WO2023074038A1 - Fixed bearing structure and motor pump - Google Patents

Fixed bearing structure and motor pump Download PDF

Info

Publication number
WO2023074038A1
WO2023074038A1 PCT/JP2022/023883 JP2022023883W WO2023074038A1 WO 2023074038 A1 WO2023074038 A1 WO 2023074038A1 JP 2022023883 W JP2022023883 W JP 2022023883W WO 2023074038 A1 WO2023074038 A1 WO 2023074038A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
side bearing
motor
flow path
blocking
Prior art date
Application number
PCT/JP2022/023883
Other languages
French (fr)
Japanese (ja)
Inventor
新帥 范
裕之 川▲崎▼
智大 今井
啓雅 宮田
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2023074038A1 publication Critical patent/WO2023074038A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer

Definitions

  • the present invention relates to a fixed side bearing structure and a motor pump.
  • a canned motor pump in which the motor and pump are integrated, does not require a shaft sealing device to seal the gap between the rotating shaft and the pump casing, so liquid leakage does not occur. Therefore, canned motor pumps are widely used in fields where liquid leakage is averse.
  • Such a motor-pump may have a liquid circulation channel extending from the liquid outlet of the impeller to the liquid inlet for cooling the motor.
  • a part of the liquid discharged from the impeller is reduced to the liquid in the impeller by forming a circulation flow path for the liquid, although the cooling of the motor is unnecessary. You will be returned to the entrance. As a result, the pump efficiency of the motor pump is reduced.
  • an object of the present invention is to provide a fixed-side bearing structure and a motor pump that can improve pump efficiency at low cost.
  • a fixed-side bearing body that can be arranged radially inward of a rotation-side bearing; a blocking body having a size that can block a circulation flow path of a motor can that is arranged to face the fixed-side bearing body;
  • a fixed-side bearing structure comprising:
  • the fixed-side bearing body has a non-blocking portion arranged opposite to the circulation flow path, and the blocking bodies are fixed to the fixed-side bearing body and adjacent to each other. An occluding projection is provided between the non-occluded portions.
  • the fixed-side bearing structure has an open state in which the non-blocking portion faces the circulation flow path to open the circulation flow path by its rotation, and an open state in which the blocking protrusion faces the circulation flow path. It is configured to switch between a closed state in which the closed state is closed by closing the circulation flow path.
  • the blocking protrusions have a number corresponding to the number of the circulation channels.
  • the closure comprises an annular projection having an annular shape.
  • the closure includes a closure ring that is a separate member from the fixed-side bearing body.
  • a motor pump in one aspect, includes an impeller that houses a permanent magnet, a pump casing that houses the impeller, a bearing assembly that supports the impeller, and a motor casing that houses a motor stator. be done.
  • the bearing assembly includes the fixed-side bearing structure and a rotation-side bearing arranged around the fixed-side bearing structure, and the motor casing faces the fixed-side bearing structure. It has a motor can with a circulation flow path arranged in the same direction.
  • the fixed-side bearing structure has a blocking body that blocks the circulation flow path of the motor can.
  • the fixed-side bearing structure having such a structure can improve the pump efficiency with a simple structure that only includes the blocking body, and can contribute to cost reduction.
  • FIG. 1 is a diagram showing an embodiment of a motor-pump in which a motor and a pump are integrally constructed;
  • FIG. FIG. 4 is a diagram showing circulation channels formed in a motor can;
  • FIG. 3A is a diagram showing a fixed-side bearing structure.
  • FIG. 3B is a view of FIG. 3A viewed from line A.
  • FIG. 10 is a diagram showing a circulation channel blocked by a blocking projection;
  • FIG. 10 is a diagram showing a circulation channel opened by a non-blocking portion;
  • FIG. 6A is a diagram showing another embodiment of the fixed-side bearing structure.
  • FIG. 6B is a view of FIG. 6A viewed from line B.
  • FIG. FIG. 10 is a diagram showing another embodiment of the fixed-side bearing structure;
  • FIG. 1 is a diagram showing an embodiment of a motor-pump in which a motor and a pump are integrally constructed.
  • the motor pump MP is a canned motor pump equipped with an axial gap type PM motor.
  • the motor pump MP includes an impeller 1 in which a plurality of permanent magnets 5 are embedded, a motor stator 6 that generates a magnetic force acting on the permanent magnets 5, a pump casing 2 that houses the impeller 1, and a motor fixing device. It comprises a motor casing 3 that houses the element 6 and a bearing assembly 10 that supports the radial and thrust loads of the impeller 1 .
  • the motor stator 6 and bearing assembly 10 are arranged on the suction side of the impeller 1 .
  • a plurality of permanent magnets 5 are provided in this embodiment, the present invention is not limited to this embodiment, and one permanent magnet having a plurality of magnetic poles may be used. More specifically, one ring-shaped permanent magnet having a plurality of magnetic poles in which S poles and N poles are alternately magnetized may be used.
  • the motor pump MP has an O-ring 9 as a sealing member arranged between the pump casing 2 and the motor casing 3 .
  • the O-ring 9 can prevent liquid leakage from between the pump casing 2 and the motor casing 3 .
  • the motor casing 3 includes a motor can 30 that houses the motor stator 6, and a suction port 15 that is connected to the motor can 30 and has a suction port 15a.
  • the suction port 15 has a flange shape and is connected to a suction line (not shown).
  • the motor pump MP has a suction port 15, a motor can 30, and a liquid flow path R1 formed in the center of the bearing assembly 10.
  • the liquid flow path R1 extends from the suction port 15a to the liquid inlet of the impeller 1 along the direction of the center line CL of the motor pump MP and communicates with the liquid inlet of the impeller 1 .
  • the motor pump MP is a canned motor pump equipped with an axial gap type PM motor in which a permanent magnet 5 and a motor stator 6 are arranged along the liquid flow path R1.
  • the pump casing 2 has a discharge port 16 having a discharge port 16a formed on its side surface.
  • the liquid pressurized by the rotating impeller 1 is discharged through the discharge port 16a.
  • the motor pump MP according to the embodiment shown in FIG. 1 is a so-called end-top type motor pump in which the suction port 15a and the discharge port 16a are perpendicular to each other.
  • the impeller 1 is made of a non-magnetic material that is slippery and hard to wear.
  • resins such as PTFE (polytetrafluoroethylene) and PPS (polyphenylene sulfide), and ceramics are preferably used.
  • Pump casing 2 and motor casing 3 may be made of the same material as impeller 1 .
  • the motor stator 6 has a stator core 6A and a plurality of stator coils 6B.
  • the plurality of stator coils 6B are arranged in a ring.
  • Impeller 1 and motor stator 6 are arranged concentrically with bearing assembly 10 and suction port 15a.
  • the motor pump MP includes an inverter device (control board) 21 that supplies current to the motor stator 6 .
  • the stator coil 6B is connected to the inverter device 21 via lead wires 25.
  • the inverter device 21 is housed in a motor can 30 , and the open end of the motor can 30 is closed by a closing member 20 .
  • the inverter device 21 supplies a current to the stator coil 6B of the motor stator 6 to cause the motor stator 6 to generate a rotating magnetic field.
  • This rotating magnetic field acts on the permanent magnets 5 embedded in the impeller 1 to drive the impeller 1 to rotate.
  • liquid is introduced into the liquid inlet of the impeller 1 through the suction port 15a.
  • the liquid is pressurized by the rotation of the impeller 1 and discharged from the discharge port 16a.
  • the rear surface of the impeller 1 is pressed toward the suction side (ie, toward the suction port 15a) by the pressurized liquid. Since the bearing assembly 10 is arranged on the suction side of the impeller 1, it supports the thrust load of the impeller 1 from the suction side.
  • the impeller 1 is rotatably supported by a single bearing assembly 10.
  • the bearing assembly 10 is a slide bearing (dynamic pressure bearing) that utilizes dynamic pressure of liquid.
  • the bearing assembly 10 includes a fixed-side bearing structure 12 and a rotation-side bearing 11 arranged around the fixed-side bearing structure 12 .
  • the fixed-side bearing structure 12 is arranged radially inside the rotary-side bearing 11 .
  • the fixed-side bearing structure 12 has a cylindrical fixed-side radial surface 12a and a fixed-side thrust surface 12b located radially outside the fixed-side radial surface 12a.
  • the rotation-side bearing 11 has a cylindrical rotation-side radial surface 11a surrounding the fixed-side radial surface 12a, and a rotation-side thrust surface 11b located radially outside the rotation-side radial surface 11a.
  • the rotation-side bearing 11 is fixed to the impeller 1 by an O-ring 18 as a sealing member, and is arranged so as to surround the liquid inlet of the impeller 1 .
  • the fixed-side bearing structure 12 is fixed to the motor can 30 and arranged on the suction side of the rotary-side bearing 11 .
  • the motor pump MP includes an O-ring 31 as a sealing member arranged between the motor can 30 and the fixed side bearing structure 12 .
  • the rotating-side radial surface 11a and the fixed-side radial surface 12a are radial surfaces that support the radial load of the impeller 1, and the rotating-side thrust surface 11b and the fixed-side thrust surface 12b are thrust surfaces that support the thrust load of the impeller 1.
  • the rotating-side radial surface 11a and the fixed-side radial surface 12a are parallel to the axis of the impeller 1 (that is, the direction of the axis CL), and the rotating-side thrust surface 11b and the fixed-side thrust surface 12b are parallel to the axis of the impeller 1. vertical.
  • the rotation-side radial surface 11a and the rotation-side thrust surface 11b are perpendicular to each other, and the stationary-side radial surface 12a and the stationary-side thrust surface 12b are perpendicular to each other.
  • a part of the liquid discharged from the impeller 1 is led to the bearing assembly 10 through a minute gap between the impeller 1 and the motor can 30.
  • the rotating side bearing 11 rotates together with the impeller 1
  • fluid dynamic pressure is generated between the rotating side bearing 11 and the fixed side bearing structure 12 , thereby supporting the impeller 1 by the bearing assembly 10 in a non-contact manner. be done.
  • FIG. 2 is a diagram showing circulation channels formed in the motor can.
  • the motor can 30 has a circulation flow path R2 arranged to face the fixed-side bearing structure 12.
  • the circulation flow path R2 is formed on a facing surface 30a of the motor can 30 that faces the fixed-side bearing structure 12. As shown in FIG.
  • the motor can 30 has three circulation passages R2 arranged at equal intervals along the inner peripheral surface thereof, but the number of circulation passages R2 varies according to this embodiment. is not limited. In one embodiment, at least one circulation channel R2 may be formed.
  • a part of the liquid discharged from the impeller 1 passes through the circulation flow path R2 and is returned to the liquid flow path R1.
  • the liquid flowing through the circulation flow path R2 can cool the stator coil 6B as a heating element.
  • the liquid to be transported by the motor pump MP is cold (eg, liquid below 0° C.)
  • cooling of the stator coils 6B is unnecessary.
  • part of the liquid discharged from the impeller 1 is returned to the liquid inlet of the impeller 1 through the circulation flow path R2. Therefore, the pump efficiency of the motor pump MP is lowered.
  • the fixed-side bearing structure 12 has a structure that blocks the circulation flow path R2 and prevents the liquid from flowing back to the liquid flow path R1.
  • the structure of the fixed-side bearing structure 12 will be described below with reference to the drawings.
  • Fig. 3A is a diagram showing a fixed-side bearing structure
  • Fig. 3B is a diagram of Fig. 3A viewed from the direction of line A.
  • the fixed-side bearing structure 12 can block the circulation flow path R2 of the fixed-side bearing body 40 that can be arranged radially inside the rotation-side bearing 11 and the motor can 30 that is arranged to face the fixed-side bearing body 40. and a closure 41 having a similar size.
  • the fixed-side bearing main body 40 has an overall cylindrical shape, and the fixed-side radial surface 12a and the fixed-side thrust surface 12b are formed in the fixed-side bearing main body 40.
  • the blocking body 41 has a plurality of blocking protrusions 42 fixed to the fixed-side bearing body 40 .
  • the number of blocking projections 42 is not limited to this embodiment.
  • the number of blocking projections 42 is opposed to the number of circulation channels R2. Therefore, for example, when one circulation flow path R2 is formed, the blocking body 41 has a single blocking projection 42. As shown in FIG.
  • the fixed-side bearing main body 40 has a non-blocking portion 40a arranged facing the circulation flow path R2.
  • the non-closed portion 40 a is a facing surface of the stationary bearing body 40 that faces the facing surface 30 a of the motor can 30 when the stationary bearing structure 12 is attached to the motor can 30 .
  • the blocking protrusions 42 are fixed to the non-blocking portion (that is, the facing surface) 40a of the fixed-side bearing body 40, and are arranged at equal intervals along the circumference of the fixed-side bearing body 40.
  • Each of the plurality of blocking projections 42 is arranged between adjacent non-blocking portions 40a. In other words, the plurality of blocking protrusions 42 and non-blocking portions 40 a are alternately arranged along the circumferential direction of the fixed-side bearing body 40 .
  • FIG. 4 is a diagram showing a circulation channel blocked by a blocking protrusion.
  • FIG. 5 is a diagram showing a circulation channel opened by a non-blocking portion. As shown in FIGS. 4 and 5, the fixed-side bearing structure 12 rotates to open the circulation flow path R2 by causing the non-blocking portion 40a to face the circulation flow path R2 (see FIG. 5). , and a closed state (see FIG. 4) in which the blocking projection 42 is opposed to the circulation flow path R2 to block the circulation flow path R2.
  • the motor pump MP When the liquid handled by the motor pump MP is at a low temperature, it is desirable to close the circulation flow path R2 in order to improve the pump efficiency.
  • the operator mounts the fixed-side bearing structure 12 on the motor can 30 so that the blocking projection 42 fits into the circulation flow path R2. Therefore, the blocking protrusion 42 blocks the circulation channel R2 and prevents the liquid from flowing back to the liquid channel R1.
  • the motor pump MP can improve its pump efficiency.
  • the pump efficiency can be improved with a simple structure in which the closing body 41 is formed in the fixed side bearing body 40 . Furthermore, according to this embodiment, there is no need to modify the overall structure of the motor pump MP, and the pump efficiency can be improved at a low cost by simply applying the fixed-side bearing structure 12 to the motor pump MP.
  • a mark S is formed on the fixed-side thrust surface 12b of the fixed-side bearing body 40 facing the blocking projection 42. As shown in FIG. Therefore, the operator can fit the blocking protrusion 42 into the circulation flow path R2 without visually checking the blocking protrusion 42 .
  • the O-ring 31 is arranged between the motor can 30 and the fixed side bearing structure 12 . Therefore, in one embodiment, the operator may rotate the stationary bearing structure 12 by a predetermined angle after removing the stationary bearing structure 12 from the motor can 30 .
  • the fixed bearing structure 12 includes the blocking projection 42 fixed to the fixed bearing body 40, but in one embodiment, the blocking projection 42 is a separate member from the fixed bearing body 40. may be
  • FIG. 6A is a diagram showing another embodiment of the fixed-side bearing structure
  • FIG. 6B is a diagram of FIG. 6A viewed from line B.
  • the closure 41 may comprise an annular protrusion 43 having an annular shape.
  • the annular projection 43 is arranged concentrically with the impeller 1 and the suction port 15a. According to this embodiment, by mounting the fixed-side bearing structure 12 to the motor can 30, the annular protrusion 43 can block all the circulation channels R2 regardless of the number of the circulation channels R2. .
  • the operator when the temperature of the liquid to be handled by the motor pump MP is high, the operator removes the fixed side bearing structure 12 and replaces it with the fixed side bearing body 40 without the blocking member 41 on the motor can 30. By mounting, the circulation channel R2 can be opened. As a result, the liquid to be handled can take heat from the stator coil 6B.
  • FIG. 7 is a diagram showing another embodiment of the fixed-side bearing structure.
  • the closing body 41 has a closing ring 44 which is a separate member from the fixed-side bearing main body 40 .
  • the operator mounts the stationary bearing structure 12 on the motor can 30 with the closing ring 44 arranged between the non-closing portion 40 a of the stationary bearing main body 40 and the facing surface 30 a of the motor can 30 .
  • Such attachment allows the closing ring 44 to close the circulation flow path R2.
  • the blocking ring 44 can block all the circulation channels R2 regardless of the number of the circulation channels R2.
  • the operator when the temperature of the liquid handled by the motor pump MP is high, the operator removes the closing ring 44 and attaches the fixed side bearing main body 40 to the motor can 30 to open the circulation flow path R2. can be done. As a result, the liquid to be handled can take heat from the stator coil 6B.
  • the present invention can be used for fixed-side bearing structures and motor pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

The present invention relates to a fixed bearing structure and a motor pump. The fixed bearing structure (12) comprises a fixed bearing body (40) and a blocking body (41) of a size that enables a circulation flow path (R2) of a motor casing (30) to be blocked.

Description

固定側軸受構造体およびモータポンプFixed side bearing structure and motor pump
 本発明は、固定側軸受構造体およびモータポンプに関する。 The present invention relates to a fixed side bearing structure and a motor pump.
 モータとポンプとが一体的に構成されたキャンドモータポンプは、回転軸とポンプケーシングとの間の隙間を封止するための軸封装置を必要としないため、液体の漏洩は起こらない。したがって、キャンドモータポンプは、液体の漏洩を嫌う分野において広く使用されている。 A canned motor pump, in which the motor and pump are integrated, does not require a shaft sealing device to seal the gap between the rotating shaft and the pump casing, so liquid leakage does not occur. Therefore, canned motor pumps are widely used in fields where liquid leakage is averse.
特開2018-13040号公報Japanese Patent Application Laid-Open No. 2018-13040 特開2017-180754号公報JP 2017-180754 A 特開平5-187386号公報JP-A-5-187386
 このようなモータポンプは、モータを冷却するために、羽根車の液体出口から液体入口まで延びる、液体の循環流路を有している場合がある。しかしながら、取り扱い液が低温である場合には、モータの冷却は不要であるにもかかわらず、液体の循環流路を形成することにより、羽根車から吐き出された液体の一部は羽根車の液体入口まで戻されてしまう。結果として、モータポンプのポンプ効率が低下してしまう。 Such a motor-pump may have a liquid circulation channel extending from the liquid outlet of the impeller to the liquid inlet for cooling the motor. However, when the liquid to be handled is at a low temperature, a part of the liquid discharged from the impeller is reduced to the liquid in the impeller by forming a circulation flow path for the liquid, although the cooling of the motor is unnecessary. You will be returned to the entrance. As a result, the pump efficiency of the motor pump is reduced.
 液体の循環流路を有しないモータポンプを構成するために、モータポンプの全体構造を修正することが考えられるが、このような構造の修正には、多大なコストが掛かってしまう。 It is conceivable to modify the overall structure of the motor pump in order to construct a motor pump that does not have a liquid circulation flow path, but such modification of the structure costs a lot of money.
 そこで、本発明は、低コストで、ポンプ効率を向上させることができる固定側軸受構造体およびモータポンプを提供することを目的とする。 Therefore, an object of the present invention is to provide a fixed-side bearing structure and a motor pump that can improve pump efficiency at low cost.
 一態様では、回転側軸受の半径方向内側に配置可能な固定側軸受本体と、前記固定側軸受本体に対向して配置されたモータキャンの循環流路を閉塞可能なサイズを有する閉塞体と、を備える、固定側軸受構造体が提供される。 In one aspect, a fixed-side bearing body that can be arranged radially inward of a rotation-side bearing; a blocking body having a size that can block a circulation flow path of a motor can that is arranged to face the fixed-side bearing body; A fixed-side bearing structure is provided, comprising:
 一態様では、前記固定側軸受本体は、前記循環流路と対向して配置された非閉塞部位を有しており、前記閉塞体は、前記固定側軸受本体に固定され、かつ互いに隣接する前記非閉塞部位の間に配置された閉塞突起を備えている。
 一態様では、前記固定側軸受構造体は、その回転により、前記非閉塞部位を前記循環流路に対向させて前記循環流路を開放する開状態と、前記閉塞突起を前記循環流路に対向させて前記循環流路を閉塞する閉状態と、を切り替えるように構成されている。
 一態様では、前記閉塞突起は、前記循環流路の数に対応する数を有している。
In one aspect, the fixed-side bearing body has a non-blocking portion arranged opposite to the circulation flow path, and the blocking bodies are fixed to the fixed-side bearing body and adjacent to each other. An occluding projection is provided between the non-occluded portions.
In one aspect, the fixed-side bearing structure has an open state in which the non-blocking portion faces the circulation flow path to open the circulation flow path by its rotation, and an open state in which the blocking protrusion faces the circulation flow path. It is configured to switch between a closed state in which the closed state is closed by closing the circulation flow path.
In one aspect, the blocking protrusions have a number corresponding to the number of the circulation channels.
 一態様では、前記閉塞体は、環状形状を有する環状突起を備えている。
 一態様では、前記閉塞体は、前記固定側軸受本体とは別部材の閉塞リングを備えている。
In one aspect, the closure comprises an annular projection having an annular shape.
In one aspect, the closure includes a closure ring that is a separate member from the fixed-side bearing body.
 一態様では、永久磁石を収容する羽根車と、前記羽根車を収容するポンプケーシングと、前記羽根車を支持する軸受組立体と、モータ固定子を収容するモータケーシングと、を備えるモータポンプが提供される。前記軸受組立体は、上記固定側軸受構造体と、前記固定側軸受構造体の周囲に配置される回転側軸受と、を備えており、前記モータケーシングは、前記固定側軸受構造体に対向して配置された循環流路を有するモータキャンを備えている。 In one aspect, a motor pump is provided that includes an impeller that houses a permanent magnet, a pump casing that houses the impeller, a bearing assembly that supports the impeller, and a motor casing that houses a motor stator. be done. The bearing assembly includes the fixed-side bearing structure and a rotation-side bearing arranged around the fixed-side bearing structure, and the motor casing faces the fixed-side bearing structure. It has a motor can with a circulation flow path arranged in the same direction.
 固定側軸受構造体は、モータキャンの循環流路を閉塞する閉塞体を備えている。このような構造を有する固定側軸受構造体は、閉塞体を備えるだけの簡単な構造でポンプ効率を向上させることができ、さらには、低コストに寄与することができる。 The fixed-side bearing structure has a blocking body that blocks the circulation flow path of the motor can. The fixed-side bearing structure having such a structure can improve the pump efficiency with a simple structure that only includes the blocking body, and can contribute to cost reduction.
モータおよびポンプが一体的に構成されたモータポンプの一実施形態を示す図である。1 is a diagram showing an embodiment of a motor-pump in which a motor and a pump are integrally constructed; FIG. モータキャンに形成された循環流路を示す図である。FIG. 4 is a diagram showing circulation channels formed in a motor can; 図3Aは固定側軸受構造体を示す図である。FIG. 3A is a diagram showing a fixed-side bearing structure. 図3Bは図3AをA線方向から見た図である。FIG. 3B is a view of FIG. 3A viewed from line A. FIG. 閉塞突起によって閉塞された循環流路を示す図である。FIG. 10 is a diagram showing a circulation channel blocked by a blocking projection; 非閉塞部位によって開放された循環流路を示す図である。FIG. 10 is a diagram showing a circulation channel opened by a non-blocking portion; 図6Aは固定側軸受構造体の他の実施形態を示す図である。FIG. 6A is a diagram showing another embodiment of the fixed-side bearing structure. 図6Bは図6AをB線方向から見た図である。FIG. 6B is a view of FIG. 6A viewed from line B. FIG. 固定側軸受構造体の他の実施形態を示す図である。FIG. 10 is a diagram showing another embodiment of the fixed-side bearing structure;
 以下、本発明の実施形態について図面を参照して説明する。なお、以下で説明する図面において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。以下で説明する複数の実施形態において、特に説明しない一実施形態の構成は、他の実施形態と同じであるので、その重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings described below, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the multiple embodiments described below, the configuration of one embodiment that is not particularly described is the same as that of the other embodiments, so redundant description thereof will be omitted.
 図1は、モータおよびポンプが一体的に構成されたモータポンプの一実施形態を示す図である。図1に示すように、モータポンプMPは、アキシャルギャップ型PMモータを搭載したキャンドモータポンプである。モータポンプMPは、複数の永久磁石5が埋設された羽根車1と、これらの永久磁石5に作用する磁力を発生するモータ固定子6と、羽根車1を収容するポンプケーシング2と、モータ固定子6を収容するモータケーシング3と、羽根車1のラジアル荷重およびスラスト荷重を支持する軸受組立体10と、を備えている。 FIG. 1 is a diagram showing an embodiment of a motor-pump in which a motor and a pump are integrally constructed. As shown in FIG. 1, the motor pump MP is a canned motor pump equipped with an axial gap type PM motor. The motor pump MP includes an impeller 1 in which a plurality of permanent magnets 5 are embedded, a motor stator 6 that generates a magnetic force acting on the permanent magnets 5, a pump casing 2 that houses the impeller 1, and a motor fixing device. It comprises a motor casing 3 that houses the element 6 and a bearing assembly 10 that supports the radial and thrust loads of the impeller 1 .
 モータ固定子6および軸受組立体10は、羽根車1の吸込側に配置されている。本実施形態では、複数の永久磁石5が設けられているが、本発明は本実施形態に限定されず、複数の磁極が着磁された1つの永久磁石を用いてもよい。より具体的には、S極とN極とが交互に着磁された、複数の磁極を有する1つの環状の永久磁石を用いてもよい。 The motor stator 6 and bearing assembly 10 are arranged on the suction side of the impeller 1 . Although a plurality of permanent magnets 5 are provided in this embodiment, the present invention is not limited to this embodiment, and one permanent magnet having a plurality of magnetic poles may be used. More specifically, one ring-shaped permanent magnet having a plurality of magnetic poles in which S poles and N poles are alternately magnetized may be used.
 モータポンプMPは、ポンプケーシング2とモータケーシング3との間に配置されたシール部材としてのOリング9を備えている。Oリング9は、ポンプケーシング2とモータケーシング3との間からの液体の漏洩を防止することができる。 The motor pump MP has an O-ring 9 as a sealing member arranged between the pump casing 2 and the motor casing 3 . The O-ring 9 can prevent liquid leakage from between the pump casing 2 and the motor casing 3 .
 モータケーシング3は、モータ固定子6を収容するモータキャン30と、モータキャン30に連結された、吸込口15aを有する吸込ポート15と、を備えている。吸込ポート15は、フランジ形状を有しており、図示しない吸込ラインに接続される。 The motor casing 3 includes a motor can 30 that houses the motor stator 6, and a suction port 15 that is connected to the motor can 30 and has a suction port 15a. The suction port 15 has a flange shape and is connected to a suction line (not shown).
 モータポンプMPは、吸込ポート15、モータキャン30、および軸受組立体10の中心部に形成された液体流路R1を有している。液体流路R1は、モータポンプMPの中心線CL方向に沿って、吸込口15aから羽根車1の液体入口まで延びており、羽根車1の液体入口に連通している。モータポンプMPは、永久磁石5およびモータ固定子6が液体流路R1に沿って配置されるアキシャルギャップ型PMモータを搭載したキャンドモータポンプである。 The motor pump MP has a suction port 15, a motor can 30, and a liquid flow path R1 formed in the center of the bearing assembly 10. The liquid flow path R1 extends from the suction port 15a to the liquid inlet of the impeller 1 along the direction of the center line CL of the motor pump MP and communicates with the liquid inlet of the impeller 1 . The motor pump MP is a canned motor pump equipped with an axial gap type PM motor in which a permanent magnet 5 and a motor stator 6 are arranged along the liquid flow path R1.
 ポンプケーシング2は、その側面に形成された、吐出口16aを有する吐出ポート16を備えている。回転する羽根車1によって昇圧された液体は、吐出口16aを通って吐き出される。図1に示す実施形態に係るモータポンプMPは、吸込口15aと吐出口16aが直交する、いわゆるエンドトップ型モータポンプである。 The pump casing 2 has a discharge port 16 having a discharge port 16a formed on its side surface. The liquid pressurized by the rotating impeller 1 is discharged through the discharge port 16a. The motor pump MP according to the embodiment shown in FIG. 1 is a so-called end-top type motor pump in which the suction port 15a and the discharge port 16a are perpendicular to each other.
 羽根車1は、滑りやすく、かつ摩耗しにくい非磁性材料から形成されている。例えば、PTFE(ポリテトラフルオロエチレン)やPPS(ポリフェニレンスルファイド)などの樹脂や、セラミックが好適に使用される。ポンプケーシング2およびモータケーシング3を羽根車1と同じ材料から形成してもよい。 The impeller 1 is made of a non-magnetic material that is slippery and hard to wear. For example, resins such as PTFE (polytetrafluoroethylene) and PPS (polyphenylene sulfide), and ceramics are preferably used. Pump casing 2 and motor casing 3 may be made of the same material as impeller 1 .
 モータ固定子6は、固定子コア6Aと、複数の固定子コイル6Bと、を有している。これら複数の固定子コイル6Bは環状に配列されている。羽根車1およびモータ固定子6は、軸受組立体10および吸込口15aと同心状に配列されている。 The motor stator 6 has a stator core 6A and a plurality of stator coils 6B. The plurality of stator coils 6B are arranged in a ring. Impeller 1 and motor stator 6 are arranged concentrically with bearing assembly 10 and suction port 15a.
 モータポンプMPは、モータ固定子6に電流を供給するインバータ装置(制御基板)21を備えている。固定子コイル6Bは、リード線25を介してインバータ装置21に接続されている。インバータ装置21は、モータキャン30に収容されており、モータキャン30の開口端は閉止部材20によって閉じられている。 The motor pump MP includes an inverter device (control board) 21 that supplies current to the motor stator 6 . The stator coil 6B is connected to the inverter device 21 via lead wires 25. As shown in FIG. The inverter device 21 is housed in a motor can 30 , and the open end of the motor can 30 is closed by a closing member 20 .
 インバータ装置21は、電流をモータ固定子6の固定子コイル6Bに供給して、回転磁界をモータ固定子6に発生させる。この回転磁界は羽根車1に埋設されている永久磁石5に作用し、羽根車1を回転駆動する。羽根車1が回転すると、液体は吸込口15aから羽根車1の液体入口に導入される。液体は羽根車1の回転によって昇圧され、吐出口16aから吐き出される。羽根車1が液体を移送している間、羽根車1の背面は昇圧された液体によって吸込側に(すなわち吸込口15aに向かって)押圧される。軸受組立体10は、羽根車1の吸込側に配置されているので、羽根車1のスラスト荷重を吸込側から支持する。 The inverter device 21 supplies a current to the stator coil 6B of the motor stator 6 to cause the motor stator 6 to generate a rotating magnetic field. This rotating magnetic field acts on the permanent magnets 5 embedded in the impeller 1 to drive the impeller 1 to rotate. As the impeller 1 rotates, liquid is introduced into the liquid inlet of the impeller 1 through the suction port 15a. The liquid is pressurized by the rotation of the impeller 1 and discharged from the discharge port 16a. While the impeller 1 is transferring the liquid, the rear surface of the impeller 1 is pressed toward the suction side (ie, toward the suction port 15a) by the pressurized liquid. Since the bearing assembly 10 is arranged on the suction side of the impeller 1, it supports the thrust load of the impeller 1 from the suction side.
 羽根車1は、単一の軸受組立体10によって回転自在に支持されている。軸受組立体10は、液体の動圧を利用したすべり軸受(動圧軸受)である。軸受組立体10は、固定側軸受構造体12と、固定側軸受構造体12の周囲に配置される回転側軸受11と、を備えている。言い換えれば、固定側軸受構造体12は、回転側軸受11の半径方向内側に配置されている。 The impeller 1 is rotatably supported by a single bearing assembly 10. The bearing assembly 10 is a slide bearing (dynamic pressure bearing) that utilizes dynamic pressure of liquid. The bearing assembly 10 includes a fixed-side bearing structure 12 and a rotation-side bearing 11 arranged around the fixed-side bearing structure 12 . In other words, the fixed-side bearing structure 12 is arranged radially inside the rotary-side bearing 11 .
 固定側軸受構造体12は、円筒状の固定側ラジアル面12aと、固定側ラジアル面12aの半径方向外側に位置する固定側スラスト面12bと、を有している。回転側軸受11は、固定側ラジアル面12aを囲む円筒状の回転側ラジアル面11aと、回転側ラジアル面11aの半径方向外側に位置する回転側スラスト面11bと、を有している。 The fixed-side bearing structure 12 has a cylindrical fixed-side radial surface 12a and a fixed-side thrust surface 12b located radially outside the fixed-side radial surface 12a. The rotation-side bearing 11 has a cylindrical rotation-side radial surface 11a surrounding the fixed-side radial surface 12a, and a rotation-side thrust surface 11b located radially outside the rotation-side radial surface 11a.
 回転側軸受11は、シール部材としてのOリング18によって羽根車1に固定されており、羽根車1の液体入口を囲むように配置されている。固定側軸受構造体12は、モータキャン30に固定されており、回転側軸受11の吸込側に配置されている。モータポンプMPは、モータキャン30と固定側軸受構造体12との間に配置されたシール部材としてのOリング31を備えている。 The rotation-side bearing 11 is fixed to the impeller 1 by an O-ring 18 as a sealing member, and is arranged so as to surround the liquid inlet of the impeller 1 . The fixed-side bearing structure 12 is fixed to the motor can 30 and arranged on the suction side of the rotary-side bearing 11 . The motor pump MP includes an O-ring 31 as a sealing member arranged between the motor can 30 and the fixed side bearing structure 12 .
 回転側ラジアル面11aおよび固定側ラジアル面12aは羽根車1のラジアル荷重を支持するラジアル面であり、回転側スラスト面11bおよび固定側スラスト面12bは羽根車1のスラスト荷重を支持するスラスト面である。回転側ラジアル面11aおよび固定側ラジアル面12aは羽根車1の軸心(すなわち、軸線CL方向)と平行であり、回転側スラスト面11bおよび固定側スラスト面12bは羽根車1の軸心に対して垂直である。回転側ラジアル面11aおよび回転側スラスト面11bは互いに垂直であり、固定側ラジアル面12aおよび固定側スラスト面12bは互いに垂直である。 The rotating-side radial surface 11a and the fixed-side radial surface 12a are radial surfaces that support the radial load of the impeller 1, and the rotating-side thrust surface 11b and the fixed-side thrust surface 12b are thrust surfaces that support the thrust load of the impeller 1. be. The rotating-side radial surface 11a and the fixed-side radial surface 12a are parallel to the axis of the impeller 1 (that is, the direction of the axis CL), and the rotating-side thrust surface 11b and the fixed-side thrust surface 12b are parallel to the axis of the impeller 1. vertical. The rotation-side radial surface 11a and the rotation-side thrust surface 11b are perpendicular to each other, and the stationary-side radial surface 12a and the stationary-side thrust surface 12b are perpendicular to each other.
 羽根車1から吐き出された液体の一部は、羽根車1とモータキャン30との間の微小な隙間を通って軸受組立体10に導かれる。回転側軸受11が羽根車1とともに回転すると、回転側軸受11と固定側軸受構造体12との間に液体の動圧が発生し、これにより羽根車1が軸受組立体10によって非接触に支持される。 A part of the liquid discharged from the impeller 1 is led to the bearing assembly 10 through a minute gap between the impeller 1 and the motor can 30. When the rotating side bearing 11 rotates together with the impeller 1 , fluid dynamic pressure is generated between the rotating side bearing 11 and the fixed side bearing structure 12 , thereby supporting the impeller 1 by the bearing assembly 10 in a non-contact manner. be done.
 図2は、モータキャンに形成された循環流路を示す図である。図1および図2に示すように、モータキャン30は、固定側軸受構造体12に対向して配置された循環流路R2を有している。循環流路R2は、モータキャン30の、固定側軸受構造体12に対向する対向面30aに形成されている。 FIG. 2 is a diagram showing circulation channels formed in the motor can. As shown in FIGS. 1 and 2, the motor can 30 has a circulation flow path R2 arranged to face the fixed-side bearing structure 12. As shown in FIG. The circulation flow path R2 is formed on a facing surface 30a of the motor can 30 that faces the fixed-side bearing structure 12. As shown in FIG.
 図2に示す実施形態では、モータキャン30は、その内周面に沿って等間隔に配置された3つの循環流路R2を有しているが、循環流路R2の数は本実施形態には限定されない。一実施形態では、少なくとも1つの循環流路R2が形成されてもよい。 In the embodiment shown in FIG. 2, the motor can 30 has three circulation passages R2 arranged at equal intervals along the inner peripheral surface thereof, but the number of circulation passages R2 varies according to this embodiment. is not limited. In one embodiment, at least one circulation channel R2 may be formed.
 羽根車1から吐き出された液体の一部は、循環流路R2を通過して、液体流路R1に戻される。循環流路R2を流れる液体は、発熱体としての固定子コイル6Bを冷却することができる。しかしながら、モータポンプMPによって移送される液体が低温(例えば、0℃以下の液体)である場合、固定子コイル6Bの冷却は不要である。それにもかかわらず、羽根車1から吐き出された液体の一部は、循環流路R2を通過して羽根車1の液体入口まで戻されてしまう。したがって、モータポンプMPのポンプ効率が低下してしまう。 A part of the liquid discharged from the impeller 1 passes through the circulation flow path R2 and is returned to the liquid flow path R1. The liquid flowing through the circulation flow path R2 can cool the stator coil 6B as a heating element. However, if the liquid to be transported by the motor pump MP is cold (eg, liquid below 0° C.), cooling of the stator coils 6B is unnecessary. Nevertheless, part of the liquid discharged from the impeller 1 is returned to the liquid inlet of the impeller 1 through the circulation flow path R2. Therefore, the pump efficiency of the motor pump MP is lowered.
 そこで、固定側軸受構造体12は、循環流路R2を閉塞して、液体の、液体流路R1への逆流を防止する構造を有している。以下、固定側軸受構造体12の構造について、図面を参照して説明する。 Therefore, the fixed-side bearing structure 12 has a structure that blocks the circulation flow path R2 and prevents the liquid from flowing back to the liquid flow path R1. The structure of the fixed-side bearing structure 12 will be described below with reference to the drawings.
 図3Aは固定側軸受構造体を示す図であり、図3Bは図3AをA線方向から見た図である。固定側軸受構造体12は、回転側軸受11の半径方向内側に配置可能な固定側軸受本体40と、固定側軸受本体40に対向して配置されたモータキャン30の循環流路R2を閉塞可能なサイズを有する閉塞体41と、を備えている。  Fig. 3A is a diagram showing a fixed-side bearing structure, and Fig. 3B is a diagram of Fig. 3A viewed from the direction of line A. The fixed-side bearing structure 12 can block the circulation flow path R2 of the fixed-side bearing body 40 that can be arranged radially inside the rotation-side bearing 11 and the motor can 30 that is arranged to face the fixed-side bearing body 40. and a closure 41 having a similar size.
 固定側軸受本体40は、全体的に円筒形状を有しており、固定側ラジアル面12aおよび固定側スラスト面12bは、固定側軸受本体40に形成されている。閉塞体41は、固定側軸受本体40に固定された複数の閉塞突起42を備えている。 The fixed-side bearing main body 40 has an overall cylindrical shape, and the fixed-side radial surface 12a and the fixed-side thrust surface 12b are formed in the fixed-side bearing main body 40. The blocking body 41 has a plurality of blocking protrusions 42 fixed to the fixed-side bearing body 40 .
 本実施形態では、3つの閉塞突起42が形成されているが、閉塞突起42の数は本実施形態には限定されない。閉塞突起42の数は、循環流路R2の数に対向している。したがって、例えば、1つの循環流路R2が形成されている場合、閉塞体41は単一の閉塞突起42を有する。 Although three blocking projections 42 are formed in this embodiment, the number of blocking projections 42 is not limited to this embodiment. The number of blocking projections 42 is opposed to the number of circulation channels R2. Therefore, for example, when one circulation flow path R2 is formed, the blocking body 41 has a single blocking projection 42. As shown in FIG.
 固定側軸受本体40は、循環流路R2に対向して配置された非閉塞部位40aを有している。非閉塞部位40aは、固定側軸受構造体12がモータキャン30に装着されたとき、モータキャン30の対向面30aに対向する、固定側軸受本体40の対向面である。 The fixed-side bearing main body 40 has a non-blocking portion 40a arranged facing the circulation flow path R2. The non-closed portion 40 a is a facing surface of the stationary bearing body 40 that faces the facing surface 30 a of the motor can 30 when the stationary bearing structure 12 is attached to the motor can 30 .
 閉塞突起42は、固定側軸受本体40の非閉塞部位(すなわち、対向面)40aに固定されており、固定側軸受本体40の円周方向に沿って等間隔に配置されている。複数の閉塞突起42のそれぞれは、互いに隣接する非閉塞部位40aの間に配置されている。言い換えれば、複数の閉塞突起42および非閉塞部位40aは、固定側軸受本体40の円周方向に沿って交互に配置されている。 The blocking protrusions 42 are fixed to the non-blocking portion (that is, the facing surface) 40a of the fixed-side bearing body 40, and are arranged at equal intervals along the circumference of the fixed-side bearing body 40. Each of the plurality of blocking projections 42 is arranged between adjacent non-blocking portions 40a. In other words, the plurality of blocking protrusions 42 and non-blocking portions 40 a are alternately arranged along the circumferential direction of the fixed-side bearing body 40 .
 図4は、閉塞突起によって閉塞された循環流路を示す図である。図5は、非閉塞部位によって開放された循環流路を示す図である。図4および図5に示すように、固定側軸受構造体12は、その回転により、非閉塞部位40aを循環流路R2に対向させて循環流路R2を開放する開状態(図5参照)と、閉塞突起42を循環流路R2に対向させて循環流路R2を閉塞する閉状態(図4参照)と、を切り替えるように構成されている。 FIG. 4 is a diagram showing a circulation channel blocked by a blocking protrusion. FIG. 5 is a diagram showing a circulation channel opened by a non-blocking portion. As shown in FIGS. 4 and 5, the fixed-side bearing structure 12 rotates to open the circulation flow path R2 by causing the non-blocking portion 40a to face the circulation flow path R2 (see FIG. 5). , and a closed state (see FIG. 4) in which the blocking projection 42 is opposed to the circulation flow path R2 to block the circulation flow path R2.
 モータポンプMPの取り扱い液が低温である場合、ポンプ効率を向上させるため、循環流路R2を閉塞することが望ましい。この場合、図4に示すように、作業者は、閉塞突起42が循環流路R2に嵌合するように、固定側軸受構造体12をモータキャン30に装着する。したがって、閉塞突起42は、循環流路R2を閉塞し、液体の、液体流路R1への逆流を防止する。結果として、モータポンプMPは、そのポンプ効率を向上させることができる。 When the liquid handled by the motor pump MP is at a low temperature, it is desirable to close the circulation flow path R2 in order to improve the pump efficiency. In this case, as shown in FIG. 4, the operator mounts the fixed-side bearing structure 12 on the motor can 30 so that the blocking projection 42 fits into the circulation flow path R2. Therefore, the blocking protrusion 42 blocks the circulation channel R2 and prevents the liquid from flowing back to the liquid channel R1. As a result, the motor pump MP can improve its pump efficiency.
 本実施形態によれば、閉塞体41を固定側軸受本体40に形成するだけの簡単な構造でポンプ効率を向上させることができる。さらに、本実施形態によれば、モータポンプMPの全体構造を修正する必要はなく、固定側軸受構造体12をモータポンプMPに適用するだけの低コストでポンプ効率を向上させることができる。 According to this embodiment, the pump efficiency can be improved with a simple structure in which the closing body 41 is formed in the fixed side bearing body 40 . Furthermore, according to this embodiment, there is no need to modify the overall structure of the motor pump MP, and the pump efficiency can be improved at a low cost by simply applying the fixed-side bearing structure 12 to the motor pump MP.
 固定側軸受本体40の、閉塞突起42に対向する固定側スラスト面12bには、目印S(図3Aおよび図4参照)が形成されている。したがって、作業者は、閉塞突起42を目視することなく、閉塞突起42を循環流路R2に嵌合させることができる。 A mark S (see FIGS. 3A and 4) is formed on the fixed-side thrust surface 12b of the fixed-side bearing body 40 facing the blocking projection 42. As shown in FIG. Therefore, the operator can fit the blocking protrusion 42 into the circulation flow path R2 without visually checking the blocking protrusion 42 .
 モータポンプMPの取り扱い液が高温である場合、循環流路R2を開放して取り扱い液を液体流路R1に戻すことが望ましい。固定子コイル6Bの温度は取り扱い液の温度よりも高いため、取り扱い液は、固定子コイル6Bの熱を奪うことができる。この場合、図5に示すように、作業者は、非閉塞部位40aが循環流路R2に対向するように、固定側軸受本体40を回転させる。結果として、非閉塞部位40aはモータキャン30の対向面30aに対向する。 When the temperature of the liquid handled by the motor pump MP is high, it is desirable to open the circulation flow path R2 and return the handled liquid to the liquid flow path R1. Since the temperature of the stator coil 6B is higher than the temperature of the liquid to be handled, the liquid to be handled can take heat from the stator coil 6B. In this case, as shown in FIG. 5, the operator rotates the fixed-side bearing body 40 so that the non-blocking portion 40a faces the circulation flow path R2. As a result, the non-blocking portion 40a faces the facing surface 30a of the motor can 30. As shown in FIG.
 上述したように、モータキャン30と固定側軸受構造体12との間には、Oリング31が配置されている。したがって、一実施形態では、作業者は、固定側軸受構造体12をモータキャン30から取り外した後、固定側軸受構造体12を所定の角度だけ回転させてもよい。 As described above, the O-ring 31 is arranged between the motor can 30 and the fixed side bearing structure 12 . Therefore, in one embodiment, the operator may rotate the stationary bearing structure 12 by a predetermined angle after removing the stationary bearing structure 12 from the motor can 30 .
 上述した実施形態では、固定側軸受構造体12は、固定側軸受本体40に固定された閉塞突起42を備えているが、一実施形態では、閉塞突起42は固定側軸受本体40とは別部材であってもよい。 In the above-described embodiment, the fixed bearing structure 12 includes the blocking projection 42 fixed to the fixed bearing body 40, but in one embodiment, the blocking projection 42 is a separate member from the fixed bearing body 40. may be
 図6Aは固定側軸受構造体の他の実施形態を示す図であり、図6Bは図6AをB線方向から見た図である。図6Aおよび図6Bに示すように、閉塞体41は、環状形状を有する環状突起43を備えてもよい。環状突起43は、羽根車1および吸込口15aと同心状に配置されている。本実施形態によれば、固定側軸受構造体12をモータキャン30に装着することにより、環状突起43は、循環流路R2の数にかかわらず、すべての循環流路R2を閉塞することができる。 FIG. 6A is a diagram showing another embodiment of the fixed-side bearing structure, and FIG. 6B is a diagram of FIG. 6A viewed from line B. FIG. As shown in Figures 6A and 6B, the closure 41 may comprise an annular protrusion 43 having an annular shape. The annular projection 43 is arranged concentrically with the impeller 1 and the suction port 15a. According to this embodiment, by mounting the fixed-side bearing structure 12 to the motor can 30, the annular protrusion 43 can block all the circulation channels R2 regardless of the number of the circulation channels R2. .
 本実施形態において、モータポンプMPの取り扱い液が高温である場合、作業者は、固定側軸受構造体12を取り外し、その代わりに、閉塞体41を有しない固定側軸受本体40をモータキャン30に装着することにより、循環流路R2を開放することができる。結果として、取り扱い液は、固定子コイル6Bの熱を奪うことができる。 In this embodiment, when the temperature of the liquid to be handled by the motor pump MP is high, the operator removes the fixed side bearing structure 12 and replaces it with the fixed side bearing body 40 without the blocking member 41 on the motor can 30. By mounting, the circulation channel R2 can be opened. As a result, the liquid to be handled can take heat from the stator coil 6B.
 図7は、固定側軸受構造体の他の実施形態を示す図である。図7に示すように、閉塞体41は、固定側軸受本体40とは別部材の閉塞リング44を備えている。作業者は、閉塞リング44を固定側軸受本体40の非閉塞部位40aとモータキャン30の対向面30aとの間に配置した状態で、固定側軸受構造体12をモータキャン30に装着する。このような装着により、閉塞リング44は循環流路R2を閉塞することができる。本実施形態においても、閉塞リング44は、循環流路R2の数にかかわらず、すべての循環流路R2を閉塞することができる。 FIG. 7 is a diagram showing another embodiment of the fixed-side bearing structure. As shown in FIG. 7 , the closing body 41 has a closing ring 44 which is a separate member from the fixed-side bearing main body 40 . The operator mounts the stationary bearing structure 12 on the motor can 30 with the closing ring 44 arranged between the non-closing portion 40 a of the stationary bearing main body 40 and the facing surface 30 a of the motor can 30 . Such attachment allows the closing ring 44 to close the circulation flow path R2. Also in this embodiment, the blocking ring 44 can block all the circulation channels R2 regardless of the number of the circulation channels R2.
 本実施形態において、モータポンプMPの取り扱い液が高温である場合、作業者は、閉塞リング44を取り外し、固定側軸受本体40をモータキャン30に装着することにより、循環流路R2を開放することができる。結果として、取り扱い液は、固定子コイル6Bの熱を奪うことができる。 In this embodiment, when the temperature of the liquid handled by the motor pump MP is high, the operator removes the closing ring 44 and attaches the fixed side bearing main body 40 to the motor can 30 to open the circulation flow path R2. can be done. As a result, the liquid to be handled can take heat from the stator coil 6B.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling those who have ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiments can be made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in its broadest scope in accordance with the technical spirit defined by the claims.
 本発明は、固定側軸受構造体およびモータポンプに利用可能である。 The present invention can be used for fixed-side bearing structures and motor pumps.
 1   羽根車
 2   ポンプケーシング
 3   モータケーシング
 5   永久磁石
 6   モータ固定子
6A   固定子コア
6B   固定子コイル
 9   Oリング
10   軸受組立体
11   回転側軸受
11a  回転側ラジアル面
11b  回転側スラスト面
12   固定側軸受構造体
12a  固定側ラジアル面
12b  固定側スラスト面
15   吸込ポート
15a  吸込口
16   吐出ポート
16a  吐出口
18   Oリング
20   閉止部材
21   インバータ装置(制御基板)
25   リード線
30   モータキャン
30a  対向面
31   Oリング
40   固定側軸受本体
40a  非閉塞部位
41   閉塞体
42   閉塞突起
43   環状突起
44   閉塞リング
MP   モータポンプ
R1   液体流路
R2   循環流路
 S   目印
1 Impeller 2 Pump casing 3 Motor casing 5 Permanent magnet 6 Motor stator 6A Stator core 6B Stator coil 9 O-ring 10 Bearing assembly 11 Rotating side bearing 11a Rotating side radial surface 11b Rotating side thrust surface 12 Fixed side bearing structure Body 12a Fixed-side radial surface 12b Fixed-side thrust surface 15 Suction port 15a Suction port 16 Discharge port 16a Discharge port 18 O-ring 20 Closing member 21 Inverter device (control board)
25 Lead wire 30 Motor can 30a Opposing surface 31 O-ring 40 Fixed-side bearing main body 40a Non-blocking part 41 Blocking body 42 Blocking projection 43 Annular projection 44 Blocking ring MP Motor pump R1 Liquid channel R2 Circulating channel S Mark

Claims (7)

  1.  回転側軸受の半径方向内側に配置可能な固定側軸受本体と、
     前記固定側軸受本体に対向して配置されたモータキャンの循環流路を閉塞可能なサイズを有する閉塞体と、を備える、固定側軸受構造体。
    a fixed-side bearing body that can be arranged radially inside the rotating-side bearing;
    a blocking body having a size capable of blocking a circulation flow path of a motor can arranged opposite to the fixed side bearing main body.
  2.  前記固定側軸受本体は、前記循環流路と対向して配置された非閉塞部位を有しており、
     前記閉塞体は、前記固定側軸受本体に固定され、かつ互いに隣接する前記非閉塞部位の間に配置された閉塞突起を備えている、請求項1に記載の固定側軸受構造体。
    The fixed-side bearing main body has a non-blocking portion disposed facing the circulation flow path,
    2. The fixed-side bearing structure according to claim 1, wherein said blocking body is fixed to said fixed-side bearing body and has blocking projections disposed between said non-blocking portions adjacent to each other.
  3.  前記固定側軸受構造体は、その回転により、前記非閉塞部位を前記循環流路に対向させて前記循環流路を開放する開状態と、前記閉塞突起を前記循環流路に対向させて前記循環流路を閉塞する閉状態と、を切り替えるように構成されている、請求項2に記載の固定側軸受構造体。 The fixed-side bearing structure rotates to form an open state in which the non-blocking portion faces the circulation flow path to open the circulation flow path, and an open state in which the blocking protrusion faces the circulation flow path to open the circulation flow path. 3. The fixed-side bearing structure according to claim 2, configured to switch between a closed state in which the flow path is closed and a closed state.
  4.  前記閉塞突起は、前記循環流路の数に対応する数を有している、請求項2または請求項3に記載の固定側軸受構造体。 The fixed side bearing structure according to claim 2 or claim 3, wherein the blocking protrusions have a number corresponding to the number of the circulation passages.
  5.  前記閉塞体は、環状形状を有する環状突起を備えている、請求項1に記載の固定側軸受構造体。 The fixed-side bearing structure according to claim 1, wherein the closing body has an annular projection having an annular shape.
  6.  前記閉塞体は、前記固定側軸受本体とは別部材の閉塞リングを備えている、請求項1に記載の固定側軸受構造体。 The fixed side bearing structure according to claim 1, wherein the closing body comprises a closing ring that is a separate member from the fixed side bearing main body.
  7.  永久磁石を収容する羽根車と、
     前記羽根車を収容するポンプケーシングと、
     前記羽根車を支持する軸受組立体と、
     モータ固定子を収容するモータケーシングと、を備え、
     前記軸受組立体は、
      請求項1~請求項6のいずれか一項に記載の固定側軸受構造体と、
      前記固定側軸受構造体の周囲に配置される回転側軸受と、を備えており、
     前記モータケーシングは、前記固定側軸受構造体に対向して配置された循環流路を有するモータキャンを備えている、モータポンプ。
    an impeller containing a permanent magnet;
    a pump casing housing the impeller;
    a bearing assembly supporting the impeller;
    a motor casing housing the motor stator;
    The bearing assembly is
    a fixed side bearing structure according to any one of claims 1 to 6;
    a rotation side bearing arranged around the fixed side bearing structure,
    The motor pump, wherein the motor casing includes a motor can having a circulation flow path disposed facing the fixed-side bearing structure.
PCT/JP2022/023883 2021-10-26 2022-06-15 Fixed bearing structure and motor pump WO2023074038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174335 2021-10-26
JP2021174335A JP2023064205A (en) 2021-10-26 2021-10-26 Fixed side bearing structure and motor pump

Publications (1)

Publication Number Publication Date
WO2023074038A1 true WO2023074038A1 (en) 2023-05-04

Family

ID=86159686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023883 WO2023074038A1 (en) 2021-10-26 2022-06-15 Fixed bearing structure and motor pump

Country Status (3)

Country Link
JP (1) JP2023064205A (en)
TW (1) TW202338213A (en)
WO (1) WO2023074038A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245955A1 (en) * 2005-04-18 2006-11-02 Kiyotaka Horiuchi Canned pump
WO2008123174A1 (en) * 2007-03-27 2008-10-16 Panasonic Electric Works Co., Ltd. Centrifugal pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245955A1 (en) * 2005-04-18 2006-11-02 Kiyotaka Horiuchi Canned pump
WO2008123174A1 (en) * 2007-03-27 2008-10-16 Panasonic Electric Works Co., Ltd. Centrifugal pump

Also Published As

Publication number Publication date
TW202338213A (en) 2023-10-01
JP2023064205A (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US5641276A (en) Electric pump for environmentally hazardous material
US6846168B2 (en) Pump with an electrodynamically supported impeller and a hydrodynamic bearing between the impeller and the stator
KR102603665B1 (en) Motor pump
JP5318730B2 (en) Motor pump
JP4059416B2 (en) Integrated motor pump
CN115280012A (en) Electric machine
JP6625447B2 (en) Motor pump
KR20020035842A (en) Shaftless canned rotor inline pipe pump
CN111600419B (en) Rotating electrical machine
JP2000303986A5 (en)
US7598643B2 (en) Motor with electrodynamically and hydrodynamically supported rotor
JP3530910B2 (en) Centrifugal motor pump
WO2023074038A1 (en) Fixed bearing structure and motor pump
JP2019039431A (en) Adjustment ring
JP2015132242A (en) motor pump
JP2007303316A (en) Motor pump
WO2023013255A1 (en) Motor pump
JP6720007B2 (en) Bearing assembly and pump device
WO2022230013A1 (en) Motor pump
US20230006514A1 (en) Rotation device
JP2022112973A (en) Pump device
WO2023162096A1 (en) Rotary electric machine
KR101931633B1 (en) electro-magnetic pump using rotational electromagnetic field
JPH1137079A (en) Axial flow pump
JP2022059177A (en) Motor pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE