WO2023074334A1 - 制御システム、制御装置、制御方法及びプログラム - Google Patents

制御システム、制御装置、制御方法及びプログラム Download PDF

Info

Publication number
WO2023074334A1
WO2023074334A1 PCT/JP2022/037747 JP2022037747W WO2023074334A1 WO 2023074334 A1 WO2023074334 A1 WO 2023074334A1 JP 2022037747 W JP2022037747 W JP 2022037747W WO 2023074334 A1 WO2023074334 A1 WO 2023074334A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
predetermined action
threshold
execution
master device
Prior art date
Application number
PCT/JP2022/037747
Other languages
English (en)
French (fr)
Inventor
公平 大西
貴弘 溝口
伸 牧
能行 羽生
俊弘 藤井
Original Assignee
慶應義塾
モーションリブ株式会社
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慶應義塾, モーションリブ株式会社, テルモ株式会社 filed Critical 慶應義塾
Publication of WO2023074334A1 publication Critical patent/WO2023074334A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to a control system, control device, control method and program.
  • An object of the present invention is to ensure greater safety when performing a predetermined action by transmitting a haptic sensation.
  • a control system includes: A control system including a master device to which an operator's operation is input, and a slave device that performs a predetermined action by operating according to the operation input to the master device, control means for controlling haptic transmission in the master device and the slave device; limiting means for limiting execution of the predetermined action based on a control parameter used by the control means to control transmission of the haptic sensation and a threshold value corresponding to the control parameter; threshold setting means for changing the threshold during execution of the predetermined action; characterized by comprising
  • FIG. 4 is a schematic diagram showing the basic principle of haptic transmission control executed by the control device 30.
  • FIG. 2 is a block diagram showing the hardware configuration of a control system in the control system 1;
  • FIG. 3 is a schematic diagram showing a hardware configuration of an information processing device that constitutes the control device 30;
  • FIG. 2 is a block diagram showing the functional configuration of the control system 1;
  • FIG. 4 is a flowchart for explaining the flow of threshold control processing executed by the control device 30.
  • FIG. 2 is a block diagram showing the hardware configuration of a control system in the control system 1;
  • FIG. 3 is a schematic diagram showing a hardware configuration of an information processing device that constitutes the control device 30;
  • FIG. 2 is a block diagram showing the functional configuration of the control system 1;
  • FIG. 4 is a flowchart for explaining the flow of threshold control processing executed by the control device 30.
  • FIG. 2 is a schematic diagram showing the configuration of the control system 1 that performs threshold control processing after an operator manually inserts the catheter of the slave device 20.
  • FIG. 1 is a schematic diagram showing the overall configuration of a control system 1 according to one embodiment of the present invention.
  • a control system 1 according to this embodiment is configured as a master/slave system including a master device 10 and a slave device 20 that are mechanically separated.
  • the master device 10 constitutes a manipulator operated by an operator
  • the slave device 20 constitutes a catheter system having an end effector inserted into a subject. .
  • the control system 1 includes a master device 10, a slave device 20, and a control device 30.
  • the master device 10, the slave device 20, and the control device 30 are connected via a network 40. It is configured for wired or wireless communication.
  • the control system 1 can include a display L and a plurality of cameras C as appropriate.
  • the camera C various cameras such as a video camera that captures the appearance of the subject into which the slave device 20 is inserted, or an X-ray camera that captures the interior of the subject (for example, blood vessels and organs of the subject) by X-rays.
  • a camera can be used.
  • the master device 10 receives an operation similar to that for a conventional mechanically configured catheter, and detects the position of a movable part (such as a movable member of a manipulator) that moves according to the input operation. Master device 10 transmits information representing the detected position of the movable part to control device 30 . In addition, the master device 10 outputs a reaction force from the actuator in accordance with an instruction from the control device 30 in response to the input operation.
  • a movable part such as a movable member of a manipulator
  • the master device 10 performs an operation to move the catheter forward and backward (for example, an operation to insert the catheter into a blood vessel or an operation to slightly move the catheter to detect haptic sensations near the lesion), and rotate the catheter around its axis.
  • Manipulation e.g., changing the direction of the end effector
  • manipulating the end effector e.g., if the end effector is a balloon, expanding or contracting it, or if the end effector is forceps, etc.
  • opening and closing operations, etc. applies a reaction force to these operations, and transmits to the control device 30 information representing the position of the movable portion moved by each operation.
  • the slave device 20 drives an actuator according to instructions from the control device 30 to perform an action corresponding to the operation input to the master device 10, and a movable part (a mover of the actuator or the actuator moved by the action) that moves according to the action. (e.g., catheters, etc.).
  • a movable part a mover of the actuator or the actuator moved by the action
  • the slave device 20 transmits information representing the detected position of the movable portion to the control device 30 .
  • the various external forces input to the slave device 20 from the environment include, for example, a resistance force in the thrust direction that a catheter inserted into the subject receives from a blood vessel, and an end effector or the like placed at the tip of the catheter, which causes a lesion or a lesion. It includes the contact force when contacting organs and blood vessels.
  • the control device 30 is composed of, for example, an information processing device such as a PC (Personal Computer) or a server computer, and controls the master device 10, the slave device 20, the display L and the camera C. For example, the control device 30 acquires the positions of the movable parts of the master device 10 and the slave device 20 (the rotation angle of the actuator detected by a rotary encoder, the forward/backward position of the movable part detected by a linear encoder, etc.), and 10 and the slave device 20 to control the transmission of haptic sensations.
  • an information processing device such as a PC (Personal Computer) or a server computer
  • the control device 30 acquires the positions of the movable parts of the master device 10 and the slave device 20 (the rotation angle of the actuator detected by a rotary encoder, the forward/backward position of the movable part detected by a linear encoder, etc.), and 10 and the slave device 20 to control the transmission of haptic sensations.
  • the control device 30 uses information representing the position of the movable part (the position of the movable element of the actuator or the position of the member moved by the actuator).
  • the real space parameter (input vector) calculated based on the information representing the position and the like) is coordinate-transformed (transformed by a transformation matrix) into a virtual space in which position and force can be handled independently. That is, the input vector is coordinate-transformed from the real space of the oblique coordinate system in which the position and the force are related to each other to the virtual space of the orthogonal coordinate system in which the position and the force are mutually independent.
  • the parameters calculated by the coordinate transformation represent the position and force state values corresponding to the input vector in the virtual space.
  • the control device 30 converts the state values of the position and force calculated from the input vector to the position and force for controlling the position and force (in this case, transmitting the haptic sensation). , and performs inverse transformation (transformation using the inverse matrix of the transformation matrix) to return the computation result to the real space. Further, the control device 30 drives each actuator based on the real space parameters (current command value, etc.) acquired by the inverse transformation, thereby transmitting the haptic sensation between the master device 10 and the slave device 20. Realize a master-slave system that
  • position and velocity (or acceleration) or angle and angular velocity (or angular acceleration) are parameters that can be replaced by calculus, so when performing processing related to position or angle, replace them with velocity or angular velocity as appropriate. is possible.
  • the control system 1 in this embodiment implements a master-slave system that transmits haptic sensations between the master device 10 and the slave device 20 as described above, and performs threshold control processing.
  • the threshold control process restricts the execution of the predetermined action at an appropriate timing by making a determination based on the threshold when performing the predetermined action by transmitting the haptic sensation, thereby ensuring safety. It is a series of processing to do.
  • the control system 1 controls transmission of haptic sensations in the master device 10 and the slave device 20 .
  • the control system 1 restricts execution of a predetermined action based on a control parameter that uses haptic transmission for control and a threshold value corresponding to the control parameter.
  • the control system 1 changes the threshold during execution of the predetermined action.
  • the control system 1 determines whether or not execution of a predetermined action should be restricted based on the control parameters used to transmit the haptic sensation. That is, the control system 1 can restrict the execution of a predetermined action at an appropriate timing and ensure safety by using the premise configuration of this system, which is to transmit a haptic sensation. For example, compared to general methods in which the operator performs operations while visually observing the image of the subject, or in which the approximate force calculated based on the torque current of the motor is transmitted to the operator, this method is more accurate and appropriate. timing can be detected.
  • control system 1 does not uniformly determine a threshold value that serves as a criterion, but during execution of a predetermined action, for example, according to the execution status of a predetermined action, etc., to make the threshold value more appropriate. It can also be changed dynamically. Therefore, according to the control system 1, it is possible to solve the problem of ensuring greater safety when performing a predetermined action by transmitting a haptic sensation.
  • FIG. 2 is a schematic diagram showing the basic principle of the haptic transmission control executed by the control device 30.
  • the basic principle shown in FIG. 2 determines the operation of the actuator by inputting information representing the position of the movable part (current position of the movable part) and performing calculations in at least one of the areas of velocity and force. be. That is, the basic principle of the present invention includes a system to be controlled S, a functional force/velocity assignment transformation block FT, at least one of an ideal force source block FC or an ideal velocity source block PC, and an inverse transformation block IFT. It is expressed as a control law.
  • the controlled system S is the master device 10 or the slave device 20 equipped with an actuator, and controls the actuator based on acceleration and the like.
  • acceleration, velocity, and position are physical quantities that can be mutually converted by calculus, any of acceleration, velocity, and position may be used for control.
  • the control law is mainly expressed using the velocity calculated from the position.
  • the function-specific force/velocity allocation conversion block FT is a block that defines the conversion of control energy into the velocity and force regions set according to the function of the controlled system S.
  • a coordinate transformation is defined in which a value (reference value) serving as a reference for the function of the controlled system S and the current position of the movable part are input.
  • This coordinate transformation generally converts an input vector whose elements are the reference value and the current velocity into an output vector composed of velocities for calculating the velocity control target value, and an input vector whose elements are the reference value and the current force. It converts the vector into an output vector consisting of force for calculating the force control target value.
  • the coordinate transformation in the functional force/velocity allocation transformation block FT is generalized as shown in the following equations (1) and (2).
  • x' 1 to x' n are velocity vectors for deriving the state value of velocity
  • x' a to x' m are 1 or more
  • ) is a vector whose elements are the reference value and the speed based on the action of the actuator (the speed of the mover of the actuator or the speed of the member moved by the actuator)
  • h 1a to h nm are the elements of the conversion matrix representing the function. be.
  • f′′ 1 to f′′ n are force vectors for deriving force state values
  • f′′ a to f′′ m is an integer equal to or greater than 1
  • f′′ a to f′′ m is an integer equal to or greater than 1 is a vector whose elements are the force based on the reference value and the action of the actuator (the force of the mover of the actuator or the force of the member moved by the actuator).
  • the ideal force source block FC is a block that performs calculations in the force domain according to the coordinate transformation defined by the functional force/velocity assignment transformation block FT.
  • a target value is set for the force when performing calculations based on the coordinate transformation defined by the functional force/velocity assignment transformation block FT.
  • This target value is set as a fixed value or a variable value depending on the function to be implemented. For example, when realizing a function similar to the function indicated by the reference value, set the target value to zero, or when performing scaling, set a value obtained by expanding or reducing the information indicating the function to be realized. can.
  • the ideal velocity source block PC is a block that performs calculations in the velocity domain according to the coordinate transformation defined by the functional force/velocity assignment transformation block FT.
  • the ideal velocity source block PC there are set target values relating to velocity when performing calculations based on the coordinate transformation defined by the functional force/velocity assignment transformation block FT.
  • This target value is set as a fixed value or a variable value depending on the function to be implemented. For example, when realizing a function similar to the function indicated by the reference value, set the target value to zero, or when performing scaling, set a value obtained by expanding or reducing the information indicating the function to be realized. can.
  • the inverse transform block IFT is a block that transforms values in the domain of velocity and force into values in the domain of inputs to the controlled system S (for example, voltage values or current values).
  • the functional force/velocity assignment conversion block FT when the positional information of the actuators of the controlled system S is input to the functional force/velocity assignment conversion block FT, the velocity and force information obtained based on the positional information is used to , in the function-specific force/velocity assignment conversion block FT, the control law for each of the position and force regions according to the function is applied.
  • the ideal force source block FC force calculation is performed according to the function
  • the ideal velocity source block PC velocity calculation is performed according to the function, and control energy is distributed to force and velocity respectively.
  • the calculation results in the ideal force source block FC and the ideal velocity source block PC become information indicating the control target of the controlled system S, and these calculation results are used as input values for the actuators in the inverse transformation block IFT, and the controlled system S is entered in As a result, the actuators of the controlled system S perform operations according to the functions defined by the functional force/velocity assignment conversion block FT, and the intended operation of the device is realized.
  • x'p is the velocity for deriving the state value of velocity
  • x'f is the velocity related to the state value of force
  • x'm is the speed of the reference value (input from the master device 10) (differential value of the current position of the master device 10)
  • x 's is the current speed of the slave device 20 (differential value of the current position).
  • f p is the force related to the state value of velocity
  • f f is the force for deriving the state value of force
  • f m is the force of the reference value (input from the master device 10 )
  • f s is the current force of the slave device 20 .
  • the position of the slave device 20 is multiplied by ⁇ ( ⁇ is a positive number)
  • the force of the slave device 20 is multiplied by ⁇ ( ⁇ is a positive number)
  • the master It will be transmitted to the device 10 .
  • the haptic sensation is transmitted without being amplified (that is, expanded) or attenuated (that is, reduced).
  • scaling to amplify (that is, expand) or attenuate (that is, reduce) the haptic sensation to be transmitted can be performed. Realization is possible.
  • the force/tactile sensation transmission function accompanying such scaling suppresses the operation of the slave device 20 by, for example, extremely reducing the tactile sensation transmitted from the master device 10 when executing the threshold control process. , it is possible to restrict the execution of a predetermined action.
  • FIG. 3 is a block diagram showing the hardware configuration of the control system in the control system 1.
  • the control system 1 includes, as a hardware configuration of a control system, a control device 30 configured by an information processing device such as a PC or a server computer, a control unit 101 of the master device 10, and a communication unit 102. , an insertion actuator 103 , a detection actuator 104 , a rotation actuator 105 , an operation actuator 106 , linear encoders 107 and 108 , rotary encoders 109 and 110 , drivers 111 to 114 , and slave device 20 .
  • a control unit 201 a communication unit 202, an insertion actuator 203, a detection actuator 204, a rotation actuator 205, an operation actuator 206, linear encoders 207 and 208, rotary encoders 209 and 210, and a driver 211.
  • a display L and a camera C.
  • a control unit 101 of the master device 10 is composed of a microcomputer including a processor, memory, etc., and controls the operation of the master device 10 .
  • the control unit 101 controls the driving of the insertion actuator 103 , the detection actuator 104 , the rotation actuator 105 and the manipulation actuator 106 of the master device 10 according to control parameters transmitted from the control device 30 .
  • Communication unit 102 controls communication between master device 10 and other devices via network 40 .
  • the insertion actuator 103 is composed of, for example, a direct-acting motor, and according to instructions from the control unit 101, the operator inputs the operation to the master device 10 to move the catheter forward and backward in order to insert it into the blood vessel. Gives a reaction force.
  • the detection actuator 104 is composed of, for example, a voice coil motor, and applies a reaction force to an operator's input to the master device 10 in accordance with instructions from the control unit 101 to advance and retract the catheter near the lesion for treatment. Give.
  • the insertion actuator 103 has a longer stroke than the detection actuator 104, while the detection actuator 104 performs more precise position and force control than the insertion actuator 103. It is possible.
  • the rotation actuator 105 is composed of, for example, a rotary motor, and applies a reaction force to the operator's operation to rotate the master device 10 around the rotation axis along the advancing/retreating direction according to instructions from the control unit 101 .
  • the operation actuator 106 is configured by, for example, a rotary motor, and applies a reaction force to an operation input by the operator to a lever (grip) or the like for operating the end effector, according to instructions from the control unit 101. .
  • the linear encoder 107 detects the position of the mover of the insertion actuator 103 (advance/retreat position on the linear motion axis).
  • the linear encoder 108 detects the position of the mover of the detection actuator 104 (advance/retreat position on the linear motion axis).
  • a rotary encoder 109 detects the position (rotational angle) of the mover of the rotary actuator 105 .
  • the rotary encoder 110 detects the position (rotational angle) of the mover of the operating actuator 106 .
  • the driver 111 outputs drive current to the insertion actuator 103 according to instructions from the control unit 101 .
  • the driver 112 outputs a drive current to the detection actuator 104 according to instructions from the control unit 101 .
  • the driver 113 outputs drive current to the rotation actuator 105 according to the instruction from the control unit 101 .
  • the driver 114 outputs drive current to the operating actuator 106 in accordance with instructions from the control unit 101 .
  • a control unit 201 of the slave device 20 is configured by a microcomputer having a processor, memory, etc., and controls the operation of the slave device 20 .
  • the control unit 201 controls driving of the insertion actuator 203 , the detection actuator 204 , the rotation actuator 205 and the operation actuator 206 of the slave device 20 according to control parameters transmitted from the control device 30 .
  • the communication unit 202 controls communication between the slave device 20 and other devices via the network 40 .
  • the insertion actuator 203 is composed of, for example, a direct-acting motor, and according to instructions from the control unit 201, the operator inputs the operation to the master device 10 to move the catheter forward and backward in order to insert it into the blood vessel.
  • the catheter of the slave device 20 is advanced and retracted.
  • the detection actuator 204 is composed of, for example, a voice coil motor, and according to instructions from the control unit 201, the slave device 20 responds to an operation input by the operator to the master device 10 to advance and retract the catheter near the lesion for treatment. advance and retract the catheter.
  • the insertion actuator 203 has a longer stroke than the detection actuator 204, while the detection actuator 204 performs more precise position and force control than the insertion actuator 203. It is possible.
  • the rotation actuator 205 is configured by, for example, a rotary motor, and rotates the catheter of the slave device 20 around a rotation axis along the advancing/retreating direction in accordance with instructions from the control unit 201 and in accordance with operations input to the master device 10 by the operator.
  • the operation actuator 206 is composed of, for example, a rotary motor, and operates the end effector (expansion, contraction, opening/closing, etc.) according to the operation input to the master device 10 by the operator according to instructions from the control unit 201. .
  • the linear encoder 207 detects the position of the mover of the insertion actuator 203 (advance/retreat position on the linear motion axis).
  • a linear encoder 208 detects the position of the mover of the detection actuator 204 (advance/retreat position on the linear motion axis).
  • a rotary encoder 209 detects the position (rotational angle) of the mover of the rotary actuator 205 .
  • a rotary encoder 210 detects the position (rotational angle) of the mover of the operating actuator 206 .
  • the driver 211 outputs drive current to the insertion actuator 203 according to instructions from the control unit 201 .
  • the driver 212 outputs a drive current to the detection actuator 204 according to instructions from the control unit 201 .
  • the driver 213 outputs a drive current to the rotation actuator 205 according to instructions from the control unit 201 .
  • a driver 214 outputs a drive current to the operation actuator 206 according to an instruction from the control unit 201 .
  • the display L is installed in a place where the operator of the master device 10 can visually recognize the screen, and displays images instructed to be displayed by the control device 30 (visible light images or X-ray images of the subject photographed by the camera C), , to display information instructed to be displayed by the control device 30 .
  • the camera C is installed in a place where the slave device 20 can capture images of the subject into which the catheter is to be inserted, captures images of the subject (visible light images, X-ray images, etc.), and transmits the captured images to the control device 30. do.
  • FIG. 4 is a schematic diagram showing a hardware configuration of an information processing device that constitutes the control device 30.
  • the control device 30 includes a processor 311, a ROM (Read Only Memory) 312, a RAM (Random Access Memory) 313, a bus 314, an input section 315, an output section 316, and a storage section. 317 , a communication unit 318 and a drive 319 .
  • the processor 311 executes various processes according to programs recorded in the ROM 312 or programs loaded from the storage unit 317 to the RAM 313 .
  • the RAM 313 also stores data necessary for the processor 311 to execute various types of processing.
  • the processor 311 , ROM 312 and RAM 313 are interconnected via a bus 314 .
  • An input unit 315 , an output unit 316 , a storage unit 317 , a communication unit 318 and a drive 319 are connected to the bus 314 .
  • the input unit 315 is composed of various buttons and the like, and inputs various information according to instruction operations.
  • the output unit 316 includes a display, a speaker, and the like, and outputs images and sounds. Note that when the control device 30 is configured as a smartphone or a tablet terminal, the display of the input unit 315 and the display of the output unit 316 may be overlapped to configure a touch panel.
  • the storage unit 317 is composed of a hard disk, a DRAM (Dynamic Random Access Memory), or the like, and stores various data managed by each server.
  • the communication unit 318 controls communication between the control device 30 and other devices via the network.
  • a removable medium 331 consisting of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately mounted in the drive 319 .
  • a program read from the removable medium 331 by the drive 319 is installed in the storage unit 317 as required.
  • FIG. 5 is a block diagram showing the functional configuration of the control system 1.
  • the control device 30 executes various processes to cause the processor 311 to perform a sensor information acquisition unit 351, a tactile sensation transmission unit 352, a determination data acquisition unit 353, A mode setting unit 354, a threshold setting unit 355, and a limiting unit 356 function. Further, a control parameter storage unit 371 and a threshold storage unit 372 are formed in the storage unit 317 .
  • the control parameter storage unit 371 stores the control parameters acquired in the control of the control device 30 transmitting the haptic sensation between the master device 10 and the slave device 20 in chronological order.
  • the information stored as the control parameters can be various parameters acquired in haptic transmission control, and can include various types of information that can reproduce the haptic transmission control.
  • sensor information acquired by the master device 10 and the slave device 20 state values obtained by coordinate transformation of these sensor information, current command values to each actuator, or set in the control device 30 for tactile transmission control
  • Various set values and the like can be stored as control parameters.
  • the threshold storage unit 372 stores a threshold for determining whether or not to restrict a predetermined action.
  • a threshold for determining whether or not to restrict a predetermined action by operating the slave device 20, based on values indicating various external forces input from the environment to the slave device 20 (hereinafter referred to as "force control parameter values") and threshold values, to determine whether or not to restrict a predetermined action. Therefore, the threshold storage unit 372 stores the absolute value set as the threshold for this force control parameter value. Note that when a plurality of thresholds are set, the threshold storage unit 372 stores all of the plurality of thresholds.
  • the sensor information acquisition unit 351 acquires sensor information detected by various sensors installed in the master device 10 and slave devices 20 .
  • the sensor information acquisition unit 351 acquires information indicating the position (forward/backward position or rotation angle) of the mover of each actuator detected by the linear encoders 107, 108, 207, 208 and the rotary encoders 109, 110, 209, 210. get.
  • the sensor information acquisition unit 351 also stores the acquired sensor information in the control parameter storage unit 371 as time-series data.
  • the haptic transmission unit 352 controls haptic transmission in the master device 10 and the slave device 20 according to the control algorithm shown in FIG. For example, in the threshold control process, the haptic transmission unit 352 performs control to transmit haptic sensations between actuators for corresponding operations of the master device 10 and the slave device 20 .
  • the determination data acquisition unit 353 acquires determination data used by each of the mode setting unit 354, the threshold setting unit 355, and the limit unit 356 to make determinations by performing calculations, analysis, and the like on various data. . Further, the determination data acquisition unit 353 outputs the acquired determination data to each of these functional blocks.
  • the determination data acquisition unit 353 acquires the force control parameter value as the determination data.
  • This force control parameter value can be calculated as the product of mass and acceleration. Therefore, the determination data acquisition unit 353 stores sensor information acquired by the sensor information acquisition unit 351, which the control parameter storage unit 371 stores as control parameters, and the functional force/speed allocation conversion block FT in the control algorithm shown in FIG. Based on the information corresponding to the result of the coordinate transformation performed by , the force control parameter value is obtained by performing calculations such as integration in real time.
  • the determination data acquisition unit 353 can acquire an instantaneous value or a value obtained by an arithmetic operation such as a moving average as the force control parameter value. Further, the determination data acquisition unit 353 may acquire the force control parameter value after performing filtering using a band-limiting filter on the waveform of the instantaneous value.
  • the determination data acquisition unit 353 acquires the analysis result of the image captured by the camera C as determination data. For example, the determination data acquisition unit 353 calculates the distance between the tip of the catheter and the lesion based on the image captured by the camera C. FIG. By calculating the distance between the tip of the catheter and the lesion from the image captured by the camera C, it is possible to determine the approach of the catheter to the lesion based on the same criteria as when a human makes a visual determination.
  • Various sensors can be used to obtain the distance between the tip of the catheter and the lesion. may be detected to obtain the distance to the lesion.
  • a sensor for detecting the position of the tip of the catheter may be installed in advance inside the subject, and the sensor may detect the position of the tip of the catheter to obtain the distance from the lesion.
  • the determination data acquisition unit 353 calculates the thickness of the blood vessel into which the tip of the catheter is inserted based on the analysis result of the image captured by the camera C as the determination data.
  • the determination data acquisition unit 353 calculates the thickness of the blood vessel into which the tip of the catheter is inserted based on the analysis result of the image captured by the camera C as the determination data.
  • the determination data acquisition unit 353 obtains determination data from an input operation from the operator or the like via the input unit 315, communication from an external device (for example, the master device 10) via the communication unit 318, and the like. Acquire various information related to a predetermined action by inputting with .
  • the various types of information related to the predetermined action are, for example, the attributes of the device used to execute the predetermined action, the attributes of the execution target of the predetermined action, the content of the predetermined action, and the like.
  • the material of the catheter, the cross-sectional area of the catheter, the type of the end effector, and the like are acquired as the attributes of the device.
  • the determination data acquisition unit 353 outputs the acquired determination data to each of the mode setting unit 354, the threshold setting unit 355, and the limit unit 356 according to the type of determination data.
  • the mode setting unit 354 switches between the insertion mode and the detection mode by making a determination based on the determination data acquired by the determination data acquisition unit 353 .
  • the “insertion mode” is a mode in which the insertion actuator 203 is used to move the catheter forward and backward in the slave device 20 and haptic transmission is performed with the insertion actuator 103 of the master device 10 .
  • the "insertion mode” is, for example, a mode that is set until the tip of the catheter reaches the vicinity of the lesion after the operator inserts the catheter into the subject.
  • the “sensing mode” is a mode in which the sensing actuator 204 is used to move the catheter forward and backward in the slave device 20 and haptic sensation is transmitted between the slave device 20 and the sensing actuator 104 in the master device 10 .
  • the “detection mode” is, for example, a mode that is set after the operator inserts a catheter into the subject and the tip of the catheter reaches the vicinity of the lesion.
  • the insertion actuators 103 and 203 have longer strokes than the detection actuators 104 and 204, while the detection actuators 104 and 204 have longer strokes than the insertion actuators 103 and 203. It is possible to control the position and force with higher accuracy than in the conventional method. Therefore, the "sensing mode" is used in situations where the operator needs to sense a minute external force input to the slave device 20, as opposed to the "insertion mode".
  • the mode setting unit 354 determines the insertion state of the catheter based on the force control parameter value as determination data, and switches between the insertion mode and the detection mode. In this case, for example, the mode setting unit 354 switches to the insertion mode when the force control parameter value is less than a predetermined value, and switches to the detection mode when it exceeds the predetermined value.
  • the mode setting unit 354 determines that the tip of the catheter has not reached the vicinity of the lesion based on the distance between the tip of the catheter and the lesion obtained by analyzing the image of the camera C as determination data. The mode may be switched to the insertion mode when the object reaches the vicinity of the lesion, and switched to the detection mode when the object reaches the vicinity of the lesion. In addition, the mode setting unit 354 is operated based on a mode switching operation by an operator or the like via the input unit 315 or a mode switching operation by communication from an external device (for example, the master device 10) via the communication unit 318. to switch between the insertion mode and the detection mode.
  • an external device for example, the master device
  • the threshold setting unit 355 sets a threshold for determining whether or not the restriction unit 356 restricts a predetermined action in the detection mode. Then, the threshold setting unit 355 causes the threshold storage unit 372 to store the set threshold. As described above, the threshold is an absolute value set for the force control parameter value.
  • the threshold setting unit 355 first sets the initial value of the threshold. This initial value can be set, for example, based on an actual measurement value, a statistical value, or an estimated value obtained by simulation when a catheter has been inserted into a subject or a biological model simulating the subject in the past. .
  • the threshold value setting unit 355 does not uniformly set the threshold value to the initial value based on the determination data, but during execution of a predetermined action, for example, according to the execution status of the predetermined action , to dynamically change the threshold to a more appropriate one.
  • the threshold is dynamically changed to a more appropriate one according to the thickness of the blood vessel into which the tip of the catheter is inserted, which is included in the determination data.
  • the threshold setting unit 355 changes the threshold to a smaller value when the thickness of the blood vessel into which the tip of the catheter is inserted becomes thin.
  • the threshold is set to a larger value.
  • the threshold setting unit 355 sets the initial value and the changed value based on various information related to the predetermined action, such as the attribute of the device, the attribute of the execution target, and the action content of the predetermined action included in the determination data. , may be different. For example, the larger the cross-sectional area of the catheter, which is the attribute of the device, the higher the initial value and the changed value may be set. In addition, for example, when the subject who is the execution target of the predetermined action is old or has a blood vessel-related characteristic such as arteriosclerosis, the threshold may be set to a smaller value.
  • the threshold setting unit 355 may set a plurality of thresholds step by step so that the restriction unit 356 can step-by-step restrict a predetermined action using various methods. For example, a first threshold and a second threshold that is greater than the first threshold may be set. In this case, both the values of the first threshold and the second threshold may be changed as appropriate.
  • the restriction unit 356 determines whether or not to restrict the predetermined action in the detection mode, and restricts the execution of the predetermined action based on the determination result.
  • the determination by the limiting unit 356 is performed by comparing the force control parameter value, which is determination data, with the threshold set by the threshold setting unit 355 and stored in the threshold storage unit 372 . Then, the restriction unit 356 restricts execution of a predetermined action when the force control parameter value exceeds the threshold value (that is, when various external forces input from the environment become too large).
  • the master device 10 when the force control parameter value exceeds the threshold, the master device 10 is not properly operated by the operator, and the end effector or the like placed at the tip of the catheter is damaged by a lesion or It is assumed that the contact force is increased due to strong contact with organs and blood vessels. Therefore, if the predetermined action (insertion of the catheter in this case) is continued, there is a risk that an unexpected inappropriate situation, such as the catheter passing through a blood vessel, may occur.
  • the restriction unit 356 restricts execution of a predetermined action to ensure safety.
  • the restriction unit 356 restricts the execution of a predetermined action using the control of haptic transmission by the haptic transmission unit 352 .
  • the haptic transfer function with scaling (amplification or reduction of force or position) described with reference to equations (3) and (4) is used to transmit from master device 10 to slave device 20 By suppressing the operation of the slave device 20 by a method such as extremely reducing the haptic sensation, execution of a predetermined action is restricted.
  • the force-tactile transfer function with position limits described with reference to equations (5)-(8) prevents the catheter from advancing beyond the position where the force control parameter value exceeds the threshold value, but allows retraction.
  • the limiting unit 356 may reduce the operation of the slave device 20 by setting the output of the inverse transform block IFT (for example, voltage value or current value) input to each actuator of the slave device 20 to zero. Execution of a predetermined action is restricted by stopping
  • the restriction unit 356 outputs a warning to the operator to cause the operator to stop operating the master device 10, thereby restricting the master device 10 from executing a predetermined action.
  • the warning can be realized by, for example, displaying a text or image indicating the contents of the warning on the display L.
  • the warning can be realized by issuing a warning sound from a speaker included in the output unit 316. FIG.
  • the restriction unit 356 may select a method for restricting execution of the predetermined action from multiple methods. For example, choose to output a warning if the force control parameter value exceeds a first threshold, but nevertheless exceed a second, larger threshold. Choose a method of restraint. As a result, it is possible to step-by-step restrict by various methods according to the execution status of the predetermined action. Also, in this case, for example, three or more thresholds are set, and when the first threshold is exceeded, a text indicating the content of the warning is displayed, and when the second threshold is exceeded, a warning sound is further issued. However, more stepwise restrictions may be applied, such as suppressing the operation of the slave device 20 when the third threshold is exceeded.
  • FIG. 6 is a flowchart for explaining the flow of threshold control processing executed by the control device 30.
  • an operator instructs execution of the threshold control process via the input unit 315, or an execution instruction of the threshold control process is received from an external device (for example, the master device 10) via the communication unit 318. Initiated in response to what is done.
  • an assistant who assists the operation of the slave device 20 manually or remotely operates the master device 10 so that the tip of the catheter is moved to the subject by a predetermined distance. Assume that it starts in an inserted state (for example, a state in which it is inserted by about 1 to 10 [cm]). As a result, it is possible to prevent the control of the control device 30 from becoming unstable in a state where the change in the external force at the initial stage of insertion is large.
  • step S11 the mode setting unit 354 sets the insertion mode.
  • step S ⁇ b>12 the sensor information acquisition unit 351 starts acquiring sensor information detected by various sensors installed in the master device 10 and the slave device 20 . Acquisition of this sensor information is performed in parallel with other steps until this process ends. Further, the acquired sensor information is stored in the control parameter storage unit 371 as time-series data.
  • step S13 the haptic transmission unit 352 starts controlling haptic transmission based on the sensor information. This haptic transmission control is performed in parallel with other steps until this process ends.
  • step S14 the determination data acquisition unit 353 starts acquiring determination data by performing calculations, analyzes, and the like on various data. The acquisition of this determination data is performed in parallel with other steps until this process ends. Further, the determination data acquisition unit 353 outputs the acquired determination data to the mode setting unit 354 , the threshold setting unit 355 , and the limiting unit 356 .
  • step S15 the mode setting unit 354 determines whether to switch modes based on the determination data. If the mode is to be switched, a determination of Yes is made in step S15, and the process proceeds to step S16. On the other hand, if the mode is not to be switched, it is determined as No in step S15, and the process proceeds to step S17.
  • step S16 the mode setting unit 354 switches modes. That is, if the insertion mode is set, it is set to switch to the detection mode, and if it is set to the detection mode, it is set to switch to the insertion mode.
  • step S17 the threshold setting unit 355 determines whether the currently set mode is the insertion mode or the detection mode. If it is in the detection mode, it is determined as "detection mode" in step S17, and the process proceeds to step S18. On the other hand, if it is the insert mode, it is determined as "insert mode” in step S17, and the process proceeds to step S23.
  • step S18 the threshold setting unit 355 sets the threshold for the force control parameter value to the initial value. This set threshold is stored in the threshold storage unit 372 .
  • step S19 the threshold setting unit 355 determines whether to change the threshold based on the determination data. If the threshold is to be changed, a determination of Yes is made in step S19, and the process proceeds to step S20. On the other hand, if the threshold value is not changed, it is determined as No in step S19, and the process proceeds to step S21.
  • step S20 the threshold setting unit 355 changes the threshold. This changed threshold is stored in the threshold storage unit 372 .
  • step S21 the restriction unit 356 restricts execution of a predetermined action based on the force control parameter value included in the determination data and the threshold set by the threshold setting unit 355 and stored in the threshold storage unit 372. determine whether or not to If the execution of the predetermined action is to be restricted, a determination of Yes is made in step S21, and the process proceeds to step S22. On the other hand, if the execution of the predetermined action is not to be restricted, No is determined in step S21, and the process proceeds to step S23.
  • step S22 the restriction unit 356 restricts execution of a predetermined action. Note that when a plurality of thresholds are set, the restriction unit 356 restricts execution of the predetermined action by a method corresponding to the largest threshold determined to exceed the force control parameter value in step S23.
  • step S23 the haptic transmission unit 352 determines whether or not the termination condition for terminating this process is satisfied.
  • the termination condition is, for example, an instruction to end the threshold control process by an operator via the input unit 315 or an instruction to end the threshold control process by communication from an external device (for example, the master device 10) via the communication unit 318. or the operation of the slave device 20 is suppressed due to the restriction of execution of a predetermined action by the restriction unit 356 . If the end condition is satisfied, a determination of Yes is made in step S23, and this process ends. On the other hand, if the termination condition is not satisfied, a determination of No is made in step S23, and the process returns to step S15 and is repeated.
  • the threshold control process described above it is determined whether or not execution of a predetermined action should be restricted based on the control parameters used for transmission of the haptic sensation. That is, in the threshold control process, by using the premise configuration of the present system of transmitting the haptic sensation, it is possible to restrict execution of a predetermined action at an appropriate timing and ensure safety. In addition, according to the threshold control process, instead of uniformly determining the threshold that is the criterion, during the execution of the predetermined action, for example, according to the execution status of the predetermined action, the threshold is set more appropriately. It can also be changed dynamically. Therefore, according to the threshold control process, it is possible to solve the problem of ensuring greater safety when performing a predetermined action by transmitting a haptic sensation.
  • FIG. 7 shows the magnitude of the external force input to the slave device 20 when the catheter is inserted as a predetermined action in the above-described embodiment, and the blood vessel is perforated.
  • FIG. 3 is a schematic diagram showing temporal changes in the positions of the device 10 and the slave device 20, the position of the distal end of the catheter, and the like.
  • the horizontal axis represents time [S]
  • the vertical axis represents the force control parameter value [N] indicating the magnitude of the external force input to the slave device 20 .
  • the horizontal axis represents time [S]
  • the vertical axis represents the position [M] of the master device 10/slave device 20 detected as sensor information.
  • FIG. 7A shows the magnitude of the external force input to the slave device 20 when the catheter is inserted as a predetermined action in the above-described embodiment, and the blood vessel is perforated.
  • FIG. 3 is a schematic diagram showing temporal changes in the positions of the device 10 and the slave device 20, the position of the distal end of the catheter
  • 7(C) the horizontal axis represents time [S], and the vertical axis represents the position [M] of the tip of the catheter.
  • 7(D-1) to 7(D-5) show changes over time in the positional relationship between the distal end of the catheter and the inner wall of the blood vessel into which the catheter is inserted.
  • the catheter advances through a steady environment (inside an artery, etc.) within the subject and passes through the inner wall of the blood vessel.
  • the control parameter value of the force that indicates the external force of changes at a substantially constant magnitude.
  • the positional relationship between the tip of the catheter and the inner wall of the blood vessel is as shown in FIG. 7(D-1).
  • the force control parameter value gradually increases (“force gradually increases” in the figure).
  • the positions of the master device 10 and the slave device 20 are less likely to progress than in the period P1, but the progress itself continues, so it progresses little by little ( “It becomes difficult to progress” in the figure).
  • the position of the distal end of the catheter hardly changes ("almost does not advance” in the figure). This is because, as shown in FIGS. 7(D-3) and 7(D-4), the tip of the catheter collides with the inner wall of the blood vessel, and the tip of the catheter only bends and does not advance. In this case, elastic force is stored like a spring at the distal end of the catheter.
  • the tip of the catheter perforates the blood vessel, so that the contact force from the inner wall of the blood vessel decreases and the force control parameter value decreases. Further, as shown in FIG. 7C, during the period P3, the tip of the catheter advances more than expected due to the impetus at the time of perforation ("Advancing with impetus of perforation" in the figure).
  • the timing (“gradual increase in force” in the figure) at which the force control parameter value increases greatly during the period (here, period P2) before the catheter penetrates the blood vessel ) exists. Therefore, in the present embodiment, as described above, a threshold value is set for the force control parameter value, the timing at which the force control parameter value increases significantly is detected, and a predetermined action (here, insertion of catheters). As a result, it is possible to prevent the catheter from penetrating the blood vessel at an appropriate timing. That is, it is possible to ensure greater safety when performing a predetermined action by transmitting a haptic sensation.
  • the positions of the master device 10 and the slave device 20 also have a timing (“difficult to advance” in the figure) in the period P2 immediately before they pass through the blood vessel. It has the characteristic of Therefore, it is possible to limit execution of a predetermined action (in this case, insertion of a catheter) based on control parameter values indicating the positions of the master device 10/slave device 20 .
  • a predetermined action in this case, insertion of a catheter
  • the timing at which the value of the position control parameter becomes less likely to fluctuate cannot be detected from the instantaneous value of the position control parameter, and the value of the position control parameter must be statistically observed for a certain period of time.
  • the change in the value of the position control parameter at this timing is gentler than the change in the value of the force control parameter, and it is difficult to detect it in the first place. For these reasons, even if a predetermined action is restricted after this timing is detected, there is a risk that the restriction will not be in time and the action will penetrate the blood vessel. From this point of view, in the present embodiment, the force control parameter value is used to quickly detect a sign that the blood vessel is being penetrated. That is, in the present embodiment, safety can be further ensured by using the force control parameter value.
  • FIG. 8 is a schematic diagram showing the configuration of the control system 1 that performs threshold control processing after the operator manually inserts the catheter of the slave device 20.
  • the catheter of the slave device 20 is provided with an operating lever (grasping portion) or the like so that manual operation by the operator is possible.
  • the control system 1 of this modified example includes only the detection actuators 104 and 204 among the direct acting actuators included in the control system 1 of the first embodiment shown in FIG. not
  • slave device 20 When the operator manually inserts the catheter, in slave device 20 the catheter is released from movement control by sensing actuator 204 and rotation actuator 205 and can be manipulated like a conventional catheter. At this time, it is assumed that the operator inserts the catheter up to a position short of the vicinity of the lesion, and threshold control processing is started with this state as the initial state.
  • the catheter When the threshold control process is initiated, the catheter is held for movement control by sensing actuator 204 and rotation actuator 205, slave device 20 moves the catheter in response to manipulation of master device 10, and control device The control for transmitting the haptic sensation by 30 is started. Then, by performing the threshold control process in the same manner as the threshold control process when the detection mode is set in the above-described embodiment, even in this modified example, based on the force control parameter value and the threshold, the predetermined action execution can be restricted. According to this modified example, since the distance over which the catheter is moved by the actuator is relatively short, it is sufficient to have an actuator with a short stroke such as a voice coil motor. can do.
  • the threshold setting unit 355 dynamically changes the threshold to a more appropriate one based on the analysis result of the image captured by the camera C.
  • the threshold is dynamically changed according to the thickness of the blood vessel into which the tip of the catheter is inserted, which is included in the determination data.
  • the threshold value may be changed dynamically in consideration of other information as well.
  • the threshold value is set to a more appropriate value in consideration of the time-series control parameters stored in the control parameter storage unit 371 and acquired in the control of the control device 30 transmitting the haptic sensation between the master device 10 and the slave device 20. It may be changed dynamically.
  • the determination data acquisition unit 353 further acquires time-series control parameters stored in the control parameter storage unit 371 as determination data.
  • the threshold setting unit 355 dynamically changes the threshold to a more appropriate one based on both the analysis result of the image captured by the camera C, which is acquired as the determination data, and this control parameter.
  • the threshold setting unit 355 sets the actual rotation angle of the catheter tip specified based on the image analysis result and the rotation of the mover of the rotation actuator 205 of the slave device 20 specified based on the control parameters. By comparing with the angle, it is calculated how many turns the catheter is twisted. That is, the degree of difference between the rotation angle of the distal end of the catheter and the rotation angle of the insertion portion of the catheter by the slave device 20, and the degree of twist is calculated.
  • the threshold setting unit 355 appropriately dynamically changes the threshold so that this torsion (that is, the difference in rotation angle) does not correspond to a number of rotations higher than the number of rotations at which the catheter may be damaged. For example, if there is a possibility of damaging the catheter if twisting more than N turns, the threshold is dynamically changed to a smaller value when twisting M turns (M is a value smaller than N). , the restriction unit 356 restricts execution of a predetermined action (in this case, insertion of a catheter).
  • the threshold setting unit 355 also sets the actual length of the inserted catheter tip in the thrust direction (advance/retreat direction), which is specified based on the analysis result of the image, and the control parameter.
  • the difference between the inserted lengths is calculated by comparing the lengths inserted in the thrust direction (advancing and retreating directions) by the master device 10 and the slave device 20 . If this difference has a predetermined length, it means that the insertion has not been performed properly, and as shown as period P2 in FIGS. The position is different from the position of the tip of the catheter.
  • the threshold setting unit 355 dynamically changes the threshold to a small value when the difference reaches a predetermined length, and the restriction unit 356 restricts execution of a predetermined action (insertion of the catheter in this case). make it As described above, by dynamically changing the threshold based on both the analysis result of the image and the control parameter, as in the second modification, the occurrence of abnormality can be detected from various viewpoints. It becomes possible to ensure more safety.
  • the force in the thrust direction (advancing and retreating direction) of the catheter is transmitted between the master device 10 and the slave device 20 by haptic sensation, but the present invention is not limited to this.
  • haptic transmission may be performed between the master device 10 and the slave device 20 for rotation about a rotation axis along the advancing/retreating direction or for operating an end effector.
  • the catheter is remotely operated by the control system 1
  • various devices can be targeted as the devices that are remotely operated by the control system 1.
  • various devices having a linearly configured portion such as guide wires, forceps,
  • medical devices such as endoscopes can be targeted.
  • the case where the actuators provided in the master device 10 and the actuators provided in the slave device 20 are associated one-to-one to transmit the haptic sensation has been described as an example.
  • a plurality of actuators of the master device 10 are associated with one actuator of the slave device 20 to transmit a haptic sensation
  • one actuator of the master device 10 is associated with a plurality of actuators of the slave device 20 to transmit haptic sensations. It is possible to communicate It is also possible to associate the plurality of actuators of the master device 10 with the plurality of actuators of the slave device 20 to transmit the haptic sensation.
  • the insertion actuator 203 and the detection actuator 204 of the slave device 20 shown in FIG. 3 can be associated with the insertion actuator 103 of the master device 10 to transmit the haptic sensation.
  • the configuration including the insertion actuator 203 and the detection actuator 204 as actuators for advancing and retracting the catheter of the slave device 20 has been described as an example, but the configuration is not limited to this. That is, the catheter of the slave device 20 may be advanced and retracted with a single actuator as long as the actuator satisfies the required performance in stroke and accuracy of operation.
  • the processing for switching between the insertion mode and the detection mode is omitted, and the threshold control processing is performed in the same manner as the threshold control processing when the detection mode is set in the above-described embodiment. Based on the force control parameter values and thresholds, execution of a given action can be restricted.
  • the restriction on the execution of the predetermined action based on the force control parameter value and the threshold is performed only when the detection mode is set, but the present invention is not limited to this. . That is, even when the insertion mode is set, execution of a predetermined action may be restricted based on the force control parameter value and the threshold value.
  • step S17 shown in FIG. 6 is omitted, and the processing from step S18 onward is performed regardless of whether the detection mode is set or the insertion mode is set.
  • the threshold when the detection mode is set may differ from the threshold when the insertion mode is set. For example, the threshold when the detection mode is set may be lower than the threshold when the insertion mode is set.
  • the predetermined action can be performed. execution can be restricted.
  • a warning is output to the operator, but the present invention is not limited to this. That is, information other than the warning may be further output to the operator.
  • the force control parameter value calculated by the determination data acquisition unit 353 may be displayed on the display L in real time to be output to the operator.
  • the horizontal axis represents time [S]
  • the vertical axis represents the force control parameter value [N] indicating the magnitude of the external force input to the slave device 20.
  • the control system 1 includes the master device 10 to which an operator's operation is input, and the slaves that operate according to the operation input to the master device 10 to perform a predetermined action. a device 20;
  • the control system 1 also includes a haptic transmission section 352 , a restriction section 356 , and a threshold setting section 355 .
  • the haptic transmission unit 352 controls haptic transmission between the master device 10 and the slave device 20 .
  • the restriction unit 356 restricts execution of a predetermined action based on a control parameter used by the haptic transmission unit 352 to control haptic transmission and a threshold value corresponding to the control parameter.
  • the threshold setting unit 355 changes the threshold during execution of a predetermined action.
  • the control system 1 determines whether or not execution of a predetermined action should be restricted based on the control parameters used to transmit the haptic sensation. That is, the control system 1 can restrict the execution of a predetermined action at an appropriate timing and ensure safety by using the premise configuration of this system, which is to transmit a haptic sensation. For example, compared to general methods in which the operator performs operations while visually observing the image of the subject, or in which the approximate force calculated based on the torque current of the motor is transmitted to the operator, this method is more accurate and appropriate. timing can be detected.
  • control system 1 does not uniformly determine a threshold value that serves as a criterion, but during execution of a predetermined action, for example, according to the execution status of a predetermined action, etc., to make the threshold value more appropriate. It can also be changed dynamically. Therefore, according to the control system 1, it is possible to solve the problem of ensuring greater safety when performing a predetermined action by transmitting a haptic sensation.
  • the control system 1 further includes a determination data acquisition unit 353 .
  • the determination data acquisition unit 353 acquires image data relating to execution of a predetermined action and analyzes the image data.
  • the threshold setting unit 355 changes the threshold based on the image data analysis result obtained by the determination data acquisition unit 353 . As a result, it is possible to reliably identify the execution status of the predetermined action by analyzing the image data, and dynamically change the threshold to a more appropriate one according to the identification result.
  • a plurality of thresholds are provided stepwise.
  • the restricting means selects a method for restricting execution of the predetermined action from a plurality of methods based on the control parameters and the plurality of thresholds. As a result, it is possible to step-by-step restrict by various methods according to the execution status of the predetermined action.
  • the restriction unit 356 restricts execution of a predetermined action by restricting the operation of the slave device 20 .
  • the slave device 20 can be physically restrained (for example, stopped) from performing a predetermined action in the slave device 20 .
  • the restriction unit 356 restricts execution of a predetermined action by outputting a warning to the operator. As a result, the operator can be stopped from operating the master device 10, and execution of a predetermined action in the master device 10 can be restricted.
  • the threshold setting unit 355 sets the initial value of the threshold and the threshold based on at least one of the attribute of the device used to execute the predetermined action, the attribute of the execution target of the predetermined action, and the content of the action of the predetermined action. determine at least one of the modified values of Thereby, the initial value of the threshold value and the changed value of the threshold value can be made more appropriate based on various information related to the predetermined action.
  • a control parameter is a control parameter corresponding to a force input to the slave device 20 as a result of execution of a predetermined action.
  • execution of a predetermined action can be restricted at an appropriate timing to ensure safety.
  • the control device 30 includes the haptic transmission section 352 , the restriction section 356 , and the threshold setting section 355 .
  • the haptic transmission unit 352 transmits a haptic sensation between the master device 10 to which the operator's operation is input and the slave device 20 that performs a predetermined action by operating according to the operation input to the master device 10. to control.
  • the restriction unit 356 restricts execution of a predetermined action based on a control parameter used by the haptic transmission unit 352 to control haptic transmission and a threshold value corresponding to the control parameter.
  • the threshold setting unit 355 changes the threshold during execution of a predetermined action.
  • the present invention is not limited to the above-described embodiments, and includes modifications, improvements, and the like within the scope of achieving the object of the present invention.
  • the present invention can be implemented as the control system 1 in the above-described embodiment, as well as a control device that controls the control system 1, a control method configured by each step executed in the control system 1, or a control system It can be implemented as a program executed by a processor to implement one function.
  • the configuration in which the control device 30 is implemented as an independent device has been described as an example. It can be implemented in one or distributed in both of them.
  • the processing in the above-described embodiments can be executed by either hardware or software. That is, it is sufficient that the control system 1 has a function capable of executing the above-described processing, and the functional configuration and hardware configuration for realizing this function are not limited to the above-described example.
  • a program that constitutes the software is installed in the computer from a network or a storage medium.
  • the storage medium that stores the program consists of a removable medium that is distributed separately from the device main body, or a storage medium that is pre-installed in the device main body.
  • Removable media are composed of, for example, a semiconductor memory, a magnetic disk, an optical disk, or a magneto-optical disk.
  • Optical discs are composed of, for example, CD-ROMs (Compact Disk-Read Only Memory), DVDs (Digital Versatile Disks), Blu-ray Discs (registered trademark), and the like.
  • the magneto-optical disk is composed of an MD (Mini-Disk) or the like.
  • the storage medium pre-installed in the device main body is composed of, for example, a ROM (Read Only Memory) storing programs, a hard disk, or a semiconductor memory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

力触覚を伝達して所定の行為を実行する場合に、安全性を確保するべく、制御システム(1)は、操作者の操作が入力されるマスタ装置(10)と、マスタ装置(10)に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置(20)と、を含むとともに、制御システム(1)は、力触覚伝達部(352)と、制限部(356)と、閾値設定部(355)と、を備え、力触覚伝達部(352)は、マスタ装置(10)及びスレーブ装置(20)における力触覚の伝達を制御し、制限部(356)は、力触覚伝達部(352)が力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、所定の行為の実行を制限し、閾値設定部(355)は、所定の行為の実行中に閾値を変更するように構成した。

Description

制御システム、制御装置、制御方法及びプログラム
 本発明は、制御システム、制御装置、制御方法及びプログラムに関する。
 従来、操作者の操作が入力されるマスタ装置と、マスタ装置に入力される操作に応じて動作するスレーブ装置とにおいて、スレーブ装置側の動作に応じた反力を、マスタ装置側に力触覚として伝達するというバイラテラル制御の技術が知られている。このようなバイラテラル制御に関する技術は、例えば、特許文献1に開示されている。
特開昭64-34686号公報
 上述した特許文献1に開示されている技術等の一般的な技術では、スレーブ装置を動作させることにより所定の行為を実行すると共に、バイラテラル制御によって操作者に対して力触覚の伝達を行うことができる。
 しかしながら、一般的な技術には、所定の行為を実行した場合における安全性の確保に関して、より一層の改善の余地があると考えられる。例えば、所定の行為が、破損してはならないワークを加工する行為であったり、人体等の生体を対象とした医療行為であったりする場合には、このような安全性の確保が特に重要となる。これに対して、一般的な技術では、スレーブ装置の近傍を撮影した画像を操作者が目視することで、安全性を確保しているに過ぎなかった。
 本発明は、このような状況に鑑みてなされたものである。そして、本発明の課題は、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保することである。
 上記課題を解決するため、本発明の一態様に係る制御システムは、
 操作者の操作が入力されるマスタ装置と、前記マスタ装置に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置と、を含む制御システムであって、
 前記マスタ装置及び前記スレーブ装置における力触覚の伝達を制御する制御手段と、
 前記制御手段が前記力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、前記所定の行為の実行を制限する制限手段と、
 前記所定の行為の実行中に前記閾値を変更する閾値設定手段と、
 を備えることを特徴とする。
 本発明によれば、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保することが可能となる。
本発明の一実施形態に係る制御システム1の全体構成を示す模式図である。 制御装置30で実行される力触覚伝達制御の基本的原理を示す模式図である。 制御システム1における制御系統のハードウェア構成を示すブロック図である。 制御装置30を構成する情報処理装置のハードウェア構成を示す模式図である。 制御システム1の機能的構成を示すブロック図である。 制御装置30が実行する閾値制御処理の流れを説明するフローチャートである。 所定の行為として穿刺を行い、血管の突き抜けが発生した場合に、スレーブ装置20に入力される外力の大きさ、マスタ装置10・スレーブ装置20の位置、及びカテーテルの先端部の位置等の時間変化を示す模式図である。 スレーブ装置20のカテーテルを操作者が手動で挿入した後、閾値制御処理を行う制御システム1の構成を示す模式図である。
 以下、本発明の実施形態について、図面を参照して説明する。
[構成]
 図1は、本発明の一実施形態に係る制御システム1の全体構成を示す模式図である。
 図1に示すように、本実施形態に係る制御システム1は、機械的に分離したマスタ装置10とスレーブ装置20とを含むマスタ・スレーブシステムとして構成される。一例として、本実施形態における制御システム1は、マスタ装置10が操作者により操作されるマニピュレータを構成し、スレーブ装置20が被検体に挿入されるエンドエフェクタを備えたカテーテルシステムを構成するものとする。
 図1において、制御システム1は、マスタ装置10と、スレーブ装置20と、制御装置30と、を含んで構成され、マスタ装置10及びスレーブ装置20と、制御装置30とは、ネットワーク40を介して有線または無線通信可能に構成されている。なお、制御システム1は、ディスプレイLと、複数のカメラCとを適宜備えることが可能である。カメラCとして、スレーブ装置20が挿入される被検体の外観を撮影するビデオカメラ、あるいは、X線により被検体の内部(例えば、被検体の血管や臓器)を撮影するX線カメラ等の種々の撮影装置を用いることができる。また、複数のカメラCによって撮影された各種画像や、制御装置30から出力される各種情報を表示する複数のディスプレイLを備えることもできる。
 マスタ装置10は、機械的に構成された従来のカテーテルに対する操作と同様の操作を受け付け、入力された操作により移動する可動部(マニピュレータの可動部材等)の位置を検出する。マスタ装置10は、検出した可動部の位置を表す情報を制御装置30に送信する。また、マスタ装置10は、入力される操作に対し、制御装置30の指示に従って、アクチュエータにより反力を出力する。
 具体的には、マスタ装置10は、カテーテルを進退させる操作(例えば、血管内に挿入していく操作または病変付近で力触覚を検知するために微動させる操作等)、カテーテルを軸回りに回転させる操作(例えば、エンドエフェクタの向きを変化させる操作等)、及び、エンドエフェクタを動作させる操作(例えば、エンドエフェクタがバルーンである場合、これを拡張、収縮させる操作、またエンドエフェクタが鉗子等の場合、これを開閉する操作等)を受け付け、これらの操作に対する反力を付与すると共に、それぞれの操作により移動される可動部の位置を表す情報を制御装置30に送信する。
 スレーブ装置20は、制御装置30の指示に従って、アクチュエータを駆動することにより、マスタ装置10に入力された操作に対応する動作を行い、動作により移動する可動部(アクチュエータの可動子あるいはアクチュエータによって移動されるカテーテル等)の位置を検出する。スレーブ装置20が動作することにより、スレーブ装置20に対して環境から各種外力が入力する。この結果、スレーブ装置20における可動部の位置は、アクチュエータの出力に対して各種外力が作用した結果を示すものとなる。そして、スレーブ装置20は、検出した可動部の位置を表す情報を制御装置30に送信する。ここで、スレーブ装置20に対して環境から入力する各種外力には、例えば、被検体に挿入されたカテーテルが血管から受けるスラスト方向の抵抗力と、カテーテル先端に配置されたエンドエフェクタ等が病変や臓器や血管に接触した場合の当接力が含まれる。
 制御装置30は、例えば、PC(Personal Computer)あるいはサーバコンピュータ等の情報処理装置によって構成され、マスタ装置10、スレーブ装置20、ディスプレイL及びカメラCを制御する。例えば、制御装置30は、マスタ装置10及びスレーブ装置20の可動部の位置(ロータリーエンコーダによって検出されるアクチュエータの回転角度あるいはリニアエンコーダによって検出される可動部の進退位置等)を取得し、マスタ装置10及びスレーブ装置20の間で力触覚を伝達するための制御を実行する。
 本実施形態における制御装置30は、マスタ装置10とスレーブ装置20とをマスタ・スレーブシステムとして動作させる際に、可動部の位置を表す情報(アクチュエータの可動子の位置あるいはアクチュエータによって移動される部材の位置等を表す情報)を基に算出した実空間のパラメータ(入力ベクトル)を、位置と力とを独立して取り扱うことが可能な仮想空間に座標変換(変換行列によって変換)する。すなわち、入力ベクトルが、位置と力とが互いに関連する斜交座標系の実空間から、位置と力とが互いに独立した直交座標系の仮想空間に座標変換される。座標変換によって算出されたパラメータは、仮想空間において、入力ベクトルに対応する位置及び力の状態値を表すものとなる。そして、制御装置30は、座標変換後の仮想空間において、入力ベクトルから算出された位置及び力の状態値を、位置及び力の制御(ここでは力触覚の伝達)を行うための位置及び力それぞれの目標値に追従させる演算を行い、演算結果を実空間に戻すための逆変換(変換行列の逆行列による変換)を行う。さらに、制御装置30は、逆変換によって取得された実空間のパラメータ(電流指令値等)に基づいて、各アクチュエータを駆動することにより、マスタ装置10とスレーブ装置20との間で力触覚を伝達するマスタ・スレーブシステムを実現する。
 なお、位置と速度(または加速度)あるいは角度と角速度(または角加速度)は、微積分演算により置換可能なパラメータであるため、位置あるいは角度に関する処理を行う場合、適宜、速度あるいは角速度等に置換することが可能である。
 このような構成において、本実施形態における制御システム1は、上述のようにマスタ装置10とスレーブ装置20との間で力触覚を伝達するマスタ・スレーブシステムを実現すると共に、閾値制御処理を行う。ここで、閾値制御処理は、力触覚を伝達して所定の行為を実行する場合に、閾値に基づいた判定を行うことにより、適切なタイミングで所定の行為の実行を制限し、安全性を確保する一連の処理である。
 具体的に、閾値制御処理において、制御システム1は、マスタ装置10及びスレーブ装置20における力触覚の伝達を制御する。また、制御システム1は、力触覚の伝達を制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、所定の行為の実行を制限する。さらに、制御システム1は、所定の行為の実行中に閾値を変更する。
 このように、制御システム1は、力触覚の伝達に用いる制御パラメータに基づいて、所定の行為の実行を制限すべきか否かを判定する。すなわち、制御システム1は、力触覚を伝達するという、本システムの前提となる構成を利用することによって、適切なタイミングで所定の行為の実行を制限し、安全性を確保することができる。例えば、操作者が被験体の画像を目視しながら操作を行ったり、モータのトルク電流に基づいて算出したおおよその力を操作者に伝えたりするといった一般的な方法と比べて、より精度高く適切なタイミングを検出することができる。
 加えて、制御システム1は、判定基準となる閾値を一律に決定するのではなく、所定の行為の実行中に、例えば、所定の行為の実行状況等に応じて、閾値をより適切なものに動的に変更することもできる。
 従って、制御システム1によれば、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保する、という課題を解決することができる。
 図2は、制御装置30で実行される力触覚伝達制御の基本的原理を示す模式図である。
 図2に示す基本的原理は、可動部の位置を表す情報(可動部の現在位置)を入力として、速度あるいは力の少なくとも一方の領域における演算を行うことにより、アクチュエータの動作を決定するものである。
 すなわち、本発明の基本的原理は、制御対象システムSと、機能別力・速度割当変換ブロックFTと、理想力源ブロックFCあるいは理想速度源ブロックPCの少なくとも1つと、逆変換ブロックIFTとを含む制御則として表される。
 制御対象システムSは、アクチュエータを備えるマスタ装置10あるいはスレーブ装置20であり、加速度等に基づいてアクチュエータの制御を行う。ここで、上述したように、加速度、速度及び位置は、微積分によって相互に換算可能な物理量であるため、加速度、速度及び位置のいずれを用いて制御することとしてもよい。ここでは、主として、位置から算出される速度を用いて制御則を表現するものとする。
 機能別力・速度割当変換ブロックFTは、制御対象システムSの機能に応じて設定される速度及び力の領域への制御エネルギーの変換を定義するブロックである。具体的には、機能別力・速度割当変換ブロックFTでは、制御対象システムSの機能の基準となる値(基準値)と、可動部の現在位置とを入力とする座標変換が定義されている。この座標変換は、一般に、基準値及び現在速度を要素とする入力ベクトルを速度の制御目標値を算出するための速度からなる出力ベクトルに変換すると共に、基準値及び現在の力を要素とする入力ベクトルを力の制御目標値を算出するための力からなる出力ベクトルに変換するものである。具体的には、機能別力・速度割当変換ブロックFTにおける座標変換は、次式(1)及び(2)のように一般化して表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)において、x’1~x’n(nは1以上の整数)は速度の状態値を導出するための速度ベクトルであり、x’a~x’m(mは1以上の整数)は、基準値及びアクチュエータの作用に基づく速度(アクチュエータの可動子の速度またはアクチュエータが移動させる部材の速度)を要素とするベクトル、h1a~hnmは機能を表す変換行列の要素である。また、式(2)において、f’’1~f’’n(nは1以上の整数)は力の状態値を導出するための力ベクトルであり、f’’a~f’’m(mは1以上の整数)は、基準値及びアクチュエータの作用に基づく力(アクチュエータの可動子の力またはアクチュエータが移動させる部材の力)を要素とするベクトルである。
 機能別力・速度割当変換ブロックFTにおける座標変換を、実現する機能に応じて設定することにより、各種動作を実現したり、スケーリングを行ったりすることができる。
 すなわち、本発明の基本的原理では、機能別力・速度割当変換ブロックFTにおいて、アクチュエータ単体の変数(実空間上の変数)を、実現する機能を表現するシステム全体の変数群(仮想空間上の変数)に“変換”し、速度の制御エネルギーと力の制御エネルギーとに制御エネルギーを割り当てる。換言すると、本発明の基本的原理では、速度と力とが互いに関連する座標空間から、速度と力とが互いに独立した座標空間に変換した上で、速度及び力の制御に関する演算を行う。そのため、アクチュエータ単体の変数(実空間上の変数)のまま制御を行う場合と比較して、速度の制御エネルギーと力の制御エネルギーとを独立に与えることが可能となっている。
 理想力源ブロックFCは、機能別力・速度割当変換ブロックFTによって定義された座標変換に従って、力の領域における演算を行うブロックである。理想力源ブロックFCにおいては、機能別力・速度割当変換ブロックFTによって定義された座標変換に基づく演算を行う際の力に関する目標値が設定されている。この目標値は、実現される機能に応じて固定値または可変値として設定される。例えば、基準値が示す機能と同様の機能を実現する場合には、目標値としてゼロを設定したり、スケーリングを行う場合には、実現する機能を示す情報を拡大・縮小した値を設定したりできる。
 理想速度源ブロックPCは、機能別力・速度割当変換ブロックFTによって定義された座標変換に従って、速度の領域における演算を行うブロックである。理想速度源ブロックPCにおいては、機能別力・速度割当変換ブロックFTによって定義された座標変換に基づく演算を行う際の速度に関する目標値が設定されている。この目標値は、実現される機能に応じて固定値または可変値として設定される。例えば、基準値が示す機能と同様の機能を実現する場合には、目標値としてゼロを設定したり、スケーリングを行う場合には、実現する機能を示す情報を拡大・縮小した値を設定したりできる。
 逆変換ブロックIFTは、速度及び力の領域の値を制御対象システムSへの入力の領域の値(例えば電圧値または電流値等)に変換するブロックである。
 このような基本的原理により、制御対象システムSのアクチュエータにおける位置の情報が機能別力・速度割当変換ブロックFTに入力されると、位置の情報に基づいて得られる速度及び力の情報を用いて、機能別力・速度割当変換ブロックFTにおいて、機能に応じた位置及び力の領域それぞれの制御則が適用される。そして、理想力源ブロックFCにおいて、機能に応じた力の演算が行われ、理想速度源ブロックPCにおいて、機能に応じた速度の演算が行われ、力及び速度それぞれに制御エネルギーが分配される。
 理想力源ブロックFC及び理想速度源ブロックPCにおける演算結果は、制御対象システムSの制御目標を示す情報となり、これらの演算結果が逆変換ブロックIFTにおいてアクチュエータの入力値とされて、制御対象システムSに入力される。
 その結果、制御対象システムSのアクチュエータは、機能別力・速度割当変換ブロックFTによって定義された機能に従う動作を実行し、目的とする装置の動作が実現される。
 また、スケーリング(力あるいは位置の増幅や縮小)を伴う力触覚伝達機能が実現される場合、図2における機能別力・速度割当変換ブロックFTにおける座標変換は、次式(3)及び(4)として表される。
Figure JPOXMLDOC01-appb-M000002
 ただし、式(3)において、x’pは速度の状態値を導出するための速度、x’fは力の状態値に関する速度である。また、x’mは基準値(マスタ装置10からの入力)の速度(マスタ装置10の現在位置の微分値)、x’sはスレーブ装置20の現在の速度(現在位置の微分値)である。また、式(4)において、fpは速度の状態値に関する力、ffは力の状態値を導出するための力である。また、fmは基準値(マスタ装置10からの入力)の力、fsはスレーブ装置20の現在の力である。
 式(3)及び式(4)に示す座標変換とした場合、スレーブ装置20の位置がα倍(αは正数)、スレーブ装置20の力がβ倍(βは正数)されて、マスタ装置10に伝達されることとなる。そして、例えば、α=1、且つ、β=1とすることにより、力触覚が増幅(すなわち、拡大)や減衰(すなわち、縮小)することなく伝達される。一方で、例えば、このαの値及びβの値を目的に応じて設定することにより、伝達される力触覚を増幅(すなわち、拡大)したり、減衰(すなわち、縮小)したりするというスケーリングを実現することが可能となる。
 このようなスケーリングを伴う力・触覚伝達機能によって、例えば、閾値制御処理を実行する際に、マスタ装置10から伝達される力触覚を極めて縮小する等の方法でスレーブ装置20の動作を抑制することで、所定の行為の実行を制限することが可能となる。
 さらに、位置の制限を伴う力・触覚伝達機能が実現される場合、図2における機能別力・速度割当変換ブロックFTにおける座標変換は、次式(5)~(8)として表される。
 なお、このような機能を実現する場合、以下のような条件を考慮することが適当である。
・速度次元まで連続であること(ヤコビ行列の存在条件)
・制限後の位置が元の位置の単調増加関数であること(安定性の条件)
・xs<aの時にはxs=xshatもしくはxs≒xshat(xshatは式(7)及び式(8)において機能別力・速度割当変換ブロックFTに含まれるパラメータ)
(安全領域での制御性能を保証する条件)
・飽和関数であること(ポジションリミットを実現する条件)
 これらの条件を満たす他の関数として、atan関数を採用することも可能である。
Figure JPOXMLDOC01-appb-M000003
 式(5)~式(8)に示す座標変換とした場合、スレーブ装置20の位置がa未満の場合、式(5)、(6)の座標変換を適用することにより、スレーブ装置20とマスタ装置19とは同様の位置に制御される。一方、スレーブ装置20の位置がa以上の場合、式(7)、(8)の座標変換を適用することにより、スケーリング機能が作用し、スレーブ装置20は、マスタ装置10に入力される操作者の操作に関わらず、(1/b+a)の位置を超えないように制御される。
 このような位置の制限を伴う力・触覚伝達機能によって、例えば、閾値制御処理を実行する際に、位置の制限によりスレーブ装置20の動作を抑制することで、所定の行為の実行を制限することが可能となる。
[ハードウェア構成]
 次に、制御システム1における制御系統のハードウェア構成について説明する。
 図3は、制御システム1における制御系統のハードウェア構成を示すブロック図である。
 図3に示すように、制御システム1は、制御系統のハードウェア構成として、PCあるいはサーバコンピュータ等の情報処理装置によって構成される制御装置30と、マスタ装置10の制御ユニット101と、通信ユニット102と、挿入用アクチュエータ103と、検知用アクチュエータ104と、回転用アクチュエータ105と、操作用アクチュエータ106と、リニアエンコーダ107,108と、ロータリーエンコーダ109,110と、ドライバ111~114と、スレーブ装置20の制御ユニット201と、通信ユニット202と、挿入用アクチュエータ203と、検知用アクチュエータ204と、回転用アクチュエータ205と、操作用アクチュエータ206と、リニアエンコーダ207,208と、ロータリーエンコーダ209,210と、ドライバ211~214と、ディスプレイLと、カメラCと、を備えている。
 マスタ装置10の制御ユニット101は、プロセッサ及びメモリ等を備えるマイクロコンピュータによって構成され、マスタ装置10の動作を制御する。例えば、制御ユニット101は、制御装置30から送信される制御パラメータに従って、マスタ装置10の挿入用アクチュエータ103、検知用アクチュエータ104、回転用アクチュエータ105及び操作用アクチュエータ106の駆動を制御する。
 通信ユニット102は、ネットワーク40を介してマスタ装置10が他の装置との間で行う通信を制御する。
 挿入用アクチュエータ103は、例えば直動型モータによって構成され、制御ユニット101の指示に従って、操作者がマスタ装置10に入力する、カテーテルを血管内に挿入していくために進退させる操作に対して、反力を付与する。
 検知用アクチュエータ104は、例えばボイスコイルモータによって構成され、制御ユニット101の指示に従って、操作者がマスタ装置10に入力する、カテーテルを病変付近で処置のために進退させる操作に対して、反力を付与する。
 本実施形態においては、挿入用アクチュエータ103の方が検知用アクチュエータ104に比べて長いストロークを有する一方、検知用アクチュエータ104の方が挿入用アクチュエータ103に比べて高精度な位置及び力の制御を行うことが可能となっている。
 回転用アクチュエータ105は、例えば回転型モータによって構成され、制御ユニット101の指示に従って、操作者がマスタ装置10を進退方向に沿う回転軸周りに回転させる操作に対して、反力を付与する。
 操作用アクチュエータ106は、例えば回転型モータによって構成され、制御ユニット101の指示に従って、操作者がエンドエフェクタを動作させるためのレバー(把持部)等に入力した操作に対して、反力を付与する。
 リニアエンコーダ107は、挿入用アクチュエータ103の可動子の位置(直動軸における進退位置)を検出する。
 リニアエンコーダ108は、検知用アクチュエータ104の可動子の位置(直動軸における進退位置)を検出する。
 ロータリーエンコーダ109は、回転用アクチュエータ105の可動子の位置(回転角度)を検出する。
 ロータリーエンコーダ110は、操作用アクチュエータ106の可動子の位置(回転角度)を検出する。
 ドライバ111は、制御ユニット101の指示に従って、挿入用アクチュエータ103に駆動電流を出力する。
 ドライバ112は、制御ユニット101の指示に従って、検知用アクチュエータ104に駆動電流を出力する。
 ドライバ113は、制御ユニット101の指示に従って、回転用アクチュエータ105に駆動電流を出力する。
 ドライバ114は、制御ユニット101の指示に従って、操作用アクチュエータ106に駆動電流を出力する。
 スレーブ装置20の制御ユニット201は、プロセッサ及びメモリ等を備えるマイクロコンピュータによって構成され、スレーブ装置20の動作を制御する。例えば、制御ユニット201は、制御装置30から送信される制御パラメータに従って、スレーブ装置20の挿入用アクチュエータ203、検知用アクチュエータ204、回転用アクチュエータ205及び操作用アクチュエータ206の駆動を制御する。
 通信ユニット202は、ネットワーク40を介してスレーブ装置20が他の装置との間で行う通信を制御する。
 挿入用アクチュエータ203は、例えば直動型モータによって構成され、制御ユニット201の指示に従って、操作者がマスタ装置10に入力した、カテーテルを血管内に挿入していくために進退させる操作に応じて、スレーブ装置20のカテーテルを進退させる。
 検知用アクチュエータ204は、例えばボイスコイルモータによって構成され、制御ユニット201の指示に従って、操作者がマスタ装置10に入力した、カテーテルを病変付近で処置のために進退させる操作に応じて、スレーブ装置20のカテーテルを進退させる。
 本実施形態においては、挿入用アクチュエータ203の方が検知用アクチュエータ204に比べて長いストロークを有する一方、検知用アクチュエータ204の方が挿入用アクチュエータ203に比べて高精度な位置及び力の制御を行うことが可能となっている。
 回転用アクチュエータ205は、例えば回転型モータによって構成され、制御ユニット201の指示に従って、操作者がマスタ装置10に入力した操作に応じて、スレーブ装置20のカテーテルを進退方向に沿う回転軸周りに回転させる。
 操作用アクチュエータ206は、例えば回転型モータによって構成され、制御ユニット201の指示に従って、操作者がマスタ装置10に入力した操作に応じて、エンドエフェクタを動作(拡張、収縮動作や開閉動作等)させる。
 リニアエンコーダ207は、挿入用アクチュエータ203の可動子の位置(直動軸における進退位置)を検出する。
 リニアエンコーダ208は、検知用アクチュエータ204の可動子の位置(直動軸における進退位置)を検出する。
 ロータリーエンコーダ209は、回転用アクチュエータ205の可動子の位置(回転角度)を検出する。
 ロータリーエンコーダ210は、操作用アクチュエータ206の可動子の位置(回転角度)を検出する。
 ドライバ211は、制御ユニット201の指示に従って、挿入用アクチュエータ203に駆動電流を出力する。
 ドライバ212は、制御ユニット201の指示に従って、検知用アクチュエータ204に駆動電流を出力する。
 ドライバ213は、制御ユニット201の指示に従って、回転用アクチュエータ205に駆動電流を出力する。
 ドライバ214は、制御ユニット201の指示に従って、操作用アクチュエータ206に駆動電流を出力する。
 ディスプレイLは、マスタ装置10の操作者が画面を視認できる場所に設置され、制御装置30によって表示を指示された画像(カメラCによって撮影された被検体の可視光画像あるいはX線画像等)や、制御装置30によって表示を指示された情報を表示する。
 カメラCは、スレーブ装置20がカテーテルを挿入する被検体を撮影可能な場所に設置され、被検体の画像(可視光画像あるいはX線画像等)を撮影し、撮影した画像を制御装置30に送信する。
 図4は、制御装置30を構成する情報処理装置のハードウェア構成を示す模式図である。
 図4に示すように、制御装置30は、プロセッサ311と、ROM(Read Only Memory)312と、RAM(Random Access Memory)313と、バス314と、入力部315と、出力部316と、記憶部317と、通信部318と、ドライブ319と、を備えている。
 プロセッサ311は、ROM312に記録されているプログラム、または、記憶部317からRAM313にロードされたプログラムに従って各種の処理を実行する。
 RAM313には、プロセッサ311が各種の処理を実行する上において必要なデータ等も適宜記憶される。
 プロセッサ311、ROM312及びRAM313は、バス314を介して相互に接続されている。バス314には、入力部315、出力部316、記憶部317、通信部318及びドライブ319が接続されている。
 入力部315は、各種ボタン等で構成され、指示操作に応じて各種情報を入力する。
 出力部316は、ディスプレイやスピーカ等で構成され、画像や音声を出力する。
 なお、制御装置30がスマートフォンやタブレット端末として構成される場合には、入力部315と出力部316のディスプレイとを重ねて配置し、タッチパネルを構成することとしてもよい。
 記憶部317は、ハードディスクあるいはDRAM(Dynamic Random Access Memory)等で構成され、各サーバで管理される各種データを記憶する。
 通信部318は、ネットワークを介して制御装置30が他の装置との間で行う通信を制御する。
 ドライブ319には、磁気ディスク、光ディスク、光磁気ディスク、あるいは半導体メモリ等よりなる、リムーバブルメディア331が適宜装着される。ドライブ319によってリムーバブルメディア331から読み出されたプログラムは、必要に応じて記憶部317にインストールされる。
[機能的構成]
 次に、制御システム1の機能的構成について説明する。
 図5は、制御システム1の機能的構成を示すブロック図である。
 図5に示すように、制御システム1では、制御装置30が各種処理を実行することにより、プロセッサ311において、センサ情報取得部351と、力触覚伝達部352と、判定用データ取得部353と、モード設定部354と、閾値設定部355と、制限部356と、が機能する。また、記憶部317には、制御パラメータ記憶部371と、閾値記憶部372と、が形成される。
 制御パラメータ記憶部371は、制御装置30がマスタ装置10とスレーブ装置20との間で力触覚を伝達する制御において取得された制御パラメータを時系列に記憶する。本実施形態において、制御パラメータとして記憶される情報は、力触覚の伝達制御で取得される種々のパラメータとすることが可能であり、力触覚の伝達制御が再現可能な各種情報含むことができる。例えば、マスタ装置10及びスレーブ装置20において取得されるセンサ情報、これらのセンサ情報を座標変換した状態値、各アクチュエータへの電流指令値あるいは力触覚の伝達制御のために制御装置30に設定される各種設定値等を制御パラメータとして記憶することができる。
 閾値記憶部372は、所定の行為を制限するか否かを判定するための閾値を記憶する。本実施形態では、スレーブ装置20が動作することにより、スレーブ装置20に対して環境から入力された各種外力を示す値(以下、「力の制御パラメータ値」と称する。)と、閾値とに基づいて、所定の行為を制限するか否かを判定する。したがって、閾値記憶部372は、この力の制御パラメータ値に対して閾値として設定された絶対値を記憶する。なお、閾値が複数設定される場合には、閾値記憶部372は、この複数の閾値を全て記憶する。
 センサ情報取得部351は、マスタ装置10及びスレーブ装置20に設置された各種センサによって検出されたセンサ情報を取得する。例えば、センサ情報取得部351は、リニアエンコーダ107,108,207,208及びロータリーエンコーダ109,110,209,210によって検出された各アクチュエータの可動子の位置(進退位置または回転角度)を示す情報を取得する。また、センサ情報取得部351は、取得したセンサ情報を時系列のデータとして、制御パラメータ記憶部371に記憶する。
 力触覚伝達部352は、図2に示す制御アルゴリズムに従って、マスタ装置10及びスレーブ装置20における力触覚の伝達を制御する。例えば、力触覚伝達部352は、閾値制御処理において、マスタ装置10及びスレーブ装置20の対応する動作のためのアクチュエータ間で力触覚を伝達する制御を実行する。
 判定用データ取得部353は、各種データに対して演算や解析等することにより、モード設定部354、閾値設定部355、及び制限部356のそれぞれが判定を行うために用いる判定用データを取得する。また、判定用データ取得部353は、取得した判定用データを、これら各機能ブロックに対して出力する。
 具体的に、判定用データ取得部353は、判定用データとして、力の制御パラメータ値を取得する。この力の制御パラメータ値は、質量と加速度との積として算出できる。そこで、判定用データ取得部353は、制御パラメータ記憶部371が制御パラメータとして記憶する、センサ情報取得部351が取得したセンサ情報や、図2に示す制御アルゴリズムにおいて機能別力・速度割当変換ブロックFTが行う座標変換の結果に対応する情報に基づいて、リアルタイムに積分等の演算を行うことで力の制御パラメータ値を取得する。
 なお、判定用データ取得部353は、力の制御パラメータ値として、瞬時値を取得することや、移動平均等の算術演算で得られる値を取得すること等が可能である。また、判定用データ取得部353は、瞬時値の波形に対して帯域制限フィルタを用いたフィルタ処理を施した上で、力の制御パラメータ値を取得することとしてもよい。
 他にも、判定用データ取得部353は、判定用データとして、カメラCによって撮影された画像の解析結果を取得する。例えば、判定用データ取得部353は、カメラCによって撮影された画像に基づいて、カテーテルの先端と病変との距離を算出する。カメラCによって撮影された画像からカテーテルの先端と病変との距離を算出することで、人間が視覚的に判断する場合と同様の基準で、カテーテルの病変に対する接近を判定することができる。なお、カテーテルの先端と病変との距離を取得する場合、各種センサを用いることが可能であり、例えば、カテーテルの先端に磁気検出用のマーカーを備え、被検体の外部から磁気センサによってカテーテルの位置を検出して、病変との距離を取得することとしてもよい。また、被検体の内部にカテーテルの先端位置を検出するためのセンサを予め設置しておき、このセンサによってカテーテルの先端位置を検出して、病変との距離を取得することとしてもよい。
 他にも、例えば、判定用データ取得部353は、判定用データとして、カメラCによって撮影された画像の解析結果に基づいて、カテーテルの先端が挿入されている血管の太さを算出する。カテーテルを挿入する場合、血管が細くなるほど繊細に挿入することが求められる。そこで、カメラCによって撮影された画像からカテーテルの先端が挿入されている血管の太さを算出することで、どの程度の繊細さでカテーテルを挿入するべきか判定することができる。
 他にも、判定用データ取得部353は、判定用データとして、操作者等からの入力部315を介した入力操作や、通信部318を介した外部装置(例えば、マスタ装置10)からの通信による入力操作により、所定の行為に関する各種情報を取得する。所定の行為に関する各種情報とは、例えば、所定の行為を実行するために用いられるデバイスの属性、所定の行為の実行対象の属性、及び前記所定の行為の行為内容等である。本実施形態の例であれば、デバイスの属性としては、例えば、カテーテルの材質や、カテーテルの断面積や、エンドエフェクタの種類等が取得される。また、実行対象の属性としては、被検体となる人物の年齢や持病の有無等の、血管に影響を及ぼす身体的特性が取得される。さらに、所定の行為の行為内容としては、カテーテルを挿入する部位や病変が存在する部位の情報や、カテーテルを挿入する長さ等が取得される。
 そして、判定用データ取得部353は、これらの取得した判定用データを、判定用データの種類に応じて、モード設定部354、閾値設定部355、及び制限部356のそれぞれに対して出力する。
 モード設定部354は、判定用データ取得部353が取得した判定用データに基づいた判定を行うことにより、挿入モードと検知モードとを切り替える。
 「挿入モード」は、スレーブ装置20においてカテーテルを進退させるために挿入用アクチュエータ203を用いると共に、マスタ装置10の挿入用アクチュエータ103との間で力触覚の伝達を行うモードである。「挿入モード」は、例えば、操作者が被検体にカテーテルを挿入し、カテーテルの先端が病変付近に到達するまでに設定されるモードである。
 「検知モード」は、スレーブ装置20においてカテーテルを進退させるために検知用アクチュエータ204を用いると共に、マスタ装置10の検知用アクチュエータ104との間で力触覚の伝達を行うモードである。「検知モード」は、例えば、操作者が被検体にカテーテルを挿入し、カテーテルの先端が病変付近に到達した後に設定されるモードである。
 上述したように、本実施形態では、挿入用アクチュエータ103,203の方が検知用アクチュエータ104,204に比べて長いストロークを有する一方、検知用アクチュエータ104,204の方が挿入用アクチュエータ103,203に比べて高精度な位置及び力の制御を行うことが可能となっている。したがって、「検知モード」は、「挿入モード」に対して、操作者がスレーブ装置20に入力される微細な外力を感じ取る必要がある状況で用いられる。
 カテーテルを被検体に挿入した場合、例えば、動脈内を進行させている状態と、狭窄している心臓等の病変部位に到達した状態とでは、環境から入力される各種外力が変化するので、これに伴い力の制御パラメータ値も変化する。そこで、モード設定部354は、判定用データとして力の制御パラメータ値に基づいてカテーテルの挿入状態を判定し、挿入モードと検知モードとを切り替える。この場合、例えば、モード設定部354は、力の制御パラメータ値が所定値未満の場合に挿入モードに切り替え、所定値以上大きくなった場合に検知モードに切り替える。
 他にも、モード設定部354は、判定用データとしてカメラCの画像を解析等することで取得されたカテーテルの先端と病変との距離に基づいて、カテーテルの先端が病変付近に到達していない場合に挿入モードに切り替え、病変付近に到達した場合に検知モードに切り替えるようにしてもよい。
 他にも、モード設定部354は、操作者等からの入力部315を介したモード切替操作や、通信部318を介した外部装置(例えば、マスタ装置10)からの通信によるモード切替操作に基づいて、挿入モードと検知モードを切り替えるようにしてもよい。
 閾値設定部355は、検知モードにおいて、制限部356が所定の行為を制限するか否かを判定するための閾値を設定する。そして、閾値設定部355は、設定した閾値を閾値記憶部372に記憶させる。上述したように、閾値は、力の制御パラメータ値に対して設定された絶対値である。
 閾値設定部355は、まず閾値の初期値を設定する。この初期値は、例えば、過去に被検体または被検体を模した生体モデルに対してカテーテルを挿入した際の、実測値、統計値またはシミュレーションにより得られる推定値等に基づいて設定することができる。
 また、閾値設定部355は、判定用データに基づいて、閾値を一律にこの初期値のままとするのではなく、所定の行為の実行中に、例えば、所定の行為の実行状況等に応じて、閾値をより適切なものに動的に変更する。例えば、判定用データに含まれる、カテーテルの先端が挿入されている血管の太さに応じて、閾値をより適切なものに動的に変更する。上述したように、カテーテルを挿入する場合、血管が細くなるほど繊細に挿入することが求められる。そこで、閾値設定部355は、カテーテルの先端が挿入されている血管の太さが細くなった場合に、閾値をより小さな値に変更する。あるいは、カテーテルの先端が挿入されている血管の太さが太くなった場合に、閾値をより大きな値とする。
 また、閾値設定部355は、判定用データに含まれるデバイスの属性や実行対象の属性や所定の行為の行為内容といった、所定の行為に関する各種情報に基づいて、この初期値や変更後の値を、異ならせるようにしてもよい。例えば、デバイスの属性であるカテーテルの断面積が広いほど、初期値や変更後の値を高く設定するようにしてもよい。他にも、例えば、所定の行為の実行対象となる被検体が高齢である場合や動脈硬化等の血管に関する特性がある場合に、閾値をより小さな値に設定するようにしてもよい。
 さらに、閾値設定部355は、制限部356が、様々な方法で段階的に所定の行為の制限ができるように、閾値を段階的に複数設定するようにしてもよい。例えば、第1の閾値と、この第1の閾値よりも大きな値である第2の閾値を設定するようにしてもよい。この場合、第1の閾値と第2の閾値の値の双方を適宜変更するようにしてもよい。
 制限部356は、検知モードにおいて、所定の行為を制限するか否かを判定し、判定結果に基づいて、所定の行為の実行を制限する。制限部356による判定は、判定用データである力の制御パラメータ値と、閾値設定部355が設定して閾値記憶部372に記憶させた閾値とを比較することにより行われる。そして、制限部356は、力の制御パラメータ値が閾値を超えた場合(すなわち、環境から入力された各種外力が大きくなりすぎた場合)に、所定の行為の実行を制限する。このように、力の制御パラメータ値が閾値を超えた場合というのは、操作者によるマスタ装置10の操作が適切に行われておらず、カテーテルの先端に配置されたエンドエフェクタ等が、病変や臓器や血管に強く接触し、当接力が増大している場合であると想定される。したがって、このまま所定の行為(ここでは、カテーテルの挿入)が継続されると、カテーテルが血管を突き抜ける等の予期せぬ不適切な事態が発生してしまうおそれがある。
 そこで、制限部356は、このような場合に、安全性を確保するため所定の行為の実行を制限する。例えば、制限部356は、力触覚伝達部352による力触覚の伝達の制御を利用して所定の行為の実行を制限するようにする。この場合、例えば、式(3)及び(4)を参照して説明したスケーリング(力あるいは位置の増幅や縮小)を伴う力触覚伝達機能によって、マスタ装置10からスレーブ装置20に対して伝達される力触覚を極めて縮小する等の方法でスレーブ装置20の動作を抑制することで、所定の行為の実行を制限する。あるいは、式(5)~(8)を参照して説明した位置の制限を伴う力・触覚伝達機能によって、力の制御パラメータ値が閾値を超えた位置以上カテーテルが進行しないが退行はできるようにスレーブ装置20の動作を抑制することで、所定の行為の実行を制限する。
 あるいは、制限部356は、例えば、スレーブ装置20の各アクチュエータに対して入力される、逆変換ブロックIFTの出力(例えば、電圧値または電流値等)をゼロとすることにより、スレーブ装置20の動作を停止させることで、所定の行為の実行を制限する。
 また、制限部356は、操作者に対して警告を出力することにより、操作者にマスタ装置10への操作を中止等させて、マスタ装置10において所定の行為の実行を制限する。警告は、例えば、ディスプレイLに警告内容を示すテキストや画像を表示することにより実現できる。あるいは、出力部316に含まれるスピーカから警告音を発報することにより警告を実現することもできる。
 さらに、制限部356は、閾値設定部355により閾値が複数設定されている場合には、所定の行為の実行を制限する方法を複数の方法から選択するようにしてもよい。例えば、力の制御パラメータ値が、第1の閾値を超えた場合には警告を出力するという方法を選択し、それにも関わらず、より大きな第2の閾値を超えた場合にはスレーブ装置20の動作を抑制するという方法を選択する。これにより、所定の行為の実行状況等に応じて、様々な方法で段階的に制限を行うことができる。また、この場合に、例えば、閾値を3つ以上設定し、第1の閾値を超えた場合には警告内容を示すテキストを表示し、第2の閾値を超えた場合には警告音さらに発報し、第3の閾値を超えた場合にスレーブ装置20の動作を抑制するというような、より段階的な制限を行うようにしてもよい。
[動作]
 次に、制御システム1の動作を説明する。
[閾値制御処理]
 図6は、制御装置30が実行する閾値制御処理の流れを説明するフローチャートである。
 閾値制御処理は、操作者からの入力部315を介した閾値制御処理の実行指示操作や、通信部318を介した外部装置(例えば、マスタ装置10)からの通信による閾値制御処理の実行指示がなされることに対応して開始される。本実施形態において、閾値制御処理を開始する場合、スレーブ装置20の動作を補助する補助者が手動により、または、マスタ装置10からの遠隔的な操作により、カテーテルの先端が所定距離だけ被検体に挿入された状態(例えば、1~10[cm]程度挿入された状態)において開始するものとする。これにより、挿入初期の外力の変化が大きい状態において、制御装置30の制御が不安定化することを抑制できる。
 ステップS11において、モード設定部354は、挿入モードに設定をする。
 ステップS12において、センサ情報取得部351は、マスタ装置10及びスレーブ装置20に設置された各種センサによって検出されたセンサ情報の取得を開始する。このセンサ情報の取得は、本処理が終了するまでの間、他のステップと並行して行われる。また、この取得されたセンサ情報は、時系列のデータとして制御パラメータ記憶部371に記憶される。
 ステップS13において、力触覚伝達部352は、センサ情報に基づいた力触覚の伝達の制御を開始する。この力触覚の伝達の制御は、本処理が終了するまでの間、他のステップと並行して行われる。
 ステップS14において、判定用データ取得部353は、各種データに対して演算や解析等することにより、判定用データの取得を開始する。この判定用データの取得は、本処理が終了するまでの間、他のステップと並行して行われる。また、判定用データ取得部353は、取得した判定用データを、モード設定部354、閾値設定部355、及び制限部356に対して出力する。
 ステップS15において、モード設定部354は、判定用データに基づいて、モードを切り替えるか否かを判定する。モードを切り替える場合は、ステップS15においてYesと判定され、処理はステップS16に進む。一方で、モードを切り替えない場合は、ステップS15においてNoと判定され、処理はステップS17に進む。
 ステップS16において、モード設定部354はモードを切り替える。すなわち、挿入モードに設定されているのであれば検知モードに切り替わるように設定し、検知モードに設定されているであれば挿入モードに切り替わるように設定する。
 ステップS17において、閾値設定部355は、現在の設定されているモードが挿入モードであるのか、それとも検知モードであるのかを判定する。検知モードである場合は、ステップS17において「検知モード」と判定され、処理はステップS18に進む。一方で、挿入モードである場合は、ステップS17において「挿入モード」と判定され、処理はステップS23に進む。
 ステップS18において、閾値設定部355は、力の制御パラメータ値に対する閾値を初期値に設定する。この設定された閾値は、閾値記憶部372に記憶される。
 ステップS19において、閾値設定部355は、判定用データに基づいて、閾値を変更するか否かを判定する。閾値を変更する場合は、ステップS19においてYesと判定され、処理はステップS20に進む。一方で、閾値を変更しない場合は、ステップS19においてNoと判定され、処理はステップS21に進む。
 ステップS20において、閾値設定部355は、閾値を変更する。この変更された閾値は、閾値記憶部372に記憶される。
 ステップS21において、制限部356は、判定用データに含まれる力の制御パラメータ値と、閾値設定部355が設定し閾値記憶部372に記憶させた閾値とに基づいて、所定の行為の実行を制限するか否かを判定する。所定の行為の実行を制限する場合は、ステップS21においてYesと判定され、処理はステップS22に進む。一方で、所定の行為の実行を制限しない場合は、ステップS21においてNoと判定され、処理はステップS23に進む。
 ステップS22において、制限部356は、所定の行為の実行を制限する。なお、閾値が複数設定されている場合には、制限部356は、ステップS23において力の制御パラメータ値が超えたと判定されたもっとも大きな閾値に対応する方法で、所定の行為の実行を制限する。
 ステップS23において、力触覚伝達部352は、本処理を終了する条件である終了条件が満たされたか否かを判定する。終了条件は、例えば、操作者からの入力部315を介した閾値制御処理の終了指示操作や、通信部318を介した外部装置(例えば、マスタ装置10)からの通信による閾値制御処理の終了指示がなされることや、制限部356による所定の行為の実行の制限によりスレーブ装置20の動作が抑制されたことである。終了条件が満たされた場合は、ステップS23においてYesと判定され、本処理は終了する。一方で、終了条件が満たされていない場合は、ステップS23においてNoと判定され、処理はステップS15に戻り繰り返される。
 以上説明した閾値制御処理によれば、力触覚の伝達に用いる制御パラメータに基づいて、所定の行為の実行を制限すべきか否かを判定する。すなわち、閾値制御処理では、力触覚を伝達するという、本システムの前提となる構成を利用することによって、適切なタイミングで所定の行為の実行を制限し、安全性を確保することができる。
 加えて、閾値制御処理によれば、判定基準となる閾値を一律に決定するのではなく、所定の行為の実行中に、例えば、所定の行為の実行状況等に応じて、閾値をより適切なものに動的に変更することもできる。
 従って、閾値制御処理によれば、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保する、という課題を解決することができる。
[効果の検証]
 図7は、上述の実施形態において、所定の行為としてカテーテルを挿入している場合であって、血管を突き抜けて穿孔してしまった場合に、スレーブ装置20に入力される外力の大きさ、マスタ装置10・スレーブ装置20の位置、及びカテーテルの先端部の位置等の時間変化を示す模式図である。
 図7(A)において、横軸は時間[S]を表し、縦軸はスレーブ装置20に入力される外力の大きさを示す力の制御パラメータ値[N]を表している。また、図7(B)において、横軸は時間[S]を表し、縦軸は、センサ情報として検出されたマスタ装置10・スレーブ装置20の位置[M]を表している。さらに、図7(C)において、横軸は時間[S]を表し、縦軸は、カテーテル先端部の位置[M]を表している。
 また、図7(D-1)から図7(D―5)までは、カテーテル先端部と、カテーテルが挿入されている血管における血管の内壁との位置関係の時間変化を表している。
 図7(A)に示すように、期間P1では、血管内へのカテーテルの挿入の継続に伴い、カテーテルが被検体内の定常的な環境(動脈内等)を進行し、血管の内壁等からの外力を示す力の制御パラメータ値は、ほぼ一定の大きさで推移する。この場合、カテーテル先端部と、血管の内壁との位置関係は、図7(D-1)に示すようになる。
 しかしながら、操作者によるマスタ装置10の操作が適切に行われておらず、カテーテルの先端部が、図7(D-2)に示すように血管の内壁に接触してしまうと、当接力が強くなり、期間P2として示すように推移する。具体的に、図7(A)に示すように、期間P2では、力の制御パラメータ値が、徐々に増大する(図中「力が徐々に増大」)。また、図7(B)に示すように、期間P2では、マスタ装置10・スレーブ装置20の位置は、期間P1と比べると進行しにくくなるものの、進行自体は継続するため、少しずつ進行する(図中「進行しにくくなる」)。これに対して、図7(C)に示すように、期間P2では、カテーテル先端部の位置は、ほとんど変化しなくなる(図中「ほぼ進行しなくなる」)。これは、図7(D-3)、図7(D-4)に示すように、カテーテル先端部が血管の内壁に追突し、カテーテル先端部が撓むのみで進行しなくなるからである。この場合、カテーテル先端部において、バネのように弾性力が蓄えられる。
 そして、弾性力が蓄え続けられることにより、血管の内壁の限界を超える貫通力が、カテーテル先端部から血管の内壁に対して生ずることになり、図7(D-5)に示すようにカテーテルの先端部が血管を穿孔してしまい(図中「血管穿孔」)、期間P3として示すように推移する。
 具体的に、図7(A)に示すように、期間P3では、カテーテルの先端部が血管を穿孔したことにより、血管の内壁からの当接力が減少し、力の制御パラメータ値が小さくなる。また、図7(C)に示すように、期間P3では、穿孔時の勢いにより、カテーテル先端部が想定以上に進行してしまう(図中「穿孔の勢いで進行」)。
 このように、カテーテルが血管を突き抜けてしまうような場合には、突き抜ける前の期間(ここでは、期間P2)において、力の制御パラメータ値が大きく増大するタイミング(図中「力が徐々に増大」)が存在する。そこで、本実施形態では、上述したように、力の制御パラメータ値に対して閾値を設定し、この力の制御パラメータ値が大きく増大するタイミングを検出し、このタイミングで所定の行為(ここでは、カテーテルの挿入)の実行を制限する。これにより、適切なタイミングで、カテーテルが血管を突き抜けてしまうことを防止することができる。すなわち、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保することができる。
 なお、図7(B)に示すように、マスタ装置10・スレーブ装置20の位置についても、期間P2において、血管を突き抜ける直前に変動しにくくなるタイミング(図中「進行しにくくなる」)が存在するという特性がある。そのため、マスタ装置10・スレーブ装置20の位置を示す制御パラメータ値に基づいて、所定の行為(ここでは、カテーテルの挿入)の実行を制限するようにすることも可能である。
 ただし、この位置の制御パラメータの値が変動しにくくなるタイミングは、位置の制御パラメータの値の瞬時値からでは検出できず、位置の制御パラメータの値を一定期間統計的に観察しなければならない。また、このタイミングでの位置の制御パラメータの値の変化は、力の制御パラメータの値の変化に比べると緩やかなものであり、そもそも検出すること自体が困難である。これらの理由から、このタイミングを検出してから所定の行為の制限を行ったとしても、制限が間に合わず血管を突き抜けてしまうおそれがある。
 この観点から、本実施形態では、力の制御パラメータ値を利用して、血管を突き抜ける兆候をいち早く検出できるようにしている。すなわち、本実施形態では、力の制御パラメータ値を利用することにより、さらに安全性を確保することができる。
[変形例1]
 上述の実施形態において、カテーテルを挿入した後、病変に到達するまでをアクチュエータで動作させる構成を例に挙げて説明したが、これに限られない。例えば、病変付近までカテーテルを手動で挿入し、病変付近の特定の区間において、マスタ装置10及びスレーブ装置20を利用した挿入を開始して、力触覚の伝達の制御を行うと共に、検知モードに設定した場合と同様の閾値制御処理を行うようにしてもよい。
 図8は、スレーブ装置20のカテーテルを操作者が手動で挿入した後、閾値制御処理を行う制御システム1の構成を示す模式図である。
 図8に示すように、本変形例の制御システム1は、スレーブ装置20のカテーテルに操作用のレバー(把持部)等が設置され、操作者による手動操作が可能となっている。
 また、本変形例の制御システム1は、図1に示す第1実施形態の制御システム1が備える直動用のアクチュエータのうち、検知用アクチュエータ104,204のみを備え、挿入用アクチュエータ103,203は備えていない。
 操作者がカテーテルを手動で挿入する場合、スレーブ装置20において、カテーテルが検知用アクチュエータ204及び回転用アクチュエータ205による移動制御からリリースされ、従来のカテーテルと同様に操作することが可能である。
 このとき、操作者によって病変付近の手前の位置までカテーテルが挿入されるものとし、この状態を初期状態として、閾値制御処理が開始される。
 閾値制御処理が開始される場合、カテーテルが検知用アクチュエータ204及び回転用アクチュエータ205による移動制御のために保持され、マスタ装置10に対する操作に応じて、スレーブ装置20がカテーテルを移動させると共に、制御装置30による力触覚を伝達する制御が開始される。そして、上述の実施形態における検知モードに設定した場合の閾値制御処理と同様にして閾値制御処理を行うことにより、本変形例においても、力の制御パラメータ値と閾値とに基づいて、所定の行為の実行を制限することができる。
 本変形例によれば、アクチュエータによってカテーテルを移動させる距離が比較的短くなるため、ボイスコイルモータ等のストロークが短いアクチュエータを備えれば足りるので、マスタ装置10やスレーブ装置20を小型化及び軽量化することができる。
[変形例2]
 上述の実施形態において、閾値設定部355は、カメラCによって撮影された画像の解析結果に基づいて、閾値をより適切なものに動的に変更していた。例えば、判定用データに含まれる、カテーテルの先端が挿入されている血管の太さに応じて、閾値を動的に変更していた。これに限らず、さらに他の情報も考慮して閾値を動的に変更するようにしてもよい。
 例えば、制御パラメータ記憶部371が記憶する、制御装置30がマスタ装置10とスレーブ装置20との間で力触覚を伝達する制御において取得された時系列の制御パラメータも考慮して閾値をより適切なものに動的に変更するようにしてもよい。
 この場合、判定用データ取得部353は、判定用データとして、制御パラメータ記憶部371が記憶する、時系列の制御パラメータをさらに取得する。
 また、閾値設定部355は、判定用データとして取得された、カメラCによって撮影された画像の解析結果と、この制御パラメータの双方に基づいて、閾値をより適切なものに動的に変更する。
 例えば、スレーブ装置20であるカテーテルを被検体に挿入する場合、カテーテルに複数回転以上のねじれが生じると、カテーテルが破損する可能性がある。そのため、回転させすぎないことが重要となる。そこで、閾値設定部355は、画像の解析結果に基づいて特定されるカテーテル先端の実際の回転角度と、制御パラメータに含まれる基づいて特定されるスレーブ装置20の回転用アクチュエータ205の可動子の回転角度とを比較することにより、カテーテルに何回転のねじれが生じているかを算出する。すなわち、カテーテルの先端の回転角度と、カテーテルのスレーブ装置20による挿入部分の回転角度にどの程度の差分があって、どの程度のねじれが生じているのかを算出する。
 そして、閾値設定部355は、このねじれ(すなわち、回転角度の差分)が、カテーテルが破損する可能性がある回転数以上に相当しないように閾値を適切に動的に変更する。例えば、N回転以上のねじれが生じるとカテーテルを破損する可能性がある場合には、M回転(MはNよりも小さな値)のねじれが生じた時点で閾値を小さな値に動的に変更し、制限部356により、所定の行為(ここでは、カテーテルの挿入)の実行が制限されるようにする。
 同様の考えで、他にも、閾値設定部355は、画像の解析結果に基づいて特定されるカテーテル先端がスラスト方向(進退方向)へ挿入された実際の長さと、制御パラメータに基づいて特定されるマスタ装置10・スレーブ装置20によりスラスト方向(進退方向)へ挿入した長さとを比較することにより、挿入した長さの差分を算出する。この差分が所定の長さとなるということは、挿入が適切に行われておらず、図7(B)及び図7(C)に期間P2として示したように、マスタ装置10・スレーブ装置20の位置と、カテーテル先端部の位置とが相違してしまっている状態である。そこで、閾値設定部355は、差分が所定の長さとなった時点で閾値を小さな値に動的に変更し、制限部356により、所定の行為(ここでは、カテーテルの挿入)の実行が制限されるようにする。
 以上説明したように、本変形例2のように、画像の解析結果と、制御パラメータの双方に基づいて、閾値を動的に変更することにより、多様な観点から異常の発生を検出できるので、より安全性を確保することが可能となる。
[他の変形例]
 上述の実施形態において、マスタ装置10とスレーブ装置20との間で、カテーテルのスラスト方向(進退方向)の力を力触覚伝達するものとして説明したが、これに限られない。例えば、進退方向に沿う回転軸周りの回転、あるいは、エンドエフェクタの操作に関する力をマスタ装置10とスレーブ装置20との間で力触覚伝達してもよい。
 また、上述の実施形態において、制御システム1によってカテーテルを遠隔的に操作する場合を例に挙げて説明したが、これに限られない。すなわち、制御システム1によって遠隔的に操作される機器として、種々のものを対象とすることが可能であり、例えば、線状に構成された部分を有する各種機器、一例として、ガイドワイヤ、鉗子、あるいは内視鏡等の医療機器を対象とすることができる。
 さらに、上述の実施形態において、マスタ装置10に備えられたアクチュエータと、スレーブ装置20に備えられたアクチュエータとを1対1に対応付けて、力触覚の伝達を行う場合を例に挙げて説明したが、これに限られない。すなわち、マスタ装置10の複数のアクチュエータをスレーブ装置20の1つのアクチュエータと対応付けて力触覚の伝達を行ったり、マスタ装置10の1つのアクチュエータをスレーブ装置20の複数のアクチュエータと対応付けて力触覚の伝達を行ったりすることが可能である。また、マスタ装置10の複数のアクチュエータをスレーブ装置20の複数のアクチュエータと対応付けて力触覚の伝達を行うことも可能である。一例として、図3に示すスレーブ装置20の挿入用アクチュエータ203及び検知用アクチュエータ204を、マスタ装置10の挿入用アクチュエータ103を対応付けて力触覚の伝達を行うことが可能である。この場合、マスタ装置10の検知用アクチュエータ104を備える必要がなくなり、コストの削減及び装置の軽量化等を実現することができる。
 さらに、上述の実施形態において、スレーブ装置20のカテーテルを進退させるアクチュエータとして、挿入用アクチュエータ203及び検知用アクチュエータ204を備える構成を例に挙げて説明したが、これに限られない。すなわち、動作のストローク及び精度において、要求される性能を充足するアクチュエータであれば、1つのアクチュエータでスレーブ装置20のカテーテルを進退させることとしてもよい。この場合、挿入モードと検知モードの切り替えをする処理を省略し、上述の実施形態における検知モードに設定した場合の閾値制御処理と同様にして閾値制御処理を行うことにより、本変形例においても、力の制御パラメータ値と閾値とに基づいて、所定の行為の実行を制限することができる。
 さらに、上述の実施形態において、力の制御パラメータ値と閾値とに基づいた、所定の行為の実行を制限は、検知モードに設定されている場合にのみ行われていたが、これに限られない。すなわち、挿入モードに設定されている場合にも、力の制御パラメータ値と閾値とに基づいて、所定の行為の実行を制限するようにしてもよい。この場合、図6に示したステップS17を省略し、検知モードに設定されているか挿入モードに設定されているかを問うことなく、ステップS18以降の処理を行うようにする。また、この場合に、検知モードに設定されている場合の閾値と、挿入モードに設定されている場合の閾値を異ならせるようにしてもよい。例えば、検知モードに設定されている場合の閾値を、挿入モードに設定されている場合の閾値よりも低くするようにしてもよい。これにより、挿入モードにおいて、操作者によるマスタ装置10の操作が適切に行われておらず、カテーテルの先端が血管分岐部分等に強く接触した状態になっているような場合にも、所定の行為の実行を制限することができる。
 さらに、上述の実施形態において、操作者に対して警告を出力していたが、これに限られない。すなわち、警告以外の情報を操作者に対してさらに出力するようにしてもよい。例えば、判定用データ取得部353により算出された力の制御パラメータ値をリアルタイムにディスプレイLに表示することにより、操作者に対して出力するようにしてもよい。この場合、図7(A)に示したように、横軸は時間[S]を表し、縦軸はスレーブ装置20に入力される外力の大きさを示す力の制御パラメータ値[N]を表すグラフの形式で表示することにより、操作者は、力の制御パラメータ値が増大していること等をリアルタイムに把握することができる。すなわち、制限部356による所定の行為の制限の実行とは異なる観点で、さらに安全性を確保することができる。
 [構成例]
 以上のように、本実施形態に係る制御システム1は、操作者の操作が入力されるマスタ装置10と、マスタ装置10に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置20と、を含む。また、制御システム1は、力触覚伝達部352と、制限部356と、閾値設定部355と、を備える。
 力触覚伝達部352は、マスタ装置10及びスレーブ装置20における力触覚の伝達を制御する。
 制限部356は、力触覚伝達部352が力触覚の伝達を制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、所定の行為の実行を制限する。
 閾値設定部355は、所定の行為の実行中に閾値を変更する。
 このように、制御システム1は、力触覚の伝達に用いる制御パラメータに基づいて、所定の行為の実行を制限すべきか否かを判定する。すなわち、制御システム1は、力触覚を伝達するという、本システムの前提となる構成を利用することによって、適切なタイミングで所定の行為の実行を制限し、安全性を確保することができる。例えば、操作者が被験体の画像を目視しながら操作を行ったり、モータのトルク電流に基づいて算出したおおよその力を操作者に伝えたりするといった一般的な方法と比べて、より精度高く適切なタイミングを検出することができる。
 加えて、制御システム1は、判定基準となる閾値を一律に決定するのではなく、所定の行為の実行中に、例えば、所定の行為の実行状況等に応じて、閾値をより適切なものに動的に変更することもできる。
 従って、制御システム1によれば、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保する、という課題を解決することができる。
 制御システム1は、判定用データ取得部353をさらに備える。
 判定用データ取得部353は、所定の行為の実行に関する画像データを取得すると共に、該画像データを解析する。
 閾値設定部355は、判定用データ取得部353による画像データの解析結果に基づいて、閾値を変更する。
 これにより、画像データの解析により所定の行為の実行状況等を確実に特定し、この特定結果に応じて、閾値をさらに適切なものに動的に変更することができる。
 閾値は段階的に複数設けられる。
 制限手段は、制御パラメータと、複数の閾値とに基づいて、前記所定の行為の実行を制限する方法を複数の方法から選択する。
 これにより、所定の行為の実行状況等に応じて、様々な方法で段階的に制限を行うことができる。
 制限部356は、スレーブ装置20の動作を抑制することにより所定の行為の実行を制限する。
 これにより、スレーブ装置20の動作を物理的に抑制(例えば、動作を停止)して、スレーブ装置20において所定の行為の実行を制限することができる。
 制限部356は、操作者に対して警告を出力することにより所定の行為の実行を制限する。
 これにより、操作者にマスタ装置10への操作を中止等させて、マスタ装置10において所定の行為の実行を制限することができる。
 閾値設定部355は、所定の行為を実行するために用いられるデバイスの属性、所定の行為の実行対象の属性、及び所定の行為の行為内容の少なくとも何れかに基づいて、閾値の初期値及び閾値の変更値の少なくとも何れかを決定する。
 これにより、閾値の初期値や閾値の変更値を、所定の行為に関する様々な情報に基づいて、さらに適切なものとすることができる。
 制御パラメータは、所定の行為の実行に伴いスレーブ装置20に入力される力に対応する制御パラメータである。
 これにより、スレーブ装置20に入力される力(例えば、被検体からの抵抗力)に基づいて、適切なタイミングで所定の行為の実行を制限し、安全性を確保することができる。
 以上のように、本実施形態に係る制御装置30は、力触覚伝達部352と、制限部356と、閾値設定部355と、を備える。
 力触覚伝達部352は、操作者の操作が入力されるマスタ装置10と、マスタ装置10に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置20とにおける力触覚の伝達を制御する。
 制限部356は、力触覚伝達部352が力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、所定の行為の実行を制限する。
 閾値設定部355は、所定の行為の実行中に閾値を変更する。
 このような制御装置30の構成によっても、上述の制御システム1と同様に、力触覚を伝達して所定の行為を実行する場合に、より安全性を確保する、という課題を解決することができる。
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、本発明は、上述の実施形態における制御システム1として実現することの他、制御システム1を制御する制御装置、制御システム1において実行される各ステップによって構成される制御方法、あるいは、制御システム1の機能を実現するためにプロセッサによって実行されるプログラムとして実現することができる。
 また、上述の実施形態では、制御装置30を独立した装置として実現する構成を例に挙げて説明したが、制御装置30の機能をマスタ装置10の制御ユニット101及びスレーブ装置20の制御ユニット201の一方に実装したり、これらの両方に分散して実装したりすることができる。
 また、上述の実施形態における処理は、ハードウェア及びソフトウェアのいずれにより実行させることも可能である。
 すなわち、上述の処理を実行できる機能が制御システム1に備えられていればよく、この機能を実現するためにどのような機能構成及びハードウェア構成とするかは上述の例に限定されない。
 上述の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータにネットワークや記憶媒体からインストールされる。
 プログラムを記憶する記憶媒体は、装置本体とは別に配布されるリムーバブルメディア、あるいは、装置本体に予め組み込まれた記憶媒体等で構成される。リムーバブルメディアは、例えば、半導体メモリ、磁気ディスク、光ディスク、または光磁気ディスク等により構成される。光ディスクは、例えば、CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk),Blu-ray Disc(登録商標)等により構成される。光磁気ディスクは、MD(Mini-Disk)等により構成される。また、装置本体に予め組み込まれた記憶媒体は、例えば、プログラムが記憶されているROM(Read Only Memory)やハードディスク、あるいは、半導体メモリ等で構成される。
 なお、上記実施形態は、本発明を適用した一例を示しており、本発明の技術的範囲を限定するものではない。すなわち、本発明は、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができ、上記実施形態以外の各種実施形態を取ることが可能である。本発明が取ることができる各種実施形態及びその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1 制御システム、10 マスタ装置、20 スレーブ装置、30 制御装置、40 ネットワーク、L ディスプレイ、C カメラ、FT 機能別力・速度割当変換ブロック、FC 理想力源ブロック、PC 理想速度(位置)源ブロック、IFT 逆変換ブロック、S 制御対象システム、101,201 制御ユニット、102,202 通信ユニット、103,203 挿入用アクチュエータ、104,204 検知用アクチュエータ、105,205 回転用アクチュエータ、106,206 操作用アクチュエータ、107,108,207,208 リニアエンコーダ、109,110,209,210 ロータリーエンコーダ、111~114,211~214 ドライバ、311 プロセッサ、312 ROM、313 RAM、314 バス、315 入力部、316 出力部、317 記憶部、318 通信部、319 ドライブ、331 リムーバブルメディア、351 センサ情報取得部、352 力触覚伝達部、353 判定用データ取得部、354 モード設定部、355 閾値設定部、356 制限部、371 制御パラメータ記憶部、372 閾値記憶部

Claims (11)

  1.  操作者の操作が入力されるマスタ装置と、前記マスタ装置に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置と、を含む制御システムであって、
     前記マスタ装置及び前記スレーブ装置における力触覚の伝達を制御する制御手段と、
     前記制御手段が前記力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、前記所定の行為の実行を制限する制限手段と、
     前記所定の行為の実行中に前記閾値を変更する閾値設定手段と、
     を備えることを特徴とする制御システム。
  2.  前記所定の行為の実行に関する画像データを取得すると共に、該画像データを解析するデータ取得手段をさらに備え、
     前記閾値設定手段は、少なくとも前記データ取得手段による前記画像データの解析結果に基づいて、前記閾値を変更する、
     ことを特徴とする請求項1に記載の制御システム。
  3.  前記閾値設定手段は、前記データ取得手段による前記画像データの解析結果と、前記制御手段が前記力触覚の伝達の制御に用いる制御パラメータの双方に基づいて、前記閾値を変更する、
     ことを特徴とする請求項2に記載の制御システム。
  4.  前記閾値は段階的に複数設けられ、
     前記制限手段は、前記制御パラメータと、前記複数の閾値とに基づいて、前記所定の行為の実行を制限する方法を複数の方法から選択する、
     ことを特徴とする請求項1から3の何れか1項に記載の制御システム。
  5.  前記制限手段は、前記スレーブ装置の動作を抑制することにより前記所定の行為の実行を制限する、
     ことを特徴とする請求項1から4の何れか1項に記載の制御システム。
  6.  前記制限手段は、前記操作者に対して警告を出力することにより前記所定の行為の実行を制限する、
     ことを特徴とする請求項1から5の何れか1項に記載の制御システム。
  7.  前記閾値設定手段は、前記所定の行為を実行するために用いられるデバイスの属性、前記所定の行為の実行対象の属性、及び前記所定の行為の行為内容の少なくとも何れかに基づいて、前記閾値の初期値及び閾値の変更値の少なくとも何れかを決定する、
     ことを特徴とする請求項1から6の何れか1項に記載の制御システム。
  8.  前記制御パラメータは、前記所定の行為の実行に伴い前記スレーブ装置に入力される力に対応する制御パラメータである
     ことを特徴とする請求項1から7の何れか1項に記載の制御システム。
  9.  操作者の操作が入力されるマスタ装置と、前記マスタ装置に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置とにおける力触覚の伝達を制御する制御手段と、
     前記制御手段が前記力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、前記所定の行為の実行を制限する制限手段と、
     前記所定の行為の実行中に前記閾値を変更する閾値設定手段と、
     を備えることを特徴とする制御装置。
  10.  操作者の操作が入力されるマスタ装置と、前記マスタ装置に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置と、を含む制御システムで実行される制御方法であって、
     前記マスタ装置及び前記スレーブ装置における力触覚の伝達を制御する制御ステップと、
     前記制御ステップにおいて前記力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、前記所定の行為の実行を制限する制限ステップと、
     前記所定の行為の実行中に前記閾値を変更する閾値設定ステップと、
     を備えることを特徴とする制御方法。
  11.  操作者の操作が入力されるマスタ装置と、前記マスタ装置に入力された操作に応じて動作することにより所定の行為を実行するスレーブ装置とにおける力触覚の伝達を制御する制御機能と、
     前記制御機能が前記力触覚の伝達の制御に用いる制御パラメータと、該制御パラメータに対応する閾値とに基づいて、前記所定の行為の実行を制限する制限機能と、
     前記所定の行為の実行中に前記閾値を変更する閾値設定機能と、
     をコンピュータに実現させることを特徴とするプログラム。
PCT/JP2022/037747 2021-10-29 2022-10-10 制御システム、制御装置、制御方法及びプログラム WO2023074334A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178389 2021-10-29
JP2021-178389 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074334A1 true WO2023074334A1 (ja) 2023-05-04

Family

ID=86159284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037747 WO2023074334A1 (ja) 2021-10-29 2022-10-10 制御システム、制御装置、制御方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2023074334A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035874A (ja) * 2008-08-06 2010-02-18 Olympus Medical Systems Corp 能動医療機器システム
WO2021067438A1 (en) * 2019-09-30 2021-04-08 Mako Surgical Corp. Systems and methods for guiding movement of a tool
JP2021151496A (ja) * 2014-03-19 2021-09-30 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 視線追跡を使用する医療装置、システム、及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035874A (ja) * 2008-08-06 2010-02-18 Olympus Medical Systems Corp 能動医療機器システム
JP2021151496A (ja) * 2014-03-19 2021-09-30 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 視線追跡を使用する医療装置、システム、及び方法
WO2021067438A1 (en) * 2019-09-30 2021-04-08 Mako Surgical Corp. Systems and methods for guiding movement of a tool

Similar Documents

Publication Publication Date Title
JP6113493B2 (ja) 手術ロボット及びその制御方法
JP2019524284A (ja) ロボットシステムの動作の実行
JP2019122793A (ja) 最小侵襲性切断器具操作のためのシステム及び方法
US10849699B2 (en) Control apparatus for a continuum robot system
KR102149008B1 (ko) 수술용 로봇의 충돌을 완화시키는 방법 및 시스템
JP7311574B2 (ja) 触覚アクチュエータの均一なスケーリング
WO2022126997A1 (zh) 手术机器人及其控制方法、控制装置
EP3402433B1 (en) Staged force feedback transitioning between control states
JP6762280B2 (ja) 鉗子システム
EP4353179A1 (en) Surgical robot and control method therefor
Bahar et al. Surgeon-centered analysis of robot-assisted needle driving under different force feedback conditions
Marbán et al. Haptic feedback in surgical robotics: Still a challenge
WO2023074334A1 (ja) 制御システム、制御装置、制御方法及びプログラム
JP2022519203A (ja) 外科空間への外科器具の挿入を容易にするシステム及び方法
WO2022210800A1 (ja) 制御システム、制御装置、制御方法及びプログラム
WO2023074333A1 (ja) 情報提示システム、情報提示装置、情報提示方法及びプログラム
Song et al. Haptic feedback in robot-assisted endovascular catheterization
WO2022210801A1 (ja) 制御システム、制御装置、制御方法及びプログラム
Tercero et al. Haptic feedback in endovascular tele-surgery simulation through vasculature phantom morphology changes
WO2023074336A1 (ja) 補償システム、補償装置、補償方法及びプログラム
JP2023528960A (ja) ツール及びユーザの相互作用力に基づく協働ロボット制御パラメータの自動選択
WO2021050683A1 (en) System and method of dithering to maintain grasp force
JP2024081807A (ja) 制御システム、制御装置、制御方法及びプログラム
WO2021200881A1 (ja) 医療機器、及び医療用プログラム
CN111263620A (zh) 主从系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023556275

Country of ref document: JP

Kind code of ref document: A