WO2023072228A1 - Methods and products for treating or diagnosing schizophrenia - Google Patents

Methods and products for treating or diagnosing schizophrenia Download PDF

Info

Publication number
WO2023072228A1
WO2023072228A1 PCT/CN2022/128152 CN2022128152W WO2023072228A1 WO 2023072228 A1 WO2023072228 A1 WO 2023072228A1 CN 2022128152 W CN2022128152 W CN 2022128152W WO 2023072228 A1 WO2023072228 A1 WO 2023072228A1
Authority
WO
WIPO (PCT)
Prior art keywords
bdnf
subject
trkb
seq
amino acid
Prior art date
Application number
PCT/CN2022/128152
Other languages
French (fr)
Inventor
Bai Lu
Xiaoming Guan
Original Assignee
Tsinghua University
4B Technologies (Beijing) Co., Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, 4B Technologies (Beijing) Co., Limited filed Critical Tsinghua University
Priority to CN202280071071.3A priority Critical patent/CN118251415A/en
Publication of WO2023072228A1 publication Critical patent/WO2023072228A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/567Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in position 17 alpha, e.g. mestranol, norethandrolone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/71Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/723Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/30Psychoses; Psychiatry
    • G01N2800/302Schizophrenia

Definitions

  • SCZ Schizophrenia
  • BDNF Brain-derived neurotrophic factor
  • soma versus dendrite soma versus dendrite
  • different developmental stages Baj et al., 2011; Greenberg et al., 2009
  • the 9 Bdnf promoters are regulated by different transcriptional and epigenetic factors, and contribute to diverse physiological functions (Pruunsild et al., 2007) .
  • selective disruption of Bdnf promoters I or II leads to thermogenesis deficits and obesity (McAllan et al., 2018; You et al., 2020) .
  • Bdnf promoter IV which drives activity-dependent BDNF transcription (Hong et al., 2008; Sakata et al., 2009a) , plays a key role in behavioral perseverance through regulation of GABAergic transmission (Jiao et al., 2011; Sakata et al., 2013; Sakata et al., 2009a) .
  • Bdnf promoter (s) is critically involved in SCZ.
  • the present inventors found that deficiency in promoter VI-driven BDNF expression, combined with early-life adversity, results in schizophrenia-like endo-phenotypes.
  • Promoter VI mutant mice (Bdnf-e6-/-) , when exposed to postnatal stress such as hypoxia or social isolation, exhibited deficits in social interactions, spatial memory, and sensorimotor gating such as prepulse inhibition (PPI) .
  • PPI prepulse inhibition
  • glucocorticoid e.g., cortisol and/or corticosterone
  • WT wild-type mice
  • administration of glucocorticoid e.g., cortisol and/or corticosterone
  • PPI Prepulse inhibition
  • the PPI deficits in the hypoxic or socially isolated Bdnf-e6-/- mice were rescued by treatment with a glucocorticoid (e.g., cortisol and/or corticosterone) antagonist, or a TrkB agonist.
  • the present disclosure provides a medicinal product for use in preventing, alleviating and/or treating schizophrenia.
  • the medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonist and a glucocorticoid (e.g., cortisol or corticosterone, either one may also be referred to as CORT in the present disclosure) inhibitor.
  • TrkB tropomyosin receptor kinase B
  • glucocorticoid e.g., cortisol or corticosterone, either one may also be referred to as CORT in the present disclosure
  • the TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
  • the TrkB agonist is capable of specifically binding to human TrkB.
  • the antigen binding portion comprises Fab, Fab’, F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • the TrkB agonist comprises a light chain variable region
  • the light chain variable region comprises LCDR1, LCDR2 and LCDR3
  • the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • the TrkB agonist comprises a heavy chain variable region
  • the heavy chain variable region comprises HCDR1, HCDR2 and HCDR3
  • the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
  • the glucocorticoid inhibitor is capable of reducing the amount of the glucocorticoid.
  • the glucocorticoid inhibitor may be a CORT inhibitor, and may be capable of reducing the amount of the CORT.
  • the glucocorticoid inhibitor is capable of inhibiting the activity of the glucocorticoid.
  • the glucocorticoid inhibitor may be a CORT inhibitor, and may be capable of inhibiting the activity of the CORT.
  • the glucocorticoid inhibitor (e.g., CORT inhibitor) comprises a mifepristone (RU-486) or a functional derivative thereof.
  • the present disclosure provides a method for preventing, alleviating and/or treating schizophrenia in a subject in need thereof.
  • the method may comprise administering to the subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor, and the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • BDNF e.g., BDNF-e6
  • CORT glucocorticoid
  • the subject has a deficiency in promoter VI of the Bdnf gene.
  • the subject has been subjected to postnatal stress.
  • the postnatal stress comprises postnatal hypoxia and/or social isolation.
  • the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) in hippocampus, prefrontal cortex, and/or hypothalamus.
  • BDNF e.g., BDNF-e6
  • the TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
  • the TrkB agonist is capable of specifically binding to human TrkB.
  • the antigen binding portion comprises Fab, Fab’ , F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • the TrkB agonist comprises a light chain variable region
  • the light chain variable region comprises LCDR1, LCDR2 and LCDR3
  • the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • the TrkB agonist comprises a heavy chain variable region
  • the heavy chain variable region comprises HCDR1, HCDR2 and HCDR3
  • the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
  • the glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor is capable of reducing the amount of glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the glucocorticoid inhibitor is a CORT inhibitor.
  • the glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor is capable of inhibiting the activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the glucocorticoid inhibitor may be a CORT inhibitor.
  • the CORT inhibitor comprises a mifepristone (RU-486) or a derivative thereof.
  • the present disclosure provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, comprising determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in the subject, and determining the level and/or activity of glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject.
  • BDNF e.g., BDNF-e6
  • glucocorticoid e.g., cortisol, corticosterone or CORT
  • the expression level and/or activity of BDNF is determined from a blood sample of the subject.
  • the level and/or activity of the glucocorticoid is determined from a blood sample of the subject.
  • the method further comprises selecting a subject having decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) , the selected subject is determined to be prone to suffer from schizophrenia or at the risk of developing schizophrenia.
  • BDNF e.g., BDNF-e6
  • glucocorticoid e.g., cortisol, corticosterone or CORT
  • the method further comprises determining whether the subject has a deficiency in promoter VI of the Bdnf gene.
  • the method further comprises determining whether the subject has been subjected to postnatal stress.
  • the postnatal stress comprises postnatal hypoxia and/or social isolation.
  • the method comprises determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in the hippocampus, prefrontal cortex, and/or hypothalamus of the subject.
  • BDNF e.g., BDNF-e6
  • the method further comprises administering to the selected subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor.
  • a TrkB agonist and/or a glucocorticoid e.g., cortisol, corticosterone or CORT
  • the present disclosure provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, the system comprises: a first module for determining whether the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) , and a second module for determining whether the subject has elevated level and/or activity of a glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • BDNF e.g., BDNF-e6
  • a glucocorticoid e.g., cortisol, corticosterone or CORT
  • the BDNF (e.g., BDNF-e6) is from the blood of the subject.
  • the glucocorticoid e.g., cortisol, corticosterone or CORT
  • the glucocorticoid is from the blood of the subject.
  • the present application provides a medicinal product for preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor.
  • TrkB tropomyosin receptor kinase B
  • the TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB.
  • the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
  • the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • the antigen binding portion thereof comprises Fab, Fab’, F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • the TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein the light chain variable region comprises LCDR1-3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • the TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein the heavy chain variable region comprises HCDR1-3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
  • the early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • the expression and/or activity level of the early-life adversity related factor increases as a result of the early-life adversity.
  • the early-life adversity related factor comprises a glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of the early-life adversity related factor.
  • the inhibitor against an early-life adversity related factor is capable of inhibiting the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
  • the present application further provides a method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein the subject is administrated a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
  • the subject is administrated the medicinal product.
  • the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject.
  • the expression and/or activity level of BDNF in the subject is decreased by at least 10%compared to that of a healthy subject.
  • the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject.
  • the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject. In some embodiments, the content of CORT in the subject is increased by at least 10%compared to a that of healthy subject.
  • the TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
  • the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • the antigen binding portion thereof comprises Fab, Fab’, F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • the TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein the light chain variable region comprises LCDR1-3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • the TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein the heavy chain variable region comprises HCDR1-3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
  • the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the subject in need thereof.
  • the early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • the expression and/or activity level of the early-life adversity related factor increases as a result of the early-life adversity.
  • the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of the early-life adversity related factor.
  • the inhibitor against an early-life adversity related factor is capable of inhibiting the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
  • the inhibitor against the glucocorticoid e.g., cortisol, corticosterone or CORT
  • the glucocorticoid e.g., cortisol, corticosterone or CORT
  • the present application further provides a method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF in the subject, and measuring the expression and/or activity level of an early-life adversity related factor in the subject.
  • the expression and/or activity level of BDNF in the subject is measured by the detection method of which is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
  • the expression and/or activity level of BDNF in the subject is measured by a pair of primer which is capable of amplifying the Bdnf gene or a portion thereof, a Bdnf (e.g., Bdnf-e6) transcript (e.g., mRNA or cDNA) , and/or an agent (e.g., a probe or an antibody) which is capable of specifically binding to BDNF.
  • a Bdnf e.g., Bdnf-e6
  • an agent e.g., a probe or an antibody
  • the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is measured by the detection method of which is capable of measuring content of CORT.
  • the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is measured by a probe which is capable of specifically binding to the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the detection method uses a sample from the subject, and the sample comprises a blood sample.
  • the method further comprises a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and, comparing the expression and/or activity level of an early-life adversity related factor in the subject with that of a healthy subject.
  • comparing the expression and/or activity level of BDNF with that of a healthy subject if the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, and/or the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject, the subject suffering schizophrenia is selected.
  • the expression and/or activity level of BDNF in the subject is decreased by at least 10%compared to that of a healthy subject.
  • the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject.
  • the content of the glucocorticoid e.g., cortisol, corticosterone or CORT
  • the method further comprises a following step: the selected subject is administrated with a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
  • the inhibitor against an early-life adversity related factor is administrated to the selected subject.
  • the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the selected subject.
  • the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the selected subject.
  • the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, and the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against an early-life adversity related factor is administrated to the selected subject.
  • the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against the glucocorticoid is administrated to the selected subject.
  • the present application further provides a system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF in the subject, and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor in the subject.
  • the first measurement module is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
  • the first measurement module comprises a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF.
  • the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the second measurement module is capable of measuring content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the second measurement module comprises a probe which is capable of specifically binding to the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the system comprises a sample collecting module collecting a sample from the subject suffering schizophrenia.
  • the sample comprises a blood sample.
  • the system comprises a judging module comparing the expression and/or activity level of BDNF between the subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of the early-life adversity related factor between the subject suffering schizophrenia and that of a healthy subject. In some embodiments, the judging module judges that whether the expression and/or activity level of BDNF in the subject suffering schizophrenia is decreased compared to that of a healthy subject. In some embodiments, the judging module judges that whether the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject.
  • the judging module judges that whether the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject.
  • the system comprises a suggestion module providing a suggestion about the treatment program for the subject suffering schizophrenia according to a judging result from the judging module.
  • FIG. 1A-1J illustrate the behavioral characterization of Bdnf-e6 mutant mice.
  • FIG. 1A-FIG. B Three-chamber test. Both Bdnf-e6-/- and WT mice spent more time in the chamber containing the “Stranger 1” in the sociability test (FIG. 1A) and increased preference for the “Stranger 2” in the social novel preference test (FIG. 1B) .
  • FIG. 1C Morris water maze (MWT) test. Schematic diagram of the Morris water navigation task.
  • FIG. 1D In the learning trials, WT and Bdnf-e6-/- mice showed the same escape latency, except on day-6.
  • FIG. 2A-2I illustrate the postnatal hypoxia induced social dysfunction in hypoxia-e6-/- mice.
  • FIG. 2A Schematic diagram depicting the experimental design. WT and Bdnf-e6-/- mice at postnatal day 4 (P4) were subjected to hypoxia or normoxia living environment for 7 consecutive days, and raised to adult in normoxia. Open field, Rotarod, social interaction, and PPI tests were performed, successively.
  • FIG. 2B The total running distance of normoxia-and hypoxia-treated mice in the open field test.
  • FIG. 2C The time to fall of normoxia-and hypoxia-treated mice in the Rotarod test.
  • FIG. 2D Experimental design of social interaction test.
  • FIG. 2E FIG.
  • FIG. 2F Sociability (FIG. 2E) and social novelty preference (FIG. 2F) of normoxia-and hypoxia-treat mice. Note that Bdnf-e6-/- mice lost social and sociability and novelty preference after postnatal hypoxia.
  • FIG. 2G-FIG. 2I Effect of hypoxia on PPI. The average PPI ratios at all intensities were selectively decreased in the postnatal hypoxia-e6-/- mice.
  • FIG. 2B-2C, 2G-2I Two-way ANOVA analysis with Tukey’s multiple comparisons test. E-F: unpaired Student’s t-test) .
  • FIG. 3A-3E illustrate juvenile social isolation induced hyperactivity and social dysfunction.
  • FIG. 3A Schematic diagram depicting the experimental design. Bdnf-e6-/- and WT mice at postnatal day 21 were subject to isolation rearing (PIR) or social rearing (PSR) for four consecutive weeks (P21-P49) . Different types of behavioral tests were conducted in a schedule as highlighted.
  • FIG. 3B The total running distance of PIR and PSR mice in the open field test.
  • FIG. 3C The duration time of PIR and PSR mice in the center of open field.
  • FIG. 3D-FIG. 3E Social behaviors of PIR and PSR mice were measured by time spent sniffing in the sociability test and social novelty preference test.
  • FIG. 3B-FIG. 3C Two-way ANOVA analysis with Tukey’s multiple comparisons test.
  • FIG. 3D-FIG. 3E unpaired Student’s t-test
  • FIG. 4A-4H illustrate juvenile isolation induced PPI deficits in both Bdnf-e6-/- and WT mice, but adult isolation induced PPI deficits only in Bdnf-e6-/- mice.
  • FIG. 4A, FIG. 4E Experimental design. Juvenile social isolation paradigm is same as FIG. 3 (FIG. 4A) .
  • Bdnf-e6-/- and WT adult mice at postnatal day 70 were subject to isolation rearing (AIR) or social rearing (ASR) for four consecutive weeks (P70-P98) , PPI test were conducted at P100-P103 (E) .
  • FIG. 4D PPI ratios at 71 dB, 81dB and 90dB were all decreased in PIR mice.
  • FIG. 4B-FIG. 4D Two-way ANOVA analysis with Tukey’s multiple comparisons test
  • FIG. 4F-FIG. 4H Pre-pulse inhibition of all intensity (71dB, 81dB, 90dB) are demonstrated, respectively.
  • Note AIR treatment induce no deficient PPI of all pre-pulse intensity in WT mice, but dramatically decreased PPI in Bdnf-e6-/- mice.
  • FIG. 5A-5C illustrate environmental stress increased plasma corticosterone level in WT mice.
  • FIG. 5A WT mice at postnatal day 4 were exposure to hypoxia or normoxia social living environment for 7 consecutive days (P4-P10) . After environmental stress, mice were reared to adult in normoxia social living environment. Note that postnatal hypoxia significantly increased the plasma corticosterone level in adult (P60) .
  • FIG. 5B WT mice at postnatal day 21 were subject to isolation-rearing (PIR) or social rearing (PSR) for consecutive 29 days (P21-P49) .
  • PIR isolation-rearing
  • PSR social rearing
  • mice were social-reared to adulthood. Note that juvenile social isolation elicited a significant increase in plasma corticosterone level in adult (P60) .
  • FIG. 5C the same experimental design was carried as (FIG. 5B) , except social (ASR) or isolation rearing (AIR) was imposed during adult (P70-P98) , and blood sample was collected at P100. Note that adolescence social isolation still elicited an increase in plasma corticosterone level (FIG. 5A-FIG. 5C: unpaired Student’s t-test) .
  • FIG. 6A-6H illustrate juvenile CORT exposure resulted in deficient social novelty in Bdnf-e6-/- mice.
  • FIG. 6A Experimental design. Corticosterone was administered daily from P42-P63, and behavioral tests were performed at times as indicated.
  • FIG. 6B, FIG. 6C Open field test of WT and Bdnf-e6-/- mice with or without juvenile CORT exposure. Note that “total distance moved” but not “duration in center” was significantly decreased with juvenile CORT exposure in both WT and Bdnf-e6-/- mice.
  • FIG. 6D, FIG. 6E The CORT exposure paradigm was the same as (FIG. 6B, FIG. 6C) , except social behavior was measured by (FIG.
  • FIG. 6D social ability test
  • FIG. 6E social novelty preference test
  • FIG. 6D social ability test
  • FIG. 6E social novelty preference test
  • FIG. 6D social ability test
  • FIG. 6E social novelty preference test
  • FIG. 6D social ability test
  • FIG. 6E social novelty preference test
  • FIG. 6D normal sociability test
  • FIG. 6E social novelty preference test
  • FIG. 6F The CORT exposure paradigm is the same as (FIG. 6B, FIG. 6C) , except PPI was measured. While both genotypes exhibited a decrease in PPI ratios after juvenile CORT exposure, Bdnf-e6-/- mice showed a further decrease at P81, P120 (FIG. 6G) and P90, P120 (FIG. 6H) .
  • FIG. 6B, FIG. 6C, FIG. 6F-FIG. 6H Two-way ANOVA analysis with Tukey’s multiple comparisons test.
  • FIG. 6D, FIG. 6E unpaired Student’s t-test
  • FIG. 7A-7H illustrate TrkB agonistic antibody rescued PPI deficiency in Bdnf-e6-/- mice exposed to postnatal hypoxia or postweaning social isolation.
  • FIG. 7A-FIG. 7D Effect on hypoxia-Bdnf-e6-/- mice. Mice were exposed to hypoxia from P4-P10, and TrkB agonistic antibody AbB901 (1mg/kg) was administered intravenously 48h hours prior PPI test (FIG. 7A) .
  • the normoxia-e6-/- is referred to data from FIG. 2. Note that the decrease in PPI ratio at 81dB, 90dB in hypoxia-e6-/- mice were rescued by AbB901 treatment.
  • FIG. 7A-FIG. 7D Effect on hypoxia-Bdnf-e6-/- mice. Mice were exposed to hypoxia from P4-P10, and TrkB agonistic antibody AbB901 (1mg/kg) was administered intravenously
  • FIG. 7E-FIG. 7H Effect on PIR-Bdnf-e6-/- mice. Mice were subject to juvenile social isolation from P21-P49, and AbB901 was administered the same way as A. The PSR-e6 is referred to data from FIG. 3. Note that while there was a trend of AbB901 effects at 70dB and 81dB, the decrease in PPI ratio at 90dB in PIR-Bdnf-e6-/- mice were significantly rescued by the AbB901 treatment. (FIG. 7B-FIG. 7D, FIG. 7F-FIG. 7H: unpaired Student’s t-test) .
  • FIG. 8A-8H illustrate RU-486 rescued PPI deficiency in Bdnf-e6-/- mice exposed to postnatal hypoxia or postweaning social isolation (FIG. 8A-FIG. 8C) .
  • FIG. 8A-FIG. 8D Effect on hypoxia-Bdnf-e6-/- mice. Mice were exposed to hypoxia from P4-P10, and daily administration of RU-486 (40mg/kg) from P91 to P98. PPI was measured on P100 (FIG. 8A) . The normoxia-e6-/- is referred to data from FIG. 2. Note that the decrease in PPI ratio at 90dB in hypoxia-e6-/- mice were rescued by RU-486 treatment.
  • FIG. 8E-FIG. 8H Effect on PIR-Bdnf-e6-/- mice. Mice were subject to juvenile social isolation from P21-P49 while administered with RU-486, and PPI was measured on P100 (FIG. 8A) . The PSR-e6 is referred to data from FIG. 3. Note that the decrease in PPI ratio at all intensities (70dB, 81dB, 91dB) in PIR-Bdnf-e6-/- mice were significantly rescued by the RU-486 treatment. (FIG. 8B-FIG. 8D, FIG. 8F-FIG. 8H: unpaired Student’s t-test) .
  • FIG. 9A-9K illustrate characterization of Bdnf-e6-/- mice.
  • FIG. 9A Left: The design of Bdnf-e6 mutant mice.
  • Mouse Bdnf genomic structure consists of ten exons, only one of which contains protein-coding region. Each noncoding exon is transcribed from its corresponding promoter and alternatively spliced to the common coding exon (exon IXa-BDNF) .
  • an eGFP-STOP cassette was inserted after exon VI and a PGK-Neo cassette was placed antisense to eGFP.
  • PGK-Neo was later deleted by Cre recombinase expression.
  • FIG. 9B Relative Bdnf-e6 mRNA expression in various brain region (Hippocampus, mPFC, cortex, thalamus, olfactory bulb) and peripheral organ (heart, lung, kidney, liver, spleen) .
  • FIG. 9C, FIG. 9D Relative Bdnf-e1/2/4/6 mRNA expression in hippocampus (FIG. 9C) and mPFC (FIG.
  • FIG. 9D Body weight. The body weights of male WT and Bdnf-e6-/- mice were recorded at different time points. Disruption from promoter VI elicited no changes in the body weight of male mice.
  • FIG. 9F Rotarod test. In this and subsequent tests, male WT and Bdnf-e6-/- mice (2 ⁇ 4 months) were used. Bdnf-e6-/- mice showed no motor deficit on the accelerating rotarod. (FIG. 9G-FIG.
  • FIG. 9H Open-field test. Bdnf-e6-/- mice were normal in locomotor activity (FIG. 9G) , but spent less time in the center FIG. 9H) .
  • FIG. 9I GFP protein expression in various brain region (hypothalamus, mPFC, Hippocampus, striatum, olfactory bulb, cortex, thalamus, midbrain) of WT and Bdnf-e6-/- mice.
  • FIG. 9J GFP expression can be detected in various brain region, especially in hippocamus, by immunostaining.
  • FIG. 9K Whole brain structure image of WT and Bdnf-e6-/- mice collected by 7.0T MRI. Note both genotype mice exhibit similar lateral ventricle volume.
  • FIG. 9C-FIG. 9H unpaired Student’s t-test
  • FIG. 10A-10D illustrate body weight affected by postnatal hypoxia.
  • FIG. 10A Schematic diagram depicting the experimental design.
  • FIG. 10B-FIG. 10D Body weight of WT and Bdnf-e6-/- mice subjected to postnatal hypoxia treatment. There were 4 experimental groups: WT: normoxia and hypoxia; Bdnf-e6: normoxia and hypoxia. Note body weight are significantly decreased at 3-and 5-week of age in both genotypes (FIG. 10B, FIG. 10C) , which recovered to normal at 9-week of age (FIG. 10D) . Bdnf-e6 deficiency have no further effect on body weight, expect at 3-week of age. (FIG. 10B-FIG. 10D: Two-way ANOVA analysis with Tukey’s multiple comparisons test) .
  • FIG. 11A-11E illustrate nest building behavior and novel object recognition affected by postnatal hypoxia.
  • FIG. 11A Representative images illustrating nest building score rating scale.
  • FIG. 11B, FIG. 11C Nest building score (FIG. 11B) and its ratio composition (FIG. 11C) of the 4 groups. Higher score represents better nest building quality.
  • Note postnatal hypoxia treatment results in worse nest building quality in both genotypes, meanwhile Bdnf-e6 deficiency seems to further worse the nest building quality.
  • FIG. 11D, FIG. 11E Exploration time (FIG. 11D) and discrimination ratio (FIG. 11E) of novel object recognition test of the 4 groups.
  • FIG. 11B Note postnatal hypoxia treatment resulted in deficient novel object recognition in Bdnf-e6-/- mice, but not WT mice.
  • FIG. 11E Two-way ANOVA analysis with Tukey’s multiple comparisons test.
  • FIG. 11D unpaired Student’s t-test
  • FIG. 12A-12H illustrate adult social isolation or postnatal hypoxia do not induce PPI deficits in Bdnf-e4-/- mice.
  • FIG. 12A, FIG. 12E Experimental design. Adult social isolation and postnatal hypoxia paradigm are same as FIG. 4A and FIG. 2A, respectively. PPI tests were conducted in P100 or adulthood.
  • FIG. 12B-FIG. 12D PPI ratios at 71 dB, 81dB and 90dB were not decreased in AIR Bdnf-e4-/- mice comparing with WT mice.
  • FIG. 13A-13D illustrate Bdnf expression and TrkB signaling affected by postnatal hypoxia and Bdnf-e6 deficiency.
  • FIG. 13A, FIG. 13B Bdnf and Bdnf-e6 mRNA expression in mPFC (FIG. 13A) and hippocampus (FIG. 13B) of WT mice subjected to postnatal hypoxia or normoxia environment. Note that postnatal hypoxia induces moderate but significant decreasing Bdnf-e6 mRNA expression in hippocampus.
  • FIG. 13C pTrkB/TrkB ratio in the hippocampus. WT and Bdnf-e6-/- mice were subjected to postnatal hypoxia or normoxia environment.
  • FIG. 13D Expression and phosphorylation level of TrkB in hippocampus of WT and Bdnf-e6-/- mice subjected to postnatal hypoxia or normoxia environment.
  • N normoxia
  • H hypoxia
  • WT wildtype
  • e6 Bdnf-e6-/- .
  • FIG. 13A-FIG. 13C unpaired Student’s t-test
  • FIG. 14A-14D illustrate effect of RU-486 on PPI in Bdnf-e6-/- mice subjected to adult isolation rearing (AIR) .
  • FIG. 14A Experimental design showing the timings of adult isolation and RU-486 administration.
  • FIG. 14B-FIG. 14D PPI at all intensities (71dB, 81dB, 90dB) .
  • RU-486 had no effect on PPI.
  • FIG. 14B-FIG. 14D unpaired Student’s t-test
  • FIG. 15A-15D illustrate effect of RU-486 on PPI in WT mice subjected to postnatal-isolation rearing (PIR) .
  • FIG. 15A Experimental design. WT mice were put in isolation postnatally (P21-P49) and RU-486 was administered from P42-P49.
  • FIG. 15B-FIG. 15D Effects on PPI in the PIR model. The PSR-WT is referred to data from FIG. 4. Note that PPI ratios were slightly reduced at all intensities (71dB, 81dB, 90dB) after PIR (see FIG.
  • FIG. 15B-FIG. 15D unpaired Student’s t-test
  • FIG. 16A-16D illustrate effect of adolescent administration of RU-486 on PPI in MK801 model.
  • FIG. 16A Experimental design. RU-486 was administered from P91-P98, and MK801 was injected on P100 to induce SCZ endophenotypes.
  • FIG. 16B-FIG. 16D Effects on PPI in the MK801 model. Note that PPI ratios were dramatically reduced at all intensities (71dB, 81dB, 90dB) after MK801, and pretreatment with RU-468 increased PPI ratio at 90dB.
  • FIG. 16B-FIG. 16D unpaired Student’s t-test
  • the term “amedicinal product” generally refers to a formulation that exists in a form that allows the biological activity of the active ingredient to be effective.
  • the medicinal product may not comprise additional ingredients that have unacceptable toxicity to the subject to which the formulation is to be administered.
  • these formulations may contain the active ingredient of the drug and a pharmaceutically acceptable carrier.
  • the medicinal product may comprise a drug product that is administered parenterally, transdermally, intraluminally, intraarterially, intrathecally, and/or intranasally, or injected directly into the tissue.
  • the medicinal product may be administered in different ways, such as intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration.
  • the term may be a combination comprising at least two components.
  • the components of the medicinal product may be used together. Among them, collocation may refer to simultaneous use or separate use.
  • the components in the medicinal product may be mixed together or placed in different containers.
  • the medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonist (such as an agonistic antibody or the antigen binding portion thereof) and an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) .
  • TrkB tropomyosin receptor kinase B
  • Schizophrenia also known as SCZ, generally refers to a mental disorder characterized by abnormal behavior and misinterpretation of reality. Schizophrenia generally may refer to a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms may comprise hallucinations (typically hearing voices) , delusions, and disorganized thinking. Other symptoms may comprise social withdrawal, decreased emotional expression, and apathy.
  • TrkB is a receptor for brain-derived neurotrophic factor (BDNF) and is member of a receptor family of tyrosine kinases that comprises TrkA and TrkC.
  • TrkB may be a human TrkB, or may be a rodent TrkB (such as a mouse TrkB) .
  • TrkB agonist generally refers to a substance capable of initiating a physiological response when combined with TrkB.
  • a TrkB agonist may encompass a chemical that activates TrkB to produce a biological response.
  • a TrkB agonist may comprise an endogenous agonist (e.g. a TrkB ligand, such as BDNF) , or an exogenous agonist (e.g., a mimic of its ligand, such as a BDNF mimic) .
  • a TrkB agonist may be a small molecule, a polypeptide/aprotein (such as an antibody or its antigen binding portion) .
  • a TrkB agonist may be a full agonist (e.g., a full agonist may bind to and activate a receptor with the maximum response that an agonist can elicit at the receptor) , or may be a partial agonist. It may be a full agonist in some tissues/cells and may be a partial agonist in some other tissues/cells. In some cases, a TrkB agonist may be a co-agonist that works with other co-agonists to produce the desired effect together. A TrkB may be a selective agonist that has selectivity for TrkB.
  • TrkB agonistic antibody also known as TrkB agonistic antibody, generally refers to an immunoglobulin or a fragment or derivative thereof capable of activating TrkB, and encompasses any polypeptide that may comprise an TrkB-binding site, whether it is produced in vitro or in vivo.
  • the term comprises, but is not limited to, polyclonal, monoclonal, single-specific, multispecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and transplanted antibodies.
  • TrkB agonistic antibody may comprise a light chain and/or a heavy chain.
  • TrkB agonistic antibody may specifically bind to human TrkB.
  • the NCBI accession number of human TrkB is AAB33109.1.
  • the NCBI accession number of gene encoding human TrkB is 4915.
  • antigen binding portion generally refers to a region on an antibody that binds to antigens.
  • Antigen binding portion may be composed of one constant and/or one variable domain of each of the heavy and/or the light chain.
  • the variable domain may comprise the paratope (the antigen-binding site) , comprising a set of complementarity-determining regions, at the amino terminal end of the monomer.
  • antigen binding portion may comprise Fab, Fab’, F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • BDNF brain-derived neurotrophic factor
  • Bdnf brain-derived neurotrophic factor
  • BDNF brain-derived neurotrophic factor
  • the neurotrophic factors are found in the brain and the periphery.
  • BDNF may be human BDNF, or may be mouse BDNF.
  • the NCBI accession number of human BDNF is P23560.1.
  • the NCBI accession number of the gene encoding human BDNF is 627.
  • BDNF-e6 generally refers to exon 6 of the Bdnf gene.
  • the Bdnf gene has 9 unique promoters that drive transcription of at least 20 different Bdnf transcripts that encode the BDNF protein.
  • the expression of BDNF-e6 is driven by promoter VI of the Bdnf gene.
  • light chain generally refers to the small polypeptide subunit of an antibody. Each light chain may be composed of two tandem immunoglobulin domains: a constant (C L ) domain, and a variable (V L ) domain.
  • the length of a light chain protein may be from about 211 to about 217 amino acids.
  • light chain may be a human light chain.
  • a light chain may comprise a light chain variable region, and the light chain variable region may comprise one or more of LCDR1, LCDR2 and LCDR3.
  • heavy chain generally refers to the large polypeptide subunit of an antibody. Each heavy chain may have two regions: a constant (C L ) region, and a variable (V L ) region.
  • the length of a heavy chain protein may be from about 450 to about 550 amino acids.
  • heavy chain may be a human heavy chain.
  • a heavy chain may comprise a heavy chain variable region, and the heavy chain variable region may comprise one or more of HCDR1, HCDR2 and HCDR3.
  • the term “early-life adversity” generally refers to an experience that represents a deviation from the expected environment and require adaptation.
  • the early-life adversity may comprise exposure to child abuse, sexual assault, neglect, and chronic poverty.
  • Early-life adversity is associated with elevated risk for numerous mental and physical health problems.
  • the term may comprise viral infections, smoking intelligence quotient, social cognition cannabis use, social isolation, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • corticosterone also known as 17-deoxycortisol, corticosterone or 11 ⁇ , 21-dihydroxyprogesterone, generally refers to a 21-carbon steroid hormone of the corticosteroid type, which may be produced in the cortex of the adrenal glands.
  • corticosterone or “CORT” also encompasses a corresponding agent in another species (e.g., in human being) , and it may encompass cortisol.
  • corticosterone is a main glucocorticoid, involved in the regulation of energy, immune reactions, and stress responses.
  • corticosterone may be one early-life adversity related factor.
  • the CAS number of CORT may be 50-22-6 or 50-23-7.
  • the term “inhibitor against an early-life adversity related factor” generally refers to a molecule that may decrease the activity of an early-life adversity related factor.
  • the inhibitor against an early-life adversity related factor may bind to an early-life adversity related factor.
  • the binding of an inhibitor may stop and/or hinder the reaction of early-life adversity.
  • the binding between an early-life adversity related factor and the inhibitor thereof may be either reversible or irreversible.
  • the early-life adversity related factor may be a glucocorticoid (e.g., cortisol, corticosterone or CORT) , further the term may be a mifepristone (RU-486) .
  • the CAS number of RU-486 may be 84371-65-3.
  • the present application provides a medicinal product for use in preventing, alleviating and/or treating schizophrenia.
  • the medicinal product may comprise a TrkB agonist and an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) .
  • the present application provides a method for preventing, alleviating and/or treating schizophrenia in a subject in need thereof.
  • the method may comprise administering to the subject a TrkB agonist and/or an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) , and the subject has decreased expression level and/or activity of BDNF-e6 and elevated level and/or activity of CORT.
  • a TrkB agonist and/or an inhibitor against an early-life adversity related factor such as a CORT inhibitor
  • the present application provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia.
  • the method may comprise determining the expression level and/or activity of BDNF-e6 in the subject, and determining the level and/or activity of CORT in the subject.
  • the present application provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia.
  • the system may comprise: a first module for determining whether the subject has decreased expression level and/or activity of BDNF-e6, and a second module for determining whether the subject has elevated level and/or activity of CORT.
  • Bdnf-e1 and Bdnf-e2 are involved in different aspects of obesity (thermogenesis and food intake) , aggression, and serotonin signaling (Maynard et al., 2016; McAllan et al., 2018; You et al., 2020) .
  • Bdnf-e4 and Bdnf-e6 A major function of Bdnf-e4 and Bdnf-e6 is to promote development and function of GABAergic neurons (Jiao et al., 2011; Maynard et al., 2016; Sakata et al., 2013; Sakata et al., 2009b; Xu et al., 2021) .
  • Deficit in GABAergic neurons is one of the pathological hallmarks of schizophrenia (Dienel and Lewis, 2019)
  • Bdnf-e4 and Bdnf-e6 are expressed in brain regions associated with schizophrenia, such as hippocampus, prefrontal cortex, and hypothalamus (Maynard et al., 2016) .
  • Bdnf-e4 or Bdnf-e6 leads to approximately 50%decrease of BDNF protein expression in hypothalamus, prefrontal cortex, and hippocampus, at postnatal day 28 (PSD28) , and 50%, 30%, 30%decrease in these 3 areas in the adulthood, respectively (Marchnard et al., 2016) .
  • BDNF has long been implicated in the development of SCZ (Di Carlo et al., 2019) , although Bdnf gene is not located in schizophrenia-associated genetic loci based on GWAS PGC2 studies (Schizophrenia Working Group of the Psychiatric Genomics, 2014) .
  • BDNF is a powerful regulator of synapses and neural circuits important for mood control and cognition, the key components relevant to SCZ (Chao, 2003; Figurov et al., 1996; Ji et al., 2010; Lohof et al., 1993; Martinowich et al., 2007; Molteni et al., 2001; Xu et al., 2000) .
  • the subject may have decreased plasma BDNF level.
  • the plasma BDNF level in the subject may be at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%or more lower.
  • the subject may have altered Bdnf gene, for example, the subject may have one or more mutation in promoter VI of the Bdnf gene.
  • the subject may comprise a BDNF Val66 mutation.
  • the subject may comprise the BDNF Val66Met polymorphism (Hashimoto and Lewis, 2006) .
  • Brain-derived neurotrophic factor as one of the genetic factors plays an important role in neuronal differentiation and synaptogenesis during development, synaptic transmission and plasticity in the adult, as well as behaviors relevant to schizophrenia.
  • Aberrant expression of BDNF has been observed in the prefrontal cortex (PFC) and blood plasma of schizophrenia patients.
  • mouse line with specific disruption may comprise the deficiency of Bdnf promoter VI.Furthermore, the deficiency of Bdnf promoter VI may cause the decrease of the expression and/or activity level of BDNF or significant impairments in PFC GABAergic interneuron markers.
  • the expression and/or activity level of BDNF in SCZ subject may be decreased compared to that of a healthy subject.
  • the expression and/or activity level of BDNF-e6 may be decreased by at least 10% (for example, may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%or more decreased compared to that of a healthy subject) .
  • a healthy subject may be a subject not suffering from schizophrenia or not at the risk of developing schizophrenia.
  • a TrkB agonist may encompass any substance capable of initiating a physiological response when combined with the receptor TrkB.
  • the TrkB agonist may be an endogenous agonist (e.g. a TrkB ligand, such as BDNF) , or an exogenous agonist (e.g., a mimic of its ligand, such as a BDNF mimic) .
  • the TrkB agonist may be a small molecule, a polypeptide/aprotein (such as an antibody or its antigen binding portion) , or any other functional entities (e.g., a polymer, a cell etc. ) .
  • the TrkB agonist may be a full agonist, a partial agonist or a combination thereof.
  • the TrkB agonist may be a full agonist in some cases and may be a partial agonist in some other cases. In some cases, the TrkB agonist may be a co-agonist that works with other co-agonists to produce the desired effect together.
  • the TrkB may be a selective agonist that has selectivity for TrkB.
  • the TrkB agonist may comprise a TrkB agonistic antibody capable of activating TrkB, or an antigen binding portion thereof.
  • the TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • BDNF brain-derived neurotrophic factor
  • the TrkB agonistic antibody or the antigen binding portion may be capable of specifically binding to human TrkB.
  • the TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing activation of TrkB downstream signal pathway.
  • the TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • BDNF brain-derived neurotrophic factor
  • the antigen binding portion of the antibody may comprise Fab, Fab’, F (ab) 2 , Fv fragment, F (ab’) 2 , scFv, di-scFv and/or dAb.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise a light chain variable region.
  • the light chain variable region may comprise LCDR1, LCDR2 and LCDR3.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1
  • the LCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR2, the LCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82, and 92.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR3, the LCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3
  • the LCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91
  • the LCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82, and 92
  • the LCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise a light chain variable region, and the light chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody may comprise a light chain constant region, and the light chain constant region may be a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • the TrkB agonistic antibody may comprise a light chain, and the light chain may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 90 and 100.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise a heavy chain variable region.
  • the heavy chain variable region may comprise HCDR1-3.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR1
  • the HCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR2, the HCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR3, the HCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR1-3
  • the HCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94
  • the HCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95
  • the HCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise a heavy chain variable region, and the heavy chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 9-11
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 12-14.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 15-17
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 18-20.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 21-23
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 24-26.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 29-31
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 32-34.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 37-39
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 40-42.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 45-47
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 48-50.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 53-55
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 56-58.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 61-63
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 64-66.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 69-71
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 72-74.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 81-83
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 84-86.
  • the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3
  • the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 91-93
  • the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 94-96.
  • the heavy chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97
  • the light chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • the TrkB agonistic antibody may comprise a heavy chain constant region, and the heavy chain constant region may be a human IgG constant region.
  • the TrkB agonistic antibody may comprise a heavy chain, and the heavy chain may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 89 and 99.
  • the heavy chain may comprise an amino acid sequence as set forth in SEQ ID NO: 89, and the light chain may comprise an amino acid sequence as set forth in SEQ ID NO: 90; or, the heavy chain may comprise an amino acid sequence as set forth in SEQ ID NO: 99, and the light chain may comprise an amino acid sequence as set forth in SEQ ID NO: 100.
  • the medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor, and may comprise optionally a pharmaceutically acceptable carrier.
  • TrkB tropomyosin receptor kinase B
  • the pharmaceutically acceptable carrier may comprise any one of all solvents, dispersion media, coatings, isotonic agents and absorption delaying agents that may be compatible with drug administration, and may be generally safe and non-toxic.
  • the TrkB agonistic antibody may bind to an epitope contained in one of the extracellular domains of TrkB and is capable of activating TrkB, wherein the extracellular domain may comprise extracellular D1 domain having the amino acid sequence as set forth in SEQ ID NO: 2, D2 domain having the amino acid sequence as set forth in SEQ ID NO: 3, D3 domain having the amino acid sequence as set forth in SEQ ID NO: 4, D4 domain having the amino acid sequence as set forth in SEQ ID NO: 5, D5 domain having the amino acid sequence as set forth in SEQ ID NO: 6 and juxta membrane domain having the amino acid sequence as set forth in SEQ ID NO: 7.
  • the antibody binds to an epitope contained in the juxta membrane domain and is capable of activating a truncated TrkB having the amino acid sequence as set forth in SEQ ID NO: 8.
  • the truncated TrkB lacks D1-D5 domains and has the amino acid sequence as set forth in SEQ ID NO: 8.
  • TrkB-ECD extracellular domain
  • the TrkB-ECD may comprise an amino acid sequence as set forth in SEQ ID NO: 1.
  • developmental stress as one of the environmental factors may impact the development of schizophrenia-like endo-phenotypes.
  • developmental stress may comprise early-life adversity.
  • the early-life adversity may comprise viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • the early-life adversity may comprise juvenile isolation and/or postnatal hypoxia.
  • the expression and/or activity level of the early-life adversity related factor may be a result of early-life adversity.
  • the expression and/or activity level of early-life adversity related factor in SCZ subject may be increased compared to that of a healthy subject.
  • the early-life adversity related factor may comprise CORT, and the content of CORT may be increased at least 10%(for example, may be increased at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%increased compared to that of a healthy subject) .
  • the early-life adversity related factor may be related to glucocorticoid (e.g., cortisol, corticosterone or CORT) and/or the signal pathway thereof.
  • the early-life related factor may comprise prednisone, methylprednisone, betamethasone, beclomethasone dipropionate, prednisolone, hydrocortisone, and/or dexamethasone.
  • the early-life adversity related factor may comprise: glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  • the subject may have elevated plasma CORT level.
  • the plasma CORT level in the subject may be at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%or more higher.
  • the inhibitor against an early-life adversity related factor may be capable of inhibiting the expression and/or activity level of the early-life adversity related factor (e.g., CORT) .
  • the inhibitor against an early-life adversity related factor may comprise a mifepristone (RU-486) or a derivative thereof.
  • the present application further provides a method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein the subject may be administrated a TrkB agonist (such as a TrkB agonistic antibody or the antigen binding portion thereof) and/or an inhibitor against an early-life adversity related factor (e.g., a CORT inhibitor) .
  • a TrkB agonist such as a TrkB agonistic antibody or the antigen binding portion thereof
  • an inhibitor against an early-life adversity related factor e.g., a CORT inhibitor
  • the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the subject in need thereof.
  • the inhibitor against CORT may be administrated to the subject in need thereof.
  • the inhibitor against CORT may be administrated to the subject in need thereof.
  • the TrkB agonist e.g., the TrkB agonistic antibody or the antigen binding portion thereof
  • the TrkB agonist e.g., the TrkB agonistic antibody or the antigen binding portion thereof
  • the inhibitor against CORT may be administrated to the subject in need thereof.
  • BDNF e.g., BDNF-e6
  • the expression and/or activity level of BDNF e.g., BDNF-e6
  • the content of CORT in the subject is increased by at least about 5%
  • the TrkB agonist e.g., the TrkB agonistic antibody or the antigen binding portion of the present application
  • the medicinal product may be administered simultaneously.
  • the medicinal product may be applied by mixing the components (i.e. the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof) of the present application and the inhibitor against CORT of the present application) together or separately.
  • the medicinal product may be administered in the same way, for example, to the same vein or other blood vessels, or may be administered in different ways, for example, intravenous administration and oral administration may be performed at the same time.
  • the TrkB agonist e.g., the TrkB agonistic antibody or the antigen binding portion of the present application
  • the inhibitor against an early-life adversity related factor may be administered sequentially.
  • the order of administration may be that the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) may be administered first, and then the inhibitor against an early-life adversity related factor; or the inhibitor against an early-life adversity related factor may be administered first, and then the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) may be administered.
  • the TrkB agonist e.g., the TrkB agonistic antibody or the antigen binding portion of the present application
  • the inhibitor against an early-life adversity related factor may be applied in the same way or in a different way.
  • Each component i.e. the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) and the inhibitor against CORT of the present application
  • sequential administration may be administered at any time interval, including minutes, hours, days, weeks, months, or years.
  • sequential administration may refer to administrations separated at any time interval between at least 1 minute (for example, between at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 60 minutes or more time) .
  • the present disclosure provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, comprising determining the expression level and/or activity of BDNF-e6 in the subject, and determining the level and/or activity of CORT in the subject.
  • the present application further provides a method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma of the subject) , and measuring the expression and/or activity level of an early-life adversity related factor (e.g., CORT) in the subject (e.g., in the plasma of the subject) .
  • BDNF e.g., BDNF-e6
  • CORT early-life adversity related factor
  • the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be measured by the detection method of which may be capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF (e.g., BDNF-e6) .
  • the detection method of BDNF may comprise qPCR, qRT-PCR, southern blot, northern blot, western blot and/or ELISA.
  • the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be measured by a pair of primer which may be capable of amplifying Bdnf gene (e.g., BDNF-e6) , and/or a probe which may be capable of specifically binding to BDNF (e.g., BDNF-e6) .
  • BDNF-e6 BDNF-e6 .
  • the content of CORT in the subject may be measured by the detection method of which may be capable of measuring content of CORT.
  • the detection method of CORT may comprise infrared spectroscopy, nuclear magnetic resonance spectroscopy, photochemical analysis (for example, refractometry, ultraviolet-visible spectrophotometry, fluorescence analysis) , and/or electrochemical analysis (for example, potentiometric analysis, coulometric analysis, polarography, and/or voltammetry) .
  • photochemical analysis for example, refractometry, ultraviolet-visible spectrophotometry, fluorescence analysis
  • electrochemical analysis for example, potentiometric analysis, coulometric analysis, polarography, and/or voltammetry
  • the method wherein the content of CORT in the subject may be measured by a probe which may be capable of specifically binding to CORT.
  • the detection method may use a sample from the subject.
  • the sample may comprise a blood sample.
  • the blood sample may originate from peripheral blood.
  • the method may comprise a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and comparing the expression and/or activity level of an early-life adversity related factor in the subject with that of a healthy subject.
  • the subject suffering schizophrenia selected may comprise: (1) the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be decreased compared to that of a healthy subject; (2) the content of CORT in the subject may be increased compared to that of a healthy subject; (3) the expression and/or activity level of BDNF in the subject may be decreased and the content of CORT in the subject may be increased compared to that of a healthy subject.
  • BDNF e.g., BDNF-e6
  • the expression and/or activity level of BDNF in the subject may be decreased and the content of CORT in the subject may be increased compared to that of a healthy subject.
  • the expression and/or activity level of BDNF in the subject may be decreased compared to that of a healthy subject, and/or the expression and/or activity level of the early-life adversity related factor in the subject may be increased compared to that of a healthy subject, the subject suffering schizophrenia may be selected.
  • BDNF e.g., BDNF-e6
  • the expression and/or activity level of the early-life adversity related factor in the subject may be increased compared to that of a healthy subject, the subject suffering schizophrenia may be selected.
  • BDNF e.g., BDNF-e6
  • the expression and/or activity level of BDNF e.g., BDNF-e6
  • the content of CORT in the subject is increased at least 10% (for example, may be increased at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject)
  • the subject suffering schizophrenia may be selected as a potential subject for the further treatment (for example, for administrating the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion of the present application and the inhibitor against CORT of the present application) .
  • the method may comprise a following step: the selected subject may be administrated with a TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor of the present application.
  • a TrkB agonist such as the TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor of the present application.
  • the expression and/or activity level of BDNF e.g., BDNF-e6
  • the inhibitor against an early-life adversity related factor may be administrated to the selected subject.
  • the expression and/or activity level of the early-life adversity related factor (e.g., CORT) in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject, the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the selected subject.
  • the TrkB agonist such as the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the selected subject.
  • the TrkB agonist such as the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the selected subject.
  • the expression and/or activity level of BDNF e.g., BDNF-e6
  • the expression and/or activity level of the early-life adversity related factor e.g., CORT
  • the TrkB agonist such as the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against an early-life adversity related factor may be administrated to the selected subject.
  • the expression and/or activity level of BDNF e.g., BDNF-e6
  • the expression and/or activity level of BDNF in the subject is decreased (for example, may be decreased by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%decreased compared to that of a healthy subject) compared to that of a healthy subject
  • the content of CORT in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject
  • the TrkB agonist such as the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against CORT may be administrated to the selected subject.
  • the present disclosure provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia.
  • the system may comprise: a first module for determining whether the subject has decreased expression level and/or activity of BDNF-e6, and a second module for determining whether the subject has elevated level and/or activity of CORT.
  • the present application further provides a system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma) , and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor (e.g., CORT) in the subject (e.g., in the plasma) .
  • BDNF e.g., BDNF-e6
  • CORT early-life adversity related factor
  • the first measurement module may be capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF (e.g., BDNF-e6) .
  • BDNF e.g., BDNF-e6
  • the first measurement module may comprise any agent and/or equipment which is formulated for measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
  • the first measurement module may comprise any agent and/or equipment which is formulated for measuring BDNF with a method of qPCR, qRT-PCR, southern blot, northern blot, western blot and/or ELISA.
  • the first measurement module may comprise a pair of primer which may be capable of amplifying Bdnf gene, and/or a probe which may be capable of specifically binding to BDNF.
  • the primer of BDNF may be capable of specifically amplifying Bdnf gene (e.g., the promoter VI of the Bdnf gene) .
  • the probe may comprise a sequence which is at least partially complementary and/or at least partially same to the sequence of BDNF.
  • the first measurement module may comprise an equipment for conducting qPCR and/or qRT-PCR.
  • the first measurement module may comprise an equipment to illustrate the result of measuring the expression and/or activity level of BDNF in the subject.
  • the result may be illustrated as a form of number, figure and/or table.
  • the second measurement module may be capable of measuring the plasma content of CORT.
  • the second measurement module may comprise any agent and/or equipment which is formulated for measuring the content of CORT.
  • the second measurement module may comprise any agent and/or equipment which is formulated for measuring CORT with a method of infrared spectroscopy, nuclear magnetic resonance spectroscopy, photochemical analysis (for example, refractometry, ultraviolet-visible spectrophotometry, fluorescence analysis) , and/or electrochemical analysis (for example, potentiometric analysis, coulometric analysis, polarography, and/or voltammetry) .
  • the second measurement module may comprise a probe which may be capable of specifically binding to CORT.
  • the second measurement module may comprise a pure CORT compound as a control sample.
  • the second measurement module may comprise an equipment to illustrate the result of measuring the content of CORT in the subject.
  • the result may be illustrated as a form of number, figure and/or table.
  • the system may comprise a sample collecting module collecting a sample from the subject suffering schizophrenia.
  • the system wherein the sample may comprise a blood sample.
  • the sample collecting module may comprise a tube and/or a blood collection device.
  • the system may comprise a judging module comparing the expression and/or activity level of BDNF between the subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of the early-life adversity related factor between the subject suffering schizophrenia and that of a healthy subject.
  • the judging module may judge that whether the expression and/or activity level of BDNF in the subject suffering schizophrenia may be decreased compared to that of a healthy subject.
  • the judging module may illustrate the result that the expression and/or activity level of BDNF in the subject suffering schizophrenia is decreased compared to that of a healthy subject.
  • the judging module may judge that whether the expression and/or activity level of the early-life adversity related factor in the subject may be increased compared to that of a healthy subject.
  • the judging module may judge that whether the content of CORT in the subject may be increased compared to that of a healthy subject.
  • the judging module may illustrate the result that the content of CORT in the subject is increased compared to that of a healthy subject.
  • the system may comprise a suggestion module providing a suggestion about the treatment program for the subject suffering schizophrenia according to a judging result from the judging module.
  • the suggestion module may suggest that the subject suffering schizophrenia may be suitable to be administrated the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof of the present application and/or the inhibitor against CORT of the present application.
  • Embodiment 1 A medicinal product for preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor.
  • TrkB tropomyosin receptor kinase B
  • Embodiment 2 The medicinal product according to embodiment 1, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB.
  • Embodiment 3 The medicinal product according to any one of embodiments 1-2, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
  • Embodiment 4 The medicinal product according to any one of embodiments 1-3, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • BDNF brain-derived neurotrophic factor
  • Embodiment 5 The medicinal product according to any one of embodiments 1-4, wherein said antigen binding portion thereof comprises Fab, Fab’ , F (ab) 2 , Fv fragment, F (ab’ ) 2 , scFv, di-scFv and/or dAb.
  • Embodiment 6 The medicinal product according to any one of embodiments 1-5, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein said light chain variable region comprises LCDR1-3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • Embodiment 7 The medicinal product according to embodiment 6, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • Embodiment 8 The medicinal product according to any one of embodiments 6-7, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • Embodiment 9 The medicinal product according to any one of embodiments 6-8, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • Embodiment 10 The medicinal product according to any one of embodiments 1-9, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • Embodiment 11 The medicinal product according to any one of embodiments 1-10, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein said heavy chain variable region comprises HCDR1-3, and said HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • Embodiment 12 The medicinal product according to embodiment 11, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • Embodiment 13 The medicinal product according to any one of embodiments 11-12, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • Embodiment 14 The medicinal product according to any one of embodiments 11-13, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • Embodiment 15 The medicinal product according to any one of embodiments 1-14, wherein said TrkB agonistic antibody comprises a heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
  • Embodiment 16 The medicinal product according to any one of embodiments 1-15, wherein said early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • Embodiment 17 The medicinal product according to any one of embodiments 1-16, wherein the expression and/or activity level of said early-life adversity related factor increases as a result of said early-life adversity.
  • Embodiment 18 The medicinal product according to any one of embodiments 1-17, wherein said early-life adversity related factor comprises corticosterone (CORT) .
  • CORT corticosterone
  • Embodiment 19 The medicinal product according to any one of embodiments 1-18, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of said early-life adversity related factor.
  • Embodiment 20 The medicinal product according to any one of embodiments 1-19, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the content of CORT.
  • Embodiment 21 The medicinal product according to any one of embodiments 1-20, wherein said inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
  • Embodiment 22 A method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein said subject is administrated a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
  • Embodiment 23 A method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein said subject is administrated a medicinal product according to any one of embodiments 1-21.
  • Embodiment 24 The method according to any one of embodiments 22-23, wherein the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject.
  • Embodiment 25 The method according to embodiment 24, wherein the expression and/or activity level of BDNF in said subject is decreased by at least 10%compared to that of a healthy subject.
  • Embodiment 26 The method according to any one of embodiments 24-25, wherein the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
  • Embodiment 27 The method according to embodiment 26, wherein said early-life adversity related factor comprises CORT, and the content of CORT in said subject is increased compared to that of a healthy subject.
  • Embodiment 28 The method according to embodiment 27, wherein the content of CORT in said subject is increased by at least 10%compared to a that of healthy subject.
  • Embodiment 29 The method according to any one of embodiments 22-28, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB.
  • Embodiment 30 The method according to any one of embodiments 22-29, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
  • Embodiment 31 The method according to any one of embodiments 22-30, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
  • BDNF brain-derived neurotrophic factor
  • Embodiment 32 The method according to any one of embodiments 22-31, wherein said antigen binding portion thereof comprises Fab, Fab’ , F (ab) 2 , Fv fragment, F (ab’ ) 2 , scFv, di-scFv and/or dAb.
  • Embodiment 33 The method according to any one of embodiments 22-32, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein said light chain variable region comprises LCDR1-3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  • Embodiment 34 The method according to embodiment 33, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  • Embodiment 35 The method according to any one of embodiments 33-34, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  • Embodiment 36 The method according to any one of embodiments 33-35, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  • Embodiment 37 The method according to any one of embodiments 22-36, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Ig ⁇ constant region or a human Ig ⁇ constant region.
  • Embodiment 38 The method according to any one of embodiments 22-37, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein said heavy chain variable region comprises HCDR1-3, and said HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  • Embodiment 39 The method according to embodiment 38, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  • Embodiment 40 The method according to any one of embodiments 38-39, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  • Embodiment 41 The method according to any one of embodiments 38-40, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  • Embodiment 42 The method according to any one of embodiments 22-41, wherein said TrkB agonistic antibody comprises a heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
  • Embodiment 43 The method according to any one of embodiments 27-42, wherein if the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said subject in need thereof.
  • Embodiment 44 The method according to any one of embodiments 22-43, wherein said early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
  • Embodiment 45 The method according to any one of embodiments 22-44, wherein the expression and/or activity level of said early-life adversity related factor increases as a result of said early-life adversity.
  • Embodiment 46 The method according to any one of embodiments 22-45, wherein said early-life adversity related factor comprises corticosterone (CORT) .
  • CORT corticosterone
  • Embodiment 47 The method according to any one of embodiments 22-46, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of said early-life adversity related factor.
  • Embodiment 48 The method according to any one of embodiments 22-47, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the content of CORT.
  • Embodiment 49 The method according to any one of embodiments 22-48, wherein said inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
  • Embodiment 50 The method according to any one of embodiments 22-49, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, said inhibitor against CORT is administrated to said subject in need thereof.
  • Embodiment 51 A method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF in said subject, and measuring the expression and/or activity level of an early-life adversity related factor in said subject.
  • Embodiment 52 The method of embodiment 51, wherein the expression and/or activity level of BDNF in said subject is measured by the detection method of which is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
  • Embodiment 53 The method of embodiment 52, wherein the expression and/or activity level of BDNF in said subject is measured by a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF.
  • Embodiment 54 The method according to any one of embodiments 51-53, wherein said early-life adversity related factor comprises corticosterone (CORT) .
  • CORT corticosterone
  • Embodiment 55 The method of embodiment 54, wherein the content of CORT in said subject is measured by the detection method of which is capable of measuring content of CORT.
  • Embodiment 56 The method according to any one of embodiments 54-55, wherein the content of CORT in said subject is measured by a probe which is capable of specifically binding to CORT.
  • Embodiment 57 The method according to any one of embodiments 51-56, wherein the detection method uses a sample from the subject, and said sample comprises a blood sample.
  • Embodiment 58 The method according to any one of embodiments 51-57, wherein the method further comprises a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and, comparing the expression and/or activity level of an early-life adversity related factor in said subject with that of a healthy subject.
  • Embodiment 59 The method of embodiment 58, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and/or the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said subject suffering schizophrenia is selected.
  • Embodiment 60 The method according to any one of embodiments 58-59, wherein the expression and/or activity level of BDNF in said subject is decreased by at least 10%compared to that of a healthy subject.
  • Embodiment 61 The method according to any one of embodiments 58-60, wherein the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
  • Embodiment 62 The method according to any one of embodiments 54-61, wherein the content of CORT in said subject is increased compared to that of a healthy subject.
  • Embodiment 63 The method according to any one of embodiments 51-62, wherein the method further comprises a following step: the selected subject is administrated with a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
  • Embodiment 64 The method of embodiment 63, wherein if the expression and/or activity level of BDNF in said selected subject is decreased compared to that of a healthy subject, said inhibitor against an early-life adversity related factor is administrated to said selected subject.
  • Embodiment 65 The method according to any one of embodiments 63-64, wherein if the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said selected subject.
  • Embodiment 66 The method according to any one of embodiments 54-65, wherein if the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said selected subject.
  • Embodiment 67 The method according to any one of embodiments 51-66, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof and/or said inhibitor against an early-life adversity related factor is administrated to said selected subject.
  • Embodiment 68 The method according to any one of embodiments 54-67, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof and/or said inhibitor against CORT is administrated to said selected subject.
  • Embodiment 69 A system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF in said subject, and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor in said subject.
  • Embodiment 70 The system according to embodiment 69, wherein said first measurement module is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
  • Embodiment 71 The system according to any one of embodiments 69-70, wherein said first measurement module comprises a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF.
  • Embodiment 72 The system according to any one of embodiments 69-71, wherein said early-life adversity related factor comprises corticosterone (CORT) .
  • CORT corticosterone
  • Embodiment 73 The system according to any one of embodiments 69-72, wherein said second measurement module is capable of measuring content of CORT.
  • Embodiment 74 The system according to any one of embodiments 69-73, wherein said second measurement module comprises a probe which is capable of specifically binding to CORT.
  • Embodiment 75 The system according to any one of embodiments 69-74, wherein said system comprises a sample collecting module collecting a sample from said subject suffering schizophrenia.
  • Embodiment 76 The system according to embodiment 75, wherein said sample comprises a blood sample.
  • Embodiment 77 The system according to any one of embodiments 69-76, wherein said system comprises a judging module comparing the expression and/or activity level of BDNF between said subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of said early-life adversity related factor between said subject suffering schizophrenia and that of a healthy subject.
  • Embodiment 78 The system according to embodiment 77, wherein said judging module judges that whether the expression and/or activity level of BDNF in said subject suffering schizophrenia is decreased compared to that of a healthy subject.
  • Embodiment 79 The system according to any one of embodiments 77-78, wherein said judging module judges that whether the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
  • Embodiment 80 The system according to any one of embodiments 77-79, wherein said judging module judges that whether the content of CORT in said subject is increased compared to that of a healthy subject.
  • Embodiment 81 The system according to any one of embodiments 69-80, said system comprises a suggestion module providing a suggestion about the treatment program for said subject suffering schizophrenia according to a judging result from said judging module.
  • Standard abbreviations may be used, e.g., bp, base pair (s) ; kb, kilobase (s) ; pl, picoliter (s) ; s or sec, second (s) ; min, minute (s) ; h or hr, hour (s) ; aa, amino acid (s) ; nt, nucleotide (s) ; i.m., intramuscular (ly) ; i. p., intraperitoneal (ly) ; s. c., subcutaneous (ly) ; and the like.
  • Bdnf-e6 mutant mice were generated as previously reported (Maynard et al., 2016) . Briefly, In Bdnf-e6 mutant mice, an eGFP-STOP cassette was inserted after exon VI and a PGK-Neo cassette was placed antisense to eGFP. PGK-Neo was later deleted by Cre recombinase expression. This strategy led to the production of Bdnf-eGFP fusion transcripts and eGFP in the mRNA and protein levels, respectively.
  • the primers used for genotyping were designed for discriminating WT (forward: 5'-AA TCGAAGCTCAACCGAAGA-3' (SEQ ID NO: 77) , reverse: 5'-TTTTTCTCTCACACTGAAGGGATT-3' (SEQ ID NO: 78) ) and mutant (GFP) allele (forward: 5'-AATCGAAGCTCAACCGAAGA-3' (SEQ ID NO: 79) , reverse: 5'-TCCAGCTCGACCAGGATG-3' (SEQ ID NO. 80) ) .
  • mice used were generated by crossing heterozygotes (e.g., Bdnf-e6 +/-) male mice with heterozygotes females.
  • heterozygotes e.g., Bdnf-e6 +/-
  • mice were reared in the specific-pathogen free animal facility. The mice were maintained on a 12/12-hour light/dark cycle, 22-26°C with sterile pellet food and water ad libitum under standard conditions.
  • Genotyping analysis revealed a 566-base pair WT fragment in WT mice, a 367-base pair mutant fragment in Bdnf-e6 mutant mice, and both the WT fragment and the mutant fragment in Bdnf-e6 +/-heterozygotes.
  • mice Male only, 2-4 months old were housed with siblings, 5-6 mice per cage with mixed genotypes, except for the social isolation paradigm, in which mice were housed in a single in the standard mouse cage for 4 weeks. Before testing, all mice were handled at least 3 consecutive days for habituation: i.e. transferred into the testing room at least 1 hour before testing began. All the behavioral tests were performed during the light phase of the circadian cycle between 09: 00 and 17: 00.
  • Magnetic resonance imaging (MRI) images were acquired using a 7.0T scanner (Bruker, Biospec 70/20 USR7) . Before scanning, all animals were initially anesthetized with 5%isoflurane in oxygen using a chamber and subsequently maintained with 1.5-2%isoflurane in oxygen delivered via a mask.
  • mice Male only, 2 ⁇ 4 months old were housed in groups, 5 ⁇ 6 mice per cage with mixed genotypes, except for the social isolation paradigm, in which mice were housed in a single in the standard mouse cage for 4 weeks. Before testing, all mice were handled at least 3 consecutive days for habituation: i.e. transferred into the testing room at least 1 hour before testing began. All the behavioral tests were performed during the light phase of the circadian cycle between 09: 00 and 17: 00.
  • Rotarod test is composed of the training sessions and a probe trial session (UGO, 47650) .
  • mice were placed on their respective lanes and were acclimated to the rolling rod for 1 minute at a constant speed of 10 rpm.
  • the rotarod apparatus was set to accelerate from 10-30 rpm with a maximum trial of 80 seconds.
  • Mice were given three trials a day with an inter-trial interval (ITI) of 20 minutes.
  • ITI inter-trial interval
  • a probe trial was conducted on day 4. The mean latency to fall off of the rotarod was recorded automatically for all trials.
  • the open field apparatus was made up of a white acrylic box (50 cm ⁇ 50 cm ⁇ 40 cm) .
  • the central zone was defined as a 25 cm ⁇ 25 cm area in the center of the box.
  • the animals were placed in the center zone and were allowed to explore freely for 10 minutes. All measurements were recorded by an automated tracking system and were analyzed using EthoVision XT software (Noldus, Netherlands) , including the total distance moved in the open field arena and time spent in the center zone.
  • the social interaction test consisted of the sociability test and the social novelty preference test. Before the sociability test, the test mouse was placed in the apparatus and subjected to freely explore for 5 minutes. Then, the mouse was restricted to the middle chamber and the “Stranger 1” mouse was randomly introduced into one of two identical cages located in the side chambers. The test mouse was allowed to explore freely for 10 minutes after opening the doors. In the social novel preference test, a novel stranger mouse, named “Stranger 2” , was placed into the empty cage. The same test mouse again allowed to explore freely for 10 minutes. Note that all stranger mice used here had the same background, age, and gender as the test mouse. Throughout the entire process, the duration in each chamber and the time spent sniffing were automatically monitored by tracing video and analyzed by hand.
  • Morris water maze consisted of a round water tank (120cm diameter ⁇ 40cm depth) and a round platform (11cm diameter ⁇ 18cm depth) .
  • the water tank was equally divided into 4 quadrants marked with tags on the wall drawing round, square, triangle, and cross shape. Each quadrant was named with northeast (NE) , northwest (NW) , southwest (SW) , and southeast (SE) , respectively.
  • Behavioral experiment was composed with three phases: (1) Cue phase (day 1) : titanium dioxide was added into the water to make the water milky white. Water temperature and depth was set to 22°C and 25-30cm. The platform was randomly placed into the center of one of quadrants.
  • mice were wiped dry and put back to home cage. Each mouse was trained 4 times a day, with 20-30 min inter-trail interval. The acquisition phase was continued for 6 days. Start position for each trail was listed in the table shown below. Water should be replaced every 2-3 days to eliminated odor disturbance. Average time spent on successful platform reaching for each day was calculated. Note shorter time spent on successful platform reaching represents better spatial learning.
  • Probe phase (day 8) Mouse was released into the water tank at NE quadrant, with no platform inside the tank. Movement locus within 60s was recorded.
  • the prepulse inhibition (PPI) test was measured using the Xeye Startle Reflex System (Beijing MacroAmbition S&T Development Co., Ltd, China) .
  • the PPI test consisted of three phases. In the acclimation phase, the test mouse was restricted to an open-air cage and then placed into a chamber without any startle stimulus for 15 minutes on the day before testing.
  • the session began with a 5-minute habituation period, followed by two types of stimulus trials presented in a pseudorandom order: (1) pulse-alone: 120 dB (40 ms duration) stimulus and (2) prepulse-pulse: 120 dB stimulus (40 ms duration) preceded by the 71, 81 or 90 dB prepulse (20 ms duration) .
  • pulse-alone 120 dB (40 ms duration) stimulus
  • prepulse-pulse 120 dB stimulus (40 ms duration) preceded by the 71, 81 or 90 dB prepulse (20 ms duration) .
  • ITI variable inter-trial interval
  • a 65-dB background noise level was given throughout the entire testing period to avoid the effects of noise outside of the startle chamber.
  • %PPI [ (startle amplitude of pulse-alone trial-startle amplitude of prepulse-pulse trial) /startle response in the pulse-alone trial] ⁇ 100.
  • Novel object recognition test was performed as described previously.
  • the experimental apparatus was made up of a white acrylic box (31 ⁇ 31 ⁇ 20 cm) .
  • the object-recognition tasks consisted of three phases. In the first phase, the subject mouse was put into an empty open field that differed from the home cage and was given a 5-minute habituation period once a day for three consecutive days. In the acquisition phase, the subject mouse could freely explore two identical objects located 5 cm away from the wall for 5 minutes. Before the retention phase, the mouse was returned to its home cage for a retention period (5 minutes or 1 hour) , and the two objects were removed.
  • the subject mouse was again put into the open field and could explore an object identical with the original one (the “familiar” object) and a novel object for another 5 minutes.
  • the exploration time of all trials was manually recorded blind to the treatment.
  • the discrimination ratio in the retention phase was calculated using the following formula: [ (time spent exploring the novel object -time spent exploring the familiar object) /total exploration time] .
  • Four cohorts of male mice (about 12-week-old) were used in the NOR test.
  • Heterozygous (Bdnf-e6+/-or Bdnf-e4+/-) parents were used for breeding. Litters and their genetic mothers were randomly housed in either normoxia or hypoxia condition with access to food and water ad libitum. During hypoxic period, pups and adult mice were nursed in a Plexiglas chamber (BioSpherix #A-30274-P, Ltd., Lacona, NY) with a nitrogen (N2) /compressed air gas delivery system that mixes the N2 with room air using a compact oxygen controller (BioSpherix, Ltd., ProOx P110) .
  • mice were exposed to hypoxia (O2 level 10%) or normoxia (O2 level 21%) for 6 days (P4 ⁇ P10 neonatal stages or P70 ⁇ P76 adult) .
  • O2 level 10% hypoxia
  • O2 level 21%) normoxia
  • mice were exposed to hypoxia (O2 level 10%) or normoxia (O2 level 21%) for 6 days (P4 ⁇ P10 neonatal stages or P70 ⁇ P76 adult) .
  • male litters were separated from females, and their genotypes were identified by PCR. Bdnf-e6/e4 homozygous male mice and WT male littermate control were used for further experiments.
  • mice Heterozygous (Bdnf-e6 +/- or Bdnf-e4 +/- ) parents were used for breeding.
  • Male mice were housed in isolated ventilated cages (maxima six mice per cage) barrier facility at Tsinghua University.
  • PND 21 At weaning (PND 21) , with Bdnf-e6 -/- and WT mice randomly assigned to the isolation-rearing (IR) condition (1 mouse per cage) or the social-rearing (SR) condition (4-5 mice per cage) for 4 weeks (PND49) , assuring that mice with different genotype were equally housed in each SR condition.
  • IR isolation-rearing
  • SR social-rearing
  • mice in all cages were reared under the same conditions (12/12-hour light/dark cycle and 22-26°C) and received sterile pellet food and water ad libitum, so that IR mice could still see, hear and smell other mice without having physical contact.
  • Orbital blood samples (500 ⁇ l) were collected into a 1.5-ml Eppendorf tubes, standing still at room temperature for 45min, with subsequent centrifugation at 1500rpm for 15min at 4°C. Upper layer serum was transferred to new 1.5-ml Eppendorf tube. Pre-chilled high-performance liquid chromatography–grade methanol (at -80 °C) was added to the tube according to the volume of serum, with 400 ⁇ l methanol per 100 ⁇ l serum. Mixed liquid was gently homogenized by hand shaking for 1 min, and incubated at -80 °C for 2 h. After -80 °C incubation, sample was centrifugation at 14000 ⁇ g for 10 min at 4 °C.
  • the supernatant was further lyophilized to powder with Speedvac (Thermo Savant SPD1010) .
  • the dried sample was used for corticosterone measurement or stored in a -80 °C freezer.
  • the ultra-performance liquid chromatography system was coupled to a Q-Exactive orbitrap mass spectrometer (Thermo Fisher, CA) equipped with a APCI probe.
  • extracts were separated by a Biphenyl 150 x 2.1 mm column.
  • a binary solvent system was used, in which mobile phase A consisted of 100%H2O, 0.1%FA, and mobile phase B of 100%CAN containing 0.1%FA.
  • a 10-minute gradient with flow rate of 350 ⁇ L/min was used.
  • Corticosterone was firstly dissolved by 100%ethanol, and further dissolved into mice drinking water to 1%ethanol concentration and 0.1mg/ml corticosterone. Drinking water bottle was fully covered by silver paper and changed every 3 days, in case corticosterone degraded overtime. For control group mice, drinking water only contained 1%ethanol.
  • RU-486 was dissolved with 100%Tween-80 and 0.9%saline into 10mg/ml, with 1%Tween-80 in the final working solution. Mice treated with RU-486 were intraperitoneal injected with 40mg/kg RU-486 (4 ⁇ l/g working solution) once a day for 8 consecutive days. For control group mice, 1%Tween-80 dissolved in 0.9%saline were intraperitoneal injected at 4 ⁇ l/g.
  • the AbB901 antibody has a HCDR1 with an amino acid sequence as set forth in SEQ ID NO: 48, a HCDR2 with an amino acid sequence as set forth in SEQ ID NO: 49, a HCDR3 with an amino acid sequence as set forth in SEQ ID NO: 50, a LCDR1 with an amino acid sequence as set forth in SEQ ID NO: 45, a LCDR2 with an amino acid sequence as set forth in SEQ ID NO: 46, and a LCDR3 with an amino acid sequence as set forth in SEQ ID NO: 47.
  • the AbB901 antibody has a VH with an amino acid sequence as set forth in SEQ ID NO: 52.
  • the AbB901 antibody has a VL with an amino acid sequence as set forth in SEQ ID NO: 51.
  • MK801 (Merck) was firstly dissolved and diluted to working solution (concentration at 10-4 mM/ml) with saline.
  • Working solution concentration at 10-4 mM/ml
  • saline saline
  • Adult WT mice were treated with MK801 intraperitoneally (0.2mg/kg) 30 minutes before PPI test began.
  • Dissected brain tissues from each mouse were homogenized by grinding in 1 mL of chilled RIPA lysis buffer. After centrifugation for 30 min at 17,000 g at 4°C, supernatants were then collected, and protein concentrations were measured by the BCA Protein Assay Kit (Thermo Scientific) . Thereafter, total protein concentrations were denatured at 95°C for 10 min. Proteins were separated by electrophoresis using a 10%SDS-PAGE gel and transferred onto activated PVDV membranes (Immobilon-P, Millipore) . Membranes were blocked in 5%BSA in 0.1 M tris buffered saline with 0.1%Tween-20 (TBST) for 1 hour at room temperature.
  • TST 0.1%Tween-20
  • the primary antibodies used were anti-GFP (1: 500, Genscript, A01694-40) , anti-TrkB (1: 1000, CST, 4603S) , anti-pTrkB (1: 1000, CST, CST, 4168S) , anti ⁇ -Actin (1: 2500, Cwbio, CW0096M) .
  • mice were deeply anaesthetized with Avertin and transcardially perfused with PBS (pH7.4) , and fixed by 4%paraformaldehyde (PFA) in PBS.
  • the brains were dissected and post-fixed overnight in 4%PFA at 4°C followed by 40- ⁇ m-thick coronal sections cut using vibratome.
  • the free-floating sections were fixed again by 4%paraformaldehyde (PFA) in PBS for 15 minutes and washed with PBS three times for 15 minutes at room temperature, followed by blocking in 5%normal goat serum and 0.3%Triton X-100 in PBS overnight at 4°C. Then, sections were incubated with primary antibody overnight at 4°C.
  • Unpaired Student’s t-tests were performed for social interaction, Morris water maze, prepulse inhibition, novel object recognition, blood corticosterone measurement and relative mRNA expression.
  • Two-way ANOVA analysis with Tukey’s multiple comparisons test were used to analyze open field, rotarod, prepulse inhibition, novel object recognition, nest Building and body weight.
  • statistical significance was determined by analysis of variance followed by a post hoc test. The number of animals used for each test was shown in the bar graph or as indicated. Sample size was based on the similar published research, to ensure adequate statistical power. In addition, the sample sizes for each experiment have been detailed in the figure legends and confirmed statistically by appropriate tests.
  • Genotyping data were not blinded, but were re-checked by different investigators. Western blotting was done and data analyzed by different investigators. For morphological analyses, data collections were performed together in a shared microscope and the conditions were blinded for each experiment.
  • Example 1 Bdnf-e6 disruption alone did not elicit schizophrenia-like behavior
  • the mouse knock-in line Bdnf-e6-/- was constructed, wherein Bdnf transcription through its promoter VI was selectively disrupted (Maynard et al., 2016) .
  • this line (Bdnf-e6-/-) an eGFP cassette was inserted directly downstream of the Bdnf exon 6, followed by multiple STOP codons.
  • Bdnf promoter VI drives the production of a transcript containing the 5’ UTR-eGFP-Bdnf coding exon IXa, which in turn is translated into eGFP instead of BDNF protein (FIG. 9A) .
  • Genotyping analysis revealed a 566-base pair wild type (WT) fragment and a 367-base pair mutant fragment in WT and Bdnf-e6 mutant mice, respectively (FIG. 9A) .
  • Quantitative PCR (qPCR) experiments confirmed that Bdnf-e6 mRNA is highly enriched in the brain instead of peripheral tissues in adult WT mice (FIG. 9B) (Aid et al., 2007) .
  • WT brains Bdnf-e6 mRNA was more abundant in the hippocampus and mPFC than other regions (FIG. 9B) .
  • Bdnf-e6-/- brains while Bdnf-e6 transcript was completely absent, the levels of Bdnf-e1, Bdnf-e2, and Bdnf-e4 transcripts were relatively normal in the hippocampus and mPFC (except for a modest decrease in Bdnf-e4 transcripts in the hippocampus) (FIG. 9C and FIG. 9D) .
  • Western blotting detected GFP protein in various regions in the Bdnf-e6-/- but not WT brains (FIG. 9I) .
  • Immunohistochemistry showed that Bdnf-e6-eGFP highly enriched in the hippocampus in the mutant mice (FIG. 9J) . Additionally, Bdnf-e6 deficiency did not result in weight change, motor impairments (FIG. 9E-F) and enlargement of lateral ventricles (FIG. 9K) .
  • a battery of schizophrenia-relevant behavioral tests was conducted in the adult male Bdnf-e6-/- mice.
  • the overall distance traveled was considered as an indicator of the locomotor output, which is often elevated in schizophrenia animal models (Seibenhener and Wooten, 2015; Tatem et al., 2014) .
  • the three-chamber test assesses social affiliation and social memory, two endophenotypes often impaired in schizophrenia.
  • WM Morris water maze
  • mice exposed to hypoxia were smaller than age-matched controls (WT) reared in normoxia in 3-week (PND 20, FIG. 10B) and 5-week (PND 36, FIG. 10C) , but not in 9-week animals (PND 63, FIG. 10D) .
  • WT age-matched controls
  • PND 20 FIG. 10B
  • PND 36 FIG. 10C
  • PND 63 FIG. 10D
  • Bdnf-e6-/- mice suffered slightly more (3-week) or the same (5-week) weight loss as the WT mice during development, and the weight loss recovered completely in the adulthood (9-week) (FIG. 10D) .
  • Nest building is another stereotyped social behavior thought to be associated with mating and offspring bounding (Jirkof, 2014) .
  • the average nesting score was significantly decreased in the hypoxia-e6 mice measured after 24 h, compared with either normoxia-WT or normoxia-e6 mice (FIG. 11B) , indicative of the impairment of nesting behavior in hypoxia-e6 mice.
  • Bdnf-e6-/- mice appear to exhibit more severe, although not statistically significant, nest building impairment compared with WT mice (FIG. 11A, 3C) .
  • Bdnf-e6 deficiency might elicit further nest building impairment under early life hypoxia.
  • Bdnf-e6 deficiency additionally diminished, on top of hypoxia, the ability to distinguish “old” from “new” object (FIG. 11E) .
  • Example 3 Juvenile social isolation also induced schizophrenia-like abnormalities
  • Bdnf-e4 is a major regulator of GABAergic function and is expressed in brain regions relevant to schizophrenia, such as hippocampus, prefrontal cortex, and hypothalamus (Maynard et al., 2016) .
  • Bdnf-e4-/- mice also exhibit schizophrenia-like behavioral phenotype under early-life environmental stress.
  • the data showed that Bdnf-e4-/- mice, when subjected to postnatal hypoxia or juvenile social isolation, do not exhibit deficits in PPI (FIG. 12) .
  • Plasma corticosterone is released in response to environmental stress and is used as an indicator for bodily stress responses in rodents and humans. Therefore, it was investigated whether postnatal hypoxia or social-isolation paradigm can increase the levels of corticosterone. Consistent with previous findings (Barlow et al., 1975; Krishnan et al., 2007; Zheng et al., 2019) , plasma corticosterone (CORT) levels were increased with exposure to environmental stresses (FIG. 5A-C) , including postnatal hypoxia, adolescent and adult social isolations in WT mice.
  • CORT plasma corticosterone
  • mice chronically treated with CORT (0.1 mg/kg, 22 days) (FIG. 6A) could mimic stress paradigms, leading to schizophrenia-like endo-phenotypes.
  • Chronic CORT exposure (from P42 to P63)
  • motor activities (FIG. 6B)
  • FIG. 6C did not lead to anxiety-like behavior in WT or Bdnf-e6-/- mice (FIG. 6C, p>0.05)
  • chronic exposure to CORT in adolescence did not impair sociability in either genotypes, but impaired the social novelty preference in Bdnf-e6-/- mice, but not WT mice (FIG. 6D and 6E) .
  • Bdnf-e6 disruption is a reduction of BDNF signaling in the brain.
  • the data indicate that Bdnf mRNA was not changed in prefrontal cortex and hippocampus after postnatal hypoxia.
  • Bdnf-e6 mRNA exhibited a small but significant decrease in hippocampus (FIG. 13B) .
  • the pTrkB levels was also slightly reduced in this group (Bdnf-e6-/- hippocampus subjected to postnatal hypoxia) (FIG. 13C-D) .
  • the postnatal Bdnf-e6-/- mice were subjected to either hypoxia (FIG. 7A) or social isolation (FIG. 7E) , and a single tail vein injection of normal IgG or AbB901 (1mg/kg) was given in the adult animals.
  • AbB901 could rescue the impairments in both P81P120 and P90P120 PPI, except P71P120 PPI, in the hypoxic Bdnf-e6-/- mice (FIG. 7B-D) .
  • AbB901 could also significantly restore the PPI deficits at prepulse intensity of 90 dB in SI-treated Bdnf-e6-/- mice (FIG. 7F) .
  • RU-486 significantly increased the PPI ratios in all prepulse intensity levels (71, 81, and 90 dBs) in PIR-treated Bdnf-e6-/- mice (FIG. 8A-8D, **p ⁇ 0.01 and ***p ⁇ 0.001) .
  • RU-486 could also reduce the PPI deficit in some (P90 dB) , but not other (P71, P81) prepulse intensities in postnatal hypoxic Bdnf-e6-/- mice (FIG. 8E-H) .
  • RU-486 treatment had no effect on PPI in adult isolation rearing (AIR) -treated Bdnf-e6-/- mice (FIG. 14) , pointing to the importance of developmental stress.
  • RU-486 induced a small but significant increase in PPI ratio in WT mice subjected to PIR treatment (FIG. 15) .
  • the inventors intraperitoneally administered MK801 in the adult WT mice (FIG. 16A) , a widely used pharmacology model for schizophrenia.
  • the inventors pretreated adult WT animals with saline or RU-486 for one week, followed by induction of SCZ with MK801 (0.2mg/kg) .
  • Treatment with RU-486 increased the PPI at prepulse 90 dB (FIG. 16D) .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a medicinal product for preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonist and an inhibitor against an early-life adversity related factor.

Description

METHODS AND PRODUCTS FOR TREATING OR DIAGNOSING SCHIZOPHRENIA BACKGROUND OF THE INVENTION
Schizophrenia (SCZ) is a severe psychiatric disorder that affects 21 million people worldwide, resulting in a huge social and economic burden. SCZ patients exhibit difficulty in thinking, perception, emotion and language. Typically, the onset of SCZ is in the late adolescence (16-25 years) or early adulthood, important years for a young adult’s social and vocational life (Addington, 2007) . The life expectancy for SCZ is about 10-25 years shorter than that of healthy individuals. There are three clinical symptoms: positive symptoms (e.g., hallucinations, delusions and psychosis) , negative symptoms (e.g., social withdrawal, affective disturbances, impoverished speech) , and cognitive deficits (e.g., poor executive function, working memory and attention problems) (Hustig and Norrie, 1998) . Two well-known groups of antipsychotics, including the first-generation (e.g., haloperidol and chlorpromazine) and the second-generation antipsychotics (e.g., risperidone and olanzapine) , could to certain extent alleviate the positive or negative symptoms (Remington, 2003) . However, these medicines have little effects on cognitive impairments, and often elicit significant side effects (Mintz and Kopelowicz, 2007) . Thus, there is an urgent need to develop new medicines that attenuates all three symptoms and have less side effects.
Mutant mouse models based on schizophrenia susceptibility genes only mimic certain “face” features of schizophrenia: no one gene can induce all symptoms of schizophrenia or account for schizophrenia etiology. Considerable evidence suggests that several key neurotransmitters, including dopamine, glutamate, serotonin, and GABA, are involved in schizophrenia pathophysiology. However, drug-induced models can only imitate some aspects of schizophrenia phenotypes. Thus, research in schizophrenia has been significantly hampered by the lack of good animal models. While schizophrenia pathogenesis involves both genetic and environmental factors, their specific combinations remain ill-defined.
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal differentiation and synaptogenesis during development, synaptic transmission and plasticity in the adult. However, the genomic structure of the Bdnf gene is quite complex. There are 9 promoters located in the upstream of 5’ untranslated regions (5’ UTR) of 9 small exons, and each is spliced onto a common exon, exon 10, which encodes the pre-proBDNF protein (Pruunsild et al., 2007) . Substantial evidence suggests that different promoters drive expression of different Bdnf transcripts in different brain regions, cell types (neurons versus glial cells) , sub-cellular compartments (e.g. soma versus dendrite) , and different developmental stages (Baj et al., 2011; Greenberg et al., 2009) . Further, the 9 Bdnf promoters are regulated by different transcriptional and epigenetic factors, and contribute to diverse physiological functions (Pruunsild et al., 2007) . For example, selective disruption of Bdnf promoters I or II leads to thermogenesis deficits and obesity (McAllan et al., 2018; You et al., 2020) . Moreover, Bdnf promoter IV, which drives activity-dependent BDNF transcription (Hong et al., 2008; Sakata et al., 2009a) , plays a key role in behavioral perseverance through regulation of GABAergic transmission (Jiao et al., 2011; Sakata et al., 2013; Sakata et al., 2009a) . However, it remains unknown which Bdnf promoter (s) is critically involved in SCZ.
Accordingly, there is an urgent need for better understanding of SCZ mechanisms and better animal models.
SUMMARY OF THE INVENTION
The present inventors found that deficiency in promoter VI-driven BDNF expression, combined with early-life adversity, results in schizophrenia-like endo-phenotypes. Promoter VI mutant mice (Bdnf-e6-/-) , when exposed to postnatal stress such as hypoxia or social isolation, exhibited deficits in social interactions, spatial memory, and sensorimotor gating such as prepulse inhibition (PPI) . Neither early-life stress nor Bdnf-e6 (Bdnf-e6 mRNA and BDNF protein translated from that) deficiency alone caused these abnormalities. Moreover, postnatal stress increased blood glucocorticoid (e.g., cortisol and/or corticosterone) levels of wild-type (WT) mice, and administration of glucocorticoid (e.g., cortisol and/or corticosterone) to Bdnf-e6-/- mice without early-life stress also resulted in Prepulse inhibition (PPI) deficits and social dysfunction. Moreover, the PPI deficits in the hypoxic or socially isolated Bdnf-e6-/- mice were rescued by treatment with a glucocorticoid (e.g., cortisol and/or corticosterone) antagonist, or a TrkB agonist.
In one aspect, the present disclosure provides a medicinal product for use in preventing, alleviating and/or treating schizophrenia. The medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonist and a glucocorticoid (e.g., cortisol or corticosterone, either one may also be referred to as CORT in the present disclosure) inhibitor.
In some embodiments, the TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
In some embodiments, the TrkB agonist is capable of specifically binding to human TrkB.
In some embodiments, the antigen binding portion comprises Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
In some embodiments, the TrkB agonist comprises a light chain variable region, the light chain variable region comprises LCDR1, LCDR2 and LCDR3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
In some embodiments, the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
In some embodiments, the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
In some embodiments, the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
In some embodiments, the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Igκ constant region or a human Igλ constant region.
In some embodiments, the TrkB agonist comprises a heavy chain variable region, the heavy chain variable region comprises HCDR1, HCDR2 and HCDR3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
In some embodiments, the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
In some embodiments, the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
In some embodiments, the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
In some embodiments, the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
In some embodiments, the glucocorticoid inhibitor is capable of reducing the amount of the glucocorticoid. For example, the glucocorticoid inhibitor may be a CORT inhibitor, and may be capable of reducing the amount of the CORT.
In some embodiments, the glucocorticoid inhibitor is capable of inhibiting the activity of the glucocorticoid. For example, the glucocorticoid inhibitor may be a CORT inhibitor, and may be capable of inhibiting the activity of the CORT.
In some embodiments, the glucocorticoid inhibitor (e.g., CORT inhibitor) comprises a mifepristone (RU-486) or a functional derivative thereof.
In another aspect, the present disclosure provides a method for preventing, alleviating and/or treating schizophrenia in a subject in need thereof. The method may comprise administering to the subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor, and the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) .
In some embodiments, the subject has a deficiency in promoter VI of the Bdnf gene.
In some embodiments, the subject has been subjected to postnatal stress.
In some embodiments, the postnatal stress comprises postnatal hypoxia and/or social isolation.
In some embodiments, the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) in hippocampus, prefrontal cortex, and/or hypothalamus.
In some embodiments, the TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
In some embodiments, the TrkB agonist is capable of specifically binding to human TrkB.
In some embodiments, the antigen binding portion comprises Fab, Fab’ , F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
In some embodiments, the TrkB agonist comprises a light chain variable region, the light chain variable region comprises LCDR1, LCDR2 and LCDR3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
In some embodiments, the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
In some embodiments, the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
In some embodiments, the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
In some embodiments, the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Igκ constant region or a human Igλ constant region.
In some embodiments, the TrkB agonist comprises a heavy chain variable region, the heavy chain variable region comprises HCDR1, HCDR2 and HCDR3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
In some embodiments, the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
In some embodiments, the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
In some embodiments, the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
In some embodiments, the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region.
In some embodiments, the glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor is capable of reducing the amount of glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the glucocorticoid inhibitor is a CORT inhibitor.
In some embodiments, the glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor is capable of inhibiting the activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the glucocorticoid inhibitor may be a CORT inhibitor.
In some embodiments, the CORT inhibitor comprises a mifepristone (RU-486) or a derivative thereof.
In another aspect, the present disclosure provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, comprising determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in the subject, and determining the level and/or activity of glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject.
In some embodiments, the expression level and/or activity of BDNF (e.g., BDNF-e6) is determined from a blood sample of the subject.
In some embodiments, the level and/or activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) is determined from a blood sample of the subject.
In some embodiments, the method further comprises selecting a subject having decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of the glucocorticoid (e.g., cortisol, corticosterone or CORT) , the selected subject is determined to be prone to suffer from schizophrenia or at the risk of developing schizophrenia.
In some embodiments, the method further comprises determining whether the subject has a deficiency in promoter VI of the Bdnf gene.
In some embodiments, the method further comprises determining whether the subject has been subjected to postnatal stress.
In some embodiments, the postnatal stress comprises postnatal hypoxia and/or social isolation.
In some embodiments, the method comprises determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in the hippocampus, prefrontal cortex, and/or hypothalamus of the subject.
In some embodiments, the method further comprises administering to the selected subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor.
In another aspect, the present disclosure provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, the system comprises: a first module for determining whether the subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) , and a second module for determining whether the subject has elevated level and/or activity of a glucocorticoid (e.g., cortisol, corticosterone or CORT) .
In some embodiments, the BDNF (e.g., BDNF-e6) is from the blood of the subject.
In some embodiments, the glucocorticoid (e.g., cortisol, corticosterone or CORT) is from the blood of the subject.
In another aspect, the present application provides a medicinal product for preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) . In some embodiments, the antigen binding portion thereof comprises Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein the light chain variable region comprises LCDR1-3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91. In some embodiments, the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92. In some embodiments, the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93. In some embodiments, the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98. In some embodiments, the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Igκ constant region or a human Igλ constant region. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein the heavy chain variable region comprises HCDR1-3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94. In some embodiments, the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95. In some embodiments, the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96. In some embodiments, the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97. In some embodiments, the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region. In some embodiments, the early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition. In some embodiments, the expression and/or activity level of the early-life adversity related factor increases as a result of the early-life adversity. In some embodiments, the  early-life adversity related factor comprises a glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of the early-life adversity related factor. In some embodiments, the inhibitor against an early-life adversity related factor is capable of inhibiting the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
In another aspect, the present application further provides a method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein the subject is administrated a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor. In some embodiments, the subject is administrated the medicinal product. In some embodiments, the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject. In some embodiments, the expression and/or activity level of BDNF in the subject is decreased by at least 10%compared to that of a healthy subject. In some embodiments, the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject. In some embodiments, the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject. In some embodiments, the content of CORT in the subject is increased by at least 10%compared to a that of healthy subject. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) . In some embodiments, the antigen binding portion thereof comprises Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein the light chain variable region comprises LCDR1-3, and the LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91. In some embodiments, the LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92. In some embodiments, the LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93. In some embodiments, the light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98. In some embodiments, the TrkB agonistic antibody comprises a light chain constant region, and the light chain constant region is a human Igκ constant region or a human Igλ constant region. In some embodiments, the TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein the heavy chain variable region comprises HCDR1-3, and the HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94. In some embodiments, the HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95. In some embodiments, the HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96. In some embodiments, the heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID  NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97. In some embodiments, the TrkB agonistic antibody comprises a heavy chain constant region, and the heavy chain constant region is a human IgG constant region. In some embodiments, if the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the subject in need thereof. In some embodiments, the early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition. In some embodiments, the expression and/or activity level of the early-life adversity related factor increases as a result of the early-life adversity. In some embodiments, the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of the early-life adversity related factor. In some embodiments, the inhibitor against an early-life adversity related factor is capable of inhibiting the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) . In some embodiments, if the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, the inhibitor against the glucocorticoid (e.g., cortisol, corticosterone or CORT) is administrated to the subject in need thereof.
In another aspect, the present application further provides a method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF in the subject, and measuring the expression and/or activity level of an early-life adversity related factor in the subject. In some embodiments, the expression and/or activity level of BDNF in the subject is measured by the detection method of which is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF. In some embodiments, the expression and/or activity level of BDNF in the subject is measured by a pair of primer which is capable of amplifying the Bdnf gene or a portion thereof, a Bdnf (e.g., Bdnf-e6) transcript (e.g., mRNA or cDNA) , and/or an agent (e.g., a probe or an antibody) which is capable of specifically binding to BDNF. In some embodiments, the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is measured by the detection method of which is capable of measuring content of CORT. In some embodiments, the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is measured by a probe which is capable of specifically binding to the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the detection method uses a sample from the subject, and the sample comprises a blood sample. In some embodiments, the method further comprises a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and, comparing the expression and/or activity level of an early-life adversity related factor in the subject with that of a healthy subject. In some embodiments, if the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, and/or the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject, the subject suffering schizophrenia is selected. In some embodiments, the expression and/or activity level of  BDNF in the subject is decreased by at least 10%compared to that of a healthy subject. In some embodiments, the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject. In some embodiments, the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject. In some embodiments, the method further comprises a following step: the selected subject is administrated with a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor. In some embodiments, if the expression and/or activity level of BDNF in the selected subject is decreased compared to that of a healthy subject, the inhibitor against an early-life adversity related factor is administrated to the selected subject. In some embodiments, if the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the selected subject. In some embodiments, if the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof is administrated to the selected subject. In some embodiments, if the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, and the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against an early-life adversity related factor is administrated to the selected subject. In some embodiments, if the expression and/or activity level of BDNF in the subject is decreased compared to that of a healthy subject, and the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against the glucocorticoid (e.g., cortisol, corticosterone or CORT) is administrated to the selected subject.
In another aspect, the present application further provides a system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF in the subject, and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor in the subject. In some embodiments, the first measurement module is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF. In some embodiments, the first measurement module comprises a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF. In some embodiments, the early-life adversity related factor comprises the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the second measurement module is capable of measuring content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the second measurement module comprises a probe which is capable of specifically binding to the glucocorticoid (e.g., cortisol, corticosterone or CORT) . In some embodiments, the system comprises a sample collecting module collecting a sample from the subject suffering schizophrenia. In some embodiments, the sample comprises a blood sample. In some embodiments, the system comprises a judging module comparing the expression and/or activity level of BDNF between the subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of the early-life adversity related factor between the subject  suffering schizophrenia and that of a healthy subject. In some embodiments, the judging module judges that whether the expression and/or activity level of BDNF in the subject suffering schizophrenia is decreased compared to that of a healthy subject. In some embodiments, the judging module judges that whether the expression and/or activity level of the early-life adversity related factor in the subject is increased compared to that of a healthy subject. In some embodiments, the judging module judges that whether the content of the glucocorticoid (e.g., cortisol, corticosterone or CORT) in the subject is increased compared to that of a healthy subject. In some embodiments, the system comprises a suggestion module providing a suggestion about the treatment program for the subject suffering schizophrenia according to a judging result from the judging module.
Additional aspects and advantages of the present application will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present application are shown and described. As will be realized, the present application is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
INCORPORATION BY REFERENCE
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWING
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are employed, and the accompanying drawings (also “figure” and “FIG. ” herein) , of which:
FIG. 1A-1J illustrate the behavioral characterization of Bdnf-e6 mutant mice. (FIG. 1A-FIG. B) Three-chamber test. Both Bdnf-e6-/- and WT mice spent more time in the chamber containing the “Stranger 1” in the sociability test (FIG. 1A) and increased preference for the “Stranger 2” in the social novel preference test (FIG. 1B) . (FIG. 1C) Morris water maze (MWT) test. Schematic diagram of the Morris water navigation task. (FIG. 1D) . In the learning trials, WT and Bdnf-e6-/- mice showed the same escape latency, except on day-6. (FIG. 1E-FIG. 1G) In the probe trial, Bdnf-e6-/- mice exhibited no latency to reach the platform (FIG. 1E) , but spent less time in the target quadrant (FIG. 1F) , and crossed the platform location with fewer times, compared with WT mice (FIG. 1G) . (FIG. 1H-FIG. 1J) PPI test. Bdnf-e6-/- mice showed no changes in the startle response to 120 dB sound (FIG. 1H) and the average PPI ratios for all intensities (FIG. 1I) . Schematic diagram for PPI test (FIG. 1J) . In this and all other figures, *indicates significant difference between groups. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The number of animals used for each test was shown in the bar graph (FIG. 1A-FIG. 1I: unpaired Student’s t-test) .
FIG. 2A-2I illustrate the postnatal hypoxia induced social dysfunction in hypoxia-e6-/- mice. (FIG. 2A) Schematic diagram depicting the experimental design. WT and Bdnf-e6-/- mice at postnatal day 4 (P4) were subjected to hypoxia or normoxia living environment for 7 consecutive days, and raised to adult in normoxia. Open field, Rotarod, social interaction, and PPI tests were performed, successively. (FIG. 2B) The total running distance of normoxia-and hypoxia-treated mice in the open field test. (FIG. 2C) The time to fall of normoxia-and hypoxia-treated mice in the Rotarod test. (FIG. 2D) Experimental design of social interaction test. (FIG. 2E, FIG. 2F) Sociability (FIG. 2E) and social novelty preference (FIG. 2F) of normoxia-and hypoxia-treat mice. Note that Bdnf-e6-/- mice lost social and sociability and novelty preference after postnatal hypoxia. (FIG. 2G-FIG. 2I) Effect of hypoxia on PPI. The average PPI ratios at all intensities were selectively decreased in the postnatal hypoxia-e6-/- mice. (FIG. 2B-2C, 2G-2I: Two-way ANOVA analysis with Tukey’s multiple comparisons test. E-F: unpaired Student’s t-test) .
FIG. 3A-3E illustrate juvenile social isolation induced hyperactivity and social dysfunction. (FIG. 3A) Schematic diagram depicting the experimental design. Bdnf-e6-/- and WT mice at postnatal day 21 were subject to isolation rearing (PIR) or social rearing (PSR) for four consecutive weeks (P21-P49) . Different types of behavioral tests were conducted in a schedule as highlighted. (FIG. 3B) The total running distance of PIR and PSR mice in the open field test. (FIG. 3C) The duration time of PIR and PSR mice in the center of open field. (FIG. 3D-FIG. 3E) Social behaviors of PIR and PSR mice were measured by time spent sniffing in the sociability test and social novelty preference test. Note that Bdnf-e6-/- mice with PIR showed deficits in social novelty preference but not in sociability test. (FIG. 3B-FIG. 3C: Two-way ANOVA analysis with Tukey’s multiple comparisons test. FIG. 3D-FIG. 3E: unpaired Student’s t-test) .
FIG. 4A-4H illustrate juvenile isolation induced PPI deficits in both Bdnf-e6-/- and WT mice, but adult isolation induced PPI deficits only in Bdnf-e6-/- mice. (FIG. 4A, FIG. 4E) Experimental design. Juvenile social isolation paradigm is same as FIG. 3 (FIG. 4A) . For adult social isolation, Bdnf-e6-/- and WT adult mice at postnatal day 70 were subject to isolation rearing (AIR) or social rearing (ASR) for four consecutive weeks (P70-P98) , PPI test were conducted at P100-P103 (E) . (FIG. 4B-FIG. 4D) PPI ratios at 71 dB, 81dB and 90dB were all decreased in PIR mice. (FIG. 4B-FIG. 4D: Two-way ANOVA analysis with Tukey’s multiple comparisons test) . (FIG. 4F-FIG. 4H) Pre-pulse inhibition of all intensity (71dB, 81dB, 90dB) are demonstrated, respectively. Note AIR treatment induce no deficient PPI of all pre-pulse intensity in WT mice, but dramatically decreased PPI in Bdnf-e6-/- mice.
FIG. 5A-5C illustrate environmental stress increased plasma corticosterone level in WT mice. In all figures, schematic diagrams depicting the experimental design are shown on top whereas plasma corticosterone levels are shown below. (FIG. 5A) WT mice at postnatal day 4 were exposure to hypoxia or normoxia social living environment for 7 consecutive days (P4-P10) . After environmental stress, mice were reared to adult in normoxia social living environment. Note that postnatal hypoxia significantly increased the plasma corticosterone level in adult (P60) . (FIG. 5B) WT mice at postnatal day 21 were subject to isolation-rearing (PIR) or social rearing (PSR) for consecutive 29 days (P21-P49) . After environmental stress, mice were social-reared to adulthood. Note that juvenile social isolation elicited a significant increase in plasma corticosterone level in adult (P60) . (FIG. 5C) the same experimental design was carried as (FIG. 5B) , except social (ASR) or isolation rearing (AIR) was  imposed during adult (P70-P98) , and blood sample was collected at P100. Note that adolescence social isolation still elicited an increase in plasma corticosterone level (FIG. 5A-FIG. 5C: unpaired Student’s t-test) .
FIG. 6A-6H illustrate juvenile CORT exposure resulted in deficient social novelty in Bdnf-e6-/- mice. (FIG. 6A) Experimental design. Corticosterone was administered daily from P42-P63, and behavioral tests were performed at times as indicated. (FIG. 6B, FIG. 6C) Open field test of WT and Bdnf-e6-/- mice with or without juvenile CORT exposure. Note that “total distance moved” but not “duration in center” was significantly decreased with juvenile CORT exposure in both WT and Bdnf-e6-/- mice. (FIG. 6D, FIG. 6E) The CORT exposure paradigm was the same as (FIG. 6B, FIG. 6C) , except social behavior was measured by (FIG. 6D) social ability test and (FIG. 6E) social novelty preference test. Note Bdnf-e6-/- mice with juvenile CORT exposures exhibited normal sociability (FIG. 6D) , but could not tell differences between stranger 1 and stranger 2, suggesting deficiency in social novelty preference (FIG. 6E) . (FIG. 6F-FIG. 6H) The CORT exposure paradigm is the same as (FIG. 6B, FIG. 6C) , except PPI was measured. While both genotypes exhibited a decrease in PPI ratios after juvenile CORT exposure, Bdnf-e6-/- mice showed a further decrease at P81, P120 (FIG. 6G) and P90, P120 (FIG. 6H) . (FIG. 6B, FIG. 6C, FIG. 6F-FIG. 6H: Two-way ANOVA analysis with Tukey’s multiple comparisons test. FIG. 6D, FIG. 6E: unpaired Student’s t-test) .
FIG. 7A-7H illustrate TrkB agonistic antibody rescued PPI deficiency in Bdnf-e6-/- mice exposed to postnatal hypoxia or postweaning social isolation. (FIG. 7A-FIG. 7D) Effect on hypoxia-Bdnf-e6-/- mice. Mice were exposed to hypoxia from P4-P10, and TrkB agonistic antibody AbB901 (1mg/kg) was administered intravenously 48h hours prior PPI test (FIG. 7A) . The normoxia-e6-/- is referred to data from FIG. 2. Note that the decrease in PPI ratio at 81dB, 90dB in hypoxia-e6-/- mice were rescued by AbB901 treatment. (FIG. 7E-FIG. 7H) Effect on PIR-Bdnf-e6-/- mice. Mice were subject to juvenile social isolation from P21-P49, and AbB901 was administered the same way as A. The PSR-e6 is referred to data from FIG. 3. Note that while there was a trend of AbB901 effects at 70dB and 81dB, the decrease in PPI ratio at 90dB in PIR-Bdnf-e6-/- mice were significantly rescued by the AbB901 treatment. (FIG. 7B-FIG. 7D, FIG. 7F-FIG. 7H: unpaired Student’s t-test) .
FIG. 8A-8H illustrate RU-486 rescued PPI deficiency in Bdnf-e6-/- mice exposed to postnatal hypoxia or postweaning social isolation (FIG. 8A-FIG. 8C) . (FIG. 8A-FIG. 8D) Effect on hypoxia-Bdnf-e6-/- mice. Mice were exposed to hypoxia from P4-P10, and daily administration of RU-486 (40mg/kg) from P91 to P98. PPI was measured on P100 (FIG. 8A) . The normoxia-e6-/- is referred to data from FIG. 2. Note that the decrease in PPI ratio at 90dB in hypoxia-e6-/- mice were rescued by RU-486 treatment. (FIG. 8E-FIG. 8H) Effect on PIR-Bdnf-e6-/- mice. Mice were subject to juvenile social isolation from P21-P49 while administered with RU-486, and PPI was measured on P100 (FIG. 8A) . The PSR-e6 is referred to data from FIG. 3. Note that the decrease in PPI ratio at all intensities (70dB, 81dB, 91dB) in PIR-Bdnf-e6-/- mice were significantly rescued by the RU-486 treatment. (FIG. 8B-FIG. 8D, FIG. 8F-FIG. 8H: unpaired Student’s t-test) .
FIG. 9A-9K illustrate characterization of Bdnf-e6-/- mice. (FIG. 9A) Left: The design of Bdnf-e6 mutant mice. Mouse Bdnf genomic structure consists of ten exons, only one of which contains protein-coding region. Each noncoding exon is transcribed from its corresponding promoter and alternatively spliced to the common coding exon (exon IXa-BDNF) . In Bdnf-e6 mutant mice, an  eGFP-STOP cassette was inserted after exon VI and a PGK-Neo cassette was placed antisense to eGFP. PGK-Neo was later deleted by Cre recombinase expression. This strategy led to the production of Bdnf-eGFP fusion transcripts and eGFP in the mRNA and protein levels, respectively. Right: representative results of genotyping. WT allele band is longer than mutant allele band. (FIG. 9B) Relative Bdnf-e6 mRNA expression in various brain region (Hippocampus, mPFC, cortex, thalamus, olfactory bulb) and peripheral organ (heart, lung, kidney, liver, spleen) . (FIG. 9C, FIG. 9D) Relative Bdnf-e1/2/4/6 mRNA expression in hippocampus (FIG. 9C) and mPFC (FIG. 9D) of WT and Bdnf-e6-/- mice. Note Bdnf-e4 mRNA expression in hippocampus is also decreased in Bdnf-e6-/- mice. (FIG. 9E) Body weight. The body weights of male WT and Bdnf-e6-/- mice were recorded at different time points. Disruption from promoter VI elicited no changes in the body weight of male mice. (FIG. 9F) Rotarod test. In this and subsequent tests, male WT and Bdnf-e6-/- mice (2~4 months) were used. Bdnf-e6-/- mice showed no motor deficit on the accelerating rotarod. (FIG. 9G-FIG. 9H) Open-field test. Bdnf-e6-/- mice were normal in locomotor activity (FIG. 9G) , but spent less time in the center FIG. 9H) . (FIG. 9I) GFP protein expression in various brain region (hypothalamus, mPFC, Hippocampus, striatum, olfactory bulb, cortex, thalamus, midbrain) of WT and Bdnf-e6-/- mice. (FIG. 9J) GFP expression can be detected in various brain region, especially in hippocamus, by immunostaining. (FIG. 9K) Whole brain structure image of WT and Bdnf-e6-/- mice collected by 7.0T MRI. Note both genotype mice exhibit similar lateral ventricle volume. (FIG. 9C-FIG. 9H: unpaired Student’s t-test) .
FIG. 10A-10D illustrate body weight affected by postnatal hypoxia. (FIG. 10A) Schematic diagram depicting the experimental design. (FIG. 10B-FIG. 10D) Body weight of WT and Bdnf-e6-/- mice subjected to postnatal hypoxia treatment. There were 4 experimental groups: WT: normoxia and hypoxia; Bdnf-e6: normoxia and hypoxia. Note body weight are significantly decreased at 3-and 5-week of age in both genotypes (FIG. 10B, FIG. 10C) , which recovered to normal at 9-week of age (FIG. 10D) . Bdnf-e6 deficiency have no further effect on body weight, expect at 3-week of age. (FIG. 10B-FIG. 10D: Two-way ANOVA analysis with Tukey’s multiple comparisons test) .
FIG. 11A-11E illustrate nest building behavior and novel object recognition affected by postnatal hypoxia. (FIG. 11A) Representative images illustrating nest building score rating scale. (FIG. 11B, FIG. 11C) Nest building score (FIG. 11B) and its ratio composition (FIG. 11C) of the 4 groups. Higher score represents better nest building quality. Note postnatal hypoxia treatment results in worse nest building quality in both genotypes, meanwhile Bdnf-e6 deficiency seems to further worse the nest building quality. (FIG. 11D, FIG. 11E) Exploration time (FIG. 11D) and discrimination ratio (FIG. 11E) of novel object recognition test of the 4 groups. Note postnatal hypoxia treatment resulted in deficient novel object recognition in Bdnf-e6-/- mice, but not WT mice. (FIG. 11B, FIG. 11E: Two-way ANOVA analysis with Tukey’s multiple comparisons test. FIG. 11D: unpaired Student’s t-test) .
FIG. 12A-12H illustrate adult social isolation or postnatal hypoxia do not induce PPI deficits in Bdnf-e4-/- mice. (FIG. 12A, FIG. 12E) Experimental design. Adult social isolation and postnatal hypoxia paradigm are same as FIG. 4A and FIG. 2A, respectively. PPI tests were conducted in P100 or adulthood. (FIG. 12B-FIG. 12D) PPI ratios at 71 dB, 81dB and 90dB were not decreased in AIR Bdnf-e4-/- mice comparing with WT mice. (FIG. 12F-FIG. 12H) PPI ratios at 71 dB, 81dB and 90dB were  not decreased in Bdnf-e4-/- mice subjected to postnatal hypoxia comparing with WT mice. (unpaired Student’s t-test) .
FIG. 13A-13D illustrate Bdnf expression and TrkB signaling affected by postnatal hypoxia and Bdnf-e6 deficiency. (FIG. 13A, FIG. 13B) Bdnf and Bdnf-e6 mRNA expression in mPFC (FIG. 13A) and hippocampus (FIG. 13B) of WT mice subjected to postnatal hypoxia or normoxia environment. Note that postnatal hypoxia induces moderate but significant decreasing Bdnf-e6 mRNA expression in hippocampus. (FIG. 13C) pTrkB/TrkB ratio in the hippocampus. WT and Bdnf-e6-/- mice were subjected to postnatal hypoxia or normoxia environment. Note that pTrkB/TrkB is significantly downregulated in Bdnf-e6-/- mice subjected to postnatal hypoxia. (FIG. 13D) Expression and phosphorylation level of TrkB in hippocampus of WT and Bdnf-e6-/- mice subjected to postnatal hypoxia or normoxia environment. N: normoxia; H: hypoxia; WT: wildtype; e6: Bdnf-e6-/- . (FIG. 13A-FIG. 13C: unpaired Student’s t-test) .
FIG. 14A-14D illustrate effect of RU-486 on PPI in Bdnf-e6-/- mice subjected to adult isolation rearing (AIR) . (FIG. 14A) Experimental design showing the timings of adult isolation and RU-486 administration. (FIG. 14B-FIG. 14D) PPI at all intensities (71dB, 81dB, 90dB) . RU-486 had no effect on PPI. (FIG. 14B-FIG. 14D: unpaired Student’s t-test) .
FIG. 15A-15D illustrate effect of RU-486 on PPI in WT mice subjected to postnatal-isolation rearing (PIR) . (FIG. 15A) Experimental design. WT mice were put in isolation postnatally (P21-P49) and RU-486 was administered from P42-P49. (FIG. 15B-FIG. 15D) Effects on PPI in the PIR model. The PSR-WT is referred to data from FIG. 4. Note that PPI ratios were slightly reduced at all intensities (71dB, 81dB, 90dB) after PIR (see FIG. 1I for comparison) , and pretreatment with RU-468 elicited a small but significant increase in PPI ratios at 81dB and 90dB, respectively. (FIG. 15B-FIG. 15D: unpaired Student’s t-test) .
FIG. 16A-16D illustrate effect of adolescent administration of RU-486 on PPI in MK801 model. (FIG. 16A) Experimental design. RU-486 was administered from P91-P98, and MK801 was injected on P100 to induce SCZ endophenotypes. (FIG. 16B-FIG. 16D) Effects on PPI in the MK801 model. Note that PPI ratios were dramatically reduced at all intensities (71dB, 81dB, 90dB) after MK801, and pretreatment with RU-468 increased PPI ratio at 90dB. (FIG. 16B-FIG. 16D: unpaired Student’s t-test) .
DETAILED DESCRIPTION
While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
As used herein, the term “amedicinal product” generally refers to a formulation that exists in a form that allows the biological activity of the active ingredient to be effective. For example, the medicinal product may not comprise additional ingredients that have unacceptable toxicity to the subject to which the formulation is to be administered. In some embodiments, these formulations may contain the active ingredient of the drug and a pharmaceutically acceptable carrier. In some  embodiments, the medicinal product may comprise a drug product that is administered parenterally, transdermally, intraluminally, intraarterially, intrathecally, and/or intranasally, or injected directly into the tissue. The medicinal product may be administered in different ways, such as intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. In the present application, the term may be a combination comprising at least two components. The components of the medicinal product may be used together. Among them, collocation may refer to simultaneous use or separate use. The components in the medicinal product may be mixed together or placed in different containers. In the present application, the medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonist (such as an agonistic antibody or the antigen binding portion thereof) and an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) .
As used herein, the term “schizophrenia” also known as SCZ, generally refers to a mental disorder characterized by abnormal behavior and misinterpretation of reality. Schizophrenia generally may refer to a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms may comprise hallucinations (typically hearing voices) , delusions, and disorganized thinking. Other symptoms may comprise social withdrawal, decreased emotional expression, and apathy.
As used herein, the term “tropomyosin receptor kinase B” generally refers to a protein that is encoded by the NTRK2 gene, also known as tyrosine receptor kinase B, or TrkB, or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase, receptor type 2. TrkB is a receptor for brain-derived neurotrophic factor (BDNF) and is member of a receptor family of tyrosine kinases that comprises TrkA and TrkC. In the present application, TrkB may be a human TrkB, or may be a rodent TrkB (such as a mouse TrkB) .
As used herein, the term “tropomyosin receptor kinase B agonist” , also known as TrkB agonist, generally refers to a substance capable of initiating a physiological response when combined with TrkB. A TrkB agonist may encompass a chemical that activates TrkB to produce a biological response. A TrkB agonist may comprise an endogenous agonist (e.g. a TrkB ligand, such as BDNF) , or an exogenous agonist (e.g., a mimic of its ligand, such as a BDNF mimic) . A TrkB agonist may be a small molecule, a polypeptide/aprotein (such as an antibody or its antigen binding portion) . A TrkB agonist may be a full agonist (e.g., a full agonist may bind to and activate a receptor with the maximum response that an agonist can elicit at the receptor) , or may be a partial agonist. It may be a full agonist in some tissues/cells and may be a partial agonist in some other tissues/cells. In some cases, a TrkB agonist may be a co-agonist that works with other co-agonists to produce the desired effect together. A TrkB may be a selective agonist that has selectivity for TrkB.
As used herein, the term “tropomyosin receptor kinase B agonistic antibody” , also known as TrkB agonistic antibody, generally refers to an immunoglobulin or a fragment or derivative thereof capable of activating TrkB, and encompasses any polypeptide that may comprise an TrkB-binding site, whether it is produced in vitro or in vivo. The term comprises, but is not limited to, polyclonal, monoclonal, single-specific, multispecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and transplanted antibodies. In the present application, the term may also comprise antibody fragments, such as Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv, dAb and/or maintain antigen binding function thereof. In the present application, TrkB agonistic antibody  may comprise a light chain and/or a heavy chain. In the present application, TrkB agonistic antibody may specifically bind to human TrkB. The NCBI accession number of human TrkB is AAB33109.1. The NCBI accession number of gene encoding human TrkB is 4915.
As used herein, the term “antigen binding portion” generally refers to a region on an antibody that binds to antigens. Antigen binding portion may be composed of one constant and/or one variable domain of each of the heavy and/or the light chain. The variable domain may comprise the paratope (the antigen-binding site) , comprising a set of complementarity-determining regions, at the amino terminal end of the monomer. In the present application, antigen binding portion may comprise Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
As used herein, the term “brain-derived neurotrophic factor (BDNF) ” generally refers to a protein that is encoded by the Bdnf gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor. The neurotrophic factors are found in the brain and the periphery. In the present application, BDNF may be human BDNF, or may be mouse BDNF. The NCBI accession number of human BDNF is P23560.1. The NCBI accession number of the gene encoding human BDNF is 627.
As used herein, the term “BDNF-e6” generally refers to exon 6 of the Bdnf gene. The Bdnf gene has 9 unique promoters that drive transcription of at least 20 different Bdnf transcripts that encode the BDNF protein. The expression of BDNF-e6 is driven by promoter VI of the Bdnf gene.
As used herein, the term “light chain” generally refers to the small polypeptide subunit of an antibody. Each light chain may be composed of two tandem immunoglobulin domains: a constant (C L) domain, and a variable (V L) domain. The length of a light chain protein may be from about 211 to about 217 amino acids. In the present application, light chain may be a human light chain. In the present application, a light chain may comprise a light chain variable region, and the light chain variable region may comprise one or more of LCDR1, LCDR2 and LCDR3.
As used herein, the term “heavy chain” generally refers to the large polypeptide subunit of an antibody. Each heavy chain may have two regions: a constant (C L) region, and a variable (V L) region. The length of a heavy chain protein may be from about 450 to about 550 amino acids. In the present application, heavy chain may be a human heavy chain. In the present application, a heavy chain may comprise a heavy chain variable region, and the heavy chain variable region may comprise one or more of HCDR1, HCDR2 and HCDR3.
As used herein, the term “early-life adversity” generally refers to an experience that represents a deviation from the expected environment and require adaptation. In the present application, the early-life adversity may comprise exposure to child abuse, sexual assault, neglect, and chronic poverty. Early-life adversity is associated with elevated risk for numerous mental and physical health problems. In the present application, the term may comprise viral infections, smoking intelligence quotient, social cognition cannabis use, social isolation, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
As used herein, the term “CORT” , also known as 17-deoxycortisol, corticosterone or 11β, 21-dihydroxyprogesterone, generally refers to a 21-carbon steroid hormone of the corticosteroid type, which may be produced in the cortex of the adrenal glands. In some cases, “corticosterone” or “CORT” also encompasses a corresponding agent in another species (e.g., in human being) , and it may  encompass cortisol. In many species, including amphibians, reptiles, rodents and birds, corticosterone (including CORT, or cortisol) is a main glucocorticoid, involved in the regulation of energy, immune reactions, and stress responses. In the present application, corticosterone may be one early-life adversity related factor. The CAS number of CORT may be 50-22-6 or 50-23-7.
As used herein, the term “inhibitor against an early-life adversity related factor” generally refers to a molecule that may decrease the activity of an early-life adversity related factor. For example, the inhibitor against an early-life adversity related factor may bind to an early-life adversity related factor. The binding of an inhibitor may stop and/or hinder the reaction of early-life adversity. The binding between an early-life adversity related factor and the inhibitor thereof may be either reversible or irreversible. In the present application, the early-life adversity related factor may be a glucocorticoid (e.g., cortisol, corticosterone or CORT) , further the term may be a mifepristone (RU-486) . The CAS number of RU-486 may be 84371-65-3.
In one aspect, the present application provides a medicinal product for use in preventing, alleviating and/or treating schizophrenia. The medicinal product may comprise a TrkB agonist and an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) .
In another aspect, the present application provides a method for preventing, alleviating and/or treating schizophrenia in a subject in need thereof. The method may comprise administering to the subject a TrkB agonist and/or an inhibitor against an early-life adversity related factor (such as a CORT inhibitor) , and the subject has decreased expression level and/or activity of BDNF-e6 and elevated level and/or activity of CORT.
In another aspect, the present application provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia. The method may comprise determining the expression level and/or activity of BDNF-e6 in the subject, and determining the level and/or activity of CORT in the subject.
In another aspect, the present application provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia. The system may comprise: a first module for determining whether the subject has decreased expression level and/or activity of BDNF-e6, and a second module for determining whether the subject has elevated level and/or activity of CORT.
BDNF
While BDNF deficiency has long been viewed as a risk factor of schizophrenia, how it works remains unclear. Different Bdnf transcripts are expressed in different brain regions, cell types, developmental stages, and elicit different functions. Bdnf-e1 and Bdnf-e2 are involved in different aspects of obesity (thermogenesis and food intake) , aggression, and serotonin signaling (Maynard et al., 2016; McAllan et al., 2018; You et al., 2020) . A major function of Bdnf-e4 and Bdnf-e6 is to promote development and function of GABAergic neurons (Jiao et al., 2011; Maynard et al., 2016; Sakata et al., 2013; Sakata et al., 2009b; Xu et al., 2021) . Deficit in GABAergic neurons is one of the pathological hallmarks of schizophrenia (Dienel and Lewis, 2019) , and Bdnf-e4 and Bdnf-e6 are expressed in brain regions associated with schizophrenia, such as hippocampus, prefrontal cortex, and hypothalamus (Maynard et al., 2016) . Loss of Bdnf-e4 or Bdnf-e6 leads to approximately 50%decrease of BDNF protein expression in hypothalamus, prefrontal cortex, and hippocampus, at  postnatal day 28 (PSD28) , and 50%, 30%, 30%decrease in these 3 areas in the adulthood, respectively (Maynard et al., 2016) .
However, schizophrenia-like phenotype has never been observed in Bdnf-e4-/- or Bdnf-e6-/- mice. It was found that early-life stress on Bdnf-e6, but not Bdnf-e4, deficiency mice resulted in SCZ-like endo-phenotypes such as deficits in sociability and social recognition, spatial memory, and sensorimotor gating function (PPI) in adulthood. Neither early-life stress nor Bdnf-e6 deficiency alone caused these abnormalities. These results support the ‘two hit’ hypothesis of schizophrenia, and defined a pair of genetic and environmental factors critical for SCZ pathophysiology. Interestingly, postnatal stress also increased blood glucocorticoid (e.g., cortisol, corticosterone or CORT) levels of wild-type mice, and administration of CORT to adult Bdnf-e6-/- mice without early-life stress resulted in the same PPI deficits and social dysfunction. Furthermore, the PPI deficits in the hypoxic or SI-treated Bdnf-e6-/- mice could be rescued by treatment with the CORT inhibitor (such as the CORT antagonist RU-486) , or a TrkB agonist (such as a TrkB agonistic antibody) .
BDNF has long been implicated in the development of SCZ (Di Carlo et al., 2019) , although Bdnf gene is not located in schizophrenia-associated genetic loci based on GWAS PGC2 studies (Schizophrenia Working Group of the Psychiatric Genomics, 2014) . BDNF is a powerful regulator of synapses and neural circuits important for mood control and cognition, the key components relevant to SCZ (Chao, 2003; Figurov et al., 1996; Ji et al., 2010; Lohof et al., 1993; Martinowich et al., 2007; Molteni et al., 2001; Xu et al., 2000) . Analysis of post-mortem brains revealed deficits in BDNF transcription and downstream signaling in the hippocampus and PFC, of SCZ patients (Reinhart et al., 2015; Thompson Ray et al., 2011) . (Emamian et al., 2004; Green et al., 2011; Issa et al., 2010; Szamosi et al., 2012; Weickert et al., 2005; Wong et al., 2013; Yoshimura et al., 2016; Yuan et al., 2010) . Given the existence of 9 main Bdnf transcripts in the brain, each with short and long 3’ UTRs, it is imperative that specific transcript (s) critically involved in SCZ be defined. The association of SCZ with C270T polymorphism located in the Bdnf exon 6 has provided a hint (Neves-Pereira et al., 2005; Szekeres et al., 2003) . Interestingly, the Bdnf-e6-/- mice per se did not exhibit any schizophrenia-like endo-phenotypes.
It is believed that a combination of genetic and early (e.g., nutritional or maternal factors) or later (e.g. social stress or drug abuse) environmental risk factors trigger the onset of SCZ. This forms the basis for the ‘two hit’ hypothesis (Freedman, 2003; Maynard et al., 2001; McGrath et al., 2003) . However, it is unclear how and when environmental stressors in conjunction with which vulnerable genes could lead to schizophrenia. In the present disclosure, schizophrenia-like endo-phenotypes were led by interplay between early development stress, either postnatal hypoxia or juvenile isolation, and Bdnf-e6-/- mice.
In the present application, the subject may have decreased plasma BDNF level. For example, comparing to a control subject (e.g., a subject not suffering from schizophrenia or not at the risk of developing schizophrenia) , the plasma BDNF level in the subject may be at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%or more lower.
In the present application, the subject may have altered Bdnf gene, for example, the subject may have one or more mutation in promoter VI of the Bdnf gene. In some cases, the subject may comprise a BDNF Val66 mutation. In some cases, the subject may comprise the BDNF Val66Met polymorphism (Hashimoto and Lewis, 2006) .
Brain-derived neurotrophic factor (BDNF) as one of the genetic factors plays an important role in neuronal differentiation and synaptogenesis during development, synaptic transmission and plasticity in the adult, as well as behaviors relevant to schizophrenia. Aberrant expression of BDNF has been observed in the prefrontal cortex (PFC) and blood plasma of schizophrenia patients. In the present application, mouse line with specific disruption may comprise the deficiency of Bdnf promoter VI.Furthermore, the deficiency of Bdnf promoter VI may cause the decrease of the expression and/or activity level of BDNF or significant impairments in PFC GABAergic interneuron markers.
In the present application, the expression and/or activity level of BDNF in SCZ subject may be decreased compared to that of a healthy subject. For example, the expression and/or activity level of BDNF-e6 may be decreased by at least 10% (for example, may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%or more decreased compared to that of a healthy subject) .
In the present application, a healthy subject may be a subject not suffering from schizophrenia or not at the risk of developing schizophrenia.
TrkB Agonist
In the present application, a TrkB agonist may encompass any substance capable of initiating a physiological response when combined with the receptor TrkB. The TrkB agonist may be an endogenous agonist (e.g. a TrkB ligand, such as BDNF) , or an exogenous agonist (e.g., a mimic of its ligand, such as a BDNF mimic) . The TrkB agonist may be a small molecule, a polypeptide/aprotein (such as an antibody or its antigen binding portion) , or any other functional entities (e.g., a polymer, a cell etc. ) . The TrkB agonist may be a full agonist, a partial agonist or a combination thereof. The TrkB agonist may be a full agonist in some cases and may be a partial agonist in some other cases. In some cases, the TrkB agonist may be a co-agonist that works with other co-agonists to produce the desired effect together. The TrkB may be a selective agonist that has selectivity for TrkB.
For example, the TrkB agonist may comprise a TrkB agonistic antibody capable of activating TrkB, or an antigen binding portion thereof. The TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) . For example, the TrkB agonistic antibody or the antigen binding portion may be capable of specifically binding to human TrkB. In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing activation of TrkB downstream signal pathway.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may be capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
In the present application, the antigen binding portion of the antibody may comprise Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise a light chain variable region., the light chain variable region may comprise LCDR1, LCDR2 and LCDR3.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1, the LCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR2, the LCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82, and 92.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR3, the LCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3, the LCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91, and the LCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82, and 92, and the LCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise a light chain variable region, and the light chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
In the present application, the TrkB agonistic antibody may comprise a light chain constant region, and the light chain constant region may be a human Igκ constant region or a human Igλ constant region.
In the present application, the TrkB agonistic antibody may comprise a light chain, and the light chain may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 90 and 100.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise a heavy chain variable region., wherein the heavy chain variable region may comprise HCDR1-3.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR1, the HCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR2, the HCDR2 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR3, the HCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise HCDR1-3, the HCDR1 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94, and the HCDR2 may comprise an amino acid  sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95, and the HCDR3 may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise a heavy chain variable region, and the heavy chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 9-11, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 12-14.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 15-17, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 18-20.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 21-23, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 24-26.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 29-31, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 32-34.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 37-39, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 40-42.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 45-47, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 48-50.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 53-55, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 56-58.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 61-63, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 64-66.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid  sequence as set forth in SEQ ID NO: 69-71, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 72-74.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 81-83, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 84-86.
In the present application, the TrkB agonistic antibody or the antigen binding portion thereof may comprise LCDR1-3 and HCDR1-3, the LCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 91-93, and the HCDR1-3 may respectively comprise an amino acid sequence as set forth in SEQ ID NO: 94-96.
In the present application, the heavy chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97, and the light chain variable region may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
In the present application, the TrkB agonistic antibody may comprise a heavy chain constant region, and the heavy chain constant region may be a human IgG constant region.
In the present application, the TrkB agonistic antibody may comprise a heavy chain, and the heavy chain may comprise an amino acid sequence as set forth in any one of SEQ ID NO: 89 and 99.
In the present application, the heavy chain may comprise an amino acid sequence as set forth in SEQ ID NO: 89, and the light chain may comprise an amino acid sequence as set forth in SEQ ID NO: 90; or, the heavy chain may comprise an amino acid sequence as set forth in SEQ ID NO: 99, and the light chain may comprise an amino acid sequence as set forth in SEQ ID NO: 100.
In the present application, the medicinal product may comprise a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor, and may comprise optionally a pharmaceutically acceptable carrier.
In the present application, the pharmaceutically acceptable carrier may comprise any one of all solvents, dispersion media, coatings, isotonic agents and absorption delaying agents that may be compatible with drug administration, and may be generally safe and non-toxic.
The TrkB agonistic antibody may bind to an epitope contained in one of the extracellular domains of TrkB and is capable of activating TrkB, wherein the extracellular domain may comprise extracellular D1 domain having the amino acid sequence as set forth in SEQ ID NO: 2, D2 domain having the amino acid sequence as set forth in SEQ ID NO: 3, D3 domain having the amino acid sequence as set forth in SEQ ID NO: 4, D4 domain having the amino acid sequence as set forth in SEQ ID NO: 5, D5 domain having the amino acid sequence as set forth in SEQ ID NO: 6 and juxta membrane domain having the amino acid sequence as set forth in SEQ ID NO: 7.
In certain embodiments, the antibody binds to an epitope contained in the juxta membrane domain and is capable of activating a truncated TrkB having the amino acid sequence as set forth in SEQ ID NO: 8.
In certain embodiments, the truncated TrkB lacks D1-D5 domains and has the amino acid sequence as set forth in SEQ ID NO: 8.
In the present application, the TrkB-ECD (extracellular domain) may comprise an amino acid sequence as set forth in SEQ ID NO: 1.
Early-life adversity related factor
In the present application, developmental stress as one of the environmental factors may impact the development of schizophrenia-like endo-phenotypes. In the present application, developmental stress may comprise early-life adversity. In the present application, the early-life adversity may comprise viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition. For example, the early-life adversity may comprise juvenile isolation and/or postnatal hypoxia. The expression and/or activity level of the early-life adversity related factor may be a result of early-life adversity.
In the present application, the expression and/or activity level of early-life adversity related factor in SCZ subject may be increased compared to that of a healthy subject. For example, the early-life adversity related factor may comprise CORT, and the content of CORT may be increased at least 10%(for example, may be increased at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%increased compared to that of a healthy subject) .
In the present application, the early-life adversity related factor may be related to glucocorticoid (e.g., cortisol, corticosterone or CORT) and/or the signal pathway thereof. For example, the early-life related factor may comprise prednisone, methylprednisone, betamethasone, beclomethasone dipropionate, prednisolone, hydrocortisone, and/or dexamethasone. The early-life adversity related factor may comprise: glucocorticoid (e.g., cortisol, corticosterone or CORT) .
In the present application, the subject may have elevated plasma CORT level. For example, comparing to a control subject (e.g., a subject not suffering from schizophrenia or not at the risk of developing schizophrenia) , the plasma CORT level in the subject may be at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%or more higher.
In the present application, the inhibitor against an early-life adversity related factor (e.g., CORT) may be capable of inhibiting the expression and/or activity level of the early-life adversity related factor (e.g., CORT) .
In the present application, the inhibitor against an early-life adversity related factor (for example, against the CORT) may comprise a mifepristone (RU-486) or a derivative thereof.
Therapeutic Methods
In another aspect, the present application further provides a method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein the subject may be administrated a TrkB agonist (such as a TrkB agonistic antibody or the antigen binding portion thereof) and/or an inhibitor against an early-life adversity related factor (e.g., a CORT inhibitor) .
In the present application, the method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein the subject may be administrated the medicinal product of the present application.
In the present application, if the content of CORT in the subject is increased compared to that of a healthy subject, the TrkB agonistic antibody or the antigen binding portion thereof may be  administrated to the subject in need thereof. In the present application, if the content of CORT in the subject is increased compared to that of a healthy subject, the inhibitor against CORT may be administrated to the subject in need thereof.
In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., the plasma of the subject) is decreased compared to that of a healthy subject, the inhibitor against CORT may be administrated to the subject in need thereof. In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject is decreased compared to that of a healthy subject, the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion thereof) may be administrated to the subject in need thereof.
In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma) is decreased compared to that of a healthy subject, and the content of CORT in the subject (e.g., in the plasma) is increased, the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion thereof) and the inhibitor against CORT may be administrated to the subject in need thereof.
For example, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma) is decreased by at least about 5% (for example, may be decreased by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, or at least 60%or more comparing to that of a healthy subject) , and the content of CORT in the subject is increased by at least about 5% (for example, may be increased by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, or at least 60%or more comparing to that of a healthy subject) , the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) and the inhibitor against CORT of the present application may be administrated to the subject in need thereof.
In the present application, the medicinal product may be administered simultaneously. In the present application, the medicinal product may be applied by mixing the components (i.e. the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof) of the present application and the inhibitor against CORT of the present application) together or separately.
The medicinal product may be administered in the same way, for example, to the same vein or other blood vessels, or may be administered in different ways, for example, intravenous administration and oral administration may be performed at the same time.
In this application, the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) and the inhibitor against an early-life adversity related factor may be administered sequentially. The order of administration may be that the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) may be administered first, and then the inhibitor against an early-life adversity related factor; or the inhibitor against an early-life adversity related factor may be administered first, and then the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) may be administered.
In the present application, the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) and the inhibitor against an early-life adversity related  factor may be applied in the same way or in a different way. Each component (i.e. the TrkB agonist (e.g., the TrkB agonistic antibody or the antigen binding portion of the present application) and the inhibitor against CORT of the present application) may be applied at one time or divided into multiple applications.
In the present application, sequential administration may be administered at any time interval, including minutes, hours, days, weeks, months, or years. In the present application, sequential administration may refer to administrations separated at any time interval between at least 1 minute (for example, between at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 60 minutes or more time) .
Diagnostic Methods
In another aspect, the present disclosure provides a method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, comprising determining the expression level and/or activity of BDNF-e6 in the subject, and determining the level and/or activity of CORT in the subject.
In another aspect, the present application further provides a method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma of the subject) , and measuring the expression and/or activity level of an early-life adversity related factor (e.g., CORT) in the subject (e.g., in the plasma of the subject) .
In the present application, the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be measured by the detection method of which may be capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF (e.g., BDNF-e6) .
In the present application, the detection method of BDNF may comprise qPCR, qRT-PCR, southern blot, northern blot, western blot and/or ELISA.
In the present application, the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be measured by a pair of primer which may be capable of amplifying Bdnf gene (e.g., BDNF-e6) , and/or a probe which may be capable of specifically binding to BDNF (e.g., BDNF-e6) . For example, it may be measured by a pair of primer which may be capable of specifically amplifying Bdnf gene (e.g., BDNF-e6) .
In the present application, the content of CORT in the subject may be measured by the detection method of which may be capable of measuring content of CORT.
In the present application, the detection method of CORT may comprise infrared spectroscopy, nuclear magnetic resonance spectroscopy, photochemical analysis (for example, refractometry, ultraviolet-visible spectrophotometry, fluorescence analysis) , and/or electrochemical analysis (for example, potentiometric analysis, coulometric analysis, polarography, and/or voltammetry) .
In the present application, the method wherein the content of CORT in the subject may be measured by a probe which may be capable of specifically binding to CORT.
In the present application, the detection method may use a sample from the subject. For example, the sample may comprise a blood sample. For example, the blood sample may originate from peripheral blood.
In the present application, the method may comprise a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and comparing the expression and/or activity level of an early-life adversity related factor in the subject with that of a healthy subject.
In the present application, the subject suffering schizophrenia selected may comprise: (1) the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be decreased compared to that of a healthy subject; (2) the content of CORT in the subject may be increased compared to that of a healthy subject; (3) the expression and/or activity level of BDNF in the subject may be decreased and the content of CORT in the subject may be increased compared to that of a healthy subject.
In the present application, the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject may be decreased compared to that of a healthy subject, and/or the expression and/or activity level of the early-life adversity related factor in the subject may be increased compared to that of a healthy subject, the subject suffering schizophrenia may be selected.
For example, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject is decreased at least 10% (for example, may be decreased at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%decreased compared to that of a healthy subject) , and the content of CORT in the subject is increased at least 10% (for example, may be increased at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) , then the subject suffering schizophrenia may be selected as a potential subject for the further treatment (for example, for administrating the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion of the present application and the inhibitor against CORT of the present application) .
In the present application, the method may comprise a following step: the selected subject may be administrated with a TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor of the present application.
In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the selected subject is decreased (for example, may be decreased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%decreased compared to that of a healthy subject) compared to that of a healthy subject, the inhibitor against an early-life adversity related factor may be administrated to the selected subject.
In the present application, if the expression and/or activity level of the early-life adversity related factor (e.g., CORT) in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject, the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the selected subject.
In the present application, if the content of CORT in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject, the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof may be administrated to the selected subject.
In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject is decreased (for example, may be decreased at least 10%, at least 20%, at least 30%, at  least 40%, at least 50%, or at least 60%decreased compared to that of a healthy subject) compared to that of a healthy subject, and the expression and/or activity level of the early-life adversity related factor (e.g., CORT) in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject, the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against an early-life adversity related factor may be administrated to the selected subject.
In the present application, if the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject is decreased (for example, may be decreased by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%decreased compared to that of a healthy subject) compared to that of a healthy subject, and the content of CORT in the subject is increased (for example, may be increased at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, or at least 60%compared to that of a healthy subject) compared to that of a healthy subject, the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof and/or the inhibitor against CORT may be administrated to the selected subject.
Diagnostic System
In another aspect, the present disclosure provides a system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia. The system may comprise: a first module for determining whether the subject has decreased expression level and/or activity of BDNF-e6, and a second module for determining whether the subject has elevated level and/or activity of CORT.
In another aspect, the present application further provides a system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF (e.g., BDNF-e6) in the subject (e.g., in the plasma) , and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor (e.g., CORT) in the subject (e.g., in the plasma) .
In the present application, the first measurement module may be capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF (e.g., BDNF-e6) .
For example, the first measurement module may comprise any agent and/or equipment which is formulated for measuring DNA, RNA and/or protein expression and/or activity level of BDNF. For example, the first measurement module may comprise any agent and/or equipment which is formulated for measuring BDNF with a method of qPCR, qRT-PCR, southern blot, northern blot, western blot and/or ELISA.
In the present application, the first measurement module may comprise a pair of primer which may be capable of amplifying Bdnf gene, and/or a probe which may be capable of specifically binding to BDNF.
For example, the primer of BDNF may be capable of specifically amplifying Bdnf gene (e.g., the promoter VI of the Bdnf gene) . For example, the probe may comprise a sequence which is at least partially complementary and/or at least partially same to the sequence of BDNF.
In the present application, the first measurement module may comprise an equipment for conducting qPCR and/or qRT-PCR. In the present application, the first measurement module may  comprise an equipment to illustrate the result of measuring the expression and/or activity level of BDNF in the subject. For example, the result may be illustrated as a form of number, figure and/or table.
In the present application, the second measurement module may be capable of measuring the plasma content of CORT.
For example, the second measurement module may comprise any agent and/or equipment which is formulated for measuring the content of CORT. For example, the second measurement module may comprise any agent and/or equipment which is formulated for measuring CORT with a method of infrared spectroscopy, nuclear magnetic resonance spectroscopy, photochemical analysis (for example, refractometry, ultraviolet-visible spectrophotometry, fluorescence analysis) , and/or electrochemical analysis (for example, potentiometric analysis, coulometric analysis, polarography, and/or voltammetry) .
In the present application, the second measurement module may comprise a probe which may be capable of specifically binding to CORT. In the present application, the second measurement module may comprise a pure CORT compound as a control sample.
In the present application, the second measurement module may comprise an equipment to illustrate the result of measuring the content of CORT in the subject. For example, the result may be illustrated as a form of number, figure and/or table.
In the present application, the system may comprise a sample collecting module collecting a sample from the subject suffering schizophrenia.
In the present application, the system wherein the sample may comprise a blood sample. For example, the sample collecting module may comprise a tube and/or a blood collection device.
In the present application, the system may comprise a judging module comparing the expression and/or activity level of BDNF between the subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of the early-life adversity related factor between the subject suffering schizophrenia and that of a healthy subject.
In the present application, the judging module may judge that whether the expression and/or activity level of BDNF in the subject suffering schizophrenia may be decreased compared to that of a healthy subject. For example, the judging module may illustrate the result that the expression and/or activity level of BDNF in the subject suffering schizophrenia is decreased compared to that of a healthy subject.
In the present application, the judging module may judge that whether the expression and/or activity level of the early-life adversity related factor in the subject may be increased compared to that of a healthy subject.
In the present application, the judging module may judge that whether the content of CORT in the subject may be increased compared to that of a healthy subject. For example, the judging module may illustrate the result that the content of CORT in the subject is increased compared to that of a healthy subject.
In the present application, the system may comprise a suggestion module providing a suggestion about the treatment program for the subject suffering schizophrenia according to a judging result from the judging module.
For example, if the judging module illustrates the result that the expression and/or activity level of BDNF in the subject suffering schizophrenia is decreased compared to that of a healthy subject; and the content of CORT in the subject is increased compared to that of a healthy subject, then the suggestion module may suggest that the subject suffering schizophrenia may be suitable to be administrated the TrkB agonist, such as the TrkB agonistic antibody or the antigen binding portion thereof of the present application and/or the inhibitor against CORT of the present application.
The present disclosure provides the following embodiments:
Embodiment 1. A medicinal product for preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonistic antibody or the antigen binding portion thereof and an inhibitor against an early-life adversity related factor.
Embodiment 2. The medicinal product according to embodiment 1, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB.
Embodiment 3. The medicinal product according to any one of embodiments 1-2, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
Embodiment 4. The medicinal product according to any one of embodiments 1-3, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
Embodiment 5. The medicinal product according to any one of embodiments 1-4, wherein said antigen binding portion thereof comprises Fab, Fab’ , F (ab)  2, Fv fragment, F (ab’ )  2, scFv, di-scFv and/or dAb.
Embodiment 6. The medicinal product according to any one of embodiments 1-5, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein said light chain variable region comprises LCDR1-3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
Embodiment 7. The medicinal product according to embodiment 6, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
Embodiment 8. The medicinal product according to any one of embodiments 6-7, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
Embodiment 9. The medicinal product according to any one of embodiments 6-8, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
Embodiment 10. The medicinal product according to any one of embodiments 1-9, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Igκ constant region or a human Igλ constant region.
Embodiment 11. The medicinal product according to any one of embodiments 1-10, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein said heavy chain variable region comprises HCDR1-3, and said HCDR1 comprises  an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
Embodiment 12. The medicinal product according to embodiment 11, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
Embodiment 13. The medicinal product according to any one of embodiments 11-12, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
Embodiment 14. The medicinal product according to any one of embodiments 11-13, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
Embodiment 15. The medicinal product according to any one of embodiments 1-14, wherein said TrkB agonistic antibody comprises a heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
Embodiment 16. The medicinal product according to any one of embodiments 1-15, wherein said early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
Embodiment 17. The medicinal product according to any one of embodiments 1-16, wherein the expression and/or activity level of said early-life adversity related factor increases as a result of said early-life adversity.
Embodiment 18. The medicinal product according to any one of embodiments 1-17, wherein said early-life adversity related factor comprises corticosterone (CORT) .
Embodiment 19. The medicinal product according to any one of embodiments 1-18, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of said early-life adversity related factor.
Embodiment 20. The medicinal product according to any one of embodiments 1-19, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the content of CORT.
Embodiment 21. The medicinal product according to any one of embodiments 1-20, wherein said inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
Embodiment 22. A method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein said subject is administrated a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
Embodiment 23. A method of preventing, alleviating and/or treating schizophrenia in a subject in need thereof, wherein said subject is administrated a medicinal product according to any one of embodiments 1-21.
Embodiment 24. The method according to any one of embodiments 22-23, wherein the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject.
Embodiment 25. The method according to embodiment 24, wherein the expression and/or activity level of BDNF in said subject is decreased by at least 10%compared to that of a healthy subject.
Embodiment 26. The method according to any one of embodiments 24-25, wherein the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
Embodiment 27. The method according to embodiment 26, wherein said early-life adversity related factor comprises CORT, and the content of CORT in said subject is increased compared to that of a healthy subject.
Embodiment 28. The method according to embodiment 27, wherein the content of CORT in said subject is increased by at least 10%compared to a that of healthy subject.
Embodiment 29. The method according to any one of embodiments 22-28, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of specifically binding to human TrkB.
Embodiment 30. The method according to any one of embodiments 22-29, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing activation of TrkB downstream signal pathway.
Embodiment 31. The method according to any one of embodiments 22-30, wherein said TrkB agonistic antibody or the antigen binding portion thereof is capable of inducing a gene expression comparably to a natural human TrkB ligand brain-derived neurotrophic factor (BDNF) .
Embodiment 32. The method according to any one of embodiments 22-31, wherein said antigen binding portion thereof comprises Fab, Fab’ , F (ab)  2, Fv fragment, F (ab’ )  2, scFv, di-scFv and/or dAb.
Embodiment 33. The method according to any one of embodiments 22-32, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a light chain variable region, wherein said light chain variable region comprises LCDR1-3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
Embodiment 34. The method according to embodiment 33, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
Embodiment 35. The method according to any one of embodiments 33-34, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
Embodiment 36. The method according to any one of embodiments 33-35, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
Embodiment 37. The method according to any one of embodiments 22-36, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Igκ constant region or a human Igλ constant region.
Embodiment 38. The method according to any one of embodiments 22-37, wherein said TrkB agonistic antibody or the antigen binding portion thereof comprises a heavy chain variable region, wherein said heavy chain variable region comprises HCDR1-3, and said HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
Embodiment 39. The method according to embodiment 38, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
Embodiment 40. The method according to any one of embodiments 38-39, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
Embodiment 41. The method according to any one of embodiments 38-40, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
Embodiment 42. The method according to any one of embodiments 22-41, wherein said TrkB agonistic antibody comprises a heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
Embodiment 43. The method according to any one of embodiments 27-42, wherein if the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said subject in need thereof.
Embodiment 44. The method according to any one of embodiments 22-43, wherein said early-life adversity comprises viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, childhood trauma, pre-and perinatal hypoxia and/or prenatal malnutrition.
Embodiment 45. The method according to any one of embodiments 22-44, wherein the expression and/or activity level of said early-life adversity related factor increases as a result of said early-life adversity.
Embodiment 46. The method according to any one of embodiments 22-45, wherein said early-life adversity related factor comprises corticosterone (CORT) .
Embodiment 47. The method according to any one of embodiments 22-46, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the expression and/or activity level of said early-life adversity related factor.
Embodiment 48. The method according to any one of embodiments 22-47, wherein said inhibitor against an early-life adversity related factor is capable of inhibiting the content of CORT.
Embodiment 49. The method according to any one of embodiments 22-48, wherein said inhibitor against an early-life adversity related factor comprises a mifepristone (RU-486) .
Embodiment 50. The method according to any one of embodiments 22-49, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, said inhibitor against CORT is administrated to said subject in need thereof.
Embodiment 51. A method of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising the following step: measuring the expression and/or activity level of BDNF in said subject, and measuring the expression and/or activity level of an early-life adversity related factor in said subject.
Embodiment 52. The method of embodiment 51, wherein the expression and/or activity level of BDNF in said subject is measured by the detection method of which is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
Embodiment 53. The method of embodiment 52, wherein the expression and/or activity level of BDNF in said subject is measured by a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF.
Embodiment 54. The method according to any one of embodiments 51-53, wherein said early-life adversity related factor comprises corticosterone (CORT) .
Embodiment 55. The method of embodiment 54, wherein the content of CORT in said subject is measured by the detection method of which is capable of measuring content of CORT.
Embodiment 56. The method according to any one of embodiments 54-55, wherein the content of CORT in said subject is measured by a probe which is capable of specifically binding to CORT.
Embodiment 57. The method according to any one of embodiments 51-56, wherein the detection method uses a sample from the subject, and said sample comprises a blood sample.
Embodiment 58. The method according to any one of embodiments 51-57, wherein the method further comprises a following step: comparing the expression and/or activity level of BDNF with that of a healthy subject, and, comparing the expression and/or activity level of an early-life adversity related factor in said subject with that of a healthy subject.
Embodiment 59. The method of embodiment 58, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and/or the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said subject suffering schizophrenia is selected.
Embodiment 60. The method according to any one of embodiments 58-59, wherein the expression and/or activity level of BDNF in said subject is decreased by at least 10%compared to that of a healthy subject.
Embodiment 61. The method according to any one of embodiments 58-60, wherein the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
Embodiment 62. The method according to any one of embodiments 54-61, wherein the content of CORT in said subject is increased compared to that of a healthy subject.
Embodiment 63. The method according to any one of embodiments 51-62, wherein the method further comprises a following step: the selected subject is administrated with a TrkB agonistic antibody or the antigen binding portion thereof and/or an inhibitor against an early-life adversity related factor.
Embodiment 64. The method of embodiment 63, wherein if the expression and/or activity level of BDNF in said selected subject is decreased compared to that of a healthy subject, said inhibitor against an early-life adversity related factor is administrated to said selected subject.
Embodiment 65. The method according to any one of embodiments 63-64, wherein if the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said selected subject.
Embodiment 66. The method according to any one of embodiments 54-65, wherein if the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof is administrated to said selected subject.
Embodiment 67. The method according to any one of embodiments 51-66, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof and/or said inhibitor against an early-life adversity related factor is administrated to said selected subject.
Embodiment 68. The method according to any one of embodiments 54-67, wherein if the expression and/or activity level of BDNF in said subject is decreased compared to that of a healthy subject, and the content of CORT in said subject is increased compared to that of a healthy subject, said TrkB agonistic antibody or the antigen binding portion thereof and/or said inhibitor against CORT is administrated to said selected subject.
Embodiment 69. A system of diagnosing and/or clinical classification for a subject suffering schizophrenia, comprising: a first measurement module measuring the expression and/or activity level of BDNF in said subject, and a second measurement module measuring the expression and/or activity level of an early-life adversity related factor in said subject.
Embodiment 70. The system according to embodiment 69, wherein said first measurement module is capable of measuring DNA, RNA and/or protein expression and/or activity level of BDNF.
Embodiment 71. The system according to any one of embodiments 69-70, wherein said first measurement module comprises a pair of primer which is capable of amplifying Bdnf gene, and/or a probe which is capable of specifically binding to BDNF.
Embodiment 72. The system according to any one of embodiments 69-71, wherein said early-life adversity related factor comprises corticosterone (CORT) .
Embodiment 73. The system according to any one of embodiments 69-72, wherein said second measurement module is capable of measuring content of CORT.
Embodiment 74. The system according to any one of embodiments 69-73, wherein said second measurement module comprises a probe which is capable of specifically binding to CORT.
Embodiment 75. The system according to any one of embodiments 69-74, wherein said system comprises a sample collecting module collecting a sample from said subject suffering schizophrenia.
Embodiment 76. The system according to embodiment 75, wherein said sample comprises a blood sample.
Embodiment 77. The system according to any one of embodiments 69-76, wherein said system comprises a judging module comparing the expression and/or activity level of BDNF between said subject suffering schizophrenia and that of a healthy subject, and/or comparing the expression and/or activity level of said early-life adversity related factor between said subject suffering schizophrenia and that of a healthy subject.
Embodiment 78. The system according to embodiment 77, wherein said judging module judges that whether the expression and/or activity level of BDNF in said subject suffering schizophrenia is decreased compared to that of a healthy subject.
Embodiment 79. The system according to any one of embodiments 77-78, wherein said judging module judges that whether the expression and/or activity level of said early-life adversity related factor in said subject is increased compared to that of a healthy subject.
Embodiment 80. The system according to any one of embodiments 77-79, wherein said judging module judges that whether the content of CORT in said subject is increased compared to that of a healthy subject.
Embodiment 81. The system according to any one of embodiments 69-80, said system comprises a suggestion module providing a suggestion about the treatment program for said subject suffering schizophrenia according to a judging result from said judging module.
Examples
The following examples are set forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc. ) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Celsius, and pressure is at or near atmospheric. Standard abbreviations may be used, e.g., bp, base pair (s) ; kb, kilobase (s) ; pl, picoliter (s) ; s or sec, second (s) ; min, minute (s) ; h or hr, hour (s) ; aa, amino acid (s) ; nt, nucleotide (s) ; i.m., intramuscular (ly) ; i. p., intraperitoneal (ly) ; s. c., subcutaneous (ly) ; and the like.
Materials and Methods
Animals
Bdnf-e6 mutant mice were generated as previously reported (Maynard et al., 2016) . Briefly, In Bdnf-e6 mutant mice, an eGFP-STOP cassette was inserted after exon VI and a PGK-Neo cassette was placed antisense to eGFP. PGK-Neo was later deleted by Cre recombinase expression. This strategy led to the production of Bdnf-eGFP fusion transcripts and eGFP in the mRNA and protein levels, respectively. The primers used for genotyping were designed for discriminating WT (forward: 5'-AA TCGAAGCTCAACCGAAGA-3' (SEQ ID NO: 77) , reverse: 5'-TTTTTCTCTCACACTGAAGGGATT-3' (SEQ ID NO: 78) ) and mutant (GFP) allele (forward: 5'-AATCGAAGCTCAACCGAAGA-3' (SEQ ID NO: 79) , reverse: 5'-TCCAGCTCGACCAGGATG-3' (SEQ ID NO. 80) ) .
All the mice used were generated by crossing heterozygotes (e.g., Bdnf-e6 +/-) male mice with heterozygotes females.
Mice were reared in the specific-pathogen free animal facility. The mice were maintained on a 12/12-hour light/dark cycle, 22-26℃ with sterile pellet food and water ad libitum under standard conditions.
Genotyping analysis revealed a 566-base pair WT fragment in WT mice, a 367-base pair mutant fragment in Bdnf-e6 mutant mice, and both the WT fragment and the mutant fragment in Bdnf-e6 +/-heterozygotes.
For all tests, mice (male only, 2-4 months old) were housed with siblings, 5-6 mice per cage with mixed genotypes, except for the social isolation paradigm, in which mice were housed in a single in the standard mouse cage for 4 weeks. Before testing, all mice were handled at least 3 consecutive  days for habituation: i.e. transferred into the testing room at least 1 hour before testing began. All the behavioral tests were performed during the light phase of the circadian cycle between 09: 00 and 17: 00.
All animal experiments were approved by the Institutional Animal Care and Use Committee (ACUC) and conducted in accordance of governmental and Tsinghua guidelines for animal welfare.
Animal Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) images were acquired using a 7.0T scanner (Bruker, Biospec 70/20 USR7) . Before scanning, all animals were initially anesthetized with 5%isoflurane in oxygen using a chamber and subsequently maintained with 1.5-2%isoflurane in oxygen delivered via a mask. The MRI data were acquired with the following parameters: repetition time (TR) =2500 ms, echo time (TE) =136 ms, number of acquisitions (NA) =512, number of points=2048, spectral width=4006Hz.
Behavioral tests
All mice (male only, 2~4 months old) were housed in groups, 5~6 mice per cage with mixed genotypes, except for the social isolation paradigm, in which mice were housed in a single in the standard mouse cage for 4 weeks. Before testing, all mice were handled at least 3 consecutive days for habituation: i.e. transferred into the testing room at least 1 hour before testing began. All the behavioral tests were performed during the light phase of the circadian cycle between 09: 00 and 17: 00.
Rotarod
Rotarod test is composed of the training sessions and a probe trial session (UGO, 47650) . Before testing, mice were placed on their respective lanes and were acclimated to the rolling rod for 1 minute at a constant speed of 10 rpm. In both sessions, the rotarod apparatus was set to accelerate from 10-30 rpm with a maximum trial of 80 seconds. Mice were given three trials a day with an inter-trial interval (ITI) of 20 minutes. After three consecutive days of training, a probe trial was conducted on day 4. The mean latency to fall off of the rotarod was recorded automatically for all trials.
Open field
The open field apparatus was made up of a white acrylic box (50 cm × 50 cm × 40 cm) . The central zone was defined as a 25 cm × 25 cm area in the center of the box. The animals were placed in the center zone and were allowed to explore freely for 10 minutes. All measurements were recorded by an automated tracking system and were analyzed using EthoVision XT software (Noldus, Netherlands) , including the total distance moved in the open field arena and time spent in the center zone.
Social interaction
Social affiliation and social memory were estimated via the three-chambered apparatus (60 ×45 × 20 cm) . The social interaction test consisted of the sociability test and the social novelty preference test. Before the sociability test, the test mouse was placed in the apparatus and subjected to freely explore for 5 minutes. Then, the mouse was restricted to the middle chamber and the “Stranger 1” mouse was randomly introduced into one of two identical cages located in the side chambers. The test mouse was allowed to explore freely for 10 minutes after opening the doors. In the social novel preference test, a novel stranger mouse, named “Stranger 2” , was placed into the empty cage. The same test mouse again allowed to explore freely for 10 minutes. Note that all stranger mice used here had the same background, age, and gender as the test mouse. Throughout the entire process, the  duration in each chamber and the time spent sniffing were automatically monitored by tracing video and analyzed by hand.
Morris Water Maze
Morris water maze (MWM) consisted of a round water tank (120cm diameter × 40cm depth) and a round platform (11cm diameter × 18cm depth) . The water tank was equally divided into 4 quadrants marked with tags on the wall drawing round, square, triangle, and cross shape. Each quadrant was named with northeast (NE) , northwest (NW) , southwest (SW) , and southeast (SE) , respectively. Behavioral experiment was composed with three phases: (1) Cue phase (day 1) : titanium dioxide was added into the water to make the water milky white. Water temperature and depth was set to 22℃ and 25-30cm. The platform was randomly placed into the center of one of quadrants. Then mouse was released into the water at water level (not dropped) in the desired position, facing the tank wall. Computer tracking program was started the moment that the animal was released. After the platform was reached, timer was stopped, and mouse was wiped dry and put back to homecage. Mice unable to find the platform were eliminated, due to their potential abnormally of swimming ability or eyesight. (2) Acquisition phase (day2-7) : After 24h of cue phase (day 2) , mouse was released into the water (water depth 30-45cm) with a platform placed in SW quadrant, movement locus within 60 seconds was recorded. If mouse could not reach the platform within 60s, experimenter would guide it to the platform, and let stay on the platform for 15-20s. If the mouse successfully reached the platform but unable to stay on the platform, experimenter would also guide it to stay on the platform for 10s. After the experiment, mouse was wiped dry and put back to home cage. Each mouse was trained 4 times a day, with 20-30 min inter-trail interval. The acquisition phase was continued for 6 days. Start position for each trail was listed in the table shown below. Water should be replaced every 2-3 days to eliminated odor disturbance. Average time spent on successful platform reaching for each day was calculated. Note shorter time spent on successful platform reaching represents better spatial learning. (3) Probe phase (day 8) : Mouse was released into the water tank at NE quadrant, with no platform inside the tank. Movement locus within 60s was recorded. Time spent in each quadrant, times crossing presumed platform position, and time spent successfully to locate the presumed platform for the first time were analyzed. Note that more time spent in presumed platform quadrant (SW) , more times crossing presumed platform position, and shorter time spent for successful platform location represent better spatial memory.
Figure PCTCN2022128152-appb-000001
Prepulse inhibition
The prepulse inhibition (PPI) test was measured using the Xeye Startle Reflex System (Beijing MacroAmbition S&T Development Co., Ltd, China) . Here, the PPI test consisted of three phases. In the acclimation phase, the test mouse was restricted to an open-air cage and then placed into a chamber without any startle stimulus for 15 minutes on the day before testing. On the testing day, the session began with a 5-minute habituation period, followed by two types of stimulus trials presented in a pseudorandom order: (1) pulse-alone: 120 dB (40 ms duration) stimulus and (2) prepulse-pulse: 120 dB stimulus (40 ms duration) preceded by the 71, 81 or 90 dB prepulse (20 ms duration) . Each trial was performed for ten times with a variable inter-trial interval (ITI) ranged from 15 s to 20 s. Additionally, a 65-dB background noise level was given throughout the entire testing period to avoid the effects of noise outside of the startle chamber. The PPI was calculated as a percentage score for each prepulse-pulse trial type: %PPI= [ (startle amplitude of pulse-alone trial-startle amplitude of prepulse-pulse trial) /startle response in the pulse-alone trial] ×100.
Novel object recognition
Novel object recognition test was performed as described previously. The experimental apparatus was made up of a white acrylic box (31 × 31 × 20 cm) . The object-recognition tasks consisted of three phases. In the first phase, the subject mouse was put into an empty open field that differed from the home cage and was given a 5-minute habituation period once a day for three consecutive days. In the acquisition phase, the subject mouse could freely explore two identical objects located 5 cm away from the wall for 5 minutes. Before the retention phase, the mouse was returned to its home cage for a retention period (5 minutes or 1 hour) , and the two objects were removed. During the retention phase, the subject mouse was again put into the open field and could explore an object identical with the original one (the “familiar” object) and a novel object for another 5 minutes. Throughout the entire process, the exploration time of all trials was manually recorded blind to the treatment. The discrimination ratio in the retention phase was calculated using the following formula: [ (time spent exploring the novel object -time spent exploring the familiar object) /total exploration time] . Four cohorts of male mice (about 12-week-old) were used in the NOR test.
Nest Building
Nesting was measured in home cage. Before experiments, all nest building materials, including hay, twine, wood-chip, were removed from the home cage. One hour prior to the dark phase, mice were separate individually into the home cage with absorbent sponges as nest building materials. Nests of each mouse were assessed next morning on a rating scale of 1-4, according to FIG. 11A.
Environmental stress
Postnatal hypoxia paradigm
Heterozygous (Bdnf-e6+/-or Bdnf-e4+/-) parents were used for breeding. Litters and their genetic mothers were randomly housed in either normoxia or hypoxia condition with access to food and water ad libitum. During hypoxic period, pups and adult mice were nursed in a Plexiglas chamber (BioSpherix #A-30274-P, Ltd., Lacona, NY) with a nitrogen (N2) /compressed air gas delivery system that mixes the N2 with room air using a compact oxygen controller (BioSpherix, Ltd., ProOx P110) . Mice were exposed to hypoxia (O2 level 10%) or normoxia (O2 level 21%) for 6 days (P4~P10 neonatal stages or P70~ P76 adult) . At the age of three weeks, male litters were separated from females,  and their genotypes were identified by PCR. Bdnf-e6/e4 homozygous male mice and WT male littermate control were used for further experiments.
Social juvenile isolation
Heterozygous (Bdnf-e6 +/-or Bdnf-e4 +/-) parents were used for breeding. Male mice were housed in isolated ventilated cages (maxima six mice per cage) barrier facility at Tsinghua University. At weaning (PND 21) , with Bdnf-e6 -/- and WT mice randomly assigned to the isolation-rearing (IR) condition (1 mouse per cage) or the social-rearing (SR) condition (4-5 mice per cage) for 4 weeks (PND49) , assuring that mice with different genotype were equally housed in each SR condition. Mice in all cages were reared under the same conditions (12/12-hour light/dark cycle and 22-26℃) and received sterile pellet food and water ad libitum, so that IR mice could still see, hear and smell other mice without having physical contact.
Blood corticosterone measurement
Orbital blood samples (500μl) were collected into a 1.5-ml Eppendorf tubes, standing still at room temperature for 45min, with subsequent centrifugation at 1500rpm for 15min at 4℃. Upper layer serum was transferred to new 1.5-ml Eppendorf tube. Pre-chilled high-performance liquid chromatography–grade methanol (at -80 ℃) was added to the tube according to the volume of serum, with 400 μl methanol per 100 μl serum. Mixed liquid was gently homogenized by hand shaking for 1 min, and incubated at -80 ℃ for 2 h. After -80 ℃ incubation, sample was centrifugation at 14000×g for 10 min at 4 ℃. The supernatant was further lyophilized to powder with Speedvac (Thermo Savant SPD1010) . The dried sample was used for corticosterone measurement or stored in a -80 ℃ freezer. The ultra-performance liquid chromatography system was coupled to a Q-Exactive orbitrap mass spectrometer (Thermo Fisher, CA) equipped with a APCI probe. For corticosterone analysis, extracts were separated by a Biphenyl 150 x 2.1 mm column. A binary solvent system was used, in which mobile phase A consisted of 100%H2O, 0.1%FA, and mobile phase B of 100%CAN containing 0.1%FA. A 10-minute gradient with flow rate of 350 μL/min was used. Column chamber and sample tray were held at 40 ℃ and 10 ℃, respectively. Data with mass ranges of m/z 300-400 were acquired in positive ion mode. The full scan was collected with resolution of 70,000. The source parameters were as follows: Discharge current 6μA; capillary temperature: 320 ℃; heater temperature: 400 ℃; sheath gas flow rate: 35 Arb; auxiliary gas flow rate: 10 Arb. To calculate the absolute value of blood corticosterone content, 200μl of 100μg/ml corticosterone diluted by HPLC-grade methanol was used as standard sample. Data analysis and quantitation were performed by the software Xcalibur 3.0.63 (Thermo Fisher, CA) .
Drug treatment
Corticosterone chronic treatment
Corticosterone was firstly dissolved by 100%ethanol, and further dissolved into mice drinking water to 1%ethanol concentration and 0.1mg/ml corticosterone. Drinking water bottle was fully covered by silver paper and changed every 3 days, in case corticosterone degraded overtime. For control group mice, drinking water only contained 1%ethanol.
RU-486 chronic treatment
RU-486 was dissolved with 100%Tween-80 and 0.9%saline into 10mg/ml, with 1%Tween-80 in the final working solution. Mice treated with RU-486 were intraperitoneal injected with 40mg/kg  RU-486 (4μl/g working solution) once a day for 8 consecutive days. For control group mice, 1%Tween-80 dissolved in 0.9%saline were intraperitoneal injected at 4μl/g.
TrkB agonistic antibody treatment
Adult Bdnf-e6 -/- mice undergone postnatal hypoxia or social isolation and MK801-treated WT mice model were treated with a single tail vein injection of AbB901 (1mg/kg) 48 hours before PPI test began. For control group mice, saline or normal IgG (1mg/kg) was injected through the tail vein. Details of MK801-treated model are listed below. The AbB901 antibody has a HCDR1 with an amino acid sequence as set forth in SEQ ID NO: 48, a HCDR2 with an amino acid sequence as set forth in SEQ ID NO: 49, a HCDR3 with an amino acid sequence as set forth in SEQ ID NO: 50, a LCDR1 with an amino acid sequence as set forth in SEQ ID NO: 45, a LCDR2 with an amino acid sequence as set forth in SEQ ID NO: 46, and a LCDR3 with an amino acid sequence as set forth in SEQ ID NO: 47. The AbB901 antibody has a VH with an amino acid sequence as set forth in SEQ ID NO: 52. The AbB901 antibody has a VL with an amino acid sequence as set forth in SEQ ID NO: 51.
MK801 treatment
MK801 (Merck) was firstly dissolved and diluted to working solution (concentration at 10-4 mM/ml) with saline. Adult WT mice were treated with MK801 intraperitoneally (0.2mg/kg) 30 minutes before PPI test began.
RT-PCR
Total RNA was isolated and extracted from targeted frozen tissues using Cell/Tissue Total RNA Isolation Kit (Vazyme) following manufacturer’s instructions. RNA concentration was determined using a NanoDrop (Denovix) , and then RNA was reverse transcribed into cDNA using HiScript II Q RT SuperMix (Vazyme) according to the manufacturer’s instructions. Quantitative real-time RT-PCR was performed with AceQ qPCR SYBR Green Master Mix (Vazyme) following the recommended protocol.
Western blotting
Dissected brain tissues from each mouse were homogenized by grinding in 1 mL of chilled RIPA lysis buffer. After centrifugation for 30 min at 17,000 g at 4℃, supernatants were then collected, and protein concentrations were measured by the BCA Protein Assay Kit (Thermo Scientific) . Thereafter, total protein concentrations were denatured at 95℃ for 10 min. Proteins were separated by electrophoresis using a 10%SDS-PAGE gel and transferred onto activated PVDV membranes (Immobilon-P, Millipore) . Membranes were blocked in 5%BSA in 0.1 M tris buffered saline with 0.1%Tween-20 (TBST) for 1 hour at room temperature. and then incubated in primary antibody dilution buffer overnight at 4℃. After washing with TBST, membranes were incubated in secondary antibody dilution buffer for 2 hours at room temperature. After TBST washing, membranes were detected with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) by Tanon 5200 (software: Tanon MP, v1.02) and analyzed using Tanon Gis (v4.2) . The primary antibodies used were anti-GFP (1: 500, Genscript, A01694-40) , anti-TrkB (1: 1000, CST, 4603S) , anti-pTrkB (1: 1000, CST, CST, 4168S) , anti β-Actin (1: 2500, Cwbio, CW0096M) .
Immunofluorescence staining
Mice were deeply anaesthetized with Avertin and transcardially perfused with PBS (pH7.4) , and fixed by 4%paraformaldehyde (PFA) in PBS. The brains were dissected and post-fixed overnight  in 4%PFA at 4℃ followed by 40-μm-thick coronal sections cut using vibratome. The free-floating sections were fixed again by 4%paraformaldehyde (PFA) in PBS for 15 minutes and washed with PBS three times for 15 minutes at room temperature, followed by blocking in 5%normal goat serum and 0.3%Triton X-100 in PBS overnight at 4℃. Then, sections were incubated with primary antibody overnight at 4℃. The next day, the sections were washed by PBS three times for 15 minutes at room temperature and then treated with secondary antibody overnight at 4℃. Finally, the sections were washed three times in PBS for 15 minutes at room temperature and mounted on slides with mounting medium (with DAPI) and coverslipped. Slides were scanned on a microscope Axio Scan. Z1 (ZEISS) for imaging, and images were analyzed with Zeiss Zen (v2.1) and ImageJ (v1.52i) . Primary antibody for immunostaining was GFP (1: 1000, AVES, GFP-1020) and secondary antibody was donkey anti-chicken IgG H&L Alexa Fluor 488 (1: 1000, Jackson ImmunoResearch, 703-545-155) .
Quantification and statistical analysis
Unpaired Student’s t-tests were performed for social interaction, Morris water maze, prepulse inhibition, novel object recognition, blood corticosterone measurement and relative mRNA expression. Two-way ANOVA analysis with Tukey’s multiple comparisons test were used to analyze open field, rotarod, prepulse inhibition, novel object recognition, nest Building and body weight. In multi-bar figures, statistical significance was determined by analysis of variance followed by a post hoc test. The number of animals used for each test was shown in the bar graph or as indicated. Sample size was based on the similar published research, to ensure adequate statistical power. In addition, the sample sizes for each experiment have been detailed in the figure legends and confirmed statistically by appropriate tests. Genotyping data were not blinded, but were re-checked by different investigators. Western blotting was done and data analyzed by different investigators. For morphological analyses, data collections were performed together in a shared microscope and the conditions were blinded for each experiment.
All statistical analyses were performed using software GraphPad Prism 8.0 (GraphPad Software) . Data are represented as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <0.0001, ns, not significant.
Example 1 Bdnf-e6 disruption alone did not elicit schizophrenia-like behavior
The mouse knock-in line Bdnf-e6-/- was constructed, wherein Bdnf transcription through its promoter VI was selectively disrupted (Maynard et al., 2016) . In this line (Bdnf-e6-/-) , an eGFP cassette was inserted directly downstream of the Bdnf exon 6, followed by multiple STOP codons. As such, Bdnf promoter VI drives the production of a transcript containing the 5’ UTR-eGFP-Bdnf coding exon IXa, which in turn is translated into eGFP instead of BDNF protein (FIG. 9A) .
Genotyping analysis revealed a 566-base pair wild type (WT) fragment and a 367-base pair mutant fragment in WT and Bdnf-e6 mutant mice, respectively (FIG. 9A) . Quantitative PCR (qPCR) experiments confirmed that Bdnf-e6 mRNA is highly enriched in the brain instead of peripheral tissues in adult WT mice (FIG. 9B) (Aid et al., 2007) . In WT brains, Bdnf-e6 mRNA was more abundant in the hippocampus and mPFC than other regions (FIG. 9B) . In Bdnf-e6-/- brains, while Bdnf-e6 transcript was completely absent, the levels of Bdnf-e1, Bdnf-e2, and Bdnf-e4 transcripts were relatively normal in the hippocampus and mPFC (except for a modest decrease in Bdnf-e4 transcripts in the hippocampus) (FIG. 9C and FIG. 9D) . Western blotting detected GFP protein in various regions  in the Bdnf-e6-/- but not WT brains (FIG. 9I) . Immunohistochemistry showed that Bdnf-e6-eGFP highly enriched in the hippocampus in the mutant mice (FIG. 9J) . Additionally, Bdnf-e6 deficiency did not result in weight change, motor impairments (FIG. 9E-F) and enlargement of lateral ventricles (FIG. 9K) .
A battery of schizophrenia-relevant behavioral tests was conducted in the adult male Bdnf-e6-/- mice. In the open field test, the overall distance traveled was considered as an indicator of the locomotor output, which is often elevated in schizophrenia animal models (Seibenhener and Wooten, 2015; Tatem et al., 2014) . As shown in FIG. 9G and FIG. 9H, Bdnf-e6-/- mice exhibited normal locomotion activity, but spent less time in the center zone, suggesting a mild elevation of anxiety (P=0.0253) . The three-chamber test assesses social affiliation and social memory, two endophenotypes often impaired in schizophrenia. In the sociability test, both Bdnf-e6-/- and WT mice displayed normal social interaction, spending more sniffing time with a cup containing a live mouse (Stranger 1) rather than with an empty cup (FIG. 1A, P= 0.0002 and P= 0.0008 for WT and Bdnf-e6-/- mice, respectively) . Similarly, these mice also preferred a novel mouse (Stranger 2) instead of a familiar individual (Stranger 1) in the social novelty preference test (FIG. 1B, P= 0.0229 and P= 0.0326 for WT and Bdnf-e6-/- mice, respectively) , indicative of intact social memory. In Morris water maze (MWM) test (FIG. 1C) , WT and Bdnf-e6-/- mice spend similar amount of time in learning the position of the hidden platform (except a small difference on day 6) (FIG. 1D) . There were also no differences in latency to platform between WT and Bdnf-e6-/- mice during the probe trial (FIG. 1E, P=0.3748) . However, the Bdnf-e6-/- mice did exhibit a small decrease in the time spent (FIG. 1F, P= 0.0029) and the number of crossing in the target quadrant (FIG. 1G, P= 0.0271) , compared with WT mice, suggesting an impaired spatial memory. Finally, performed prepulse inhibition (PPI) test was performed to examine sensorimotor gating, another common schizophrenia-related endo-phenotype. Bdnf-e6-/- mice showed normal startle response (FIG. 1H, P=0.3303) as well as PPI at all prepulse intensity levels (FIG. 1I) , suggesting that Bdnf-e6-/- mice have normal sensorimotor gating function.
Example 2 Bdnf-e6 disruption plus postnatal hypoxia induced schizophrenia-like endo-phenotypes
Pups of Bdnf-e6-/- and WT mice were raised under either normoxia (21%O 2) or hypoxia (10%O 2) for 6 consecutive days, starting from postnatal day 4, and behavioral tests were performed in adulthood (2~3-month-old) (FIG. 10A) . Thus, there were four experimental groups: normoxia-WT, hypoxia-WT, normoxia-e6-/- , and hypoxia-e6-/- . Early-life hypoxia resulted in a transient reduction in body weights during postnatal development in both WT and Bdnf-e6-/- mice (FIG. 10B-10D) . Mice exposed to hypoxia were smaller than age-matched controls (WT) reared in normoxia in 3-week (PND 20, FIG. 10B) and 5-week (PND 36, FIG. 10C) , but not in 9-week animals (PND 63, FIG. 10D) . It is noted that Bdnf-e6-/- mice suffered slightly more (3-week) or the same (5-week) weight loss as the WT mice during development, and the weight loss recovered completely in the adulthood (9-week) (FIG. 10D) .
In open field test, there was no difference in “total running distance” among the 4 groups, suggesting that early-life stress does not elicit locomotion deficits (FIG. 2B) . Likewise, motor coordination and motor learning skills appeared normal as measured by rotarod test in Bdnf-e6-/- mice regardless whether they experienced early-life hypoxia or not (FIG. 2C) .
To explore whether such gene (Bdnf-e6-/-) and environment (postnatal hypoxia) (GxE) interaction also affect other schizophrenia-related behaviors, three-chamber test was conducted. In sociability test, Bdnf-e6-/- mice with postnatal hypoxia spent the same amount of time in exploring the empty cup and the one with a live mouse (Stranger 1, FIG. 2E) . In contrast, all other three groups preferred to spend time with a live mouse (FIG. 2E) . Thus, disruption of Bdnf-e6 transcription together with early life hypoxia may generally be uninterested in social activity. In social novelty preference test, WT mice spent more time with a new mouse (Stranger 2, FIG. 2F) than the familiar mouse (Stranger 1) , regardless they experienced hypoxia or not. The Bdnf-e6-/- mice without postnatal hypoxia also exhibited a preference for a novel social stranger (FIG. 2F) . In marked contrast, the hypoxia-e6-/- mice showed no apparent preference (P=0.3894) (FIG. 2F) . Thus, Bdnf-e6 mice with early life stress may also affect the ability of animals to socialize with new peers. The sociability and social novelty preference tests together revealed a strong interaction between Bdnf-e6-/- and postnatal hypoxia, suggesting the role of a specific GxE pair in social affiliation and social memory.
Nest building is another stereotyped social behavior thought to be associated with mating and offspring bounding (Jirkof, 2014) . The average nesting score was significantly decreased in the hypoxia-e6 mice measured after 24 h, compared with either normoxia-WT or normoxia-e6 mice (FIG. 11B) , indicative of the impairment of nesting behavior in hypoxia-e6 mice. However, in mice with postnatal hypoxia, Bdnf-e6-/- mice appear to exhibit more severe, although not statistically significant, nest building impairment compared with WT mice (FIG. 11A, 3C) . There was almost no score 4 nesting in hypoxia-e6-/- mice (FIG. 11C) . Thus, Bdnf-e6 deficiency might elicit further nest building impairment under early life hypoxia.
Since the MWM test already showed spatial memory deficits in Bdnf-e6-/- mice without hypoxia (FIG. 1D-1G) , it was sorted to find a cognitive test more sensitive to reveal the GxE impact. One-trial novel object recognition is purely based on the ability of rodents to differentiate the novel object from a familiar one. During the acquisition phase, there was no significant difference among all 4 groups in the exploration times of two identical objects at a 5-minute delay (data not shown) . In the retention phase, the subject mouse was presented with a novel object alongside the familiar one. Hypoxia had a negative impact on the ability to discriminate novel versus familiar objects (FIG. 11D) . Bdnf-e6 deficiency additionally diminished, on top of hypoxia, the ability to distinguish “old” from “new” object (FIG. 11E) . These results suggest that Bdnf-e6 could also exhibit cognitive deficits if they experience early life stress.
PPI was then examined, a behavioral test more directly linked to schizophrenia (Carr et al., 2016; Papaleo et al., 2016) . The level of PPIs at all prepulse intensities (71dB, 81dB and 90dB) were dramatically decreased only in the hypoxia-e6 group (FIG. 2G-I) . Thus, disruption of Bdnf-e6 expression, together with postnatal hypoxia, elicits the PPI deficits that are relevant to schizophrenia.
Example 3 Juvenile social isolation also induced schizophrenia-like abnormalities
The pronounced impact of postnatal hypoxia on schizophrenia-like endo-phenotypes prompted the inventors to examine whether other forms of early-life adversary, such as social isolation, also elicit schizophrenia-like behaviors. Postweaning (21-day-old) animals were randomly assigned to social-rearing (PSR, a number of animals were group-housed) or isolated-rearing (PIR, animals were housed individually in a single cage) groups for 4 weeks, and behavioral tests were performed in adult  (FIG. 3A) . In open field test, PIR elicited a general increase in locomotion activity (total running distance) in both genotypes compared with PSR (FIG. 3B) . Interestingly, disruption of Bdnf-e6 selectively decreased the duration time in the center zone for PSR but not PIR (FIG. 3C) . It is possible that PIR has masked the effect of Bdnf-e6 disruption, which could be revealed in social-rearing conditions.
In the sociability test, isolated-rearing had no effect on either Bdnf-e6-/- or WT mice. Animals of both genotypes spent more time interacting with a mouse (Stranger 1) over an empty cup, regardless in PSI or PIR (FIG. 3D) . In social novelty test, animals subjected to PSR interacted more with a novel (Stranger 2) over a familiar (Stranger 1) partner regardless of genotypes (FIG. 3D) . In contrast, PIR essentially eliminated the preference to interact with novel partners, and both WT and Bdnf-e6 mice spent the same amount of time with Stranger 1 and Stranger 2 (FIG. 3E right) , suggesting that isolation alone may be sufficient to induce deficits in interaction with novel partner.
In the PPI test, PIR generally suppressed PPIs in all prepulse intensities (71, 81, 90dB) (FIG. 4B-4D) . Disruption of Bdnf-e6 expression seemed to further reduce the PPI ratios at prepulse intensities of 71 and 81 dBs, although such an effect did not reach statistical significance. Thus, postweaning social isolation seems to elicit a strong inhibition in sensorimotor gating behaviors, making it difficult to reveal the additional impact of Bdnf-e6 disruption. This idea was further supported by the fact that adult isolation rearing (AIR) , which is believed to be relatively weaker than PIR, can induce PPI deficiency in all prepluse intensities (71, 81, 90 dBs) in Bdnf-e6-/- mice, but not WT mice (FIG. 4F-4H) . Taken together, these results suggest that impairments in Bdnf-e6 expression may serve as a genetic factor that works together with environmental stress during postnatal development or adult to induce to schizophrenia-like endophenotypes.
Similar to Bdnf-e6, Bdnf-e4 is a major regulator of GABAergic function and is expressed in brain regions relevant to schizophrenia, such as hippocampus, prefrontal cortex, and hypothalamus (Maynard et al., 2016) . Thus, it was examined whether Bdnf-e4-/- mice also exhibit schizophrenia-like behavioral phenotype under early-life environmental stress. The data showed that Bdnf-e4-/- mice, when subjected to postnatal hypoxia or juvenile social isolation, do not exhibit deficits in PPI (FIG. 12) . These results suggest that Bdnf-e6 deficiency animals when exposed to environmental stress are more likely to develop schizophrenia-like phenotype.
Example 4 Increase in blood corticosterone together with Bdnf-e6 disruption led to schizophrenia-like endophenotypes
Plasma corticosterone is released in response to environmental stress and is used as an indicator for bodily stress responses in rodents and humans. Therefore, it was investigated whether postnatal hypoxia or social-isolation paradigm can increase the levels of corticosterone. Consistent with previous findings (Barlow et al., 1975; Krishnan et al., 2007; Zheng et al., 2019) , plasma corticosterone (CORT) levels were increased with exposure to environmental stresses (FIG. 5A-C) , including postnatal hypoxia, adolescent and adult social isolations in WT mice.
Next, it was tested whether mice chronically treated with CORT (0.1 mg/kg, 22 days) (FIG. 6A) could mimic stress paradigms, leading to schizophrenia-like endo-phenotypes. Chronic CORT exposure (from P42 to P63) , while significantly decreased motor activities (FIG. 6B) , did not lead to anxiety-like behavior in WT or Bdnf-e6-/- mice (FIG. 6C, p>0.05) . Interestingly, chronic exposure to  CORT in adolescence did not impair sociability in either genotypes, but impaired the social novelty preference in Bdnf-e6-/- mice, but not WT mice (FIG. 6D and 6E) . Further, the same treatment also reduced PPI at prepulse intensities of 81 and 90 dBs, selectively in Bdnf-e6-/- mice (FIG. 6G-6H) . PPI at 71 dB after CORT treatment was so low that disruption of Bdnf-e6 could not induce any further reduction (FIG. 6F) . These data support the notion that blood corticosterone level can affect the susceptibility to postnatal stress in mice, and demonstrate that chronic administration of CORT imitates postnatal stressor to induce schizophrenia-like endophenotypes in Bdnf-e6-/- mice.
Example 5 Treatment with TrkB agonistic antibody or CORT antagonist rescued PPI deficits
An obvious consequence of Bdnf-e6 disruption is a reduction of BDNF signaling in the brain. The data indicate that Bdnf mRNA was not changed in prefrontal cortex and hippocampus after postnatal hypoxia. However, Bdnf-e6 mRNA exhibited a small but significant decrease in hippocampus (FIG. 13B) . Relevant to this, it was found that the pTrkB levels was also slightly reduced in this group (Bdnf-e6-/- hippocampus subjected to postnatal hypoxia) (FIG. 13C-D) . Thus, it was tested whether administration of a AbB901, an agonistic antibody that selectively activates the BDNF receptor TrkB (Guo et al., 2019; Han et al., 2019) , could rescue the behavioral deficits in the GxE model (Bdnf-e6-/- + postnatal hypoxia or social isolation) , using PPI as an index.
The postnatal Bdnf-e6-/- mice were subjected to either hypoxia (FIG. 7A) or social isolation (FIG. 7E) , and a single tail vein injection of normal IgG or AbB901 (1mg/kg) was given in the adult animals. Remarkably, it was found that AbB901 could rescue the impairments in both P81P120 and P90P120 PPI, except P71P120 PPI, in the hypoxic Bdnf-e6-/- mice (FIG. 7B-D) . AbB901 could also significantly restore the PPI deficits at prepulse intensity of 90 dB in SI-treated Bdnf-e6-/- mice (FIG. 7F) . At 71 and 81 dBs, there was a trend of AbB901 effect, albeit not reaching the statistical significance (FIG. 7G-H) . These data raise the possibility that AbB901 could serve as a therapeutic agent for treatment of some patients with schizophrenia in clinic, especially those with Bdnf genetic variants (such as BDNF val/met polymorphism) or reduced blood BDNF levels.
Given that postnatal stress or chronic administration of CORT elicited PPI deficits in Bdnf-e6-/- mice, it was thought that blockade of CORT signaling could also attenuate the SCZ endophenotype in the GxE model. To test this idea, the inventors used mifepristone (RU-486) , an 11 β-dimethyl-amino-phenyl derivative of norethindrone with a high affinity for glucocorticoid receptors proven to be an active anti-corticosteroid agent, and examined whether this drug could rescue the PPI deficits in the hypoxic or PIR-treated Bdnf-e6-/- mice. It was found that RU-486 significantly increased the PPI ratios in all prepulse intensity levels (71, 81, and 90 dBs) in PIR-treated Bdnf-e6-/- mice (FIG. 8A-8D, **p<0.01 and ***p<0.001) . RU-486 could also reduce the PPI deficit in some (P90 dB) , but not other (P71, P81) prepulse intensities in postnatal hypoxic Bdnf-e6-/- mice (FIG. 8E-H) . These data suggest that treatment with CORT antagonist rescues PPI deficits in Bdnf-e6-/- mice subjected to postnatal stress. Further, RU-486 treatment had no effect on PPI in adult isolation rearing (AIR) -treated Bdnf-e6-/- mice (FIG. 14) , pointing to the importance of developmental stress. Interestingly, RU-486 induced a small but significant increase in PPI ratio in WT mice subjected to PIR treatment (FIG. 15) .
Finally, to determine whether the RU-486 treatment could be useful in non-genetic model, the inventors intraperitoneally administered MK801 in the adult WT mice (FIG. 16A) , a widely used  pharmacology model for schizophrenia. The inventors pretreated adult WT animals with saline or RU-486 for one week, followed by induction of SCZ with MK801 (0.2mg/kg) . Treatment with RU-486 increased the PPI at prepulse 90 dB (FIG. 16D) .
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (50)

  1. A medicinal product for use in preventing, alleviating and/or treating schizophrenia, comprising a tropomyosin receptor kinase B (TrkB) agonist and a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor.
  2. The medicinal product of claim 1, wherein said TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
  3. The medicinal product of any one of claims 1-2, wherein said TrkB agonist is capable of specifically binding to human TrkB.
  4. The medicinal product of any one of claims 2-3, wherein said antigen binding portion comprises Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
  5. The medicinal product of any one of claims 1-4, wherein said TrkB agonist comprises a light chain variable region, said light chain variable region comprises LCDR1, LCDR2 and LCDR3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  6. The medicinal product of claim 5, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  7. The medicinal product of any one of claims 5-6, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  8. The medicinal product of any one of claims 5-7, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  9. The medicinal product of any one of claims 2-7, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Igκ constant region or a human Igλ constant region.
  10. The medicinal product of any one of claims 1-9, wherein said TrkB agonist comprises a heavy chain variable region, said heavy chain variable region comprises HCDR1, HCDR2 and HCDR3, and said HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  11. The medicinal product of claim 10, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  12. The medicinal product of any one of claims 10-11, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  13. The medicinal product of any one of claims 10-12, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  14. The medicinal product of any one of claims 2-13, wherein said TrkB agonistic antibody comprises a heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
  15. The medicinal product of any one of claims 1-14, wherein said glucocorticoid inhibitor is capable of reducing the amount of the glucocorticoid.
  16. The medicinal product of any one of claims 1-15, wherein said glucocorticoid inhibitor is capable of inhibiting the activity of the glucocorticoid.
  17. The medicinal product of any one of claims 1-16, wherein said glucocorticoid inhibitor  comprises a mifepristone (RU-486) or a functional derivative thereof.
  18. A method for preventing, alleviating and/or treating schizophrenia in a subject in need thereof, said method comprises administering to said subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor, and said subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of a glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  19. The method of claim 18, wherein said subject has a deficiency in promoter VI of the Bdnf gene.
  20. The method of any one of claims 18-19, wherein said subject has been subjected to postnatal stress.
  21. The method of claim 20, wherein said postnatal stress comprises postnatal hypoxia and/or social isolation.
  22. The method of any one of claims 18-21, wherein said subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) in hippocampus, prefrontal cortex, and/or hypothalamus.
  23. The method of any one of claims 18-22, wherein said TrkB agonist comprises a TrkB agonistic antibody or an antigen binding portion thereof.
  24. The method of any one of claims 18-23, wherein said TrkB agonist is capable of specifically binding to human TrkB.
  25. The method of any one of claims 23-24, wherein said antigen binding portion comprises Fab, Fab’, F (ab)  2, Fv fragment, F (ab’)  2, scFv, di-scFv and/or dAb.
  26. The method of any one of claims 18-25, wherein said TrkB agonist comprises a light chain variable region, said light chain variable region comprises LCDR1, LCDR2 and LCDR3, and said LCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 9, 15, 21, 29, 37, 45, 53, 61, 69, 81 and 91.
  27. The method of claim 26, wherein said LCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 10, 16, 22, 20, 28, 46, 54, 62, 70, 82 and 92.
  28. The method of any one of claims 26-27, wherein said LCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 11, 17, 23, 31, 39, 47, 55, 63, 71, 83 and 93.
  29. The method of any one of claims 26-28, wherein said light chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 27, 35, 43, 51, 59, 67, 75, 88 and 98.
  30. The method of any one of claims 23-29, wherein said TrkB agonistic antibody comprises a light chain constant region, and said light chain constant region is a human Igκ constant region or a human Igλ constant region.
  31. The method of any one of claims 18-30, wherein said TrkB agonist comprises a heavy chain variable region, said heavy chain variable region comprises HCDR1, HCDR2 and HCDR3, and said HCDR1 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 12, 18, 24, 32, 40, 48, 64, 72, 84 and 94.
  32. The method of claim 31, wherein said HCDR2 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 13, 19, 25, 33, 41, 49, 65, 73, 85 and 95.
  33. The method of any one of claims 31-32, wherein said HCDR3 comprises an amino acid sequence as set forth in any one of SEQ ID NO: 14, 20, 26, 34, 42, 50, 66, 74, 86 and 96.
  34. The method of any one of claims 31-33, wherein said heavy chain variable region comprises an amino acid sequence as set forth in any one of SEQ ID NO: 28, 36, 44, 52, 60, 68, 76, 87 and 97.
  35. The method of any one of claims 23-34, wherein said TrkB agonistic antibody comprises a  heavy chain constant region, and said heavy chain constant region is a human IgG constant region.
  36. The method of any one of claims 18-35, wherein said glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor is capable of reducing the amount of the glucocorticoid.
  37. The method of any one of claims 18-36, wherein said glucocorticoid inhibitor is capable of inhibiting the activity of the glucocorticoid.
  38. The method of any one of claims 18-37, wherein said glucocorticoid inhibitor comprises a mifepristone (RU-486) or a derivative thereof.
  39. A method for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, comprising determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in said subject, and determining the level and/or activity of a glucocorticoid (e.g., cortisol, corticosterone or CORT) in said subject.
  40. The method of claim 39, wherein said expression level and/or activity of BDNF (e.g., BDNF-e6) is determined from a blood sample of said subject.
  41. The method of any one of claims 39-40, wherein said level and/or activity of the glucocorticoid is determined from a blood sample of said subject.
  42. The method of any one of claims 39-41, further comprising selecting a subject having decreased expression level and/or activity of BDNF (e.g., BDNF-e6) and elevated level and/or activity of the glucocorticoid, said selected subject is determined to be prone to suffer from schizophrenia or at the risk of developing schizophrenia.
  43. The method of any one of claims 39-42, further comprising determining whether said subject has a deficiency in promoter VI of the Bdnf gene.
  44. The method of any one of claims 39-43, further comprising determining whether said subject has been subjected to postnatal stress.
  45. The method of claim 44, wherein said postnatal stress comprises postnatal hypoxia and/or social isolation.
  46. The method of any one of claims 39-45, comprising determining the expression level and/or activity of BDNF (e.g., BDNF-e6) in the hippocampus, prefrontal cortex, and/or hypothalamus of said subject.
  47. The method of any one of claims 42-46, further comprising administering to said selected subject a TrkB agonist and/or a glucocorticoid (e.g., cortisol, corticosterone or CORT) inhibitor.
  48. A system for determining whether a subject suffers from schizophrenia or at the risk of developing schizophrenia, said system comprises: a first module for determining whether said subject has decreased expression level and/or activity of BDNF (e.g., BDNF-e6) , and a second module for determining whether said subject has elevated level and/or activity of a glucocorticoid (e.g., cortisol, corticosterone or CORT) .
  49. The system of claim 48, wherein said BDNF (e.g., BDNF-e6) is from the blood of said subject.
  50. The system of any one of claims 48-49, wherein said glucocorticoid (e.g., cortisol, corticosterone or CORT) is from the blood of said subject.
PCT/CN2022/128152 2021-10-29 2022-10-28 Methods and products for treating or diagnosing schizophrenia WO2023072228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280071071.3A CN118251415A (en) 2021-10-29 2022-10-28 Methods and products for treating or diagnosing schizophrenia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021127336 2021-10-29
CNPCT/CN2021/127336 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023072228A1 true WO2023072228A1 (en) 2023-05-04

Family

ID=86159262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128152 WO2023072228A1 (en) 2021-10-29 2022-10-28 Methods and products for treating or diagnosing schizophrenia

Country Status (2)

Country Link
CN (1) CN118251415A (en)
WO (1) WO2023072228A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026785A1 (en) * 1996-12-19 1998-06-25 Hoechst Marion Roussel Use of mifepristone for the treatment of psychoses and addictive behaviours
US20100196390A1 (en) * 2009-02-02 2010-08-05 Rinat Neuroscience Corp. Agonist anti-trkb monoclonal antibodies
EP2232269B1 (en) * 2007-12-19 2013-11-20 Psynova Neurotech Limited Methods and biomarkers for diagnosing and monitoring psychotic disorders
EP2914585B1 (en) * 2012-11-05 2018-03-07 Emory University 7,8-dihydroxyflavone and 7,8-substituted flavone derivatives, compositions, and methods related thereto
US9914781B1 (en) * 2016-11-08 2018-03-13 Glaxosmithkline Intellectual Property Development Limited Binding agonist for treatment of neurological and other disorders
US20200017590A1 (en) * 2017-03-15 2020-01-16 Tsinghua University Novel anti-trkb antibodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026785A1 (en) * 1996-12-19 1998-06-25 Hoechst Marion Roussel Use of mifepristone for the treatment of psychoses and addictive behaviours
EP2232269B1 (en) * 2007-12-19 2013-11-20 Psynova Neurotech Limited Methods and biomarkers for diagnosing and monitoring psychotic disorders
US20100196390A1 (en) * 2009-02-02 2010-08-05 Rinat Neuroscience Corp. Agonist anti-trkb monoclonal antibodies
EP2914585B1 (en) * 2012-11-05 2018-03-07 Emory University 7,8-dihydroxyflavone and 7,8-substituted flavone derivatives, compositions, and methods related thereto
US9914781B1 (en) * 2016-11-08 2018-03-13 Glaxosmithkline Intellectual Property Development Limited Binding agonist for treatment of neurological and other disorders
US20200017590A1 (en) * 2017-03-15 2020-01-16 Tsinghua University Novel anti-trkb antibodies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARLOW,S.M.ET AL.: "EFFECTS OF ACUTE AND CHRONIC STRESS ON PLASMA CORTICOSTERONE LEVELS IN THE PREGNANT AND NON-PREGNANT MOUSE", JOURNAL OF ENDOCRINOLOGY, vol. 66, no. 1, 31 December 1975 (1975-12-31), pages 93 - 99, XP009545763 *
CHEN YANHUI, LI SHANGJIN, ZHANG TIANYI, YANG FENG, LU BAI: "Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress", ISCIENCE, vol. 25, no. 7, 1 July 2022 (2022-07-01), US , pages 104609, XP093061210, ISSN: 2589-0042, DOI: 10.1016/j.isci.2022.104609 *
REINHART VERONICA, BOVE SUSAN E., VOLFSON DMITRI, LEWIS DAVID A., KLEIMAN ROBIN J., LANZ THOMAS A.: "Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder", NEUROBIOLOGY OF DISEASE, vol. 77, 1 May 2015 (2015-05-01), AMSTERDAM, NL , pages 220 - 227, XP093061214, ISSN: 0969-9961, DOI: 10.1016/j.nbd.2015.03.011 *
TAS CUMHUR; BROWN ELLIOT C.; ESKIKURT GOKCER; IRMAK SEZEN; AYDıN ORKUN; ESEN-DANACI AYSEN; BRüNE MARTIN: "Cortisol response to stress in schizophrenia: Associations with oxytocin, social support and social functioning", PSYCHIATRY RESEARCH, vol. 270, 7 May 2018 (2018-05-07), IE , pages 1047 - 1052, XP085559404, ISSN: 0165-1781, DOI: 10.1016/j.psychres.2018.05.011 *

Also Published As

Publication number Publication date
CN118251415A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
Boussicault et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease
Dietrich et al. Elimination of huntingtin in the adult mouse leads to progressive behavioral deficits, bilateral thalamic calcification, and altered brain iron homeostasis
Castro Dias et al. Claudin-12 is not required for blood–brain barrier tight junction function
Wyrwoll et al. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress
Tanoue et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions
Martinerie et al. The mineralocorticoid signaling pathway throughout development: expression, regulation and pathophysiological implications
Zou et al. Prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala
Li et al. Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder
JP2016516399A (en) Transgenic non-human organism having non-functional TSPO gene
Wang et al. Activity of the 5-HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropin-releasing factor in hypothalamus in SPS rats
Vernay et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia
Wang et al. Epigenetic suppression of hippocampal BDNF mediates the memory deficiency induced by amyloid fibrils
Holm et al. Cognitive deficits caused by a disease-mutation in the α3 Na+/K+-ATPase isoform
Okimoto et al. RGS2 mediates the anxiolytic effect of oxytocin
Oakley et al. Glucocorticoid receptor isoform–specific regulation of development, circadian rhythm, and inflammation in mice
Stephenson et al. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line
Nutini et al. Increased expression of the beta3 subunit of voltage-gated Na+ channels in the spinal cord of the SOD1G93A mouse
Rosemann et al. Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 416insG mice
WO2023072228A1 (en) Methods and products for treating or diagnosing schizophrenia
Seiglie et al. The pituitary adenylate cyclase-activating polypeptide (PACAP) system of the central amygdala mediates the detrimental effects of chronic social defeat stress in rats
US20220331333A1 (en) Rhoa pathway inhibitor in the treatment of neurodevelopmental disorder or neuropsychiatric disorder
Poon et al. Consumption of substances of abuse during pregnancy increases consumption in offspring: possible underlying mechanisms
Parlow Corticosteroid-binding globulin shapes the sexual dimorphism of adrenal, hepatic, and neuroendocrine responses
Vacher et al. Placental neurosteroids shape cerebellar development and social behaviour
Vodička The effect of stress on regulation and regeneration of glucocorticoids in animal models differing in response of hypothalamo-pituitary-adrenal axis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE