WO2023073265A1 - Dispositivo propulsor - Google Patents

Dispositivo propulsor Download PDF

Info

Publication number
WO2023073265A1
WO2023073265A1 PCT/ES2022/070686 ES2022070686W WO2023073265A1 WO 2023073265 A1 WO2023073265 A1 WO 2023073265A1 ES 2022070686 W ES2022070686 W ES 2022070686W WO 2023073265 A1 WO2023073265 A1 WO 2023073265A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion device
perimeter
valve
stator
outlet
Prior art date
Application number
PCT/ES2022/070686
Other languages
English (en)
French (fr)
Inventor
Jordi MONFORT SEDEÑO
Original Assignee
Monfort Sedeno Jordi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monfort Sedeno Jordi filed Critical Monfort Sedeno Jordi
Priority to ES202490025A priority Critical patent/ES2975839A2/es
Priority to EP22886200.9A priority patent/EP4424587A1/en
Publication of WO2023073265A1 publication Critical patent/WO2023073265A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type

Definitions

  • the object of the present invention is a propulsion device that makes it possible to rapidly vary the direction of thrust for propelling boats.
  • the propulsion device object of the present invention can facilitate the implementation of autonomous aquatic vehicles USV (Unmanned Surface Vehicle) in closed environments such as ports or perform precision maneuvers.
  • USV Unmanned Surface Vehicle
  • the propulsion device object of the present invention has application in the field of Naval Engineering and, more specifically, in the industry dedicated to the design, manufacture, commercialization and exploitation of propulsion devices for various types of vessels, both surface and underwater.
  • Voith-Schneider type naval thrusters are known in the state of the art. These thrusters comprise a set of rotating propellers or blades mounted on a disc. Above the disc is the motor that produces the translation movement of the propellers (through the rotation of the disc). Also, above the disc is a set of two perpendicular pistons, attached to a set of connecting rods that allow the coordinated turning of the propellers, allowing them to vary the angle of attack over the water in their translation movement. By means of this variation of the angle of attack, an impulsion of the water is produced that moves through the propellers in the desired direction, at any angle from 0 e to 360 e and, therefore, it is possible to steer the ship and propel it and vahar your address through a single device.
  • the Voith-Schneider propeller presents a limitation derived from the cycloidal movement of the propellers.
  • the intrados and the extrados of each blade invert their position twice per revolution, going from being inside to outside and vice versa; this translates into a cavitation tendency that forces the propeller to rotate with a limited RPM value and develop a lower navigation speed.
  • This situation produces a practical limitation of the speed of rotation of the propeller, if cavitation effects on the extrados of the propeller located downstream in the propulsion direction are to be avoided.
  • a propellant of the type described in document US 2010/0267295 A1 is also currently known. It is an azimuthal thruster that allows the jet to be directed along the 360 e of its perimeter.
  • a drawback of this type of thruster is that, in order to vary the thrust direction by 180 ° , the thrust jet must pass through all intermediate positions/angles. This can cause inaccuracies when maneuvering a vessel with this type of thruster, which may require additional maneuvers to correct the vessel's course.
  • the present invention relates to a propelling device.
  • the propelling device object of the present invention comprises a rotor, a stator, an outer casing, a first base with a central inlet opening configured for fluid admission, and an outlet opening configured for expulsion of propellant fluid in the form of a an outlet jet.
  • the propulsion device object of the present invention presents a novel configuration that avoids the drawbacks mentioned with respect to the US 2010/0267295 A1 propellant.
  • the outlet opening is located along the entire perimeter of the propulsion device.
  • the propulsion device object of the present invention comprises:
  • a central valve configured, by means of tilting means, to tilt with a determined direction and angle of tilting, thus regulating a flow rate of a fluid inlet jet and a direction of the fluid inlet jet towards a certain sector of the device propellant, and;
  • a perimeter valve configured, by means of tilting means, to tilt with a determined direction and angle of tilting, thus regulating a flow rate of the fluid outlet jet and a direction of the fluid outlet jet towards a certain sector of the opening perimeter exit.
  • the propulsion device object of the present invention does not need to redirect an exit opening every time the thrust/propulsion direction is to be changed, passing through each and every one of the positions along the arc. of circumference that separates the initial direction of propulsion from the desired direction of propulsion.
  • the propelling device object of the present invention tilt the central valve and the perimeter valve to regulate both the inlet and outlet flow rates, as well as the directions of the inlet and outlet jets, towards the desired sector of the propelling device.
  • the means for tilting the central valve comprise a piston mechanism configured to cause a lever to be tilted according to a determined angle of inclination and in a determined direction, where the lever is connected to the central valve.
  • the tilting means of the perimeter valve also comprise the aforementioned piston mechanism and the lever.
  • This piston actuation mechanism has similarities to the aforementioned “Voith Schneider propeller", where a piston mechanism is also used. However, in the case of the "Voith Schneider propeller", this piston mechanism, which allows the direction of propulsion to be varied (as in the propulsion device object of the present invention) is used to move a set of propellers, generating the drawbacks already mentioned.
  • the perimeter valve is connected to the lever by means of a dome-shaped structure.
  • the perimeter valve is connected to the central valve by means of arms.
  • the drive device is configured so that the path of the fluid between the inlet opening and the peripheral outlet opening first passes through the rotor and then through the stator.
  • the stator may be arranged around the rotor, and additionally may also be arranged projecting in an axial direction parallel to a longitudinal main axis of the propulsion device, beyond a longitudinal dimension of the rotor.
  • the stator may be arranged beyond a longitudinal dimension of the rotor, along an axial direction parallel to a main longitudinal axis of the propulsion device.
  • the stator is arranged on the rotor overlapping the rotor in the aforementioned longitudinal/axial direction. This configuration allows the rotor blades to have a greater surface area, which gives the propulsion device greater power.
  • the rotor and/or the stator may comprise vanes with variable pitch.
  • the perimeter valve comprises a flap arranged in a radial direction towards the interior of the propulsion device.
  • the perimeter valve is configured to respectively regulate a first percentage of stator outflow that is directed toward the perimeter outlet opening and a second percentage of stator outflow that is directed through a return cavity, back toward the rotor.
  • the drive device may comprise an annular outlet duct connecting an outlet of the stator with the peripheral outlet opening of the drive device.
  • the annular outlet duct can connect to the perimeter outlet opening by means of an elbow-shaped geometry.
  • the outer casing of the propulsion device is flush with the first base (or bottom base of the propulsion device). This configuration makes it possible to attenuate the possible dispersion of the exit jet of the propelling device.
  • the central valve of the propulsion device has a convex curved geometry. This makes it possible to facilitate, by the Coanda effect, the directing of the inlet flow through the inlet opening, directly towards the rotor inside the propulsion device, since the curvature of the central valve guides the inlet jet towards the rotor.
  • the propulsion device object of the present invention is a high-precision naval thruster, specially developed to facilitate the automation of boats (with special application for USVs (Unmanned Surface Vehicles) and UUVs (Unmanned Underwater Vehicles), which improves the operability of all types of vessels operating in the aquatic environment.
  • USVs Unmanned Surface Vehicles
  • UUVs Unmanned Underwater Vehicles
  • Figure 1 Shows a simplified and schematic view in lower perspective of the propelling device.
  • Figure 2 Shows a schematic sectional view of a first embodiment of the propulsion device, with the central valve and the perimeter valve in rest position.
  • Figure 3a Shows a schematic view of the propulsion device of Figure 2, where the central valve and the perimeter valve are shown with a minimum degree of inclination.
  • Figure 3b Shows a schematic view of the propulsion device of Figure 2, where the central valve and the perimeter valve are shown with an intermediate degree of inclination.
  • Figure 3c Shows a schematic view of the propulsion device of Figure 2, where the central valve and the perimeter valve are shown with a maximum degree of inclination.
  • Figure 4 Shows a schematic sectional view of a second embodiment of the drive device, with the central valve and the perimeter valve in rest position.
  • Figure 5 Shows a simplified and schematic lower view, partly sectioned, of the rotor and the stator of the propulsion device, according to the first embodiment or the second embodiment of the propulsion device.
  • Figure 6 Shows a schematic sectional view of a third embodiment of the propulsion device, with the central valve and the perimeter valve in rest position.
  • Figure 7 Shows a schematic sectional view of a fourth embodiment of the propulsion device, with the central valve and the perimeter valve in rest position.
  • Figure 8 Shows a simplified and schematic bottom view, partly sectioned, of the rotor and the stator of the propulsion device, according to the third embodiment or the fourth embodiment of the propulsion device.
  • Figure 9a Shows a bottom view of the propelling device, according to any of the embodiments, where fluid inlet and outlet flow lines are observed, corresponding to a minimum inclination of the lever and a minimum tilting of the central valve and the perimeter valve.
  • Figure 9b Shows a bottom view of the propulsion device, according to any of the embodiments, where fluid inlet and outlet flow lines are observed, corresponding to an intermediate inclination of the lever and an intermediate tilting of the central valve and the perimeter valve.
  • Figure 9c Shows a bottom view of the propelling device, according to any of the embodiments, where fluid inlet and outlet flow lines are observed, corresponding to a maximum inclination of the lever and a maximum tilting of the central valve and the perimeter valve.
  • Figure 10 Shows a simplified and schematic top view, partially sectioned, of the propulsion device where the drive mechanism of the central valve and the perimeter valve can be seen.
  • the present invention relates, as mentioned above, to a propulsion device.
  • the propelling device comprises a central fluid inlet opening (1) (or intake zone) and a peripheral fluid outlet opening (2) (or expulsion zone).
  • the central inlet opening (1) is located in the center of a first base (10) (or lower base, as represented in the Figures) of the propulsion device.
  • the perimeter outlet opening (2) is preferably located on the perimeter of said first base (10) of the propulsion device.
  • the propulsion device comprises an eminently cylindrical geometry, with a main axis (9) of radial symmetry perpendicular to the central inlet opening (1).
  • central valve (3) In correspondence with the central inlet opening (1), there is a central valve (3) with a disk-shaped geometry.
  • the central valve (3) is actuated by a lever (4) linked to a piston mechanism (5).
  • Figure 10 shows a top view of the propulsion device, where the outer casing (6) has been sectioned at the top, exposing the piston mechanism (5).
  • the lever (4) and the central valve (3) are connected through a ball joint (4') of the lever (4).
  • This ball joint (4') is connected to a fulcrum (17) or bearing, with respect to which the lever (4) can tilt, as an articulated joint between the ball joint (4') of the lever (4) and the fulcrum ( 17).
  • the lever (4) is actuated in different directions, which produces the tilting of the central valve (3) in any direction, and according to different degrees of inclination.
  • the direction and inclination in which the central valve (3) can be tilted is determined by the length by which the pistons (5) of the piston mechanism (5) extend or retract.
  • the piston mechanism (5) comprises at least two pistons (5) arranged in mutually perpendicular directions.
  • Figure 1 shows a simplified bottom perspective view of the propulsion device, according to any of the embodiments described in this document.
  • Figure 1 shows the propulsion device with its outer casing (6), its central inlet opening (1) (or intake area) and its perimeter outlet opening (2) (or ejection area). In correspondence with the inlet opening (1) the central valve (3) can be seen.
  • Figure 1 shows some flow lines that schematically show the main direction of the input flow and the output flow, when the piston mechanism (5) actuates the lever (4) according to a determined direction and with a determined Inclination angle.
  • Figure 2 schematically represents a sectional view of the propulsion device, according to a first embodiment thereof.
  • Figure 2 shows the perimeter valve (7) that includes a flap (8) that projects radially towards the center of the propulsion device.
  • the perimeter valve (7) is attached to the upper part of the lever (4) by means of a dome-shaped structure formed by a continuous surface or a network of dome-shaped ribs.
  • Figure 2 shows the drive device with the lever (4), the central valve (3) and the perimeter valve (7) in rest position, that is, with the lever (4) inclined 0 e with respect to the axis main (9) of the propulsion device.
  • the central valve (3) completely blocks the inlet opening (1) of the propelling device
  • the flap (8) of the perimeter valve (7) completely blocks the flow outlet through the outlet opening ( 2) perimeter.
  • Figure 3a shows the situation in which the central valve (3) of the propelling device (according to the first embodiment) begins to tilt, allowing the fluid to enter through the inlet opening (1).
  • the fluid enters the interior of the propulsion device through the inlet opening (1), it first passes through the rotor (14) and then through the stator (15).
  • stator (15) is located around the rotor (14), projecting above the rotor (14) moving away from the first base. (10) of the propulsion device.
  • Both the rotor (14) and the stator (15) are located between a base body (1 1 ) of the propulsion device and an internal armor (13) of the propulsion device.
  • the first base (10) of the propelling device is an exterior face of said base body (11) of the propelling device.
  • the fluid flow can be directed towards a return cavity (16), back towards the rotor (14), or towards an annular outlet duct (18) connected to the outlet opening. (2) perimeter.
  • the annular outlet duct (18) runs between a wall (12) of the base body (1 1 ) and the outer casing (6) of the propulsion device.
  • the annular outlet conduit (18) has a geometry substantially in the shape of a spherical or ellipsoidal crown truncated by two parallel planes.
  • the connection area between the annular outlet duct (18) and the perimeter outlet opening (2) has a geometry that forms a bend that forces the outlet flow of the propelling device to be directed centrifugally with respect to the main axis (9 ) of the drive device.
  • the propulsion device lacks an annular outlet duct (18) and the elbow-shaped connection area with the opening of exit (2) perimeter.
  • the perimeter outlet opening (2) is directly the area that is located between the flap (8) of the perimeter valve (7) and the wall (12) of the base body (11), thus being directly the outlet jet of the propulsion device the radial outlet of the stator (15).
  • the central valve (3) has started to tilt with a minimum tilt angle (which, in this case as an example, is assumed to correspond to a tilt of 10 e of the lever (4 ) with respect to the main axis (9) of the propulsion device).
  • a small amount of fluid flow begins to access the interior of the propelling device, towards a determined first sector (S1) of the propelling device (see left zone of Figure 3a), towards the rotor (14) of the propelling device.
  • the fluid After passing through the rotor (14), the fluid is ejected in all directions towards the stator (15).
  • the central valve (3) determines a main direction of the inlet flow towards the first sector (S1) of the propulsion device, also most of the outlet flow from the rotor (14) is directed towards the outside of the rotor. (14) and towards the stator (15) in correspondence with said first sector (S1) of the propulsion device.
  • FIG. 9a schematically shows the flow lines of the minimum outlet jet (corresponding to the minimum inclination of the lever (4) in Figure 3a) through the perimeter outlet opening (2), in an area corresponding to the first sector (S1) of the propulsion device.
  • the intake and expulsion in the propulsion device When it is desired to increase the magnitude or intensity of the propulsion produced by the propulsion device, the intake and expulsion in the propulsion device must be increased, thereby increasing the inflow and outflow. For this, it is necessary that the piston mechanism (5) produce a greater inclination of the lever (4) with respect to the main axis (9) of the propulsion device, which produces a greater tilting of the central valve (3) and of the perimeter valve (7).
  • Figure 3b represents a situation of opening or intermediate tilting of the central valve (3) and of the perimeter valve (7) (which, in this case as an example, is assumed to correspond to an inclination of 15 e of the lever ( 4) with respect to the main axis (9) of the propulsion device).
  • This situation produces that, in the area of the propulsion device corresponding to the first sector (S1), a greater proportion of the outgoing flow from the stator (15) enters, through the gap between the flap (8) of the perimeter valve (7) and the wall (12) of the base body (11), towards the annular outlet duct (18) and to the outside of the propelling device through the perimeter outlet opening (2).
  • Figure 9b shows schematically by means of flow lines the intermediate outlet jet (corresponding to the intermediate inclination of the lever (4) in Figure 3b) through the perimeter outlet opening (2), in an area corresponding to the first sector (S1) of the propulsion device.
  • Figure 3c represents a situation of maximum opening or tilting of the central valve (3) and the perimeter valve (7) (which, in this case as an example, is assumed to correspond to a 20 e inclination of the lever ( 4) with respect to the main axis (9) of the propulsion device).
  • This situation produces that, in the area of the propulsion device corresponding to the first sector (S1), practically all of the outgoing flow from the stator (15) enters, through the gap between the flap (8) of the perimeter valve (7) and the wall (12) of the base body (11), towards the annular outlet duct (18) and to the outside of the propelling device through the perimeter outlet opening (2).
  • Figure 9c shows schematically by means of flow lines the maximum outlet jet (corresponding to the maximum inclination of the lever (4) in Figure 3b) through the perimeter outlet opening (2), in an area corresponding to the first sector (S1) of the propulsion device.
  • the outer casing (6) of the propelling device be flush with the first base (10) of the propelling device, so that the annular outlet duct (18) forces to the flow leaving the stator (15) in sectors adjacent to the first sector (S1) to mix with the flow leaving the stator (15) in the first sector (S1), thereby correcting or attenuating the dispersion in the exit jet.
  • FIG 4 shows a second embodiment of the propelling device object of the present invention.
  • This second embodiment differs from the first embodiment in that the perimeter valve (7), instead of being attached to the upper part of the lever (4) by means of a dome-shaped structure, is attached by arms ( 19) to the central valve (3).
  • the piston mechanism (5) produces the inclination of the lever (4) and, in turn, the tilting of the central valve (3)
  • this tilting of the central valve (3) also produces the tilting of the central valve (3).
  • Figure 5 shows a sectional bottom view of the rotor (14) and the stator (15) of the propulsion device, according to the first embodiment and the second embodiment of the propulsion device. It can be seen that the rotor (14) is arranged inside the stator (15).
  • FIG. 6 shows a third embodiment of the propelling device object of the present invention.
  • This third embodiment is analogous to the first embodiment, but where the stator (15) is not located around the rotor (14), but only above the rotor (14).
  • FIG. 7 shows a fourth embodiment of the propelling device object of the present invention.
  • This fourth embodiment is analogous to the second embodiment, but where the stator (15) is not located around the rotor (14), but only above the rotor (14).
  • Figure 8 shows a sectioned bottom view of the rotor (14) and the stator (15) of the propulsion device, according to the third embodiment and the fourth embodiment of the propulsion device. It is observed that the rotor (14) overlaps the stator (15).
  • this arrangement of the rotor (14) with its blades having a larger area than in the first and second embodiments, and superimposed on the stator blades ( 15) in the longitudinal/axial direction, provides the propulsion device with greater power.
  • the flow leaving the rotor (14) and entering the stator is in the longitudinal/axial direction of the drive (in the direction of the main axis (9) of the drive).
  • the flow leaving the rotor (14) and entering the stator does so in the radial direction of the propulsion device (in the direction perpendicular to the main axis (9) of the drive device).
  • the central valve (3) has a convex curved geometry, so that the admission of fluid into the propulsion device is favored by the Coanda effect that it produces in the intake jet, which tends to reproduce the geometry curve of the central valve (3), going towards the rotor (14) of the propulsion device.
  • This Coanda effect is produced in the 360 e of the central valve (3) so that, whatever the direction and tilt angle of the central valve (3), this Coanda effect is produced on the intake flow, favoring the fluid inlet directly to the rotor (14) of the propelling device.
  • the propelling device object of the present invention allows to determine the direction and frequency of opening/closing (opening and closing time) of the central valve (3), as well as the intensity of the propulsion jet (regulating the speed of rotation (RPM) of the rotor (14) and the opening of the perimeter valve (7)).
  • the rotor (14) is configured with variable pitch blades.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sliding Valves (AREA)

Abstract

Dispositivo propulsor que comprende un rotor (14), un estator (15), una carcasa exterior (6), una primera base (10) con una abertura de entrada (1) central configurada para una admisión de fluido, y una abertura de salida (2) configurada para una expulsión de fluido propulsor en forma de un chorro de salida. La abertura de salida (2) está situada a lo largo de todo el perímetro del dispositivo propulsor, donde el dispositivo propulsor comprende: una válvula central (3) configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal de un chorro de entrada de fluido y una dirección del chorro de entrada de fluido hacia un determinado sector del dispositivo propulsor, y; una válvula perimetral (7) configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal del chorro de salida de fluido y una dirección del chorro de salida de fluido hacia un determinado sector de la abertura de salida (2) perimetral.

Description

Dispositivo propulsor
DESCRIPCIÓN
Objeto de la invención
La presente invención tiene por objeto un dispositivo propulsor que permite variar rápidamente la dirección de empuje para la propulsión de embarcaciones.
El dispositivo propulsor objeto de la presente invención puede facilitar la implementación de vehículos autónomos acuáticos USV (Unmanned Surface Vehicle) en entornos cerrados como puertos o realizar maniobras de precisión.
El dispositivo propulsor objeto de la presente invención tiene aplicación en el ámbito de la Ingeniería Naval y, más concretamente, en la industria dedicada al diseño, fabricación, comercialización y explotación de dispositivos de propulsión de diversos tipos de embarcaciones, tanto de superficie como subacuáticas.
Antecedentes de la invención y problema técnico a resolver
En el estado de la técnica se conocen los propulsores navales de tipo Voith-Schneider. Estos propulsores comprenden un conjunto de hélices o aspas que giran montadas en un disco. Por encima del disco se sitúa el motor que produce el movimiento de traslación de las hélices (a través de la rotación del disco). Asimismo, por encima del disco se sitúa un conjunto de dos pistones perpendiculares, unidos a un juego de bielas que permiten el viraje coordinado de las hélices, haciendo que éstas puedan vahar el ángulo de ataque sobre el agua en su movimiento de traslación. Mediante esta variación del ángulo de ataque, se produce una impulsión del agua que se mueve a través de las hélices en la dirección deseada, en cualquier ángulo de 0e a 360e y, por ende, se logra dirigir la nave e impulsarla y vahar su dirección mediante un único dispositivo. El propulsor de Voith-Schneider presenta una limitación derivada del movimiento cicloidal de las hélices. En las hélices, el intradós y el extradós de cada pala invierten su posición dos veces por revolución, pasando de estar en el interior al exterior y viceversa; esto se traduce en una tendencia a la cavitación que obliga al propulsor a rotar con un valor de RPM limitado y desarrollar una menor velocidad de navegación. Esta situación produce una limitación práctica de la velocidad de giro del propulsor, si se quieren evitar efectos de cavitación en el extradós de la hélice situada aguas abajo en la dirección de propulsión.
Se conoce también en la actualidad un propulsor del tipo descrito en el documento US 2010/0267295 A1 . Se trata de un propulsor azimutal que permite dirigir el chorro de impulsión a lo largo de los 360e de su perímetro. Un inconveniente que presenta este tipo de propulsor es que, para vahar la dirección de empuje en 180e, el chorro de empuje debe pasar por todas las posiciones/ángulos intermedios. Esto puede provocar imprecisiones a la hora de maniobrar una embarcación con este tipo de propulsor, que pueden requerir maniobras adicionales para corregir el rumbo de la embarcación.
Descripción de la invención
Con objeto de solucionar los inconvenientes anteriormente mencionados, la presente invención se refiere a un dispositivo propulsor.
El dispositivo propulsor objeto de la presente invención comprende un rotor, un estator, una carcasa exterior, una primera base con una abertura de entrada central configurada para una admisión de fluido, y una abertura de salida configurada para una expulsión de fluido propulsor en forma de un chorro de salida.
Las mencionadas características del dispositivo propulsor objeto de la presente invención son coincidentes con las de un propulsor conocido en el estado de la técnica como puede ser el propulsor descrito en el documento US 2010/0267295 A1.
El dispositivo propulsor objeto de la presente invención presenta una configuración novedosa que evita los inconvenientes mencionados con respecto al propulsor US 2010/0267295 A1. Así pues, de manera novedosa, en el dispositivo propulsor objeto de la presente invención, la abertura de salida está situada a lo largo de todo el perímetro del dispositivo propulsor.
Adicionalmente, de manera novedosa, el dispositivo propulsor objeto de la presente invención comprende:
- una válvula central configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal de un chorro de entrada de fluido y una dirección del chorro de entrada de fluido hacia un determinado sector del dispositivo propulsor, y;
- una válvula perimetral configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal del chorro de salida de fluido y una dirección del chorro de salida de fluido hacia un determinado sector de la abertura de salida perimetral.
Así pues, como se puede observar, el dispositivo propulsor objeto de la presente invención no necesita redirigir una abertura de salida cada vez que se quiere vahar la dirección de empuje/propulsión, pasando por todas y cada una de las posiciones a lo largo del arco de circunferencia que separa la dirección de propulsión inicial de la dirección de propulsión deseada.
Al dispositivo propulsor objeto de la presente invención le basta con hacer bascular la válvula central y la válvula perimetral para regular tanto los caudales de entrada y salida, como las direcciones de los chorros de entrada y salida, hacia el sector deseado del dispositivo propulsor.
De esta manera se permiten virajes mucho más rápidos y más precisos de las embarcaciones, lo cual es especialmente útil en entornos cerrados y de dimensiones acotadas como pueden ser los puertos, lugares en donde la precisión en las maniobras a realizar por las embarcaciones adquiere especial importancia.
De manera preferente, los medios de basculación de la válvula central comprenden un mecanismo de pistones configurado para producir una inclinación de una palanca según un ángulo de inclinación determinado y en una dirección determinada, donde la palanca está conectada a la válvula central. De manera preferente, los medios de basculación de la válvula perimetral comprenden también el mencionado mecanismo de pistones y la palanca.
Este mecanismo de actuación mediante pistones tiene semejanzas con el mencionado “propulsor de Voith Schneider”, en donde también se emplea un mecanismo de pistones. No obstante, en el caso del “propulsor de Voith Schneider”, este mecanismo de pistones, que permite vahar la dirección de propulsión (al igual que en el dispositivo propulsor objeto de la presente invención) se utiliza para mover un conjunto de hélices, generando los inconvenientes ya mencionados.
Según posibles formas de realización del dispositivo propulsor (ver primera y tercera formas de realización descritas más adelante) la válvula perimetral está conectada a la palanca mediante una estructura en forma de cúpula.
Alternativamente, según otras formas de realización posibles (ver segunda y cuarta formas de realización descritas más adelante) la válvula perimetral está conectada mediante unos brazos a la válvula central.
De manera preferente, el dispositivo propulsor está configurado para que el recorrido del fluido entre la abertura de entrada y la abertura de salida perimetral atraviese primero el rotor y después el estator.
El estator puede estar dispuesto alrededor del rotor, y, adicionalmente, puede también estar dispuesto proyectándose en una dirección axial paralela a un eje principal longitudinal del dispositivo propulsor, más allá de una dimensión longitudinal del rotor.
Alternativamente a lo mencionado en el párrafo anterior, el estator puede estar dispuesto más allá de una dimensión longitudinal del rotor, según una dirección axial paralela a un eje principal longitudinal del dispositivo propulsor. En esta configuración, tal y como se observa en la Figura 6, en la Figura 7 y en la Figura 8, el estator está dispuesto sobre el rotor superponiéndose al rotor en la mencionada dirección longitudinal/axial. Esta configuración permite que los álabes del rotor tengan una mayor superficie, lo cual dota al dispositivo propulsor de una mayor potencia. El rotor y/o el estator pueden comprender álabes de paso variable.
De manera preferente, en el dispositivo propulsor objeto de la presente invención, la válvula perimetral comprende una aleta dispuesta en dirección radial hacia el interior del dispositivo propulsor. Así pues, mediante la regulación (gracias a la basculación de la válvula perimetral) del espacio existente entre dicha aleta y una pared de un cuerpo base del dispositivo propulsor y una armadura interior del dispositivo propulsor, la válvula perimetral está configurada para regular respectivamente un primer porcentaje de flujo saliente del estator que se dirige hacia la abertura de salida perimetral y un segundo porcentaje de flujo saliente del estator que se dirige a través de una cavidad de retorno, de vuelta hacia el rotor. Mediante el mecanismo aquí descrito, se consigue regular el caudal del chorro de salida, regulando así el empuje o fuerza de propulsión del dispositivo propulsor, y se consigue aprovechar el caudal no empleado para la propulsión, haciéndolo recircular hacia el rotor, conservando o incrementando su energía cinética.
El dispositivo propulsor puede comprender un conducto anular de salida que conecta una salida del estator con la abertura de salida perimetral del dispositivo propulsor.
El conducto anular de salida puede conectar con la abertura de salida perimetral mediante una geometría en forma de codo.
De manera preferente, la carcasa exterior del dispositivo propulsor está enrasada con la primera base (o base inferior del dispositivo propulsor). Esta configuración permite atenuar la posible dispersión del chorro de salida del dispositivo propulsor.
De manera preferente, la válvula central del dispositivo propulsor tiene una geometría curva convexa. Esto permite facilitar, por efecto Coanda, el direccionamiento del flujo de entrada a través de la abertura de entrada, directamente hacia el rotor en el interior del dispositivo propulsor, ya que la curvatura de la válvula central guía al chorro de entrada hacia el rotor. Esto supone una ventaja con respecto a configuraciones conocidas de propulsores (por ejemplo, el dispositivo de admisión para propulsores descrito en el documento DE 102019106717 A1 ) que para producir el mencionado efecto Coanda que ayude a dirigir el flujo de entrada a través de la abertura de entrada central, recurren a un elemento convexo consistente en una protuberancia (“Zustromwulsf’) que se proyecta más allá de la base del propulsor, lo cual hace aumentar el calado del mismo, aumentando el rozamiento hidrodinámico y reduciendo su eficiencia. Mediante la configuración del dispositivo propulsor descrita anteriormente, se permite dirigir el chorro de empuje únicamente en la dirección deseada o regular su caudal y lapso de apertura y cierre de la válvula central (dirección, intensidad y frecuencia).
El dispositivo propulsor objeto de la presente invención es un propulsor naval de alta precisión, especialmente desarrollado para facilitar la automatización de embarcaciones (con especial aplicación para USVs (Unmanned Surface Vehicles) y UUVs (Unmanned Underwater Vehicles), que mejora la operatividad de todo tipo de embarcaciones que operan en el medio acuático.
Breve descripción de las figuras
Como parte de la explicación de al menos una forma de realización de la invención se han incluido las siguientes figuras.
Figura 1 : Muestra una vista simplificada y esquemática en perspectiva inferior del dispositivo propulsor.
Figura 2: Muestra una vista esquemática en sección de una primera forma de realización del dispositivo propulsor, con la válvula central y la válvula perimetral en posición de reposo.
Figura 3a: Muestra una vista esquemática del dispositivo propulsor de la Figura 2, en donde la válvula central y la válvula perimetral se muestran con un mínimo grado de inclinación.
Figura 3b: Muestra una vista esquemática del dispositivo propulsor de la Figura 2, en donde la válvula central y la válvula perimetral se muestran con un grado intermedio de inclinación. Figura 3c: Muestra una vista esquemática del dispositivo propulsor de la Figura 2, en donde la válvula central y la válvula perimetral se muestran con un máximo grado de inclinación.
Figura 4: Muestra una vista esquemática en sección de una segunda forma de realización del dispositivo propulsor, con la válvula central y la válvula perimetral en posición de reposo.
Figura 5: Muestra una vista simplificada y esquemática inferior, parcialmente seccionada, del rotor y el estator del dispositivo propulsor, según la primera forma de realización o la segunda forma de realización del dispositivo propulsor.
Figura 6: Muestra una vista esquemática en sección de una tercera forma de realización del dispositivo propulsor, con la válvula central y la válvula perimetral en posición de reposo.
Figura 7: Muestra una vista esquemática en sección de una cuarta forma de realización del dispositivo propulsor, con la válvula central y la válvula perimetral en posición de reposo.
Figura 8: Muestra una vista simplificada y esquemática inferior, parcialmente seccionada, del rotor y el estator del dispositivo propulsor, según la tercera forma de realización o la cuarta forma de realización del dispositivo propulsor.
Figura 9a: Muestra una vista inferior del dispositivo propulsor, según cualquiera de las formas de realización, en donde se observan unas líneas de flujo de entrada y salida de fluido, correspondientes a una inclinación mínima de la palanca y a una basculación mínima de la válvula central y la válvula perimetral.
Figura 9b: Muestra una vista inferior del dispositivo propulsor, según cualquiera de las formas de realización, en donde se observan unas líneas de flujo de entrada y salida de fluido, correspondientes a una inclinación intermedia de la palanca y a una basculación intermedia de la válvula central y la válvula perimetral. Figura 9c: Muestra una vista inferior del dispositivo propulsor, según cualquiera de las formas de realización, en donde se observan unas líneas de flujo de entrada y salida de fluido, correspondientes a una inclinación máxima de la palanca y a una basculación máxima de la válvula central y la válvula perimetral.
Figura 10: Muestra una vista simplificada y esquemática superior, parcialmente seccionada, del dispositivo propulsor en donde se observa el mecanismo de accionamiento de la válvula central y la válvula perimetral.
Descripción detallada
La presente invención se refiere, tal y como se ha mencionado anteriormente, a un dispositivo propulsor.
El dispositivo propulsor comprende una abertura de entrada (1 ) de fluido (o zona de admisión) central y una abertura de salida (2) de fluido (o zona de expulsión) perimetral.
La abertura de entrada (1 ) central se encuentra situada en el centro de una primera base (10) (o base inferior, según se representa en las Figuras) del dispositivo propulsor.
La abertura de salida (2) perimetral se encuentra situada preferentemente en el perímetro de la mencionada primera base (10) del dispositivo propulsor.
El dispositivo propulsor comprende una geometría eminentemente cilindrica, con un eje principal (9) de simetría radial perpendicular a la abertura de entrada (1 ) central.
En correspondencia con la abertura de entrada (1 ) central, existe una válvula central (3) con geometría en forma de disco. La válvula central (3) está accionada mediante una palanca (4) unida a un mecanismo de pistones (5).
En la Figura 10 se muestra una vista superior del dispositivo propulsor, donde la carcasa exterior (6) ha sido seccionada por su parte superior, dejando a la vista el mecanismo de pistones (5).
La palanca (4) y la válvula central (3) están unidas a través de una rótula (4’) de la palanca (4). Esta rótula (4’) está conectada a un fulcro (17) o cojinete, con respecto al cual la palanca (4) puede bascular, como una unión articulada entre la rótula (4’) de la palanca (4) y el fulcro (17).
Mediante el movimiento de los pistones (5), se acciona la palanca (4) en distintas direcciones, lo cual produce la basculación de la válvula central (3) en cualquier dirección, y según distintos grados de inclinación.
La dirección y la inclinación según la cual se puede inclinar la válvula central (3) viene determinada por la longitud en que se extienden o retraen los pistones (5) del mecanismo de pistones (5). De manera preferente, el mecanismo de pistones (5) comprende al menos dos pistones (5) dispuestos en direcciones mutuamente perpendiculares.
Mediante el control de la dirección de inclinación de la válvula central (3) se permite direccionar el flujo de admisión en una dirección de entrada preferente.
Asimismo, mediante el control del grado de inclinación de la válvula central (3), se permite controlar el caudal de entrada a través de la abertura de entrada (1 ) del dispositivo propulsor.
La Figura 1 muestra una vista simplificada en perspectiva inferior del dispositivo propulsor, según cualquiera de las formas de realización que se describen en este documento. En la Figura 1 se muestra el dispositivo propulsor con su carcasa exterior (6), su abertura de entrada (1 ) central (o zona de admisión) y su abertura de salida (2) perimetral (o zona de expulsión). En correspondencia con la abertura de entrada (1 ) puede observarse la válvula central (3). Se representan en la Figura 1 unas líneas de flujo que muestran de manera esquemática la dirección principal del flujo de entrada y del flujo de salida, cuando el mecanismo de pistones (5) acciona la palanca (4) según una determinada dirección y con un determinado ángulo de inclinación.
En la Figura 2 se representa de manera esquemática una vista en sección del dispositivo propulsor, según una primera forma de realización del mismo.
En la Figura 2 se aprecia la válvula perimetral (7) que comprende una aleta (8) que se proyecta radialmente hacia el centro del dispositivo propulsor. En esta primera forma de realización, la válvula perimetral (7) está unida a la parte superior de la palanca (4) mediante una estructura en forma de cúpula formada por una superficie continua o una red de nervios en forma de cúpula.
En la Figura 2 se representa el dispositivo propulsor con la palanca (4), la válvula central (3) y la válvula perimetral (7) en posición de reposo, es decir, con la palanca (4) inclinada 0e con respecto al eje principal (9) del dispositivo propulsor. En esta posición, la válvula central (3) bloquea completamente la abertura de entrada (1 ) del dispositivo propulsor, y la aleta (8) de la válvula perimetral (7) bloquea completamente la salida de flujo a través de la abertura de salida (2) perimetral.
Cuando el mecanismo de pistones (5) empieza a hacer inclinarse la palanca (4), la válvula central (3) comienza a bascular, produciendo que la abertura de entrada (1 ) quede abierta al paso de fluido (típicamente agua) hacia un determinado sector interior del dispositivo propulsor.
La Figura 3a muestra la situación en la que la válvula central (3) del dispositivo propulsor (según la primera forma de realización) comienza a bascular dejando paso a la entrada de fluido a través de la abertura de entrada (1 ). Cuando el fluido accede al interior del dispositivo propulsor a través de la abertura de entrada (1 ), atraviesa en primer lugar el rotor (14) y posteriormente el estator (15).
Tanto en esta primera forma de realización del dispositivo propulsor, como en la segunda forma de realización del dispositivo propulsor, el estator (15) se encuentra situado alrededor del rotor (14), proyectándose por encima del rotor (14) alejándose de la primera base (10) del dispositivo propulsor.
Tanto el rotor (14) como el estator (15) se encuentran situados entre un cuerpo base (1 1 ) del dispositivo propulsor y una armadura interior (13) del dispositivo propulsor. La primera base (10) del dispositivo propulsor es una cara exterior de dicho cuerpo base (11 ) del dispositivo propulsor.
A la salida del estator (15), el flujo de fluido puede dirigirse hacia una cavidad de retorno (16), de vuelta hacia el rotor (14), o bien hacia un conducto anular de salida (18) conectado con la abertura de salida (2) perimetral. El conducto anular de salida (18) discurre entre una pared (12) del cuerpo base (1 1 ) y la carcasa exterior (6) del dispositivo propulsor. El conducto anular de salida (18) tiene una geometría sustancialmente en forma de corona esférica o elipsoidal truncada por dos planos paralelos. La zona de conexión entre el conducto anular de salida (18) y la abertura de salida (2) perimetral tiene una geometría que forma un codo que obliga al flujo de salida del dispositivo propulsor a dirigirse de forma centrífuga con respecto al eje principal (9) del dispositivo propulsor.
No obstante, según formas de realización alternativas (no mostradas en las Figuras) del dispositivo propulsor objeto de la presente invención, el dispositivo propulsor carece de conducto anular de salida (18) y de la zona de conexión en forma de codo con la abertura de salida (2) perimetral. En estas formas de realización alternativas, la abertura de salida (2) perimetral es directamente la zona que queda situada entre la aleta (8) de la válvula perimetral (7) y la pared (12) del cuerpo base (11 ), siendo entonces directamente el chorro de salida del dispositivo propulsor la salida radial del estator (15). En la situación mostrada en la Figura 3a, la válvula central (3) ha comenzado a inclinarse con un ángulo de inclinación mínimo (que, en este caso a modo de ejemplo se supone que corresponde a una inclinación de 10e de la palanca (4) con respecto al eje principal (9) del dispositivo propulsor). Una pequeña cantidad de flujo de fluido comienza a acceder al interior del dispositivo propulsor, hacia un determinado primer sector (S1 ) del dispositivo propulsor (ver zona izquierda de la Figura 3a), hacia el rotor (14) del dispositivo propulsor. Tras su paso por el rotor (14), el fluido sale despedido en todas direcciones hacia el estator (15). No obstante, puesto que la válvula central (3) determina una dirección principal del flujo de entrada hacia el primer sector (S1 ) del dispositivo propulsor, también la mayor parte del flujo de salida del rotor (14) se dirige hacia el exterior del rotor (14) y hacia el estator (15) en correspondencia con dicho primer sector (S1 ) del dispositivo propulsor.
Tras su paso por el estator (15), en correspondencia con el primer sector (S1 ) del dispositivo propulsor, una pequeña parte del flujo de salida del estator (15) accede al conducto anular de salida (18) por el hueco existente entre la aleta (8) de la válvula peñmetral (7) y la pared (12) del cuerpo base (1 1 ). Posteriormente, esta pequeña parte del flujo sale en forma de chorro de salida del dispositivo propulsor a través de la abertura de salida (2) peñmetral, en una zona correspondiente al primer sector (S1 ) del dispositivo propulsor. No obstante, puesto que el ángulo de inclinación de la válvula peñmetral (7) con su aleta (8) es mínimo, la mayor parte del flujo de salida del estator (15) en dicho primer sector (S1 ) se dirige por la zona situada entre la aleta (8) de la válvula peñmetral (7) y la armadura interior (13), hacia la cavidad de retorno (16), de vuelta hacia el rotor (14). Asimismo, en sectores alejados u opuestos al primer sector (S1 ), la aleta (8) de la válvula peñmetral (7) bloquea el paso de fluido por el conducto anular de salida (18) hacia la abertura de salida (2) peñmetral, por lo que en dichos sectores alejados u opuestos al primer sector (S1 ), el flujo a la salida del estator (15) se dirige a través de la cavidad de retorno (16) de vuelta hacia el rotor (14).
Se tiene así una situación en donde, con un mínimo grado de inclinación de la palanca (4), la válvula central (3) deja un paso de fluido mínimo hacia el interior del dispositivo propulsor, y la válvula peñmetral (7) deja un paso de fluido mínimo hacia el exterior del dispositivo propulsor, teniendo así un chorro de salida mínimo que produce una propulsión baja por parte del dispositivo propulsor. En la Figura 9a se muestra de manera esquemática mediante líneas de flujo el chorro de salida mínimo (correspondiente a la inclinación mínima de la palanca (4) en la Figura 3a) a través de la abertura de salida (2) perimetral, en una zona correspondiente al primer sector (S1 ) del dispositivo propulsor.
Cuando se quiere aumentar la magnitud o intensidad de la propulsión producida por el dispositivo propulsor, se debe aumentar la admisión y la expulsión en el dispositivo propulsor, aumentando con ello el flujo de entrada y de salida. Para ello es necesario que el mecanismo de pistones (5) produzca una mayor inclinación de la palanca (4) con respecto al eje principal (9) del dispositivo propulsor, lo cual produce una mayor basculación de la válvula central (3) y de la válvula perimetral (7).
La Figura 3b representa una situación de apertura o basculación intermedia de la válvula central (3) y de la válvula perimetral (7) (que, en este caso a modo de ejemplo se supone que corresponde a una inclinación de 15e de la palanca (4) con respecto al eje principal (9) del dispositivo propulsor). Esta situación produce que, en la zona del dispositivo propulsor correspondiente al primer sector (S1 ), una mayor proporción de flujo saliente del estator (15) acceda, a través del hueco existente entre la aleta (8) de la válvula perimetral (7) y la pared (12) del cuerpo base (1 1 ), hacia el conducto anular de salida (18) y al exterior del dispositivo propulsor a través de la abertura de salida (2) perimetral. En contraposición a esto, en la zona del dispositivo propulsor correspondiente al primer sector (S1 ), una menor proporción del flujo saliente del estator (15) accede a la cavidad de retorno (16) por la zona situada entre la aleta (8) de la válvula perimetral (7) y la armadura interior (13), ya que al inclinarse más la palanca (4) y bascular con ello más la válvula perimetral (7), se reduce el espacio existente entre la aleta (8) y la armadura interior (13) en la zona correspondiente al primer sector (S1 ) del dispositivo propulsor.
Al igual que ocurría cuando la inclinación de la palanca (4) con respecto al eje principal (9) era mínima (Figura 3a), también en esta situación de inclinación intermedia de la palanca (4), en sectores alejados u opuestos al primer sector (S1 ) del dispositivo propulsor, la aleta (8) de la válvula perimetral (7) bloquea el flujo desde el conducto anular de salida (18) hasta la abertura de salida (2) perimetral, por lo que en dichos sectores alejados u opuestos al primer sector (S1 ) del dispositivo propulsor, el flujo saliente del estator (15) se dirige a través de la cavidad de retorno (16) de vuelta hacia el rotor (14).
En la Figura 9b se muestra de manera esquemática mediante líneas de flujo el chorro de salida intermedio (correspondiente a la inclinación intermedia de la palanca (4) en la Figura 3b) a través de la abertura de salida (2) perimetral, en una zona correspondiente al primer sector (S1 ) del dispositivo propulsor.
Cuando se quiere aumentar al máximo posible la magnitud o intensidad de la propulsión producida por el dispositivo propulsor, se debe aumentar al máximo la admisión y la expulsión en el dispositivo propulsor, aumentando con ello al máximo el flujo de entrada y de salida. Para ello es necesario que el mecanismo de pistones (5) produzca una máxima inclinación de la palanca (4) con respecto al eje principal (9) del dispositivo propulsor, lo cual produce una máxima basculación de la válvula central (3) y de la válvula perimetral (7).
La Figura 3c representa una situación de apertura o basculación máxima de la válvula central (3) y de la válvula perimetral (7) (que, en este caso a modo de ejemplo se supone que corresponde a una inclinación de 20e de la palanca (4) con respecto al eje principal (9) del dispositivo propulsor). Esta situación produce que, en la zona del dispositivo propulsor correspondiente al primer sector (S1 ), prácticamente la totalidad de flujo saliente del estator (15) acceda, a través del hueco existente entre la aleta (8) de la válvula perimetral (7) y la pared (12) del cuerpo base (11 ), hacia el conducto anular de salida (18) y al exterior del dispositivo propulsor a través de la abertura de salida (2) perimetral. En contraposición a esto, en la zona del dispositivo propulsor correspondiente al primer sector (S1 ), una proporción prácticamente nula del flujo saliente del estator (15) accede a la cavidad de retorno (16) por la zona situada entre la aleta (8) de la válvula perimetral (7) y la armadura interior (13), ya que al inclinarse al máximo la palanca (4) y bascular con ello al máximo la válvula perimetral (7), se reduce al máximo el espacio existente entre la aleta (8) y la armadura interior (13) en la zona correspondiente al primer sector (S1 ) del dispositivo propulsor.
Al igual que ocurría cuando la inclinación de la palanca (4) con respecto al eje principal (9) era mínima (Figura 3a) o intermedia (Figura 3b), también en esta situación de inclinación máxima de la palanca (4), en sectores alejados u opuestos al primer sector (S1 ) del dispositivo propulsor, la aleta (8) de la válvula perimetral (7) bloquea el flujo desde el conducto anular de salida (18) hasta la abertura de salida (2) perimetral, por lo que en dichos sectores alejados u opuestos al primer sector (S1 ) del dispositivo propulsor, el flujo saliente del estator (15) se dirige a través de la cavidad de retorno (16) de vuelta hacia el rotor (14).
En la Figura 9c se muestra de manera esquemática mediante líneas de flujo el chorro de salida máximo (correspondiente a la inclinación máxima de la palanca (4) en la Figura 3b) a través de la abertura de salida (2) perimetral, en una zona correspondiente al primer sector (S1 ) del dispositivo propulsor.
Como se puede apreciar en la Figura 9a, en la Figura 9b y en la Figura 9c, en sectores adyacentes al primer sector (S1) del dispositivo propulsor, existe también una pequeña dispersión del chorro de salida del dispositivo propulsor a través de la abertura de salida (2) perimetral. No obstante, gracias a la basculación de la válvula perimetral (7) con su aleta (8), la mayor parte del flujo saliente del estator (15) se dirige hacia el exterior del dispositivo propulsor a través del conducto anular de salida (18) y de la abertura de salida (2) perimetral, únicamente en la zona correspondiente al primer sector (S1), ya que la válvula perimetral (7) con su aleta (8) bloquea la salida de flujo a través de la abertura de salida (2) perimetral en sectores alejados al primer sector (S1) del dispositivo propulsor. Para que se produzca esta mínima dispersión del chorro de salida, es también deseable que la carcasa exterior (6) del dispositivo propulsor quede enrasada con la primera base (10) del dispositivo propulsor, de modo que el conducto anular de salida (18) obligue al flujo que sale del estator (15) en sectores adyacentes al primer sector (S1 ) a mezclarse con el flujo saliente del estator (15) en el primer sector (S1), corrigiendo o atenuando con ello la dispersión en el chorro de salida.
En la Figura 4 se muestra una segunda forma de realización del dispositivo propulsor objeto de la presente invención. Esta segunda forma de realización difiere de la primera forma de realización en que la válvula perimetral (7), en lugar de estar unida a la parte superior de la palanca (4) mediante una estructura en forma de cúpula, está unida mediante unos brazos (19) a la válvula central (3). De esta forma, cuando el mecanismo de pistones (5) produce la inclinación de la palanca (4) y, a su vez, la basculación de la válvula central (3), esta basculación de la válvula central (3) produce también la basculación de la válvula perimetral (7). En la Figura 5 se muestra una vista inferior seccionada del rotor (14) y el estator (15) del dispositivo propulsor, según la primera forma de realización y la segunda forma de realización del dispositivo propulsor. Se observa que el rotor (14) está dispuesto por el interior del estator (15).
En la Figura 6 se muestra una tercera forma de realización del dispositivo propulsor objeto de la presente invención. Esta tercera forma de realización es análoga a la primera forma de realización, pero donde el estator (15) no se encuentra situado alrededor del rotor (14), sino únicamente por encima del rotor (14).
En la Figura 7 se muestra una cuarta forma de realización del dispositivo propulsor objeto de la presente invención. Esta cuarta forma de realización es análoga a la segunda forma de realización, pero donde el estator (15) no se encuentra situado alrededor del rotor (14), sino únicamente por encima del rotor (14).
En la Figura 8 se muestra una vista inferior seccionada del rotor (14) y el estator (15) del dispositivo propulsor, según la tercera forma de realización y la cuarta forma de realización del dispositivo propulsor. Se observa que el rotor (14) se superpone al estator (15).
En la tercera forma de realización y en la cuarta forma de realización del dispositivo propulsor, esta disposición del rotor (14) con sus álabes de mayor superficie que en la primera y en la segunda forma de realización, y superpuestos a los álabes del estator (15) en dirección longitudinal/axial , dota al dispositivo propulsor de una mayor potencia.
En la tercera y cuarta formas de realización del dispositivo propulsor, el flujo que abandona el rotor (14) y entra en el estator lo hace en dirección longitudinal/axial del dispositivo propulsor (en la dirección del eje principal (9) del dispositivo propulsor). En contraposición a esto, en la primera y segunda formas de realización del dispositivo propulsor, el flujo que abandona el rotor (14) y entra en el estator lo hace en dirección radial del dispositivo propulsor (en la dirección perpendicular al eje principal (9) del dispositivo propulsor). De manera preferente, la válvula central (3) tiene una geometría curva convexa, de manera que se favorece la admisión de fluido hacia el interior del dispositivo propulsor por el efecto Coanda que produce en el chorro de admisión, el cual tiende a reproducir la geometría curva de la válvula central (3), dirigiéndose hacia el rotor (14) del dispositivo propulsor. Este efecto Coanda se produce en los 360e de la válvula central (3) de manera que, cualquiera que sea la dirección y ángulo de basculación de la válvula central (3), se produce este efecto Coanda sobre el flujo de admisión, favoreciendo la entrada de fluido directamente hacia el rotor (14) del dispositivo propulsor.
El dispositivo propulsor objeto de la presente invención permite vahar la dirección y frecuencia de apertura/cierre (lapso de apertura y cierre) de la válvula central (3), así como la intensidad del chorro de propulsión (regulando la velocidad de giro (RPM) del rotor (14) y la apertura de la válvula perimetral (7)).
De manera preferente, el rotor (14) está configurado con álabes de paso variable.

Claims

REIVINDICACIONES
1. Dispositivo propulsor que comprende un rotor (14), un estator (15), una carcasa exterior (6), una primera base (10) con una abertura de entrada (1 ) central configurada para una admisión de fluido, y una abertura de salida (2) configurada para una expulsión de fluido propulsor en forma de un chorro de salida, caracterizado por que la abertura de salida (2) está situada a lo largo de todo el perímetro del dispositivo propulsor, donde el dispositivo propulsor comprende:
- una válvula central (3) configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal de un chorro de entrada de fluido y una dirección del chorro de entrada de fluido hacia un determinado sector del dispositivo propulsor, y;
- una válvula perimetral (7) configurada, mediante unos medios de basculación, para bascular con una dirección y un ángulo de basculación determinados, regulando así un caudal del chorro de salida de fluido y una dirección del chorro de salida de fluido hacia un determinado sector de la abertura de salida (2) perimetral.
2. Dispositivo propulsor según la reivindicación 1 , caracterizado por que los medios de basculación de la válvula central (3) comprenden un mecanismo de pistones (5) configurado para producir una inclinación de una palanca (4) según un ángulo de inclinación determinado y en una dirección determinada, donde la palanca (4) está conectada a la válvula central (3).
3. Dispositivo propulsor según la reivindicación 2, caracterizado por que los medios de basculación de la válvula perimetral (7) comprenden el mecanismo de pistones (5) y la palanca (4).
4. Dispositivo propulsor según la reivindicación 3, caracterizado por que la válvula perimetral (7) está conectada a la palanca (4) mediante una estructura en forma de cúpula.
5. Dispositivo propulsor según la reivindicación 3, caracterizado por que la válvula perimetral (7) está conectada mediante unos brazos (19) a la válvula central (3). Dispositivo propulsor según cualquiera de las reivindicaciones anteriores, caracterizado por que está configurado para que el recorrido del fluido entre la abertura de entrada (1 ) y la abertura de salida (2) perimetral atraviese primero el rotor (14) y después el estator (15). Dispositivo propulsor según la reivindicación 6, caracterizado por que el estator (15) está dispuesto alrededor del rotor (14). Dispositivo propulsor según la reivindicación 7, caracterizado por que el estator (15) está dispuesto proyectándose en una dirección axial paralela a un eje principal (9) longitudinal del dispositivo propulsor, más allá de una dimensión longitudinal del rotor (14). Dispositivo propulsor según la reivindicación 6, caracterizado por que el estator (15) está dispuesto más allá de una dimensión longitudinal del rotor (14), según una dirección axial paralela a un eje principal (9) longitudinal del dispositivo propulsor. Dispositivo propulsor según cualquiera de las reivindicaciones anteriores, caracterizado por que el rotor (14) y el estator (15) comprenden álabes de paso variable. Dispositivo propulsor según cualquiera de las reivindicaciones 6 a 10, caracterizado por que la válvula perimetral (7) comprende una aleta (8) dispuesta en dirección radial hacia el interior del dispositivo propulsor, donde mediante la regulación del espacio existente entre dicha aleta (8) y una pared (12) de un cuerpo base (11 ) del dispositivo propulsor y una armadura interior (13) del dispositivo propulsor, la válvula perimetral (7) está configurada para regular respectivamente un primer porcentaje de flujo saliente del estator (15) que se dirige hacia la abertura de salida (2) perimetral y un segundo porcentaje de flujo saliente del estator (15) que se dirige a través de una cavidad de retorno (16) de vuelta hacia el rotor (14). Dispositivo propulsor según cualquiera de las reivindicaciones 6 a 1 1 , caracterizado por que comprende un conducto anular de salida (18) que conecta una salida del estator (15) con la abertura de salida (2) perimetral del dispositivo propulsor.
13. Dispositivo propulsor según la reivindicación 12, caracterizado por que el conducto anular de salida (18) conecta con la abertura de salida (2) perimetral mediante una geometría en forma de codo.
14. Dispositivo propulsor según cualquiera de las reivindicaciones anteriores, caracterizado por que la carcasa exterior (6) está enrasada con la primera base (10).
15. Dispositivo propulsor según cualquiera de las reivindicaciones anteriores, caracterizado por que la válvula central (3) tiene una geometría curva convexa.
PCT/ES2022/070686 2021-10-25 2022-10-24 Dispositivo propulsor WO2023073265A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES202490025A ES2975839A2 (es) 2021-10-25 2022-10-24 Dispositivo propulsor
EP22886200.9A EP4424587A1 (en) 2021-10-25 2022-10-24 Propulsion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU202132086 2021-10-25
ES202132086U ES1286659Y (es) 2021-10-25 2021-10-25 Dispositivo propulsor

Publications (1)

Publication Number Publication Date
WO2023073265A1 true WO2023073265A1 (es) 2023-05-04

Family

ID=80248337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070686 WO2023073265A1 (es) 2021-10-25 2022-10-24 Dispositivo propulsor

Country Status (3)

Country Link
EP (1) EP4424587A1 (es)
ES (2) ES1286659Y (es)
WO (1) WO2023073265A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005098A1 (de) * 1994-08-13 1996-02-22 Schottel-Werft Josef Becker Gmbh & Co. Kg Wasserstrahlantrieb
US5520557A (en) * 1993-02-20 1996-05-28 Schottel-Werft, Josef Becker Gmbh & Co. Kg Hydrojet
JP2001039389A (ja) * 1999-08-02 2001-02-13 Kawasaki Heavy Ind Ltd 立型ウオータジェット推進機の吐出口構造
US20100267295A1 (en) 2007-12-05 2010-10-21 Schottel Gmbh Ship propulsion system having a pump jet
DE102019106717A1 (de) 2019-03-15 2020-09-17 Schottel Gmbh Wasserstrahlantrieb für ein Wasserfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520557A (en) * 1993-02-20 1996-05-28 Schottel-Werft, Josef Becker Gmbh & Co. Kg Hydrojet
WO1996005098A1 (de) * 1994-08-13 1996-02-22 Schottel-Werft Josef Becker Gmbh & Co. Kg Wasserstrahlantrieb
JP2001039389A (ja) * 1999-08-02 2001-02-13 Kawasaki Heavy Ind Ltd 立型ウオータジェット推進機の吐出口構造
US20100267295A1 (en) 2007-12-05 2010-10-21 Schottel Gmbh Ship propulsion system having a pump jet
DE102019106717A1 (de) 2019-03-15 2020-09-17 Schottel Gmbh Wasserstrahlantrieb für ein Wasserfahrzeug

Also Published As

Publication number Publication date
ES1286659U (es) 2022-02-16
ES1286659Y (es) 2022-05-09
ES2975839A2 (es) 2024-07-16
EP4424587A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
US4455962A (en) Spherical underwater vehicle
ES2799908T3 (es) Vehículo submarino y aéreo no tripulado
KR100306261B1 (ko) 수상교통수단의 이중 프로펠러 추진장치
ES2620295T3 (es) Hélice con tobera
US4838819A (en) Marine propulsion unit
CN207129124U (zh) 推进装置及水下航行器
US8919274B1 (en) Submersible vehicle with high maneuvering cyclic-pitch postswirl propulsors
WO2023073265A1 (es) Dispositivo propulsor
CN113247224A (zh) 基于轮缘推进器的矢量推进装置
US20240051648A1 (en) Lift-generating system and boat fitted with such a system
ES2356628T3 (es) Dispositivo en un sistema de propulsión.
WO1997000198A1 (en) Arrangement for propulsion of seaborne vessels, especially high speed boats
EP1780117A1 (en) Marine drive system with partially submerged propeller
US20050175458A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
ES2239684T3 (es) Propulsion para embarcacion rapida.
US3882674A (en) Vortex propeller
US20230090682A1 (en) Vector control assemblies for underwater vehicles
US5343823A (en) Large diameter low RPM propeller for torpedoes
CN215972055U (zh) 基于轮缘推进器的矢量推进装置
KR101721999B1 (ko) 추진장치
CN214190056U (zh) 船用喷射矢量转向装置
US1741238A (en) Propulsion of water craft and aircraft
JPS6145598B2 (es)
US20230113792A1 (en) System and Method for Marine Propulsion With Low Acoustic Noise
RU2081785C1 (ru) Движитель судна

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022886200

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022886200

Country of ref document: EP

Effective date: 20240527