WO2023073779A1 - 太陽光発電システム - Google Patents
太陽光発電システム Download PDFInfo
- Publication number
- WO2023073779A1 WO2023073779A1 PCT/JP2021/039350 JP2021039350W WO2023073779A1 WO 2023073779 A1 WO2023073779 A1 WO 2023073779A1 JP 2021039350 W JP2021039350 W JP 2021039350W WO 2023073779 A1 WO2023073779 A1 WO 2023073779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- farmland
- high temperature
- solar panel
- panel
- power generation
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 59
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000003337 fertilizer Substances 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 239000003905 agrochemical Substances 0.000 claims description 40
- 238000005507 spraying Methods 0.000 claims description 39
- 239000007921 spray Substances 0.000 claims description 33
- 239000000575 pesticide Substances 0.000 claims description 7
- 230000006378 damage Effects 0.000 abstract description 40
- 208000027418 Wounds and injury Diseases 0.000 description 16
- 208000014674 injury Diseases 0.000 description 16
- 230000005855 radiation Effects 0.000 description 10
- 241000209094 Oryza Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003895 organic fertilizer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G13/00—Protection of plants
- A01G13/08—Mechanical apparatus for circulating the air
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
Definitions
- This disclosure relates to a photovoltaic power generation system.
- Patent Document 1 describes a solar power generation system including a first solar panel unit having an actuator unit, a second solar panel unit not having an actuator unit, and a controller.
- a detection signal from the water temperature sensor and a detection signal from the air temperature sensor are input to the control unit.
- the controller detects the water temperature based on the detection signal from the water temperature sensor, and detects the air temperature based on the detection signal from the air temperature sensor.
- the controller controls the actuator unit according to the detected water temperature and air temperature, and the controlled actuator unit swings the solar panel to control the amount of solar radiation on the farmland.
- Patent Document 2 describes a solar panel installed on farmland.
- the solar panels are installed at a predetermined angle with respect to the farmland so as to receive sunlight most efficiently.
- Agricultural crops are grown in places where solar panels on agricultural land block sunlight. Sunlight is reflected from the ground and the lower surface of the solar panel, and the light reflected from the lower surface of the solar panel is applied to crops.
- Patent Document 3 describes a photovoltaic power generation facility in which multiple arrays are installed above farmland.
- the array comprises modules with set acceptance angles. Photovoltaic installations control the shade of farmland.
- the array presents an elongated rectangular shape. Due to the narrow width of the array, it is possible to avoid the formation of long shadows on parts of the farmland and to produce shadows evenly over the farmland.
- Patent Document 4 describes a plurality of photovoltaic power generation devices installed in rice fields.
- a solar power generation device includes a solar panel, a mount that supports the solar panel, a linear actuator, a rotary actuator, an optical sensor, and a controller.
- the linear actuator and the rotary actuator tilt the solar panel so that the light receiving surface of the solar panel faces the position of the sun detected by the light sensor.
- a solar panel is provided with a plurality of solar modules and a plurality of openings. By allowing sunlight to pass below the solar panel through a plurality of openings, it is possible to reduce areas that remain in shade for a long period of time.
- An object of the present disclosure is to provide a photovoltaic power generation system that can increase the yield of agricultural products.
- the photovoltaic power generation system is a photovoltaic power generation system with solar panels installed above farmland.
- the photovoltaic power generation system consists of a high-temperature failure determination unit that determines whether or not high-temperature failure will occur in the crops grown in the farmland from the temperature of the farmland, and a panel that operates the solar panel to adjust the size of the shadow that hits the farmland.
- An adjuster a brightness detection unit that detects whether it is nighttime or not, and a control unit that controls adjustment of the shadow size by the panel adjuster.
- the control unit controls the panel adjuster to increase the area of the shadow formed on the farmland when the high temperature hazard determination unit determines that a high temperature hazard occurs and the brightness detection unit determines that it is not nighttime. to operate solar panels.
- the control unit controls the panel adjuster to promote radiative cooling in the farmland when the high temperature hazard determination unit determines that a high temperature hazard occurs and the brightness detection unit determines that it is nighttime. Tilt the solar panel.
- This photovoltaic power generation system includes a high temperature failure determination unit that determines whether or not a high temperature failure will occur in crops grown in the farmland based on the temperature of the farmland, and a brightness detection unit that detects whether the farmland is at night.
- the photovoltaic power generation system includes a controller, and the controller controls adjustment of the shadow size by the panel adjuster.
- the control unit operates the solar panel to increase the area of the shadow formed on the farmland when it is determined that a high temperature failure occurs and the brightness detection unit determines that the farmland is not at night.
- the controller tilts the solar panel to promote radiative cooling in the farmland when it is determined that a high temperature hazard occurs and the brightness detector determines that the farmland is at night.
- the controller tilts the solar panel to promote radiative cooling in the farmland when it is determined that a high temperature hazard occurs and the brightness detector determines that the farmland is at night.
- the solar power generation system may be equipped with a water spray nozzle that sprinkles water on the farmland.
- the control unit may control the water spray nozzle to spray water from the water spray nozzle to the farmland when the high temperature fault determination unit determines that a high temperature fault will occur. In this case, water is sprayed onto the farmland from the water spray nozzle when it is determined that the high temperature injury will occur, so that the high temperature injury to the crops can be suppressed even when the temperature is high.
- the solar power generation system may be equipped with a pesticide fertilizer spray nozzle that spreads pesticide fertilizer on the farmland.
- the control unit may control the agricultural chemical fertilizer spraying nozzle to spray the agricultural chemical fertilizer on the farmland from the agricultural chemical fertilizer spraying nozzle when the high temperature trouble determining part judges that the high temperature trouble occurs. In this case, since the agricultural chemical fertilizer is sprayed from the agricultural chemical fertilizer spraying nozzle when it is determined that the high temperature injury will occur, it is possible to suppress the withering of the crops due to the high temperature injury.
- the solar power generation system may be equipped with a wind measuring instrument that measures the wind volume and direction of the farmland.
- the control unit controls the panel adjuster to make the sunlight receiving surface of the solar panel parallel to the wind direction measured by the wind measuring device when the wind volume measured by the wind measuring device is equal to or greater than the wind volume threshold.
- the solar power generation system may be equipped with a fan that blows air into the farmland.
- the control unit may control the air blower to send air into the farmland when the high temperature hazard determination unit determines that a high temperature hazard will occur. In this case, air is sent from the blower to the farmland when it is determined that the high temperature damage will occur, so the occurrence of the high temperature damage to the crops in the farmland can be suppressed.
- FIG. 1 is a functional block diagram of a photovoltaic power generation system according to an embodiment
- FIG. FIG. 10 is a diagram showing an example of a table of shadow information
- FIG. 4 is a diagram showing an example of a high temperature failure determination table used by a high temperature failure determination unit
- (a), (b) and (c) are figures which show the modification of a solar panel typically. It is a figure which shows typically the nozzle unit of the solar power generation system which concerns on embodiment.
- 5 is a flow chart showing an example of steps of a high temperature injury suppression method according to an embodiment.
- FIG. 1 is a side view schematically showing the photovoltaic power generation system 1 according to the embodiment.
- a photovoltaic power generation system in a photovoltaic power generation system 1, photovoltaic panels P each composed of a plurality of photovoltaic modules are arranged above a farmland N, and each photovoltaic panel P generates photovoltaic power. conduct.
- the solar panel P has, for example, a rectangular shape.
- the solar panel P has a light receiving surface P1 that receives the sunlight L from the sun T. When the solar panel P receives the sunlight L on the light receiving surface P1, it generates power according to the amount of received light.
- a plurality of crops C of the same type are planted, and on farmland N, a plurality of crops C are grown.
- crop C is rice
- farmland N is paddy field.
- the number of photovoltaic panels P is, for example, several hundred, and a plurality of photovoltaic panels P are arranged vertically and horizontally in plan view. Therefore, the crops C on the farmland N are exposed to sunlight L from the sun T, and a shadow S is formed on the farmland N.
- the light shielding rate of the sunlight L to the farmland N when the plurality of solar panels P extend along the horizontal direction is 40%.
- the shape and size of shadow S change as the sun T moves over time.
- the photovoltaic power generation system 1 includes a support structure 2 that supports a plurality of photovoltaic panels P above the farmland N. Each solar panel P is mounted on a support structure 2 above the farmland N. As shown in FIG.
- the support structure 2 includes a plurality of pillars 2b extending upward from the farmland N, and a beam member 2c that bridges the plurality of pillars 2b above the plurality of pillars 2b.
- a plurality of shafts 3 are attached to the beam member 2c, and a solar panel P is rotatably supported on each shaft 3. As shown in FIG.
- the height of the solar panel P with respect to the ground is 3m or more and 4m or less (3.5m as an example).
- the solar panel P rotates along with the rotation of the shaft 3, and for example, the inclination angle ⁇ of the light receiving surface P1 of the solar panel P with respect to the incident direction of the sunlight L becomes uniform.
- the photovoltaic power generation system 1 has a structure in which the photovoltaic panel P rotates about one axis, and the inclination angle ⁇ of the photovoltaic panel P can be adjusted.
- FIG. 2 is a block diagram showing the functions of the photovoltaic power generation system 1.
- the photovoltaic power generation system 1 includes a panel adjuster 4 that operates the solar panel P to adjust the size of the shadow S that falls on the farmland N, and the sunlight L on the farmland N. and a pyranometer 5 for measuring the amount of solar radiation D1 in the farmland N, and a thermometer 6 for measuring the temperature D2 in the farmland N.
- the photovoltaic power generation system 1 further includes a wind measuring device 7 that measures the wind volume D3 and the wind direction D4 to the farmland N, a brightness detector 8 that detects whether the farmland N is at night, and a photovoltaic power generation system. 1 and a controller 10 for controlling each part of the device.
- a wind measuring device 7 that measures the wind volume D3 and the wind direction D4 to the farmland N
- a brightness detector 8 that detects whether the farmland N is at night
- a photovoltaic power generation system. 1 for controlling each part of the device.
- Each of the panel adjuster 4 , the pyranometer 5 , the thermometer 6 , the wind measuring device 7 and the brightness detection section 8 can communicate with the controller 10 .
- the panel adjuster 4 includes, for example, a motor that rotates the shaft 3.
- the panel adjuster 4 uniformly rotates the solar panel P by rotating the shaft 3 .
- the tilt angle ⁇ is made variable by the panel adjuster 4 rotating the solar panel P, and the area of the shadow S on the farmland N can be adjusted by making the tilt angle ⁇ variable. For example, when the tilt angle ⁇ is equal to or greater than a certain value, the ratio of the area of the shadow S to the area of the farmland N is higher than when the tilt angle ⁇ is less than the certain value.
- the pyranometer 5 is a sensor that detects the amount of insolation D1 of the sunlight L irradiating the farmland N, and outputs the detected amount of insolation D1 to the controller 10 .
- the thermometer 6 is a sensor that detects the temperature D2 of the farmland N and outputs the detected temperature D2 to the controller 10 .
- the timing at which the pyranometer 5 outputs the amount of solar radiation D1 to the controller 10 and the timing at which the thermometer 6 outputs the temperature D2 to the controller 10 may be real time or at predetermined time intervals.
- the wind measuring device 7 includes, for example, an anemometer.
- the wind measuring device 7 measures the air volume D3 of the wind in the farmland N and outputs the measured air volume D3 to the controller 10 .
- the wind measuring device 7 measures the wind direction D4 of the wind in the farmland N and outputs the measured wind direction D4 to the controller 10 .
- the wind measuring device 7 may be an anemometer.
- the wind measuring device 7 is a propeller anemometer.
- the wind measuring device 7 may be something other than a propeller anemometer, and may be a thermal anemometer, a cup anemometer, or an ultrasonic anemometer.
- the brightness detection unit 8 detects whether or not the farmland N is at night based on the brightness of the farmland N.
- the brightness detection unit 8 has a light receiving element that receives light in the farmland N and a determination unit that determines whether or not the farmland N is at night.
- a determination unit of the brightness detection unit 8 determines whether or not the farmland N is at night based on the amount of light received by the light receiving element of the brightness detection unit 8 .
- the determination result of whether or not it is nighttime by the determination unit of the brightness detection unit 8 is output to the controller 10 .
- the controller 10 has a control section 11 that controls the panel adjuster 4 .
- the controller 11 drives the panel adjuster 4 to adjust the inclination angle ⁇ of the solar panel P.
- the control unit 11 adjusts the amount of sunlight L entering the farmland N by changing the inclination angle ⁇ of the solar panel P, and adjusts the ratio of the area of the shadow S to the total area of the farmland N. In this way, the control unit 11 adjusts the amount of the sunlight L to change the ratio of the area of the shadow S, so that the growth of the crops C on the farmland N is not hindered.
- the controller 10 includes, for example, a CPU (Central Processing Unit) and a storage unit such as ROM (Read Only Memory) or RAM (Random Access Memory). Each function of the controller 10 is realized by, for example, loading a program stored in the ROM into the RAM and executing it by the CPU.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the controller 10 may be, for example, a general-purpose personal computer, a server on the Internet, or a cloud system. Furthermore, a portion of the controller 10 may be separated from the remainder.
- the controller 10 may be provided near the farmland N, or may be provided in a remote location away from the farmland N.
- the controller 10 is connected to a network 20, for example the Internet.
- the network 20 may not be the Internet, and may be, for example, an intra-facility network (intranet).
- intra-facility network intra-facility network
- part of the controller 10 may be placed near the solar panel P and the rest of the controller 10 may be placed in a remote location away from the solar panel P.
- the form and location of the controller 10 are not particularly limited.
- the controller 10 has a database 12 that stores information about the solar power generation system 1.
- the database 12 stores information used when the controller 11 adjusts the tilt angle ⁇ of the solar panel P.
- the database 12 stores date D5, time D6, trajectory D7, and shadow information D8.
- the trajectory D7 is information indicating the trajectory of the sun T as seen from the farmland N, and is stored for each date D5.
- the trajectory D7 indicates the position (height and azimuth) of the sun T at regular intervals (for example, every minute) in a day, and varies according to the year/month/day D5. From this trajectory D7, it is possible to know at what time of day and at what rate the shadow S is formed.
- the shadow information D8 is information indicating the ratio of the area of the shadow S to the area of the farmland N. For example, as shown in FIG. We have a table Z that shows the relationships.
- the shadow information D8 may be information indicating in which part of the farmland N and at what rate the shadow S is formed.
- the shadow information D8 is, for example, information indicating the proportion of the shadow S on the farmland N for each inclination angle ⁇ . Further, the shadow information D8 may be information indicating the proportion of the shadow S of the farmland N for each date D5, for each time D6, and for each inclination angle ⁇ .
- the database 12 stores crops D9 that indicate the type of crops C cultivated on the farmland N. Furthermore, the database 12 is a light saturation point storage unit that stores the light saturation point (unit: klx (kilolux)) D10 of the crop C. The light saturation point D10 is stored for each crop D9. The light saturation point D10 is a value that is uniquely determined for each type of crop D9, and the amount of photosynthesis of the crop C does not increase even if the sunlight L above the light saturation point D10 is applied to the crop C.
- the database 12 functions as a solar radiation amount acquisition unit that acquires the solar radiation amount D1 of the farmland N from the pyranometer 5, and stores the acquired solar radiation amount D1. Moreover, the database 12 may acquire in advance the amount of insolation D1 for each date D5 or for each time D6 instead of acquiring the amount of insolation D1 from the pyranometer 5 each time. Furthermore, the controller 10 may calculate the amount of solar radiation D1 from the date D5, the time D6, and weather information D11, which will be described later, and the database 12 may acquire the amount of solar radiation D1 calculated by the controller 10. FIG.
- the database 12 is a temperature acquisition unit that acquires the temperature D2 of the farmland N from the thermometer 6, and stores the acquired temperature D2.
- the database 12 may store in advance the temperature D2 obtained from the weather information D11 instead of obtaining the temperature D2 from the thermometer 6, for example.
- the controller 10 may estimate the temperature D2 from the date D5 and the time D6, and the database 12 may acquire the temperature D2 estimated by the controller 10 .
- the database 12 is an air volume acquisition unit that acquires the air volume D3 of the wind that blows into the farmland N from the wind measuring device 7 . Also, the database 12 is a wind direction acquisition unit that acquires the wind direction D4 of the wind that blows into the farmland N from the wind measuring device 7 . Similar to the above, the database 12 may store in advance the wind volume D3 and the wind direction D4 obtained from the weather information D11. Further, the controller 10 estimates the wind volume D3 and the wind direction D4 after a certain period of time from the state of the wind measured by the wind measuring device 7, and the database 12 acquires the wind volume D3 and the wind direction D4 estimated by the controller 10. may
- the database 12 is a weather information acquisition unit that acquires the weather information D11 from the network 20.
- the acquisition timing of the weather information D11 by the database 12 may be real time or may be at regular time intervals.
- the database 12 stores the power generation amount D12 obtained from the solar panel P. FIG.
- the control unit 11 is an angle changing unit that outputs a control signal to the panel adjuster 4 to control driving of the panel adjuster 4 and changes the inclination angle ⁇ of the solar panel P.
- the control unit 11 has a function of performing various calculations.
- the solar power generation system 1 may include a plurality of cameras for photographing the farmland N, and the control unit 11 calculates the ratio of the area of the shadow S to the area of the farmland N from the images photographed by the plurality of cameras. may The area ratio of the shadow S calculated by the control unit 11 is stored in the database 12 .
- the control unit 11 also controls the panel adjuster 4 using various information stored in the database 12 to change the inclination angle ⁇ of the solar panel P.
- the control unit 11 may change the tilt angle ⁇ of the solar panel P according to the weather information D11 acquired by the database 12.
- the controller 10 includes a plurality of control units 11, and sends weather information D11 from a database 12 located in a remote location away from the farmland N to the plurality of control units 11 to simultaneously adjust the inclination angles ⁇ of the solar panels P. may be controlled. In this case, optimal control of the solar panel P according to the weather of the farmland N becomes possible.
- the solar panel P can be suppressed from being subjected to wind load by laying the solar panel P horizontally by reducing the inclination angle of the solar panel P with respect to the horizontal plane.
- the controller 10 has, for example, a communication unit 14 and a high temperature failure determination unit 15 .
- the communication unit 14 is, for example, communication equipment used when the controller 10 communicates with equipment other than the controller 10 .
- An information terminal 16 located outside the controller 10 and the controller 10 can communicate with each other through the communication unit 14 .
- the information terminal 16 is, for example, a personal computer. However, the information terminal 16 may be an information terminal other than a personal computer, such as a mobile terminal.
- a “portable terminal” indicates a portable information terminal such as a mobile phone including a smart phone, a tablet, or a notebook computer.
- the inclination angle ⁇ of the solar panel P can be adjusted by operating the controller 10 from the information terminal 16 located at a location away from the farmland N by the communication unit 14 .
- the controller 10 has a high temperature failure determination unit 15 that determines whether a high temperature failure will occur in the crop C cultivated in the farmland N from the temperature D2 of the farmland N.
- "high temperature injury” may include not only high temperature injury itself but also temperature injury in general.
- the high temperature hazard determining unit 15 determines that the crop C has a high temperature hazard when the temperature D2 of the farmland N is equal to or higher than a predetermined value for a predetermined period of time.
- the high temperature hazard determination unit 15 has a high temperature hazard determination table H that indicates temperature thresholds and time thresholds for high temperature hazards for each type of crop C. As shown in FIG.
- the temperature threshold indicates the temperature at which crop C suffers from high temperature damage. If the state where the temperature is equal to or higher than the temperature threshold continues for the time threshold or longer, the crop C may suffer from high temperature injury.
- the high-temperature failure determination unit 15 compares the temperature of the farmland N with the temperature threshold in the high-temperature failure determination table H, and determines whether or not the time at which the temperature is equal to or higher than the temperature threshold has continued for at least the time threshold. Then, when the high-temperature hazard determining unit 15 determines that the temperature of the farmland N is equal to or higher than the temperature threshold and that the state of being equal to or higher than the temperature threshold continues for the time threshold or longer, the high-temperature hazard occurs in the crop C. I judge.
- the high temperature hazard determining unit 15 determines that the high temperature hazard occurs in the crop A when it determines that the temperature of the farmland N has been 34° C. or higher for seven hours or more. Further, the high temperature hazard determining unit 15 determines that the high temperature hazard occurs in the crop B when it determines that the temperature of the farmland N has been 30° C. or higher for 12 hours or longer.
- the control unit 11 when the high temperature failure determination unit 15 determines that a high temperature failure will occur and the brightness detection unit 8 determines that it is not night time (daytime), the control unit 11 , the area of the shadow S striking the farmland N is increased by controlling the panel adjuster 4 .
- the control unit 11 increases the inclination angle ⁇ of the solar panel P to increase the area of the shadow S of the farmland N by N times (N is a positive real number).
- the value of N is, for example, 1.5 or more and 2.0 or less.
- the control unit 11 controls the panel adjuster 4 to reduce the shadow S on the farmland N.
- the area may be made smaller.
- FIG. 5(a), FIG. 5(b) and FIG. 5(c) shows a modification of the solar panel.
- a solar panel Q having a plurality of cylinders Q1 may be used to increase the area of the shadow S.
- the solar panel Q includes a shaft 3A, a pair of cylinders Q1 extending from the shaft 3A, a pair of first plate-like members Q2 fixed to the sides of the cylinders Q1 opposite to the shaft 3A, the shaft 3A, and the pair of cylinders. It has Q1 and a second plate-like member Q3 that accommodates a part of the pair of first plate-like members Q2.
- Each cylinder Q1 expands and contracts by driving the panel adjuster 4. As shown in FIG.
- the amount of protrusion of the first plate-like member Q2 with respect to the second plate-like member Q3 is variable due to the expansion and contraction of the cylinder Q1.
- the control unit 11 extends the cylinder Q1 to increase the projection amount of the first plate member Q2 with respect to the second plate member Q3.
- the area of the shadow S of the farmland N may be increased.
- a sliding solar panel R may be used to increase the area of the shadow S.
- the solar panel R has a shaft 3B, a first plate-like member R1 extending from the shaft 3B, and a pair of second plate-like members R3 sliding with respect to the main surface R2 of the first plate-like member R1.
- Each second plate-like member R3 is supported by the first plate-like member R1 via each of the plurality of slide rails R4.
- the amount of protrusion of each second plate-like member R3 with respect to the first plate-like member R1 is made variable by sliding the second plate-like member R3 with respect to the first plate-like member R1. .
- the control unit 11 slides each of the second plate members R3 with respect to the first plate member R1.
- the area of the shadow S of the farmland N may be increased by increasing the amount of protrusion of each of the second plate members R3 with respect to the .
- 2nd plate-shaped member R3 and slide rail R4 are provided in the surface of the other side of the light-receiving surface of the solar panel P. As shown in FIG. Therefore, the influence on the power generation of the solar panel P can be suppressed.
- a solar panel X having a hinge mechanism X1 may be used to increase the area of the shadow S.
- the solar panel X includes a pair of hinge mechanisms X1, a first plate member X2 including a shaft 3C, and a pair of second plate members X3 supported by the first plate member X2 via each hinge mechanism X1.
- a pair of hinge mechanisms X1 are fixed to the surface of the first plate-like member X2 opposite to the light receiving surface X5, and each of the second plate-like members X3 is rotatable with respect to the first plate-like member X2.
- the panel adjuster 4 controls the hinge mechanism X1 to change the angle Y of each second plate member X3 with respect to the first plate member X2.
- control unit 11 rotates each second plate-shaped member X3 so that the angle Y is increased when the high temperature failure determining unit 15 determines that a high temperature failure will occur.
- control unit 11 may reduce the area of the portion of the solar panel X that receives the wind by decreasing the angle Y when the air volume D3 measured by the wind measuring device 7 is equal to or greater than the air volume threshold. In this case, application of excessive stress to the solar panel X due to wind can be suppressed.
- the photovoltaic power generation system 1 includes a blower 9, for example.
- a farmland N is provided with a plurality of fans 9 , each fan 9 being fixed to the support structure 2 .
- the blower 9 is arranged between a pair of solar panels P.
- each blower 9 is provided at the intersection of the support 2b and the beam member 2c. Air W is blown downward (or obliquely downward) from the blower 9 .
- the air temperature of the farmland N is lowered by the wind W from the blower 9, and the occurrence of high temperature damage to the crops C is suppressed.
- the control unit 11 controls the blower 9 to send air (wind W) to the farmland N when the high temperature failure determining unit 15 determines that a high temperature failure will occur.
- the control unit 11 controls the panel adjuster 4 to control the radiation in the farmland N. Tilt the solar panel P to promote cooling. Therefore, at night, the heat from the farmland N is released by tilting the solar panel P. That is, the panel adjuster 4 is controlled to tilt the solar panel P so that the farmland N emits more heat.
- the inclination of the solar panel P is adjusted so that the light receiving surface P1 of the solar panel P extends along the vertical direction. 4 may be controlled. In this case, radiative cooling in the farmland N can be further promoted.
- the control unit 11 may tilt the solar panel P so that the light receiving surface P1 is parallel to the wind direction D4 measured by the wind measuring device 7 . In this case, it is possible to allow more wind to enter the farmland N.
- the control unit 11 controls the blower 9 to blow wind W from the blower 9 to the farmland N. may be blown in. In this case also, more wind W can enter the farmland N.
- the control unit 11 controls the panel adjuster 4 so that the light receiving surface P1 of the solar panel P for the sunlight L reaches the wind measuring device. Tilt the solar panel P so that it is parallel to the wind direction D4 measured by 7.
- the wind volume threshold is a wind volume threshold at which the stress applied to the solar panel P by the wind becomes excessive and the solar panel P may be damaged. In this embodiment, even if the solar panel P is installed at a high position of 3 m or more and 4 m or less, it is possible to suppress the stress of the solar panel P from becoming excessive.
- the solar power generation system 1 includes a nozzle unit 30 having a water spraying nozzle 31 for spraying water on the farmland N and an agricultural chemical fertilizer spraying nozzle 32 for spraying agricultural chemical fertilizer on the farmland N.
- FIG. 6 is a diagram schematically showing the nozzle unit 30.
- the photovoltaic system 1 comprises a plurality of nozzle units 30 , each nozzle unit 30 being fixed to the support structure 2 .
- each nozzle unit 30 is fixed to the beam member 2c.
- the nozzle unit 30 is arranged between a pair of solar panels P as an example.
- the nozzle unit 30 includes a water spraying nozzle 31 and an agricultural chemical fertilizer spraying nozzle 32.
- the water spraying nozzle 31 is controlled by the control unit 11 to automatically spray water E
- the agricultural chemical fertilizer spraying nozzle 32 is controlled by the control unit 11 to automatically spray agricultural chemical fertilizer F.
- the water spray nozzle 31 is a nozzle that sprays the water E on the farmland N.
- the agricultural chemical fertilizer spraying nozzle 32 is a nozzle for spraying the agricultural chemical fertilizer F on the farmland N.
- "agrochemical fertilizer” indicates at least one of agricultural chemicals and fertilizers.
- “Pesticide” is a growth promoter for crop C or a drug.
- “Fertilizer” indicates a substance that promotes the growth of crops C, and includes, for example, at least one of nitrogen, phosphorus and potassium. “Fertilizer” may be an inorganic fertilizer or an organic fertilizer. The type of agricultural chemical fertilizer F sprayed from the agricultural chemical fertilizer spraying nozzle 32 may be changeable. The type of pesticide fertilizer F may be changed for each type of crop C.
- FIG. 7 is a flow chart showing an example of the steps of the method for suppressing high-temperature damage according to this embodiment.
- the brightness detection unit 8 determines whether or not the farmland N is at night (step S1 for determining whether or not it is at night). For example, the determination unit of the brightness detection unit 8 determines whether or not the amount of light received by the light-receiving element of the brightness detection unit 8 is equal to or greater than a predetermined value. It is determined whether there is The determination result is output to the controller 10 .
- step S1 determines whether the temperature D2 of the farmland N is equal to or higher than the temperature threshold (the temperature of the farmland is equal to or higher than the temperature threshold). a step of determining whether or not, step S2). Specifically, the high temperature failure determination unit 15 of the controller 10 determines whether or not the temperature D2 is equal to or higher than the temperature threshold for a period of time equal to or longer than the time threshold.
- step S2 determines that the temperature D2 of the farmland N is not equal to or higher than the temperature threshold (NO in step S2)
- the series of steps is completed.
- the control unit 11 drives the panel adjuster 4 to operate the solar panel P so as to increase the shadow S. (the step of operating the solar panel to increase the shadow, step S3).
- the controller 11 rotates each solar panel P so as to increase the inclination angle ⁇ , for example, and then completes a series of steps.
- step S1 when the brightness detection unit 8 determines that the farmland N is at night (YES in step S1), the controller 10 determines whether or not the temperature D2 of the farmland N is equal to or higher than the temperature threshold, as in step S2. (Step S4 of determining whether or not the temperature of the farmland is equal to or higher than the temperature threshold). Note that the temperature threshold used in step S2 (when the farmland is not at night) and the temperature threshold used in step S4 (when the farmland is at night) may be different from each other.
- step S4 When the controller 10 determines that the temperature of the farmland N is not equal to or higher than the temperature threshold (NO in step S4), the series of steps is completed.
- the control unit 11 drives the panel adjuster 4, and adjusts the solar panel so that more wind enters the farmland N. Tilt P (Tilt the solar panel to let more wind into the farmland, step S5). At this time, each solar panel P is tilted so that the light receiving surface P1 is parallel to the wind direction D4 measured by the wind measuring device 7 .
- a series of steps is completed through the above steps.
- the photovoltaic power generation system 1 includes a high temperature failure determination unit 15 that determines whether a high temperature failure will occur in the crops C cultivated in the farmland N from the temperature D2 of the farmland N, and detects whether the farmland N is at night. and a brightness detection unit 8 for detecting the brightness.
- the solar power generation system 1 includes a control unit 11 , and the control unit 11 controls adjustment of the size of the shadow S by the panel adjuster 4 .
- control unit 11 determines that a high temperature problem occurs and the brightness detection unit 8 determines that the farmland N is not at night, the control unit 11 controls the solar panel P to increase the area of the shadow S formed on the farmland N. to operate. Therefore, when it is determined that a high temperature injury will occur and the farmland N is not at night, the area of the shadow S of the farmland N becomes large, so that the high temperature injury to the crops C on the farmland N can be suppressed.
- the control unit 11 tilts the solar panel P so as to promote radiative cooling in the farmland N when it is determined that a high temperature failure will occur and the brightness detection unit 8 determines that the farmland N is at night.
- By promoting radiative cooling in the farmland N it is possible to prevent high-temperature air from accumulating in the farmland N at night, thereby suppressing the occurrence of high-temperature damage at night. That is, at night, it is possible to improve the heat dissipation of the farmland N and suppress the high temperature damage. Therefore, the occurrence of high temperature damage can be suppressed not only during the daytime but also at nighttime, so that the yield of the crops C can be increased while the solar panel P collects power.
- the photovoltaic power generation system 1 includes a water spray nozzle 31 for spraying water E on the farmland N.
- the control unit 11 controls the water spraying nozzle 31 to spray water E from the water spraying nozzle 31 to the farmland N when the high temperature fault determining unit 15 determines that a high temperature fault occurs. Therefore, since the water E is sprayed from the water spray nozzle 31 to the farmland N when it is determined that the high temperature injury will occur, the high temperature injury to the crops C can be suppressed even when the temperature is high. Furthermore, since the atmospheric temperature of the farmland N can be lowered by spraying the water E, the temperature of the solar panel P can be lowered and the power generation amount of the solar panel P can be increased.
- the photovoltaic power generation system 1 includes an agricultural chemical fertilizer spraying nozzle 32 that sprays the agricultural chemical fertilizer F on the farmland N.
- the control unit 11 controls the agricultural chemical fertilizer spraying nozzle 32 to spray the agricultural chemical fertilizer F on the farmland N from the agricultural chemical fertilizer spraying nozzle 32 when the high temperature trouble determining part 15 judges that the high temperature trouble occurs. Therefore, since the agricultural chemical fertilizer F is sprayed from the agricultural chemical fertilizer spraying nozzle 32 when it is determined that the high temperature damage will occur, it is possible to suppress the withering of the crops C due to the high temperature damage.
- the photovoltaic power generation system 1 includes a plurality of nozzle units 30, and each nozzle unit 30 is fixed to the support structure 2 (beam member 2c). Therefore, boom sprayers, large tractors, etc. for spraying water or agricultural chemicals can be eliminated. Furthermore, in this embodiment, the water spraying nozzle 31 automatically sprays water and the agricultural chemical fertilizer spraying nozzle 32 automatically sprays agricultural chemical fertilizer, which contributes to labor saving.
- the photovoltaic power generation system 1 includes a wind measuring device 7 that measures the wind volume D3 and the wind direction D4 of the farmland N.
- the control unit 11 controls the panel adjuster 4 so that the sunlight L receiving surface P1 of the solar panel P is measured by the wind measuring device 7.
- the solar panel P is tilted so as to be parallel to the measured wind direction D4. Therefore, when the air volume D3 is equal to or greater than the air volume threshold, the solar panel P is tilted so that the light receiving surface P1 of the solar panel P is parallel to the wind direction D4 of the wind at that time. Therefore, when the wind is strong, the solar panel P is tilted so that the light-receiving surface P1 of the solar panel P is parallel to the wind direction D4, so that the wind stress on the solar panel P increases. can be suppressed.
- the photovoltaic power generation system 1 includes a blower 9 that blows wind W into the farmland N.
- the control unit 11 controls the air blower 9 to send the wind W to the farmland N when the high temperature hazard determination unit 15 determines that a high temperature hazard occurs. Therefore, since the wind W is sent from the blower 9 to the farmland N when it is determined that the high temperature damage will occur, the occurrence of the high temperature damage to the crops C in the farmland N can be suppressed.
- the photovoltaic power generation system according to the present disclosure has been described above.
- the photovoltaic power generation system according to the present disclosure is not limited to the above-described embodiments, and can be appropriately modified within the scope of the claims and the scope of the claims. That is, the configuration, function, shape, size, material, number, and arrangement of each part of the photovoltaic power generation system according to the present disclosure are not limited to the above-described embodiments, and can be changed as appropriate.
- the brightness detection unit 8 having a light receiving element and a determination unit, and the brightness detection unit 8 that determines whether or not it is nighttime from the amount of light received by the light receiving element has been described.
- the brightness detection section may not include the light receiving element and the determination section.
- the brightness detection unit may determine whether or not the farmland N is at night by comparing the sunrise/sunset times obtained from the date D5 and the time D6 with the current time.
- the water spraying nozzle 31 automatically sprays the water E on the farmland N
- the agricultural chemical fertilizer spraying nozzle 32 automatically sprays the agricultural chemical fertilizer F on the farmland N.
- the water spraying nozzle 31 may manually spray the water E on the farmland N (for example, by pressing a button by an operator), and the agricultural chemical fertilizer spraying nozzle 32 may manually spray the agricultural chemical fertilizer F on the farmland N.
- the timing at which the water spraying nozzle 31 sprays the water E and the timing at which the agricultural chemical fertilizer spraying nozzle 32 sprays the agricultural chemical fertilizer F are predetermined, and the controller 11 controls the water spraying nozzle 31 and the water spraying nozzle 31 at the predetermined timing.
- the water E and the agricultural chemical fertilizer F may be sprayed on the farmland N by controlling each of the agricultural chemical fertilizer spraying nozzles 32 .
- the high temperature hazard determination unit 15 determines whether or not there is a high temperature hazard based on the temperature D2.
- the control unit 11 may further adjust the area of the shadow S by adding the growth stage of the crop C to the determination result by the high temperature failure determination unit 15 .
- the control unit 11 may perform control to reduce the area of the shadow S only during the growth period.
- the inclination of the solar panel P may be controlled so that the control unit 11 sets the inclination angle ⁇ to 90° when the light saturation point is equal to or higher than the light saturation point D10 and the sunlight L is not required.
- the control unit 11 may perform control to increase the tilt angle ⁇ when the high temperature failure determination unit 15 determines that the high temperature failure does not occur and the air temperature D2 is equal to or lower than a certain temperature.
- the temperature of the crop C can be controlled by keeping the crop C warm during the season when it is necessary to keep the crop C warm, preventing frost, and increasing the effect of promoting the growth of the crop C.
- the present disclosure may determine events other than a high temperature fault.
- the controller 10 may determine whether or not low temperature and high humidity will occur. , the occurrence of rice fever can be suppressed. Furthermore, when the controller 10 determines that the crop C is rice and the low temperature and high humidity will occur, the agricultural chemical fertilizer spraying nozzle 32 may spray agricultural chemicals against rice fever.
- the crop C is rice and the farmland N is a rice field has been described.
- the crop C may be anything other than rice
- the farmland N may be farmland (for example, a field) other than rice fields.
- SYMBOLS 1 Photovoltaic power generation system, 2... Support structure, 2b... Support, 2c... Beam member, 3, 3A, 3B, 3C... Shaft, 4... Panel adjuster, 5... Pyranometer, 6... Thermometer, 7...
- Wind Measuring instrument Brightness detection unit 9 Blower 10 Controller 11 Control unit 12 Database 14 Communication unit 15 High temperature failure determination unit 16 Information terminal 20 Network 30 Nozzle unit 31 Water spray nozzle 32 Pesticide fertilizer spray nozzle C Crop D1 Solar radiation D2 Air temperature D3 Wind volume D4 Wind direction D5 Date D6 Time D7 Locus , D8...Shadow information, D9...Crops, D10...Light saturation point, D11...Weather information, D12...Power generation amount, E...Water, F...Agrochemical fertilizer, H...High temperature failure determination table, L...Sunlight, N...Farmland , P, Q, R, X... Solar panel, P1... Light receiving surface, Q1... Cylinder, Q2... First plate member, Q3...
- Second plate member R1... First plate member, R2... Main surface , R3... second plate member, R4... slide rail, S... shadow, T... sun, W... wind, X1... hinge mechanism, X2... first plate member, X3... second plate member, X5... light receiving Plane, Y... Angle, Z... Table, ⁇ ... Tilt angle.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Water Supply & Treatment (AREA)
- Photovoltaic Devices (AREA)
Abstract
一実施形態に係る太陽光発電システムは、農地の上方に設置される太陽光パネルを備えた太陽光発電システムである。太陽光発電システムは、農地の気温から農地で栽培される農作物に高温障害が生じるか否かを判定する高温障害判定部と、太陽光パネルを稼動して農地に当たる影の大きさを調整するパネル調整器と、夜間であるか否かを検知する明るさ検知部と、パネル調整器による影の大きさの調整を制御する制御部とを備える。制御部は、高温障害判定部によって高温障害が生じると判定され、且つ明るさ検知部によって夜間でないと判定されたときに、パネル調整器を制御して農地に形成される影の面積を大きくするように太陽光パネルを稼動する。制御部は、高温障害判定部によって高温障害が生じると判定され、且つ明るさ検知部によって夜間であると判定されたときに、パネル調整器を制御して農地における放射冷却が促進されるように太陽光パネルを傾ける。
Description
本開示は、太陽光発電システムに関する。
特許文献1には、アクチュエータユニットを有する第1太陽光パネルユニットと、アクチュエータユニットを有しない第2太陽光パネルユニットと、制御部とを備えた太陽光発電システムが記載されている。制御部には、水温センサからの検知信号、及び気温センサからの検知信号が入力される。制御部は、水温センサからの検知信号に基づいて水温を検知し、気温センサからの検知信号に基づいて気温を検知する。制御部は検知した水温及び気温に応じてアクチュエータユニットを制御し、制御を受けるアクチュエータユニットが太陽光パネルを揺動させることによって農地への日射量を制御する。
特許文献2には、農地上に設置されたソーラーパネルが記載されている。ソーラーパネルは、太陽光を最も効率よく受ける角度となるように、農地に対して所定角度傾けた状態で設置されている。農地におけるソーラーパネルが太陽光を遮る場所に農作物が栽培される。太陽光は地面及びソーラーパネルの下面において反射し、ソーラーパネルの下面において反射した光が農作物に照射される。
特許文献3には、複数のアレイが農地の上方に設置された太陽光発電設備が記載されている。アレイは、受光角度が設定されたモジュールを備える。太陽光発電設備は、農地の日陰を制御する。アレイは、細長い長方形状を呈する。アレイの幅が狭いことにより、農地の一部分に長時間日陰が形成されることを回避し、農地に満遍なく影を生成することが可能である。
特許文献4には、田圃に設置される複数の太陽光発電装置が記載されている。太陽光発電装置は、太陽光パネルと、太陽光パネルを支持する架台と、リニアアクチュエータと、回動アクチュエータと、光センサーと、コントローラとを備える。リニアアクチュエータ及び回動アクチュエータは、太陽光パネルの受光面が光センサーによって検知された太陽の位置を向くように太陽光パネルを傾ける。太陽光パネルには、複数枚の太陽光モジュールと、複数の開口部とが設けられる。複数の開口部を介して太陽光パネルの下方に太陽光が通ることにより、長時間日陰となる場所を減らすことが可能となる。
前述した各太陽光発電システムでは、農作物に十分に太陽光を当てたり、農地の影の場所を減らしたりすることが可能である。ところで、農地では、特に夏場において、気温の上昇によって農作物に高温障害が生じることがある。高温障害が生じると農作物が枯れて農作物の収穫量が低下する可能性がある。
本開示は、農作物の収穫量を増やすことができる太陽光発電システムを提供することを目的とする。
本開示に係る太陽光発電システムは、農地の上方に設置される太陽光パネルを備えた太陽光発電システムである。太陽光発電システムは、農地の気温から農地で栽培される農作物に高温障害が生じるか否かを判定する高温障害判定部と、太陽光パネルを稼動して農地に当たる影の大きさを調整するパネル調整器と、夜間であるか否かを検知する明るさ検知部と、パネル調整器による影の大きさの調整を制御する制御部と、を備える。制御部は、高温障害判定部によって高温障害が生じると判定され、且つ明るさ検知部によって夜間でないと判定されたときに、パネル調整器を制御して農地に形成される影の面積を大きくするように太陽光パネルを稼動する。制御部は、高温障害判定部によって高温障害が生じると判定され、且つ明るさ検知部によって夜間であると判定されたときに、パネル調整器を制御して農地における放射冷却が促進されるように太陽光パネルを傾ける。
この太陽光発電システムは、農地の気温から農地で栽培される農作物に高温障害が生じるか否かを判定する高温障害判定部と、農地が夜間であるか否かを検知する明るさ検知部とを備える。太陽光発電システムは制御部を備え、制御部はパネル調整器による影の大きさの調整を制御する。制御部は、高温障害が生じると判定され、且つ明るさ検知部によって農地が夜間でないと判定されたとき、農地に形成される影の面積を大きくするように太陽光パネルを稼動する。従って、高温障害が生じると判定され且つ農地が夜間でないときには農地の日陰の面積が大きくなるので、農地の農作物の高温障害を抑制できる。制御部は、高温障害が生じると判定され、且つ明るさ検知部によって農地が夜間であると判定されたとき、農地における放射冷却が促進されるように太陽光パネルを傾ける。農地における放射冷却が促進されることにより、夜間に高温の空気が農地に溜まることを抑制できるので、夜間における高温障害の発生を抑制できる。従って、昼間だけでなく夜間にも高温障害の発生を抑制できるので、太陽光パネルで集電を行いつつ農作物の収穫量を増やすことができる。
太陽光発電システムは、農地に水を撒く水散布ノズルを備えてもよい。制御部は、高温障害判定部によって高温障害が生じると判定されたときに、水散布ノズルを制御して水散布ノズルから農地に水を散布してもよい。この場合、高温障害が生じると判定されたときに水散布ノズルから農地に水が散布されるので、高温のときであっても農作物の高温障害を抑制できる。
太陽光発電システムは、農地に農薬肥料を撒く農薬肥料散布ノズルを備えてもよい。制御部は、高温障害判定部によって高温障害が生じると判定されたときに、農薬肥料散布ノズルを制御して農薬肥料散布ノズルから農地に農薬肥料を散布してもよい。この場合、高温障害が生じると判定されたときに農薬肥料散布ノズルから農薬肥料が散布されるので、高温障害によって農作物が枯れることを抑制できる。
太陽光発電システムは、農地の風量及び風向きを測定する風測定器を備えてもよい。制御部は、風測定器によって測定された風量が風量閾値以上であるときに、パネル調整器を制御して太陽光パネルの太陽光の受光面が風測定器によって測定された風向きと平行になるように太陽光パネルを傾けてもよい。この場合、風量が風量閾値以上であるときに、太陽光パネルの受光面がそのときの風の風向きと平行になるように太陽光パネルが傾けられる。従って、風が強いときに太陽光パネルの受光面が当該風の風向きと平行になるように太陽光パネルが傾けられるので、太陽光パネルへの風の応力が増大することを抑制できる。
太陽光発電システムは、農地に空気を送り込む送風機を備えてもよい。制御部は、高温障害判定部によって高温障害が生じると判定されたときに、送風機を制御して農地に空気を送り込んでもよい。この場合、高温障害が生じると判定されたときに送風機から農地に空気が送り込まれるので、農地の農作物に高温障害が生じることを抑制できる。
本開示によれば、農作物の収穫量を増やすことができる。
以下では、図面を参照しながら本開示に係る太陽光発電システムの実施形態について説明する。図面の説明について同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、理解の容易化のため、一部を簡略化又は誇張して描いており、寸法比率等は図面に記載のものに限定されない。
図1は、実施形態に係る太陽光発電システム1を模式的に示す側面図である。図1に示されるように、太陽光発電システム1では、複数枚の太陽光モジュールによって構成される太陽光パネルPが農地Nの上方に並べられており、各太陽光パネルPは太陽光発電を行う。太陽光パネルPは、例えば、矩形状を呈する。太陽光パネルPは、太陽Tからの太陽光Lを受ける受光面P1を有する。太陽光パネルPは、受光面P1において太陽光Lを受光すると、当該受光の受光量に応じた発電を行う。
例えば、農地Nには互いに同一種類の複数の農作物Cが植えられており、農地Nにおいて複数の農作物Cが栽培されている。一例として、農作物Cは米であり、農地Nは田圃である。太陽光発電システム1において、太陽光パネルPの枚数は例えば数百枚であり、平面視において縦横に複数の太陽光パネルPが並べられている。よって、農地Nの農作物Cには、太陽Tからの太陽光Lが当てられ、農地Nには影Sが形成される。一例として、複数の太陽光パネルPが水平方向に沿って延在するときにおける農地Nへの太陽光Lの遮光率は40%である。しかしながら、影Sの形状及び大きさは、時間の経過に伴う太陽Tの移動によって変化する。
太陽光発電システム1は、複数の太陽光パネルPを農地Nの上方で支持する支持構造2を備える。各太陽光パネルPは、農地Nの上方において支持構造2に設置されている。支持構造2は、農地Nから上方に延びる複数の支柱2bと、複数の支柱2bの上部において複数の支柱2bを架け渡す梁部材2cとを備える。梁部材2cには複数の軸3が取り付けられており、各軸3には太陽光パネルPが回動自在に支持されている。
例えば、地面に対する太陽光パネルPの高さは、3m以上且つ4m以下(一例として3.5m)である。太陽光パネルPは、軸3の回転と共に回転し、例えば、太陽光Lの入射方向に対する太陽光パネルPの受光面P1の傾斜角度θは一律となる。この場合、太陽光発電システム1は太陽光パネルPが一軸で回転する構成を備えており、太陽光パネルPの傾斜角度θは調整可能となっている。
図2は、太陽光発電システム1の機能を示すブロック図である。図1及び図2に示されるように、太陽光発電システム1は、太陽光パネルPを稼動して農地Nに当たる影Sの大きさを調整するパネル調整器4と、農地Nへの太陽光Lの日射量D1を測定する日射計5と、農地Nの気温D2を測定する温度計6とを備える。太陽光発電システム1は、更に、農地Nへの風量D3及び風向きD4を測定する風測定器7と、農地Nが夜間であるか否かを検知する明るさ検知部8と、太陽光発電システム1の各部を制御するコントローラ10とを備える。パネル調整器4、日射計5、温度計6、風測定器7及び明るさ検知部8のそれぞれは、コントローラ10と通信可能とされている。
パネル調整器4は、例えば、軸3を回転させるモータを含む。パネル調整器4は、軸3を回転させることによって太陽光パネルPを一律に回転させる。パネル調整器4が太陽光パネルPを回転させることによって傾斜角度θが可変とされており、傾斜角度θが可変とされていることによって農地Nにおける影Sの面積を調整可能である。例えば、傾斜角度θが一定値以上である場合には、傾斜角度θが当該一定値未満である場合と比較して、農地Nの面積に対する影Sの面積の割合が高くなる。
日射計5は、農地Nに照射されている太陽光Lの日射量D1を検出するセンサであり、検出した日射量D1をコントローラ10に出力する。温度計6は、農地Nの気温D2を検出するセンサであり、検出した気温D2をコントローラ10に出力する。日射計5が日射量D1をコントローラ10に出力するタイミング、及び温度計6が気温D2をコントローラ10に出力するタイミングは、リアルタイムであってもよいし、所定時間ごとであってもよい。
風測定器7は、例えば、風速計を含む。風測定器7は、農地Nにおける風の風量D3を測定し、測定した風量D3をコントローラ10に出力する。風測定器7は、農地Nにおける風の風向きD4を測定し、測定した風向きD4をコントローラ10に出力する。風測定器7は、風向風速計であってもよい。一例として、風測定器7は、プロペラ式風向風速計である。しかしながら、風測定器7は、プロペラ式風向風速計以外のものであってもよく、熱式風速計、風杯型風速計、又は超音波風速計であってもよい。
明るさ検知部8は、農地Nの明るさから農地Nが夜間であるか否かを検知する。例えば、明るさ検知部8は、農地Nにおける光を受光する受光素子と、農地Nが夜間であるか否かを判定する判定部とを有する。明るさ検知部8の判定部は、明るさ検知部8の受光素子が受光する光の光量から農地Nが夜間であるか否かを判定する。明るさ検知部8の判定部による夜間か否かの判定結果は、コントローラ10に出力される。
コントローラ10は、パネル調整器4を制御する制御部11を有する。制御部11は、パネル調整器4を駆動して太陽光パネルPの傾斜角度θを調整する。制御部11は、太陽光パネルPの傾斜角度θを変更して農地Nに入る太陽光Lの量を調整し、農地Nの全面積に対する影Sの面積の割合を調整する。このように制御部11が太陽光Lの量を調整して影Sの面積の割合を変更することにより、農地Nの農作物Cの生育を妨げないようにしている。
コントローラ10は、例えば、CPU(Central Processing Unit)と、ROM(Read Only Memory)又はRAM(Random Access Memory)等の記憶部とを備えて構成されている。コントローラ10の各機能は、例えば、ROMに記憶されているプログラムをRAMにロードし、CPUが実行することによって実現される。
なお、コントローラ10は、例えば、汎用のパーソナルコンピュータ、インターネット上のサーバ、又はクラウドシステムであってもよい。更に、コントローラ10の一部と残部とが分離していてもよい。コントローラ10は、農地Nの付近に設けられていてもよいし、農地Nから離れた遠隔地に設けられていてもよい。コントローラ10は、例えばインターネットであるネットワーク20に接続されている。なお、ネットワーク20は、インターネットでなくてもよく、例えば施設内ネットワーク(イントラネット)であってもよい。例えば、コントローラ10の一部が太陽光パネルPの付近に配置され、コントローラ10の残部が太陽光パネルPから離れた遠隔地に配置されてもよい。このように、コントローラ10の形態及び配置場所については特に限定されない。
例えば、コントローラ10は、太陽光発電システム1に関する情報を記憶するデータベース12を有する。データベース12は、制御部11が太陽光パネルPの傾斜角度θを調整するときに用いる情報を記憶している。データベース12は、年月日D5と、時間D6と、軌跡D7と、影情報D8を記憶している。軌跡D7は、農地Nから見た太陽Tの軌跡を示す情報であり、年月日D5ごとに記憶されている。軌跡D7は、一日における太陽Tの一定時間ごと(例えば1分ごと)の位置(高さ及び方位)を示しており、年月日D5に応じて変動する。この軌跡D7によって、何日の何時にどれくらいの割合で影Sが形成されるかがわかるようになっている。
影情報D8は、農地Nの面積に対する影Sの面積の割合を示す情報である、例えば、図3に示されるように、影情報D8は、傾斜角度θと農地Nの影Sの割合との関係を示すテーブルZを有する。影情報D8は、農地Nのどの部分にどれくらいの割合で影Sが形成されるかを示す情報であってもよい。影情報D8は、例えば、傾斜角度θごとの農地Nの影Sの割合を示す情報である。また、影情報D8は、年月日D5ごと、時間D6ごと、及び傾斜角度θごとにおける農地Nの影Sの割合を示す情報であってもよい。
図1及び図2に示されるように、データベース12は、農地Nで栽培されている農作物Cの種類を示す農作物D9を記憶している。更に、データベース12は、農作物Cの光飽和点(単位:klx(キロルクス))D10を記憶する光飽和点記憶部である。光飽和点D10は農作物D9ごとに記憶されている。光飽和点D10は、農作物D9の種類ごとに一意に定められる値であり、光飽和点D10以上の太陽光Lを農作物Cに当てても農作物Cの光合成量は増加しない。
データベース12は、日射計5から農地Nの日射量D1を取得する日射量取得部として機能し、取得した日射量D1を記憶している。また、データベース12は、都度日射計5から日射量D1を取得するのではなく、年月日D5ごと、又は時間D6ごとの日射量D1を予め取得していてもよい。更に、コントローラ10が年月日D5、時間D6及び後述する気象情報D11から日射量D1を計算し、データベース12はコントローラ10が計算した日射量D1を取得してもよい。
データベース12は、温度計6から農地Nの気温D2を取得する気温取得部であり、取得した気温D2を記憶している。なお、データベース12は、温度計6から気温D2を取得するのではなく、例えば、気象情報D11から得た気温D2を予め記憶しておいてもよい。また、コントローラ10が年月日D5と時間D6から気温D2を推定し、コントローラ10によって推定された気温D2をデータベース12が取得してもよい。
データベース12は、風測定器7から農地Nに吹き込む風の風量D3を取得する風量取得部である。また、データベース12は、風測定器7から農地Nに吹き込む風の風向きD4を取得する風向き取得部である。上記と同様、データベース12は、気象情報D11から得た風量D3及び風向きD4を予め記憶しておいてもよい。また、風測定器7によって測定された風の状態から一定時間経過後の風の風量D3及び風向きD4をコントローラ10が推測し、コントローラ10によって推測された風量D3及び風向きD4をデータベース12が取得してもよい。
データベース12は、ネットワーク20から気象情報D11を取得する気象情報取得部である。データベース12による気象情報D11の取得のタイミングは、リアルタイムであってもよいし、一定時間ごとであってもよい。更に、データベース12は、太陽光パネルPから得られた発電量D12を記憶している。
制御部11は、パネル調整器4に制御信号を出力してパネル調整器4の駆動を制御し、太陽光パネルPの傾斜角度θを変更する角度変更部である。制御部11は、各種計算を行う機能を有する。例えば、太陽光発電システム1は農地Nを撮影する複数のカメラを備えていてもよく、制御部11は複数のカメラによって撮影された画像から農地Nの面積に対する影Sの面積の割合を算出してもよい。制御部11によって算出された影Sの面積の割合は、データベース12に記憶される。また、制御部11は、データベース12に記憶されている各種情報を用いてパネル調整器4を制御し、太陽光パネルPの傾斜角度θを変更する。
制御部11は、データベース12が取得した気象情報D11に応じて太陽光パネルPの傾斜角度θを変更してもよい。例えば、コントローラ10が複数の制御部11を備え、農地Nから離れた遠隔地にあるデータベース12から複数の制御部11に気象情報D11を送って複数の太陽光パネルPの傾斜角度θを一斉に制御してもよい。この場合、農地Nの天候に応じた太陽光パネルPの最適な制御が可能となる。
具体例として、大雪の場合には水平面に対する太陽光パネルPの傾斜角度を大きくして太陽光パネルPを垂直に立てることによって、太陽光パネルPに雪が積もることを回避できる。具体例として、台風の場合には、水平面に対する太陽光パネルPの傾斜角度を小さくして太陽光パネルPを水平に寝かせることにより、太陽光パネルPが風による負荷を受けることを抑制できる。
コントローラ10は、例えば、通信部14と、高温障害判定部15とを有する。通信部14は、例えば、コントローラ10がコントローラ10以外の機器と通信をするときに用いられる通信機器である。通信部14によって、コントローラ10の外部に位置する情報端末16とコントローラ10が通信可能となっている。
情報端末16は、例えば、パソコンである。しかしながら、情報端末16は、パソコン以外の情報端末であってもよく、例えば、携帯端末であってもよい。「携帯端末」は、例えば、スマートフォンを含む携帯電話、タブレット又はノートパソコン等、携帯可能な情報端末を示している。通信部14によって農地Nから離れた場所に位置する情報端末16からコントローラ10を動作させて太陽光パネルPの傾斜角度θを調整できる。
情報端末16は、例えば、パソコンである。しかしながら、情報端末16は、パソコン以外の情報端末であってもよく、例えば、携帯端末であってもよい。「携帯端末」は、例えば、スマートフォンを含む携帯電話、タブレット又はノートパソコン等、携帯可能な情報端末を示している。通信部14によって農地Nから離れた場所に位置する情報端末16からコントローラ10を動作させて太陽光パネルPの傾斜角度θを調整できる。
例えば、コントローラ10は、農地Nの気温D2から農地Nで栽培される農作物Cに高温障害が生じるか否かを判定する高温障害判定部15を有する。本開示において、「高温障害」とは、高温障害そのもののみではなく、温度障害一般を含みうる。例えば、高温障害判定部15は、農地Nの気温D2が一定時間以上一定値以上である場合に農作物Cに高温障害が生じると判定する。高温障害判定部15は、例えば、図4に示されるように、農作物Cの種類ごとに高温障害となる気温閾値及び時間閾値を示す高温障害判定表Hを有する。
気温閾値は、農作物Cに高温障害が生じる気温を示している。気温閾値以上である状態が当該時間閾値以上続くと農作物Cに高温障害が生じうる。高温障害判定部15は、農地Nの気温と高温障害判定表Hの気温閾値とを比較すると共に、気温閾値以上である時間が時間閾値以上継続しているか否かを判定する。そして、高温障害判定部15は、農地Nの気温が気温閾値以上であって、且つ当該気温閾値以上である状態が時間閾値以上継続していると判定したときに、農作物Cに高温障害が生じると判定する。例えば、高温障害判定部15は、農地Nの気温が34℃以上である状態が7時間以上継続していると判定したときに、農作物Aに高温障害が生じると判定する。また、高温障害判定部15は、農地Nの気温が30℃以上である状態が12時間以上継続していると判定したときに、農作物Bに高温障害が生じると判定する。
図1及び図2に示されるように、制御部11は、高温障害判定部15によって高温障害が生じると判定され、且つ明るさ検知部8によって夜間でない(昼間である)と判定されたときに、パネル調整器4を制御して農地Nに当たる影Sの面積を大きくする。例えば、制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、太陽光パネルPの傾斜角度θを大きくして農地Nの影Sの面積をN倍にする(Nは正の実数)。Nの値は、一例として、1.5以上且つ2.0以下である。制御部11は、高温障害判定部15によって高温障害が生じないと判定され、且つ明るさ検知部8によって夜間でないと判定されたときに、パネル調整器4を制御して農地Nに当たる影Sの面積を小さくしてもよい。
上記では、制御部11が太陽光パネルPの傾斜角度θを大きくして農地Nの影Sの面積を大きくする例について説明した。制御部11が傾斜角度θを大きくする場合、影Sの面積を大きくすると共に太陽光パネルPの発電量を増やすことが可能となる。しかしながら、太陽光パネルを用いて農地Nの影Sの面積を大きくする方法は、上記の例に限られない。図5(a)、図5(b)及び図5(c)のそれぞれは、太陽光パネルの変形例を示している。
例えば、図5(a)に示されるように、複数のシリンダQ1を有する太陽光パネルQを用いて影Sの面積を大きくしてもよい。太陽光パネルQは、軸3Aと、軸3Aから延びる一対のシリンダQ1と、各シリンダQ1の軸3Aとは反対側に固定された一対の第1板状部材Q2と、軸3A、一対のシリンダQ1、及び一対の第1板状部材Q2の一部を収容する第2板状部材Q3とを有する。各シリンダQ1はパネル調整器4の駆動によって伸縮する。
例えば、シリンダQ1の伸縮によって第2板状部材Q3に対する第1板状部材Q2の突出量が可変となっている。例えば、制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、シリンダQ1を伸長させて第2板状部材Q3に対する第1板状部材Q2の突出量を増やすことによって農地Nの影Sの面積を大きくしてもよい。
例えば、図5(b)に示されるように、スライド式の太陽光パネルRを用いて影Sの面積を大きくしてもよい。太陽光パネルRは、軸3Bと、軸3Bから延在する第1板状部材R1と、第1板状部材R1の主面R2に対してスライドする一対の第2板状部材R3とを有する。各第2板状部材R3は、複数のスライドレールR4のそれぞれを介して第1板状部材R1に支持されている。太陽光パネルRでは、第1板状部材R1に対して第2板状部材R3がスライドすることによって、第1板状部材R1に対する各第2板状部材R3の突出量が可変とされている。
例えば、制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、各第2板状部材R3を第1板状部材R1に対してスライドさせて第1板状部材R1に対する各第2板状部材R3の突出量を増やすことによって農地Nの影Sの面積を大きくしてもよい。また、図5(b)の例では、第2板状部材R3及びスライドレールR4が太陽光パネルPの受光面の反対側の面に設けられている。従って、太陽光パネルPの発電への影響を抑制できる。
例えば、図5(c)に示されるように、ヒンジ機構X1を有する太陽光パネルXを用いて影Sの面積を大きくしてもよい。太陽光パネルXは、一対のヒンジ機構X1と、軸3Cを含む第1板状部材X2と、各ヒンジ機構X1を介して第1板状部材X2に支持された一対の第2板状部材X3とを備える。一対のヒンジ機構X1は、第1板状部材X2の受光面X5とは反対側の面に固定されており、第1板状部材X2に対して各第2板状部材X3を回動可能に支持する。このように、一対のヒンジ機構X1及び一対の第2板状部材X3が受光面X5とは反対側に設けられることにより、太陽光パネルPへの発電の影響を抑制できる。パネル調整器4は、ヒンジ機構X1を制御して各第2板状部材X3の第1板状部材X2に対する角度Yを変更する。
例えば、制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに角度Yを大きくするように各第2板状部材X3を回転させる。例えば、制御部11は、風測定器7によって測定された風量D3が風量閾値以上であるときに、角度Yを小さくして太陽光パネルXの風を受ける部分の面積を低減させてもよい。この場合、風による過大な応力が太陽光パネルXにかかることを抑制できる。
図1に示されるように、例えば、太陽光発電システム1は、送風機9を備える。例えば、農地Nには複数の送風機9が設けられ、各送風機9は支持構造2に固定されている。例えば、送風機9は、一対の太陽光パネルPの間に配置されている。一例として、各送風機9は支柱2bと梁部材2cの交差部分に設けられる。送風機9からは下方(又は斜め下方)に風Wが吹き出される。送風機9からの風Wによって農地Nの気温が下がり、農作物Cにおける高温障害の発生が抑制される。
図1及び図2に示されるように、制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、送風機9を制御して農地Nに空気(風W)を送り込む。例えば、制御部11は、高温障害判定部15によって高温障害が生じると判定され、且つ明るさ検知部8によって夜間であると判定されたときに、パネル調整器4を制御して農地Nにおける放射冷却が促進されるように太陽光パネルPを傾ける。よって、夜間では太陽光パネルPを傾けて農地Nからの熱が放出される。すなわち、パネル調整器4を制御して農地Nからより多くの熱が放出されるように太陽光パネルPを傾ける。一例として、農地Nの上方に位置する太陽光パネルPの面積を低減させるために太陽光パネルPの受光面P1が鉛直方向に沿って延在するように太陽光パネルPの傾きがパネル調整器4によって制御されてもよい。この場合、農地Nにおける放射冷却を一層促進させることが可能となる。また、制御部11は、風測定器7によって測定された風向きD4に受光面P1が平行となるように太陽光パネルPを傾けてもよい。この場合、農地Nにより多くの風を入り込ませることが可能となる。
制御部11は、高温障害判定部15によって高温障害が生じると判定され、且つ明るさ検知部8によって夜間であると判定されたときに、送風機9を制御して送風機9から農地Nに風Wを吹き込ませてもよい。この場合も農地Nにより多くの風Wを入り込ませることが可能となる。例えば、制御部11は、風測定器7によって測定された風量D3が風量閾値以上であるときに、パネル調整器4を制御して太陽光パネルPの太陽光Lの受光面P1が風測定器7によって測定された風向きD4と平行になるにように太陽光パネルPを傾ける。風量閾値は、風によって太陽光パネルPに付与される応力が過大となって太陽光パネルPに損傷が生じる可能性が出てくる風量の閾値である。本実施形態では、3m以上且つ4m以下である高い位置に太陽光パネルPが取り付けられても、太陽光パネルPの応力が過大となることを抑制できる。
例えば、太陽光発電システム1は、農地Nに水を散布する水散布ノズル31、及び農地Nに農薬肥料を散布する農薬肥料散布ノズル32を有するノズルユニット30を備える。図6は、ノズルユニット30を模式的に示す図である。図1、図2及び図6に示されるように、太陽光発電システム1は複数のノズルユニット30を備え、各ノズルユニット30は支持構造2に固定されている。例えば、各ノズルユニット30は梁部材2cに固定されている。一例として、ノズルユニット30は一対の太陽光パネルPの間に配置されている。
ノズルユニット30は、水散布ノズル31と、農薬肥料散布ノズル32とを備える。例えば、水散布ノズル31は制御部11による制御を受けて自動的に水Eを散布し、農薬肥料散布ノズル32は制御部11による制御を受けて自動的に農薬肥料Fを散布する。水散布ノズル31は農地Nに水Eを散布するノズルである。農薬肥料散布ノズル32は農地Nに農薬肥料Fを散布するノズルである。本開示において「農薬肥料」とは、農薬及び肥料の少なくともいずれかを示している。「農薬」は、農作物Cの生長促進剤、又は薬剤である。「肥料」は、農作物Cの生育を促進する物質を示しており、例えば、窒素、リン及びカリウムの少なくともいずれかを含む。「肥料」は、無機肥料であってもよいし、有機肥料であってもよい。農薬肥料散布ノズル32から散布される農薬肥料Fの種類は変更可能とされていてもよい。農薬肥料Fの種類は、農作物Cの種類毎に変更されてもよい。
次に、本実施形態に係る高温障害抑制方法について図7を参照しながら説明する。図7は、本実施形態に係る高温障害抑制方法の工程の一例を示すフローチャートである。まず、農地Nが夜間であるか否かを明るさ検知部8が判定する(夜間であるか否かを判定する工程、ステップS1)。例えば、明るさ検知部8の受光素子が受光している光の光量が一定値以上であるか否かを明るさ検知部8の判定部が判定し、当該判定の結果から農地Nが夜間であるか否かが判定される。当該判定の結果は、コントローラ10に出力される。
農地Nが夜間でないと明るさ検知部8が判定した場合(ステップS1においてNO)、農地Nの気温D2が気温閾値以上であるか否かをコントローラ10が判定する(農地の気温が気温閾値以上であるか否かを判定する工程、ステップS2)。具体的には、気温D2が気温閾値以上である時間が時間閾値以上継続しているか否かをコントローラ10の高温障害判定部15が判定する。
農地Nの気温D2が気温閾値以上でないとコントローラ10が判定した場合(ステップS2においてNO)、一連の工程が完了する。農地Nの気温D2が気温閾値以上であるとコントローラ10が判定した場合(ステップS2においてYES)、制御部11がパネル調整器4を駆動して影Sを大きくするように太陽光パネルPを稼動させる(影を大きくするように太陽光パネルを稼動させる工程、ステップS3)。このとき、制御部11が例えば傾斜角度θを大きくするように各太陽光パネルPを回転させ、その後、一連の工程が完了する。
一方、農地Nが夜間であると明るさ検知部8が判定した場合(ステップS1においてYES)、ステップS2と同様、農地Nの気温D2が気温閾値以上であるか否かをコントローラ10が判定する(農地の気温が気温閾値以上であるか否かを判定する工程、ステップS4)。なお、ステップS2(農地が夜間でない場合)で用いる気温閾値と、ステップS4(農地が夜間である場合)で用いる気温閾値とは、互いに異なっていてもよい。
農地Nの気温が気温閾値以上でないとコントローラ10が判定した場合(ステップS4においてNO)、一連の工程が完了する。農地Nの気温D2が気温閾値以上であるとコントローラ10が判定した場合(ステップS4においてYES)、制御部11がパネル調整器4を駆動し、農地Nにより多くの風が入り込むように太陽光パネルPを傾ける(農地により多くの風が入り込むように太陽光パネルを傾ける工程、ステップS5)。このとき、風測定器7によって測定された風向きD4に受光面P1が平行になるように各太陽光パネルPが傾けられる。以上の工程を経て一連の工程が完了する。
次に、本実施形態に係る太陽光発電システム1及び高温障害抑制方法から得られる作用効果について説明する。太陽光発電システム1は、農地Nの気温D2から農地Nで栽培される農作物Cに高温障害が生じるか否かを判定する高温障害判定部15と、農地Nが夜間であるか否かを検知する明るさ検知部8とを備える。太陽光発電システム1は制御部11を備え、制御部11はパネル調整器4による影Sの大きさの調整を制御する。制御部11は、高温障害が生じると判定され、且つ明るさ検知部8によって農地Nが夜間でないと判定されたとき、農地Nに形成される影Sの面積を大きくするように太陽光パネルPを稼動する。従って、高温障害が生じると判定され且つ農地Nが夜間でないときには農地Nの影Sの面積が大きくなるので、農地Nの農作物Cの高温障害を抑制できる。
制御部11は、高温障害が生じると判定され、且つ明るさ検知部8によって農地Nが夜間であると判定されたとき、農地Nにおける放射冷却が促進されるように太陽光パネルPを傾ける。農地Nにおける放射冷却が促進されることにより、夜間に高温の空気が農地Nに溜まることを抑制できるので、夜間における高温障害の発生を抑制できる。すなわち、夜間には農地Nの放熱性を高めて高温障害を抑制することが可能となる。従って、昼間だけでなく夜間にも高温障害の発生を抑制できるので、太陽光パネルPで集電を行いつつ農作物Cの収穫量を増やすことができる。
本実施形態において、太陽光発電システム1は、農地Nに水Eを撒く水散布ノズル31を備える。制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、水散布ノズル31を制御して水散布ノズル31から農地Nに水Eを散布する。従って、高温障害が生じると判定されたときに水散布ノズル31から農地Nに水Eが散布されるので、高温のときであっても農作物Cの高温障害を抑制できる。更に、水Eが散布されることによって農地Nの雰囲気温度を下げることができるので、太陽光パネルPの温度を下げて太陽光パネルPの発電量を増やすことができる。
本実施形態において、太陽光発電システム1は、農地Nに農薬肥料Fを撒く農薬肥料散布ノズル32を備える。制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、農薬肥料散布ノズル32を制御して農薬肥料散布ノズル32から農地Nに農薬肥料Fを散布する。よって、高温障害が生じると判定されたときに農薬肥料散布ノズル32から農薬肥料Fが散布されるので、高温障害によって農作物Cが枯れることを抑制できる。
本実施形態において、太陽光発電システム1は複数のノズルユニット30を備え、各ノズルユニット30は支持構造2(梁部材2c)に固定されている。従って、水又は農薬を散布するブームスプレーヤ及び大型トラクター等を不要とすることができる。更に、本実施形態では、水散布ノズル31が自動的に水を散布し、農薬肥料散布ノズル32が自動的に農薬肥料を散布するので、省力化にも寄与する。
本実施形態において、太陽光発電システム1は、農地Nの風量D3及び風向きD4を測定する風測定器7を備える。制御部11は、風測定器7によって測定された風量D3が風量閾値以上であるときに、パネル調整器4を制御して太陽光パネルPの太陽光Lの受光面P1が風測定器7によって測定された風向きD4と平行になるように太陽光パネルPを傾ける。よって、風量D3が風量閾値以上であるときに、太陽光パネルPの受光面P1がそのときの風の風向きD4と平行になるように太陽光パネルPが傾けられる。従って、風が強いときに太陽光パネルPの受光面P1が当該風の風向きD4と平行になるように太陽光パネルPが傾けられるので、太陽光パネルPへの風の応力が増大することを抑制できる。
本実施形態において、太陽光発電システム1は、農地Nに風Wを送り込む送風機9を備える。制御部11は、高温障害判定部15によって高温障害が生じると判定されたときに、送風機9を制御して農地Nに風Wを送り込む。よって、高温障害が生じると判定されたときに送風機9から農地Nに風Wが送り込まれるので、農地Nの農作物Cに高温障害が生じることを抑制できる。
以上、本開示に係る太陽光発電システムの実施形態について説明した。しかしながら、本開示に係る太陽光発電システムは、前述した実施形態に限定されるものではなく、請求の範囲に示され、請求の範囲に記載された要旨の範囲内において適宜変更可能である。すなわち、本開示に係る太陽光発電システムの各部の構成、機能、形状、大きさ、材料、数及び配置態様は前述した実施形態に限定されず適宜変更可能である。
例えば、前述の実施形態では受光素子と判定部を備える明るさ検知部8であって、受光素子の受光量から判定部が夜間であるか否かを判定する明るさ検知部8について説明した。しかしながら、明るさ検知部は、受光素子及び判定部を備えないものであってもよい。例えば、明るさ検知部は、年月日D5と時間D6から得られる日の出日の入りの時刻と、現時刻とを比較して、農地Nが夜間であるか否かを判定してもよい。
例えば、前述の実施形態では、水散布ノズル31が自動で水Eを農地Nに散布し、農薬肥料散布ノズル32が自動で農薬肥料Fを農地Nに散布する例について説明した。しかしながら、水散布ノズル31は手動で(例えば、作業者がボタンを押すことによって)水Eを農地Nに散布してもよいし、農薬肥料散布ノズル32は手動で農薬肥料Fを農地Nに散布してもよい。また、水散布ノズル31が水Eを散布するタイミング、及び農薬肥料散布ノズル32が農薬肥料Fを散布するタイミングが予め定められており、制御部11が予め定められたタイミングで水散布ノズル31及び農薬肥料散布ノズル32のそれぞれを制御して水E及び農薬肥料Fが農地Nに散布されてもよい。
例えば、前述の実施形態では、気温D2によって高温障害判定部15が高温障害であるか否かを判定し、高温障害判定部15が高温障害であると判定したときに制御部11が影Sを大きくする制御を行う例について説明した。しかしながら、制御部11は、更に、高温障害判定部15による判定結果に農作物Cの生育ステージを加味して影Sの面積を調整してもよい。例えば、生育期間が1年の1/3以下である農作物Cが農地Nで栽培されている場合に制御部11が当該生育期間のみ影Sの面積を小さくする制御を行ってもよい。また、光飽和点が光飽和点D10以上であって太陽光Lが必要でないときに制御部11が傾斜角度θを90°とするように太陽光パネルPの傾きを制御してもよい。
前述の実施形態では、高温障害が生じると判定され、且つ明るさ検知部8によって農地Nが夜間であると判定されたとき、農地Nにより多くの風が入り込むように太陽光パネルPを傾ける例について説明した。しかしながら、高温障害判定部15が高温障害が生じないと判定し、且つ気温D2が一定温度以下であるときに制御部11は傾斜角度θを大きくする制御を行ってもよい。この場合、農作物Cの保温が必要な時期に農作物Cを保温して降霜を防止すると共に、農作物Cの生育促進効果を高め、農作物Cの温度管理が可能となる。更に、本開示では、高温障害以外の事象を判定してもよい。例えば、低温高湿が生じるか否かがコントローラ10によって判定されてもよく、この場合、農地Nが高温乾燥するように太陽光パネルPの傾きが制御されることにより、農作物Cが稲の場合、稲の稲熱病の発生を抑制できる。更に、農作物Cが稲であって低温多湿が生じるとコントローラ10によって判定されたときに、農薬肥料散布ノズル32から稲熱病対策の農薬が散布されてもよい。
例えば、前述の実施形態では、農作物Cが米であり、農地Nが田圃である例について説明した。しかしながら、農作物Cは米以外のものであってもよく、農地Nは田圃以外の農地(例えば畑)であってもよい。
1…太陽光発電システム、2…支持構造、2b…支柱、2c…梁部材、3,3A,3B,3C…軸、4…パネル調整器、5…日射計、6…温度計、7…風測定器、8…明るさ検知部、9…送風機、10…コントローラ、11…制御部、12…データベース、14…通信部、15…高温障害判定部、16…情報端末、20…ネットワーク、30…ノズルユニット、31…水散布ノズル、32…農薬肥料散布ノズル、C…農作物、D1…日射量、D2…気温、D3…風量、D4…風向き、D5…年月日、D6…時間、D7…軌跡、D8…影情報、D9…農作物、D10…光飽和点、D11…気象情報、D12…発電量、E…水、F…農薬肥料、H…高温障害判定表、L…太陽光、N…農地、P,Q,R,X…太陽光パネル、P1…受光面、Q1…シリンダ、Q2…第1板状部材、Q3…第2板状部材、R1…第1板状部材、R2…主面、R3…第2板状部材、R4…スライドレール、S…影、T…太陽、W…風、X1…ヒンジ機構、X2…第1板状部材、X3…第2板状部材、X5…受光面、Y…角度、Z…テーブル、θ…傾斜角度。
Claims (5)
- 農地の上方に設置される太陽光パネルを備えた太陽光発電システムであって、
前記農地の気温から前記農地で栽培される農作物に高温障害が生じるか否かを判定する高温障害判定部と、
前記太陽光パネルを稼動して前記農地に形成される影の大きさを調整するパネル調整器と、
夜間であるか否かを検知する明るさ検知部と、
前記パネル調整器による前記影の大きさの調整を制御する制御部と、
を備え、
前記制御部は、
前記高温障害判定部によって高温障害が生じると判定され、且つ前記明るさ検知部によって夜間でないと判定されたときに、前記パネル調整器を制御して前記農地に形成される影の面積を大きくするように前記太陽光パネルを稼動し、
前記高温障害判定部によって高温障害が生じると判定され、且つ前記明るさ検知部によって夜間であると判定されたときに、前記パネル調整器を制御して前記農地における放射冷却が促進されるように前記太陽光パネルを傾ける、
太陽光発電システム。 - 前記農地に水を撒く水散布ノズルを備え、
前記制御部は、前記高温障害判定部によって高温障害が生じると判定されたときに、前記水散布ノズルを制御して前記水散布ノズルから前記農地に水を散布する、
請求項1に記載の太陽光発電システム。 - 前記農地に農薬肥料を撒く農薬肥料散布ノズルを備え、
前記制御部は、前記高温障害判定部によって高温障害が生じると判定されたときに、前記農薬肥料散布ノズルを制御して前記農薬肥料散布ノズルから前記農地に農薬肥料を散布する、
請求項1又は2に記載の太陽光発電システム。 - 前記農地の風量及び風向きを測定する風測定器を備え、
前記制御部は、前記風測定器によって測定された風量が風量閾値以上であるときに、前記パネル調整器を制御して前記太陽光パネルの太陽光の受光面が前記風測定器によって測定された風向きと平行になるように前記太陽光パネルを傾ける、
請求項1~3のいずれか一項に記載の太陽光発電システム。 - 前記農地に空気を送り込む送風機を備え、
前記制御部は、前記高温障害判定部によって高温障害が生じると判定されたときに、前記送風機を制御して前記農地に空気を送り込む、
請求項1~4のいずれか一項に記載の太陽光発電システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/039350 WO2023073779A1 (ja) | 2021-10-25 | 2021-10-25 | 太陽光発電システム |
JP2023555905A JPWO2023073779A1 (ja) | 2021-10-25 | 2021-10-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/039350 WO2023073779A1 (ja) | 2021-10-25 | 2021-10-25 | 太陽光発電システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023073779A1 true WO2023073779A1 (ja) | 2023-05-04 |
Family
ID=86157530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/039350 WO2023073779A1 (ja) | 2021-10-25 | 2021-10-25 | 太陽光発電システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023073779A1 (ja) |
WO (1) | WO2023073779A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016067272A (ja) * | 2014-09-30 | 2016-05-09 | ダイキン工業株式会社 | 太陽光発電システム |
JP2017012056A (ja) * | 2015-06-30 | 2017-01-19 | 株式会社デンソー | 制御装置及び農業用ハウス |
JP3209221U (ja) * | 2016-12-15 | 2017-03-09 | 有限会社グリテックスインターナショナルリミテッド | 光源追尾装置 |
JP2017145565A (ja) * | 2016-02-15 | 2017-08-24 | 株式会社日立システムズ | 太陽光発電システム及び方法 |
JP2018099008A (ja) * | 2016-12-16 | 2018-06-21 | 株式会社グローシステム | 植物育成用ソーラーパネル太陽追尾装置 |
JP2019198268A (ja) * | 2018-05-16 | 2019-11-21 | 株式会社テヌート | 栽培施設 |
JP2020065456A (ja) * | 2018-10-22 | 2020-04-30 | 株式会社Ihi | 植物の栽培施設の管理制御装置および管理制御方法 |
-
2021
- 2021-10-25 WO PCT/JP2021/039350 patent/WO2023073779A1/ja active Application Filing
- 2021-10-25 JP JP2023555905A patent/JPWO2023073779A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016067272A (ja) * | 2014-09-30 | 2016-05-09 | ダイキン工業株式会社 | 太陽光発電システム |
JP2017012056A (ja) * | 2015-06-30 | 2017-01-19 | 株式会社デンソー | 制御装置及び農業用ハウス |
JP2017145565A (ja) * | 2016-02-15 | 2017-08-24 | 株式会社日立システムズ | 太陽光発電システム及び方法 |
JP3209221U (ja) * | 2016-12-15 | 2017-03-09 | 有限会社グリテックスインターナショナルリミテッド | 光源追尾装置 |
JP2018099008A (ja) * | 2016-12-16 | 2018-06-21 | 株式会社グローシステム | 植物育成用ソーラーパネル太陽追尾装置 |
JP2019198268A (ja) * | 2018-05-16 | 2019-11-21 | 株式会社テヌート | 栽培施設 |
JP2020065456A (ja) * | 2018-10-22 | 2020-04-30 | 株式会社Ihi | 植物の栽培施設の管理制御装置および管理制御方法 |
Non-Patent Citations (1)
Title |
---|
NAGASHIMA, AKIRA: "Theory and technology of solar sharing to support new forms of farm management", AGRICULTURAL MANAGEMENT, vol. 26, no. 12 (273), 15 December 2018 (2018-12-15), pages 16 - 21, XP009546352, ISSN: 1881-4727 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023073779A1 (ja) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111094866B (zh) | 可安装在农业设备上的太阳能发电设备 | |
AU2015237855B2 (en) | Electricity generation method adapted to crops | |
US20100005712A1 (en) | Cover element for greenhouses or the like | |
KR102047532B1 (ko) | 농업용지에서 태양광 발전 시 그늘 지역의 작물 생육을 위한 채광시스템 | |
US20240235462A1 (en) | Solar energy system and method for controlling shade in an orchard | |
CN114556778A (zh) | 执行果树作物种植棚功能的太阳能发电系统 | |
US20220151163A1 (en) | Photovoltaic structures for use in agriculture farms | |
Okada et al. | Crop production and energy generation in a greenhouse integrated with semi-transparent organic photovoltaic film | |
CA2695754A1 (en) | Solar energy collection structure | |
WO2023073779A1 (ja) | 太陽光発電システム | |
US11812710B2 (en) | Arrangement of photovoltaic panels and system for optimizing angular positioning of photovoltaic panels in a greenhouse | |
US20230275541A1 (en) | Single axis solar tracker management method and solar plant implementing said method | |
Giacomelli | Engineering principles impacting high-tunnel environments | |
JP2020184987A (ja) | ソーラーシェアリングシステム | |
KR102272495B1 (ko) | 과수원용 태양광 발전 시스템 | |
KR102279501B1 (ko) | 반사경을 이용한 식물의 재배구조 | |
US20230413741A1 (en) | Arrangement of photovoltaic panels and system for optimizing angular positioning of photovoltaic panels in a greenhouse | |
IL281407A (en) | Arrangement of photovoltaic panels and a system for optimizing the angular placement of photovoltaic panels inside a greenhouse | |
US20230075132A1 (en) | System for moderating energy absorption at the earth's surface with a programmable forcing network of climate control panels | |
US11980146B2 (en) | Agricultural photovoltaic structure with controlled cooling | |
US20240106387A1 (en) | Photovoltaic agricultural installation | |
Torres et al. | The Photovoltaic Greenhouse as Energy Hub for a More Sustainable Agriculture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21962329 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023555905 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21962329 Country of ref document: EP Kind code of ref document: A1 |