the temperatures detected by the second temperature sensor and the third temperature sensor. Based on the calculated target temperature and the temperature detected by the first temperature sensor, the control unit controls the state of the refrigerant at the outlet of the third heat exchanger to be wet during execution of the first operation. The degree of opening is adjusted by the second member.
  • this air conditioner when the reheat dehumidification operation is executed, the target temperature of the discharge pipe calculated based on the evaporation temperature and condensation temperature of the refrigerant and the actual temperature of the discharge pipe are used to determine the temperature inside the third heat exchanger.
  • the degree of opening of the expansion valve is controlled by estimating the wetness state of the refrigerant.
  • the air conditioner of the fourth aspect is the air conditioner of any one of the first to third aspects, and the expansion valve further has a first valve seat forming a first valve port through which the refrigerant passes.
  • the first member forms a second valve port through which refrigerant passes.
  • the controller controls the position of the first member to change the opening of the first valve port, thereby adjusting the opening by the first member.
  • the controller controls the position of the second member to change the degree of opening of the second valve port, thereby adjusting the degree of opening by the second member.
  • the air conditioner can finely adjust the reheating effect when executing the reheat dehumidifying operation.
  • An air conditioner according to a fifth aspect is the air conditioner according to the fourth aspect, wherein the control unit controls the opening of the first valve port to be equal to or less than a predetermined value when the first operation is executed, and the second member Adjust the opening by
  • the air conditioner can finely adjust the reheating effect when executing the reheat dehumidifying operation.
  • An air conditioner according to a sixth aspect is the air conditioner according to any one of the first to fifth aspects, wherein the control unit controls the refrigerant circuit to cause the first heat exchanger to function as a condenser, In addition, a second operation is further performed in which the second heat exchanger and the third heat exchanger function as evaporators.
  • the control unit controls the expansion valve to adjust the degree of opening by the first member and the second member so that the refrigerant passing through the expansion valve does not decompress during execution of the second operation.
  • An air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the control unit adjusts the wetness degree of refrigerant sucked into the compressor during execution of the second operation to The degree of opening is adjusted by the first member and the second member so that the degree of wetness is greater than the degree of wetness of the refrigerant sucked into the compressor.
  • the air conditioner of the eighth aspect is the air conditioner of any one of the first to seventh aspects, further comprising a fourth temperature sensor and a fifth temperature sensor.
  • a fourth temperature sensor detects the temperature of the space in which the second unit is installed.
  • a fifth temperature sensor detects the temperature of the space in which the first unit is installed.
  • the control unit adjusts the second heat exchanger so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet based on the temperatures detected by the fourth temperature sensor and the fifth temperature sensor. The opening is adjusted by the member.
  • the air conditioner when the reheat dehumidifying operation is started, the degree of opening of the expansion valve is controlled by estimating the wet state of the refrigerant in the third heat exchanger based on the room temperature and the outside air temperature. As a result, the air conditioner can realize an appropriate reheat effect when executing the reheat dehumidifying operation.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of an indoor expansion valve 32
  • FIG. 4 is a graph showing flow characteristics of an indoor expansion valve 32
  • 3 is a control block diagram of a control unit 6
  • FIG. 6 is a flowchart of an example of control executed by the control unit 6 during reheat dehumidification operation. 6 is a flowchart of an example of control executed by the control unit 6 during reheat dehumidification operation.
  • the air conditioner 1 air-conditions a room such as a building, which is a target space, using a vapor compression refrigerant cycle.
  • the air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, a liquid refrigerant communication pipe 4, a gas refrigerant communication pipe 5, a controller 6, and a remote controller 7. .
  • the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 .
  • the outdoor unit 2 , the indoor unit 3 , the liquid refrigerant communication pipe 4 , and the gas refrigerant communication pipe 5 are annularly connected by refrigerant pipes to form a refrigerant circuit 100 .
  • Refrigerant circuit 100 has a refrigerant sealed therein.
  • the control unit 6 controls the refrigerant circuit 100 to realize a refrigeration cycle, thereby performing air conditioning operations such as heating operation, cooling operation, and reheat dehumidification operation.
  • the outdoor unit 2 is installed outdoors such as on the roof of the building or near the outer wall surface of the building.
  • the outdoor unit 2 mainly has a compressor 21 , a four-way switching valve 23 , an outdoor heat exchanger 24 , an outdoor expansion valve 25 and an outdoor fan 26 .
  • the outdoor unit 2 may further have at least one of a discharge pipe temperature sensor 27, an outdoor heat exchanger temperature sensor 28, and an outdoor temperature sensor 29, if necessary.
  • (2-1-1) Compressor In the refrigerant circuit 100, the compressor 21 sucks low-pressure refrigerant from the suction side 21a, compresses it to high pressure, and then discharges it from the discharge side 21b. A discharge pipe 21c through which the refrigerant compressed by the compressor 21 flows is connected to the discharge side 21b of the compressor 21 .
  • the compressor 21 is a closed-type compressor in which a displacement type compression element such as a rotary type or a scroll type is rotationally driven by a motor 22 .
  • the rotation speed of the motor 22 is controlled by the controller 6 via an inverter or the like.
  • the four-way switching valve 23 switches the direction of refrigerant flow in the refrigerant circuit 100 .
  • the four-way switching valve 23 has a first port P1, a second port P2, a third port P3, and a fourth port P4.
  • the four-way selector valve 23 is switched between a first state (shown by broken lines in FIG. 1) and a second state (shown by solid lines in FIG. 1) by the control unit 6 .
  • the first state the first port P1 and the fourth port P4 communicate with each other
  • the second port P2 and the third port P3 communicate with each other.
  • the first port P1 and the second port P2 communicate with each other
  • the third port P3 and the fourth port P4 communicate with each other.
  • the first port P1 is connected to the discharge side 21b of the compressor 21.
  • the second port P ⁇ b>2 is connected to the gas side 24 b of the outdoor heat exchanger 24 .
  • the third port P3 is connected to the suction side 21a of the compressor 21 .
  • a fourth port P4 is connected to the gas refrigerant communication pipe 5 .
  • the discharge pipe 21 c connects the discharge side 21 b of the compressor 21 and the first port P ⁇ b>1 of the four-way switching valve 23 .
  • the outdoor heat exchanger 24 exchanges heat between the refrigerant in the outdoor heat exchanger 24 and the outdoor air in the refrigerant circuit 100 .
  • a liquid side 24 a of the outdoor heat exchanger 24 is connected to an outdoor expansion valve 25 .
  • a gas side 24 b of the outdoor heat exchanger 24 is connected to the second port P 2 of the four-way switching valve 23 .
  • the outdoor expansion valve 25 is an expansion mechanism that reduces the pressure of the refrigerant in the refrigerant circuit 100 .
  • the outdoor expansion valve 25 is provided between the liquid refrigerant communication pipe 4 and the liquid side 24 a of the outdoor heat exchanger 24 .
  • the outdoor expansion valve 25 is an electric expansion valve whose degree of opening can be adjusted. The degree of opening of the outdoor expansion valve 25 is controlled by the controller 6 .
  • the outdoor fan 26 generates airflow and supplies outdoor air to the outdoor heat exchanger 24 .
  • the outdoor fan 26 causes the outdoor air to pass through the outdoor heat exchanger 24, thereby promoting heat exchange between the refrigerant in the outdoor heat exchanger 24 and the outdoor air.
  • the outdoor fan 26 is rotationally driven by an outdoor fan motor 26a.
  • the air volume of the outdoor fan 26 is controlled by the controller 6 changing the rotation speed of the outdoor fan motor 26a.
  • a discharge pipe temperature sensor 27 is provided on the discharge pipe 21c.
  • a discharge pipe temperature sensor 27 detects the temperature of the refrigerant discharged from the compressor 21 (discharge pipe temperature).
  • the outdoor heat exchanger temperature sensor 28 is provided in the outdoor heat exchanger 24 .
  • the outdoor heat exchanger temperature sensor 28 detects the temperature (condensation temperature) of the refrigerant in the refrigerant circuit 100 in the refrigeration cycle when the four-way switching valve 23 is in the second state.
  • the outdoor temperature sensor 29 is provided at the air inlet of the casing (not shown) of the outdoor unit 2 .
  • the outdoor temperature sensor 29 detects the temperature of the outdoor air flowing into the casing of the outdoor unit 2 (outdoor temperature).
  • the indoor unit 3 is installed in the room, which is the target space.
  • the indoor unit 3 mainly has a first indoor heat exchanger 311 , a second indoor heat exchanger 312 , an indoor expansion valve 32 and an indoor fan 33 .
  • the indoor unit 3 may further have at least one of an indoor temperature sensor 34 and an indoor heat exchanger temperature sensor 36, if necessary.
  • the first indoor heat exchanger 311 is the refrigerant in the first indoor heat exchanger 311 and the indoor air in the refrigerant circuit 100. heat exchange.
  • One end of the first indoor heat exchanger 311 is connected to the liquid refrigerant communication pipe 4 .
  • the other end of the first indoor heat exchanger 311 is connected to the indoor expansion valve 32 via the first indoor pipe 32a.
  • the second indoor heat exchanger 312 exchanges heat between the refrigerant in the second indoor heat exchanger 312 and the indoor air in the refrigerant circuit 100 .
  • One end of the second indoor heat exchanger 312 is connected to the indoor expansion valve 32 via the second indoor pipe 32b.
  • the other end of the second indoor heat exchanger 312 is connected to the gas refrigerant communication pipe 5 .
  • the first indoor heat exchanger 311 and the second indoor heat exchanger 312 are arranged in the air flow path generated by the indoor fan 33 .
  • the first indoor heat exchanger 311 is arranged downstream of the second indoor heat exchanger 312 in the direction of the airflow generated by the indoor fan 33 .
  • the indoor air is first heat-exchanged with the refrigerant in the second indoor heat exchanger 312 and then heat-exchanged with the refrigerant in the first indoor heat exchanger 311 by the airflow generated by the indoor fan 33. be.
  • the indoor expansion valve 32 is an expansion mechanism that reduces the pressure of the refrigerant in the refrigerant circuit 100 .
  • the indoor expansion valve 32 is provided between the first indoor heat exchanger 311 and the second indoor heat exchanger 312 in the refrigerant circuit 100 .
  • the indoor expansion valve 32 is an electric expansion valve whose opening degree can be adjusted. The degree of opening of the indoor expansion valve 32 is controlled by the controller 6 .
  • the indoor expansion valve 32 mainly has a valve chamber 321, a main valve body 322, a sub-valve body 323, and a driving portion 324.
  • the valve chamber 321 is a cylindrical member that accommodates the main valve body 322 inside.
  • the valve chamber 321 is formed with a main communication hole 321a, which is a fluid inlet, on a side surface, and a main valve port 321b, which is a fluid outlet, on one end.
  • the main valve body 322 is a cylindrical member that is housed inside the valve chamber 321 and changes the opening degree of the main valve port 321b.
  • the main valve body 322 is formed with a sub-valve port 322a, which is a fluid outlet, at one end.
  • a ring-shaped retainer 322b is attached to the other end of the main valve body 322 .
  • the main valve body 322 has a side surface formed with a sub-communication hole 322c serving as a fluid inlet.
  • the sub-valve element 323 is a needle-like member that changes the degree of opening of the sub-valve port 322a and lifts the main valve element 322. A part of the sub-valve element 323 is inserted inside the main valve element 322 through the opening of the retainer 322b.
  • the sub valve body 323 has a tapered portion 323 a formed at the end on the side to be inserted into the main valve body 322 , and the end opposite to the tapered portion 323 a is fixed to the driving portion 324 .
  • the sub-valve element 323 has a flange-like projection 323b formed on the side surface of the portion closer to the tapered portion 323a than the retainer 322b when inserted into the main valve element 322. As shown in FIG.
  • the drive unit 324 drives the main valve body 322 and the sub-valve body 323 in the axial direction.
  • the drive unit 324 is driven by an output pulse, which is a control signal output by the control unit 6 .
  • the degree of opening of the indoor expansion valve 32 is controlled by the controller 6 .
  • the unit operation amount for the indoor expansion valve 32 is 1 pulse, and the opening degree of the indoor expansion valve 32 increases as the drive pulse output by the control unit 6 increases.
  • the graph shown in FIG. 3 shows the flow rate characteristic, which is the relationship between the opening degree (driving pulse) of the indoor expansion valve 32 and the flow rate of the refrigerant passing through the indoor expansion valve 32 .
  • the flow rate characteristics of the indoor expansion valve 32 are divided into a small flow rate control region in which the change in flow rate per unit operation amount (unit driving pulse) is small, and a small flow rate control region in which the change in flow rate per unit operation amount is smaller than the small flow control region. It has two flow control regions consisting of a large high flow control region.
  • the refrigerant flow rate in the large flow rate control region is greater than the refrigerant flow rate in the small flow rate control region.
  • the degree of opening (%) of the indoor expansion valve 32 is the percentage of the drive pulse to the drive pulse output by the controller 6 to fully open the indoor expansion valve 32 .
  • the drive pulse for fully opening the indoor expansion valve 32 is 500 pulses.
  • the indoor fan 33 generates airflow and supplies indoor air to the first indoor heat exchanger 311 and the second indoor heat exchanger 312 .
  • the indoor fan 33 is rotationally driven by an indoor fan motor 33a.
  • the air volume of the indoor fan 33 is controlled by the controller 6 changing the rotation speed of the indoor fan motor 33a.
  • the indoor temperature sensor 34 is provided at the air intake port of the casing (not shown) of the indoor unit 3 .
  • the indoor temperature sensor 34 detects the temperature of indoor air flowing into the casing of the indoor unit 3 (indoor temperature).
  • the indoor heat exchanger temperature sensor 36 is provided in the second indoor pipe 32b that connects the indoor expansion valve 32 and the second indoor heat exchanger 312 together. Indoor heat exchanger temperature sensor 36 detects the temperature (evaporation temperature) of the refrigerant in refrigerant circuit 100 in the refrigeration cycle when four-way switching valve 23 is in the second state.
  • control unit 6 includes a compressor 21, a four-way switching valve 23, an outdoor expansion valve 25, an outdoor fan 26, an indoor expansion valve 32, an indoor The fan 33 and the remote controller 7 are connected so as to be able to transmit and receive control signals.
  • the control unit 6 controls the operation of the compressor 21, the four-way switching valve 23, the outdoor expansion valve 25, the outdoor fan 26, the indoor expansion valve 32, and the indoor fan 33, thereby controlling the refrigerant circuit 100. do.
  • the control unit 6 is typically a computer that mainly includes a control arithmetic device and a storage device.
  • the control computing device is a processor such as a CPU or GPU.
  • the control arithmetic unit reads out the control program stored in the storage device and performs operation control according to this control program.
  • the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the control program.
  • the control unit 6 is composed of an outdoor control unit provided inside the outdoor unit 2 and an indoor control unit provided inside the indoor unit 3, which are connected to each other by a communication line capable of transmitting and receiving control signals. good too.
  • the remote controller 7 accepts instructions from the user to execute any one of heating operation, cooling operation, and reheat dehumidification operation, indoor target temperature, indoor target humidity, etc., and controls the received data. It is transmitted to the control unit 6 as a signal. Upon receiving the control signal, the control unit 6 records it in the storage device.
  • the remote control 7 has a display section 71 .
  • the display unit 71 displays information such as the air conditioning operation mode being executed, the indoor target temperature, the indoor target humidity, the indoor temperature, and the indoor humidity.
  • the drive unit 324 moves the sub-valve body 323 away from the sub-valve port 322a along the axial direction. Until the drive pulse reaches 150 pulses, the main valve body 322 continues to be seated in the valve chamber 321, and only the sub-valve body 323 moves to change the opening degree of the sub-valve port 322a.
  • the sub-valve port 322a opens, the refrigerant flows through the main communication hole 321a of the valve chamber 321, the sub-communication hole 322c of the main valve element 322, the sub-valve port 322a of the main valve element 322, and the main valve port 321b of the valve chamber 321.
  • the sub-valve port 322a is fully opened.
  • the range in which the drive pulse changes from 0 pulses to 150 pulses and the opening degree of the sub-valve port 322a is changed by the sub-valve body 323 becomes the small flow rate control region.
  • the range (first range) in which the degree of opening of the indoor expansion valve 32 is 0% or more and 30% or less is the small flow control range.
  • the control unit 6 When the control unit 6 further increases the drive pulse from 150 pulses, the projection 323b of the sub-valve element 323 contacts the retainer 322b of the main valve element 322, and the sub-valve element 323 lifts the main valve element 322.
  • the drive unit 324 moves the sub valve body 323 away from the main valve port 321b along the axial direction, thereby moving the main valve body 322 away from the main valve port 321b.
  • the main valve element 322 moves to change the degree of opening of the main valve port 321b while the sub-valve port 322a is fully open.
  • the refrigerant flows directly from the main communication hole 321a, in addition to the flow paths formed by the main communication hole 321a, the sub-communication hole 322c, the sub-valve port 322a, and the main valve port 321b. It exits through a flow path that flows toward the main valve port 321b.
  • the control unit 6 can increase the drive pulse up to 500 pulses.
  • both the main valve port 321b and the sub-valve port 322a are fully opened.
  • the range in which the drive pulse changes from 150 pulses to 500 pulses and the opening degree of the main valve port 321b is changed by the main valve element 322 becomes the large flow rate control region. In other words, the range in which the degree of opening of the indoor expansion valve 32 is greater than 30% and less than or equal to 100% is the large flow rate control region.
  • the control unit 6 receives a control signal for starting the heating operation from the remote control 7, the air conditioner 1 starts the heating operation.
  • the controller 6 switches the four-way switching valve 23 to the first state (the state indicated by the dashed line in FIG. 1).
  • the control unit 6 sets the outdoor expansion valve 25 to the degree of opening corresponding to the target temperature received from the remote control 7, and sets the indoor expansion valve 32 to a fully open or nearly fully open degree to operate the compressor 21.
  • the outdoor heat exchanger 24 functions as a refrigerant evaporator (heat absorber), and the first indoor heat exchanger 311 and the second indoor heat exchanger 312 function as refrigerant condensers (radiators). .
  • the refrigerant circuit 100 functions as follows.
  • the high-pressure refrigerant discharged from the compressor 21 exchanges heat with the indoor air supplied by the indoor fan 33 in the second indoor heat exchanger 312 and the first indoor heat exchanger 311 and is condensed.
  • the air in the room is heated and discharged into the room as conditioned air.
  • the condensed refrigerant passes through the outdoor expansion valve 25 and is decompressed, it exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and evaporates.
  • the refrigerant that has passed through the outdoor heat exchanger 24 is sucked into the compressor 21 and compressed.
  • the refrigerant circuit 100 functions as follows.
  • the high-pressure refrigerant discharged from the compressor 21 exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and is condensed.
  • the indoor air is cooled and discharged indoors as conditioned air.
  • the refrigerant that has passed through the first indoor heat exchanger 311 and the second indoor heat exchanger 312 is sucked into the compressor 21 and compressed.
  • the reheat dehumidification operation is an air conditioning operation in which the second indoor heat exchanger 312 dehumidifies indoor air and the first indoor heat exchanger 311 heats the dehumidified air.
  • the control unit 6 switches the four-way switching valve 23 to the second state (the state indicated by the solid line in FIG. 1).
  • control unit 6 sets the outdoor expansion valve 25 to a full opening or an opening close to full opening, and sets the indoor expansion valve 32 to an opening corresponding to the dehumidification load based on the target humidity received from the remote controller 7. to drive.
  • the outdoor heat exchanger 24 and the first indoor heat exchanger 311 function as a refrigerant condenser (radiator), and the second indoor heat exchanger 312 functions as a refrigerant evaporator (heat absorber). .
  • the refrigerant circuit 100 functions as follows.
  • the high-pressure refrigerant discharged from the compressor 21 exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and is condensed.
  • the refrigerant condensed in the outdoor heat exchanger 24 is also condensed in the first indoor heat exchanger 311 by exchanging heat with indoor air supplied by the indoor fan 33 .
  • the refrigerant condensed in the first indoor heat exchanger 311 passes through the indoor expansion valve 32 and is decompressed, and then exchanges heat with the indoor air supplied by the indoor fan 33 in the second indoor heat exchanger 312. Evaporate.
  • the indoor air is dehumidified by the second indoor heat exchanger 312 and then heated by the first indoor heat exchanger 311, and the dehumidified air whose temperature drop is suppressed is discharged indoors as conditioned air. be done.
  • the refrigerant that has passed through the second indoor heat exchanger 312 is sucked into the compressor 21 and compressed.
  • control unit 6 controls the sub valve body 323 so that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet. controls the indoor expansion valve 32 in the small flow rate control region where the opening degree of the auxiliary valve port 322a is changed by .
  • the controller 6 adjusts the opening degree of the indoor expansion valve 32 by moving the sub-valve element 323 to change the opening degree of the sub-valve port 322a when the reheat dehumidification operation is executed.
  • the refrigerant discharged from the second indoor heat exchanger 312 is not superheated steam, and the refrigerant in the second indoor heat exchanger 312 is wet. It becomes steam.
  • the control unit 6 maintains the degree of opening of the main valve port 321b at a predetermined value or less during execution of the reheat dehumidification operation.
  • the predetermined value is 0% or substantially 0%, in which case the main valve port 321b is closed by the main valve body 322.
  • a slight gap is formed between the valve chamber 321 and the main valve body 322, so that a minute amount of water passing through the main valve port 321b A volume of refrigerant flow occurs.
  • the control unit 6 performs the reheat dehumidification operation by switching between the first mode and the second mode, which are operation modes with different dehumidification capabilities.
  • the dehumidification capacity of the first mode is lower than the dehumidification capacity of the second mode.
  • the opening degree of the indoor expansion valve 32 in the first mode (hereinafter referred to as the first opening degree) is smaller than the opening degree of the indoor expansion valve 32 in the second mode (hereinafter referred to as the second opening degree).
  • the first opening degree is smaller than the opening degree of the indoor expansion valve 32 in the second mode (hereinafter referred to as the second opening degree).
  • the second degree of opening is the degree of opening at which the flow rate of the refrigerant that has passed through the indoor expansion valve 32 and flowed into the second indoor heat exchanger 312 evaporates in the second indoor heat exchanger 312 as a whole. set.
  • the reheat dehumidifying operation when the indoor expansion valve 32 is at the second opening degree passes through the indoor expansion valve 32 to the second indoor heat exchanger 312 more than when the indoor expansion valve 32 is at the first opening degree. Since the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 is large, the area where the second indoor heat exchanger 312 functions as an evaporator is widened, exhibiting a high dehumidification capability.
  • the values of the first degree of opening and the second degree of opening are not limited to the values shown in FIG.
  • the control unit 6 starts the reheat dehumidification operation in the first mode or the second mode, and switches between the first mode and the second mode based on instructions from the user when the reheat dehumidification operation is executed. Specifically, when the control unit 6 receives a control signal for switching between the first mode and the second mode from the remote controller 7 during execution of the reheat dehumidification operation, the control unit 6 transmits the received control signal to the control unit 6. Send. Upon receiving the control signal for switching between the first mode and the second mode, the controller 6 switches between the first mode and the second mode based on the received control signal. When the controller 6 receives from the remote control 7 an instruction to perform an air conditioning operation (for example, a cooling operation) other than the reheat dehumidifying operation or an instruction to stop the operation of the air conditioner 1, it ends the reheat dehumidifying operation.
  • an air conditioning operation for example, a cooling operation
  • the controller 6 maintains the degree of opening of the indoor expansion valve 32 at a predetermined value or more in the small flow rate control region. As a result, a sufficient flow rate of the refrigerant flowing into the second indoor heat exchanger 312 is ensured. Thereby, the control unit 6 estimates that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 has become wet. For example, the controller 6 may maintain the degree of opening of the indoor expansion valve 32 at 30%, which is the second degree of opening.
  • step S11 the controller 6 acquires the discharge pipe temperature detected by the discharge pipe temperature sensor 27 (step S11).
  • step S12 the controller 6 determines whether or not the discharge pipe temperature is higher than a predetermined target discharge pipe temperature (step S12).
  • the control unit 6 estimates that the second indoor heat exchanger 312 is in a dry state (a state in which superheated steam is present in the second indoor heat exchanger 312) (step S13).
  • the controller 6 increases the degree of opening of the indoor expansion valve 32 in the small flow rate control region to increase the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 (step S14).
  • the controller 6 acquires the discharge pipe temperature again (step S11), and determines whether or not the discharge pipe temperature is higher than the target discharge pipe temperature (step S12). When the discharge pipe temperature becomes equal to or lower than the target discharge pipe temperature, the controller 6 estimates that the refrigerant at the outlet of the second indoor heat exchanger 312 is in a wet state (step S15). After that, the control unit 6 determines whether or not the reheat dehumidification operation has been completed in response to an instruction to execute the cooling operation or the like (step S16). If the reheat dehumidification operation has not ended, the process of controlling the degree of opening of the indoor expansion valve 32 is executed again. Therefore, during the execution of the reheat dehumidification operation, the process of controlling the degree of opening of the indoor expansion valve 32 based on the discharge pipe temperature is continuously executed.
  • the method by which the control unit 6 estimates whether or not the second indoor heat exchanger 312 is in a dry state based on the target discharge pipe temperature and the discharge pipe temperature is not particularly limited.
  • the control unit 6 may estimate that the second indoor heat exchanger 312 is in a dry state when the discharge pipe temperature is maintained higher than the target discharge pipe temperature for a predetermined time.
  • control unit 6 detects the discharge pipe temperature detected by the discharge pipe temperature sensor 27, the refrigerant condensation temperature detected by the outdoor heat exchanger temperature sensor 28, and the refrigerant evaporation detected by the indoor heat exchanger temperature sensor 36. temperature is obtained (step S21). Next, based on the condensation temperature and the evaporation temperature, the control unit 6 calculates a target discharge pipe temperature such that the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet (step S22). Next, the controller 6 determines whether or not the discharge pipe temperature is higher than the target discharge pipe temperature (step S23).
  • the controller 6 estimates that the second indoor heat exchanger 312 is in a dry state (step S24). In this case, the controller 6 increases the degree of opening of the indoor expansion valve 32 in the small flow rate control region to increase the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 (step S25). This reduces the discharge pipe temperature.
  • the control unit 6 acquires the discharge pipe temperature, the condensation temperature, and the evaporation temperature again (step S21), calculates the target discharge pipe temperature (step S22), and the discharge pipe temperature reaches the target discharge temperature. It is determined whether or not it is higher than the tube temperature (step S23).
  • the controller 6 estimates that the refrigerant at the outlet of the second indoor heat exchanger 312 is in a wet state (step S26). After that, the control unit 6 determines whether or not the reheat dehumidifying operation has been completed in response to an instruction to execute the cooling operation or the like (step S27). If the reheat dehumidification operation has not ended, the process of controlling the degree of opening of the indoor expansion valve 32 is executed again. Therefore, during execution of the reheat dehumidification operation, the process of controlling the degree of opening of the indoor expansion valve 32 based on the condensation temperature and the evaporation temperature is continuously executed.
  • the control unit 6 calculates the target discharge pipe temperature based on the condensation temperature and the evaporation temperature, and whether the second indoor heat exchanger 312 is dry based on the target discharge pipe temperature and the discharge pipe temperature.
  • a method for estimating whether or not is not particularly limited.
  • the control unit 6 may calculate the target discharge pipe temperature by substituting the condensing temperature and the evaporating temperature into a predetermined formula, or the relationship between the condensing temperature, the evaporating temperature, and the target discharge pipe temperature may be recorded.
  • the table may be stored and the target discharge pipe temperature may be acquired using the table.
  • the control unit 6 may estimate that the second indoor heat exchanger 312 is in a dry state when the discharge pipe temperature is maintained higher than the target discharge pipe temperature for a predetermined time.
  • the control unit 6 controls the indoor expansion valve 32 so that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet when the reheat dehumidification operation is executed, and the sub valve The opening is adjusted by the body 323 .
  • the reheat dehumidification operation is executed, if the degree of subcooling of the refrigerant at the outlet of the first indoor heat exchanger 311 becomes excessive and the condensation temperature becomes low, the air dehumidified by the second indoor heat exchanger 312 is transferred to the first indoor heat. The reheating effect heated by the exchanger 311 may be reduced.
  • the air conditioner 1 adjusts the opening degree of the indoor expansion valve 32 according to the state of the refrigerant in the second indoor heat exchanger 312. Controlling the degree of subcooling of the refrigerant prevents the condensing temperature from dropping excessively. Thereby, the air conditioner 1 can improve the reheating effect of the air in the first indoor heat exchanger 311 .
  • the control unit 6 moves the sub-valve element 323 in the small flow rate control region where the change in the flow rate with respect to the unit operation amount of the indoor expansion valve 32 is small during execution of the reheat dehumidification operation, thereby expanding the room.
  • the degree of opening of the valve 32 is adjusted.
  • the control unit 6 can finely control the degree of subcooling of the refrigerant at the outlet of the first indoor heat exchanger 311 by finely adjusting the flow rate of the refrigerant flowing into the second indoor heat exchanger 312. .
  • the controller 6 can finely control the air reheating effect in the first indoor heat exchanger 311 .
  • the air conditioner 1 can reheat the air in the first indoor heat exchanger 311 more effectively than when the opening degree is controlled over the entire flow rate characteristic of the indoor expansion valve 32. can be improved appropriately.
  • the controller 6 may control the degree of opening of the indoor expansion valve 32 based on the discharge pipe temperature detected by the discharge pipe temperature sensor 27 .
  • the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on a comparison between a predetermined target discharge pipe temperature and the discharge pipe temperature, The degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at is wet.
  • the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
  • the control unit 6 controls the discharge pipe temperature detected by the discharge pipe temperature sensor 27, the condensation temperature of the refrigerant detected by the outdoor heat exchanger temperature sensor 28, and the indoor heat exchanger temperature sensor 36.
  • the degree of opening of the indoor expansion valve 32 may be controlled based on the evaporation temperature of the refrigerant.
  • the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on a comparison between the target discharge pipe temperature calculated from the condensation temperature and the evaporation temperature, and the discharge pipe temperature.
  • the degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at the outlet of the heat exchanger 312 becomes wet.
  • the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
  • the controller 6 can easily switch between the reheat dehumidification operation and the cooling operation by appropriately adjusting the opening degrees of the outdoor expansion valve 25 and the indoor expansion valve 32. Specifically, the control unit 6 sets the outdoor expansion valve 25 to a full opening or an opening close to full opening, and sets the indoor expansion valve 32 to an opening in the small flow rate control region, thereby executing the reheat dehumidification operation. . In addition, the control unit 6 can perform the cooling operation by setting the outdoor expansion valve 25 to a predetermined opening degree and setting the indoor expansion valve 32 to a fully opened or nearly fully opened opening degree.
  • the degree of wetness of the refrigerant is the weight ratio of the liquid refrigerant in the wet vapor of the refrigerant.
  • the control unit 6 adjusts the opening degree of the indoor expansion valve 32 by moving the main valve element 322 and the sub-valve element 323 in the entire flow rate control region (the small flow rate control region and the large flow rate control region) during execution of the cooling operation. I do.
  • the air conditioner 1 can appropriately switch between the cooling operation and the reheat dehumidification operation.
  • the control unit 6 controls the amount of refrigerant at the outlet of the second indoor heat exchanger 312 based on the indoor temperature detected by the indoor temperature sensor 34 and the outdoor temperature detected by the outdoor temperature sensor 29.
  • the opening degree of the indoor expansion valve 32 may be adjusted in the small flow rate control region so that the state becomes wet.
  • the air conditioner 1 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on the indoor temperature and the outdoor temperature, The degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at the outlet becomes wet.
  • the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
  • the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on the evaporator outlet temperature or the compressor suction temperature instead of the target discharge pipe temperature, The degree of opening of the indoor expansion valve 32 may be controlled so that the refrigerant at the outlet of the second indoor heat exchanger 312 is wet.
  • the evaporator outlet temperature is, for example, the temperature detected by a temperature sensor provided in the refrigerant pipe near the outlet of the second indoor heat exchanger 312 .
  • the compressor suction temperature is, for example, the temperature detected by a temperature sensor provided in the refrigerant pipe near the suction side of the compressor 21 .
  • the control unit 6 estimates that the second indoor heat exchanger 312 is in a dry state, and The degree of opening of the expansion valve 32 is increased to increase the flow rate of refrigerant flowing into the second indoor heat exchanger 312 .
  • the control unit 6 estimates that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 has become wet, and the indoor expansion valve Stop changing the opening of 32.
  • control unit 6 calculates the target discharge pipe temperature based on the evaporator outlet temperature and the compressor suction temperature, and controls the degree of opening of the indoor expansion valve 32 based on the target discharge pipe temperature as in the embodiment.
  • the control unit 6 may adjust the degree of opening of the outdoor expansion valve 25 based on the discharge pipe temperature during execution of the cooling operation or the heating operation.
  • the remote controller 7 controls the type of operation being executed by the control unit 6 (cooling operation, heating operation, and reheat dehumidification operation), and the operation mode of the reheat dehumidification operation (first mode and second mode), It may be displayed on the display unit 71 .
  • control unit 6 may automatically switch between the reheat dehumidifying operation and the cooling operation based on the indoor humidity.
  • the controller 6 acquires the indoor humidity from a humidity sensor that detects the humidity of the air flowing into the casing of the indoor unit 3 .
  • the control unit 6 performs the reheat dehumidification operation by switching between the first mode and the second mode, which are operation modes with different dehumidification capabilities.
  • the number of operation modes that the controller 6 can switch to during the reheat dehumidification operation may be three or more. In this case, the degree of opening of the indoor expansion valve 32 in each operation mode is set differently.
  • the controller 6 starts the reheat dehumidifying operation in the first mode or the second mode.
  • the air conditioner 1 may determine which of the first mode and the second mode should be executed when the reheat dehumidifying operation is started.
  • the control unit 6 records information about which of the first mode and the second mode was being executed in the storage device, and then the reheat dehumidification operation is completed.
  • the information may be referenced to determine which of the first mode and the second mode is to be executed when the reheat dehumidifying operation is started.
  • control unit 6 records information about which of the first mode and the second mode is generally executed for each time period in the storage device, and stores the information when starting the reheat dehumidification operation. By referring to it, it may be determined which of the first mode and the second mode is to be executed at the start of the reheat dehumidifying operation.
  • Air conditioner 2 Outdoor unit (first unit) 3: Indoor unit (second unit) 6: control unit 21: compressor 21c: discharge pipe 24: outdoor heat exchanger (first heat exchanger) 27: discharge pipe temperature sensor (first temperature sensor) 28: outdoor heat exchanger temperature sensor (second temperature sensor) 29: outdoor temperature sensor (fifth temperature sensor) 311: First indoor heat exchanger (second heat exchanger) 312: Second indoor heat exchanger (third heat exchanger) 32: Indoor expansion valve (expansion valve) 321: Valve chamber (first valve seat) 321b: Main valve port (first valve port) 322: Main valve body (first member) 322a: Sub-valve port (second valve port) 323: Sub-valve body (second member) 34: indoor temperature sensor (fourth temperature sensor) 36: Indoor heat exchanger temperature sensor (third temperature sensor) 100: Refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device that enables suitable control of the degree of opening of an electronic expansion valve in an indoor unit during a reheating dehumidification operation. An air conditioning device (1) comprises a refrigerant circuit (100) and a control unit (6). In the refrigerant circuit (100), there are a compressor (21), an outdoor heat exchanger (24), a first indoor heat exchanger (311), an indoor expansion valve (32), and a second indoor heat exchanger (312), which are connected in a ring. Controlling the refrigerant circuit (100), the control unit (6) executes a first operation for causing the outdoor heat exchanger (24) and the first indoor heat exchanger (311) to function as a condenser and causing the second indoor heat exchanger (312) to function as an evaporator. The indoor expansion valve (32) has a main valve body (322) and a sub valve body (323) for adjusting the degree of opening of the indoor expansion valve (32). The main valve body (322) has a greater flow rate control range than the flow rate control range of the sub valve body (323). When executing the first operation, the control unit (6) controls the indoor expansion valve (32) to adjust the degree of opening with the sub valve body (323) so that the refrigerant at the outlet of the second indoor heat exchanger (312) attains a wet state.

Description

空気調和装置air conditioner
 空気調和装置に関する。 "Regarding air conditioners."
 室内ユニット内に設けられる2つの熱交換器の一方を凝縮器として機能させ、他方を蒸発器として機能させることで、除湿した空気を加熱する再熱除湿運転を実行する空気調和装置が知られている。 An air conditioner is known that performs a reheat dehumidification operation in which dehumidified air is heated by causing one of two heat exchangers provided in an indoor unit to function as a condenser and the other to function as an evaporator. there is
 特許文献1(特開2020-34140号公報)には、室内ユニット内の2つの熱交換器の間に設けられる電子膨張弁の開度を変更することで、再熱除湿運転を実行可能な空気調和装置が開示されている。 In Patent Document 1 (Japanese Patent Application Laid-Open No. 2020-34140), by changing the opening degree of an electronic expansion valve provided between two heat exchangers in an indoor unit, air that can perform reheat dehumidification operation A harmonizing device is disclosed.
 特許文献1(特開2020-34140号公報)には、再熱除湿運転の実行時における、室内ユニット内の電子膨張弁の開度の好適な制御方法が開示されていない。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2020-34140) does not disclose a suitable method for controlling the degree of opening of the electronic expansion valve in the indoor unit during execution of the reheat dehumidifying operation.
 第1観点の空気調和装置は、第1ユニットと、第2ユニットと、冷媒回路と、制御部とを備える。第1ユニットは、圧縮機及び第1熱交換器を有する。第2ユニットは、第2熱交換器、膨張弁及び第3熱交換器を有する。冷媒回路では、圧縮機、第1熱交換器、第2熱交換器、膨張弁及び第3熱交換器が環状に接続され、冷媒が循環する。制御部は、冷媒回路を制御して、第1熱交換器及び第2熱交換器を凝縮器として機能させ、かつ、第3熱交換器を蒸発器として機能させる第1運転を実行する。膨張弁は、膨張弁の開度調整を行う第1部材及び第2部材を有する。第2部材は、膨張弁を通過する冷媒の流量が第1範囲にある時の開度調整を行う。第1部材は、膨張弁を通過する冷媒の流量が第1範囲よりも大きい時の開度調整を行う。制御部は、第1運転の実行時において、第3熱交換器の出口における冷媒の状態が湿り状態になるように、膨張弁を制御して第2部材による開度調整を行う。 The air conditioner of the first aspect includes a first unit, a second unit, a refrigerant circuit, and a controller. The first unit has a compressor and a first heat exchanger. The second unit has a second heat exchanger, an expansion valve and a third heat exchanger. In the refrigerant circuit, the compressor, the first heat exchanger, the second heat exchanger, the expansion valve and the third heat exchanger are connected in a ring, and the refrigerant circulates. The control unit controls the refrigerant circuit to perform a first operation in which the first heat exchanger and the second heat exchanger function as condensers and the third heat exchanger functions as an evaporator. The expansion valve has a first member and a second member that adjust the degree of opening of the expansion valve. The second member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is within the first range. The first member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is greater than the first range. The control unit controls the expansion valve to adjust the degree of opening by the second member so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet during execution of the first operation.
 この空気調和装置では、第3熱交換器で除湿した空気を第2熱交換器で加熱する再熱除湿運転の実行時に、第3熱交換器内の冷媒が湿り状態になるように、小流量制御域において膨張弁の開度が制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、第2熱交換器における空気の再熱効果を向上させることができる。 In this air conditioner, when the reheating dehumidification operation is performed in which the air dehumidified by the third heat exchanger is heated by the second heat exchanger, the refrigerant in the third heat exchanger is in a wet state. The degree of opening of the expansion valve is controlled in the control region. As a result, this air conditioner can improve the effect of reheating air in the second heat exchanger when the reheat dehumidification operation is performed.
 第2観点の空気調和装置は、第1観点の空気調和装置であって、吐出管と、第1温度センサとをさらに備える。吐出管は、圧縮機の吐出側に接続され、圧縮機によって圧縮された冷媒が流れる。第1温度センサは、吐出管の温度を検出する。制御部は、第1温度センサが検出した温度に基づいて、第1運転の実行時において、第3熱交換器の出口における冷媒の状態が湿り状態になるように、第2部材による開度調整を行う。 The air conditioner of the second aspect is the air conditioner of the first aspect, further comprising a discharge pipe and a first temperature sensor. The discharge pipe is connected to the discharge side of the compressor, through which refrigerant compressed by the compressor flows. A first temperature sensor detects the temperature of the discharge pipe. The controller adjusts the degree of opening by the second member based on the temperature detected by the first temperature sensor so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet during execution of the first operation. I do.
 この空気調和装置では、再熱除湿運転の実行時に、圧縮機の吐出管の温度に基づいて第3熱交換器内の冷媒の湿り状態を推定して、膨張弁の開度が制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、第2熱交換器における空気の再熱効果を向上させることができる。 In this air conditioner, when the reheat dehumidification operation is executed, the wet state of the refrigerant in the third heat exchanger is estimated based on the temperature of the discharge pipe of the compressor, and the degree of opening of the expansion valve is controlled. As a result, this air conditioner can improve the effect of reheating air in the second heat exchanger when the reheat dehumidification operation is performed.
 第3観点の空気調和装置は、第2観点の空気調和装置であって、第2温度センサと、第3温度センサと、をさらに備える。第2温度センサは、第1熱交換器の温度を検出する。第3温度センサは、膨張弁と第3熱交換器とを接続する配管の温度を検出する。制御部は、第2温度センサ及び第3温度センサが検出した温度に基づいて、吐出管の目標温度を算出する。制御部は、算出した目標温度、及び、第1温度センサが検出した温度に基づいて、第1運転の実行時において、第3熱交換器の出口における冷媒の状態が湿り状態になるように、第2部材による開度調整を行う。 The air conditioner of the third aspect is the air conditioner of the second aspect, further comprising a second temperature sensor and a third temperature sensor. A second temperature sensor detects the temperature of the first heat exchanger. A third temperature sensor detects the temperature of a pipe connecting the expansion valve and the third heat exchanger. The controller calculates the target temperature of the discharge pipe based on the temperatures detected by the second temperature sensor and the third temperature sensor. Based on the calculated target temperature and the temperature detected by the first temperature sensor, the control unit controls the state of the refrigerant at the outlet of the third heat exchanger to be wet during execution of the first operation. The degree of opening is adjusted by the second member.
 この空気調和装置では、再熱除湿運転の実行時に、冷媒の蒸発温度及び凝縮温度に基づいて算出された吐出管の目標温度と、吐出管の実際の温度とに基づいて第3熱交換器内の冷媒の湿り状態を推定して、膨張弁の開度が制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、第2熱交換器における空気の再熱効果を向上させることができる。 In this air conditioner, when the reheat dehumidification operation is executed, the target temperature of the discharge pipe calculated based on the evaporation temperature and condensation temperature of the refrigerant and the actual temperature of the discharge pipe are used to determine the temperature inside the third heat exchanger. The degree of opening of the expansion valve is controlled by estimating the wetness state of the refrigerant. As a result, this air conditioner can improve the effect of reheating air in the second heat exchanger when the reheat dehumidification operation is performed.
 第4観点の空気調和装置は、第1乃至第3観点のいずれか1つの空気調和装置であって、膨張弁は、冷媒が通過する第1弁ポートを形成する第1弁座をさらに有する。第1部材は、冷媒が通過する第2弁ポートを形成する。制御部は、第1部材の位置を制御して第1弁ポートの開度を変更することで、第1部材による開度調整を行う。制御部は、第2部材の位置を制御して第2弁ポートの開度を変更することで、第2部材による開度調整を行う。 The air conditioner of the fourth aspect is the air conditioner of any one of the first to third aspects, and the expansion valve further has a first valve seat forming a first valve port through which the refrigerant passes. The first member forms a second valve port through which refrigerant passes. The controller controls the position of the first member to change the opening of the first valve port, thereby adjusting the opening by the first member. The controller controls the position of the second member to change the degree of opening of the second valve port, thereby adjusting the degree of opening by the second member.
 この空気調和装置では、二段階膨張弁を用いることで、小流量制御域において膨張弁の開度が細かく制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、再熱効果を細かく調整することができる。 By using a two-stage expansion valve in this air conditioner, the degree of opening of the expansion valve is finely controlled in the small flow rate control range. As a result, the air conditioner can finely adjust the reheating effect when executing the reheat dehumidifying operation.
 第5観点の空気調和装置は、第4観点の空気調和装置であって、制御部は、第1運転の実行時において、第1弁ポートの開度が所定値以下の状態で、第2部材による開度調整を行う。 An air conditioner according to a fifth aspect is the air conditioner according to the fourth aspect, wherein the control unit controls the opening of the first valve port to be equal to or less than a predetermined value when the first operation is executed, and the second member Adjust the opening by
 この空気調和装置では、二段階膨張弁を用いることで、小流量制御域において膨張弁の開度が細かく制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、再熱効果を細かく調整することができる。 By using a two-stage expansion valve in this air conditioner, the degree of opening of the expansion valve is finely controlled in the small flow rate control range. As a result, the air conditioner can finely adjust the reheating effect when executing the reheat dehumidifying operation.
 第6観点の空気調和装置は、第1乃至第5観点のいずれか1つの空気調和装置であって、制御部は、冷媒回路を制御して、第1熱交換器を凝縮器として機能させ、かつ、第2熱交換器及び第3熱交換器を蒸発器として機能させる第2運転をさらに実行する。制御部は、第2運転の実行時において、膨張弁を通過する冷媒が減圧しないように、膨張弁を制御して第1部材及び第2部材による開度調整を行う。 An air conditioner according to a sixth aspect is the air conditioner according to any one of the first to fifth aspects, wherein the control unit controls the refrigerant circuit to cause the first heat exchanger to function as a condenser, In addition, a second operation is further performed in which the second heat exchanger and the third heat exchanger function as evaporators. The control unit controls the expansion valve to adjust the degree of opening by the first member and the second member so that the refrigerant passing through the expansion valve does not decompress during execution of the second operation.
 この空気調和装置では、膨張弁の開度調整を適切に行うことで、第2熱交換器及び第3熱交換器を蒸発器として機能させる冷房運転と、再熱除湿運転との間を切り替えることができる。 In this air conditioner, by appropriately adjusting the degree of opening of the expansion valve, it is possible to switch between the cooling operation in which the second heat exchanger and the third heat exchanger function as evaporators and the reheat dehumidifying operation. can be done.
 第7観点の空気調和装置は、第6観点の空気調和装置であって、制御部は、第2運転の実行時において圧縮機に吸入される冷媒の湿り度合いが、第1運転の実行時において圧縮機に吸入される冷媒の湿り度合いよりも大きくなるように、第1部材及び第2部材による開度調整を行う。 An air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the control unit adjusts the wetness degree of refrigerant sucked into the compressor during execution of the second operation to The degree of opening is adjusted by the first member and the second member so that the degree of wetness is greater than the degree of wetness of the refrigerant sucked into the compressor.
 この空気調和装置では、膨張弁の開度調整を適切に行うことで、冷房運転と再熱除湿運転との間を切り替えることができる。 With this air conditioner, it is possible to switch between cooling operation and reheat dehumidification operation by appropriately adjusting the opening of the expansion valve.
 第8観点の空気調和装置は、第1乃至第7観点のいずれか1つの空気調和装置であって、第4温度センサと、第5温度センサとをさらに備える。第4温度センサは、第2ユニットが設置される空間の温度を検出する。第5温度センサは、第1ユニットが設置される空間の温度を検出する。制御部は、第1運転の開始時において、第4温度センサ及び第5温度センサが検出した温度に基づいて、第3熱交換器の出口における冷媒の状態が湿り状態になるように、第2部材による開度調整を行う。 The air conditioner of the eighth aspect is the air conditioner of any one of the first to seventh aspects, further comprising a fourth temperature sensor and a fifth temperature sensor. A fourth temperature sensor detects the temperature of the space in which the second unit is installed. A fifth temperature sensor detects the temperature of the space in which the first unit is installed. At the start of the first operation, the control unit adjusts the second heat exchanger so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet based on the temperatures detected by the fourth temperature sensor and the fifth temperature sensor. The opening is adjusted by the member.
 この空気調和装置では、再熱除湿運転の開始時に、室温及び外気温に基づいて第3熱交換器内の冷媒の湿り状態を推定することで、膨張弁の開度が制御される。これにより、この空気調和装置は、再熱除湿運転の実行時に、適切な再熱効果を実現することができる。 In this air conditioner, when the reheat dehumidifying operation is started, the degree of opening of the expansion valve is controlled by estimating the wet state of the refrigerant in the third heat exchanger based on the room temperature and the outside air temperature. As a result, the air conditioner can realize an appropriate reheat effect when executing the reheat dehumidifying operation.
本開示の一実施形態に係る空気調和装置1の概略構成図である。1 is a schematic configuration diagram of an air conditioner 1 according to an embodiment of the present disclosure; FIG. 室内膨張弁32の概略断面図である。3 is a schematic cross-sectional view of an indoor expansion valve 32; FIG. 室内膨張弁32の流量特性を示すグラフである。4 is a graph showing flow characteristics of an indoor expansion valve 32; 制御部6の制御ブロック図である。3 is a control block diagram of a control unit 6; FIG. 再熱除湿運転時に制御部6が実行する制御の一例のフローチャートである。6 is a flowchart of an example of control executed by the control unit 6 during reheat dehumidification operation. 再熱除湿運転時に制御部6が実行する制御の一例のフローチャートである。6 is a flowchart of an example of control executed by the control unit 6 during reheat dehumidification operation.
 本開示の一実施形態に係る空気調和装置1について、図面を参照しながら説明する。 An air conditioner 1 according to an embodiment of the present disclosure will be described with reference to the drawings.
 (1)全体構成
 空気調和装置1は、蒸気圧縮式の冷媒サイクルによって、対象空間である建物等の室内の空調を行う。図1に示されるように、空気調和装置1は、主として、室外ユニット2と、室内ユニット3と、液冷媒連絡管4と、ガス冷媒連絡管5と、制御部6と、リモコン7とを有する。液冷媒連絡管4及びガス冷媒連絡管5は、室外ユニット2と室内ユニット3とを接続する。室外ユニット2と、室内ユニット3と、液冷媒連絡管4と、ガス冷媒連絡管5とは、冷媒配管により環状に接続されて、冷媒回路100を構成する。冷媒回路100は、内部に冷媒が封入されている。制御部6は、冷媒回路100を制御して冷凍サイクルを実現することにより、暖房運転、冷房運転、及び、再熱除湿運転等の空調運転を実行する。
(1) Overall Configuration The air conditioner 1 air-conditions a room such as a building, which is a target space, using a vapor compression refrigerant cycle. As shown in FIG. 1, the air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, a liquid refrigerant communication pipe 4, a gas refrigerant communication pipe 5, a controller 6, and a remote controller 7. . The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 . The outdoor unit 2 , the indoor unit 3 , the liquid refrigerant communication pipe 4 , and the gas refrigerant communication pipe 5 are annularly connected by refrigerant pipes to form a refrigerant circuit 100 . Refrigerant circuit 100 has a refrigerant sealed therein. The control unit 6 controls the refrigerant circuit 100 to realize a refrigeration cycle, thereby performing air conditioning operations such as heating operation, cooling operation, and reheat dehumidification operation.
 (2)詳細構成
 (2-1)室外ユニット
 室外ユニット2は、建物の屋上、及び、建物の外壁面近傍等の室外に設置される。室外ユニット2は、主として、圧縮機21と、四路切換弁23と、室外熱交換器24と、室外膨張弁25と、室外ファン26とを有する。図1に示されるように、室外ユニット2は、必要に応じて、吐出管温度センサ27、室外熱交換器温度センサ28、及び、室外温度センサ29の少なくとも1つをさらに有してもよい。
(2) Detailed Configuration (2-1) Outdoor Unit The outdoor unit 2 is installed outdoors such as on the roof of the building or near the outer wall surface of the building. The outdoor unit 2 mainly has a compressor 21 , a four-way switching valve 23 , an outdoor heat exchanger 24 , an outdoor expansion valve 25 and an outdoor fan 26 . As shown in FIG. 1, the outdoor unit 2 may further have at least one of a discharge pipe temperature sensor 27, an outdoor heat exchanger temperature sensor 28, and an outdoor temperature sensor 29, if necessary.
 (2-1-1)圧縮機
 圧縮機21は、冷媒回路100において、低圧の冷媒を吸入側21aから吸入して、高圧になるまで圧縮した後、吐出側21bから吐出する。圧縮機21の吐出側21bには、圧縮機21によって圧縮された冷媒が流れる吐出管21cが接続されている。圧縮機21は、ロータリ式やスクロール式等の容積式の圧縮要素がモータ22によって回転駆動される、密閉式構造の圧縮機である。モータ22の回転数は、インバータ等を介して、制御部6により制御される。
(2-1-1) Compressor In the refrigerant circuit 100, the compressor 21 sucks low-pressure refrigerant from the suction side 21a, compresses it to high pressure, and then discharges it from the discharge side 21b. A discharge pipe 21c through which the refrigerant compressed by the compressor 21 flows is connected to the discharge side 21b of the compressor 21 . The compressor 21 is a closed-type compressor in which a displacement type compression element such as a rotary type or a scroll type is rotationally driven by a motor 22 . The rotation speed of the motor 22 is controlled by the controller 6 via an inverter or the like.
 (2-1-2)四路切換弁
 四路切換弁23は、冷媒回路100において、冷媒の流れの方向を切り換える。四路切換弁23は、第1ポートP1と、第2ポートP2と、第3ポートP3と、第4ポートP4とを有する。四路切換弁23は、制御部6により、第1状態(図1の破線で示される状態)と第2状態(図1の実線で示される状態)との間で切り換えられる。第1状態では、第1ポートP1と第4ポートP4とが互いに連通し、かつ、第2ポートP2と第3ポートP3とが互いに連通する。第2状態では、第1ポートP1と第2ポートP2とが互いに連通し、かつ、第3ポートP3と第4ポートP4とが互いに連通する。
(2-1-2) Four-Way Switching Valve The four-way switching valve 23 switches the direction of refrigerant flow in the refrigerant circuit 100 . The four-way switching valve 23 has a first port P1, a second port P2, a third port P3, and a fourth port P4. The four-way selector valve 23 is switched between a first state (shown by broken lines in FIG. 1) and a second state (shown by solid lines in FIG. 1) by the control unit 6 . In the first state, the first port P1 and the fourth port P4 communicate with each other, and the second port P2 and the third port P3 communicate with each other. In the second state, the first port P1 and the second port P2 communicate with each other, and the third port P3 and the fourth port P4 communicate with each other.
 第1ポートP1は、圧縮機21の吐出側21bに接続される。第2ポートP2は、室外熱交換器24のガス側24bに接続される。第3ポートP3は、圧縮機21の吸入側21aに接続される。第4ポートP4は、ガス冷媒連絡管5に接続される。吐出管21cは、圧縮機21の吐出側21bと、四路切換弁23の第1ポートP1とを接続する。 The first port P1 is connected to the discharge side 21b of the compressor 21. The second port P<b>2 is connected to the gas side 24 b of the outdoor heat exchanger 24 . The third port P3 is connected to the suction side 21a of the compressor 21 . A fourth port P4 is connected to the gas refrigerant communication pipe 5 . The discharge pipe 21 c connects the discharge side 21 b of the compressor 21 and the first port P<b>1 of the four-way switching valve 23 .
 (2-1-3)室外熱交換器
 室外熱交換器24は、冷媒回路100において、室外熱交換器24内の冷媒と、室外の空気との熱交換を行う。室外熱交換器24の液側24aは、室外膨張弁25に接続されている。室外熱交換器24のガス側24bは、四路切換弁23の第2ポートP2に接続されている。
(2-1-3) Outdoor Heat Exchanger The outdoor heat exchanger 24 exchanges heat between the refrigerant in the outdoor heat exchanger 24 and the outdoor air in the refrigerant circuit 100 . A liquid side 24 a of the outdoor heat exchanger 24 is connected to an outdoor expansion valve 25 . A gas side 24 b of the outdoor heat exchanger 24 is connected to the second port P 2 of the four-way switching valve 23 .
 (2-1-4)室外膨張弁
 室外膨張弁25は、冷媒回路100において、冷媒を減圧する膨張機構である。室外膨張弁25は、液冷媒連絡管4と、室外熱交換器24の液側24aとの間に設けられる。室外膨張弁25は、開度調整が可能な電動膨張弁である。室外膨張弁25の開度は、制御部6により制御される。
(2-1-4) Outdoor Expansion Valve The outdoor expansion valve 25 is an expansion mechanism that reduces the pressure of the refrigerant in the refrigerant circuit 100 . The outdoor expansion valve 25 is provided between the liquid refrigerant communication pipe 4 and the liquid side 24 a of the outdoor heat exchanger 24 . The outdoor expansion valve 25 is an electric expansion valve whose degree of opening can be adjusted. The degree of opening of the outdoor expansion valve 25 is controlled by the controller 6 .
 (2-1-5)室外ファン
 室外ファン26は、気流を生成し、室外の空気を室外熱交換器24に供給する。室外ファン26によって室外の空気が室外熱交換器24を通過することにより、室外熱交換器24内の冷媒と、室外の空気との熱交換が促される。室外ファン26は、室外ファンモータ26aによって回転駆動される。室外ファン26の風量は、制御部6が室外ファンモータ26aの回転数を変えることにより制御される。
(2-1-5) Outdoor Fan The outdoor fan 26 generates airflow and supplies outdoor air to the outdoor heat exchanger 24 . The outdoor fan 26 causes the outdoor air to pass through the outdoor heat exchanger 24, thereby promoting heat exchange between the refrigerant in the outdoor heat exchanger 24 and the outdoor air. The outdoor fan 26 is rotationally driven by an outdoor fan motor 26a. The air volume of the outdoor fan 26 is controlled by the controller 6 changing the rotation speed of the outdoor fan motor 26a.
 (2-1-6)吐出管温度センサ
 吐出管温度センサ27は、吐出管21cに設けられる。吐出管温度センサ27は、圧縮機21から吐出される冷媒の温度(吐出管温度)を検出する。
(2-1-6) Discharge Pipe Temperature Sensor A discharge pipe temperature sensor 27 is provided on the discharge pipe 21c. A discharge pipe temperature sensor 27 detects the temperature of the refrigerant discharged from the compressor 21 (discharge pipe temperature).
 (2-1-7)室外熱交換器温度センサ
 室外熱交換器温度センサ28は、室外熱交換器24に設けられる。室外熱交換器温度センサ28は、四路切換弁23が第2状態である時の冷凍サイクルにおける、冷媒回路100内の冷媒の温度(凝縮温度)を検出する。
(2-1-7) Outdoor Heat Exchanger Temperature Sensor The outdoor heat exchanger temperature sensor 28 is provided in the outdoor heat exchanger 24 . The outdoor heat exchanger temperature sensor 28 detects the temperature (condensation temperature) of the refrigerant in the refrigerant circuit 100 in the refrigeration cycle when the four-way switching valve 23 is in the second state.
 (2-1-8)室外温度センサ
 室外温度センサ29は、室外ユニット2のケーシング(図示省略)の空気の吸入口に設けられる。室外温度センサ29は、室外ユニット2のケーシングに流入する室外の空気の温度(室外温度)を検出する。
(2-1-8) Outdoor Temperature Sensor The outdoor temperature sensor 29 is provided at the air inlet of the casing (not shown) of the outdoor unit 2 . The outdoor temperature sensor 29 detects the temperature of the outdoor air flowing into the casing of the outdoor unit 2 (outdoor temperature).
 (2-2)室内ユニット
 室内ユニット3は、対象空間である室内に設置される。室内ユニット3は、主として、第1室内熱交換器311と、第2室内熱交換器312と、室内膨張弁32と、室内ファン33とを有する。図1に示されるように、室内ユニット3は、必要に応じて、室内温度センサ34、及び、室内熱交換器温度センサ36の少なくとも1つをさらに有してもよい。
(2-2) Indoor Unit The indoor unit 3 is installed in the room, which is the target space. The indoor unit 3 mainly has a first indoor heat exchanger 311 , a second indoor heat exchanger 312 , an indoor expansion valve 32 and an indoor fan 33 . As shown in FIG. 1, the indoor unit 3 may further have at least one of an indoor temperature sensor 34 and an indoor heat exchanger temperature sensor 36, if necessary.
 (2-2-1)第1室内熱交換器及び第2室内熱交換器
 第1室内熱交換器311は、冷媒回路100において、第1室内熱交換器311内の冷媒と、室内の空気との熱交換を行う。第1室内熱交換器311の一端は、液冷媒連絡管4に接続されている。第1室内熱交換器311の他端は、第1室内配管32aを介して室内膨張弁32に接続されている。
(2-2-1) First indoor heat exchanger and second indoor heat exchanger The first indoor heat exchanger 311 is the refrigerant in the first indoor heat exchanger 311 and the indoor air in the refrigerant circuit 100. heat exchange. One end of the first indoor heat exchanger 311 is connected to the liquid refrigerant communication pipe 4 . The other end of the first indoor heat exchanger 311 is connected to the indoor expansion valve 32 via the first indoor pipe 32a.
 第2室内熱交換器312は、冷媒回路100において、第2室内熱交換器312内の冷媒と、室内の空気との熱交換を行う。第2室内熱交換器312の一端は、第2室内配管32bを介して室内膨張弁32に接続されている。第2室内熱交換器312の他端は、ガス冷媒連絡管5に接続されている。 The second indoor heat exchanger 312 exchanges heat between the refrigerant in the second indoor heat exchanger 312 and the indoor air in the refrigerant circuit 100 . One end of the second indoor heat exchanger 312 is connected to the indoor expansion valve 32 via the second indoor pipe 32b. The other end of the second indoor heat exchanger 312 is connected to the gas refrigerant communication pipe 5 .
 第1室内熱交換器311及び第2室内熱交換器312は、室内ファン33が生成する気流の流路に配置される。室内ファン33が生成する気流の流れの方向において、第1室内熱交換器311は、第2室内熱交換器312よりも下流側に配置される。言い換えると、室内ファン33が生成する気流によって、室内の空気は、最初に第2室内熱交換器312内の冷媒と熱交換され、次に第1室内熱交換器311内の冷媒と熱交換される。 The first indoor heat exchanger 311 and the second indoor heat exchanger 312 are arranged in the air flow path generated by the indoor fan 33 . The first indoor heat exchanger 311 is arranged downstream of the second indoor heat exchanger 312 in the direction of the airflow generated by the indoor fan 33 . In other words, the indoor air is first heat-exchanged with the refrigerant in the second indoor heat exchanger 312 and then heat-exchanged with the refrigerant in the first indoor heat exchanger 311 by the airflow generated by the indoor fan 33. be.
 (2-2-2)室内膨張弁
 室内膨張弁32は、冷媒回路100において、冷媒を減圧する膨張機構である。室内膨張弁32は、冷媒回路100において、第1室内熱交換器311と第2室内熱交換器312との間に設けられる。室内膨張弁32は、開度調整が可能な電動膨張弁である。室内膨張弁32の開度は、制御部6により制御される。
(2-2-2) Indoor Expansion Valve The indoor expansion valve 32 is an expansion mechanism that reduces the pressure of the refrigerant in the refrigerant circuit 100 . The indoor expansion valve 32 is provided between the first indoor heat exchanger 311 and the second indoor heat exchanger 312 in the refrigerant circuit 100 . The indoor expansion valve 32 is an electric expansion valve whose opening degree can be adjusted. The degree of opening of the indoor expansion valve 32 is controlled by the controller 6 .
 図2に示されるように、室内膨張弁32は、主として、弁室321と、主弁体322と、副弁体323と、駆動部324とを有する。 As shown in FIG. 2, the indoor expansion valve 32 mainly has a valve chamber 321, a main valve body 322, a sub-valve body 323, and a driving portion 324.
 弁室321は、内部に主弁体322を収容する、円筒状の部材である。弁室321は、側面に流体の入口である主連通孔321aが形成され、一端に流体の出口である主弁ポート321bが形成されている。 The valve chamber 321 is a cylindrical member that accommodates the main valve body 322 inside. The valve chamber 321 is formed with a main communication hole 321a, which is a fluid inlet, on a side surface, and a main valve port 321b, which is a fluid outlet, on one end.
 主弁体322は、弁室321の内部に収容され、主弁ポート321bの開度を変更する円筒状の部材である。主弁体322は、一端に流体の出口である副弁ポート322aが形成されている。主弁体322は、他端にリング状のリテーナ322bが取り付けられている。主弁体322は、側面に流体の入口である副連通孔322cが形成されている。 The main valve body 322 is a cylindrical member that is housed inside the valve chamber 321 and changes the opening degree of the main valve port 321b. The main valve body 322 is formed with a sub-valve port 322a, which is a fluid outlet, at one end. A ring-shaped retainer 322b is attached to the other end of the main valve body 322 . The main valve body 322 has a side surface formed with a sub-communication hole 322c serving as a fluid inlet.
 副弁体323は、副弁ポート322aの開度を変更するとともに、主弁体322を持ち上げるニードル状の部材である。副弁体323の一部は、リテーナ322bの開口から主弁体322の内部に挿入されている。副弁体323は、主弁体322に挿入される側の端部にテーパ部323aが形成され、テーパ部323aとは反対側の端部が駆動部324に固定されている。副弁体323は、主弁体322に挿入された状態で、リテーナ322bよりもテーパ部323a側にある部分の側面に、鍔状の突起323bが形成されている。 The sub-valve element 323 is a needle-like member that changes the degree of opening of the sub-valve port 322a and lifts the main valve element 322. A part of the sub-valve element 323 is inserted inside the main valve element 322 through the opening of the retainer 322b. The sub valve body 323 has a tapered portion 323 a formed at the end on the side to be inserted into the main valve body 322 , and the end opposite to the tapered portion 323 a is fixed to the driving portion 324 . The sub-valve element 323 has a flange-like projection 323b formed on the side surface of the portion closer to the tapered portion 323a than the retainer 322b when inserted into the main valve element 322. As shown in FIG.
 駆動部324は、主弁体322及び副弁体323を軸方向に駆動する。駆動部324は、制御部6が出力する制御信号である出力パルスにより駆動量が制御される。言い換えると、室内膨張弁32の開度は、制御部6によって制御される。室内膨張弁32に対する単位操作量は1パルスであり、制御部6が出力する駆動パルスの増加とともに室内膨張弁32の開度が増加する。 The drive unit 324 drives the main valve body 322 and the sub-valve body 323 in the axial direction. The drive unit 324 is driven by an output pulse, which is a control signal output by the control unit 6 . In other words, the degree of opening of the indoor expansion valve 32 is controlled by the controller 6 . The unit operation amount for the indoor expansion valve 32 is 1 pulse, and the opening degree of the indoor expansion valve 32 increases as the drive pulse output by the control unit 6 increases.
 図3に示されるグラフは、室内膨張弁32の開度(駆動パルス)と、室内膨張弁32を通過する冷媒の流量との関係である流量特性を示す。図3に示されるように、室内膨張弁32の流量特性は、単位操作量(単位駆動パルス)に対する流量の変化が小さい小流量制御域と、単位操作量に対する流量の変化が小流量制御域より大きい大流量制御域とからなる2つの流量制御域を有する。大流量制御域における冷媒の流量は、小流量制御域における冷媒の流量よりも大きい。室内膨張弁32の開度(%)とは、室内膨張弁32を全開にするために制御部6が出力する駆動パルスに対する、駆動パルスの百分率である。空気調和装置1では、室内膨張弁32を全開にするための駆動パルスは、500パルスである。 The graph shown in FIG. 3 shows the flow rate characteristic, which is the relationship between the opening degree (driving pulse) of the indoor expansion valve 32 and the flow rate of the refrigerant passing through the indoor expansion valve 32 . As shown in FIG. 3, the flow rate characteristics of the indoor expansion valve 32 are divided into a small flow rate control region in which the change in flow rate per unit operation amount (unit driving pulse) is small, and a small flow rate control region in which the change in flow rate per unit operation amount is smaller than the small flow control region. It has two flow control regions consisting of a large high flow control region. The refrigerant flow rate in the large flow rate control region is greater than the refrigerant flow rate in the small flow rate control region. The degree of opening (%) of the indoor expansion valve 32 is the percentage of the drive pulse to the drive pulse output by the controller 6 to fully open the indoor expansion valve 32 . In the air conditioner 1, the drive pulse for fully opening the indoor expansion valve 32 is 500 pulses.
 (2-2-3)室内ファン
 室内ファン33は、気流を生成し、室内の空気を第1室内熱交換器311及び第2室内熱交換器312に供給する。室内ファン33によって室内の空気が第2室内熱交換器312及び第1室内熱交換器311を順に通過することにより、第1室内熱交換器311及び第2室内熱交換器312内の冷媒と、室内の空気との熱交換が促される。室内ファン33は、室内ファンモータ33aによって回転駆動される。室内ファン33の風量は、制御部6が室内ファンモータ33aの回転数を変えることにより制御される。
(2-2-3) Indoor Fan The indoor fan 33 generates airflow and supplies indoor air to the first indoor heat exchanger 311 and the second indoor heat exchanger 312 . By the indoor air passing through the second indoor heat exchanger 312 and the first indoor heat exchanger 311 in order by the indoor fan 33, the refrigerant in the first indoor heat exchanger 311 and the second indoor heat exchanger 312, Promotes heat exchange with indoor air. The indoor fan 33 is rotationally driven by an indoor fan motor 33a. The air volume of the indoor fan 33 is controlled by the controller 6 changing the rotation speed of the indoor fan motor 33a.
 (2-2-4)室内温度センサ
 室内温度センサ34は、室内ユニット3のケーシング(図示省略)の空気の吸入口に設けられる。室内温度センサ34は、室内ユニット3のケーシングに流入する室内の空気の温度(室内温度)を検出する。
(2-2-4) Indoor Temperature Sensor The indoor temperature sensor 34 is provided at the air intake port of the casing (not shown) of the indoor unit 3 . The indoor temperature sensor 34 detects the temperature of indoor air flowing into the casing of the indoor unit 3 (indoor temperature).
 (2-2-5)室内熱交換器温度センサ
 室内熱交換器温度センサ36は、室内膨張弁32と第2室内熱交換器312とを接続する第2室内配管32bに設けられる。室内熱交換器温度センサ36は、四路切換弁23が第2状態である時の冷凍サイクルにおける、冷媒回路100内の冷媒の温度(蒸発温度)を検出する。
(2-2-5) Indoor Heat Exchanger Temperature Sensor The indoor heat exchanger temperature sensor 36 is provided in the second indoor pipe 32b that connects the indoor expansion valve 32 and the second indoor heat exchanger 312 together. Indoor heat exchanger temperature sensor 36 detects the temperature (evaporation temperature) of the refrigerant in refrigerant circuit 100 in the refrigeration cycle when four-way switching valve 23 is in the second state.
 (2-3)制御部
 図4に示されるように、制御部6は、圧縮機21と、四路切換弁23と、室外膨張弁25と、室外ファン26と、室内膨張弁32と、室内ファン33と、リモコン7とのそれぞれと、制御信号を送受信可能に接続されている。制御部6は、必要に応じて、吐出管温度センサ27と、室外熱交換器温度センサ28と、室外温度センサ29と、室内温度センサ34と、室内熱交換器温度センサ36とのそれぞれから、検出信号を受信可能に接続されている。
(2-3) Control Unit As shown in FIG. 4, the control unit 6 includes a compressor 21, a four-way switching valve 23, an outdoor expansion valve 25, an outdoor fan 26, an indoor expansion valve 32, an indoor The fan 33 and the remote controller 7 are connected so as to be able to transmit and receive control signals. The control unit 6, as necessary, from each of the discharge pipe temperature sensor 27, the outdoor heat exchanger temperature sensor 28, the outdoor temperature sensor 29, the indoor temperature sensor 34, and the indoor heat exchanger temperature sensor 36, It is connected so as to be able to receive a detection signal.
 制御部6は、圧縮機21と、四路切換弁23と、室外膨張弁25と、室外ファン26と、室内膨張弁32と、室内ファン33とをそれぞれ運転制御することで冷媒回路100を制御する。 The control unit 6 controls the operation of the compressor 21, the four-way switching valve 23, the outdoor expansion valve 25, the outdoor fan 26, the indoor expansion valve 32, and the indoor fan 33, thereby controlling the refrigerant circuit 100. do.
 制御部6は、典型的には、主として制御演算装置と記憶装置とを備えるコンピュータである。制御演算装置は、CPU又はGPU等のプロセッサである。制御演算装置は、記憶装置に記憶されている制御プログラムを読み出し、この制御プログラムに従って運転制御を行う。制御演算装置は、制御プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。 The control unit 6 is typically a computer that mainly includes a control arithmetic device and a storage device. The control computing device is a processor such as a CPU or GPU. The control arithmetic unit reads out the control program stored in the storage device and performs operation control according to this control program. The control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the control program.
 制御部6は、互いに制御信号を送受信可能な通信線で接続された、室外ユニット2の内部に設けられた室外制御部と、室内ユニット3の内部に設けられた室内制御部とから構成されてもよい。 The control unit 6 is composed of an outdoor control unit provided inside the outdoor unit 2 and an indoor control unit provided inside the indoor unit 3, which are connected to each other by a communication line capable of transmitting and receiving control signals. good too.
 (2-4)リモコン
 リモコン7は、ユーザーから、暖房運転、冷房運転、及び、再熱除湿運転のいずれかの実行指示、室内の目標温度、室内の目標湿度等を受け付け、受け付けたデータを制御信号として制御部6に送信する。制御部6は、制御信号を受信すると記憶装置に記録する。
(2-4) Remote Controller The remote controller 7 accepts instructions from the user to execute any one of heating operation, cooling operation, and reheat dehumidification operation, indoor target temperature, indoor target humidity, etc., and controls the received data. It is transmitted to the control unit 6 as a signal. Upon receiving the control signal, the control unit 6 records it in the storage device.
 リモコン7は、表示部71を有する。表示部71は、実行中の空調運転モード、室内の目標温度、室内の目標湿度、室内温度、及び、室内湿度等の情報を表示する。 The remote control 7 has a display section 71 . The display unit 71 displays information such as the air conditioning operation mode being executed, the indoor target temperature, the indoor target humidity, the indoor temperature, and the indoor humidity.
 (3)動作
 (3-1)室内膨張弁の動作
 制御部6が出力する駆動パルスが0パルスの状態において、主弁体322は弁室321に着座して主弁ポート321bを閉じ、かつ、副弁体323は主弁体322に着座して副弁ポート322aを閉じている。この時、室内膨張弁32の開度は0%(=(0パルス/500パルス)×100)である。また、この時、主弁ポート321bにおいて、弁室321と主弁体322との間にはわずかな隙間(図示省略)が形成されている。そのため、室内膨張弁32の開度が0%であっても、室内膨張弁32を通過する冷媒の流量はゼロではなく、室内膨張弁32内には微小量の冷媒の流れが生じている。
(3) Operation (3-1) Operation of indoor expansion valve When the driving pulse output from the control unit 6 is 0 pulse, the main valve body 322 is seated in the valve chamber 321 to close the main valve port 321b, and The sub-valve element 323 is seated on the main valve element 322 to close the sub-valve port 322a. At this time, the degree of opening of the indoor expansion valve 32 is 0% (=(0 pulse/500 pulses)×100). Also, at this time, a slight gap (not shown) is formed between the valve chamber 321 and the main valve element 322 at the main valve port 321b. Therefore, even if the degree of opening of the indoor expansion valve 32 is 0%, the flow rate of the refrigerant passing through the indoor expansion valve 32 is not zero, and a very small amount of refrigerant flows inside the indoor expansion valve 32 .
 制御部6が駆動パルスを0パルスから増加させると、駆動部324は、副弁体323を軸方向に沿って副弁ポート322aから遠ざかるように移動させる。駆動パルスが150パルスに達するまで、主弁体322は弁室321に着座し続け、副弁体323のみが移動して副弁ポート322aの開度を変更する。副弁ポート322aが開くと、冷媒は、弁室321の主連通孔321a、主弁体322の副連通孔322c、主弁体322の副弁ポート322a、及び、弁室321の主弁ポート321bにより形成される流路を通って流出する。駆動パルスが150パルスに達した時の、室内膨張弁32の開度は30%(=(150パルス/500パルス)×100)である。駆動パルスが150パルスに達すると、副弁ポート322aは、全開の状態となる。室内膨張弁32では、駆動パルスが0パルスから150パルスに変化して、副弁体323により副弁ポート322aの開度が変更される範囲が小流量制御域となる。言い換えると、室内膨張弁32の開度が0%以上30%以下の範囲(第1範囲)が小流量制御域である。 When the control unit 6 increases the drive pulse from 0 pulse, the drive unit 324 moves the sub-valve body 323 away from the sub-valve port 322a along the axial direction. Until the drive pulse reaches 150 pulses, the main valve body 322 continues to be seated in the valve chamber 321, and only the sub-valve body 323 moves to change the opening degree of the sub-valve port 322a. When the sub-valve port 322a opens, the refrigerant flows through the main communication hole 321a of the valve chamber 321, the sub-communication hole 322c of the main valve element 322, the sub-valve port 322a of the main valve element 322, and the main valve port 321b of the valve chamber 321. It flows out through the channel formed by When the drive pulse reaches 150 pulses, the opening degree of the indoor expansion valve 32 is 30% (=(150 pulses/500 pulses)×100). When the drive pulse reaches 150 pulses, the sub-valve port 322a is fully opened. In the indoor expansion valve 32, the range in which the drive pulse changes from 0 pulses to 150 pulses and the opening degree of the sub-valve port 322a is changed by the sub-valve body 323 becomes the small flow rate control region. In other words, the range (first range) in which the degree of opening of the indoor expansion valve 32 is 0% or more and 30% or less is the small flow control range.
 制御部6が駆動パルスを150パルスからさらに増加させると、副弁体323の突起323bが主弁体322のリテーナ322bに接触して、副弁体323は、主弁体322を持ち上げる。言い換えると、駆動部324が、副弁体323を軸方向に沿って主弁ポート321bから遠ざかるように移動させることで、主弁体322は、主弁ポート321bから遠ざかるように移動する。この結果、駆動パルスが150パルスを超えると、副弁ポート322aが全開の状態において、主弁体322が移動して主弁ポート321bの開度を変更する。主弁ポート321bが開くと、冷媒は、主連通孔321a、副連通孔322c、副弁ポート322a、及び主弁ポート321bにより形成される上述の流路に加えて、主連通孔321aから直接、主弁ポート321bに向かって流れる流路を通って流出する。 When the control unit 6 further increases the drive pulse from 150 pulses, the projection 323b of the sub-valve element 323 contacts the retainer 322b of the main valve element 322, and the sub-valve element 323 lifts the main valve element 322. In other words, the drive unit 324 moves the sub valve body 323 away from the main valve port 321b along the axial direction, thereby moving the main valve body 322 away from the main valve port 321b. As a result, when the number of drive pulses exceeds 150 pulses, the main valve element 322 moves to change the degree of opening of the main valve port 321b while the sub-valve port 322a is fully open. When the main valve port 321b is opened, the refrigerant flows directly from the main communication hole 321a, in addition to the flow paths formed by the main communication hole 321a, the sub-communication hole 322c, the sub-valve port 322a, and the main valve port 321b. It exits through a flow path that flows toward the main valve port 321b.
 制御部6は、駆動パルスを500パルスまで増加させることができる。駆動パルスが500パルスに達した時の、室内膨張弁32の開度は100%(=(500パルス/500パルス)×100)である。この時、主弁ポート321b及び副弁ポート322aは、どちらも全開の状態となる。室内膨張弁32では、駆動パルスが150パルスから500パルスに変化して、主弁体322により主弁ポート321bの開度が変更される範囲が大流量制御域となる。言い換えると、室内膨張弁32の開度が30%より大きく100%以下の範囲が大流量制御域である。 The control unit 6 can increase the drive pulse up to 500 pulses. When the number of drive pulses reaches 500 pulses, the degree of opening of the indoor expansion valve 32 is 100% (=(500 pulses/500 pulses)×100). At this time, both the main valve port 321b and the sub-valve port 322a are fully opened. In the indoor expansion valve 32, the range in which the drive pulse changes from 150 pulses to 500 pulses and the opening degree of the main valve port 321b is changed by the main valve element 322 becomes the large flow rate control region. In other words, the range in which the degree of opening of the indoor expansion valve 32 is greater than 30% and less than or equal to 100% is the large flow rate control region.
 (3-2)空調運転
 制御部6が実行する空気調和装置1の空調運転である、暖房運転、冷房運転、及び、再熱除湿運転について説明する。図1に示されるように、空気調和装置1の冷媒回路100では、圧縮機21、室外熱交換器24、室外膨張弁25、第1室内熱交換器311、室内膨張弁32、第2室内熱交換器312が環状に接続される。
(3-2) Air Conditioning Operation The heating operation, cooling operation, and reheat dehumidification operation, which are the air conditioning operations of the air conditioner 1 executed by the control unit 6, will be described. As shown in FIG. 1, in the refrigerant circuit 100 of the air conditioner 1, the compressor 21, the outdoor heat exchanger 24, the outdoor expansion valve 25, the first indoor heat exchanger 311, the indoor expansion valve 32, the second indoor heat Exchangers 312 are connected in a ring.
 (3-2-1)暖房運転
 制御部6は、暖房運転の開始についての制御信号をリモコン7から受信すると、空気調和装置1の暖房運転を開始する。暖房運転に際して、制御部6は、四路切換弁23を第1状態へ切り換える(図1の破線で示される状態)。さらに、制御部6は、室外膨張弁25を、リモコン7から受信した目標温度に対応する開度とし、室内膨張弁32を全開、又は、全開に近い開度として、圧縮機21を運転する。これにより、室外熱交換器24が冷媒の蒸発器(吸熱器)として機能し、かつ、第1室内熱交換器311及び第2室内熱交換器312が冷媒の凝縮器(放熱器)として機能する。
(3-2-1) Heating operation When the control unit 6 receives a control signal for starting the heating operation from the remote control 7, the air conditioner 1 starts the heating operation. During the heating operation, the controller 6 switches the four-way switching valve 23 to the first state (the state indicated by the dashed line in FIG. 1). Further, the control unit 6 sets the outdoor expansion valve 25 to the degree of opening corresponding to the target temperature received from the remote control 7, and sets the indoor expansion valve 32 to a fully open or nearly fully open degree to operate the compressor 21. As a result, the outdoor heat exchanger 24 functions as a refrigerant evaporator (heat absorber), and the first indoor heat exchanger 311 and the second indoor heat exchanger 312 function as refrigerant condensers (radiators). .
 暖房運転の間、冷媒回路100は、次のように機能する。圧縮機21から吐出された高圧の冷媒は、第2室内熱交換器312及び第1室内熱交換器311で、室内ファン33によって供給される室内の空気と熱交換して凝縮する。これにより、室内の空気は加熱され、調和空気として室内に排出される。凝縮した冷媒は、室外膨張弁25を通過して減圧された後、室外熱交換器24で、室外ファン26によって供給される室外の空気と熱交換して蒸発する。室外熱交換器24を通過した冷媒は、圧縮機21に吸入されて圧縮される。 During heating operation, the refrigerant circuit 100 functions as follows. The high-pressure refrigerant discharged from the compressor 21 exchanges heat with the indoor air supplied by the indoor fan 33 in the second indoor heat exchanger 312 and the first indoor heat exchanger 311 and is condensed. As a result, the air in the room is heated and discharged into the room as conditioned air. After the condensed refrigerant passes through the outdoor expansion valve 25 and is decompressed, it exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and evaporates. The refrigerant that has passed through the outdoor heat exchanger 24 is sucked into the compressor 21 and compressed.
 (3-2-2)冷房運転
 制御部6は、冷房運転(第2運転)の開始についての制御信号をリモコン7から受信すると、空気調和装置1の冷房運転を開始する。冷房運転に際して、制御部6は、四路切換弁23を第2状態へ切り換える(図1の実線で示される状態)。さらに、制御部6は、室外膨張弁25を、リモコン7から受信した目標温度に対応する開度とし、室内膨張弁32を全開、又は、全開に近い開度として、圧縮機21を運転する。これにより、室外熱交換器24が冷媒の凝縮器(放熱器)として機能し、かつ、第1室内熱交換器311及び第2室内熱交換器312が冷媒の蒸発器(吸熱器)として機能する。
(3-2-2) Cooling operation When the control unit 6 receives a control signal for starting the cooling operation (second operation) from the remote controller 7, the air conditioner 1 starts the cooling operation. During the cooling operation, the controller 6 switches the four-way switching valve 23 to the second state (the state indicated by the solid line in FIG. 1). Further, the control unit 6 sets the outdoor expansion valve 25 to the degree of opening corresponding to the target temperature received from the remote control 7, and sets the indoor expansion valve 32 to a fully open or nearly fully open degree to operate the compressor 21. As a result, the outdoor heat exchanger 24 functions as a refrigerant condenser (radiator), and the first indoor heat exchanger 311 and the second indoor heat exchanger 312 function as refrigerant evaporators (heat absorbers). .
 冷房運転の間、冷媒回路100は、次のように機能する。圧縮機21から吐出された高圧の冷媒は、室外熱交換器24で、室外ファン26によって供給される室外の空気と熱交換して凝縮する。凝縮した冷媒は、室外膨張弁25を通過して減圧された後、第1室内熱交換器311及び第2室内熱交換器312で、室内ファン33によって供給される室内の空気と熱交換して蒸発する。これにより、室内の空気は冷却され、調和空気として室内に排出される。第1室内熱交換器311及び第2室内熱交換器312を通過した冷媒は、圧縮機21に吸入されて圧縮される。 During cooling operation, the refrigerant circuit 100 functions as follows. The high-pressure refrigerant discharged from the compressor 21 exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and is condensed. After the condensed refrigerant passes through the outdoor expansion valve 25 and is decompressed, it exchanges heat with the indoor air supplied by the indoor fan 33 in the first indoor heat exchanger 311 and the second indoor heat exchanger 312. Evaporate. As a result, the indoor air is cooled and discharged indoors as conditioned air. The refrigerant that has passed through the first indoor heat exchanger 311 and the second indoor heat exchanger 312 is sucked into the compressor 21 and compressed.
 (3-2-3)再熱除湿運転
 制御部6は、再熱除湿運転(第1運転)の開始についての制御信号をリモコン7から受信すると、空気調和装置1の再熱除湿運転を開始する。再熱除湿運転とは、第2室内熱交換器312で室内の空気の除湿を行い、除湿した空気を第1室内熱交換器311で加熱する空調運転である。再熱除湿運転に際して、制御部6は、四路切換弁23を第2状態へ切り換える(図1の実線で示される状態)。さらに、制御部6は、室外膨張弁25を全開、又は、全開に近い開度とし、室内膨張弁32を、リモコン7から受信した目標湿度に基づく除湿負荷に対応する開度として、圧縮機21を運転する。これにより、室外熱交換器24及び第1室内熱交換器311が冷媒の凝縮器(放熱器)として機能し、かつ、第2室内熱交換器312が冷媒の蒸発器(吸熱器)として機能する。
(3-2-3) Reheat dehumidification operation When the control unit 6 receives a control signal for starting the reheat dehumidification operation (first operation) from the remote controller 7, the reheat dehumidification operation of the air conditioner 1 is started. . The reheat dehumidification operation is an air conditioning operation in which the second indoor heat exchanger 312 dehumidifies indoor air and the first indoor heat exchanger 311 heats the dehumidified air. During the reheat dehumidification operation, the control unit 6 switches the four-way switching valve 23 to the second state (the state indicated by the solid line in FIG. 1). Further, the control unit 6 sets the outdoor expansion valve 25 to a full opening or an opening close to full opening, and sets the indoor expansion valve 32 to an opening corresponding to the dehumidification load based on the target humidity received from the remote controller 7. to drive. As a result, the outdoor heat exchanger 24 and the first indoor heat exchanger 311 function as a refrigerant condenser (radiator), and the second indoor heat exchanger 312 functions as a refrigerant evaporator (heat absorber). .
 再熱除湿運転の間、冷媒回路100は、次のように機能する。圧縮機21から吐出された高圧の冷媒は、室外熱交換器24で、室外ファン26によって供給される室外の空気と熱交換して凝縮する。室外熱交換器24で凝縮した冷媒は、室外膨張弁25を通過した後、第1室内熱交換器311でも、室内ファン33によって供給される室内の空気と熱交換して凝縮する。第1室内熱交換器311で凝縮した冷媒は、室内膨張弁32を通過して減圧された後、第2室内熱交換器312で、室内ファン33によって供給される室内の空気と熱交換して蒸発する。これにより、室内の空気は、第2室内熱交換器312で除湿された後、第1室内熱交換器311で加熱され、除湿されながらも温度低下の抑制された空気が調和空気として室内に排出される。第2室内熱交換器312を通過した冷媒は、圧縮機21に吸入されて圧縮される。 During the reheat dehumidification operation, the refrigerant circuit 100 functions as follows. The high-pressure refrigerant discharged from the compressor 21 exchanges heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 24 and is condensed. After passing through the outdoor expansion valve 25 , the refrigerant condensed in the outdoor heat exchanger 24 is also condensed in the first indoor heat exchanger 311 by exchanging heat with indoor air supplied by the indoor fan 33 . The refrigerant condensed in the first indoor heat exchanger 311 passes through the indoor expansion valve 32 and is decompressed, and then exchanges heat with the indoor air supplied by the indoor fan 33 in the second indoor heat exchanger 312. Evaporate. As a result, the indoor air is dehumidified by the second indoor heat exchanger 312 and then heated by the first indoor heat exchanger 311, and the dehumidified air whose temperature drop is suppressed is discharged indoors as conditioned air. be done. The refrigerant that has passed through the second indoor heat exchanger 312 is sucked into the compressor 21 and compressed.
 (3-3)再熱除湿運転時の制御
 制御部6は、再熱除湿運転の実行時に、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、副弁体323により副弁ポート322aの開度が変更される小流量制御域において室内膨張弁32を制御する。言い換えると、制御部6は、再熱除湿運転の実行時に、副弁体323を移動させて副弁ポート322aの開度を変更することにより、室内膨張弁32の開度調整を行う。第2室内熱交換器312の出口における冷媒の状態が湿り状態である場合、第2室内熱交換器312から吐出される冷媒は過熱蒸気ではなく、第2室内熱交換器312内の冷媒は湿り蒸気となっている。
(3-3) Control during reheat dehumidification operation When the reheat dehumidification operation is executed, the control unit 6 controls the sub valve body 323 so that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet. controls the indoor expansion valve 32 in the small flow rate control region where the opening degree of the auxiliary valve port 322a is changed by . In other words, the controller 6 adjusts the opening degree of the indoor expansion valve 32 by moving the sub-valve element 323 to change the opening degree of the sub-valve port 322a when the reheat dehumidification operation is executed. When the state of the refrigerant at the outlet of the second indoor heat exchanger 312 is wet, the refrigerant discharged from the second indoor heat exchanger 312 is not superheated steam, and the refrigerant in the second indoor heat exchanger 312 is wet. It becomes steam.
 制御部6は、再熱除湿運転の実行時に、主弁ポート321bの開度を所定値以下の状態に維持する。所定値とは、0%、又は、実質的に0%である値であり、この場合、主弁ポート321bは、主弁体322によって閉じられている。ただし、上述したように、主弁ポート321bが閉じられている状態でも、弁室321と主弁体322との間にはわずかな隙間が形成されているため、主弁ポート321bを通過する微小量の冷媒の流れが生じている。 The control unit 6 maintains the degree of opening of the main valve port 321b at a predetermined value or less during execution of the reheat dehumidification operation. The predetermined value is 0% or substantially 0%, in which case the main valve port 321b is closed by the main valve body 322. However, as described above, even when the main valve port 321b is closed, a slight gap is formed between the valve chamber 321 and the main valve body 322, so that a minute amount of water passing through the main valve port 321b A volume of refrigerant flow occurs.
 制御部6は、除湿能力が互いに異なる運転モードである第1モードと第2モードとを切り換えて、再熱除湿運転を実行する。第1モードの除湿能力は、第2モードの除湿能力よりも低い。第1モードにおける室内膨張弁32の開度(以下、第1開度という)は、第2モードにおける室内膨張弁32の開度(以下、第2開度という)よりも小さい。具体的には、第1開度は、室内膨張弁32を通過して第2室内熱交換器312に流入した冷媒の多くが、第2室内熱交換器312内の室内膨張弁32近傍で蒸発する流量となる開度に設定される。これに対して、第2開度は、室内膨張弁32を通過して第2室内熱交換器312に流入した冷媒が、第2室内熱交換器312の全体で蒸発する流量となる開度に設定される。これにより、室内膨張弁32が第1開度にある場合と比べて、第2開度にある場合の再熱除湿運転の方が、室内膨張弁32を通過して第2室内熱交換器312に流入する冷媒の流量が多いため、第2室内熱交換器312が蒸発器として機能する領域が広くなり、高い除湿能力を発揮する。空気調和装置1では、例えば、図3に示されるように、室内膨張弁32の第1開度は5%(=(25パルス/500パルス)×100)に設定され、室内膨張弁32の第2開度は30%(=(150パルス/500パルス)×100)に設定される。第1開度及び第2開度の値は、図3に示される値に限定されない。 The control unit 6 performs the reheat dehumidification operation by switching between the first mode and the second mode, which are operation modes with different dehumidification capabilities. The dehumidification capacity of the first mode is lower than the dehumidification capacity of the second mode. The opening degree of the indoor expansion valve 32 in the first mode (hereinafter referred to as the first opening degree) is smaller than the opening degree of the indoor expansion valve 32 in the second mode (hereinafter referred to as the second opening degree). Specifically, at the first degree of opening, most of the refrigerant that has passed through the indoor expansion valve 32 and flowed into the second indoor heat exchanger 312 evaporates near the indoor expansion valve 32 in the second indoor heat exchanger 312. It is set to the degree of opening that provides the desired flow rate. On the other hand, the second degree of opening is the degree of opening at which the flow rate of the refrigerant that has passed through the indoor expansion valve 32 and flowed into the second indoor heat exchanger 312 evaporates in the second indoor heat exchanger 312 as a whole. set. As a result, the reheat dehumidifying operation when the indoor expansion valve 32 is at the second opening degree passes through the indoor expansion valve 32 to the second indoor heat exchanger 312 more than when the indoor expansion valve 32 is at the first opening degree. Since the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 is large, the area where the second indoor heat exchanger 312 functions as an evaporator is widened, exhibiting a high dehumidification capability. In the air conditioner 1, for example, as shown in FIG. 2 The degree of opening is set to 30% (=(150 pulses/500 pulses)×100). The values of the first degree of opening and the second degree of opening are not limited to the values shown in FIG.
 制御部6は、第1モード又は第2モードで再熱除湿運転を開始し、再熱除湿運転の実行時に、ユーザーからの指示に基づいて第1モードと第2モードとを切り換える。具体的には、制御部6は、再熱除湿運転の実行時に、第1モードと第2モードとの間の切り換えについての制御信号をリモコン7から受信すると、受信した制御信号を制御部6に送信する。第1モードと第2モードとの間の切り換えについての制御信号を受信した制御部6は、受信した制御信号に基づいて第1モードと第2モードとの間を切り換える。制御部6は、リモコン7から再熱除湿運転以外の空調運転(例えば、冷房運転)の実行指示、又は、空気調和装置1の運転停止指示を受信すると、再熱除湿運転を終了する。 The control unit 6 starts the reheat dehumidification operation in the first mode or the second mode, and switches between the first mode and the second mode based on instructions from the user when the reheat dehumidification operation is executed. Specifically, when the control unit 6 receives a control signal for switching between the first mode and the second mode from the remote controller 7 during execution of the reheat dehumidification operation, the control unit 6 transmits the received control signal to the control unit 6. Send. Upon receiving the control signal for switching between the first mode and the second mode, the controller 6 switches between the first mode and the second mode based on the received control signal. When the controller 6 receives from the remote control 7 an instruction to perform an air conditioning operation (for example, a cooling operation) other than the reheat dehumidifying operation or an instruction to stop the operation of the air conditioner 1, it ends the reheat dehumidifying operation.
 次に、再熱除湿運転の実行時に、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるような室内膨張弁32の制御のいくつかの具体例について説明する。 Next, several specific examples of controlling the indoor expansion valve 32 so that the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet when the reheat dehumidification operation is executed will be described.
 (3-3-1)室内膨張弁の開度に基づく制御
 この制御では、制御部6は、小流量制御域において室内膨張弁32の開度を所定値以上に維持する。その結果、第2室内熱交換器312に流入する冷媒の流量が十分に確保される。これにより、制御部6は、第2室内熱交換器312の出口における冷媒の状態が湿り状態になったと推定する。制御部6は、例えば、室内膨張弁32の開度を第2開度である30%に維持してもよい。
(3-3-1) Control based on degree of opening of indoor expansion valve In this control, the controller 6 maintains the degree of opening of the indoor expansion valve 32 at a predetermined value or more in the small flow rate control region. As a result, a sufficient flow rate of the refrigerant flowing into the second indoor heat exchanger 312 is ensured. Thereby, the control unit 6 estimates that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 has become wet. For example, the controller 6 may maintain the degree of opening of the indoor expansion valve 32 at 30%, which is the second degree of opening.
 (3-3-2)吐出管温度に基づく制御
 この制御では、図5に示されるフローチャートに沿って行われる。最初に、制御部6は、吐出管温度センサ27が検出した吐出管温度を取得する(ステップS11)。次に、制御部6は、吐出管温度が所定の目標吐出管温度よりも高いか否かを判定する(ステップS12)。吐出管温度が目標吐出管温度よりも高い場合、制御部6は、第2室内熱交換器312が乾き状態(第2室内熱交換器312内に過熱蒸気がある状態)にあると推定する(ステップS13)。この場合、制御部6は、小流量制御域において室内膨張弁32の開度を上昇させて、第2室内熱交換器312に流入する冷媒の流量を増加させる(ステップS14)。これにより、吐出管温度が低下する。所定時間が経過すると、制御部6は、再び、吐出管温度を取得して(ステップS11)、吐出管温度が目標吐出管温度よりも高いか否かを判定する(ステップS12)。吐出管温度が目標吐出管温度以下になった場合、制御部6は、第2室内熱交換器312の出口における冷媒の状態が湿り状態にあると推定する(ステップS15)。その後、制御部6は、冷房運転の実行指示等によって、再熱除湿運転が終了したか否かを判定する(ステップS16)。再熱除湿運転が終了していない場合、室内膨張弁32の開度制御の処理を再度実行する。そのため、再熱除湿運転の実行中は、吐出管温度に基づく室内膨張弁32の開度制御の処理が継続的に実行される。
(3-3-2) Control Based on Discharge Pipe Temperature This control is performed according to the flowchart shown in FIG. First, the controller 6 acquires the discharge pipe temperature detected by the discharge pipe temperature sensor 27 (step S11). Next, the controller 6 determines whether or not the discharge pipe temperature is higher than a predetermined target discharge pipe temperature (step S12). When the discharge pipe temperature is higher than the target discharge pipe temperature, the control unit 6 estimates that the second indoor heat exchanger 312 is in a dry state (a state in which superheated steam is present in the second indoor heat exchanger 312) ( step S13). In this case, the controller 6 increases the degree of opening of the indoor expansion valve 32 in the small flow rate control region to increase the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 (step S14). This reduces the discharge pipe temperature. After a predetermined period of time has elapsed, the controller 6 acquires the discharge pipe temperature again (step S11), and determines whether or not the discharge pipe temperature is higher than the target discharge pipe temperature (step S12). When the discharge pipe temperature becomes equal to or lower than the target discharge pipe temperature, the controller 6 estimates that the refrigerant at the outlet of the second indoor heat exchanger 312 is in a wet state (step S15). After that, the control unit 6 determines whether or not the reheat dehumidification operation has been completed in response to an instruction to execute the cooling operation or the like (step S16). If the reheat dehumidification operation has not ended, the process of controlling the degree of opening of the indoor expansion valve 32 is executed again. Therefore, during the execution of the reheat dehumidification operation, the process of controlling the degree of opening of the indoor expansion valve 32 based on the discharge pipe temperature is continuously executed.
 なお、制御部6が、目標吐出管温度及び吐出管温度に基づいて第2室内熱交換器312が乾き状態にあるか否かを推定する方法は、特に限定されない。例えば、制御部6は、目標吐出管温度よりも吐出管温度が高い状態が所定時間維持されている場合に、第2室内熱交換器312が乾き状態にあると推定してもよい。 The method by which the control unit 6 estimates whether or not the second indoor heat exchanger 312 is in a dry state based on the target discharge pipe temperature and the discharge pipe temperature is not particularly limited. For example, the control unit 6 may estimate that the second indoor heat exchanger 312 is in a dry state when the discharge pipe temperature is maintained higher than the target discharge pipe temperature for a predetermined time.
 (3-3-3)凝縮温度及び蒸発温度に基づく制御
 この制御では、図6に示されるフローチャートに沿って行われる。最初に、制御部6は、吐出管温度センサ27が検出した吐出管温度と、室外熱交換器温度センサ28が検出した冷媒の凝縮温度と、室内熱交換器温度センサ36が検出した冷媒の蒸発温度とを取得する(ステップS21)。次に、制御部6は、凝縮温度及び蒸発温度に基づいて、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるような目標吐出管温度を算出する(ステップS22)。次に、制御部6は、吐出管温度が目標吐出管温度よりも高いか否かを判定する(ステップS23)。吐出管温度が目標吐出管温度よりも高い場合、制御部6は、第2室内熱交換器312が乾き状態にあると推定する(ステップS24)。この場合、制御部6は、小流量制御域において室内膨張弁32の開度を上昇させて、第2室内熱交換器312に流入する冷媒の流量を増加させる(ステップS25)。これにより、吐出管温度が低下する。所定時間が経過すると、制御部6は、再び、吐出管温度と凝縮温度と蒸発温度とを取得して(ステップS21)、目標吐出管温度を算出し(ステップS22)、吐出管温度が目標吐出管温度よりも高いか否かを判定する(ステップS23)。吐出管温度が目標吐出管温度以下になった場合、制御部6は、第2室内熱交換器312の出口における冷媒の状態が湿り状態にあると推定する(ステップS26)。その後、制御部6は、冷房運転の実行指示等によって、再熱除湿運転が終了したか否かを判定する(ステップS27)。再熱除湿運転が終了していない場合、室内膨張弁32の開度制御の処理を再度実行する。そのため、再熱除湿運転の実行中は、凝縮温度及び蒸発温度に基づく室内膨張弁32の開度制御の処理が継続的に実行される。
(3-3-3) Control Based on Condensing Temperature and Evaporating Temperature This control is performed according to the flowchart shown in FIG. First, the control unit 6 detects the discharge pipe temperature detected by the discharge pipe temperature sensor 27, the refrigerant condensation temperature detected by the outdoor heat exchanger temperature sensor 28, and the refrigerant evaporation detected by the indoor heat exchanger temperature sensor 36. temperature is obtained (step S21). Next, based on the condensation temperature and the evaporation temperature, the control unit 6 calculates a target discharge pipe temperature such that the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet (step S22). Next, the controller 6 determines whether or not the discharge pipe temperature is higher than the target discharge pipe temperature (step S23). When the discharge pipe temperature is higher than the target discharge pipe temperature, the controller 6 estimates that the second indoor heat exchanger 312 is in a dry state (step S24). In this case, the controller 6 increases the degree of opening of the indoor expansion valve 32 in the small flow rate control region to increase the flow rate of the refrigerant flowing into the second indoor heat exchanger 312 (step S25). This reduces the discharge pipe temperature. After a predetermined time has elapsed, the control unit 6 acquires the discharge pipe temperature, the condensation temperature, and the evaporation temperature again (step S21), calculates the target discharge pipe temperature (step S22), and the discharge pipe temperature reaches the target discharge temperature. It is determined whether or not it is higher than the tube temperature (step S23). When the discharge pipe temperature becomes equal to or lower than the target discharge pipe temperature, the controller 6 estimates that the refrigerant at the outlet of the second indoor heat exchanger 312 is in a wet state (step S26). After that, the control unit 6 determines whether or not the reheat dehumidifying operation has been completed in response to an instruction to execute the cooling operation or the like (step S27). If the reheat dehumidification operation has not ended, the process of controlling the degree of opening of the indoor expansion valve 32 is executed again. Therefore, during execution of the reheat dehumidification operation, the process of controlling the degree of opening of the indoor expansion valve 32 based on the condensation temperature and the evaporation temperature is continuously executed.
 なお、制御部6が、凝縮温度及び蒸発温度に基づいて目標吐出管温度を算出する方法、及び、目標吐出管温度及び吐出管温度に基づいて第2室内熱交換器312が乾き状態にあるか否かを推定する方法は、特に限定されない。例えば、制御部6は、凝縮温度及び蒸発温度を所定の計算式に代入して目標吐出管温度を算出してもよく、又は、凝縮温度及び蒸発温度と目標吐出管温度との関係が記録されたテーブルを記憶しておき、当該テーブルを用いて目標吐出管温度を取得してもよい。また、制御部6は、目標吐出管温度よりも吐出管温度が高い状態が所定時間維持されている場合に、第2室内熱交換器312が乾き状態にあると推定してもよい。 The control unit 6 calculates the target discharge pipe temperature based on the condensation temperature and the evaporation temperature, and whether the second indoor heat exchanger 312 is dry based on the target discharge pipe temperature and the discharge pipe temperature. A method for estimating whether or not is not particularly limited. For example, the control unit 6 may calculate the target discharge pipe temperature by substituting the condensing temperature and the evaporating temperature into a predetermined formula, or the relationship between the condensing temperature, the evaporating temperature, and the target discharge pipe temperature may be recorded. The table may be stored and the target discharge pipe temperature may be acquired using the table. Further, the control unit 6 may estimate that the second indoor heat exchanger 312 is in a dry state when the discharge pipe temperature is maintained higher than the target discharge pipe temperature for a predetermined time.
 (4)特徴
 (4-1)
 空気調和装置1では、制御部6は、再熱除湿運転の実行時に、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、室内膨張弁32を制御して副弁体323による開度調整を行う。再熱除湿運転の実行時に、第1室内熱交換器311の出口における冷媒の過冷却度が過剰になり凝縮温度が低くなると、第2室内熱交換器312で除湿された空気が第1室内熱交換器311で加熱される再熱効果が低下するおそれがある。空気調和装置1は、再熱除湿運転時に、第2室内熱交換器312内の冷媒の状態に応じて室内膨張弁32の開度調整を行うことで、第1室内熱交換器311の出口における冷媒の過冷却度を制御して、凝縮温度が過度に低下することを抑制する。これにより、空気調和装置1は、第1室内熱交換器311における空気の再熱効果を向上させることができる。
(4) Features (4-1)
In the air conditioner 1, the control unit 6 controls the indoor expansion valve 32 so that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 becomes wet when the reheat dehumidification operation is executed, and the sub valve The opening is adjusted by the body 323 . When the reheat dehumidification operation is executed, if the degree of subcooling of the refrigerant at the outlet of the first indoor heat exchanger 311 becomes excessive and the condensation temperature becomes low, the air dehumidified by the second indoor heat exchanger 312 is transferred to the first indoor heat. The reheating effect heated by the exchanger 311 may be reduced. During the reheat dehumidification operation, the air conditioner 1 adjusts the opening degree of the indoor expansion valve 32 according to the state of the refrigerant in the second indoor heat exchanger 312. Controlling the degree of subcooling of the refrigerant prevents the condensing temperature from dropping excessively. Thereby, the air conditioner 1 can improve the reheating effect of the air in the first indoor heat exchanger 311 .
 (4-2)
 空気調和装置1では、制御部6は、再熱除湿運転の実行時に、室内膨張弁32の単位操作量に対する流量の変化が小さい小流量制御域において、副弁体323を移動させることで室内膨張弁32の開度調整を行う。これにより、制御部6は、第2室内熱交換器312へ流入する冷媒の流量を細かく調整することで、第1室内熱交換器311の出口における冷媒の過冷却度を細かく制御することができる。その結果、制御部6は、第1室内熱交換器311における空気の再熱効果をきめ細かく制御することができる。これにより、空気調和装置1は、再熱除湿運転時において、室内膨張弁32の流量特性全体にわたって開度制御を行う場合と比べて、第1室内熱交換器311における空気の再熱効果をより適切に向上させることができる。
(4-2)
In the air conditioner 1, the control unit 6 moves the sub-valve element 323 in the small flow rate control region where the change in the flow rate with respect to the unit operation amount of the indoor expansion valve 32 is small during execution of the reheat dehumidification operation, thereby expanding the room. The degree of opening of the valve 32 is adjusted. As a result, the control unit 6 can finely control the degree of subcooling of the refrigerant at the outlet of the first indoor heat exchanger 311 by finely adjusting the flow rate of the refrigerant flowing into the second indoor heat exchanger 312. . As a result, the controller 6 can finely control the air reheating effect in the first indoor heat exchanger 311 . As a result, in the reheat dehumidifying operation, the air conditioner 1 can reheat the air in the first indoor heat exchanger 311 more effectively than when the opening degree is controlled over the entire flow rate characteristic of the indoor expansion valve 32. can be improved appropriately.
 (4-3)
 空気調和装置1では、制御部6は、吐出管温度センサ27が検出した吐出管温度に基づいて、室内膨張弁32の開度制御を行ってもよい。この場合、制御部6は、所定の目標吐出管温度と、吐出管温度との比較に基づいて第2室内熱交換器312内の冷媒の状態を推定し、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、室内膨張弁32の開度制御を行う。これにより、空気調和装置1は、再熱除湿運転時に、冷媒回路100に設けられる温度センサの検出値に基づいて、第1室内熱交換器311における空気の再熱効果を適切に向上させることができる。
(4-3)
In the air conditioner 1 , the controller 6 may control the degree of opening of the indoor expansion valve 32 based on the discharge pipe temperature detected by the discharge pipe temperature sensor 27 . In this case, the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on a comparison between a predetermined target discharge pipe temperature and the discharge pipe temperature, The degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at is wet. As a result, the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
 (4-4)
 空気調和装置1では、制御部6は、吐出管温度センサ27が検出した吐出管温度と、室外熱交換器温度センサ28が検出した冷媒の凝縮温度と、室内熱交換器温度センサ36が検出した冷媒の蒸発温度とに基づいて、室内膨張弁32の開度制御を行ってもよい。この場合、制御部6は、凝縮温度及び蒸発温度から算出した目標吐出管温度と、吐出管温度との比較に基づいて第2室内熱交換器312内の冷媒の状態を推定し、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、室内膨張弁32の開度制御を行う。これにより、空気調和装置1は、再熱除湿運転時に、冷媒回路100に設けられる温度センサの検出値に基づいて、第1室内熱交換器311における空気の再熱効果を適切に向上させることができる。
(4-4)
In the air conditioner 1, the control unit 6 controls the discharge pipe temperature detected by the discharge pipe temperature sensor 27, the condensation temperature of the refrigerant detected by the outdoor heat exchanger temperature sensor 28, and the indoor heat exchanger temperature sensor 36. The degree of opening of the indoor expansion valve 32 may be controlled based on the evaporation temperature of the refrigerant. In this case, the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on a comparison between the target discharge pipe temperature calculated from the condensation temperature and the evaporation temperature, and the discharge pipe temperature. The degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at the outlet of the heat exchanger 312 becomes wet. As a result, the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
 (4-5)
 空気調和装置1では、制御部6は、室外膨張弁25及び室内膨張弁32の開度調整を適切に行うことで、再熱除湿運転と冷房運転との間を容易に切り替えることができる。具体的には、制御部6は、室外膨張弁25を全開、又は、全開に近い開度とし、室内膨張弁32を小流量制御域における開度とすることで、再熱除湿運転を実行できる。また、制御部6は、室外膨張弁25を所定の開度とし、室内膨張弁32を全開、又は、全開に近い開度とすることで、冷房運転を実行できる。
(4-5)
In the air conditioner 1, the controller 6 can easily switch between the reheat dehumidification operation and the cooling operation by appropriately adjusting the opening degrees of the outdoor expansion valve 25 and the indoor expansion valve 32. Specifically, the control unit 6 sets the outdoor expansion valve 25 to a full opening or an opening close to full opening, and sets the indoor expansion valve 32 to an opening in the small flow rate control region, thereby executing the reheat dehumidification operation. . In addition, the control unit 6 can perform the cooling operation by setting the outdoor expansion valve 25 to a predetermined opening degree and setting the indoor expansion valve 32 to a fully opened or nearly fully opened opening degree.
 (5)変形例
 (5-1)変形例A
 再熱除湿運転時では、第2室内熱交換器312の出口で冷媒が湿ってさえいれば、圧縮機21に吸入される冷媒の過熱度がある程度高くでもよい。しかし、冷房運転時には、圧縮機21に吸入される冷媒の過熱度は低い方が好ましい。そのため、制御部6は、冷房運転の実行時に圧縮機21に吸入される冷媒の湿り度合いが、再熱除湿運転の実行時に圧縮機21に吸入される冷媒の湿り度合いよりも大きくなるように、室内膨張弁32の開度調整を行ってもよい。冷媒の湿り度合いとは、冷媒の湿り蒸気中において液体の冷媒が占める重量割合である。制御部6は、冷房運転の実行時には、全流量制御域(小流量制御域及び大流量制御域)において、主弁体322及び副弁体323を移動させることで室内膨張弁32の開度調整を行う。空気調和装置1は、室外膨張弁25及び室内膨張弁32の開度調整を適切に行うことで、冷房運転と再熱除湿運転との間を適切に切り替えることができる。
(5) Modification (5-1) Modification A
During the reheat dehumidification operation, as long as the refrigerant is moist at the outlet of the second indoor heat exchanger 312, the degree of superheat of the refrigerant sucked into the compressor 21 may be somewhat high. However, during the cooling operation, it is preferable that the degree of superheat of the refrigerant sucked into the compressor 21 is low. Therefore, the control unit 6 controls the wetness degree of the refrigerant sucked into the compressor 21 when the cooling operation is executed to be higher than the wetness degree of the refrigerant sucked into the compressor 21 when the reheat dehumidification operation is executed. The degree of opening of the indoor expansion valve 32 may be adjusted. The degree of wetness of the refrigerant is the weight ratio of the liquid refrigerant in the wet vapor of the refrigerant. The control unit 6 adjusts the opening degree of the indoor expansion valve 32 by moving the main valve element 322 and the sub-valve element 323 in the entire flow rate control region (the small flow rate control region and the large flow rate control region) during execution of the cooling operation. I do. By appropriately adjusting the opening degrees of the outdoor expansion valve 25 and the indoor expansion valve 32, the air conditioner 1 can appropriately switch between the cooling operation and the reheat dehumidification operation.
 (5-2)変形例B
 制御部6は、再熱除湿運転の開始時に、室内温度センサ34が検出した室内温度、及び、室外温度センサ29が検出した室外温度に基づいて、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、小流量制御域における室内膨張弁32の開度調整を行ってもよい。この場合、空気調和装置1は、再熱除湿運転の開始時に、室内温度及び室外温度に基づいて第2室内熱交換器312内の冷媒の状態を推定して、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、室内膨張弁32の開度制御を行う。これにより、空気調和装置1は、再熱除湿運転時に、冷媒回路100に設けられる温度センサの検出値に基づいて、第1室内熱交換器311における空気の再熱効果を適切に向上させることができる。
(5-2) Modification B
At the start of the reheat dehumidifying operation, the control unit 6 controls the amount of refrigerant at the outlet of the second indoor heat exchanger 312 based on the indoor temperature detected by the indoor temperature sensor 34 and the outdoor temperature detected by the outdoor temperature sensor 29. The opening degree of the indoor expansion valve 32 may be adjusted in the small flow rate control region so that the state becomes wet. In this case, when the reheat dehumidifying operation is started, the air conditioner 1 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on the indoor temperature and the outdoor temperature, The degree of opening of the indoor expansion valve 32 is controlled so that the state of the refrigerant at the outlet becomes wet. As a result, the air conditioner 1 can appropriately improve the reheating effect of the air in the first indoor heat exchanger 311 based on the detection value of the temperature sensor provided in the refrigerant circuit 100 during the reheat dehumidification operation. can.
 (5-3)変形例C
 制御部6は、再熱除湿運転の実行時に、目標吐出管温度の代わりに、蒸発器出口温度又は圧縮機吸入温度に基づいて、第2室内熱交換器312内の冷媒の状態を推定し、第2室内熱交換器312の出口における冷媒の状態が湿り状態になるように、室内膨張弁32の開度制御を行ってもよい。蒸発器出口温度は、例えば、第2室内熱交換器312の出口付近の冷媒配管に設けられる温度センサが検出した温度である。圧縮機吸入温度は、例えば、圧縮機21の吸入側付近の冷媒配管に設けられる温度センサが検出した温度である。
(5-3) Modification C
When executing the reheat dehumidification operation, the control unit 6 estimates the state of the refrigerant in the second indoor heat exchanger 312 based on the evaporator outlet temperature or the compressor suction temperature instead of the target discharge pipe temperature, The degree of opening of the indoor expansion valve 32 may be controlled so that the refrigerant at the outlet of the second indoor heat exchanger 312 is wet. The evaporator outlet temperature is, for example, the temperature detected by a temperature sensor provided in the refrigerant pipe near the outlet of the second indoor heat exchanger 312 . The compressor suction temperature is, for example, the temperature detected by a temperature sensor provided in the refrigerant pipe near the suction side of the compressor 21 .
 この場合、例えば、制御部6は、蒸発器出口温度又は圧縮機吸入温度が所定範囲内にある場合に、第2室内熱交換器312が乾き状態にあると推定し、小流量制御域において室内膨張弁32の開度を上昇させて、第2室内熱交換器312に流入する冷媒の流量を増加させる。また、制御部6は、蒸発器出口温度又は圧縮機吸入温度が所定範囲から外れた場合に、第2室内熱交換器312の出口における冷媒の状態が湿り状態になったと推定し、室内膨張弁32の開度の変更を停止する。 In this case, for example, when the evaporator outlet temperature or the compressor suction temperature is within a predetermined range, the control unit 6 estimates that the second indoor heat exchanger 312 is in a dry state, and The degree of opening of the expansion valve 32 is increased to increase the flow rate of refrigerant flowing into the second indoor heat exchanger 312 . In addition, when the evaporator outlet temperature or the compressor suction temperature deviates from the predetermined range, the control unit 6 estimates that the state of the refrigerant at the outlet of the second indoor heat exchanger 312 has become wet, and the indoor expansion valve Stop changing the opening of 32.
 また、制御部6は、蒸発器出口温度及び圧縮機吸入温度に基づいて目標吐出管温度を算出して、実施形態と同様に目標吐出管温度に基づいて室内膨張弁32の開度制御を行ってもよい。 Further, the control unit 6 calculates the target discharge pipe temperature based on the evaporator outlet temperature and the compressor suction temperature, and controls the degree of opening of the indoor expansion valve 32 based on the target discharge pipe temperature as in the embodiment. may
 (5-4)変形例D
 制御部6は、冷房運転又は暖房運転の実行時に、吐出管温度に基づいて、室外膨張弁25の開度調整を行ってもよい。
(5-4) Modification D
The control unit 6 may adjust the degree of opening of the outdoor expansion valve 25 based on the discharge pipe temperature during execution of the cooling operation or the heating operation.
 (5-5)変形例E
 リモコン7は、制御部6が実行している運転の種類(冷房運転、暖房運転、及び、再熱除湿運転)、及び、再熱除湿運転の運転モード(第1モード及び第2モード)を、表示部71に表示してもよい。
(5-5) Modification E
The remote controller 7 controls the type of operation being executed by the control unit 6 (cooling operation, heating operation, and reheat dehumidification operation), and the operation mode of the reheat dehumidification operation (first mode and second mode), It may be displayed on the display unit 71 .
 (5-6)変形例F
 制御部6は、例えば、室内の湿度に基づいて、再熱除湿運転と冷房運転とを自動的に切り換えて実行してもよい。この場合、制御部6は、室内ユニット3のケーシングに流入する空気の湿度を検出する湿度センサから、室内の湿度を取得する。
(5-6) Modification F
For example, the control unit 6 may automatically switch between the reheat dehumidifying operation and the cooling operation based on the indoor humidity. In this case, the controller 6 acquires the indoor humidity from a humidity sensor that detects the humidity of the air flowing into the casing of the indoor unit 3 .
 (5-7)変形例G
 実施形態に係る空気調和装置1では、制御部6は、除湿能力が互いに異なる運転モードである第1モードと第2モードとの間を切り換えて、再熱除湿運転を実行する。しかし、制御部6が、再熱除湿運転時に切り換えることができる運転モードの数は3つ以上であってもよい。この場合、各運転モードにおける室内膨張弁32の開度は、互いに異なるように設定される。
(5-7) Modification G
In the air conditioner 1 according to the embodiment, the control unit 6 performs the reheat dehumidification operation by switching between the first mode and the second mode, which are operation modes with different dehumidification capabilities. However, the number of operation modes that the controller 6 can switch to during the reheat dehumidification operation may be three or more. In this case, the degree of opening of the indoor expansion valve 32 in each operation mode is set differently.
 (5-8)変形例H
 実施形態に係る空気調和装置1では、制御部6は、第1モード又は第2モードで再熱除湿運転を開始する。この場合、空気調和装置1は、再熱除湿運転の開始時に第1モード及び第2モードのいずれを実行するかを判断してもよい。
(5-8) Modification H
In the air conditioner 1 according to the embodiment, the controller 6 starts the reheat dehumidifying operation in the first mode or the second mode. In this case, the air conditioner 1 may determine which of the first mode and the second mode should be executed when the reheat dehumidifying operation is started.
 例えば、制御部6は、前回の再熱除湿運転を終了する際に、第1モード及び第2モードのいずれが実行されていたのかについての情報を記憶装置に記録して、次に再熱除湿運転を開始する際に当該情報を参照して、再熱除湿運転の開始時に第1モード及び第2モードのいずれを実行するかを判断してもよい。 For example, when the previous reheat dehumidification operation is terminated, the control unit 6 records information about which of the first mode and the second mode was being executed in the storage device, and then the reheat dehumidification operation is completed. When starting the operation, the information may be referenced to determine which of the first mode and the second mode is to be executed when the reheat dehumidifying operation is started.
 また、制御部6は、時間帯ごとに、第1モード及び第2モードのいずれを一般的に実行するのかについての情報を記憶装置に記録し、再熱除湿運転を開始する際に当該情報を参照して、再熱除湿運転の開始時に第1モード及び第2モードのいずれを実行するかを判断してもよい。 In addition, the control unit 6 records information about which of the first mode and the second mode is generally executed for each time period in the storage device, and stores the information when starting the reheat dehumidification operation. By referring to it, it may be determined which of the first mode and the second mode is to be executed at the start of the reheat dehumidifying operation.
 ―むすび―
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
- Conclusion -
Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
  1  :空気調和装置
  2  :室外ユニット(第1ユニット)
  3  :室内ユニット(第2ユニット)
  6  :制御部
 21  :圧縮機
 21c :吐出管
 24  :室外熱交換器(第1熱交換器)
 27  :吐出管温度センサ(第1温度センサ)
 28  :室外熱交換器温度センサ(第2温度センサ)
 29  :室外温度センサ(第5温度センサ)
 311 :第1室内熱交換器(第2熱交換器)
 312 :第2室内熱交換器(第3熱交換器)
 32  :室内膨張弁(膨張弁)
 321 :弁室(第1弁座)
 321b:主弁ポート(第1弁ポート)
 322 :主弁体(第1部材)
 322a:副弁ポート(第2弁ポート)
 323 :副弁体(第2部材)
 34  :室内温度センサ(第4温度センサ)
 36  :室内熱交換器温度センサ(第3温度センサ)
100  :冷媒回路
1: Air conditioner 2: Outdoor unit (first unit)
3: Indoor unit (second unit)
6: control unit 21: compressor 21c: discharge pipe 24: outdoor heat exchanger (first heat exchanger)
27: discharge pipe temperature sensor (first temperature sensor)
28: outdoor heat exchanger temperature sensor (second temperature sensor)
29: outdoor temperature sensor (fifth temperature sensor)
311: First indoor heat exchanger (second heat exchanger)
312: Second indoor heat exchanger (third heat exchanger)
32: Indoor expansion valve (expansion valve)
321: Valve chamber (first valve seat)
321b: Main valve port (first valve port)
322: Main valve body (first member)
322a: Sub-valve port (second valve port)
323: Sub-valve body (second member)
34: indoor temperature sensor (fourth temperature sensor)
36: Indoor heat exchanger temperature sensor (third temperature sensor)
100: Refrigerant circuit
特開2020-34140号公報Japanese Patent Application Laid-Open No. 2020-34140

Claims (8)

  1.  圧縮機(21)及び第1熱交換器(24)を有する第1ユニット(2)と、
     第2熱交換器(311)、膨張弁(32)及び第3熱交換器(312)を有する第2ユニット(3)と、
     前記圧縮機、前記第1熱交換器、前記第2熱交換器、前記膨張弁及び前記第3熱交換器が環状に接続され、冷媒が循環する冷媒回路(100)と、
     前記冷媒回路を制御して、前記第1熱交換器及び前記第2熱交換器を凝縮器として機能させ、かつ、前記第3熱交換器を蒸発器として機能させる第1運転を実行する制御部(6)と、
    を備え、
     前記膨張弁は、前記膨張弁の開度調整を行う第1部材(322)及び第2部材(323)を有し、
     前記第2部材は、前記膨張弁を通過する前記冷媒の流量が第1範囲にある時の前記開度調整を行い、
     前記第1部材は、前記膨張弁を通過する前記冷媒の流量が前記第1範囲よりも大きい時の前記開度調整を行い、
     前記制御部は、前記第1運転の実行時において、前記第3熱交換器の出口における前記冷媒の状態が湿り状態になるように、前記膨張弁を制御して前記第2部材による前記開度調整を行う、
    空気調和装置(1)。
    a first unit (2) comprising a compressor (21) and a first heat exchanger (24);
    a second unit (3) comprising a second heat exchanger (311), an expansion valve (32) and a third heat exchanger (312);
    a refrigerant circuit (100) in which the compressor, the first heat exchanger, the second heat exchanger, the expansion valve, and the third heat exchanger are connected in a ring, and a refrigerant circulates;
    A control unit that controls the refrigerant circuit to perform a first operation in which the first heat exchanger and the second heat exchanger function as condensers and the third heat exchanger functions as an evaporator. (6) and
    with
    The expansion valve has a first member (322) and a second member (323) for adjusting the degree of opening of the expansion valve,
    The second member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is within the first range,
    The first member adjusts the degree of opening when the flow rate of the refrigerant passing through the expansion valve is greater than the first range,
    When the first operation is executed, the control unit controls the expansion valve so that the state of the refrigerant at the outlet of the third heat exchanger becomes wet, and the degree of opening by the second member is controlled. make adjustments,
    An air conditioner (1).
  2.  前記圧縮機の吐出側に接続され、前記圧縮機によって圧縮された前記冷媒が流れる吐出管(21c)と、
     前記吐出管の温度を検出する第1温度センサ(27)と、
    をさらに備え、
     前記制御部は、前記第1温度センサが検出した温度に基づいて、前記第1運転の実行時において、前記第3熱交換器の出口における前記冷媒の状態が湿り状態になるように、前記第2部材による前記開度調整を行う、
    請求項1に記載の空気調和装置。
    a discharge pipe (21c) connected to the discharge side of the compressor and through which the refrigerant compressed by the compressor flows;
    a first temperature sensor (27) for detecting the temperature of the discharge pipe;
    further comprising
    The control unit controls the temperature detected by the first temperature sensor so that the refrigerant at the outlet of the third heat exchanger becomes wet during execution of the first operation. performing the opening degree adjustment by two members;
    The air conditioner according to claim 1.
  3.  前記第1熱交換器の温度を検出する第2温度センサ(28)と、
     前記膨張弁と前記第3熱交換器とを接続する配管の温度を検出する第3温度センサ(36)と、
    をさらに備え、
     前記制御部は、
      前記第2温度センサ及び前記第3温度センサが検出した温度に基づいて、前記吐出管の目標温度を算出し、
      前記目標温度、及び、前記第1温度センサが検出した温度に基づいて、前記第1運転の実行時において、前記第3熱交換器の出口における前記冷媒の状態が湿り状態になるように、前記第2部材による前記開度調整を行う、
    請求項2に記載の空気調和装置。
    a second temperature sensor (28) for detecting the temperature of the first heat exchanger;
    a third temperature sensor (36) for detecting the temperature of a pipe connecting the expansion valve and the third heat exchanger;
    further comprising
    The control unit
    calculating a target temperature of the discharge pipe based on the temperatures detected by the second temperature sensor and the third temperature sensor;
    Based on the target temperature and the temperature detected by the first temperature sensor, when the first operation is executed, the refrigerant is in a wet state at the outlet of the third heat exchanger performing the opening degree adjustment by the second member;
    The air conditioner according to claim 2.
  4.  前記膨張弁は、前記冷媒が通過する第1弁ポート(321b)を形成する第1弁座(321)をさらに有し、
     前記第1部材は、前記冷媒が通過する第2弁ポート(322a)を形成し、
     前記制御部は、
      前記第1部材の位置を制御して前記第1弁ポートの開度を変更することで、前記第1部材による前記開度調整を行い、
      前記第2部材の位置を制御して前記第2弁ポートの開度を変更することで、前記第2部材による前記開度調整を行う、
    請求項1から3のいずれか1項に記載の空気調和装置。
    the expansion valve further comprises a first valve seat (321) forming a first valve port (321b) through which the refrigerant passes;
    the first member forms a second valve port (322a) through which the refrigerant passes;
    The control unit
    adjusting the opening degree by the first member by changing the opening degree of the first valve port by controlling the position of the first member;
    Adjusting the opening degree by the second member by changing the opening degree of the second valve port by controlling the position of the second member;
    The air conditioner according to any one of claims 1 to 3.
  5.  前記制御部は、前記第1運転の実行時において、前記第1弁ポートの開度が所定値以下の状態で、前記第2部材による前記開度調整を行う、
    請求項4に記載の空気調和装置。
    The control unit performs the opening degree adjustment by the second member when the opening degree of the first valve port is equal to or less than a predetermined value during execution of the first operation.
    The air conditioner according to claim 4.
  6.  前記制御部は、
      前記冷媒回路を制御して、前記第1熱交換器を凝縮器として機能させ、かつ、前記第2熱交換器及び前記第3熱交換器を蒸発器として機能させる第2運転をさらに実行し、
      前記第2運転の実行時において、前記膨張弁を通過する前記冷媒が減圧しないように、前記膨張弁を制御して前記第1部材及び前記第2部材による前記開度調整を行う、
    請求項1から5のいずれか1項に記載の空気調和装置。
    The control unit
    further performing a second operation in which the refrigerant circuit is controlled to cause the first heat exchanger to function as a condenser and the second heat exchanger and the third heat exchanger to function as evaporators;
    During execution of the second operation, the expansion valve is controlled such that the refrigerant passing through the expansion valve is not decompressed, and the opening is adjusted by the first member and the second member;
    The air conditioner according to any one of claims 1 to 5.
  7.  前記制御部は、前記第2運転の実行時において前記圧縮機に吸入される前記冷媒の湿り度合いが、前記第1運転の実行時において前記圧縮機に吸入される前記冷媒の湿り度合いよりも大きくなるように、前記第1部材及び前記第2部材による前記開度調整を行う、
    請求項6に記載の空気調和装置。
    The control unit controls that the wetness degree of the refrigerant sucked into the compressor during execution of the second operation is greater than the wetness degree of the refrigerant sucked into the compressor during execution of the first operation. Adjust the opening degree by the first member and the second member so that
    The air conditioner according to claim 6.
  8.  前記第2ユニットが設置される空間の温度を検出する第4温度センサ(34)と、
     前記第1ユニットが設置される空間の温度を検出する第5温度センサ(29)と、
    をさらに備え、
     前記制御部は、前記第1運転の開始時において、前記第4温度センサ及び前記第5温度センサが検出した温度に基づいて、前記第3熱交換器の出口における前記冷媒の状態が湿り状態になるように、前記第2部材による前記開度調整を行う、
    請求項1から7のいずれか1項に記載の空気調和装置。
    a fourth temperature sensor (34) for detecting the temperature of the space in which the second unit is installed;
    a fifth temperature sensor (29) for detecting the temperature of the space in which the first unit is installed;
    further comprising
    At the start of the first operation, the control unit changes the state of the refrigerant at the outlet of the third heat exchanger to a wet state based on the temperatures detected by the fourth temperature sensor and the fifth temperature sensor. Adjust the opening degree by the second member so that
    The air conditioner according to any one of claims 1 to 7.
PCT/JP2022/039522 2021-10-26 2022-10-24 Air conditioning device WO2023074621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280071455.5A CN118159790A (en) 2021-10-26 2022-10-24 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174436 2021-10-26
JP2021174436A JP7284421B2 (en) 2021-10-26 2021-10-26 air conditioner

Publications (1)

Publication Number Publication Date
WO2023074621A1 true WO2023074621A1 (en) 2023-05-04

Family

ID=86157810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039522 WO2023074621A1 (en) 2021-10-26 2022-10-24 Air conditioning device

Country Status (3)

Country Link
JP (1) JP7284421B2 (en)
CN (1) CN118159790A (en)
WO (1) WO2023074621A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375449A (en) * 1986-09-18 1988-04-05 三洋電機株式会社 Heat pump type refrigerator
JPH06272973A (en) * 1993-03-24 1994-09-27 Daikin Ind Ltd Air conditioner
JP2002098430A (en) * 2000-07-21 2002-04-05 Nippon Soken Inc Heat pump cycle
JP2012057894A (en) * 2010-09-10 2012-03-22 Daikin Industries Ltd Refrigerating device for container
JP2020034140A (en) * 2018-08-31 2020-03-05 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375449A (en) * 1986-09-18 1988-04-05 三洋電機株式会社 Heat pump type refrigerator
JPH06272973A (en) * 1993-03-24 1994-09-27 Daikin Ind Ltd Air conditioner
JP2002098430A (en) * 2000-07-21 2002-04-05 Nippon Soken Inc Heat pump cycle
JP2012057894A (en) * 2010-09-10 2012-03-22 Daikin Industries Ltd Refrigerating device for container
JP2020034140A (en) * 2018-08-31 2020-03-05 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP2023064264A (en) 2023-05-11
CN118159790A (en) 2024-06-07
JP7284421B2 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP4032634B2 (en) Air conditioner
KR101355689B1 (en) Air conditioning system and accumulator thereof
JP3835453B2 (en) Air conditioner
JP6332537B2 (en) Air conditioner
WO2022110771A1 (en) Air conditioner
JP4068927B2 (en) Air conditioner
JP3410859B2 (en) Air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
EP1696125A1 (en) Capacity-variable air conditioner
JP7284421B2 (en) air conditioner
JP4039100B2 (en) Air conditioner
JP2002147819A (en) Refrigeration unit
WO2020250986A1 (en) Refrigerant cycle system
JP7495625B2 (en) Air Conditioning Equipment
JP2003139436A (en) Air conditioner
JP4483141B2 (en) Air conditioner
JP3661014B2 (en) Refrigeration equipment
KR100639488B1 (en) Air conditional and overload controlling method the same
JP7248922B2 (en) air conditioner
JP7343801B2 (en) air conditioner
JP7216309B2 (en) air conditioner
JP7491334B2 (en) Air conditioners
KR100535687B1 (en) A Multi-type Air Conditioner
JP7485962B2 (en) Air Conditioning Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE