WO2023073961A1 - Composite photovoltaic panel - Google Patents

Composite photovoltaic panel Download PDF

Info

Publication number
WO2023073961A1
WO2023073961A1 PCT/JP2021/040145 JP2021040145W WO2023073961A1 WO 2023073961 A1 WO2023073961 A1 WO 2023073961A1 JP 2021040145 W JP2021040145 W JP 2021040145W WO 2023073961 A1 WO2023073961 A1 WO 2023073961A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic panel
composite
photovoltaic
panel
power generation
Prior art date
Application number
PCT/JP2021/040145
Other languages
French (fr)
Japanese (ja)
Inventor
信明 小松
朋子 伊藤
隆 中馬
真千子 若林
Original Assignee
国際先端技術総合研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際先端技術総合研究所株式会社 filed Critical 国際先端技術総合研究所株式会社
Priority to PCT/JP2021/040145 priority Critical patent/WO2023073961A1/en
Publication of WO2023073961A1 publication Critical patent/WO2023073961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells

Definitions

  • the present invention relates to composite photovoltaic panels.
  • Photovoltaic power generation occupies an important position as one of renewable energies.
  • the problem with photovoltaic power generation is that it requires a large installation area, so the amount of power generated per unit area is low.
  • Another problem with photovoltaic power generation is that the amount of power generated is unstable and easily influenced by natural conditions such as the weather.
  • monocrystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, CIS solar cells, and HIT solar cells are used as power generation elements, the amount of power generated is large even with changes in sunlight. Change is a problem.
  • an object of the present invention is to provide a more stable photovoltaic power generation facility by improving the power generation efficiency of the power generation facility.
  • one of the representative composite photovoltaic panels of the present invention is A composite photovoltaic panel in which a first photovoltaic panel and a second photovoltaic panel are integrally superimposed, wherein the first photovoltaic panel is a transparent photovoltaic panel; wherein said second photovoltaic panel is an opaque photovoltaic panel; In the first photovoltaic panel and the second photovoltaic panel, the respective power generation regions and wiring regions overlap each other in plan view.
  • FIG. 1 is a schematic cross-sectional view of the composite photovoltaic panel of the first embodiment.
  • FIG. 2 is a cross-sectional view of the transparent photovoltaic panel 102 in the first embodiment.
  • FIG. 3 is a diagram for explaining the layout relationship between the power generation area and the wiring area.
  • FIG. 4 is a diagram for explaining the arrangement relationship between the power generation area and the wiring area.
  • FIG. 5 is a cross-sectional view of the composite photovoltaic panel of the first embodiment.
  • FIG. 6 is a diagram showing spectral absorption characteristics of a transparent photovoltaic panel.
  • FIG. 7 is a diagram showing changes in output current with respect to illuminance.
  • FIG. 8 is an enlarged view showing changes in output current with respect to illuminance.
  • FIG. 1 is a schematic cross-sectional view of the composite photovoltaic panel of the first embodiment.
  • FIG. 2 is a cross-sectional view of the transparent photovoltaic panel 102 in the first embodiment.
  • FIG. 9 is a diagram showing changes in surface temperature of an inorganic photovoltaic panel.
  • FIG. 10 is a diagram showing the effect of temperature rise on power generation.
  • FIG. 11 is a cross-sectional view of the composite photovoltaic panel of the second embodiment.
  • FIG. 12 is a cross-sectional view of the composite photovoltaic panel of the third embodiment.
  • a transparent photovoltaic panel means a photovoltaic panel composed of photovoltaic elements in which particles of SiO2 perform photovoltaics.
  • the wavelength of the electromagnetic wave that causes the transparent photovoltaic panel to generate power is not limited to the visible light range, and includes a wide wavelength range from infrared light to ultraviolet light.
  • the light source for the photovoltaic panel to generate electricity is not limited to sunlight, and includes light sources of all intensities, including artificial light sources.
  • the transparent photovoltaic panel includes those that generate power by indoor weak light sources, infrared rays, etc., including fluorescent lamps.
  • the opaque inorganic photovoltaic panel includes crystalline silicon solar cells, amorphous silicon solar cells, polycrystalline silicon solar cells, group III-V multijunction solar cells, dye-sensitized solar cells, means perovskite solar cell, organic thin film solar cell.
  • FIG. 1 is a schematic cross-sectional view of the composite photovoltaic panel of the first embodiment.
  • a transparent photovoltaic panel 102 is installed directly above the light receiving surface of an inorganic photovoltaic panel 101 via a space.
  • FIG. 2 is a cross-sectional view of the transparent photovoltaic panel 102 in the first embodiment.
  • a transparent substrate 1 to which a transparent conductive film 3 is attached and a transparent substrate 2 to which a transparent conductive film 4 is attached are held facing each other with the transparent conductive film sandwiched therebetween.
  • a metal oxide film 5 is provided on the transparent conductive film 3 .
  • a Pt film 6 is formed on the transparent conductive film 4, and above the Pt film 6, a particle layer 7 of SiO 2 serving as a photovoltaic layer is provided.
  • An electrolyte 10 is sealed between the metal oxide film 5 and the particle layer 7 of SiO 2 .
  • a sealing material (not shown) is provided in the peripheral portion between the transparent substrate 1 and the transparent substrate 2 which are arranged to face each other.
  • the transparent substrates 1 and 2 may be plastic or glass as long as they are made of a light-transmitting material, but glass is suitable.
  • the transparent conductive films 3 and 4 may be made of an indium-tin-based transparent conductive material such as ITO, FTO, IZO, or IWO. may be configured in combination.
  • the metal oxide layer 5 may be any material as long as it is transparent in a film state and exhibits the characteristics of an n-type semiconductor, such as TiO 2 , SnO 2 and ZnO.
  • the electrolyte one used in general dye-sensitized solar cells is used.
  • FIG. 3 is an explanatory view showing a partially enlarged corner of the transparent photovoltaic panel 102.
  • the outer circumference of the transparent conductive panel 102 is surrounded by a frame 25 made of aluminum or the like, and the power generation area 20 is arranged inside the frame 25 .
  • a wiring area 21 is provided around the power generation area 20 .
  • FIG. 4 is an explanatory diagram showing a partially enlarged corner of the inorganic photovoltaic panel 101.
  • the outer circumference of the inorganic photovoltaic panel 101 is surrounded by a frame 35 made of aluminum or the like, and the power generation region 30 is arranged inside the frame 35 .
  • a wiring area 31 is provided around the power generation area 30 .
  • the sizes and positions of the power generation regions 20 and 30 and the wiring regions 21 and 31 are matched, and the transparent photovoltaic panel 102 and the inorganic photovoltaic panel 101 are superimposed. In practice, these regions are arranged so as to overlap each other in plan view.
  • planar view refers to the case where either the transparent photovoltaic panel 102 or the inorganic photovoltaic panel 101 is viewed from a distance above the light receiving surface of the transparent photovoltaic panel 102 or the inorganic photovoltaic panel 101 .
  • the transparent photovoltaic panel 102 is provided with a mount 42, and the inorganic photovoltaic panel 101 is also attached with a mount 41. By connecting these mounts, the composite photovoltaic panel 100 can be obtained. .
  • a gap is provided between the transparent photovoltaic panel 102 and the inorganic photovoltaic panel 101, and has a shape that facilitates the dissipation of heat generated in the inorganic photovoltaic panel 101, as will be described later.
  • the composite photovoltaic power generation panel 100 is viewed from the irradiation direction of sunlight, the power generation regions 20 and 30 and the wiring regions 21 and 31 are arranged so as to overlap each other.
  • the transparent photovoltaic panel 102 has a high transmittance in the visible light region (380-780 nm) and a high absorptivity in the near-infrared region (780-2500 nm).
  • the transparent photovoltaic panel 102 has a visible light transmittance of 60% or more, has an absorption of 10% or more in the infrared region, and transmits the wavelength region that contributes to the power generation of the inorganic photovoltaic panel 101. It can be seen that power is generated in other wavelength regions.
  • FIG. 7 shows changes in output current with respect to illuminance for a crystalline silicon photovoltaic panel and a transparent photovoltaic panel in which the low illuminance region of FIG. 7 is enlarged.
  • the output current value reverses at about 7500 lux, and it can be seen that the output current value of the transparent photovoltaic panel is higher at illuminances below that.
  • the transparent photovoltaic power generation panel of the first embodiment mainly generates power during the time when the sun is shaded or the time of sunset, and during the time when the sun shines during the day.
  • crystalline silicon photovoltaic panels will mainly generate electricity.
  • the surface temperature of a single crystalline silicon photovoltaic panel (inorganic photovoltaic panel) and the configuration of the present invention (transparent photovoltaic power generation on the sunlight incident side of the crystalline silicon photovoltaic panel) 1 shows data comparing the surface temperature of a crystalline silicon photovoltaic power generation panel in a configuration in which a panel is provided.
  • the horizontal axis is the sunlight irradiation time, and the illuminance at this time was about 80,000 lux. It can be seen that the surface temperature rise in the first embodiment is suppressed as compared with the rise in surface temperature of the crystalline silicon-based photovoltaic panel alone.
  • the transparent photovoltaic panel absorbs wavelengths in the infrared region, which are originally converted into heat, as shown in the spectral spectrum of FIG.
  • the surface temperature of the inorganic photovoltaic panel rises sharply as the sunlight irradiation time elapses. It can be seen that the inorganic photovoltaic panel can suppress the increase in surface temperature to a considerable extent.
  • a composite photovoltaic panel 200 of FIG. 11 is a cross-sectional view of the composite photovoltaic panel according to the second embodiment.
  • the second embodiment differs from the first embodiment in that the light receiving surface of the transparent photovoltaic panel of the first embodiment is reversed.
  • differences from the above-described first embodiment will be mainly described, and the same or equivalent components will be denoted by the same reference numerals, and descriptions thereof will be simplified or omitted.
  • a transparent photovoltaic panel 103 which is the upside down of the transparent photovoltaic panel 102 of the first embodiment shown in FIG. ing.
  • the transparent photovoltaic panel 103 transmits light in the wavelength range that contributes to the power generation of the inorganic photovoltaic panel 101, and can generate power in other wavelength ranges. , effects similar to those of the first embodiment can be obtained.
  • a composite photovoltaic power generation panel 300 of FIG. 12 is a cross-sectional view of the composite photovoltaic power generation panel according to the third embodiment.
  • the third embodiment differs from the first embodiment in that the pedestals 41 and 42 of the first embodiment are configured to efficiently dissipate heat generated from the inorganic photovoltaic panel.
  • differences from the above-described first embodiment will be mainly described, and the same or equivalent components will be denoted by the same reference numerals, and descriptions thereof will be simplified or omitted.
  • the mounts 41 and 42 of the first embodiment are made of a material having high thermal conductivity, such as an aluminum member, an aluminum alloy member, a copper member, or copper, in order to improve heat dissipation. It consists of alloy members and other metal members.
  • the material of the mount is not limited to a metal material, and includes all members having thermal conductivity.
  • an air inlet and an air outlet are provided in the space between the inorganic photovoltaic panel 101 and the transparent photovoltaic panel 102 to dissipate heat to the outside through the air.
  • a fan may be provided.
  • the mounts 41 and 42 may be provided with fins for heat dissipation. In this way, by efficiently dissipating heat from the inorganic photovoltaic panel, the power generation efficiency of the composite photovoltaic panel can be further improved.
  • the inorganic photovoltaic panel 101 and the transparent photovoltaic panel 102 may be brought into close contact with each other, and the two panels may be fixed by a frame made of a highly thermally conductive material.
  • the photovoltaic device of the present invention can be realized not only by creating a new composite photovoltaic panel, but also by adding a transparent photovoltaic panel to an existing inorganic photovoltaic device. In this case, it is possible to utilize the existing place for photovoltaic power generation and the mount for installation, so it is possible to expect a significant improvement in power generation efficiency at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention proposes a photovoltaic device in which photovoltaic panels are configured as a multilayer structure in order to achieve high power generation efficiency per unit area. To this end, the present invention provides a composite photovoltaic panel (100) in which a first photovoltaic panel (102) and a second photovoltaic panel (101) are made to overlap integrally, said composite photovoltaic panel (100) being characterized in that the first photovoltaic panel (102) is a transparent photovoltaic panel, the second photovoltaic panel (101) is a non-transparent solar photovoltaic panel, and power generation areas (20, 30) and wiring areas (21, 31) of each of the first photovoltaic panel (102) and the second photovoltaic panel (101) overlap in a planar view.

Description

複合光発電パネルcomposite photovoltaic panel
 本発明は複合光発電パネルに関する。 The present invention relates to composite photovoltaic panels.
 太陽光発電は、再生可能エネルギーの一つとして、重要な位置を占めている。しかし、太陽光発電の課題は、大きな設置面積を必要とするため、単位面積当たりの発電量が低いことがあげられる。また、この他に太陽光発電の課題としては、発電量が天候など自然状況に左右されやすく不安定である点があげられる。
 特に、発電素子として単結晶シリコン型太陽電池、多結晶シリコン型太陽電池、アモルファスシリコン型太陽電池、CIS型太陽電池、HIT型太陽電池を用いた場合には、日照の変化によっても発電量が大きく変化することが問題点としてあげられる。(例えば、太陽光発電の出力変動例については、
https://www.kepco.co.jp/sp/energy_supply/energy/newenergy/about/task.htmlを参照)また、日照による発電素子の温度上昇によっても発電量が減少するとの課題も有している。
Photovoltaic power generation occupies an important position as one of renewable energies. However, the problem with photovoltaic power generation is that it requires a large installation area, so the amount of power generated per unit area is low. Another problem with photovoltaic power generation is that the amount of power generated is unstable and easily influenced by natural conditions such as the weather.
In particular, when monocrystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, CIS solar cells, and HIT solar cells are used as power generation elements, the amount of power generated is large even with changes in sunlight. Change is a problem. (For example, for the output fluctuation example of photovoltaic power generation,
See https://www.kepco.co.jp/sp/energy_supply/energy/newenergy/about/task.html) In addition, there is also the problem that the amount of power generated decreases due to the temperature rise of the power generation element due to sunlight. there is
 また、上述した光発電素子とは別に、絶縁体である二酸化ケイ素を発電材料として用いる光起電素子がある。これは、二酸化ケイ素自体が、光電気分解効果及び光発電効果を有することを、本出願の発明者らが新たに発見したことに基づくものである。 In addition to the photovoltaic element described above, there is a photovoltaic element that uses silicon dioxide, which is an insulator, as a power generating material. This is based on the new discovery by the inventors of the present application that silicon dioxide itself has a photoelectrolytic effect and a photovoltaic effect.
 本出願の発明者らは二酸化ケイ素である人工水晶又は溶融石英が、光発電効果を有することを発見し、光電極材料および光電池材料として、二酸化ケイ素ソーラーセルを提案した。(特許文献1及び特許文献2) The inventors of the present application discovered that artificial quartz or fused silica, which is silicon dioxide, has a photovoltaic effect, and proposed a silicon dioxide solar cell as a photoelectrode material and a photovoltaic cell material. (Patent Document 1 and Patent Document 2)
国際公開 WO 2011/049156 A1International Publication WO 2011/049156 A1 国際公開 WO 2012/124655 A1International publication WO 2012/124655 A1
 メガソーラーパネルなどに使用される結晶シリコン系太陽電池パネルでは、日射量増加に伴いパネル温度が上昇し、これによって、電力の出力が低下するという課題がある。
 そこで、本発明では、発電設備における発電効率を改善し、より安定的な光発電設備を提供することを目的とする。
A crystalline silicon solar cell panel used for a mega solar panel or the like has a problem that the panel temperature rises with an increase in the amount of solar radiation, resulting in a decrease in power output.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a more stable photovoltaic power generation facility by improving the power generation efficiency of the power generation facility.
 上記の課題を解決するために、代表的な本発明の複合光発電パネルの一つは、
 第1の光発電パネルと第2の光発電パネルを一体的に重ね合わせた複合光発電パネルであって、
 前記第1の光発電パネルは、透明光発電パネルであり、
 前記第2の光起電パネルは、不透明太陽光発電パネルであり、
 前記第1の光起電パネルと第2の光起電パネルとは、それぞれの発電領域と配線領域とが平面視において重なり合っている。
In order to solve the above problems, one of the representative composite photovoltaic panels of the present invention is
A composite photovoltaic panel in which a first photovoltaic panel and a second photovoltaic panel are integrally superimposed,
wherein the first photovoltaic panel is a transparent photovoltaic panel;
wherein said second photovoltaic panel is an opaque photovoltaic panel;
In the first photovoltaic panel and the second photovoltaic panel, the respective power generation regions and wiring regions overlap each other in plan view.
 本発明によれば、発電設備における発電効率を改善し、より安定的な光発電設備を提供することができる。
 上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the power generation efficiency in power generation equipment can be improved, and a more stable photovoltaic power generation equipment can be provided.
Problems, configurations, and effects other than those described above will be clarified by the description in the following embodiments.
図1は、第1実施形態の複合光発電パネルの概略断面図である。FIG. 1 is a schematic cross-sectional view of the composite photovoltaic panel of the first embodiment. 図2は、第1実施形態における透明光発電パネル102の断面図である。FIG. 2 is a cross-sectional view of the transparent photovoltaic panel 102 in the first embodiment. 図3は、発電領域と配線領域の配置関係を説明する図である。FIG. 3 is a diagram for explaining the layout relationship between the power generation area and the wiring area. 図4は、発電領域と配線領域の配置関係を説明する図である。FIG. 4 is a diagram for explaining the arrangement relationship between the power generation area and the wiring area. 図5は、第1実施形態の複合光発電パネルの断面図である。FIG. 5 is a cross-sectional view of the composite photovoltaic panel of the first embodiment. 図6は、透明光発電パネルの分光吸収特性を示す図である。FIG. 6 is a diagram showing spectral absorption characteristics of a transparent photovoltaic panel. 図7は、照度に対する出力電流の変化を示す図である。FIG. 7 is a diagram showing changes in output current with respect to illuminance. 図8は、照度に対する出力電流の変化を示す拡大図である。FIG. 8 is an enlarged view showing changes in output current with respect to illuminance. 図9は、無機太陽光発電パネルの表面温度の変化を示す図である。FIG. 9 is a diagram showing changes in surface temperature of an inorganic photovoltaic panel. 図10は、温度上昇が発電に及ぼす影響を示す図である。FIG. 10 is a diagram showing the effect of temperature rise on power generation. 図11は、第2実施形態の複合光発電パネルの断面図である。FIG. 11 is a cross-sectional view of the composite photovoltaic panel of the second embodiment. 図12は、第3実施形態の複合光発電パネルの断面図である。FIG. 12 is a cross-sectional view of the composite photovoltaic panel of the third embodiment.
 以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited by this embodiment. Moreover, in the description of the drawings, the same parts are denoted by the same reference numerals.
 本開示において、透明光発電パネルとは、SiOの粒子が光起電を行う光発電素子から構成される光発電パネルを意味する。透明光発電パネルの発電の原因となる電磁波の波長は可視光域に限定されず、赤外光から紫外光まで幅広い波長域が含まれる。
 また、光発電パネルが発電するための光源も、太陽光に限られず、人工の光源も含めて、あらゆる強度の光源が含まれる。つまり、透明光発電パネルは、蛍光灯を含め、屋内での微弱な光源、赤外線などによって発電するものが含まれる。
In the present disclosure, a transparent photovoltaic panel means a photovoltaic panel composed of photovoltaic elements in which particles of SiO2 perform photovoltaics. The wavelength of the electromagnetic wave that causes the transparent photovoltaic panel to generate power is not limited to the visible light range, and includes a wide wavelength range from infrared light to ultraviolet light.
Also, the light source for the photovoltaic panel to generate electricity is not limited to sunlight, and includes light sources of all intensities, including artificial light sources. In other words, the transparent photovoltaic panel includes those that generate power by indoor weak light sources, infrared rays, etc., including fluorescent lamps.
 また、本開示では、不透明無機太陽光発電パネルとは、結晶シリコン系太陽電池、アモルファスシリコン太陽電池、多結晶シリコン型太陽電池、III-V族多接合型太陽電池、色素増感型太陽電池、ペロブスカイト太陽電池、有機薄膜太陽電池を意味する。 In addition, in the present disclosure, the opaque inorganic photovoltaic panel includes crystalline silicon solar cells, amorphous silicon solar cells, polycrystalline silicon solar cells, group III-V multijunction solar cells, dye-sensitized solar cells, means perovskite solar cell, organic thin film solar cell.
[第1実施形態]
 以下では、図1及び図2を参照して、第1実施形態の複合光発電パネル100について説明する。なお、本実施形態では不透明太陽光発電パネルとして無機太陽光発電パネルを採用している。
 図1は第1実施形態の複合光発電パネルの概略断面図である。複合光発電パネル100は、無機太陽光発電パネル101の受光面の直上に、空間を介して、透明光発電パネル102が設置されている。
[First embodiment]
The composite photovoltaic panel 100 of the first embodiment will be described below with reference to FIGS. 1 and 2. FIG. In this embodiment, an inorganic photovoltaic panel is used as the opaque photovoltaic panel.
FIG. 1 is a schematic cross-sectional view of the composite photovoltaic panel of the first embodiment. In the composite photovoltaic panel 100, a transparent photovoltaic panel 102 is installed directly above the light receiving surface of an inorganic photovoltaic panel 101 via a space.
 図2は、第1実施形態における透明光発電パネル102の断面図である。透明導電膜3を付着させた透明基板1及び透明導電膜4を付着させた透明基板2が、透明導電膜を挟む形態で向かい合う形で保持されている。そして、透明導電膜3上には金属酸化物膜5が設けられている。一方、透明導電膜4上には、Pt膜6が形成されており、Pt膜6の上方には、光発電層となるSiOの粒子層7が設けられている。そして金属酸化膜5とSiOの粒子層7との間には、電解質10が封止されている。また、対向して配置された透明基板1及び透明基板2の間には周辺部において封止材(図示せず)が設置されている。 FIG. 2 is a cross-sectional view of the transparent photovoltaic panel 102 in the first embodiment. A transparent substrate 1 to which a transparent conductive film 3 is attached and a transparent substrate 2 to which a transparent conductive film 4 is attached are held facing each other with the transparent conductive film sandwiched therebetween. A metal oxide film 5 is provided on the transparent conductive film 3 . On the other hand, a Pt film 6 is formed on the transparent conductive film 4, and above the Pt film 6, a particle layer 7 of SiO 2 serving as a photovoltaic layer is provided. An electrolyte 10 is sealed between the metal oxide film 5 and the particle layer 7 of SiO 2 . A sealing material (not shown) is provided in the peripheral portion between the transparent substrate 1 and the transparent substrate 2 which are arranged to face each other.
 透明基板1、2は光透過性の材質であれば、プラスチックでもガラスでもよいが、ガラスが適している。また、透明導電膜3、4は、インジウム・スズ系の透明導電材であれば良く、例えばITO、FTO、IZO、IWO等であり、透明導電膜は単層でも良いし、複数の透明導電膜を組み合わせて構成しても良い。
 金属酸化物層5は、膜状態で透明でありn型半導体の特性を示すものであれば良く、例えばTiO、SnO、ZnOなどである。電解質は、一般的な色素増感太陽電池で使用されるものが用いられる。
The transparent substrates 1 and 2 may be plastic or glass as long as they are made of a light-transmitting material, but glass is suitable. The transparent conductive films 3 and 4 may be made of an indium-tin-based transparent conductive material such as ITO, FTO, IZO, or IWO. may be configured in combination.
The metal oxide layer 5 may be any material as long as it is transparent in a film state and exhibits the characteristics of an n-type semiconductor, such as TiO 2 , SnO 2 and ZnO. As the electrolyte, one used in general dye-sensitized solar cells is used.
 次に、図3及び図4を参照して、透明光発電パネル102及び無機太陽光発電パネル101における発電領域と配線領域の配置関係ついて説明する。
 図3は、透明光発電パネル102の隅部を部分的に拡大した説明図である。図3において、透明導電パネル102の外周は、アルミ等のフレーム25で囲まれており、フレーム25の内部に発電領域20が配置されている。また、発電領域20の周辺には、配線領域21が設けられている。
Next, with reference to FIGS. 3 and 4, the layout relationship between the power generation area and the wiring area in the transparent photovoltaic panel 102 and the inorganic photovoltaic panel 101 will be described.
FIG. 3 is an explanatory view showing a partially enlarged corner of the transparent photovoltaic panel 102. As shown in FIG. In FIG. 3, the outer circumference of the transparent conductive panel 102 is surrounded by a frame 25 made of aluminum or the like, and the power generation area 20 is arranged inside the frame 25 . A wiring area 21 is provided around the power generation area 20 .
 図4は、無機太陽光発電パネル101の隅部を部分的に拡大した説明図である。図4においても、無機太陽光発電パネル101の外周は、アルミ等のフレーム35で囲まれており、フレーム35の内部に発電領域30が配置されている。また、発電領域30の周辺には、配線領域31が設けられている。 FIG. 4 is an explanatory diagram showing a partially enlarged corner of the inorganic photovoltaic panel 101. FIG. In FIG. 4 as well, the outer circumference of the inorganic photovoltaic panel 101 is surrounded by a frame 35 made of aluminum or the like, and the power generation region 30 is arranged inside the frame 35 . A wiring area 31 is provided around the power generation area 30 .
 第1実施形態においては、上述した発電領域20と発電領域30及び配線領域21と配線領域31のそれぞれの大きさと位置を整合させ、透明光発電パネル102と無機太陽光発電パネル101を重ね合わせた際に、これらの領域が平面視において重なり合うように配置されている。
 なお、本開示において、平面視とは、透明光発電パネル102又は無機太陽光発電パネル101の受光面の法線方向上遠方からいずれかのパネルを見た場合のことを示している。
In the first embodiment, the sizes and positions of the power generation regions 20 and 30 and the wiring regions 21 and 31 are matched, and the transparent photovoltaic panel 102 and the inorganic photovoltaic panel 101 are superimposed. In practice, these regions are arranged so as to overlap each other in plan view.
In the present disclosure, the term “planar view” refers to the case where either the transparent photovoltaic panel 102 or the inorganic photovoltaic panel 101 is viewed from a distance above the light receiving surface of the transparent photovoltaic panel 102 or the inorganic photovoltaic panel 101 .
 次に、図5を参照して、第1実施形態の複合光発電パネル100の詳細な断面について説明する。透明光発電パネル102には、架台42が設けられ、無機太陽光発電パネル101にも架台41が取り付けられており、これらの架台どうしを結合することで、複合光発電パネル100を得ることができる。透明光発電パネル102と無機太陽光発電パネル101との間には、空隙が設けられており、後述するように、無機太陽光発電パネル101にて発生した熱を放熱しやすい形状としている。
そして、複合光発電パネル100を太陽光の照射方向から見た場合には、発電領域20と発電領域30及び配線領域21と配線領域31が重なり合って配置されている。
Next, a detailed cross section of the composite photovoltaic power generation panel 100 of the first embodiment will be described with reference to FIG. The transparent photovoltaic panel 102 is provided with a mount 42, and the inorganic photovoltaic panel 101 is also attached with a mount 41. By connecting these mounts, the composite photovoltaic panel 100 can be obtained. . A gap is provided between the transparent photovoltaic panel 102 and the inorganic photovoltaic panel 101, and has a shape that facilitates the dissipation of heat generated in the inorganic photovoltaic panel 101, as will be described later.
When the composite photovoltaic power generation panel 100 is viewed from the irradiation direction of sunlight, the power generation regions 20 and 30 and the wiring regions 21 and 31 are arranged so as to overlap each other.
 次に、図6を参照して、透明光発電パネル102の分光吸収特性について説明する。図6は、あくまでも一例であるが、透明光発電パネル102は可視光領域(380~780nm)では透過率が高く、近赤外領域(780~2500nm)では吸収率が高いことが確認できる。
 つまり、透明光発電パネル102は、可視光透過率は、60%以上であり、赤外領域に10%以上の吸収を持ち、無機太陽光発電パネル101の発電に寄与する波長域は透過し、その他の波長領域で発電することが判る。
Next, the spectral absorption characteristics of the transparent photovoltaic panel 102 will be described with reference to FIG. Although FIG. 6 is only an example, it can be confirmed that the transparent photovoltaic panel 102 has a high transmittance in the visible light region (380-780 nm) and a high absorptivity in the near-infrared region (780-2500 nm).
In other words, the transparent photovoltaic panel 102 has a visible light transmittance of 60% or more, has an absorption of 10% or more in the infrared region, and transmits the wavelength region that contributes to the power generation of the inorganic photovoltaic panel 101. It can be seen that power is generated in other wavelength regions.
 次に、図7を参照して、結晶シリコン系太陽光発電パネルと透明光発電パネルの照度に対する出力電流の変化の一例について説明する。図7からは、結晶シリコン系太陽光発電パネルが、照度の変化によって大きく出力電流が変化するのに対して、透明光発電パネルは大きな変化が見られないことが分かる。
 なお、図8は図7の低照度域を拡大した結晶シリコン系太陽光発電パネルと、透明光発電パネルの照度に対する出力電流の変化を示す。本データの場合、約7500 luxで出力電流値が逆転し、それ以下の照度では透明光発電パネルの方が出力電流値は高いことが分かる。
 従って、第1実施形態の複合光発電パネルにおいては、太陽が陰っている時間帯や、日没の時間帯等では透明光発電パネルが主に発電をし、日中太陽光が当たる時間帯は、結晶シリコン系太陽光発電パネルが主に発電をすることとなる。
Next, an example of change in output current with respect to illuminance of a crystalline silicon solar panel and a transparent photovoltaic panel will be described with reference to FIG. From FIG. 7, it can be seen that the output current of the crystalline silicon photovoltaic panel changes greatly with changes in illuminance, while the transparent photovoltaic panel does not show a large change.
FIG. 8 shows changes in output current with respect to illuminance for a crystalline silicon photovoltaic panel and a transparent photovoltaic panel in which the low illuminance region of FIG. 7 is enlarged. In the case of this data, the output current value reverses at about 7500 lux, and it can be seen that the output current value of the transparent photovoltaic panel is higher at illuminances below that.
Therefore, in the composite photovoltaic power generation panel of the first embodiment, the transparent photovoltaic power generation panel mainly generates power during the time when the sun is shaded or the time of sunset, and during the time when the sun shines during the day. , crystalline silicon photovoltaic panels will mainly generate electricity.
 次に図9を参照して、結晶シリコン系太陽光発電パネル(無機太陽光発電パネル)単体での表面温度と、本発明の構成(結晶シリコン系太陽光発電の太陽光入射側に透明光発電パネルを設けた構成)での結晶シリコン系太陽光発電パネル表面温度を比較したデータを示す。横軸は太陽光の照射時間で、この時の照度は約80,000luxであった。結晶シリコン系太陽光発電パネル単体での表面温度上昇に比べ、第1実施形態の方が表面温度上昇は抑えられていることが分かる。これは、図6の分光スペクトルが示すように、本来熱に変換される赤外域の波長を、透明光発電パネルが吸収していることが一因である。 Next, referring to FIG. 9, the surface temperature of a single crystalline silicon photovoltaic panel (inorganic photovoltaic panel) and the configuration of the present invention (transparent photovoltaic power generation on the sunlight incident side of the crystalline silicon photovoltaic panel) 1 shows data comparing the surface temperature of a crystalline silicon photovoltaic power generation panel in a configuration in which a panel is provided. The horizontal axis is the sunlight irradiation time, and the illuminance at this time was about 80,000 lux. It can be seen that the surface temperature rise in the first embodiment is suppressed as compared with the rise in surface temperature of the crystalline silicon-based photovoltaic panel alone. One reason for this is that the transparent photovoltaic panel absorbs wavelengths in the infrared region, which are originally converted into heat, as shown in the spectral spectrum of FIG.
 この結果、図9に示すように、太陽光照射時間の経過にともなって無機太陽光発電パネルは表面温度が急劇に上昇するのに対して、第1実施形態である、透明光発電パネルを重ねた無機太陽光発電パネルは、表面温度の上昇が相当程度抑制できることが判る。 As a result, as shown in FIG. 9, the surface temperature of the inorganic photovoltaic panel rises sharply as the sunlight irradiation time elapses. It can be seen that the inorganic photovoltaic panel can suppress the increase in surface temperature to a considerable extent.
 次に、図9に示した温度上昇の結果が発電に及ぼす影響を、図10を参照して説明する。無機太陽光発電パネルは、温度上昇によって発電効率が減少することから、図10に示すように、従来の無形太陽光発電パネルだけの場合には、発電電圧の降下が大きい。
 しかし、第1実施形態においては、大きな電圧降下を発生することがない。
Next, the effect of the temperature rise shown in FIG. 9 on power generation will be described with reference to FIG. Since the power generation efficiency of inorganic photovoltaic panels decreases as the temperature rises, as shown in FIG. 10, in the case of only conventional intangible photovoltaic panels, the drop in generated voltage is large.
However, in the first embodiment, no large voltage drop occurs.
[第2実施形態]
<透明光発電パネル反転型複合光発電パネル>
 次に、図11を参照して、第2実施形態の複合光発電パネル200について説明する。
 図11の複合光発電パネル200は、第2実施形態に係る複合光発電パネルの断面図である。第2実施形態は、第1実施形態の透明光発電パネルの受光面を反転させた点で、第1実施形態と異なる。
 以下の説明においては、上述の第1実施形態との相違点を中心に説明し、同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 第2実施形態においては、第1実施形態の透明光発電パネル102に代えて、図2に示した、第1実施形態における透明光発電パネル102の上下を逆にした透明光発電パネル103を用いている。
 これによっても、第1実施形態と同様に、透明光発電パネル103は、無機太陽光発電パネル101の発電に寄与する光の波長領域は透過し、その他の波長領域で発電をすることができるので、第1実施形態と同様の効果を得ることができる。
[Second embodiment]
<Transparent Photovoltaic Panel Inverted Composite Photovoltaic Panel>
Next, a composite photovoltaic power generation panel 200 according to a second embodiment will be described with reference to FIG.
A composite photovoltaic panel 200 of FIG. 11 is a cross-sectional view of the composite photovoltaic panel according to the second embodiment. The second embodiment differs from the first embodiment in that the light receiving surface of the transparent photovoltaic panel of the first embodiment is reversed.
In the following description, differences from the above-described first embodiment will be mainly described, and the same or equivalent components will be denoted by the same reference numerals, and descriptions thereof will be simplified or omitted.
In the second embodiment, instead of the transparent photovoltaic panel 102 of the first embodiment, a transparent photovoltaic panel 103, which is the upside down of the transparent photovoltaic panel 102 of the first embodiment shown in FIG. ing.
As a result, as in the first embodiment, the transparent photovoltaic panel 103 transmits light in the wavelength range that contributes to the power generation of the inorganic photovoltaic panel 101, and can generate power in other wavelength ranges. , effects similar to those of the first embodiment can be obtained.
[第3実施形態]
<放熱機能向上型複合光発電パネル>
 次に、図12を参照して、第3実施形態の複合光発電パネル300について説明する。
 図12の複合光発電パネル300は、第3実施形態に係る複合光発電パネルの断面図である。第3実施形態は、第1実施形態の架台41、42について、無機太陽光発電パネルから発せられる熱を効率的に放熱するための構成を備えている点で第1実施形態と異なる。
 以下の説明においては、上述の第1実施形態との相違点を中心に説明し、同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
[Third Embodiment]
<Composite photovoltaic panel with improved heat dissipation function>
Next, a composite photovoltaic panel 300 according to a third embodiment will be described with reference to FIG.
A composite photovoltaic power generation panel 300 of FIG. 12 is a cross-sectional view of the composite photovoltaic power generation panel according to the third embodiment. The third embodiment differs from the first embodiment in that the pedestals 41 and 42 of the first embodiment are configured to efficiently dissipate heat generated from the inorganic photovoltaic panel.
In the following description, differences from the above-described first embodiment will be mainly described, and the same or equivalent components will be denoted by the same reference numerals, and descriptions thereof will be simplified or omitted.
 第3実施形態においては、第1実施形態の架台41、42について、放熱性を高めるため、架台41、42を熱伝導性の高い材料、例えば、アルミ部材、アルミの合金部材、銅部材、銅合金部材、その他の金属部材で構成している。なお、架台の材質は、金属材料に限定されるものではなく、熱伝導性を有するすべての部材が含まれる。
 また、図示しないが、無機太陽光発電パネル101と透明光発電パネル102の間の空間に外部との空気を介して放熱を行うため、空気吸入口や空気排出口を設け、これに空気循環用ファンを備えることとしてもよい。
 さらに、図示しないが、架台41、42に、放熱用のフィンを設けることも可能である。
 このように、無機太陽光発電パネルからの放熱を効率的に発散することによって、複合光発電パネルの発電効率をさらに向上させることができる。
In the third embodiment, the mounts 41 and 42 of the first embodiment are made of a material having high thermal conductivity, such as an aluminum member, an aluminum alloy member, a copper member, or copper, in order to improve heat dissipation. It consists of alloy members and other metal members. In addition, the material of the mount is not limited to a metal material, and includes all members having thermal conductivity.
Although not shown, an air inlet and an air outlet are provided in the space between the inorganic photovoltaic panel 101 and the transparent photovoltaic panel 102 to dissipate heat to the outside through the air. A fan may be provided.
Further, although not shown, the mounts 41 and 42 may be provided with fins for heat dissipation.
In this way, by efficiently dissipating heat from the inorganic photovoltaic panel, the power generation efficiency of the composite photovoltaic panel can be further improved.
さらに、図示はしないが無機太陽光発電パネル101と透明光発電パネル102は密着させ、熱伝導性の高い材料で構成された架台で2枚のパネルを固定しても良い。 Furthermore, although not shown, the inorganic photovoltaic panel 101 and the transparent photovoltaic panel 102 may be brought into close contact with each other, and the two panels may be fixed by a frame made of a highly thermally conductive material.
 以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.
 また、本発明の光発電装置は、新規に複合光発電パネルとして作成するだけでなく、既存の無機太陽光発電装置に透明光発電パネルを付加することによっても実現することができる。この場合には、既存の光発電を行う場所や取り付けのための架台を活用することが可能であるため、少ないコストで発電効率の大幅な向上を見込むことが可能となる。 In addition, the photovoltaic device of the present invention can be realized not only by creating a new composite photovoltaic panel, but also by adding a transparent photovoltaic panel to an existing inorganic photovoltaic device. In this case, it is possible to utilize the existing place for photovoltaic power generation and the mount for installation, so it is possible to expect a significant improvement in power generation efficiency at low cost.
1、2 透明基板
3、4 透明導電膜
5  金属酸化物層
7  SiOの粒子層
25 フレーム
30 発電領域
31 配線領域
41、42、43、44 架台
100、200、300 複合光発電パネル
101 無機太陽光発電パネル
102 透明光発電パネル
1, 2 transparent substrates 3, 4 transparent conductive film 5 metal oxide layer 7 SiO 2 particle layer 25 frame 30 power generation region 31 wiring region 41, 42, 43, 44 mounts 100, 200, 300 composite photovoltaic power generation panel 101 inorganic solar Photovoltaic panel 102 Transparent photovoltaic panel

Claims (7)

  1.  第1の光発電パネルと第2の光発電パネルを一体的に重ね合わせた複合光発電パネルであって、
     前記第1の光発電パネルは、透明光発電パネルであり、
     前記第2の光起電パネルは、不透明太陽光発電パネルであり、
     前記第1の光起電パネルと第2の光起電パネルとは、それぞれの発電領域と配線領域とが平面視において重なり合っている複合光発電パネル。
    A composite photovoltaic panel in which a first photovoltaic panel and a second photovoltaic panel are integrally superimposed,
    wherein the first photovoltaic panel is a transparent photovoltaic panel;
    wherein said second photovoltaic panel is an opaque photovoltaic panel;
    The first photovoltaic panel and the second photovoltaic panel are composite photovoltaic panels in which the respective power generation regions and wiring regions overlap in plan view.
  2.  請求項1に記載の複合光発電パネルにおいて、
     前記第1の光発電パネルは、可視光透過率は、60%以上である
    ことを特徴とする複合光発電パネル。
    The composite photovoltaic panel according to claim 1,
    The composite photovoltaic panel, wherein the first photovoltaic panel has a visible light transmittance of 60% or more.
  3.  請求項1または2に記載の複合光発電パネルにおいて、
     前記第1の光発電パネルは、赤外領域に10%以上の吸収を持つ
    ことを特徴とする複合光発電パネル。
    In the composite photovoltaic panel according to claim 1 or 2,
    The composite photovoltaic panel, wherein the first photovoltaic panel has an absorption of 10% or more in the infrared region.
  4.  請求項1乃至3のいずれか一項に記載の複合光発電パネルにおいて、
     前記第2の光発電パネルは、結晶シリコンを用いている
    ことを特徴とする複合光発電パネル。
    In the composite photovoltaic panel according to any one of claims 1 to 3,
    The composite photovoltaic panel, wherein the second photovoltaic panel uses crystalline silicon.
  5.  請求項1及至3のいずれか一項に記載の複合光発電パネルにおいて、
     前記第2の光発電パネルは、色素増感型太陽電池を用いていることを特徴とする複合発電パネル。
    In the composite photovoltaic panel according to any one of claims 1 to 3,
    A combined power generation panel, wherein the second photovoltaic panel uses a dye-sensitized solar cell.
  6.  請求項1乃至5のいずれか一項に記載の複合光発電パネルにおいて、
     前記前記第1の光発電パネルは、導電膜が形成された2枚の透明基板が各々の透明導電膜を向かい合わせて配置され、前記透明基板の一方に2酸化ケイ素粒子が配置され、2枚の透明基板の間に電解質が充填されている
    ことを特徴とする複合光発電パネル。
    In the composite photovoltaic panel according to any one of claims 1 to 5,
    In the first photovoltaic panel, two transparent substrates on which conductive films are formed are arranged with the transparent conductive films facing each other, and silicon dioxide particles are arranged on one of the transparent substrates. A composite photovoltaic power generation panel, characterized in that an electrolyte is filled between the transparent substrates.
  7.  請求項1乃至6のいずれか一項に記載の複合光発電パネルにおいて、
    前記複合光発電パネルの架台は、熱伝導性に優れた材料で構成されており、放熱用のフィンを備えている
    ことを特徴とする複合光発電パネル。

     
    In the composite photovoltaic panel according to any one of claims 1 to 6,
    A composite photovoltaic power generation panel, wherein a frame of the composite photovoltaic power generation panel is made of a material having excellent thermal conductivity, and is provided with fins for heat dissipation.

PCT/JP2021/040145 2021-10-29 2021-10-29 Composite photovoltaic panel WO2023073961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040145 WO2023073961A1 (en) 2021-10-29 2021-10-29 Composite photovoltaic panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040145 WO2023073961A1 (en) 2021-10-29 2021-10-29 Composite photovoltaic panel

Publications (1)

Publication Number Publication Date
WO2023073961A1 true WO2023073961A1 (en) 2023-05-04

Family

ID=86157667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040145 WO2023073961A1 (en) 2021-10-29 2021-10-29 Composite photovoltaic panel

Country Status (1)

Country Link
WO (1) WO2023073961A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156518A (en) * 1998-09-17 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> Solar power generating system
WO2005074039A1 (en) * 2004-01-28 2005-08-11 Kyocera Corporation Solar battery module and photovoltaic generation device
JP2009049247A (en) * 2007-08-21 2009-03-05 Oki Electric Ind Co Ltd Composite solar cell
WO2012169530A1 (en) * 2011-06-06 2012-12-13 国際先端技術総合研究所株式会社 Composite glass plate
US20130206219A1 (en) * 2010-08-06 2013-08-15 Juanita N. Kurtin Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
JP2015211197A (en) * 2014-04-30 2015-11-24 大日本印刷株式会社 Heat radiation structure and solar battery module having the same
WO2016017341A1 (en) * 2014-07-28 2016-02-04 シャープ株式会社 Solar cell module, method for manufacturing same and solar photovoltaic power generation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156518A (en) * 1998-09-17 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> Solar power generating system
WO2005074039A1 (en) * 2004-01-28 2005-08-11 Kyocera Corporation Solar battery module and photovoltaic generation device
JP2009049247A (en) * 2007-08-21 2009-03-05 Oki Electric Ind Co Ltd Composite solar cell
US20130206219A1 (en) * 2010-08-06 2013-08-15 Juanita N. Kurtin Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
WO2012169530A1 (en) * 2011-06-06 2012-12-13 国際先端技術総合研究所株式会社 Composite glass plate
JP2015211197A (en) * 2014-04-30 2015-11-24 大日本印刷株式会社 Heat radiation structure and solar battery module having the same
WO2016017341A1 (en) * 2014-07-28 2016-02-04 シャープ株式会社 Solar cell module, method for manufacturing same and solar photovoltaic power generation system

Similar Documents

Publication Publication Date Title
Ghosh Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review
Sun et al. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling
EP2346092B1 (en) Photoelectric module
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
KR101074290B1 (en) Photovoltaic device and method for manufacturing the same
JP2000156518A (en) Solar power generating system
KR20080021652A (en) Method and system for integrated solar cell using a plurality of photovoltaic regions
WO2010142575A2 (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
TWI381141B (en) Solar energy system
WO2023073961A1 (en) Composite photovoltaic panel
JP2008300823A (en) Concentration photovoltaic module
JP5290597B2 (en) Reflector for concentrating solar cell module
JP2013157428A (en) Photovoltaic power generation panel
KR102107498B1 (en) Heat Radiating Type BIPV Windows System
RU2354005C1 (en) Photoelectric module
KR102586342B1 (en) Solar module and method for the production thereof
Van Roosmalen Molecular-based concepts in PV towards full spectrum utilization
CN101286534A (en) Small-sized cis series film solar battery assembly
KR102371050B1 (en) Sorar cell module
WO2014176881A1 (en) Tubular concentrating photovoltaic cell assembly
US20110259421A1 (en) Photovoltaic module having concentrator
US20110056534A1 (en) Semitransparent photovoltaic film
KR101349554B1 (en) Solar cell module
CN219419049U (en) Photovoltaic cell component with double glass surfaces
US20220231247A1 (en) Heat insulating transparent tandem organic solar cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023556065

Country of ref document: JP