WO2023074375A1 - Electrolytic capacitor and method for manufacturing electrolytic capacitor - Google Patents

Electrolytic capacitor and method for manufacturing electrolytic capacitor Download PDF

Info

Publication number
WO2023074375A1
WO2023074375A1 PCT/JP2022/038076 JP2022038076W WO2023074375A1 WO 2023074375 A1 WO2023074375 A1 WO 2023074375A1 JP 2022038076 W JP2022038076 W JP 2022038076W WO 2023074375 A1 WO2023074375 A1 WO 2023074375A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead terminal
plasma
anode
cathode
resin
Prior art date
Application number
PCT/JP2022/038076
Other languages
French (fr)
Japanese (ja)
Inventor
正典 柏原
敦 加藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023074375A1 publication Critical patent/WO2023074375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to electrolytic capacitors and manufacturing methods thereof.
  • An electrolytic capacitor includes a capacitor element, lead terminals (anode lead terminal and cathode lead terminal) connected to the capacitor element, and an exterior body.
  • the exterior body contains resin and covers a part of the lead terminal and the capacitor element.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 5-021290 describes that ⁇ an anodized film formed on a plate or foil made of a valve metal is used as a dielectric, and a dielectric polymer layer and a dielectric A capacitor element is formed by sequentially forming layers, a lead frame serving as a lead-out terminal is connected to the valve metal portion and the conductor layer portion of the capacitor element, and a part of the capacitor element and the lead frame is molded resin.
  • a solder alloy layer or a tin metal layer with a copper metal layer as a base is formed on the surface of the lead frame other than the portion in contact with the mold resin, and the lead frame portion in contact with the mold resin.
  • the manufacturing method is a method for manufacturing an electrolytic capacitor including a capacitor element having an anode portion and a cathode portion, wherein an anode lead terminal is electrically connected to the anode portion and a cathode lead terminal is electrically connected to the cathode portion.
  • step (ii) of covering a part of the anode lead terminal, a part of the cathode lead terminal, and the capacitor element with an exterior body containing resin in this order
  • plasma treatment is applied to at least part of the metal surface of at least one lead terminal selected from the group consisting of the anode lead terminal and the cathode lead terminal, so that the at least part is exposed to plasma.
  • the method further includes a plasma treatment step of treating the surface to be treated, wherein in the step (ii), at least part of the plasma treated surface is covered with the exterior body.
  • the electrolytic capacitor includes a capacitor element including an anode portion and a cathode portion, and lead terminals including an anode lead terminal electrically connected to the anode portion and a cathode lead terminal electrically connected to the cathode portion.
  • FIG. 1 is a cross-sectional view schematically showing an example of one step of the manufacturing method of Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view schematically showing an example of a process following the process shown in FIG.
  • one object of the present disclosure is to provide an electrolytic capacitor with higher reliability.
  • a manufacturing method is a manufacturing method of an electrolytic capacitor including a capacitor element having an anode portion and a cathode portion.
  • the manufacturing method may be hereinafter referred to as “manufacturing method (M)”.
  • Manufacturing method (M) includes step (i) and step (ii) in this order, and further includes a plasma treatment step. These steps are described below.
  • Step (i) is a step of electrically connecting the anode lead terminal to the anode portion of the capacitor element and electrically connecting the cathode lead terminal to the cathode portion of the capacitor element.
  • the anode lead terminal and the cathode lead terminal may be collectively referred to as "lead terminals”.
  • the method of connecting the lead terminal and the capacitor element there is no particular limitation on the method of connecting the lead terminal and the capacitor element, and a known method may be used for connection.
  • the anode lead terminal and the anode part eg, anode wire
  • the cathode lead terminal and the cathode section may be connected by a conductive layer.
  • the conductive layer may be formed using a metal paste (eg, silver paste) containing metal particles (eg, silver particles) and resin.
  • a plasma treatment step is performed before step (ii).
  • the plasma treatment step may be performed before step (i) or after step (i) and before step (ii).
  • the plasma treatment step is a step of subjecting at least a portion of the metal surface of at least one lead terminal selected from the group consisting of an anode lead terminal and a cathode lead terminal to a plasma treatment, thereby making the at least a portion a plasma-treated surface.
  • the surface of the metal surface of the lead terminal that is subjected to plasma treatment may be referred to as the "treated surface".
  • the surface to be treated can be made hydrophilic and the surface to be treated can be cleaned.
  • the surface to be treated hydrophilic it is possible to make it easier for the resin in the exterior body to adsorb to the surface to be treated.
  • the adhesion of the exterior body to the surface to be treated can be improved.
  • the adhesion of the exterior body to the surface to be treated (lead terminal surface) can be improved.
  • the plasma processing conditions can be selected according to the purpose, and known plasma processing conditions may be adopted.
  • the surface to be treated is hydrophilized, for example, atmospheric pressure low temperature plasma treatment may be used.
  • hydrophilic groups for example, hydroxyl groups, carbonyl groups, carboxyl groups, etc.
  • Atmospheric pressure low temperature plasma treatment may be performed under known conditions. Nitrogen gas, argon gas, hydrogen gas, helium gas, or oxygen gas may be used as the plasma gas of the atmospheric pressure low-temperature plasma. good too. An example of processing conditions for atmospheric pressure low temperature plasma is shown below.
  • Nitrogen gas pressure 0.3 to 0.5 MPa
  • Nitrogen gas flow rate 20 to 30 L/min
  • Irradiation distance 5 to 30 mm
  • the plasma treatment may be performed under known plasma cleaning conditions.
  • the plasma treatment is performed with the lead terminal connected to the capacitor element.
  • plasma treatment may be performed on the metal sheet including portions to be a plurality of lead terminals.
  • the metal sheet to be plasma-treated may be pre-punched and/or bent according to the shape of the lead terminal, or may be a metal sheet before these processes.
  • Plasma treatment of the metal sheet results in a plasma treated surface on the surface of the lead terminal included therein.
  • the metal sheet is plasma-treated, only one side of the metal sheet may be plasma-treated, or both sides of the metal sheet may be plasma-treated.
  • Step (ii) is a step of covering a portion of the anode lead terminal, a portion of the cathode lead terminal, and the capacitor element with an exterior body containing a resin. In step (ii), at least part of the plasma-treated surface is covered with an outer covering.
  • step (ii) there is no particular limitation on step (ii), and a known method may be adopted.
  • an exterior body may be formed by a predetermined method (transfer molding, injection molding, or the like) using a resin composition for the exterior body.
  • An electrolytic capacitor is obtained by step (ii). When a plurality of electrolytic capacitors are collectively formed at once, each electrolytic capacitor is separated after step (ii), if necessary.
  • surfaces of the lead terminals 30% or more, 50% or more, or 80% or more of the surfaces in contact with the outer package are preferably plasma-treated surfaces. All of the surfaces of the lead terminals that come into contact with the outer package may be plasma-treated surfaces.
  • the resin contained in the exterior body contains at least one selected from the group consisting of epoxy resins and phenol resins.
  • the resin contained in the exterior body may contain epoxy resin, phenol resin, or both.
  • the plasma-treated surface is hydrophilized by plasma treatment.
  • Epoxy resins and phenolic resins are particularly prone to adsorption on hydrophilic metal surfaces. Therefore, when the conditions (1) and (2) are satisfied, the adhesion between the outer package and the lead terminals can be particularly improved.
  • the ratio of the at least one resin of condition (1) in the exterior body may be 3% by mass or more, 5% by mass or more, or 10% by mass or more, It may be 100% by mass or less, 40% by mass or less, or 20% by mass or less.
  • the percentage may be in the range of 3% to 40%, 3% to 20%, or 5% to 20% by weight.
  • the cathode lead terminal is connected to the cathode portion by a conductive layer containing metal particles and a resin containing at least one selected from the group consisting of epoxy resin, urethane resin, and phenol resin. . Additionally, a portion of the plasma-treated surface contacts the conductive layer.
  • the conductive layer may contain an epoxy resin, a urethane resin, a phenol resin, or two of them. , may include all three of them.
  • the proportion of the at least one resin in the condition (3) in the conductive layer is in the range of 1% by mass to 50% by mass (for example, the range of 3% by mass to 20% by mass). may be in
  • step (ii) is preferably performed within 72 hours, and step (ii) may be performed within 48 hours or 24 hours.
  • Plasma treated surfaces become less effective over time when left in the atmosphere. Therefore, it is preferable to perform step (ii) while the effect of the plasma-treated surface is sufficiently obtained.
  • the lead terminals that have undergone the plasma treatment step for example, the metal sheet including the part that will become the lead terminal
  • the lead terminals that have undergone the plasma treatment step are placed under reduced pressure and/or at a low temperature ( For example, it is preferably stored at 20° C. or lower. At this time, it is preferable to store the metal sheet including the portions to be the plurality of lead terminals in a state in which the plurality of metal sheets are stacked.
  • the lead terminal may be composed of only the base material, or may include the base material and a metal layer (for example, a plated layer) formed on the surface of the base material.
  • the metal surface to be plasma treated may contain at least one selected from the group consisting of copper, gold, nickel, tin, lead, bismuth, silver, zinc, iron, chromium, and palladium.
  • the manufacturing method (M) may further include a step of roughening at least part of the surface of the lead terminal before step (i) and before the plasma treatment step. In that case, it is preferable to subject at least part of the roughened surface to plasma treatment in the plasma treatment step. With this configuration, the area of the surface to be plasma treated can be increased. This configuration also provides the anchoring effect of the roughened surface. Due to these effects, the adhesion between the outer package and the lead terminals can be particularly enhanced.
  • the roughening method is not particularly limited, and a known sandblasting method, etching method, or the like may be used.
  • the surface of the lead terminal may be roughened by irradiating the lead terminal with laser light (for example, pulsed laser light).
  • electrolytic capacitor An electrolytic capacitor according to an embodiment of the present disclosure will be described below.
  • the electrolytic capacitor may be hereinafter referred to as "electrolytic capacitor (C)".
  • the method for manufacturing the electrolytic capacitor (C) is not limited, it can be manufactured by the manufacturing method (M). Since the matters described for the manufacturing method (M) can be applied to the electrolytic capacitor (C), redundant description may be omitted. Also, the matters described for the electrolytic capacitor (C) may be applied to the manufacturing method (M).
  • the electrolytic capacitor (C) includes a capacitor element, lead terminals, and an exterior body.
  • the capacitor element includes an anode portion and a cathode portion.
  • the lead terminals include an anode lead terminal electrically connected to the anode section and a cathode lead terminal electrically connected to the cathode section.
  • the exterior body covers a portion of the lead terminal and the capacitor element.
  • the exterior body contains resin. At least part of the surface of the lead terminal that is in contact with the outer package is a plasma-treated surface.
  • the electrolytic capacitor (C) As described with respect to the manufacturing method (M), according to the electrolytic capacitor (C), it is possible to improve the adhesion between the exterior body and the lead terminals. As a result, it is possible to realize an electrolytic capacitor that is less likely to deteriorate due to moisture, oxygen, or the like, and has high reliability.
  • the resin contained in the exterior body preferably contains at least one selected from the group consisting of epoxy resins and phenol resins.
  • the plasma-treated surface may have hydrophilic groups, and the resin of the exterior body (for example, the at least one resin described above) may be adsorbed to the plasma-treated surface via the hydrophilic groups.
  • the adsorption of the resin to the plasma-treated surface includes chemical adsorption and physical adsorption. Chemisorption is adsorption through chemical bonds, and includes, for example, the reaction of hydrophilic groups formed on the plasma-treated surface with resin to form bonds.
  • the cathode lead terminal may be connected to the cathode portion by a conductive layer containing metal particles and a resin containing at least one selected from the group consisting of epoxy resin, urethane resin, and phenol resin.
  • the plasma-treated surface may have hydrophilic groups, and the resin of the conductive layer (for example, the at least one resin described above) may be adsorbed to the plasma-treated surface via the hydrophilic groups.
  • At least part of the surface of the lead terminal may be roughened, and at least part of the plasma-treated surface may be roughened.
  • An example of the configuration and components of the electrolytic capacitor manufactured by the manufacturing method (M) and the electrolytic capacitor (C) will be described below.
  • An example electrolytic capacitor described below includes a capacitor element, an outer casing, an anode lead terminal, and a cathode lead terminal.
  • the configuration and components of the electrolytic capacitor manufactured by the manufacturing method (M) and the electrolytic capacitor (C) are not limited to the following examples.
  • capacitor element includes an anode portion, a dielectric layer, and a cathode portion. There is no particular limitation on the capacitor element, and capacitor elements used in known solid electrolytic capacitors may be used.
  • the anode part includes an anode body and may further include an anode wire.
  • the anode body may be a porous sintered body or a metal foil with a porous surface.
  • a dielectric layer is formed on at least a portion of the surface of the anode body.
  • the cathode section includes an electrolyte layer and a cathode extraction layer. The electrolyte layer is arranged between the dielectric layer formed on the surface of the anode body and the cathode extraction layer.
  • a valve action metal can be used as the material of the anode body. Titanium (Ti), tantalum (Ta), niobium (Nb), aluminum (Al), and alloys containing these are used as valve metals.
  • the anode body may be formed by sintering material particles (for example, valve metal particles) or by etching material metal.
  • the dielectric layer formed on the surface of the anode body may be formed by subjecting the surface of the anode body to chemical conversion treatment.
  • the chemical conversion treatment method is not limited, and a known chemical conversion treatment method may be applied.
  • the anode portion can include an anode wire.
  • the anode wire may be a wire made of metal. Examples of anode wire materials include the valve metals and copper described above. A portion of the anode wire is embedded in the anode body and the remaining portion protrudes from the end face of the anode body.
  • the electrolyte layer is not particularly limited, and electrolyte layers used in known solid electrolytic capacitors may be applied.
  • the electrolyte layer may be read as a solid electrolyte layer, and the electrolytic capacitor may be read as a solid electrolytic capacitor.
  • the electrolyte layer may be a laminate of two or more different electrolyte layers.
  • the electrolyte layer is arranged to cover at least part of the dielectric layer.
  • the electrolyte layer may be formed using a manganese compound or a conductive polymer.
  • conductive polymers include polypyrrole, polythiophene, polyaniline, derivatives thereof, and the like. These may be used independently and may be used in combination of multiple types.
  • the conductive polymer may be a copolymer of two or more monomers.
  • a derivative of a conductive polymer means a polymer having a conductive polymer as a basic skeleton.
  • examples of derivatives of polythiophene include poly(3,4-ethylenedioxythiophene) and the like.
  • a dopant is preferably added to the conductive polymer.
  • a dopant can be selected depending on the conductive polymer, and a known dopant may be used. Examples of dopants include naphthalenesulfonic acid, p-toluenesulfonic acid, polystyrenesulfonic acid, and salts thereof.
  • An example electrolyte layer is formed using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS).
  • the electrolyte layer containing the conductive polymer may be formed by polymerizing raw material monomers on the dielectric layer. Alternatively, it may be formed by applying a liquid containing a conductive polymer (and a dopant if necessary) to the dielectric layer and then drying it.
  • the cathode extraction layer is a conductive layer and is arranged to cover at least a portion of the electrolyte layer.
  • the cathode extraction layer may include a carbon layer formed on the electrolyte layer and a metal paste layer formed on the carbon layer.
  • the carbon layer may be formed of a conductive carbon material such as graphite and a resin.
  • the metal paste layer may be formed of metal particles (for example, silver particles) and resin, and may be formed of a known silver paste, for example.
  • the cathode lead terminal includes a cathode terminal portion exposed at the bottom surface of the electrolytic capacitor and a connecting portion connected to the cathode terminal portion.
  • the connecting portion is electrically connected to the cathode portion.
  • the connection may be connected to the cathode extraction layer by a conductive layer (eg, silver paste layer) or the like.
  • the anode lead terminal includes an anode terminal portion exposed at the bottom surface of the electrolytic capacitor and a wire connection portion connected to the anode terminal portion. A wire connection is connected to the anode wire.
  • a lead terminal may be formed by processing a metal sheet (including a metal plate and a metal foil) made of metal (copper, copper alloy, etc.) by a known metalworking method.
  • the thickness of the lead terminal is not particularly limited, and may be in the range of 25 ⁇ m to 200 ⁇ m (for example, in the range of 25 ⁇ m to 100 ⁇ m).
  • the lead terminal may include a base material made of the metal described above and a plated layer formed on the base material. You may form a plating layer by a well-known method.
  • the plated layer is made of metal (including alloys) such as nickel, gold, palladium, tin, and copper, and may include a nickel layer, a gold layer, a palladium layer, a tin layer, a copper layer, and the like.
  • plated layers may be laminated on the substrate in the order of a nickel layer, a gold layer, and a palladium layer.
  • the exterior body is arranged around the capacitor element so that the capacitor element is not exposed on the surface of the electrolytic capacitor. Furthermore, the exterior body is arranged so as to cover part of the anode lead frame and part of the cathode lead frame.
  • the exterior body usually contains a resin (insulating resin) and an insulating filler.
  • the exterior body may be formed of a resin composition containing an insulating resin and an insulating filler (for example, an inorganic filler).
  • the resin composition may contain a curing agent, a polymerization initiator, and/or a catalyst in addition to the insulating resin and insulating filler.
  • insulating resins include epoxy resin, phenolic resin, urea resin, polyimide, polyamideimide, polyurethane, diallyl phthalate, unsaturated polyester, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), and the like.
  • the resin contained in the exterior body may be of one type, or may be of two or more types.
  • insulating fillers include insulating particles and insulating fibers.
  • the insulating material that constitutes the insulating filler include insulating compounds (such as oxides) such as silica and alumina, glass, and mineral materials (such as talc, mica, and clay).
  • the insulating filler contained in the exterior body may be of one type, or may be of two or more types.
  • Embodiment 1 describes an example of a manufacturing method according to the present disclosure.
  • lead terminals 200 anode lead terminal 210 and cathode lead terminal 220
  • capacitor element 110 as shown in FIG.
  • the end of anode lead terminal 210 is connected to anode portion 111 of capacitor element 110
  • the cathode lead terminal 220 is connected to cathode portion 115 of capacitor element 110 (step (i)).
  • the anode lead terminal 210 is connected to the end of the anode wire 112 of the anode section 111 by welding or the like.
  • Cathode lead terminal 220 is connected to cathode extraction layer 117 of cathode section 115 via conductive layer 141 .
  • the plurality of lead terminals 200 may be formed by processing (punching or bending) a portion of the metal sheet M.
  • a plurality of capacitor elements 110 are arranged on each of the plurality of lead terminals 200 .
  • Capacitor element 110 includes anode portion 111 , dielectric layer 114 and cathode portion 115 .
  • Anode section 111 includes anode body 113 and anode wire 112 .
  • Anode body 113 is a rectangular parallelepiped porous sintered body, and dielectric layer 114 is formed on the surface thereof.
  • a portion of anode wire 112 protrudes from one end face of anode body 113 toward front face 100f of electrolytic capacitor 100 (see FIG. 2).
  • the other portion of anode wire 112 is embedded in anode body 113 .
  • the cathode section 115 includes an electrolyte layer 116 arranged to cover at least a portion of the dielectric layer 114 and a cathode extraction layer 117 formed on the electrolyte layer 116 .
  • the cathode extraction layer 117 includes, for example, a carbon layer formed on the electrolyte layer 116 and a metal particle layer formed on the carbon layer.
  • the metal particle layer is, for example, a metal paste layer (for example, silver paste layer) formed using a metal paste.
  • the anode lead terminal 210 includes an anode terminal portion 211 and a wire connection portion 212 .
  • Anode terminal portion 211 is exposed at bottom surface 100b of electrolytic capacitor 100 (see FIG. 2).
  • Wire connection 212 is connected to anode wire 112 .
  • Cathode lead terminal 220 includes a cathode terminal portion 221 and a connection portion 222 .
  • Cathode terminal portion 221 is exposed at bottom surface 100 b of electrolytic capacitor 100 .
  • the connection portion 222 is electrically connected to the cathode extraction layer 117 (cathode portion 115 ) through the conductive layer 141 .
  • the lead terminal 200 and the capacitor element 110 in the state shown in FIG. 1 are subjected to the plasma treatment described above.
  • plasma processing is performed with the bottom surface 100b placed on the processing stage side of the plasma processing apparatus.
  • the surface 200a of the lead terminal 200 other than the portion existing on the bottom surface 100b side is exposed to plasma and becomes a plasma-treated surface (plasma-treated surface 200b in FIG. 2).
  • the plasma-treated surface can be the surface that comes into contact with the exterior body in a later step.
  • the surface of the anode wire 112 can also be a plasma-treated surface.
  • the adhesion between anode wire 112 and the outer package can also be improved.
  • the lead terminal 200 When the lead terminal 200 is plasma-treated before connecting it to the capacitor element 110, first, only the lead terminal 200 is plasma-treated.
  • the plasma treatment may be performed after part of the metal sheet is processed into the shape of the lead terminal 200 (for example, the shape shown in FIG. 1). Plasma treatment may be performed before processing the .
  • the entire surface of the portion of the lead terminal 200 that comes into contact with the exterior body can be plasma-processed by one plasma processing.
  • the lead terminal 200 is connected to the capacitor element 110 as shown in FIG.
  • a portion of lead terminal 200 (a portion of anode lead terminal 210 and a portion of cathode lead terminal 220) and capacitor element 110 are covered with exterior body 150.
  • the plasma-treated surface 200 b of the lead terminal 200 is covered with the exterior body 150 .
  • the effects described above can be obtained.
  • a plurality of electrolytic capacitors are individually separated as needed. Thus, an electrolytic capacitor is manufactured.
  • the present disclosure can be used for electrolytic capacitors and manufacturing methods thereof.
  • Electrolytic capacitor 110 Capacitor element 111: Anode part 115: Cathode part 141: Conductive layer 150: Exterior body 200: Lead terminal 200b: Plasma-treated surface 210: Anode lead terminal 220: Cathode lead terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The disclosed manufacturing method is for an electrolytic capacitor that includes a capacitor element. The manufacturing method includes, in this order: a step (i) for electrically connecting a positive-electrode lead terminal to a positive-electrode part, and electrically connecting a negative-electrode lead terminal to a negative-electrode part; and, a step (ii) for covering a portion of the positive-electrode lead terminal, a portion of the negative-electrode lead terminal, and the capacitor element with an exterior body containing a resin. The manufacturing method further includes, prior to step (ii), a plasma process step in which at least a portion of a metal surface of at least one lead terminal selected from the group consisting of the positive-electrode lead terminal and the negative-electrode lead terminal is subjected to a plasma process, thereby making the at least a portion a plasma process surface, whereby a method for manufacturing an electrolytic capacitor having high reliability is provided.

Description

電解コンデンサおよび電解コンデンサの製造方法Electrolytic capacitor and method for manufacturing electrolytic capacitor
 本開示は、電解コンデンサおよびその製造方法に関する。 The present disclosure relates to electrolytic capacitors and manufacturing methods thereof.
 電解コンデンサは、コンデンサ素子と、コンデンサ素子に接続されたリード端子(陽極リード端子および陰極リード端子)と、外装体とを含む。外装体は樹脂を含み、リード端子の一部とコンデンサ素子とを覆っている。電解コンデンサでは、外部から水分や酸素が侵入してコンデンサ素子の特性を低下させることが問題となっている。 An electrolytic capacitor includes a capacitor element, lead terminals (anode lead terminal and cathode lead terminal) connected to the capacitor element, and an exterior body. The exterior body contains resin and covers a part of the lead terminal and the capacitor element. A problem with electrolytic capacitors is that moisture and oxygen enter from the outside and deteriorate the characteristics of the capacitor element.
 電解コンデンサでは、外部から水分や酸素が侵入してコンデンサ素子の特性を低下させることが問題となっている。特に、リード端子の表面を介して水分や酸素がコンデンサ素子に到達しやすい。そのため、外装体とリード端子との密着性を高めることが重要である。外装体とリード端子との密着性を高めるための技術が従来から提案されてきた。 The problem with electrolytic capacitors is that moisture and oxygen enter from the outside and degrade the characteristics of the capacitor element. In particular, moisture and oxygen are likely to reach the capacitor element through the surfaces of the lead terminals. Therefore, it is important to improve the adhesion between the package and the lead terminals. Conventionally, there have been proposed techniques for improving the adhesion between the package and the lead terminals.
 特許文献1(特開平5-021290号公報)は、「弁金属よりなる板または箔上に形成した陽極酸化皮膜を誘電体とし、この誘電体の所定の部分に誘電性高分子層および誘電体層を順次形成してコンデンサ素子を構成するとともに、このコンデンサ素子の弁金属部と導電体層部に導出端子となるリードフレームを接続し、さらに前記コンデンサ素子とリードフレームの一部をモールド樹脂で外装する固体電解コンデンサにおいて、前記リードフレームのモールド樹脂と接触する部分以外の表面に銅金属層を下地とする半田合金層または錫金属層を形成し、かつモールド樹脂と接触するリードフレーム部分には銅金属層のみを形成し、かつその銅金属層の表面を粗面化したことを特徴とする固体電解コンデンサ。」を開示している。 Patent Document 1 (Japanese Unexamined Patent Application Publication No. 5-021290) describes that ``an anodized film formed on a plate or foil made of a valve metal is used as a dielectric, and a dielectric polymer layer and a dielectric A capacitor element is formed by sequentially forming layers, a lead frame serving as a lead-out terminal is connected to the valve metal portion and the conductor layer portion of the capacitor element, and a part of the capacitor element and the lead frame is molded resin. In the solid electrolytic capacitor to be packaged, a solder alloy layer or a tin metal layer with a copper metal layer as a base is formed on the surface of the lead frame other than the portion in contact with the mold resin, and the lead frame portion in contact with the mold resin A solid electrolytic capacitor characterized by forming only a copper metal layer and roughening the surface of the copper metal layer."
特開平5-021290号公報JP-A-5-021290
 本開示の一局面は、電解コンデンサの製造方法に関する。当該製造方法は、陽極部と陰極部とを有するコンデンサ素子を含む電解コンデンサの製造方法であって、陽極リード端子を前記陽極部に電気的に接続するとともに陰極リード端子を前記陰極部に電気的に接続する工程(i)と、前記陽極リード端子の一部と前記陰極リード端子の一部と前記コンデンサ素子とを、樹脂を含む外装体で覆う工程(ii)と、をこの順に含み、前記工程(ii)の前に、前記陽極リード端子および前記陰極リード端子からなる群より選択される少なくとも1つのリード端子の金属表面の少なくとも一部にプラズマ処理を施すことによって、前記少なくとも一部をプラズマ処理表面とするプラズマ処理工程をさらに含み、前記工程(ii)において、前記プラズマ処理表面の少なくとも一部を前記外装体で覆う。 One aspect of the present disclosure relates to a method for manufacturing an electrolytic capacitor. The manufacturing method is a method for manufacturing an electrolytic capacitor including a capacitor element having an anode portion and a cathode portion, wherein an anode lead terminal is electrically connected to the anode portion and a cathode lead terminal is electrically connected to the cathode portion. and a step (ii) of covering a part of the anode lead terminal, a part of the cathode lead terminal, and the capacitor element with an exterior body containing resin in this order, Before the step (ii), plasma treatment is applied to at least part of the metal surface of at least one lead terminal selected from the group consisting of the anode lead terminal and the cathode lead terminal, so that the at least part is exposed to plasma. The method further includes a plasma treatment step of treating the surface to be treated, wherein in the step (ii), at least part of the plasma treated surface is covered with the exterior body.
 本開示の他の一局面は、電解コンデンサに関する。当該電解コンデンサは、陽極部と陰極部とを含むコンデンサ素子と、前記陽極部に電気的に接続された陽極リード端子と前記陰極部に電気的に接続された陰極リード端子とを含むリード端子と、前記リード端子の一部と前記コンデンサ素子とを覆う外装体であって樹脂を含む外装体とを含み、前記リード端子の表面のうち前記外装体と接触している表面の少なくとも一部は、プラズマ処理されたプラズマ処理表面である。 Another aspect of the present disclosure relates to electrolytic capacitors. The electrolytic capacitor includes a capacitor element including an anode portion and a cathode portion, and lead terminals including an anode lead terminal electrically connected to the anode portion and a cathode lead terminal electrically connected to the cathode portion. , an exterior body covering a part of the lead terminal and the capacitor element and containing a resin, wherein at least part of a surface of the lead terminal that is in contact with the exterior body is 1 is a plasma treated surface that has been plasma treated.
 本開示によれば、信頼性が高い電解コンデンサが得られる。 According to the present disclosure, a highly reliable electrolytic capacitor can be obtained.
図1は、実施形態1の製造方法の一工程の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of one step of the manufacturing method of Embodiment 1. FIG. 図2は、図1に示す工程に続く一工程の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a process following the process shown in FIG.
 実施形態の説明に先立って、従来技術における課題について簡単に以下に示す。 Prior to the description of the embodiments, the problems in the prior art will be briefly described below.
 現在、電解コンデンサのさらなる信頼性の向上が求められている。上記課題を鑑み、本開示の目的の1つは、信頼性がより高い電解コンデンサを提供することである。 Currently, there is a demand for further improvements in the reliability of electrolytic capacitors. In view of the above problems, one object of the present disclosure is to provide an electrolytic capacitor with higher reliability.
 以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示に係る発明を実施できる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。 Embodiments according to the present disclosure will be described below with examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and other materials may be applied as long as the invention according to the present disclosure can be implemented. In this specification, the description "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "numerical value A or more and numerical value B or less". In the following description, when lower and upper limits of numerical values relating to specific physical properties and conditions are exemplified, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not equal to or greater than the upper limit. .
 (電解コンデンサの製造方法)
 本開示の一実施形態に係る製造方法は、陽極部と陰極部とを有するコンデンサ素子を含む電解コンデンサの製造方法である。当該製造方法を、以下では「製造方法(M)」と称する場合がある。製造方法(M)は、工程(i)と工程(ii)とをこの順に含み、さらにプラズマ処理工程を含む。それらの工程について以下に説明する。
(Manufacturing method of electrolytic capacitor)
A manufacturing method according to an embodiment of the present disclosure is a manufacturing method of an electrolytic capacitor including a capacitor element having an anode portion and a cathode portion. The manufacturing method may be hereinafter referred to as “manufacturing method (M)”. Manufacturing method (M) includes step (i) and step (ii) in this order, and further includes a plasma treatment step. These steps are described below.
 (工程(i))
 工程(i)は、陽極リード端子をコンデンサ素子の陽極部に電気的に接続するとともに陰極リード端子をコンデンサ素子の陰極部に電気的に接続する工程である。陽極リード端子と陰極リード端子とをまとめて、以下では「リード端子」と称する場合がある。
(Step (i))
Step (i) is a step of electrically connecting the anode lead terminal to the anode portion of the capacitor element and electrically connecting the cathode lead terminal to the cathode portion of the capacitor element. Hereinafter, the anode lead terminal and the cathode lead terminal may be collectively referred to as "lead terminals".
 リード端子とコンデンサ素子との接続方法に特に限定はなく、公知の方法で接続してもよい。例えば、陽極リード端子と陽極部(例えば陽極ワイヤ)とは、溶接によって接続してもよい。陰極リード端子と陰極部とは、導電層によって接続してもよい。導電層は、金属粒子(例えば銀粒子)と樹脂とを含む金属ペースト(例えば銀ペースト)を用いて形成してもよい。 There is no particular limitation on the method of connecting the lead terminal and the capacitor element, and a known method may be used for connection. For example, the anode lead terminal and the anode part (eg, anode wire) may be connected by welding. The cathode lead terminal and the cathode section may be connected by a conductive layer. The conductive layer may be formed using a metal paste (eg, silver paste) containing metal particles (eg, silver particles) and resin.
 (プラズマ処理工程)
 プラズマ処理工程は、工程(ii)の前に行われる。例えば、プラズマ処理工程は、工程(i)の前に行われてもよいし、工程(i)の後であって工程(ii)の前に行われてもよい。プラズマ処理工程は、陽極リード端子および陰極リード端子からなる群より選択される少なくとも1つのリード端子の金属表面の少なくとも一部にプラズマ処理を施すことによって、当該少なくとも一部をプラズマ処理表面とする工程である。以下では、リード端子の金属表面のうちプラズマ処理が施される表面を、「被処理表面」と称する場合がある。
(Plasma treatment process)
A plasma treatment step is performed before step (ii). For example, the plasma treatment step may be performed before step (i) or after step (i) and before step (ii). The plasma treatment step is a step of subjecting at least a portion of the metal surface of at least one lead terminal selected from the group consisting of an anode lead terminal and a cathode lead terminal to a plasma treatment, thereby making the at least a portion a plasma-treated surface. is. Hereinafter, the surface of the metal surface of the lead terminal that is subjected to plasma treatment may be referred to as the "treated surface".
 プラズマ処理を施すことによって、被処理表面を親水化したり、被処理表面をクリーニングしたりすることができる。被処理表面を親水化することによって、外装体中の樹脂が被処理表面に吸着しやすくすることができる。その結果、被処理表面に対する外装体の密着性を向上できる。また、被処理表面をクリーニングして被処理表面に存在する付着物(例えば有機物)などを除去することによって、被処理表面(リード端子表面)に対する外装体の密着性を向上できる。外装体とリード端子表面の密着性が向上することによって、リード端子の表面を介して外部から水分や酸素が侵入することを抑制できる。その結果、コンデンサ素子の長期的な劣化を抑制でき、電解コンデンサの信頼性を向上できる。 By applying plasma treatment, the surface to be treated can be made hydrophilic and the surface to be treated can be cleaned. By making the surface to be treated hydrophilic, it is possible to make it easier for the resin in the exterior body to adsorb to the surface to be treated. As a result, the adhesion of the exterior body to the surface to be treated can be improved. Further, by cleaning the surface to be treated to remove deposits (for example, organic substances) present on the surface to be treated, the adhesion of the exterior body to the surface to be treated (lead terminal surface) can be improved. By improving the adhesion between the outer package and the surface of the lead terminal, it is possible to suppress the intrusion of moisture and oxygen from the outside through the surface of the lead terminal. As a result, long-term deterioration of the capacitor element can be suppressed, and the reliability of the electrolytic capacitor can be improved.
 プラズマ処理の条件は目的に応じて選択でき、公知のプラズマ処理の条件を採用してもよい。被処理表面を親水化処理する場合、例えば、大気圧低温プラズマ処理を用いてもよい。プラズマ処理による被処理表面(金属表面)の親水化によって、被処理表面には、親水基(例えば水酸基、カルボニル基、カルボキシル基など)が導入される。 The plasma processing conditions can be selected according to the purpose, and known plasma processing conditions may be adopted. When the surface to be treated is hydrophilized, for example, atmospheric pressure low temperature plasma treatment may be used. By hydrophilizing the surface to be treated (metal surface) by plasma treatment, hydrophilic groups (for example, hydroxyl groups, carbonyl groups, carboxyl groups, etc.) are introduced into the surface to be treated.
 大気圧低温プラズマ処理は、公知の条件で実施してもよい。大気圧低温プラズマのプラズマガスには、窒素ガス、アルゴンガス、水素ガス、ヘリウムガス、または酸素ガスを用いてもよく、これらのガスに大気成分(例えば酸素ガスや窒素ガスなど)が混在してもよい。大気圧低温プラズマの処理条件の一例を以下に示す。 Atmospheric pressure low temperature plasma treatment may be performed under known conditions. Nitrogen gas, argon gas, hydrogen gas, helium gas, or oxygen gas may be used as the plasma gas of the atmospheric pressure low-temperature plasma. good too. An example of processing conditions for atmospheric pressure low temperature plasma is shown below.
 窒素ガスの圧力:0.3~0.5MPa
 窒素ガスの流量:20~30L/分
 照射距離:5~30mm
 プラズマ生成部または被処理物(リード端子)の移動速度:10~50mm/秒
 プラズマ処理によって被処理表面のクリーニングを行う場合、公知のプラズマクリーニングの条件でプラズマ処理を行ってもよい。
Nitrogen gas pressure: 0.3 to 0.5 MPa
Nitrogen gas flow rate: 20 to 30 L/min Irradiation distance: 5 to 30 mm
Moving speed of the plasma generating part or the object to be treated (lead terminal): 10 to 50 mm/sec When cleaning the surface to be treated by plasma treatment, the plasma treatment may be performed under known plasma cleaning conditions.
 工程(i)の後にプラズマ処理を行う場合、コンデンサ素子にリード端子が接続された状態でプラズマ処理を行う。工程(i)の前にプラズマ処理を行う場合、複数のリード端子となる部分を含む金属シートに対してプラズマ処理を行ってもよい。プラズマ処理される金属シートは、リード端子の形状に応じてパンチ加工および/または曲げ加工が予めなされていてもよいし、それらの加工を行う前の金属シートであってもよい。金属シートをプラズマ処理することによって、それに含まれるリード端子となる部分の表面がプラズマ処理表面となる。金属シートをプラズマ処理する場合、金属シートの片面のみをプラズマ処理してもよいし、金属シートの両面をプラズマ処理してもよい。 When the plasma treatment is performed after step (i), the plasma treatment is performed with the lead terminal connected to the capacitor element. When plasma treatment is performed before step (i), plasma treatment may be performed on the metal sheet including portions to be a plurality of lead terminals. The metal sheet to be plasma-treated may be pre-punched and/or bent according to the shape of the lead terminal, or may be a metal sheet before these processes. Plasma treatment of the metal sheet results in a plasma treated surface on the surface of the lead terminal included therein. When the metal sheet is plasma-treated, only one side of the metal sheet may be plasma-treated, or both sides of the metal sheet may be plasma-treated.
 (工程(ii))
 工程(ii)は、陽極リード端子の一部と陰極リード端子の一部とコンデンサ素子とを、樹脂を含む外装体で覆う工程である。工程(ii)において、プラズマ処理表面の少なくとも一部を外装体で覆う。
(Step (ii))
Step (ii) is a step of covering a portion of the anode lead terminal, a portion of the cathode lead terminal, and the capacitor element with an exterior body containing a resin. In step (ii), at least part of the plasma-treated surface is covered with an outer covering.
 工程(ii)に特に限定はなく、公知の方法を採用してもよい。例えば、外装体となる樹脂組成物を用いて所定の方法(トランスファ成形、射出成形など)で外装体を形成してもよい。 There is no particular limitation on step (ii), and a known method may be adopted. For example, an exterior body may be formed by a predetermined method (transfer molding, injection molding, or the like) using a resin composition for the exterior body.
 工程(ii)によって電解コンデンサが得られる。なお、複数の電解コンデンサを一度にまとめて形成する場合には、必要に応じて、工程(ii)ののちに各電解コンデンサが分離される。 An electrolytic capacitor is obtained by step (ii). When a plurality of electrolytic capacitors are collectively formed at once, each electrolytic capacitor is separated after step (ii), if necessary.
 リード端子の表面のうち、外装体と接触する表面の30%以上、50%以上、または80%以上は、プラズマ処理表面であることが好ましい。リード端子の表面のうち外装体と接触する表面のすべてがプラズマ処理表面であってもよい。 Of the surfaces of the lead terminals, 30% or more, 50% or more, or 80% or more of the surfaces in contact with the outer package are preferably plasma-treated surfaces. All of the surfaces of the lead terminals that come into contact with the outer package may be plasma-treated surfaces.
 製造方法(M)では、以下の条件(1)および(2)が満たされてもよい。
(1)外装体に含まれる樹脂は、エポキシ樹脂およびフェノール樹脂からなる群より選択される少なくとも1種を含む。例えば、外装体に含まれる樹脂は、エポキシ樹脂を含んでもよいし、フェノール樹脂を含んでもよいし、それらの両方を含んでもよい。
(2)工程(i)において、プラズマ処理によってプラズマ処理表面を親水化する。
In the manufacturing method (M), the following conditions (1) and (2) may be satisfied.
(1) The resin contained in the exterior body contains at least one selected from the group consisting of epoxy resins and phenol resins. For example, the resin contained in the exterior body may contain epoxy resin, phenol resin, or both.
(2) In step (i), the plasma-treated surface is hydrophilized by plasma treatment.
 エポキシ樹脂およびフェノール樹脂は、親水化された金属表面に特に吸着しやすい。そのため、条件(1)および(2)が満たされる場合、外装体とリード端子との密着性を特に向上できる。 Epoxy resins and phenolic resins are particularly prone to adsorption on hydrophilic metal surfaces. Therefore, when the conditions (1) and (2) are satisfied, the adhesion between the outer package and the lead terminals can be particularly improved.
 上記(1)の条件が満たされる場合、条件(1)の少なくとも1種の樹脂が外装体に占める割合は、3質量%以上、5質量%以上、または10質量%以上であってもよく、100質量%以下、40質量%以下、または20質量%以下であってもよい。例えば、当該割合は、3質量%~40質量%の範囲、3質量%~20質量%の範囲、または5質量%~20質量%の範囲にあってもよい。 When the above condition (1) is satisfied, the ratio of the at least one resin of condition (1) in the exterior body may be 3% by mass or more, 5% by mass or more, or 10% by mass or more, It may be 100% by mass or less, 40% by mass or less, or 20% by mass or less. For example, the percentage may be in the range of 3% to 40%, 3% to 20%, or 5% to 20% by weight.
 上記の条件(2)が満たされる場合、例えば、上記の条件(1)および(2)が満たされる場合、以下の条件(3)が満たされることが好ましい。ウレタン樹脂も、親水化された金属表面に吸着しやすい。そのため、条件(2)および(3)が満たされることによって、導電層と陰極リード端子との密着性が向上し、接触抵抗を低減できる。
(3)工程(ii)において、エポキシ樹脂、ウレタン樹脂、およびフェノール樹脂からなる群より選択される少なくとも1種を含む樹脂と金属粒子とを含む導電層によって陰極リード端子が陰極部に接続される。さらに、プラズマ処理表面の一部が導電層と接触する。
When the above condition (2) is satisfied, for example, when the above conditions (1) and (2) are satisfied, the following condition (3) is preferably satisfied. Urethane resins also tend to be adsorbed to hydrophilic metal surfaces. Therefore, by satisfying the conditions (2) and (3), the adhesion between the conductive layer and the cathode lead terminal is improved, and the contact resistance can be reduced.
(3) In step (ii), the cathode lead terminal is connected to the cathode portion by a conductive layer containing metal particles and a resin containing at least one selected from the group consisting of epoxy resin, urethane resin, and phenol resin. . Additionally, a portion of the plasma-treated surface contacts the conductive layer.
 上記(3)の条件が満たされる場合、導電層は、エポキシ樹脂を含んでもよいし、ウレタン樹脂を含んでもよいし、フェノール樹脂を含んでもよいし、それらのうちの2種を含んでもよいし、それら3種のすべてを含んでもよい。上記(3)の条件が満たされる場合、条件(3)の少なくとも1種の樹脂が導電層に占める割合は、1質量%~50質量%の範囲(例えば3質量%~20質量%の範囲)にあってもよい。 When the above condition (3) is satisfied, the conductive layer may contain an epoxy resin, a urethane resin, a phenol resin, or two of them. , may include all three of them. When the above condition (3) is satisfied, the proportion of the at least one resin in the condition (3) in the conductive layer is in the range of 1% by mass to 50% by mass (for example, the range of 3% by mass to 20% by mass). may be in
 プラズマ処理工程を行った後、72時間以内に工程(ii)を行うことが好ましく、48時間以内や24時間以内に工程(ii)を行ってもよい。プラズマ処理表面は、大気中に放置した場合、時間とともにその影響が低下する。そのため、プラズマ処理表面による効果が充分に得られている間に、工程(ii)を行うことが好ましい。プラズマ処理を行った後、72時間以内に工程(ii)を行わない場合、プラズマ処理工程を行ったリード端子(例えばリード端子となる部分を含む金属シート)は、減圧下および/または低温下(例えば20℃以下)で保管することが好ましい。このとき、複数のリード端子となる部分を含む金属シートは、複数の金属シートを重ねた状態で保管することが好ましい。 After performing the plasma treatment step, step (ii) is preferably performed within 72 hours, and step (ii) may be performed within 48 hours or 24 hours. Plasma treated surfaces become less effective over time when left in the atmosphere. Therefore, it is preferable to perform step (ii) while the effect of the plasma-treated surface is sufficiently obtained. If the step (ii) is not performed within 72 hours after the plasma treatment, the lead terminals that have undergone the plasma treatment step (for example, the metal sheet including the part that will become the lead terminal) are placed under reduced pressure and/or at a low temperature ( For example, it is preferably stored at 20° C. or lower. At this time, it is preferable to store the metal sheet including the portions to be the plurality of lead terminals in a state in which the plurality of metal sheets are stacked.
 リード端子は、基材のみで構成されていてもよいし、基材と基材の表面に形成された金属層(例えばメッキ層)とを含んでもよい。プラズマ処理が施される金属表面は、銅、金、ニッケル、スズ、鉛、ビスマス、銀、亜鉛、鉄、クロム、およびパラジウムからなる群より選択される少なくとも1種を含んでもよい。 The lead terminal may be composed of only the base material, or may include the base material and a metal layer (for example, a plated layer) formed on the surface of the base material. The metal surface to be plasma treated may contain at least one selected from the group consisting of copper, gold, nickel, tin, lead, bismuth, silver, zinc, iron, chromium, and palladium.
 製造方法(M)は、工程(i)の前であって且つプラズマ処理工程の前に、リード端子の表面の少なくとも一部を粗面化する工程をさらに含んでもよい。その場合、プラズマ処理工程において、粗面化された上記表面の少なくとも一部に対してプラズマ処理を施すことが好ましい。この構成によれば、プラズマ処理される表面の面積を増やすことができる。また、この構成によれば、粗面化された表面のアンカー効果が得られる。これらの効果によって、外装体とリード端子との密着性を特に高めることができる。 The manufacturing method (M) may further include a step of roughening at least part of the surface of the lead terminal before step (i) and before the plasma treatment step. In that case, it is preferable to subject at least part of the roughened surface to plasma treatment in the plasma treatment step. With this configuration, the area of the surface to be plasma treated can be increased. This configuration also provides the anchoring effect of the roughened surface. Due to these effects, the adhesion between the outer package and the lead terminals can be particularly enhanced.
 粗面化の方法に特に限定はなく、公知のサンドブラスト法やエッチング法などを用いてもよい。あるいは、レーザ光(例えばパルスレーザ光)をリード端子に照射することによって、リード端子の表面を粗面化してもよい。 The roughening method is not particularly limited, and a known sandblasting method, etching method, or the like may be used. Alternatively, the surface of the lead terminal may be roughened by irradiating the lead terminal with laser light (for example, pulsed laser light).
 (電解コンデンサ)
 本開示の一実施形態に係る電解コンデンサについて以下に説明する。当該電解コンデンサを、以下では「電解コンデンサ(C)」と称する場合がある。電解コンデンサ(C)の製造方法に限定はないが、製造方法(M)によって製造できる。製造方法(M)について説明した事項は、電解コンデンサ(C)に適用できるため、重複する説明を省略する場合がある。また、電解コンデンサ(C)について説明した事項を、製造方法(M)に適用してもよい。
(Electrolytic capacitor)
An electrolytic capacitor according to an embodiment of the present disclosure will be described below. The electrolytic capacitor may be hereinafter referred to as "electrolytic capacitor (C)". Although the method for manufacturing the electrolytic capacitor (C) is not limited, it can be manufactured by the manufacturing method (M). Since the matters described for the manufacturing method (M) can be applied to the electrolytic capacitor (C), redundant description may be omitted. Also, the matters described for the electrolytic capacitor (C) may be applied to the manufacturing method (M).
 電解コンデンサ(C)は、コンデンサ素子、リード端子、および外装体を含む。コンデンサ素子は、陽極部と陰極部とを含む。リード端子は、陽極部に電気的に接続された陽極リード端子と陰極部に電気的に接続された陰極リード端子とを含む。外装体は、リード端子の一部とコンデンサ素子とを覆う。外装体は、樹脂を含む。リード端子の表面のうち外装体と接触している表面の少なくとも一部は、プラズマ処理されたプラズマ処理表面である。 The electrolytic capacitor (C) includes a capacitor element, lead terminals, and an exterior body. The capacitor element includes an anode portion and a cathode portion. The lead terminals include an anode lead terminal electrically connected to the anode section and a cathode lead terminal electrically connected to the cathode section. The exterior body covers a portion of the lead terminal and the capacitor element. The exterior body contains resin. At least part of the surface of the lead terminal that is in contact with the outer package is a plasma-treated surface.
 製造方法(M)に関して説明したように、電解コンデンサ(C)によれば、外装体とリード端子との密着性を高めることができる。その結果、水分や酸素などによる劣化が少なく信頼性が高い電解コンデンサを実現できる。 As described with respect to the manufacturing method (M), according to the electrolytic capacitor (C), it is possible to improve the adhesion between the exterior body and the lead terminals. As a result, it is possible to realize an electrolytic capacitor that is less likely to deteriorate due to moisture, oxygen, or the like, and has high reliability.
 外装体に含まれる樹脂は、エポキシ樹脂およびフェノール樹脂からなる群より選択される少なくとも1種を含むことが好ましい。その場合、プラズマ処理表面は親水基を有し、親水基を介して外装体の樹脂(例えば上記少なくとも1種の樹脂)がプラズマ処理表面に吸着していてもよい。上述したように、この構成によれば、外装体とリード端子との密着性を特に高めることができる。なお、プラズマ処理表面に対する樹脂の吸着には、化学吸着および物理吸着が含まれる。化学吸着は、化学結合を介した吸着であり、例えば、プラズマ処理表面で形成された親水基と樹脂とが反応して結合を生じる場合が含まれる。 The resin contained in the exterior body preferably contains at least one selected from the group consisting of epoxy resins and phenol resins. In that case, the plasma-treated surface may have hydrophilic groups, and the resin of the exterior body (for example, the at least one resin described above) may be adsorbed to the plasma-treated surface via the hydrophilic groups. As described above, according to this configuration, the adhesion between the outer package and the lead terminals can be particularly enhanced. The adsorption of the resin to the plasma-treated surface includes chemical adsorption and physical adsorption. Chemisorption is adsorption through chemical bonds, and includes, for example, the reaction of hydrophilic groups formed on the plasma-treated surface with resin to form bonds.
 上述したように、エポキシ樹脂、ウレタン樹脂、およびフェノール樹脂からなる群より選択される少なくとも1種を含む樹脂と金属粒子とを含む導電層によって陰極リード端子が陰極部に接続されていてもよい。その場合、プラズマ処理表面は親水基を有し、親水基を介して導電層の樹脂(例えば上記少なくとも1種の樹脂)がプラズマ処理表面に吸着していてもよい。 As described above, the cathode lead terminal may be connected to the cathode portion by a conductive layer containing metal particles and a resin containing at least one selected from the group consisting of epoxy resin, urethane resin, and phenol resin. In that case, the plasma-treated surface may have hydrophilic groups, and the resin of the conductive layer (for example, the at least one resin described above) may be adsorbed to the plasma-treated surface via the hydrophilic groups.
 上述したように、リード端子の表面の少なくとも一部は、粗面化されていてもよく、プラズマ処理表面の少なくとも一部が粗面化されていてもよい。 As described above, at least part of the surface of the lead terminal may be roughened, and at least part of the plasma-treated surface may be roughened.
 製造方法(M)で製造される電解コンデンサ、および電解コンデンサ(C)の構成および構成要素の一例を以下に説明する。以下で説明する一例の電解コンデンサは、コンデンサ素子、外装体、陽極リード端子、および陰極リード端子を含む。なお、製造方法(M)で製造される電解コンデンサ、および電解コンデンサ(C)の構成および構成要素は、以下の例に限定されない。 An example of the configuration and components of the electrolytic capacitor manufactured by the manufacturing method (M) and the electrolytic capacitor (C) will be described below. An example electrolytic capacitor described below includes a capacitor element, an outer casing, an anode lead terminal, and a cathode lead terminal. The configuration and components of the electrolytic capacitor manufactured by the manufacturing method (M) and the electrolytic capacitor (C) are not limited to the following examples.
 (コンデンサ素子)
 コンデンサ素子は、陽極部、誘電体層、および陰極部を含む。コンデンサ素子に特に限定はなく、公知の固体電解コンデンサに用いられているコンデンサ素子を用いてもよい。
(capacitor element)
A capacitor element includes an anode portion, a dielectric layer, and a cathode portion. There is no particular limitation on the capacitor element, and capacitor elements used in known solid electrolytic capacitors may be used.
 陽極部は、陽極体を含み、陽極ワイヤをさらに含んでもよい。陽極体は、多孔質焼結体であってもよいし、表面が多孔質化された金属箔であってもよい。誘電体層は、陽極体の表面の少なくとも一部に形成される。陰極部は、電解質層と陰極引出層とを含む。電解質層は、陽極体の表面に形成された誘電体層と陰極引出層との間に配置されている。これらの構成要素に特に限定はなく、公知の固体電解コンデンサに用いられる構成要素を適用してもよい。これらの構成要素の例について、以下に説明する。 The anode part includes an anode body and may further include an anode wire. The anode body may be a porous sintered body or a metal foil with a porous surface. A dielectric layer is formed on at least a portion of the surface of the anode body. The cathode section includes an electrolyte layer and a cathode extraction layer. The electrolyte layer is arranged between the dielectric layer formed on the surface of the anode body and the cathode extraction layer. These components are not particularly limited, and components used in known solid electrolytic capacitors may be applied. Examples of these components are described below.
 (陽極体)
 陽極体の材料には、弁作用金属を用いることができる。弁作用金属としては、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)などやそれらを含む合金が用いられる。陽極体は、材料となる粒子(例えば弁作用金属の粒子)を焼結することや、材料となる金属をエッチングすることによって形成してもよい。陽極体の表面に形成される誘電体層は、陽極体の表面を化成処理することによって形成してもよい。化成処理の方法に限定はなく、公知の化成処理の方法を適用してもよい。
(Anode body)
A valve action metal can be used as the material of the anode body. Titanium (Ti), tantalum (Ta), niobium (Nb), aluminum (Al), and alloys containing these are used as valve metals. The anode body may be formed by sintering material particles (for example, valve metal particles) or by etching material metal. The dielectric layer formed on the surface of the anode body may be formed by subjecting the surface of the anode body to chemical conversion treatment. The chemical conversion treatment method is not limited, and a known chemical conversion treatment method may be applied.
 (陽極ワイヤ)
 陽極体が焼結体である場合、陽極部は陽極ワイヤを含みうる。陽極ワイヤは、金属からなるワイヤであってもよい。陽極ワイヤの材料の例には、上記の弁作用金属や銅などが含まれる。陽極ワイヤの一部は陽極体に埋設され、残りの部分は陽極体の端面から突き出している。
(anode wire)
When the anode body is a sintered body, the anode portion can include an anode wire. The anode wire may be a wire made of metal. Examples of anode wire materials include the valve metals and copper described above. A portion of the anode wire is embedded in the anode body and the remaining portion protrudes from the end face of the anode body.
 (電解質層)
 電解質層に特に限定はなく、公知の固体電解コンデンサに用いられている電解質層を適用してもよい。なお、この明細書において、電解質層を固体電解質層に読み替えてもよく、電解コンデンサを固体電解コンデンサに読み替えてもよい。電解質層は、2層以上の異なる電解質層の積層体であってもよい。
(Electrolyte layer)
The electrolyte layer is not particularly limited, and electrolyte layers used in known solid electrolytic capacitors may be applied. In this specification, the electrolyte layer may be read as a solid electrolyte layer, and the electrolytic capacitor may be read as a solid electrolytic capacitor. The electrolyte layer may be a laminate of two or more different electrolyte layers.
 電解質層は、誘電体層の少なくとも一部を覆うように配置される。電解質層は、マンガン化合物や導電性高分子を用いて形成してもよい。導電性高分子の例には、ポリピロール、ポリチオフェン、ポリアニリン、およびこれらの誘導体などが含まれる。これらは、単独で用いてもよいし、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。なお、導電性高分子の誘導体とは、導電性高分子を基本骨格とする高分子を意味する。例えば、ポリチオフェンの誘導体の例には、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。 The electrolyte layer is arranged to cover at least part of the dielectric layer. The electrolyte layer may be formed using a manganese compound or a conductive polymer. Examples of conductive polymers include polypyrrole, polythiophene, polyaniline, derivatives thereof, and the like. These may be used independently and may be used in combination of multiple types. Also, the conductive polymer may be a copolymer of two or more monomers. A derivative of a conductive polymer means a polymer having a conductive polymer as a basic skeleton. For example, examples of derivatives of polythiophene include poly(3,4-ethylenedioxythiophene) and the like.
 導電性高分子にはドーパントが添加されていることが好ましい。ドーパントは、導電性高分子に応じて選択でき、公知のドーパントを用いてもよい。ドーパントの例には、ナフタレンスルホン酸、p-トルエンスルホン酸、ポリスチレンスルホン酸、およびこれらの塩などが含まれる。一例の電解質層は、ポリスチレンスルホン酸(PSS)がドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)を用いて形成される。 A dopant is preferably added to the conductive polymer. A dopant can be selected depending on the conductive polymer, and a known dopant may be used. Examples of dopants include naphthalenesulfonic acid, p-toluenesulfonic acid, polystyrenesulfonic acid, and salts thereof. An example electrolyte layer is formed using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS).
 導電性高分子を含む電解質層は、誘電体層上で原料モノマーを重合することによって形成してもよい。あるいは、導電性高分子(および必要に応じてドーパント)を含んだ液体を、誘電体層に塗布した後に乾燥させることによって形成してもよい。 The electrolyte layer containing the conductive polymer may be formed by polymerizing raw material monomers on the dielectric layer. Alternatively, it may be formed by applying a liquid containing a conductive polymer (and a dopant if necessary) to the dielectric layer and then drying it.
 (陰極引出層)
 陰極引出層は、導電層であり、電解質層の少なくとも一部を覆うように配置されている。陰極引出層は、電解質層上に形成されたカーボン層と、カーボン層上に形成された金属ペースト層とを含んでもよい。カーボン層は、黒鉛等の導電性炭素材料と樹脂とによって形成されてもよい。金属ペースト層は、金属粒子(例えば銀粒子)と樹脂とによって形成されてもよく、例えば公知の銀ペーストによって形成されてもよい。
(Cathode extraction layer)
The cathode extraction layer is a conductive layer and is arranged to cover at least a portion of the electrolyte layer. The cathode extraction layer may include a carbon layer formed on the electrolyte layer and a metal paste layer formed on the carbon layer. The carbon layer may be formed of a conductive carbon material such as graphite and a resin. The metal paste layer may be formed of metal particles (for example, silver particles) and resin, and may be formed of a known silver paste, for example.
 (陰極リード端子および陽極リード端子)
 陰極リード端子は、電解コンデンサの底面において露出している陰極端子部と、陰極端子部につながっている接続部とを含む。当該接続部は、陰極部と電気的に接続されている。例えば、当該接続部は、導電層(例えば銀ペースト層)などによって陰極引出層に接続されてもよい。陽極リード端子は、電解コンデンサの底面において露出している陽極端子部と、陽極端子部につながっているワイヤ接続部とを含む。ワイヤ接続部は、陽極ワイヤに接続されている。リード端子は、金属(銅、銅合金など)からなる金属シート(金属板および金属箔を含む)を、公知の金属加工法で加工することによって形成してもよい。リード端子の厚さに特に限定はなく、25μm~200μmの範囲(例えば25μm~100μmの範囲)にあってもよい。
(Cathode lead terminal and anode lead terminal)
The cathode lead terminal includes a cathode terminal portion exposed at the bottom surface of the electrolytic capacitor and a connecting portion connected to the cathode terminal portion. The connecting portion is electrically connected to the cathode portion. For example, the connection may be connected to the cathode extraction layer by a conductive layer (eg, silver paste layer) or the like. The anode lead terminal includes an anode terminal portion exposed at the bottom surface of the electrolytic capacitor and a wire connection portion connected to the anode terminal portion. A wire connection is connected to the anode wire. A lead terminal may be formed by processing a metal sheet (including a metal plate and a metal foil) made of metal (copper, copper alloy, etc.) by a known metalworking method. The thickness of the lead terminal is not particularly limited, and may be in the range of 25 μm to 200 μm (for example, in the range of 25 μm to 100 μm).
 リード端子は、上記の金属からなる基材と、基材上に形成されたメッキ層とを含んでもよい。メッキ層は、公知の方法で形成してもよい。メッキ層は、ニッケル、金、パラジウム、錫、銅などの金属(合金を含む)で形成され、ニッケル層、金層、パラジウム層、錫層、銅層などを含んでもよい。例えば、基材上に、ニッケル層、金層、およびパラジウム層の順で、メッキ層を積層してもよい。 The lead terminal may include a base material made of the metal described above and a plated layer formed on the base material. You may form a plating layer by a well-known method. The plated layer is made of metal (including alloys) such as nickel, gold, palladium, tin, and copper, and may include a nickel layer, a gold layer, a palladium layer, a tin layer, a copper layer, and the like. For example, plated layers may be laminated on the substrate in the order of a nickel layer, a gold layer, and a palladium layer.
 (外装体)
 外装体は、電解コンデンサの表面にコンデンサ素子が露出しないように、コンデンサ素子の周囲に配置される。さらに、外装体は、陽極リードフレームの一部と陰極リードフレームの一部とを覆うように配置される。外装体は、通常、樹脂(絶縁性樹脂)と絶縁性フィラーとを含む。
(Exterior body)
The exterior body is arranged around the capacitor element so that the capacitor element is not exposed on the surface of the electrolytic capacitor. Furthermore, the exterior body is arranged so as to cover part of the anode lead frame and part of the cathode lead frame. The exterior body usually contains a resin (insulating resin) and an insulating filler.
 外装体は、絶縁性の樹脂と、絶縁性フィラー(例えば無機フィラー)とを含む樹脂組成物で形成してもよい。樹脂組成物は、絶縁性の樹脂および絶縁性フィラーに加えて、硬化剤、重合開始剤、および/または触媒などを含んでもよい。絶縁性の樹脂の例には、エポキシ樹脂、フェノール樹脂、ユリア樹脂、ポリイミド、ポリアミドイミド、ポリウレタン、ジアリルフタレート、不飽和ポリエステル、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)などが含まれる。外装体に含まれる樹脂は、1種であってもよいし、2種以上であってもよい。 The exterior body may be formed of a resin composition containing an insulating resin and an insulating filler (for example, an inorganic filler). The resin composition may contain a curing agent, a polymerization initiator, and/or a catalyst in addition to the insulating resin and insulating filler. Examples of insulating resins include epoxy resin, phenolic resin, urea resin, polyimide, polyamideimide, polyurethane, diallyl phthalate, unsaturated polyester, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), and the like. The resin contained in the exterior body may be of one type, or may be of two or more types.
 絶縁性フィラーの例には、絶縁性の粒子、絶縁性の繊維などが含まれる。絶縁性フィラーを構成する絶縁性材料としては、例えば、シリカ、アルミナなどの絶縁性の化合物(酸化物など)、ガラス、鉱物材料(タルク、マイカ、クレーなど)などが挙げられる。外装体に含まれる絶縁性フィラーは、1種であってもよいし、2種以上であってもよい。 Examples of insulating fillers include insulating particles and insulating fibers. Examples of the insulating material that constitutes the insulating filler include insulating compounds (such as oxides) such as silica and alumina, glass, and mineral materials (such as talc, mica, and clay). The insulating filler contained in the exterior body may be of one type, or may be of two or more types.
 以下では、製造方法(M)および電解コンデンサ(C)の一例について、図面を参照して具体的に説明する。以下で説明する方法の例には、上述した構成を適用できる。また、以下で説明する方法の例は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、以下で説明する実施形態において、本開示の製造方法および電解コンデンサに必須ではない構成要素は省略してもよい。なお、理解を容易にするために、以下の図では、実際の形状とは異なる形状を示す場合がある。 An example of the manufacturing method (M) and the electrolytic capacitor (C) will be specifically described below with reference to the drawings. The configurations described above can be applied to the example methods described below. Also, the example methods described below may be modified based on the above description. Also, the matters described below may be applied to the above embodiments. Also, in the embodiments described below, components that are not essential to the manufacturing method and electrolytic capacitor of the present disclosure may be omitted. In order to facilitate understanding, the following figures may show shapes that are different from the actual shapes.
 (実施形態1)
 実施形態1では、本開示に係る製造方法の一例について説明する。この製造方法では、図1に示すように、リード端子200(陽極リード端子210および陰極リード端子220)をコンデンサ素子110に接続する。具体的には、陽極リード端子210の端部をコンデンサ素子110の陽極部111に接続し、陰極リード端子220をコンデンサ素子110の陰極部115に接続する(工程(i))。
(Embodiment 1)
Embodiment 1 describes an example of a manufacturing method according to the present disclosure. In this manufacturing method, lead terminals 200 (anode lead terminal 210 and cathode lead terminal 220) are connected to capacitor element 110, as shown in FIG. Specifically, the end of anode lead terminal 210 is connected to anode portion 111 of capacitor element 110, and the cathode lead terminal 220 is connected to cathode portion 115 of capacitor element 110 (step (i)).
 陽極リード端子210は、溶接等によって、陽極部111の陽極ワイヤ112の端部に接続される。陰極リード端子220は、導電層141を介して、陰極部115の陰極引出層117に接続される。なお、図2に示すように、複数のリード端子200は、金属シートMの一部を加工(打抜き加工や曲げ加工)することによって形成されてもよい。複数のリード端子200のそれぞれには、複数のコンデンサ素子110が配置される。 The anode lead terminal 210 is connected to the end of the anode wire 112 of the anode section 111 by welding or the like. Cathode lead terminal 220 is connected to cathode extraction layer 117 of cathode section 115 via conductive layer 141 . In addition, as shown in FIG. 2, the plurality of lead terminals 200 may be formed by processing (punching or bending) a portion of the metal sheet M. As shown in FIG. A plurality of capacitor elements 110 are arranged on each of the plurality of lead terminals 200 .
 コンデンサ素子110は、陽極部111、誘電体層114、および陰極部115を含む。陽極部111は、陽極体113と、陽極ワイヤ112とを含む。陽極体113は、直方体状の多孔質焼結体であり、表面に誘電体層114が形成されている。陽極ワイヤ112の一部は陽極体113の1つの端面から、電解コンデンサ100の前面100f(図2参照)に向かって突き出している。陽極ワイヤ112の他の部分は陽極体113に埋設されている。 Capacitor element 110 includes anode portion 111 , dielectric layer 114 and cathode portion 115 . Anode section 111 includes anode body 113 and anode wire 112 . Anode body 113 is a rectangular parallelepiped porous sintered body, and dielectric layer 114 is formed on the surface thereof. A portion of anode wire 112 protrudes from one end face of anode body 113 toward front face 100f of electrolytic capacitor 100 (see FIG. 2). The other portion of anode wire 112 is embedded in anode body 113 .
 陰極部115は、誘電体層114の少なくとも一部を覆うように配置された電解質層116と、電解質層116上に形成された陰極引出層117とを含む。陰極引出層117は、例えば、電解質層116上に形成されたカーボン層と、カーボン層上に形成された金属粒子層とを含む。金属粒子層は、例えば金属ペーストを用いて形成された金属ペースト層(例えば銀ペースト層)である。 The cathode section 115 includes an electrolyte layer 116 arranged to cover at least a portion of the dielectric layer 114 and a cathode extraction layer 117 formed on the electrolyte layer 116 . The cathode extraction layer 117 includes, for example, a carbon layer formed on the electrolyte layer 116 and a metal particle layer formed on the carbon layer. The metal particle layer is, for example, a metal paste layer (for example, silver paste layer) formed using a metal paste.
 陽極リード端子210は、陽極端子部211およびワイヤ接続部212を含む。陽極端子部211は、電解コンデンサ100の底面100b(図2参照)において露出する。ワイヤ接続部212は、陽極ワイヤ112に接続されている。陰極リード端子220は、陰極端子部221および接続部222を含む。陰極端子部221は、電解コンデンサ100の底面100bにおいて露出している。接続部222は、導電層141によって陰極引出層117(陰極部115)に電気的に接続されている。 The anode lead terminal 210 includes an anode terminal portion 211 and a wire connection portion 212 . Anode terminal portion 211 is exposed at bottom surface 100b of electrolytic capacitor 100 (see FIG. 2). Wire connection 212 is connected to anode wire 112 . Cathode lead terminal 220 includes a cathode terminal portion 221 and a connection portion 222 . Cathode terminal portion 221 is exposed at bottom surface 100 b of electrolytic capacitor 100 . The connection portion 222 is electrically connected to the cathode extraction layer 117 (cathode portion 115 ) through the conductive layer 141 .
 次に、図1に示した状態にあるリード端子200およびコンデンサ素子110に対して、上述したプラズマ処理を施す。このとき底面100bがプラズマ処理装置の処理ステージ側となるように配置してプラズマ処理を施す。これによって、リード端子200のうち、底面100b側に存在している部分以外の部分の表面200aはプラズマにさらされ、プラズマ処理表面(図2のプラズマ処理表面200b)となる。具体的には、後の工程で外装体と接触する表面をプラズマ処理表面とすることができる。また、この場合、陽極ワイヤ112の表面もプラズマ処理表面とすることができる。その結果、陽極ワイヤ112と外装体との密着性も向上できる。 Next, the lead terminal 200 and the capacitor element 110 in the state shown in FIG. 1 are subjected to the plasma treatment described above. At this time, plasma processing is performed with the bottom surface 100b placed on the processing stage side of the plasma processing apparatus. As a result, the surface 200a of the lead terminal 200 other than the portion existing on the bottom surface 100b side is exposed to plasma and becomes a plasma-treated surface (plasma-treated surface 200b in FIG. 2). Specifically, the plasma-treated surface can be the surface that comes into contact with the exterior body in a later step. Also, in this case, the surface of the anode wire 112 can also be a plasma-treated surface. As a result, the adhesion between anode wire 112 and the outer package can also be improved.
 リード端子200をコンデンサ素子110に接続する前にプラズマ処理を施す場合には、まず、リード端子200のみをプラズマ処理する。複数のリード端子となる部分を含む金属シートをプラズマ処理する場合、金属シートの一部をリード端子200の形状(例えば図1に示す形状)に加工した後にプラズマ処理を施してもよいし、形状を加工する前にプラズマ処理を施してもよい。リード端子の形状に加工した後にプラズマ処理することによって、一度のプラズマ処理で、リード端子200のうち外装体と接触する部分の全面をプラズマ処理表面とすることが可能である。プラズマ処理を行った後は、図1に示すように、リード端子200をコンデンサ素子110に接続する。 When the lead terminal 200 is plasma-treated before connecting it to the capacitor element 110, first, only the lead terminal 200 is plasma-treated. When plasma-treating a metal sheet including a portion that will become a plurality of lead terminals, the plasma treatment may be performed after part of the metal sheet is processed into the shape of the lead terminal 200 (for example, the shape shown in FIG. 1). Plasma treatment may be performed before processing the . By performing plasma processing after processing into the shape of the lead terminal, the entire surface of the portion of the lead terminal 200 that comes into contact with the exterior body can be plasma-processed by one plasma processing. After the plasma treatment, the lead terminal 200 is connected to the capacitor element 110 as shown in FIG.
 次に、図2に示すように、リード端子200の一部(陽極リード端子210の一部および陰極リード端子220の一部を)と、コンデンサ素子110とを外装体150で覆う。これによって、リード端子200のプラズマ処理表面200bが外装体150で覆われる。その結果、上述した効果が得られる。外装体150を形成した後、必要に応じて、複数の電解コンデンサを個別に分離する。このようにして、電解コンデンサが製造される。 Next, as shown in FIG. 2, a portion of lead terminal 200 (a portion of anode lead terminal 210 and a portion of cathode lead terminal 220) and capacitor element 110 are covered with exterior body 150. Then, as shown in FIG. As a result, the plasma-treated surface 200 b of the lead terminal 200 is covered with the exterior body 150 . As a result, the effects described above can be obtained. After forming the exterior body 150, a plurality of electrolytic capacitors are individually separated as needed. Thus, an electrolytic capacitor is manufactured.
 本開示は、電解コンデンサおよびその製造方法に利用できる。 The present disclosure can be used for electrolytic capacitors and manufacturing methods thereof.
100  :電解コンデンサ
110  :コンデンサ素子
111  :陽極部
115  :陰極部
141  :導電層
150  :外装体
200  :リード端子
200b :プラズマ処理表面
210  :陽極リード端子
220  :陰極リード端子
 
100: Electrolytic capacitor 110: Capacitor element 111: Anode part 115: Cathode part 141: Conductive layer 150: Exterior body 200: Lead terminal 200b: Plasma-treated surface 210: Anode lead terminal 220: Cathode lead terminal

Claims (9)

  1.  陽極部と陰極部とを有するコンデンサ素子を含む電解コンデンサの製造方法であって、
     陽極リード端子を前記陽極部に電気的に接続するとともに陰極リード端子を前記陰極部に電気的に接続する工程(i)と、
     前記陽極リード端子の一部と前記陰極リード端子の一部と前記コンデンサ素子とを、樹脂を含む外装体で覆う工程(ii)と、をこの順に含み、
     前記工程(ii)の前に、前記陽極リード端子および前記陰極リード端子からなる群より選択される少なくとも1つのリード端子の金属表面の少なくとも一部にプラズマ処理を施すことによって、前記少なくとも一部をプラズマ処理表面とするプラズマ処理工程をさらに含み、
     前記工程(ii)において、前記プラズマ処理表面の少なくとも一部を前記外装体で覆う、電解コンデンサの製造方法。
    A method of manufacturing an electrolytic capacitor including a capacitor element having an anode portion and a cathode portion, comprising:
    step (i) of electrically connecting an anode lead terminal to the anode section and electrically connecting a cathode lead terminal to the cathode section;
    a step (ii) of covering a portion of the anode lead terminal, a portion of the cathode lead terminal, and the capacitor element with an exterior body containing a resin in this order;
    Prior to the step (ii), plasma treatment is applied to at least part of the metal surface of at least one lead terminal selected from the group consisting of the anode lead terminal and the cathode lead terminal to remove the at least part of the metal surface. further comprising a plasma treatment step with the plasma treated surface;
    A method for manufacturing an electrolytic capacitor, wherein in the step (ii), at least a portion of the plasma-treated surface is covered with the exterior body.
  2.  前記樹脂は、エポキシ樹脂およびフェノール樹脂からなる群より選択される少なくとも1種を含み、
     前記工程(i)において、前記プラズマ処理によって前記プラズマ処理表面を親水化する、請求項1に記載の製造方法。
    The resin includes at least one selected from the group consisting of epoxy resins and phenolic resins,
    2. The manufacturing method according to claim 1, wherein in said step (i), said plasma-treated surface is hydrophilized by said plasma treatment.
  3.  前記工程(ii)において、エポキシ樹脂、ウレタン樹脂、およびフェノール樹脂からなる群より選択される少なくとも1種を含む樹脂と金属粒子とを含む導電層によって前記陰極リード端子が前記陰極部に接続され、
     前記プラズマ処理表面の一部が前記導電層と接触する、請求項2に記載の製造方法。
    In the step (ii), the cathode lead terminal is connected to the cathode portion by a conductive layer containing metal particles and a resin containing at least one selected from the group consisting of epoxy resin, urethane resin, and phenol resin;
    3. The method of claim 2, wherein a portion of said plasma treated surface contacts said conductive layer.
  4.  前記プラズマ処理工程を行った後、72時間以内に前記工程(ii)を行う、請求項1~3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the step (ii) is performed within 72 hours after performing the plasma treatment step.
  5.  前記金属表面は、銅、金、ニッケル、スズ、鉛、ビスマス、銀、亜鉛、鉄、クロム、およびパラジウムからなる群より選択される少なくとも1種を含む、請求項1~4のいずれか1項に記載の製造方法。 5. The metal surface comprises at least one selected from the group consisting of copper, gold, nickel, tin, lead, bismuth, silver, zinc, iron, chromium, and palladium. The manufacturing method described in .
  6.  前記工程(i)の前に前記プラズマ処理工程を行う、請求項1~5のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the plasma treatment step is performed before the step (i).
  7.  前記工程(i)の前であって且つ前記プラズマ処理工程の前に、前記リード端子の表面の少なくとも一部を粗面化する工程をさらに含み、
     前記プラズマ処理工程において、粗面化された前記表面の少なくとも一部に対して前記プラズマ処理を施す、請求項1~6のいずれか1項に記載の製造方法。
    Further comprising the step of roughening at least part of the surface of the lead terminal before the step (i) and before the plasma treatment step;
    7. The manufacturing method according to claim 1, wherein in said plasma treatment step, said plasma treatment is applied to at least part of said roughened surface.
  8.  電解コンデンサであって、
     陽極部と陰極部とを含むコンデンサ素子と、
     前記陽極部に電気的に接続された陽極リード端子と前記陰極部に電気的に接続された陰極リード端子とを含むリード端子と、
     前記リード端子の一部と前記コンデンサ素子とを覆う外装体であって樹脂を含む外装体とを含み、
     前記リード端子の表面のうち前記外装体と接触している表面の少なくとも一部は、プラズマ処理されたプラズマ処理表面である、電解コンデンサ。
    an electrolytic capacitor,
    a capacitor element including an anode portion and a cathode portion;
    a lead terminal including an anode lead terminal electrically connected to the anode section and a cathode lead terminal electrically connected to the cathode section;
    an exterior covering a part of the lead terminal and the capacitor element and containing a resin,
    The electrolytic capacitor, wherein at least part of the surfaces of the lead terminals that are in contact with the outer package are plasma-treated surfaces.
  9.  前記樹脂は、エポキシ樹脂およびフェノール樹脂からなる群より選択される少なくとも1種を含み、
     前記プラズマ処理表面は親水基を有し、前記親水基を介して前記樹脂が前記プラズマ処理表面に吸着している、請求項8に記載の電解コンデンサ。
     
    The resin includes at least one selected from the group consisting of epoxy resins and phenolic resins,
    9. The electrolytic capacitor according to claim 8, wherein said plasma-treated surface has hydrophilic groups, and said resin is adsorbed to said plasma-treated surface via said hydrophilic groups.
PCT/JP2022/038076 2021-10-28 2022-10-12 Electrolytic capacitor and method for manufacturing electrolytic capacitor WO2023074375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176855 2021-10-28
JP2021-176855 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074375A1 true WO2023074375A1 (en) 2023-05-04

Family

ID=86157983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038076 WO2023074375A1 (en) 2021-10-28 2022-10-12 Electrolytic capacitor and method for manufacturing electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2023074375A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280512A (en) * 2001-03-19 2002-09-27 Denso Corp Method for manufacturing lead frame
JP2009238776A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JP2011049339A (en) * 2009-08-27 2011-03-10 Nec Tokin Corp Lower-surface electrode type solid electrolytic capacitor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280512A (en) * 2001-03-19 2002-09-27 Denso Corp Method for manufacturing lead frame
JP2009238776A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JP2011049339A (en) * 2009-08-27 2011-03-10 Nec Tokin Corp Lower-surface electrode type solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6413282B1 (en) Electrolytic capacitor and method for manufacturing the same
EP2290664B1 (en) Solid electrolytic capacitor and method of manufacturing thereof
US5621608A (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
US20230253163A1 (en) Electrolytic capacitor and manufacturing method thereof
US7688571B2 (en) Solid electrolytic capacitor
US6906912B2 (en) Solid electrolytic capacitor and method of producing the same
EP1876612B1 (en) Solid electrolytic capacitor element, method for manufacturing same, and solid electrolytic capacitor
EP1898433B1 (en) Solid electrolytic capacitor and production method thereof
JP2009170897A (en) Solid electrolytic capacitor
CN109196611B (en) Electrolytic capacitor and method for manufacturing the same
CN110678946A (en) Electrolytic capacitor and method for manufacturing the same
JP2009182157A (en) Solid-state electrolytic capacitor
US11915886B2 (en) Solid electrolytic capacitor
US7957120B2 (en) Capacitor chip and method for manufacturing same
JP4953091B2 (en) Capacitor chip and manufacturing method thereof
WO2013088845A1 (en) Solid electrolytic capacitor
WO2023074375A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2011243958A (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
CN114600208A (en) Electrolytic capacitor
KR101237612B1 (en) Bulk capacitor and method
CN117413331A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
CN1925075B (en) Solid electrolytic capacitor element, manufacturing method of solid electrolytic capacitor element and solid electrolytic capacitor
US20230411084A1 (en) Solid electrolytic capacitor
WO2023210509A1 (en) Solid electrolytic capacitor and method for manufacturing same
WO2023112765A1 (en) Lead terminal, production method therefor, and solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556302

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE