WO2023073864A1 - Method for producing high purity polyethylene or polypropylene - Google Patents

Method for producing high purity polyethylene or polypropylene Download PDF

Info

Publication number
WO2023073864A1
WO2023073864A1 PCT/JP2021/039834 JP2021039834W WO2023073864A1 WO 2023073864 A1 WO2023073864 A1 WO 2023073864A1 JP 2021039834 W JP2021039834 W JP 2021039834W WO 2023073864 A1 WO2023073864 A1 WO 2023073864A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
solvent
polyethylene
extraction
purity
Prior art date
Application number
PCT/JP2021/039834
Other languages
French (fr)
Japanese (ja)
Inventor
和敏 池永
Original Assignee
学校法人君が淵学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人君が淵学園 filed Critical 学校法人君が淵学園
Priority to JP2023523103A priority Critical patent/JPWO2023073864A1/ja
Priority to PCT/JP2021/039834 priority patent/WO2023073864A1/en
Publication of WO2023073864A1 publication Critical patent/WO2023073864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • One embodiment of the present invention relates to a manufacturing method for manufacturing high-purity polyethylene or polypropylene.
  • plastics composed of multiple components have been developed for the purpose of long-term storage of products such as foodstuffs and daily necessities, and as container and packaging materials for products that respond to diverse lifestyles. It is disposed of as a mixture or laminate containing plastics.
  • Waste plastics that are simply mixed with single-component plastics cannot be sorted by general physical sorting methods such as specific gravity separation in water or optical sorting using Raman light. However, it is difficult to separate composite plastics containing multiple components. In addition, optical sorting methods rarely sort PET bottles smaller than the cap size, so there is a limit to physical sorting methods.
  • Patent Documents 1 and 2 In order to solve the above problems, in recent years, methods have been developed for separately collecting composite plastic materials consisting of multiple components (for example, Patent Documents 1 and 2).
  • One embodiment of the present invention provides a method for producing high-purity PE or PE from waste plastic containing polyethylene (hereinafter also referred to as "PE”) or polypropylene (hereinafter also referred to as "PP").
  • PE polyethylene
  • PP polypropylene
  • a configuration example of the present invention is as follows.
  • high-purity PE or PE can be easily produced from waste plastic containing PE or PP. Therefore, according to one embodiment of the present invention, waste plastics (PE or PP) can be smoothly reused, contributing to the construction of a recycling-oriented society.
  • FIG. 1 is a flowchart showing an example of a production method for producing high-purity polyethylene or polypropylene according to one embodiment of the present invention.
  • a production method for producing high-purity polyethylene or polypropylene according to one embodiment of the present invention uses a high-boiling solvent having a boiling point of 145 ° C. or higher at 1 atm as an extraction solvent, PE or an extraction step of extracting PE or PP from waste plastic containing PP, It is a production method for producing high-purity PE or PP in which the purity of PE or PP is higher than that of the waste plastic.
  • the high-purity PE or PP produced by this production method is also simply referred to as "high-purity product”.
  • the extraction step is a step of extracting PE or PP from waste plastic containing PE or PP using a high boiling point solvent having a boiling point of 145° C. or higher at 1 atm as an extraction solvent.
  • the extraction solvent is not particularly limited as long as it is a high-boiling solvent having a boiling point of 145° C. or higher at 1 atm.
  • the boiling point at 1 atm of the high boiling point solvent is preferably 150° C. or higher and preferably 200° C. or lower.
  • an extraction solvent having a boiling point within the above range a highly purified product of higher purity can be easily obtained.
  • it is preferable to use an extraction solvent having a boiling point within the above range because it is possible to keep the vapor concentration in the working environment sufficiently low.
  • the extraction solvent used in the extraction step may be one kind or two or more kinds.
  • the high-boiling-point solvent is preferably an aromatic compound, and at least one selected from cumene, mesitylene and trimethylbenzene, from the viewpoint that a highly purified product of higher purity can be easily obtained. Cumene and mesitylene are more preferable, and mesitylene is particularly preferable, from the viewpoint of availability.
  • the waste plastic is not particularly limited as long as it includes PE or PP, and specific examples include bid items from the Japan Containers and Packaging Recycling Association, items collected by local governments, plastic raw material manufacturers (unused (deteriorated) items) ), plastic molding manufacturers (including unused (deteriorated) raw materials, molding defects, molding residues), collected products from plastic product users (e.g. convenience stores, supermarkets, shopping stores), waste plastic intermediate processing companies , recovered products from industrial waste disposal companies, unsorted waste plastics such as recovered marine plastics; and waste plastics sorted by intermediate processing companies.
  • pre-sorted waste plastic is preferable, and waste plastic sorted by optical sorting is more preferable.
  • the waste plastic separated by the optical sorting may be PE or PP that has been agglomerated by a conventionally known method, or may be PE or PP in the form of a film before being agglomerated.
  • intermediate processing companies for waste plastics use optical sorting machines such as Raman spectroscopy to separate recovered plastics larger than PET bottle caps from PE, PP, polystyrene (PS), and polyethylene terephthalate (PET). ) and vinyl chloride resin.
  • the purity of PE or PP separated in this way is about 80% at most, which is the limit of the sorter (the balance includes, for example, PS, PET, vinyl chloride resin, and aluminum).
  • the separated PE or PP is washed with water and dried with hot air at about 80 ° C. to reduce the volume, resulting in agglomerate PE (agglomerate PE) or agglomerate PP (agglomerate PP). called.
  • the waste plastic used in this manufacturing method may be PE or PP with a higher purity (80% or more) than PE or PP sorted by normal sorting.
  • this production method may be a production method for producing PE or PP obtained by further purifying high-purity PE or PP.
  • the extraction step is not particularly limited, and preferably includes a step 1 of dissolving PE or PP in the raw material waste plastic in the extraction solvent to obtain a solution containing PE or PP.
  • the above step 1 is preferably a heating reflux step from the viewpoint that a highly purified product of higher purity can be easily obtained.
  • Such a heating-refluxing step is preferably performed while stirring.
  • a conventionally known extractor such as a Soxhlet extractor may be used for the heating under reflux. Since the temperature at the time of contact with the extraction solvent tends to decrease and the extraction capacity tends to decrease, such a method requiring reheating tends not to be suitable.
  • the reflux temperature in the heating and refluxing step may be appropriately set according to the extraction solvent to be used.
  • a specific example of the reflux temperature is a temperature near the boiling point of the extraction solvent, preferably 145 to 200° C., more preferably 150° C., from the viewpoint that a highly purified product of higher purity can be easily obtained. ⁇ 200°C.
  • the temperature at which the waste plastic and the extraction solvent are brought into contact is preferably within this reflux temperature range.
  • a conventionally known heating method can be employed for the heating method in the heating and refluxing step.
  • Examples include dielectric heating, hot air heating, and heating by fire (flame).
  • microwave heating is preferable because the heating time can be shortened and the step 1 can be shortened.
  • the heating and refluxing step may be performed under pressure.
  • a closed container may be used.
  • the pressurization includes, for example, a pressure such that the pressure in the system is atmospheric pressure to 5 MPa.
  • the heating/refluxing step is performed under such a pressure, the heating/refluxing may be performed at a reflux temperature corresponding to the pressure.
  • the time for the heating and refluxing step is not particularly limited, and may be appropriately set according to the amount of polyethylene and polypropylene in the waste plastic to be dissolved.
  • the components dissolved in the extraction solvent can be permeated to obtain an extraction solvent in which PE or PP is dissolved, and the PE or PP can be removed without permeating the components insoluble in the extraction solvent. It is preferable to carry out step 1 (contact the waste plastic with the extraction solvent) so that it can be separated from the dissolved extraction solvent. Specifically, the waste plastic is placed in a bag made of cotton, paper, or the like that is permeable to components dissolved in the extraction solvent and impermeable to components insoluble in the extraction solvent, and the waste plastic placed in the bag is used.
  • step 1 using a filter made of paper, cotton, activated carbon, celite, etc., which allows the components dissolved in the extraction solvent to pass through and does not allow the components insoluble in the extraction solvent to pass through, the components dissolved in the extraction solvent.
  • step 1 can be carried out by permeating and dissolving in the extraction solvent and separating components insoluble in the extraction solvent. By performing such step 1, the components insoluble in the extraction solvent can be easily separated.
  • the extraction step preferably includes step 2 of separating and recovering PE or PP from the solution containing PE or PP obtained in step 1.
  • the step 2 is not particularly limited, and conventionally known methods can be employed. Specifically, a poor solvent for PE or PP is added to the solution containing PE or PP obtained in step 1. to precipitate and recover PE or PP.
  • the poor solvent is not particularly limited as long as it has a low solubility for PE or PP, but a solvent with a low boiling point is preferable.
  • the low boiling point includes solvents having a boiling point at 1 atm of preferably 90° C. or lower, more preferably 70° C. or lower.
  • Examples of the poor solvent include methanol, ethanol, isopropanol, acetone, ethyl acetate, tetrahydrofuran, and chloroform. Among these, acetone is preferable because it can easily obtain PE or PP of higher purity.
  • One type of the poor solvent may be used, or two or more types may be used.
  • the method for recovering the precipitated PE or PP is also not particularly limited, and conventionally known methods can be employed, but a preferred example is filtration (including hot filtration).
  • the extraction solvent and poor solvent are preferably recovered and reused.
  • Examples of the method for recovering the extraction solvent and the poor solvent include a method of distilling and purifying the filtrate obtained by the filtration.
  • Each of the above steps may be performed using a batch-type device (system), a semi-batch-type device (system), or a continuous-type device (system).
  • the highly purified product is not particularly limited as long as the PE or PP has a higher purity than the waste plastic used in the production method.
  • the PE or PP purity is preferably 90% or more, more preferably 95%.
  • the above plastic (highly purified product) can be obtained.
  • the purity of PE or PP in the obtained highly purified product can be measured by nuclear magnetic resonance spectroscopy or the method described in Japanese Patent No. 6574081, for example.
  • the highly purified product can be used, for example, in films (sheets), plastic materials for cars, trains, airplanes, ships, etc., molded bodies such as pallets, bottle containers other than drinking water, and packaging films. Since the highly purified product has a higher purity of PE or PP than conventional agglomerate PE, PP, etc., it can be used for film forming, etc., which could not be done with conventional waste plastics. Moreover, the highly purified product can be used by mixing with virgin PE, PP, or the like, if necessary.
  • Example 1 In a 200 mL eggplant-shaped flask equipped with a reflux condenser, a stirrer and 1.04 g of Agrome PP (manufactured by Ecoport Kyushu Co., Ltd., waste plastic whose purity was adjusted to about 80% by mass by a continuous optical sorting device) and 86.0 g of cumene as an extraction solvent were added, and heated under reflux for 1 hour with stirring at a reflux temperature of 155° C. (near the boiling point of cumene) using a hot stirrer. Then, 55.3 g of methanol as a poor solvent was added to the eggplant-shaped flask after heating under reflux to precipitate PP. Suction filtration was carried out to collect the precipitated plastic.
  • Agrome PP manufactured by Ecoport Kyushu Co., Ltd., waste plastic whose purity was adjusted to about 80% by mass by a continuous optical sorting device
  • cumene as an extraction solvent
  • the mass of the filtered residue after drying (recovered plastic containing PP as the main component) was 0.94 g, and the extraction residue remaining in the cotton bag was 0.02 g. Therefore, the extraction rate was 98%.
  • methanol and cumene were distilled off under reduced pressure and recovered using a cooling device (solvent recovery rate: 80%).
  • the residue in the filtrate after recovering the solvent (hereinafter also referred to as "filtrate residue") was 0.08 g.
  • Example 2 In Example 1, the same operation as in Example 1 was performed except that the amount of agglomerate PP used was changed to 0.98 g and the type of poor solvent was changed to acetone. The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.76 g, and the extraction residue was 0.03 g, so the extraction rate was 96%. Also, the solvent recovery rate was 87%, and the filtrate residue was 0.19 g.
  • Example 3 In Example 1, the same operation as in Example 1 was performed except that the amount of agglomerate PP used was changed to 1.09 g, the extraction solvent was changed to mesitylene, and the reflux temperature was changed to 164°C. The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.95 g, and the extraction residue was 0.06 g, so the extraction rate was 94%. Also, the solvent recovery rate was 72%, and the filtrate residue was 0.08 g.
  • Example 4 In Example 3, the same operation as in Example 3 was performed except that the amount of agglomerate PP used was changed to 1.02 g, the amount of mesitylene used was changed to 87.0 g, and the type of poor solvent was changed to acetone. did The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.85 g, and the extraction residue was 0.03 g, so the extraction rate was 97%. Also, the solvent recovery rate was 83%, and the filtrate residue was 0.14 g.
  • Example 5 Example 4 except that in Example 4, Agrome PE (manufactured by Ecoport Kyushu Co., Ltd., waste plastic with a PE purity of about 80% by mass by a continuous optical sorting device) was used instead of Agrome PP. performed the same operation.
  • the mass of the filtered material after drying was 0.84 g, and the extraction residue was 0.07 g, so the extraction rate was 92%. Also, the solvent recovery rate was 88%, and the filtrate residue was 0.06 g.
  • Example 6 In Example 4, instead of 1.02 g of agglomerate PP, waste PP (manufactured by Ecoport Kyushu Co., Ltd., a film before agglomerating waste plastic with a PP purity of about 80% by mass by a continuous optical sorting device) was used. The same operation as in Example 4 was performed except that 0.00 g was used. The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.84 g, and the extraction residue was 0.08 g, so the extraction rate was 91%. Also, the solvent recovery rate was 80%, and the filtrate residue was 0.08 g.
  • Example 7 In Example 5, instead of 0.97 g of agglomerate PE, waste PE (manufactured by Ecoport Kyushu Co., Ltd., a film before agglomeration of waste plastic with a PE purity of about 80% by mass by a continuous optical sorting device) was used. The same operation as in Example 5 was performed except that .03 g was used. The mass of the filtered material after drying (recovered plastic containing PE as a main component) was 0.93 g, and the extraction residue was 0.04 g, so the extraction rate was 96%. Also, the solvent recovery rate was 87%, and the filtrate residue was 0.06 g.
  • Example 1 In Example 1, the amount of agglomerate PP used was changed to 1.15 g, 86.6 g of toluene was used instead of 86.0 g of cumene, and the reflux temperature was changed to 110°C (a temperature near the boiling point of toluene). Except for this, the same operation as in Example 1 was performed. The mass of the filtered material (recovered plastic) after drying was 0.32 g, and the extraction residue was 0.79 g, so the extraction rate was 32%. Also, the solvent recovery rate was 56%, and the filtrate residue was 0.04 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

One embodiment of the present invention relates to a method for producing high purity polyethylene or polypropylene in which the polyethylene or polypropylene purity is higher than in a waste plastic. The method includes an extraction step for extracting polyethylene or polypropylene from the waste plastic which contains polyethylene or polypropylene, using a high boiling point solvent having a boiling point of 145°C or higher at 1 atm as an extraction solvent.

Description

高純度ポリエチレンまたはポリプロピレンを製造する製造方法Production method for producing high-purity polyethylene or polypropylene
 本発明の一実施形態は、高純度ポリエチレンまたはポリプロピレンを製造する製造方法に関する。 One embodiment of the present invention relates to a manufacturing method for manufacturing high-purity polyethylene or polypropylene.
 食料品や日用品等の製品を長期保存する目的や多用な生活スタイルに対応した製品の容器包装材などとして、複数の成分からなるプラスチックが数多く開発されており、プラスチックは、通常、複数の成分を含むプラスチックの混合物や積層体として廃棄されている。 Many plastics composed of multiple components have been developed for the purpose of long-term storage of products such as foodstuffs and daily necessities, and as container and packaging materials for products that respond to diverse lifestyles. It is disposed of as a mixture or laminate containing plastics.
 近年、いわゆる容器包装リサイクル法(容器包装に係る分別収集及び再商品化の促進に関する法律)の施行に伴い、容器包装リサイクル法に基づく容器包装廃棄物の再商品化によるリサイクル材の利用が望まれている。また、近年の自然環境保護の意識の高まりとともに、前記容器包装リサイクル法に基づく容器包装廃棄物以外の一般プラスチック製品の廃プラスチック材がリサイクル材として再利用されるようになってきており、プラスチック製品のリサイクルの要求も強くなっている。 In recent years, with the enactment of the so-called Containers and Packaging Recycling Law (the Law Concerning the Promotion of Sorted Collection and Recycling of Containers and Packaging), it is desired to use recycled materials by recycling waste containers and packaging based on the Containers and Packaging Recycling Law. ing. In addition, with the recent increase in awareness of the protection of the natural environment, waste plastic materials from general plastic products other than containers and packaging waste based on the Containers and Packaging Recycling Law are being reused as recycled materials. Demand for recycling is also increasing.
 前記のように廃棄された複数の成分を含むプラスチックの有効なリサイクル技術は極めて重要であり、このリサイクルのためには、廃プラスチックを分別して、所定のプラスチックを高純度化することが求められている。 It is extremely important to effectively recycle plastics containing multiple components that have been discarded as described above. For this recycling, it is required to separate the waste plastics and highly purify the prescribed plastics. there is
 単一成分のプラスチックが単純に混合された廃プラスチックの分別方法では、一般的な、水中での比重差分離方法やラマン光を利用した光学式選別方法等の物理的分別方法によって選別は可能であるが、複数の成分を含む複合プラスチックを分別することは困難である。また、光学式選別方法では、ペットボトルのキャップの大きさ未満はほとんど選別されないことから、物理的分別方法には限界があった。 Waste plastics that are simply mixed with single-component plastics cannot be sorted by general physical sorting methods such as specific gravity separation in water or optical sorting using Raman light. However, it is difficult to separate composite plastics containing multiple components. In addition, optical sorting methods rarely sort PET bottles smaller than the cap size, so there is a limit to physical sorting methods.
 以上の問題を解決するために、近年、複数の成分からなる複合プラスチック材料を分別回収するための方法が開発されている(例えば、特許文献1および2)。 In order to solve the above problems, in recent years, methods have been developed for separately collecting composite plastic materials consisting of multiple components (for example, Patent Documents 1 and 2).
特開2018-187808号公報JP 2018-187808 A 特開2015-21054号公報JP 2015-21054 A
 しかしながら、前記特許文献1や2に記載の方法などの、従来の分別、高純度化方法で得られる高純度化物は、その目的とするプラスチックの純度が十分ではなかった。 However, the high-purity products obtained by conventional separation and high-purification methods, such as the methods described in Patent Documents 1 and 2, do not have sufficient purity for the intended plastic.
 本発明の一実施形態は、ポリエチレン(以下「PE」ともいう。)またはポリプロピレン(以下「PP」ともいう。)を含む廃プラスチックから、高純度のPEまたはPEを製造する方法を提供する。 One embodiment of the present invention provides a method for producing high-purity PE or PE from waste plastic containing polyethylene (hereinafter also referred to as "PE") or polypropylene (hereinafter also referred to as "PP").
 本発明者が、前記課題を解決する方法について鋭意検討を重ねた結果、以下の構成例によれば前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
As a result of earnestly examining methods for solving the above problems, the inventors of the present invention have found that the above problems can be solved according to the following configuration examples, and have completed the present invention.
A configuration example of the present invention is as follows.
 [1] 1atmにおける沸点が145℃以上である高沸点溶媒を抽出溶媒として用いて、ポリエチレンまたはポリプロピレンを含む廃プラスチックからポリエチレンまたはポリプロピレンを抽出する抽出工程を含む、
 前記廃プラスチックよりポリエチレンまたはポリプロピレンの純度が高い、高純度ポリエチレンまたはポリプロピレンを製造する製造方法。
[1] An extraction step of extracting polyethylene or polypropylene from waste plastic containing polyethylene or polypropylene using a high-boiling solvent with a boiling point of 145 ° C. or higher at 1 atm as an extraction solvent.
A production method for producing high-purity polyethylene or polypropylene in which the purity of the polyethylene or polypropylene is higher than that of the waste plastic.
 [2] 前記高沸点溶媒が芳香族系化合物である、[1]に記載の製造方法。 [2] The production method according to [1], wherein the high-boiling solvent is an aromatic compound.
 [3] 前記高沸点溶媒が、クメン、メシチレンおよびトリメチルベンゼンから選ばれる少なくとも1種である、[1]または[2]に記載の製造方法。 [3] The production method according to [1] or [2], wherein the high-boiling solvent is at least one selected from cumene, mesitylene and trimethylbenzene.
 [4] 前記抽出工程が、廃プラスチック中のポリエチレンまたはポリプロピレンを前記抽出溶媒に溶解させて得られた溶液に、ポリエチレンまたはポリプロピレンに対する貧溶媒を添加して、ポリエチレンまたはポリプロピレンを沈殿させて回収する工程を含む、[1]~[3]のいずれかに記載の製造方法。 [4] In the extraction step, a poor solvent for polyethylene or polypropylene is added to the solution obtained by dissolving the polyethylene or polypropylene in the waste plastic in the extraction solvent, and the polyethylene or polypropylene is precipitated and recovered. The manufacturing method according to any one of [1] to [3], comprising
 [5] 前記貧溶媒が、メタノール、エタノール、イソプロパノール、アセトン、酢酸エチル、テトラヒドロフランおよびクロロホルムから選ばれる少なくとも1種である、[4]に記載の製造方法。 [5] The production method according to [4], wherein the poor solvent is at least one selected from methanol, ethanol, isopropanol, acetone, ethyl acetate, tetrahydrofuran and chloroform.
 本発明の一実施形態によれば、PEまたはPPを含む廃プラスチックから、高純度のPEまたはPEを容易に製造することができる。
 従って、本発明の一実施形態によれば、廃プラスチック(PEまたはPP)を円滑に再利用することができ、循環型社会の構築に貢献できる。
According to one embodiment of the present invention, high-purity PE or PE can be easily produced from waste plastic containing PE or PP.
Therefore, according to one embodiment of the present invention, waste plastics (PE or PP) can be smoothly reused, contributing to the construction of a recycling-oriented society.
図1は、本発明の一実施形態に係る高純度ポリエチレンまたはポリプロピレンを製造する製造方法の一例を示すフロー図である。FIG. 1 is a flowchart showing an example of a production method for producing high-purity polyethylene or polypropylene according to one embodiment of the present invention.
≪高純度ポリエチレンまたはポリプロピレンを製造する製造方法≫
 本発明の一実施形態に係る高純度ポリエチレンまたはポリプロピレンを製造する製造方法(以下「本製法」ともいう。)は、1atmにおける沸点が145℃以上である高沸点溶媒を抽出溶媒として用いて、PEまたはPPを含む廃プラスチックからPEまたはPPを抽出する抽出工程を含む、
 前記廃プラスチックよりPEまたはPPの純度が高い、高純度PEまたはPPを製造する製造方法である。
 以下、本製法により製造される高純度PEまたはPPを単に「高純度化物」ともいう。
<<Manufacturing method for producing high-purity polyethylene or polypropylene>>
A production method for producing high-purity polyethylene or polypropylene according to one embodiment of the present invention (hereinafter also referred to as “this production method”) uses a high-boiling solvent having a boiling point of 145 ° C. or higher at 1 atm as an extraction solvent, PE or an extraction step of extracting PE or PP from waste plastic containing PP,
It is a production method for producing high-purity PE or PP in which the purity of PE or PP is higher than that of the waste plastic.
Hereinafter, the high-purity PE or PP produced by this production method is also simply referred to as "high-purity product".
<抽出工程>
 前記抽出工程は、1atmにおける沸点が145℃以上である高沸点溶媒を抽出溶媒として用いて、PEまたはPPを含む廃プラスチックからPEまたはPPを抽出する工程である。
<Extraction process>
The extraction step is a step of extracting PE or PP from waste plastic containing PE or PP using a high boiling point solvent having a boiling point of 145° C. or higher at 1 atm as an extraction solvent.
 前記抽出溶媒としては、1atmにおける沸点が145℃以上である高沸点溶媒であれば特に制限されない。
 該高沸点溶媒の1atmにおける沸点は、好ましくは150℃以上であり、好ましくは200℃以下である。
 沸点が前記範囲にある抽出溶媒を用いることで、より高純度の高純度化物を容易に得ることができる。また、沸点が前記範囲にある抽出溶媒を用いることで、作業環境内の蒸気濃度も十分に低く保つことが可能であるため好ましい。
 前記抽出工程に用いられる抽出溶媒は、1種でもよく、2種以上でもよい。
The extraction solvent is not particularly limited as long as it is a high-boiling solvent having a boiling point of 145° C. or higher at 1 atm.
The boiling point at 1 atm of the high boiling point solvent is preferably 150° C. or higher and preferably 200° C. or lower.
By using an extraction solvent having a boiling point within the above range, a highly purified product of higher purity can be easily obtained. In addition, it is preferable to use an extraction solvent having a boiling point within the above range because it is possible to keep the vapor concentration in the working environment sufficiently low.
The extraction solvent used in the extraction step may be one kind or two or more kinds.
 前記高沸点溶媒としては、より高純度の高純度化物を容易に得ることができる等の点から、芳香族系化合物であることが好ましく、クメン、メシチレンおよびトリメチルベンゼンから選ばれる少なくとも1種であることがより好ましく、入手容易性等の点から、クメン、メシチレンがさらに好ましく、メシチレンが特に好ましい。 The high-boiling-point solvent is preferably an aromatic compound, and at least one selected from cumene, mesitylene and trimethylbenzene, from the viewpoint that a highly purified product of higher purity can be easily obtained. Cumene and mesitylene are more preferable, and mesitylene is particularly preferable, from the viewpoint of availability.
 前記廃プラスチックとしては、PEまたはPPを含めば特に制限されず、その具体例としては、日本容器包装リサイクル協会からの入札品、自治体の回収品、プラスチックの原料メーカー(未使用(劣化)品を含む)、プラスチックの成形メーカー(未使用(劣化)原料や成形不良品、成形残渣を含む)、プラスチック製品使用業者(例:コンビニエンスストアー、スーパーマーケット、ショッピングストア)からの回収品、廃プラスチック中間処理企業、産業廃棄物処理業者からの回収品、回収された海洋プラスチック等の分別されていない廃プラスチック;これらの廃プラスチックを中間処理企業などで分別された廃プラスチックが挙げられる。
 これらの中でも、前記廃プラスチックとしては、予め分別された廃プラスチックが好ましく、光学式選別により分別された廃プラスチックがより好ましい。該光学式選別により分別された廃プラスチックとしては、従来公知の方法でアグロメレート化されたPEまたはPPであってもよく、アグロメレート化前のフィルム状等のPEまたはPPであってもよい。
The waste plastic is not particularly limited as long as it includes PE or PP, and specific examples include bid items from the Japan Containers and Packaging Recycling Association, items collected by local governments, plastic raw material manufacturers (unused (deteriorated) items) ), plastic molding manufacturers (including unused (deteriorated) raw materials, molding defects, molding residues), collected products from plastic product users (e.g. convenience stores, supermarkets, shopping stores), waste plastic intermediate processing companies , recovered products from industrial waste disposal companies, unsorted waste plastics such as recovered marine plastics; and waste plastics sorted by intermediate processing companies.
Among these, as the waste plastic, pre-sorted waste plastic is preferable, and waste plastic sorted by optical sorting is more preferable. The waste plastic separated by the optical sorting may be PE or PP that has been agglomerated by a conventionally known method, or may be PE or PP in the form of a film before being agglomerated.
 一般に、廃プラスチックの中間処理企業などでは、ラマン分光等の光学式選別機などを用いて、ペットボトルキャップ以上の大きさの回収プラスチックを、PE、PP、ポリスチレン(PS)、ポリエチレンテレフタラート(PET)、塩化ビニル系樹脂に分別する。このようにして分別されたPEまたはPPの純度は、選別機の限界で、高くても80%前後(残部としては、例えば、PS、PET、塩化ビニル系樹脂、アルミニウムが挙げられる。)である。
 そして、分別されたPEまたはPPを水で洗浄して、80℃前後の熱風乾燥で減容化されたものが、それぞれアグロメレート化されたPE(アグロメPE)またはアグロメレート化されたPP(アグロメPP)と呼ばれる。
In general, intermediate processing companies for waste plastics use optical sorting machines such as Raman spectroscopy to separate recovered plastics larger than PET bottle caps from PE, PP, polystyrene (PS), and polyethylene terephthalate (PET). ) and vinyl chloride resin. The purity of PE or PP separated in this way is about 80% at most, which is the limit of the sorter (the balance includes, for example, PS, PET, vinyl chloride resin, and aluminum). .
Then, the separated PE or PP is washed with water and dried with hot air at about 80 ° C. to reduce the volume, resulting in agglomerate PE (agglomerate PE) or agglomerate PP (agglomerate PP). called.
 なお、本製法で用いる廃プラスチックは、通常の選別により選別されたPEまたはPPより高純度(80%以上)のPEまたはPPを用いてもよい。つまり、本製法は、高純度のPEまたはPPをより高純度化したPEまたはPPを製造する製造方法であってもよい。 It should be noted that the waste plastic used in this manufacturing method may be PE or PP with a higher purity (80% or more) than PE or PP sorted by normal sorting. In other words, this production method may be a production method for producing PE or PP obtained by further purifying high-purity PE or PP.
 前記抽出工程としては特に制限されず、原料である廃プラスチック中のPEまたはPPを前記抽出溶媒に溶解させて、PEまたはPPを含む溶液を得る工程1を含むことが好ましい。
 前記工程1は、より高純度の高純度化物を容易に得ることができる等の点から、加熱還流工程であることが好ましい。
 このような加熱還流工程は、撹拌しながら行うことが好ましい。
 前記加熱還流の際には、ソックスレー抽出器等の従来公知の抽出器を用いてもよいが、ソックスレー抽出器を用いる場合、試料(廃プラスチック)を入れた部分を再度加熱しないと、廃プラスチックと抽出溶媒とが接触する際の温度が低下し、抽出能力が低下する傾向にあるため、このような再度の加熱が要求される方法は好適ではない傾向にある。
The extraction step is not particularly limited, and preferably includes a step 1 of dissolving PE or PP in the raw material waste plastic in the extraction solvent to obtain a solution containing PE or PP.
The above step 1 is preferably a heating reflux step from the viewpoint that a highly purified product of higher purity can be easily obtained.
Such a heating-refluxing step is preferably performed while stirring.
A conventionally known extractor such as a Soxhlet extractor may be used for the heating under reflux. Since the temperature at the time of contact with the extraction solvent tends to decrease and the extraction capacity tends to decrease, such a method requiring reheating tends not to be suitable.
 前記加熱還流工程における還流温度は、用いる抽出溶媒に応じて適宜設定すればよい。
 前記還流温度は、より高純度の高純度化物を容易に得ることができる等の点から、具体例としては、抽出溶媒の沸点付近の温度であり、好ましくは145~200℃、より好ましくは150~200℃である。
 工程1では、廃プラスチックと抽出溶媒とが接触する際の温度が、この還流温度の範囲にあることが好ましい。
The reflux temperature in the heating and refluxing step may be appropriately set according to the extraction solvent to be used.
A specific example of the reflux temperature is a temperature near the boiling point of the extraction solvent, preferably 145 to 200° C., more preferably 150° C., from the viewpoint that a highly purified product of higher purity can be easily obtained. ~200°C.
In step 1, the temperature at which the waste plastic and the extraction solvent are brought into contact is preferably within this reflux temperature range.
 前記加熱還流工程における加熱の方法は、従来公知の加熱方法を採用することができ、例えば、通電(抵抗)加熱、電磁波(例:マイクロ波)加熱、光線(例:レーザー光、赤外線)加熱、誘電加熱、熱風加熱、火(炎)による加熱が挙げられる。これらの中でも、昇温時間を短縮化でき、工程1を短縮化できる等の点から、マイクロ波加熱が好ましい。 A conventionally known heating method can be employed for the heating method in the heating and refluxing step. Examples include dielectric heating, hot air heating, and heating by fire (flame). Among these, microwave heating is preferable because the heating time can be shortened and the step 1 can be shortened.
 前記加熱還流工程は、加圧下で行ってもよい。この場合には、例えば、密閉容器を用いてもよい。
 前記加熱還流工程を加圧下で行うことで、加熱還流工程における還流温度を下げ、還流時間を短縮することができる。
 前記加圧とは、例えば、系中の圧力が大気圧~5MPaとなるような圧力が挙げられる。このような加圧下で前記加熱還流工程を行う場合には、該圧力に応じた還流温度で加熱還流してもよい。
The heating and refluxing step may be performed under pressure. In this case, for example, a closed container may be used.
By performing the heating and refluxing step under pressure, the reflux temperature in the heating and refluxing step can be lowered and the reflux time can be shortened.
The pressurization includes, for example, a pressure such that the pressure in the system is atmospheric pressure to 5 MPa. When the heating/refluxing step is performed under such a pressure, the heating/refluxing may be performed at a reflux temperature corresponding to the pressure.
 前記加熱還流工程の時間は特に制限されず、溶解したい廃プラスチック中のポリエチレンおよびポリプロピレンの量に応じて適宜設定すればよい。 The time for the heating and refluxing step is not particularly limited, and may be appropriately set according to the amount of polyethylene and polypropylene in the waste plastic to be dissolved.
 前記工程1の際には、前記抽出溶媒に溶解した成分を透過してPEまたはPPを溶解した抽出溶媒を得ることができ、前記抽出溶媒に不溶の成分を透過させないで、該PEまたはPPを溶解した抽出溶媒とは別体とできるようにして工程1を行うこと(廃プラスチックと抽出溶媒とを接触させること)が好ましい。
 具体的には、綿や紙製などの、抽出溶媒に溶解した成分を透過し、かつ、抽出溶媒に不溶の成分を透過させない袋に廃プラスチックを入れ、該袋に入れた廃プラスチックを用いて工程1を行うこと、紙、綿、活性炭、セライト製などの、抽出溶媒に溶解した成分を透過し、かつ、抽出溶媒に不溶の成分を透過させないフィルターを用いて、抽出溶媒に溶解する成分を透過して抽出溶媒に溶解させ、かつ、抽出溶媒に不溶の成分を分離するようにして工程1を行うことが挙げられる。
 このような工程1を行うことで、前記抽出溶媒に不溶の成分を容易に分離することができる。
In the step 1, the components dissolved in the extraction solvent can be permeated to obtain an extraction solvent in which PE or PP is dissolved, and the PE or PP can be removed without permeating the components insoluble in the extraction solvent. It is preferable to carry out step 1 (contact the waste plastic with the extraction solvent) so that it can be separated from the dissolved extraction solvent.
Specifically, the waste plastic is placed in a bag made of cotton, paper, or the like that is permeable to components dissolved in the extraction solvent and impermeable to components insoluble in the extraction solvent, and the waste plastic placed in the bag is used. Performing step 1, using a filter made of paper, cotton, activated carbon, celite, etc., which allows the components dissolved in the extraction solvent to pass through and does not allow the components insoluble in the extraction solvent to pass through, the components dissolved in the extraction solvent. For example, step 1 can be carried out by permeating and dissolving in the extraction solvent and separating components insoluble in the extraction solvent.
By performing such step 1, the components insoluble in the extraction solvent can be easily separated.
 前記抽出工程は、前記工程1で得られたPEまたはPPを含む溶液からPEまたはPPを分離して回収する工程2を含むことが好ましい。
 前記工程2としては特に制限されず、従来公知の方法を採用することができるが、具体的には、前記工程1で得られたPEまたはPPを含む溶液に、PEまたはPPに対する貧溶媒を添加して、PEまたはPPを沈殿させて回収する工程であることが好ましい。
The extraction step preferably includes step 2 of separating and recovering PE or PP from the solution containing PE or PP obtained in step 1.
The step 2 is not particularly limited, and conventionally known methods can be employed. Specifically, a poor solvent for PE or PP is added to the solution containing PE or PP obtained in step 1. to precipitate and recover PE or PP.
 前記貧溶媒としては、PEまたはPPに対し、溶解度の低い溶媒であれば特に制限されないが、低沸点の溶媒であることが好ましい。
 該低沸点としては、1atmにおける沸点が、好ましくは90℃以下、より好ましくは70℃以下の溶媒が挙げられる。
 前記貧溶媒としては、例えば、メタノール、エタノール、イソプロパノール、アセトン、酢酸エチル、テトラヒドロフラン、クロロホルムが挙げられる。これらの中でも、より高純度のPEまたはPPを容易に得ることができる等の点から、アセトンが好ましい。
 前記貧溶媒は、1種を用いてもよく、2種以上を用いてもよい。
The poor solvent is not particularly limited as long as it has a low solubility for PE or PP, but a solvent with a low boiling point is preferable.
The low boiling point includes solvents having a boiling point at 1 atm of preferably 90° C. or lower, more preferably 70° C. or lower.
Examples of the poor solvent include methanol, ethanol, isopropanol, acetone, ethyl acetate, tetrahydrofuran, and chloroform. Among these, acetone is preferable because it can easily obtain PE or PP of higher purity.
One type of the poor solvent may be used, or two or more types may be used.
 前記沈殿したPEまたはPPを回収する方法も特に制限されず、従来公知の方法を採用することができるが、好適例としては、濾過(熱時濾過を含む)が挙げられる。 The method for recovering the precipitated PE or PP is also not particularly limited, and conventionally known methods can be employed, but a preferred example is filtration (including hot filtration).
 前記抽出溶媒や貧溶媒は、回収して再利用することが好ましい。
 前記抽出溶媒や貧溶媒を回収する方法としては、例えば、前記濾過により得られた濾液を蒸留・精製する方法が挙げられる。
The extraction solvent and poor solvent are preferably recovered and reused.
Examples of the method for recovering the extraction solvent and the poor solvent include a method of distilling and purifying the filtrate obtained by the filtration.
 以上の各工程は、回分式の装置(システム)を用いて行ってもよいし、半回分式の装置(システム)を用いて行ってもよいし、連続式の装置(システム)を用いて行ってもよい。 Each of the above steps may be performed using a batch-type device (system), a semi-batch-type device (system), or a continuous-type device (system). may
<高純度化物>
 前記高純度化物は、本製法で用いる廃プラスチックよりPEまたはPPの純度が高ければ特に制限されない。
 本製法によれば、例えば、廃プラスチックとして、PEまたはPPの純度が80%であるアグロメPEまたはアグロメPPを用いた場合、PEまたはPPの純度が、好ましくは90%以上、より好ましくは95%以上のプラスチック(高純度化物)を得ることができる。
 得られた高純度化物中のPEまたはPPの純度については、例えば、核磁気共鳴スペクトル法、または、特許第6574081号に記載の方法により測定することができる。
<Highly purified product>
The highly purified product is not particularly limited as long as the PE or PP has a higher purity than the waste plastic used in the production method.
According to this production method, for example, when agglomerate PE or agglomerate PP having a PE or PP purity of 80% is used as the waste plastic, the PE or PP purity is preferably 90% or more, more preferably 95%. The above plastic (highly purified product) can be obtained.
The purity of PE or PP in the obtained highly purified product can be measured by nuclear magnetic resonance spectroscopy or the method described in Japanese Patent No. 6574081, for example.
 前記高純度化物は、例えば、フィルム(シート)、車・列車・飛行機・船舶用などのプラスチック材、パレットなどの成形体、飲料水以外のボトル容器、包装フィルム類に用いることができる。前記高純度化物は、PEまたはPPの純度が従来のアグロメPEやPP等に比べ高いため、従来の廃プラスチックではできなかったフィルム成形等を行うこともできる。
 また、前記高純度化物は、必要により、バージンのPEやPP等と混合して使用することもできる。
The highly purified product can be used, for example, in films (sheets), plastic materials for cars, trains, airplanes, ships, etc., molded bodies such as pallets, bottle containers other than drinking water, and packaging films. Since the highly purified product has a higher purity of PE or PP than conventional agglomerate PE, PP, etc., it can be used for film forming, etc., which could not be done with conventional waste plastics.
Moreover, the highly purified product can be used by mixing with virgin PE, PP, or the like, if necessary.
 次に、本発明の一実施形態について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されない。 Next, one embodiment of the present invention will be described in more detail with examples, but the present invention is not limited by these.
[実施例1]
 還流冷却器を付けた200mLのナス型フラスコに、撹拌子、アグロメPP((株)エコポート九州製、廃プラスチックを連続光選別装置によりPPの純度を約80質量%としたもの)1.04gを入れた綿製の袋、および、抽出溶媒としてクメン86.0gを入れて、ホットスターラーを用いて還流温度155℃(クメンの沸点付近の温度)で撹拌しながら1時間加熱還流した。次いで、加熱還流後のナス型フラスコに、貧溶媒としてメタノール55.3gを添加することでPPを析出させた。
 吸引濾過を行い、析出したプラスチックを回収したところ、乾燥後の濾物(PPを主成分として含む回収プラスチック)の質量は0.94gであり、綿製の袋に残った抽出残渣は0.02gであったことから、抽出率は98%であった。
 前記吸引濾過により得られた濾液から、メタノールおよびクメンを減圧下で留去し、冷却装置を用いて回収した(溶媒回収率:80%)。溶媒を回収した後の濾液中の残渣(以下「濾液残渣」ともいう。)は0.08gであった。
[Example 1]
In a 200 mL eggplant-shaped flask equipped with a reflux condenser, a stirrer and 1.04 g of Agrome PP (manufactured by Ecoport Kyushu Co., Ltd., waste plastic whose purity was adjusted to about 80% by mass by a continuous optical sorting device) and 86.0 g of cumene as an extraction solvent were added, and heated under reflux for 1 hour with stirring at a reflux temperature of 155° C. (near the boiling point of cumene) using a hot stirrer. Then, 55.3 g of methanol as a poor solvent was added to the eggplant-shaped flask after heating under reflux to precipitate PP.
Suction filtration was carried out to collect the precipitated plastic. The mass of the filtered residue after drying (recovered plastic containing PP as the main component) was 0.94 g, and the extraction residue remaining in the cotton bag was 0.02 g. Therefore, the extraction rate was 98%.
From the filtrate obtained by the suction filtration, methanol and cumene were distilled off under reduced pressure and recovered using a cooling device (solvent recovery rate: 80%). The residue in the filtrate after recovering the solvent (hereinafter also referred to as "filtrate residue") was 0.08 g.
 特許第6574081号に記載のプラスチックの純度測定方法により、回収プラスチック中のPPおよびPEの純度を測定したところ、該純度は89.5%であった。 When the purity of PP and PE in the recovered plastic was measured by the method for measuring the purity of plastics described in Patent No. 6574081, the purity was 89.5%.
[実施例2]
 実施例1において、用いたアグロメPPの量を0.98gに変更し、貧溶媒の種類をアセトンに変更した以外は実施例1と同様の操作を行った。
 乾燥後の濾物(PPを主成分として含む回収プラスチック)の質量は0.76gであり、抽出残渣は0.03gであったことから、抽出率は96%であった。
 また、溶媒回収率は87%であり、濾液残渣は0.19gであった。
[Example 2]
In Example 1, the same operation as in Example 1 was performed except that the amount of agglomerate PP used was changed to 0.98 g and the type of poor solvent was changed to acetone.
The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.76 g, and the extraction residue was 0.03 g, so the extraction rate was 96%.
Also, the solvent recovery rate was 87%, and the filtrate residue was 0.19 g.
 特許第6574081号に記載のプラスチックの純度測定方法により、回収プラスチック中のPPおよびPEの純度を測定したところ、該純度は98.5%であった。
 また、赤外分光光度分析より、抽出残渣は主にPETであることが分かった。
When the purity of PP and PE in the recovered plastic was measured by the method for measuring the purity of plastics described in Japanese Patent No. 6574081, the purity was 98.5%.
Further, infrared spectrophotometric analysis revealed that the extraction residue was mainly PET.
[実施例3]
 実施例1において、用いたアグロメPPの量を1.09gに変更し、抽出溶媒をメシチレンに変更し、還流温度を164℃に変更した以外は実施例1と同様の操作を行った。
 乾燥後の濾物(PPを主成分として含む回収プラスチック)の質量は0.95gであり、抽出残渣は0.06gであったことから、抽出率は94%であった。
 また、溶媒回収率は72%であり、濾液残渣は0.08gであった。
[Example 3]
In Example 1, the same operation as in Example 1 was performed except that the amount of agglomerate PP used was changed to 1.09 g, the extraction solvent was changed to mesitylene, and the reflux temperature was changed to 164°C.
The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.95 g, and the extraction residue was 0.06 g, so the extraction rate was 94%.
Also, the solvent recovery rate was 72%, and the filtrate residue was 0.08 g.
[実施例4]
 実施例3において、用いたアグロメPPの量を1.02gに変更し、用いたメシチレンの量を87.0gに変更し、貧溶媒の種類をアセトンに変更した以外は実施例3と同様の操作を行った。
 乾燥後の濾物(PPを主成分として含む回収プラスチック)の質量は0.85gであり、抽出残渣は0.03gであったことから、抽出率は97%であった。
 また、溶媒回収率は83%であり、濾液残渣は0.14gであった。
[Example 4]
In Example 3, the same operation as in Example 3 was performed except that the amount of agglomerate PP used was changed to 1.02 g, the amount of mesitylene used was changed to 87.0 g, and the type of poor solvent was changed to acetone. did
The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.85 g, and the extraction residue was 0.03 g, so the extraction rate was 97%.
Also, the solvent recovery rate was 83%, and the filtrate residue was 0.14 g.
[実施例5]
 実施例4において、アグロメPPの代わりに、アグロメPE((株)エコポート九州製、廃プラスチックを連続光選別装置によりPEの純度を約80質量%としたもの)を用いた以外は実施例4と同様の操作を行った。
 乾燥後の濾物(PEを主成分として含む回収プラスチック)の質量は0.84gであり、抽出残渣は0.07gであったことから、抽出率は92%であった。
 また、溶媒回収率は88%であり、濾液残渣は0.06gであった。
[Example 5]
Example 4 except that in Example 4, Agrome PE (manufactured by Ecoport Kyushu Co., Ltd., waste plastic with a PE purity of about 80% by mass by a continuous optical sorting device) was used instead of Agrome PP. performed the same operation.
The mass of the filtered material after drying (recovered plastic containing PE as a main component) was 0.84 g, and the extraction residue was 0.07 g, so the extraction rate was 92%.
Also, the solvent recovery rate was 88%, and the filtrate residue was 0.06 g.
[実施例6]
 実施例4において、アグロメPP1.02gの代わりに、廃PP((株)エコポート九州製、廃プラスチックを連続光選別装置によりPPの純度を約80質量%としたアグロメレート化前のフィルム)を1.00g用いた以外は実施例4と同様の操作を行った。
 乾燥後の濾物(PPを主成分として含む回収プラスチック)の質量は0.84gであり、抽出残渣は0.08gであったことから、抽出率は91%であった。
 また、溶媒回収率は80%であり、濾液残渣は0.08gであった。
[Example 6]
In Example 4, instead of 1.02 g of agglomerate PP, waste PP (manufactured by Ecoport Kyushu Co., Ltd., a film before agglomerating waste plastic with a PP purity of about 80% by mass by a continuous optical sorting device) was used. The same operation as in Example 4 was performed except that 0.00 g was used.
The mass of the filtered material after drying (recovered plastic containing PP as a main component) was 0.84 g, and the extraction residue was 0.08 g, so the extraction rate was 91%.
Also, the solvent recovery rate was 80%, and the filtrate residue was 0.08 g.
[実施例7]
 実施例5において、アグロメPE0.97gの代わりに、廃PE((株)エコポート九州製、廃プラスチックを連続光選別装置によりPEの純度を約80質量%としたアグロメレート化前のフィルム)を1.03g用いた以外は実施例5と同様の操作を行った。
 乾燥後の濾物(PEを主成分として含む回収プラスチック)の質量は0.93gであり、抽出残渣は0.04gであったことから、抽出率は96%であった。
 また、溶媒回収率は87%であり、濾液残渣は0.06gであった。
[Example 7]
In Example 5, instead of 0.97 g of agglomerate PE, waste PE (manufactured by Ecoport Kyushu Co., Ltd., a film before agglomeration of waste plastic with a PE purity of about 80% by mass by a continuous optical sorting device) was used. The same operation as in Example 5 was performed except that .03 g was used.
The mass of the filtered material after drying (recovered plastic containing PE as a main component) was 0.93 g, and the extraction residue was 0.04 g, so the extraction rate was 96%.
Also, the solvent recovery rate was 87%, and the filtrate residue was 0.06 g.
[比較例1]
 実施例1において、用いたアグロメPPの量を1.15gに変更し、クメン86.0gの代わりに、トルエン86.6gを用い、還流温度を110℃(トルエンの沸点付近の温度)に変更した以外は実施例1と同様の操作を行った。
 乾燥後の濾物(回収プラスチック)の質量は0.32gであり、抽出残渣は0.79gであったことから、抽出率は32%であった。
 また、溶媒回収率は56%であり、濾液残渣は0.04gであった。
[Comparative Example 1]
In Example 1, the amount of agglomerate PP used was changed to 1.15 g, 86.6 g of toluene was used instead of 86.0 g of cumene, and the reflux temperature was changed to 110°C (a temperature near the boiling point of toluene). Except for this, the same operation as in Example 1 was performed.
The mass of the filtered material (recovered plastic) after drying was 0.32 g, and the extraction residue was 0.79 g, so the extraction rate was 32%.
Also, the solvent recovery rate was 56%, and the filtrate residue was 0.04 g.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  1atmにおける沸点が145℃以上である高沸点溶媒を抽出溶媒として用いて、ポリエチレンまたはポリプロピレンを含む廃プラスチックからポリエチレンまたはポリプロピレンを抽出する抽出工程を含む、
     前記廃プラスチックよりポリエチレンまたはポリプロピレンの純度が高い、高純度ポリエチレンまたはポリプロピレンを製造する製造方法。
    An extraction step of extracting polyethylene or polypropylene from waste plastics containing polyethylene or polypropylene using a high-boiling solvent with a boiling point of 145 ° C. or higher at 1 atm as an extraction solvent.
    A production method for producing high-purity polyethylene or polypropylene in which the purity of the polyethylene or polypropylene is higher than that of the waste plastic.
  2.  前記高沸点溶媒が芳香族系化合物である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the high-boiling solvent is an aromatic compound.
  3.  前記高沸点溶媒が、クメン、メシチレンおよびトリメチルベンゼンから選ばれる少なくとも1種である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the high-boiling solvent is at least one selected from cumene, mesitylene and trimethylbenzene.
  4.  前記抽出工程が、廃プラスチック中のポリエチレンまたはポリプロピレンを前記抽出溶媒に溶解させて得られた溶液に、ポリエチレンまたはポリプロピレンに対する貧溶媒を添加して、ポリエチレンまたはポリプロピレンを沈殿させて回収する工程を含む、請求項1~3のいずれか1項に記載の製造方法。 The extraction step includes a step of precipitating and recovering polyethylene or polypropylene by adding a poor solvent for polyethylene or polypropylene to a solution obtained by dissolving polyethylene or polypropylene in the waste plastic in the extraction solvent. The production method according to any one of claims 1 to 3.
  5.  前記貧溶媒が、メタノール、エタノール、イソプロパノール、アセトン、酢酸エチル、テトラヒドロフランおよびクロロホルムから選ばれる少なくとも1種である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the poor solvent is at least one selected from methanol, ethanol, isopropanol, acetone, ethyl acetate, tetrahydrofuran and chloroform.
PCT/JP2021/039834 2021-10-28 2021-10-28 Method for producing high purity polyethylene or polypropylene WO2023073864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523103A JPWO2023073864A1 (en) 2021-10-28 2021-10-28
PCT/JP2021/039834 WO2023073864A1 (en) 2021-10-28 2021-10-28 Method for producing high purity polyethylene or polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039834 WO2023073864A1 (en) 2021-10-28 2021-10-28 Method for producing high purity polyethylene or polypropylene

Publications (1)

Publication Number Publication Date
WO2023073864A1 true WO2023073864A1 (en) 2023-05-04

Family

ID=86157551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039834 WO2023073864A1 (en) 2021-10-28 2021-10-28 Method for producing high purity polyethylene or polypropylene

Country Status (2)

Country Link
JP (1) JPWO2023073864A1 (en)
WO (1) WO2023073864A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072793A (en) * 1999-09-06 2001-03-21 Nkk Corp Process for treatment of waste plastic containing flame retardant component
JP2001172423A (en) * 1999-12-21 2001-06-26 Junichi Iwamura Method and apparatus for recoverying polystyrene
JP2006001987A (en) * 2004-06-16 2006-01-05 Japan Energy Corp Volume reducing agent for foamed styrene resin and method for volume reduction
JP2006169271A (en) * 2004-12-10 2006-06-29 Oputei:Kk Volume reducing agent for foamed polystyrene and method for recovering foamed polystyrene using the same
WO2016209094A1 (en) * 2015-06-23 2016-12-29 23 Rs Coras Sp. Z O.O. Device and method for separation of components of composite packaging materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072793A (en) * 1999-09-06 2001-03-21 Nkk Corp Process for treatment of waste plastic containing flame retardant component
JP2001172423A (en) * 1999-12-21 2001-06-26 Junichi Iwamura Method and apparatus for recoverying polystyrene
JP2006001987A (en) * 2004-06-16 2006-01-05 Japan Energy Corp Volume reducing agent for foamed styrene resin and method for volume reduction
JP2006169271A (en) * 2004-12-10 2006-06-29 Oputei:Kk Volume reducing agent for foamed polystyrene and method for recovering foamed polystyrene using the same
WO2016209094A1 (en) * 2015-06-23 2016-12-29 23 Rs Coras Sp. Z O.O. Device and method for separation of components of composite packaging materials

Also Published As

Publication number Publication date
JPWO2023073864A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US10544276B2 (en) Process for the depolymerization of a polyester comprising opaque polyethylene terephthalate
Achilias et al. Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique
US7959807B2 (en) Method for recovering useful components from dyed polyester fiber
US5824709A (en) Method for recycling waste plastic material containing styrene polymer
JP2019531212A (en) Recycling waste containing polyolefin
JP3510885B2 (en) Method for regenerating polyethylene terephthalate from used PET resources
CN106045858A (en) Method for preparing dimethyl terephthalate from waste PETG film through normal-pressure alcoholysis
WO2014159260A1 (en) Methods and systems for converting plastic to fuel
WO2023073864A1 (en) Method for producing high purity polyethylene or polypropylene
WO2019246504A1 (en) Methods and systems for converting plastic to fuel
US20180105668A1 (en) Methods of isolating melt-processible polycarbonate from plastic waste, methods of preparing polycarbonate-containing hybrid polymers, and compositions comprising same
TW202132444A (en) Process for obtaining a purified diester monomer effluent by depolymerization of a polyester comprising coloured and/or opaque and/or multilayer polyethylene terephthalate
TWI834807B (en) Process for the production of a terephthalate polyester from a monomer mixture comprising a diester
JP3711794B2 (en) Manufacturing method of recycled polyester resin sheet.
KR20220119020A (en) Optimized process for depolymerization of polyesters comprising polyethylene terephthalate
JP2003128626A (en) Method for recovering terephthalic acid from polyester fiber waste
JP2002086448A (en) Polyester regeneration method
JP4065659B2 (en) Method for recovering active ingredients from polyethylene terephthalate waste
JP4065658B2 (en) Method for recovering active ingredients from polyethylene terephthalate fiber waste
EP4079480A1 (en) Method for decontaminating recycled plastic
KR20230172536A (en) How to extract polymers from waste
US20230049514A1 (en) Optimized depolymerization process by glycolysis of a polyester comprising polyethylene terephthalte
US20230357531A1 (en) Improved process for depolymerizing a polyester comprising polyethylene terephthalate
JPH0632938A (en) Improved method of recycling plastic waste comprising synthetic styrenic resin
JP4108267B2 (en) Active ingredient recovery method from polyethylene terephthalate film waste

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023523103

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE