WO2023072044A1 - 挖掘机铲斗齿尖定位方法、装置和挖掘机 - Google Patents

挖掘机铲斗齿尖定位方法、装置和挖掘机 Download PDF

Info

Publication number
WO2023072044A1
WO2023072044A1 PCT/CN2022/127290 CN2022127290W WO2023072044A1 WO 2023072044 A1 WO2023072044 A1 WO 2023072044A1 CN 2022127290 W CN2022127290 W CN 2022127290W WO 2023072044 A1 WO2023072044 A1 WO 2023072044A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
bucket
boom
fulcrum
tooth tip
Prior art date
Application number
PCT/CN2022/127290
Other languages
English (en)
French (fr)
Inventor
黄兴
朱晓光
颜焱
Original Assignee
上海华兴数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华兴数字科技有限公司 filed Critical 上海华兴数字科技有限公司
Publication of WO2023072044A1 publication Critical patent/WO2023072044A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F1/00General working methods with dredgers or soil-shifting machines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like

Definitions

  • the present application relates to the technical field of mechanical engineering, in particular to an excavator bucket tooth tip positioning method and device and an excavator.
  • the position of the bucket tooth tip of the excavator is usually obtained by the naked eye observation of the construction personnel. Due to insufficient lighting conditions or environmental occlusion, the construction personnel cannot continuously and accurately know the precise position of the bucket tooth tip. Thereby the construction cannot be accurately guided, and the construction precision is poor and the efficiency is low.
  • the embodiment of the present application provides an excavator bucket tooth tip positioning method, device and excavator, which are used to solve the problems in the prior art that the bucket tooth tip needs to be manually positioned, the construction cannot be accurately guided, and the construction accuracy is poor and the efficiency is low. technical problem.
  • An embodiment of the present application provides an excavator bucket tooth tip positioning method, including:
  • the real-time position of the bucket tooth tip in the world coordinate system after the gyration motion is determined.
  • the method is based on the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator, and the boom length and arm length of the excavator. and the length of the bucket to determine the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system, including:
  • a fourth transformation matrix from the boom coordinate system to the bucket tooth tip coordinate system is determined to determine the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system.
  • the boom coordinate system takes the boom fulcrum as the origin
  • the stick coordinate system takes the stick fulcrum as the origin
  • the bucket coordinate system takes The stick fulcrum is the origin
  • the bucket tip coordinate system takes the bucket tip as the origin;
  • the boom fulcrum is the pivot point of the boom relative to the slewing platform of the excavator
  • the stick The fulcrum is the pivot point of the stick relative to the boom
  • the bucket fulcrum is the pivot point of the bucket relative to the stick.
  • the boom inclination angle is the angle between the straight line determined by the boom fulcrum and the arm fulcrum and the horizontal plane where the boom fulcrum is located ;
  • the stick inclination angle is the angle between the straight line defined by the fulcrum of the boom and the fulcrum of the stick and the straight line defined by the fulcrum of the stick and the fulcrum of the bucket;
  • the bucket inclination angle is the angle between the straight line defined by the arm fulcrum and the bucket fulcrum and the straight line defined by the bucket fulcrum and the bucket tooth tip;
  • the length of the boom is the straight-line distance between the fulcrum of the boom and the fulcrum of the stick;
  • the length of the stick is the straight-line distance between the fulcrum of the stick and the fulcrum of the bucket;
  • the bucket The length is the linear distance between the fulcrum of the bucket and the tooth tip of the bucket;
  • the body attitude information includes the pitch angle, yaw angle and roll angle of the excavator in the world coordinate system.
  • the real-time position of the boom fulcrum in the world coordinate system is determined based on the following steps:
  • An embodiment of the present application provides an excavator bucket tooth tip positioning device, including:
  • An acquisition module configured to acquire body posture information of the excavator, and the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator;
  • the control module is used to determine the coordinate transformation matrix between the vehicle body coordinate system and the world coordinate system based on the vehicle body posture information of the excavator;
  • the control module is also used to determine the vehicle body coordinate system based on the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator, and the boom length, arm length and bucket length of the excavator.
  • the relative displacement between the bucket tooth tip and the boom fulcrum; and for determining the relative displacement between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system and the coordinate transformation matrix in the world coordinate system The relative displacement between the bucket tooth tip and the fulcrum of the boom;
  • the control module is further configured to determine the bucket tooth tip based on the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system, and the real-time position of the boom fulcrum in the world coordinate system The real-time position in the world coordinate system.
  • control module includes:
  • a conversion matrix determination unit configured to determine a coordinate conversion matrix between the vehicle body coordinate system and the world coordinate system based on the vehicle body posture information of the excavator;
  • a relative displacement determining unit configured to determine a position in the vehicle body coordinate system based on the boom inclination angle, the arm inclination angle, and the bucket inclination angle of the excavator, and the boom length, arm length, and bucket length of the excavator. The relative displacement between the bucket tooth tip and the fulcrum of the boom;
  • a relative displacement conversion unit configured to determine the distance between the bucket tooth tip and the boom fulcrum in the world coordinate system based on the relative displacement between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system and the coordinate transformation matrix The relative displacement between;
  • a bucket tooth tip positioning unit configured to determine the bucket tooth tip based on the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system, and the real-time position of the boom fulcrum in the world coordinate system The real-time position of the tooth tip in the world coordinate system.
  • the control module further includes: a rotary positioning unit, configured to, when the excavator performs rotary motion, The real-time position in the coordinate system and the real-time position of the bucket tooth tip in the world coordinate system before the rotary motion determine the relative displacement between the bucket tooth tip and the rotary center before the rotary motion;
  • the real-time position of the tooth tip of the bucket in the world coordinate system after the gyration motion is determined.
  • the relative displacement determination unit is specifically used for:
  • the fourth transformation matrix Based on the first transformation matrix, the second transformation matrix and the third transformation matrix, determine the fourth transformation matrix from the boom coordinate system to the bucket tooth tip coordinate system, so as to determine the distance between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system relative displacement.
  • the excavator bucket tooth tip positioning device provided according to an embodiment of the present application further includes a GNSS receiver arranged on the excavator;
  • the control module is also used to determine the boom based on the real-time position obtained by the GNSS receiver on the excavator and the relative position of the GNSS receiver and the pivot point of the boom on the slewing platform of the excavator.
  • An embodiment of the present application provides an excavator, including the excavator bucket tooth tip positioning device.
  • An embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the excavator is realized.
  • the steps of the bucket tooth tip positioning method are realized.
  • An embodiment of the present application provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for locating the tooth tip of an excavator bucket are realized.
  • the excavator bucket tooth tip positioning method, device and excavator provided in the embodiments of the present application determine the coordinate transformation matrix between the vehicle body coordinate system and the world coordinate system according to the vehicle body posture information of the excavator, and determine the coordinate transformation matrix between the excavator's boom inclination angle , arm inclination angle and bucket inclination angle, as well as the boom length, arm length and bucket length of the excavator, determine the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system, and then according to the coordinate transformation matrix, Transform the relative displacement between the bucket tooth tip and the boom fulcrum from the body coordinate system to the world coordinate system, and combine the real-time position of the boom fulcrum in the world coordinate system to determine the real-time position of the bucket tooth tip in the world coordinate system
  • the position can continuously and accurately obtain the real-time position of the bucket tooth tip, without on-site measurement and inspection by construction personnel, and can be used to accurately guide construction operations, improve construction accuracy, and improve construction efficiency.
  • Fig. 1 is a schematic flow chart of an excavator bucket tooth tip positioning method provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the calculation of the relative displacement between the bucket tooth tip and the boom fulcrum provided by the embodiment of the present application;
  • Fig. 3 is the calculation schematic diagram of the bucket inclination angle that the embodiment of the present application provides
  • Fig. 4 is a schematic structural diagram of an excavator bucket tooth tip positioning device provided by an embodiment of the present application.
  • Fig. 5 is the structural representation of the excavator provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • 620 communication interface
  • 630 memory
  • G the fulcrum of the first connecting rod
  • E the connection point
  • Fig. 1 is a schematic flow chart of an excavator bucket tooth tip positioning method provided by an embodiment of the present application. As shown in Fig. 1, the method includes:
  • Step 110 based on the posture information of the body of the excavator, determine a coordinate transformation matrix between the body coordinate system and the world coordinate system.
  • an excavator generally includes a traveling mechanism, a slewing platform, a boom, a stick, a bucket, and the like.
  • the tips of the teeth are located at the end of the bucket and are in direct contact with the material being excavated.
  • the fulcrum of the boom is the connection point between the boom and the slewing platform, and also the pivot point of the boom relative to the slewing platform.
  • the fulcrum of the stick is the connection point between the stick and the boom, and also the pivot point of the stick relative to the boom.
  • the bucket fulcrum is the connection point between the bucket and the stick, and it is also the pivot point of the bucket relative to the stick.
  • the world coordinate system is a three-dimensional space coordinate system established with the center of the earth as a reference point.
  • the real-time position of any point on the excavator can be expressed in the world coordinate system, and can be expressed through differential GPS locator, RTK (Real-time kinematic, real-time differential) locator or BDS (BeiDou Navigation Satellite System, Beidou satellite navigation system) ) locator get.
  • RTK Real-time kinematic, real-time differential
  • BDS BeiDou Navigation Satellite System, Beidou satellite navigation system
  • the body coordinate system is a three-dimensional space coordinate system established according to the body structure of the excavator. For example, take the front and rear direction of the excavator body as the direction of the X axis, the left and right direction of the excavator body as the direction of the Y axis, and the direction of the Z axis as parallel to the rotation axis of the excavator's slewing platform, the origin of the coordinate system can be selected.
  • the center of slewing of the excavator can also be selected as the fulcrum of the boom. In this embodiment, the fulcrum of the boom is used as the origin of the vehicle body coordinate system as an example for illustration.
  • the coordinate transformation matrix between the body coordinate system and the world coordinate system is determined.
  • the coordinate transformation matrix is used to transform the points in the body coordinate system into the world coordinate system for representation.
  • Step 120 based on the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator, and the boom length, arm length and bucket length of the excavator, determine the distance between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system relative displacement.
  • the inclination angle of the boom is the angle between the straight line defined by the fulcrum of the boom and the fulcrum of the arm and the horizontal plane where the fulcrum of the boom is located, and is used to measure the opening angle of the boom during excavation.
  • the stick inclination angle is the angle between the straight line determined by the boom fulcrum and the stick fulcrum and the straight line determined by the stick fulcrum and the bucket fulcrum, which is used to measure the opening angle of the stick during excavation.
  • the bucket inclination angle is the angle between the straight line determined by the stick fulcrum and the bucket fulcrum and the straight line determined by the bucket fulcrum and the bucket tooth tip.
  • the length of the boom is the linear distance between the fulcrum of the boom and the fulcrum of the stick.
  • the stick length is the linear distance between the stick fulcrum and the bucket fulcrum.
  • Bucket length is the straight-line distance between the bucket fulcrum and the bucket tip. Since the shape and size of the boom, arm and bucket are fixed, the above lengths are all fixed values, which can be obtained from the excavator manufacturer's information or measurement.
  • the boom, stick and bucket all move in the same plane, for example, when the plane where the slewing platform is located coincides with the horizontal plane, the boom, stick and bucket are in the same vertical plane. Since the position of the fulcrum of the boom is fixed in the body coordinate system, the length of the boom, the length of the arm and the length of the bucket are all fixed lengths. At this time, according to the inclination angle of the boom, the inclination angle of the arm and the , to obtain the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system. This relative displacement is used to represent the position change of the bucket tooth tip relative to the fulcrum of the boom.
  • Step 130 based on the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system and the coordinate transformation matrix, determine the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system.
  • the relative displacement between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system can be transformed into the world coordinate system according to the coordinate transformation matrix.
  • Step 140 based on the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system, and the real-time position of the boom fulcrum in the world coordinate system, determine the real-time position of the bucket tooth tip in the world coordinate system.
  • the real-time position of the boom fulcrum in the world coordinate system can be added to the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system to obtain the real-time position of the bucket tooth tip in the world coordinate system .
  • the excavator bucket tooth tip positioning method determines the coordinate transformation matrix between the vehicle body coordinate system and the world coordinate system according to the vehicle body posture information of the excavator, and determines the The inclination angle of the bucket, as well as the boom length, arm length and bucket length of the excavator determine the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system, and then according to the coordinate transformation matrix, the bucket tooth tip
  • the relative displacement between the fulcrum of the boom is converted from the body coordinate system to the world coordinate system, combined with the real-time position of the fulcrum of the boom in the world coordinate system, the real-time position of the bucket tooth tip in the world coordinate system can be determined, which can be continuously and Accurately obtain the real-time position of the tooth tip of the bucket without on-site measurement and inspection by construction personnel, which can be used to accurately guide construction operations, improve construction accuracy, and improve construction efficiency.
  • step 140 include:
  • the real-time position of the bucket tooth tip in the world coordinate system after the gyration motion is determined.
  • the motion of the excavator can be decoupled into joint operation and slewing operation.
  • Joint motion refers to the motion generated by operating joints such as booms, sticks, and buckets.
  • Slewing motion refers to the motion generated by operating the slewing platform of the excavator. At this time, each joint keeps its posture unchanged. Since the positioning device on the excavator obtains real-time position data through GPS, etc., the data refresh frequency is low, and the need for real-time positioning of the bucket cannot be met during the slewing operation.
  • the rotation angle sensor can be installed at the rotating shaft of the rotation center of the excavator. Since the data refresh frequency of the rotation angle sensor is high, it can assist in real-time positioning of the bucket tooth tip within the GPS positioning cycle.
  • the swing angle of the excavator before the swing motion can be obtained as ⁇ 0 according to the swing angle sensor.
  • the real-time position of the slewing center O of the excavator in the world coordinate system is O GPS , which will not change.
  • the real-time position of the bucket tooth tip C in the world coordinate system before the rotary motion is At this time, the relative displacement between the bucket tooth tip C and the center of rotation O before the rotary motion can be obtained for:
  • Z is the unit vector of the Z axis in the body coordinate system
  • T is the vector transpose operation symbol
  • the excavator bucket tooth tip positioning method provided by the embodiment of the present application can use the rotation angle to solve the real-time position of the bucket tooth tip when the excavator is performing a rotary motion, which improves the positioning error caused by the untimely refresh of the GPS signal and improves the accuracy of the excavator. Improve construction accuracy and improve construction efficiency.
  • step 120 includes:
  • the fourth transformation matrix Based on the first transformation matrix, the second transformation matrix and the third transformation matrix, determine the fourth transformation matrix from the boom coordinate system to the bucket tooth tip coordinate system, so as to determine the distance between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system relative displacement.
  • the boom, stick and bucket of the excavator are connected to each other, essentially forming a space open chain link structure, wherein the boom, stick and bucket are connecting rods, the fulcrum of the boom, the stick The fulcrum, bucket fulcrum and bucket tip are joints. Therefore, the D-H (Denavit-Hartenberg) parameter model of the forward kinematics of the robot can be used to calculate the pose of the bucket tip of the excavator in the body coordinate system, that is, the position and attitude.
  • the coordinate system of the boom, the coordinate system of the stick, the coordinate system of the bucket and the coordinate system of the tip of the bucket are respectively established based on the D-H parameter method.
  • the boom coordinate system takes the boom fulcrum as the origin
  • the stick coordinate system takes the stick fulcrum as the origin
  • the bucket coordinate system takes the stick fulcrum as the origin
  • the bucket tooth tip coordinate system takes the bucket tooth tip as the origin
  • the arm fulcrum is the pivot point of the boom relative to the slewing platform of the excavator
  • the arm fulcrum is the pivot point of the arm relative to the boom
  • the bucket fulcrum is the pivot point of the bucket relative to the arm.
  • Fig. 2 is a schematic diagram of the calculation of the relative displacement between the bucket tooth tip and the boom fulcrum provided by the embodiment of the present application.
  • the center of rotation of the excavator is O
  • the DH modeling method is used to establish The boom coordinate system with the boom fulcrum A as the origin, the arm coordinate system with the arm fulcrum L as the origin, the bucket coordinate system with the bucket fulcrum D as the origin, and the bucket with the bucket tooth tip C as the origin Tooth tip coordinate system.
  • the X-axis of the boom coordinate system, stick coordinate system, bucket coordinate system and bucket tip coordinate system (perpendicular to the boom, stick and shovel The position changes on the plane where the bucket is located) are all zero and are not represented in the figure.
  • the line connecting the boom fulcrum A and the stick fulcrum L is the Y 1 axis
  • the direction perpendicular to the Y 1 axis in the plane where the boom, stick and bucket are located is the Z 1 axis.
  • the line connecting the arm fulcrum L and the bucket fulcrum D is the Y 2 axis, and the direction perpendicular to the Y 2 axis in the plane where the boom, arm and bucket are located is the Z 2 axis.
  • the line connecting the bucket fulcrum D and the bucket tooth tip C is the Y 3 axis, and the direction perpendicular to the Y 3 axis in the plane where the boom, stick and bucket are located is the Z 3 axis.
  • the tooth tip coordinate system of the bucket its Y axis and Z axis are located in the plane where the boom, stick and bucket are located, which are not shown in the figure.
  • ⁇ 1 is the inclination angle of the boom
  • ⁇ 2 is the inclination angle of the stick
  • ⁇ 3 is the inclination angle of the bucket.
  • the boom length is represented as L 1
  • the arm length is represented as L 2
  • the bucket length is represented as L 3 .
  • the second transformation matrix R LD from the stick coordinate system to the bucket coordinate system is determined, expressed as:
  • the fourth transformation matrix R AC that determines the coordinate system of the boom to the coordinate system of the bucket tip, is expressed as:
  • R AC R AL ⁇ R LD ⁇ R DC
  • the relative displacement AC between the bucket tooth tip C and the boom fulcrum A in the body coordinate system is determined, expressed as:
  • the real-time position C GPS is expressed as:
  • the relative displacement AL between the arm fulcrum L and the boom fulcrum A in the body coordinate system can also be obtained, as well as the real-time position L GPS of the arm fulcrum L in the world coordinate system, expressed as:
  • the relative displacement AD between the bucket fulcrum D and the boom fulcrum A in the body coordinate system can also be solved, and the real-time position D GPS of the bucket fulcrum D in the world coordinate system can be expressed as:
  • the present application also provides a method for determining the bucket inclination angle ⁇ 3 under the embodiment.
  • Fig. 3 is a schematic diagram of the calculation of the bucket inclination angle provided by an embodiment of the present application, as shown in Fig. Oil cylinder 350.
  • the bucket inclination angle ⁇ 3 is shown as ⁇ LDC in FIG. 3 .
  • the lengths of the first link 330 and the second link 340 are fixed.
  • the first connecting rod swing angle ⁇ EGD is the angle between the straight line GD defined by the first connecting rod fulcrum G and the bucket fulcrum D and the straight line GE where the first connecting rod 330 is located.
  • the swing angle ⁇ EGD of the first connecting rod can be obtained through a magnetic encoder arranged at the fulcrum G of the first connecting rod.
  • the above-mentioned first connecting rod fulcrum G is a pivot point between the first connecting rod and the arm.
  • the first included angle ⁇ GDE is the included angle between the straight line GD defined by the first connecting rod fulcrum G and the bucket fulcrum D and the straight line ED defined by the connection point E and the bucket fulcrum D.
  • the connection point E is a pivot point between the first and second connecting rods and the bucket oil cylinder 350 .
  • the second included angle ⁇ FDE is the included angle between the straight line FD defined by the second link fulcrum F and the bucket fulcrum D and the straight line ED defined by the connection point E and the bucket fulcrum D.
  • the above-mentioned second connecting rod fulcrum F is a pivot point between the second connecting rod and the bucket.
  • the third included angle ⁇ GDL is the included angle between the straight line GD defined by the first link fulcrum G and the bucket fulcrum D and the straight line DL defined by the bucket fulcrum D and the arm fulcrum L.
  • the fourth included angle ⁇ FDC is the included angle between the straight line FD defined by the second link fulcrum F and the bucket fulcrum D and the straight line CD defined by the bucket tooth tip C and the bucket fulcrum D.
  • the third included angle ⁇ GDL is constant and can be obtained by calculation.
  • the fourth included angle ⁇ FDC is also constant and can be obtained by calculation.
  • the distance between the first link fulcrum G and the bucket fulcrum D is also fixed.
  • the distance between the second link fulcrum F and the bucket fulcrum D is also fixed.
  • connection point E is an active point relative to the bucket fulcrum D
  • the first included angle ⁇ GDE and the second included angle ⁇ FDE will change, and it is necessary to use the first connecting rod swing angle ⁇ EGD and the trigonometric function relationship calculated.
  • the connecting point E and the shovel can be obtained according to the trigonometric function in the triangle GDE.
  • the first Angle ⁇ GDE According to the length of the first connecting rod 330, the distance between the first connecting rod fulcrum G and the bucket fulcrum D, and the distance between the connection point E and the bucket fulcrum D, in the triangle GDE according to the trigonometric function, the first Angle ⁇ GDE.
  • the second Angle ⁇ FDE According to the length of the second connecting rod 340, the distance between the second connecting rod fulcrum F and the bucket fulcrum D, and the distance between the connection point E and the bucket fulcrum D, in the triangle FDE according to the trigonometric function, the second Angle ⁇ FDE.
  • the bucket inclination angle ⁇ LDC is determined, expressed as:
  • ⁇ LDC 2 ⁇ - ⁇ GDE- ⁇ FDE- ⁇ GDL- ⁇ FDC
  • the body attitude information includes the pitch angle, yaw angle and roll angle of the excavator in the world coordinate system.
  • the body posture information of the body posture information includes a yaw angle (yaw), a roll angle (roll) and a pitch angle (pitch).
  • An inclination sensor can be installed on the excavator to obtain body attitude information.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • main receiver and GNSS sub-receiver can also be installed on the slewing platform of the excavator, and the yaw angle can be determined according to the positioning signals received by the main and sub-receivers.
  • the pitch angle is the angle of rotation around the X-axis
  • the roll angle is the angle of rotation around the Y-axis
  • the yaw angle is the angle of rotation around the Z-axis Angle.
  • the coordinate transformation matrix I between the body coordinate system and the world coordinate system can be determined according to the pitch angle, yaw angle and roll angle:
  • the real-time position of the boom fulcrum in the world coordinate system is determined based on the following steps:
  • the real-time position of the pivot point of the boom in the world coordinate system is determined.
  • the installation position of the GNSS receiver and the relative position of the fulcrum of the boom on the slewing platform of the excavator are determined and can be obtained by measurement.
  • FIG. 4 is a schematic structural diagram of an excavator bucket tooth tip positioning device provided in an embodiment of the present application.
  • the excavator bucket tooth tip positioning device 400 includes:
  • An acquisition module configured to acquire vehicle body posture information of the excavator, and the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator;
  • control module which includes a conversion matrix determination unit 410, a relative displacement determination unit 420, a relative displacement conversion unit 430, and a bucket tooth tip positioning unit 440;
  • the conversion matrix determination unit 410 is used to determine the coordinate conversion matrix between the vehicle body coordinate system and the world coordinate system based on the body posture information of the excavator;
  • the relative displacement determining unit 420 is used to determine the relationship between the bucket tooth tip and the bucket tooth tip in the vehicle body coordinate system based on the boom inclination angle, arm inclination angle and bucket inclination angle of the excavator, and the boom length, arm length and bucket length of the excavator.
  • the relative displacement conversion unit 430 is configured to determine the relative displacement between the bucket tooth tip and the boom fulcrum in the world coordinate system based on the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system and the coordinate transformation matrix;
  • the bucket tooth tip positioning unit 440 is used to determine the bucket tooth tip in the world coordinate real-time location in the system.
  • the excavator bucket tooth tip positioning device determines the coordinate transformation matrix between the vehicle body coordinate system and the world coordinate system according to the vehicle body attitude information of the excavator, and determines the The inclination angle of the bucket, as well as the boom length, arm length and bucket length of the excavator determine the relative displacement between the bucket tooth tip and the boom fulcrum in the body coordinate system, and then according to the coordinate transformation matrix, the bucket tooth tip
  • the relative displacement between the fulcrum of the boom is converted from the body coordinate system to the world coordinate system, combined with the real-time position of the fulcrum of the boom in the world coordinate system, the real-time position of the bucket tooth tip in the world coordinate system can be determined, which can be continuously and Accurately obtain the real-time position of the tooth tip of the bucket without on-site measurement and inspection by construction personnel, which can be used to accurately guide construction operations, improve construction accuracy, and improve construction efficiency.
  • the control module also includes a rotary positioning unit, which is used for when the excavator performs rotary motion, based on the real-time position of the rotary center of the excavator in the world coordinate system and the real-time position of the bucket tooth tip in the world coordinate system before the rotary motion, Determine the relative displacement between the bucket tooth tip and the center of gyration before the slewing motion;
  • the real-time position of the bucket tooth tip in the world coordinate system after the gyration motion is determined.
  • the relative displacement determining unit is specifically used for:
  • the fourth transformation matrix Based on the first transformation matrix, the second transformation matrix and the third transformation matrix, determine the fourth transformation matrix from the boom coordinate system to the bucket tooth tip coordinate system, so as to determine the distance between the bucket tooth tip and the boom fulcrum in the vehicle body coordinate system relative displacement.
  • the boom coordinate system takes the boom fulcrum as the origin
  • the stick coordinate system takes the stick fulcrum as the origin
  • the bucket coordinate system takes the stick fulcrum as the origin
  • the bucket tooth tip coordinate system takes the bucket tooth
  • the tip is the origin
  • the boom fulcrum is the pivot point of the boom relative to the slewing platform of the excavator
  • the stick fulcrum is the pivot point of the stick relative to the boom
  • the bucket fulcrum is the pivot point of the bucket relative to the stick pivot point.
  • the inclination angle of the boom is the angle between the straight line determined by the fulcrum of the boom and the fulcrum of the arm and the horizontal plane where the fulcrum of the boom is located;
  • the inclination angle of the stick is the angle between the straight line determined by the fulcrum of the boom and the fulcrum of the stick and the straight line determined by the fulcrum of the stick and the fulcrum of the bucket;
  • the bucket inclination angle is the angle between the straight line determined by the stick fulcrum and the bucket fulcrum and the straight line determined by the bucket fulcrum and the bucket tooth tip;
  • the length of the boom is the linear distance between the fulcrum of the boom and the fulcrum of the arm; the length of the stick is the linear distance between the fulcrum of the arm and the fulcrum of the bucket; distance;
  • Body attitude information includes the pitch angle, yaw angle and roll angle of the excavator in the world coordinate system.
  • the excavator bucket tooth tip positioning device further includes a GNSS receiver arranged on the excavator;
  • the control module is also used to determine the real-time position of the boom fulcrum in the world coordinate system based on the real-time position acquired by the GNSS receiver on the excavator and the relative position of the GNSS receiver and the boom fulcrum on the excavator's slewing platform.
  • FIG. 5 is a schematic structural diagram of an excavator provided by the present application.
  • an excavator 500 includes an excavator bucket tooth tip positioning device 400 .
  • the excavator provided in the embodiment of the present application may be a diesel-powered excavator, an electric excavator, or an operating machine including excavating components capable of realizing an excavating function.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by the present application.
  • the electronic device may include: a processor (Processor) 610, a communication interface (Communications Interface) 620, a memory ) 630 and a communication bus (Communications Bus) 640, wherein the processor 610, the communication interface 620, and the memory 630 complete mutual communication through the communication bus 640.
  • the processor 610 can invoke logic commands in the memory 630 to perform the following methods:
  • the above-mentioned logic commands in the memory 630 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several commands are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the processor in the electronic device provided by the embodiment of the present application can call the logic instruction in the memory to implement the above method, and its specific implementation mode is consistent with the above method implementation mode, and can achieve the same beneficial effect, and will not be repeated here.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided by the above-mentioned embodiments, for example, including:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本申请提供一种挖掘机铲斗齿尖定位方法、装置和挖掘机,其中方法包括:确定车身坐标系与世界坐标系之间的坐标转换矩阵;确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移;确定世界坐标系中铲斗齿尖与动臂支点之间的相对位移;确定铲斗齿尖在世界坐标系中的实时位置。本申请提供的方法、装置和挖掘机,提高了施工精度,提升了施工效率。

Description

挖掘机铲斗齿尖定位方法、装置和挖掘机 技术领域
本申请涉及机械工程技术领域,尤其涉及一种挖掘机铲斗齿尖定位方法、装置和挖掘机。
背景技术
随着基础设施建设的飞速发展,客户对于操作挖掘机进行施工作业的施工质量要求越来越高。通过获取挖掘机的铲斗齿尖位置来对挖掘作业进行指导和施工,可以提高施工精度和施工质量。
现有技术中,挖掘机的铲斗齿尖位置通常是通过施工人员进行肉眼观察得到的,由于照明条件不足或者环境遮挡,施工人员并不能够连续而且准确地获知铲斗齿尖的精确位置,因而无法准确指导施工,施工精度差、效率低。
发明内容
本申请实施例提供一种挖掘机铲斗齿尖定位方法、装置和挖掘机,用于解决现有技术中需要人工对铲斗齿尖进行定位,无法准确指导施工,施工精度差、效率低的技术问题。
本申请实施例提供一种挖掘机铲斗齿尖定位方法,包括:
基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移;
基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
根据本申请一实施例提供的挖掘机铲斗齿尖定位方法,还包括:
当所述挖掘机进行回转运动时,基于所述挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前所述铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
基于所述回转运动前铲斗齿尖与回转中心之间的相对位移,以及所述挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
基于所述回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之 间的相对位移,确定回转运动后所述铲斗齿尖在世界坐标系中的实时位置。
根据本申请一实施例提供的挖掘机铲斗齿尖定位方法,所述基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移,包括:
基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
基于第一、第二及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
根据本申请一实施例提供的挖掘机铲斗齿尖定位方法,所述动臂坐标系以动臂支点为原点,所述斗杆坐标系以斗杆支点为原点,所述铲斗坐标系以斗杆支点为原点,所述铲斗齿尖坐标系以铲斗齿尖为原点;其中,所述动臂支点为动臂相对于所述挖掘机的回转平台的枢转点,所述斗杆支点为斗杆相对于所述动臂的枢转点,所述铲斗支点为铲斗相对于所述斗杆的枢转点。
根据本申请一实施例提供的挖掘机铲斗齿尖定位方法,所述动臂倾角为所述动臂支点与所述斗杆支点所确定的直线和动臂支点所在的水平面之间的夹角;
所述斗杆倾角为所述动臂支点与所述斗杆支点所确定的直线和所述斗杆支点与所述铲斗支点所确定的直线之间的夹角;
所述铲斗倾角为所述斗杆支点与所述铲斗支点所确定的直线和所述铲斗支点与所述铲斗齿尖所确定的直线之间的夹角;
所述动臂长度为所述动臂支点与所述斗杆支点之间的直线距离;所述斗杆长度为所述斗杆支点与所述铲斗支点之间的直线距离;所述铲斗长度为所述铲斗支点与所述铲斗齿尖之间的直线距离;
所述车身姿态信息包括所述挖掘机在世界坐标系中的俯仰角、偏航角和横滚角。
根据本申请一实施例提供的挖掘机铲斗齿尖定位方法,所述动臂支点在世界坐标系中的实时位置是基于如下步骤确定的:
基于所述挖掘机上GNSS接收器获取的实时位置、以及所述GNSS接收器和所述动臂支点在所述挖掘机的回转平台上的相对位置,确定所述动臂支点在世界坐标系中的实时位置。
本申请一实施例提供一种挖掘机铲斗齿尖定位装置,包括:
获取模块,用于获取挖掘机的车身姿态信息,以及所述挖掘机的动臂倾角、斗杆倾角和 铲斗倾角;
控制模块,用于基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
所述控制模块还用于基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移;并用于基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
所述控制模块还用于基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
根据本申请一实施例提供的挖掘机铲斗齿尖定位装置,所述控制模块包括:
转换矩阵确定单元,用于基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
相对位移确定单元,用于基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移;
相对位移转换单元,用于基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
铲斗齿尖定位单元,用于基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
根据本申请一实施例提供的挖掘机铲斗齿尖定位装置,所述控制模块还包括:回转定位单元,用于当所述挖掘机进行回转运动时,基于所述挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
基于所述回转运动前铲斗齿尖与回转中心之间的相对位移,以及所述挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
基于所述回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之间的相对位移,确定回转运动后所述铲斗齿尖在世界坐标系中的实时位置。
根据本申请一实施例提供的挖掘机铲斗齿尖定位装置,所述相对位移确定单元具体用于:
基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
基于第一变换矩阵、第二变换矩阵及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
根据本申请一实施例提供的挖掘机铲斗齿尖定位装置,还包括设置在所述挖掘机上的GNSS接收器;
所述控制模块还用于基于所述挖掘机上GNSS接收器获取的实时位置、以及所述GNSS接收器和所述动臂支点在所述挖掘机的回转平台上的相对位置,确定所述动臂支点在世界坐标系中的实时位置。本申请一实施例提供一种挖掘机,包括所述的挖掘机铲斗齿尖定位装置。
本申请一实施例提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现所述挖掘机铲斗齿尖定位方法的步骤。
本申请一实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述挖掘机铲斗齿尖定位方法的步骤。
本申请实施例提供的挖掘机铲斗齿尖定位方法、装置和挖掘机,根据挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵,根据挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移,进而根据坐标转换矩阵,将铲斗齿尖与动臂支点之间的相对位移从车身坐标系转换到世界坐标系中,结合动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置,能够连续而且准确地得到铲斗齿尖的实时位置,无需施工人员现场测量和查看,能够用于精确地指导施工作业,提高了施工精度,提升了施工效率。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例提供的挖掘机铲斗齿尖定位方法的流程示意图;
图2为本申请的实施例提供的铲斗齿尖与动臂支点之间的相对位移的计算示意图;
图3为本申请的实施例提供的铲斗倾角的计算示意图;
图4为本申请的实施例提供的挖掘机铲斗齿尖定位装置的结构示意图;
图5为本申请的实施例提供的挖掘机的结构示意图;
图6为本申请的实施例提供的电子设备的结构示意图。
附图标记:
310:斗杆;                   320:铲斗;
330:第一连杆;               340:第二连杆;
350:铲斗油缸;                400:挖掘机铲斗齿尖定位装置;
410:转换矩阵确定单元;       420:相对位移确定单元;
430:相对位移转换单元;       440:铲斗齿尖定位单元;
500:挖掘机;                 610:处理器;
620:通信接口;               630:存储器;
640:通信总线;               A:动臂支点;
L:斗杆支点;                 D:铲斗支点;
C:铲斗齿尖;                 O:回转中心;
G:第一连杆支点;             E:连接点;
F:第二连杆支点。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请的实施例提供的挖掘机铲斗齿尖定位方法的流程示意图,如图1所示,该方法包括:
步骤110,基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵。
具体地,挖掘机一般包括行走机构、回转平台、动臂、斗杆和铲斗等。齿尖位于铲斗的末端,与被挖掘的物质直接接触。
其中,动臂支点为动臂与回转平台的连接点,也是动臂相对于回转平台的枢转点。斗杆支点为斗杆与动臂的连接点,也是斗杆相对于动臂的枢转点。铲斗支点为铲斗与斗杆的连接点,也是铲斗相对于斗杆的枢转点。
世界坐标系为以地球中心作为参考点建立的三维空间坐标系。挖掘机上的任一点的实时位置均可以在世界坐标系中进行表示,并可以通过差分GPS定位器、RTK(Real-time kinematic,实时差分)定位器或者BDS(BeiDou Navigation Satellite System,北斗卫星导航系统)定位器获取。
车身坐标系为根据挖掘机的车身结构建立的三维空间坐标系。例如,以挖掘机车身前后方向为X轴所在方向,挖掘机车身左右方向的为Y轴所在方向,而Z轴所在方向则与挖掘机的回转平台的旋转轴线平行,其坐标系的原点可以选择挖掘机的回转中心,也可以选择动臂支点。本实施例中以动臂支点作为车身坐标系的原点为例进行说明。
根据挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵。坐标转换矩阵用于将车身坐标系中的点转换到世界坐标系中进行表示。
步骤120,基于挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
具体地,动臂倾角为动臂支点与斗杆支点所确定的直线和动臂支点所在的水平面之间的夹角,用来衡量挖掘作业时动臂的张开角度。斗杆倾角为动臂支点与斗杆支点所确定的直线和斗杆支点与铲斗支点所确定的直线之间的夹角,用来衡量挖掘作业时斗杆的张开角度。铲斗倾角为斗杆支点与铲斗支点所确定的直线和铲斗支点与铲斗齿尖所确定的直线之间的夹角。上述倾角在挖掘作业过程中会时刻发生变化,可以通过倾角传感器直接测量或者根据测量结果间接计算得到。
动臂长度为动臂支点与斗杆支点之间的直线距离。斗杆长度为斗杆支点与铲斗支点之间的直线距离。铲斗长度为铲斗支点与铲斗齿尖之间的直线距离。由于动臂、斗杆和铲斗的形状尺寸都是固定的,因此,上述长度均为固定值,可以通过挖掘机厂家资料或者测量得到。
在挖掘作业过程中,动臂、斗杆和铲斗都在同一平面内运动,例如,当回转平台所在的平面与水平面重合时,动臂、斗杆和铲斗在同一垂直平面。由于在车身坐标系中,动臂支点的位置是固定不变的,动臂长度、斗杆长度和铲斗长度均为固定长度,此时,可以根据动臂倾角、斗杆倾角和铲斗倾角,求解得到车身坐标系中铲斗齿尖与动臂支点之间的相对位移。此相对位移用于表示铲斗齿尖相对于动臂支点的位置变化。
步骤130,基于车身坐标系中铲斗齿尖与动臂支点之间的相对位移和坐标转换矩阵,确定世界坐标系中铲斗齿尖与动臂支点之间的相对位移。
具体地,可以根据坐标转换矩阵,将车身坐标系中铲斗齿尖与动臂支点之间的相对位移转换到世界坐标系中。
步骤140,基于世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及动臂支点在世 界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置。
具体地,可以将动臂支点在世界坐标系中的实时位置,加上世界坐标系中铲斗齿尖与动臂支点之间的相对位移,得到铲斗齿尖在世界坐标系中的实时位置。
本申请实施例提供的挖掘机铲斗齿尖定位方法,根据挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵,根据挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移,进而根据坐标转换矩阵,将铲斗齿尖与动臂支点之间的相对位移从车身坐标系转换到世界坐标系中,结合动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置,能够连续而且准确地得到铲斗齿尖的实时位置,无需施工人员现场测量和查看,能够用于精确地指导施工作业,提高了施工精度,提升了施工效率。
基于上述实施例,步骤140之后包括:
当挖掘机进行回转运动时,基于挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
基于回转运动前铲斗齿尖与回转中心之间的相对位移,以及挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
基于回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之间的相对位移,确定回转运动后铲斗齿尖在世界坐标系中的实时位置。
具体地,可以对挖掘机的运动进行解耦,分为关节操作和回转操作。关节运动是指对动臂、斗杆和铲斗等关节进行操作而产生的运动。回转运动是指对挖掘机的回转平台进行操作产生的运动,此时,各个关节是保持姿态不变的。由于挖掘机上的定位装置通过GPS等获取实时位置的数据刷新频率较低,回转操作中不能满足铲斗实时定位的需要。
可以在挖掘机的回转中心的转轴处安装回转角度传感器,由于回转角度传感器的数据刷新频率较高,可以辅助实现在GPS定位周期内,对铲斗齿尖进行实时定位。
当挖掘机进行回转运动时,可以根据回转角度传感器获取回转运动前挖掘机的回转角度为ω 0。回转运动前后,挖掘机的回转中心O在世界坐标系中的实时位置为O GPS,不会发生变化。回转运动前铲斗齿尖C在世界坐标系中的实时位置为
Figure PCTCN2022127290-appb-000001
此时可以得到回转运动前铲斗齿尖C与回转中心O之间的相对位移
Figure PCTCN2022127290-appb-000002
为:
Figure PCTCN2022127290-appb-000003
回转运动前时刻为0,回转运动后时刻为t,挖掘机的回转角度为ω t,则挖掘机在回转运动中的回转角度变化值ω为:
ω=ω t0
回转运动后铲斗齿尖C与回转中心O之间的相对位移
Figure PCTCN2022127290-appb-000004
可以根据回转角度变化值ω和回转运动前铲斗齿尖C与回转中心O之间的相对位移
Figure PCTCN2022127290-appb-000005
得到,用公式表示为:
Figure PCTCN2022127290-appb-000006
式中,Z为车身坐标系中Z轴的单位向量,T为向量转置运算符号。
根据回转中心O在世界坐标系中的实时位置O GPS,以及回转运动后铲斗齿尖C与回转中心O之间的相对位移
Figure PCTCN2022127290-appb-000007
确定回转运动后铲斗齿尖C在世界坐标系中的实时位置
Figure PCTCN2022127290-appb-000008
用公式表示为:
Figure PCTCN2022127290-appb-000009
本申请实施例提供的挖掘机铲斗齿尖定位方法,能够在挖掘机进行回转运动时,利用回转角度求解铲斗齿尖的实时位置,改善了GPS信号刷新不及时带来的定位误差,提高了施工精度,提升了施工效率。
基于上述任一实施例,步骤120包括:
基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
基于第一变换矩阵、第二变换矩阵及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
具体地,挖掘机的动臂、斗杆和铲斗相互连接关系,实质上构成了一个空间开链连杆结构,其中,动臂、斗杆和铲斗为连杆,动臂支点、斗杆支点、铲斗支点和铲斗齿尖为关节。因此可以采用机器人正向运动学的D-H(Denavit-Hartenberg)参数模型来计算挖掘机的铲斗齿尖在车身坐标系中位姿,即位置和姿态。本实施例中基于D-H参数法分别建立动臂坐标系、斗杆坐标系、铲斗坐标系和铲斗齿尖坐标系。
动臂坐标系以动臂支点为原点,斗杆坐标系以斗杆支点为原点,铲斗坐标系以斗杆支点为原点,铲斗齿尖坐标系以铲斗齿尖为原点;其中,动臂支点为动臂相对于挖掘机的回转平台的枢转点,斗杆支点为斗杆相对于动臂的枢转点,铲斗支点为铲斗相对于斗杆的枢转点。
具体地,图2为本申请的实施例提供的铲斗齿尖与动臂支点之间的相对位移的计算示意图,如图2所示,挖掘机回转中心为O,采用D-H建模方法,建立以动臂支点A为原点的动臂坐标系、以斗杆支点L为原点的斗杆坐标系和以铲斗支点D为原点的铲斗坐标系,以铲斗 齿尖C为原点的铲斗齿尖坐标系。由于动臂、斗杆和铲斗都在同一平面,因此,动臂坐标系、斗杆坐标系、铲斗坐标系和铲斗齿尖坐标系的X轴(垂直于动臂、斗杆和铲斗所在的平面)上的位置变化均为零且不在图中表示。对于动臂坐标系,以动臂支点A与斗杆支点L的连线为Y 1轴,以动臂、斗杆和铲斗所在的平面内垂直于Y 1轴的方向为Z 1轴。对于斗杆坐标系,以斗杆支点L与铲斗支点D的连线为Y 2轴,以动臂、斗杆和铲斗所在的平面内垂直于Y 2轴的方向为Z 2轴。对于铲斗坐标系,以铲斗支点D与铲斗齿尖C的连线为Y 3轴,以动臂、斗杆和铲斗所在的平面内垂直于Y 3轴的方向为Z 3轴。对于铲斗齿尖坐标系而言,其Y轴和Z轴位于动臂、斗杆和铲斗所在的平面内,在图中未示出。
θ 1为动臂倾角,θ 2为斗杆倾角,θ 3为铲斗倾角。此外,为了便于描述,动臂长度表示为L 1,斗杆长度表示为L 2,铲斗长度表示为L 3
根据动臂倾角θ 1,确定动臂坐标系至斗杆坐标系的第一变换矩阵R AL,用公式表示为:
Figure PCTCN2022127290-appb-000010
根据斗杆倾角θ 2和动臂长度L 1,确定斗杆坐标系至铲斗坐标系的第二变换矩阵R LD,用公式表示为:
Figure PCTCN2022127290-appb-000011
根据铲斗倾角θ 3和斗杆长度L 2,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵R DC,用公式表示为:
Figure PCTCN2022127290-appb-000012
根据动臂坐标系至斗杆坐标系的第一变换矩阵R AL、斗杆坐标系至铲斗坐标系的第二变换矩阵R LD、铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵R DC,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵R AC,用公式表示为:
R AC=R AL·R LD·R DC
根据动臂坐标系至铲斗齿尖坐标系的第四变换矩阵R AC,确定车身坐标系中铲斗齿尖C与动臂支点A之间的相对位移AC,用公式表示为:
AC=R AC·[0 L 3 0 1] T
相应地,根据车身坐标系中铲斗齿尖C与动臂支点A之间的相对位移AC,以及车身坐标 系与世界坐标系之间的坐标转换矩阵I,确定世界坐标系中铲斗齿尖C与动臂支点A之间的相对位移AC GPS,用公式表示为:
AC GPS=I·AC
根据世界坐标系中铲斗齿尖C与动臂支点A之间的相对位移AC GPS,以及动臂支点A在世界坐标系中的实时位置A GPS,确定铲斗齿尖在世界坐标系中的实时位置C GPS,用公式表示为:
C GPS=AC GPS+A GPS=I·AC+A GPS
同理,还可以求解得到车身坐标系中斗杆支点L与动臂支点A之间的相对位移AL,以及斗杆支点L在世界坐标系中的实时位置L GPS,用公式表示为:
AL=R AL·[0 L 1 0 1] T
L GPS=I·AL+A GPS
同样地,还可以求解得到车身坐标系中铲斗支点D与动臂支点A之间的相对位移AD,以及铲斗支点D在世界坐标系中的实时位置D GPS,用公式表示为:
AD=R AD·[0 L 2 0 1] T
D GPS=I·AD+A GPS
本申请还提供了一种实施例下,铲斗倾角θ 3的确定方法。
具体地,图3为本申请的一个实施例提供的铲斗倾角的计算示意图,如图3所示,包括斗杆310、铲斗320、第一连杆330、第二连杆340和铲斗油缸350。铲斗倾角θ 3在图3中示为∠LDC。其中,第一连杆330和第二连杆340的长度是固定的。
其中,第一连杆摆动角∠EGD为第一连杆支点G与铲斗支点D所确定的直线GD与第一连杆330所在直线GE之间的夹角。第一连杆摆动角∠EGD可以通过设置于第一连杆支点G处的磁编码器来获取。其中,上述第一连杆支点G为第一连杆与斗杆之间的枢转点。
第一夹角∠GDE为第一连杆支点G与铲斗支点D所确定的直线GD和连接点E与铲斗支点D所确定的直线ED之间的夹角。其中,上述连接点E为第一、第二连杆与铲斗油缸350之间的枢转点。
第二夹角∠FDE为第二连杆支点F与铲斗支点D所确定的直线FD和上述连接点E与铲斗支点D所确定的直线ED之间的夹角。其中,上述第二连杆支点F为第二连杆与铲斗之间的枢转点。
第三夹角∠GDL为第一连杆支点G与铲斗支点D所确定的直线GD和铲斗支点D与斗杆支点L所确定的直线DL之间的夹角。
第四夹角∠FDC为第二连杆支点F与铲斗支点D所确定的直线FD和铲斗齿尖C与铲斗支 点D所确定的直线CD之间的夹角。
由于斗杆支点L、第一连杆支点G和铲斗支点D所形成的三角形是固定的,因此,第三夹角∠GDL是恒定的,可以通过测算得到。同时,由于铲斗齿尖C、第二连杆支点F和铲斗支点D所形成的三角形也是固定的,因此,第四夹角∠FDC也是恒定的,可以通过测算得到。另外,第一连杆支点G与铲斗支点D之间的距离也是固定的。第二连杆支点F与铲斗支点D之间的距离也是固定的。
由于连接点E相对于铲斗支点D是活动点,因此,第一夹角∠GDE和第二夹角∠FDE是会发生变化的,需要借助第一连杆摆动角∠EGD,以及三角函数关系计算得到。
已知第一连杆330的长度、第一连杆支点G与铲斗支点D之间的距离,以及第一连杆摆动角∠EGD,在三角形GDE中根据三角函数可以得到连接点E与铲斗支点D之间的距离。
根据第一连杆330的长度、第一连杆支点G与铲斗支点D之间的距离,以及连接点E与铲斗支点D之间的距离,在三角形GDE中根据三角函数可以得到第一夹角∠GDE。
根据第二连杆340的长度、第二连杆支点F与铲斗支点D之间的距离,以及连接点E与铲斗支点D之间的距离,在三角形FDE中根据三角函数可以得到第二夹角∠FDE。
根据第一夹角∠GDE、第二夹角∠FDE、第三夹角∠GDL和第四夹角∠FDC,确定铲斗倾角∠LDC,用公式表示为:
∠LDC=2π-∠GDE-∠FDE-∠GDL-∠FDC
基于上述任一实施例,车身姿态信息包括挖掘机在世界坐标系中的俯仰角、偏航角和横滚角。
具体地,车身姿态信息的车身姿态信息包括偏航角(yaw)、横滚角(roll)和俯仰角(pitch)。可以在挖掘机上安装倾角传感器获取车身姿态信息。此外,还可以在挖掘机的回转平台上安装GNSS(Global Navigation Satellite System,全球导航卫星系统)主接收器和GNSS副接收器,根据主、副接收器接收到的定位信号确定偏航角。
以前述定义的挖掘机车身坐标系而言,俯仰角(pitch)为绕X轴旋转的角度,横滚角(roll)为绕Y轴转的角度,偏航角(yaw)为绕Z轴旋转的角度。
车身坐标系与世界坐标系之间的坐标转换矩阵I可以根据俯仰角、偏航角和横滚角进行确定:
Figure PCTCN2022127290-appb-000013
基于上述任一实施例,动臂支点在世界坐标系中的实时位置是基于如下步骤确定的:
基于挖掘机上GNSS接收器获取的实时位置、以及该GNSS接收器与动臂支点在挖掘机回转平台上的相对位置,确定动臂支点在世界坐标系中的实时位置。
由于GNSS接收器和动臂支点在回转平台上的位置是固定的,因而,GNSS接收器的安装位置和动臂支点在挖掘机回转平台上的相对位置是确定的,可以通过测量得到。
基于上述任一实施例,图4为本申请的实施例提供的挖掘机铲斗齿尖定位装置的结构示意图,如图4所示,挖掘机铲斗齿尖定位装置400包括:
获取模块,用于获取挖掘机的车身姿态信息,以及所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角;
以及控制模块,其包括转换矩阵确定单元410、相对位移确定单元420、相对位移转换单元430、铲斗齿尖定位单元440;
其中,转换矩阵确定单元410,用于基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
相对位移确定单元420,用于基于挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移;
相对位移转换单元430,用于基于车身坐标系中铲斗齿尖与动臂支点之间的相对位移和坐标转换矩阵,确定世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
铲斗齿尖定位单元440,用于基于世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置。
本申请实施例提供的挖掘机铲斗齿尖定位装置,根据挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵,根据挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移,进而根据坐标转换矩阵,将铲斗齿尖与动臂支点之间的相对位移从车身坐标系转换到世界坐标系中,结合动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置,能够连续而且准确地得到铲斗齿尖的实时位置,无需施工人员现场测量和 查看,能够用于精确地指导施工作业,提高了施工精度,提升了施工效率。
基于上述任一实施例,还包括:
控制模块还包括回转定位单元,用于当挖掘机进行回转运动时,基于挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
基于回转运动前铲斗齿尖与回转中心之间的相对位移,以及挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
基于回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之间的相对位移,确定回转运动后铲斗齿尖在世界坐标系中的实时位置。
基于上述任一实施例,相对位移确定单元具体用于:
基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
基于第一变换矩阵、第二变换矩阵及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
基于上述任一实施例,动臂坐标系以动臂支点为原点,斗杆坐标系以斗杆支点为原点,铲斗坐标系以斗杆支点为原点,铲斗齿尖坐标系以铲斗齿尖为原点;其中,动臂支点为动臂相对于挖掘机的回转平台的枢转点,斗杆支点为斗杆相对于动臂的枢转点,铲斗支点为铲斗相对于斗杆的枢转点。
基于上述任一实施例,动臂倾角为动臂支点与斗杆支点所确定的直线和动臂支点所在的水平面之间的夹角;
斗杆倾角为动臂支点与斗杆支点所确定的直线和斗杆支点与铲斗支点所确定的直线之间的夹角;
铲斗倾角为斗杆支点与铲斗支点所确定的直线和铲斗支点与铲斗齿尖所确定的直线之间的夹角;
动臂长度为动臂支点与斗杆支点之间的直线距离;斗杆长度为斗杆支点与铲斗支点之间的直线距离;铲斗长度为铲斗支点与铲斗齿尖之间的直线距离;
车身姿态信息包括挖掘机在世界坐标系中的俯仰角、偏航角和横滚角。
基于上述任一实施例,所述挖掘机铲斗齿尖定位装置还包括设置在所述挖掘机上的GNSS接收器;
所述控制模块还用于基于挖掘机上GNSS接收器获取的实时位置、以及GNSS接收器和动臂支点在挖掘机的回转平台上的相对位置,确定动臂支点在世界坐标系中的实时位置。
基于上述任一实施例,图5为本申请提供的挖掘机的结构示意图,如图5所示,挖掘机500包括挖掘机铲斗齿尖定位装置400。
具体地,本申请实施例提供的挖掘机可以是柴油动力挖掘机、电动挖掘机,或者包含挖掘部件能够实现挖掘功能的作业机械。
基于上述任一实施例,图6为本申请提供的电子设备的结构示意图,如图6所示,该电子设备可以包括:处理器(Processor)610、通信接口(Communications Interface)620、存储器(Memory)630和通信总线(Communications Bus)640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑命令,以执行如下方法:
基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;基于挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度,确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移;基于车身坐标系中铲斗齿尖与动臂支点之间的相对位移和坐标转换矩阵,确定世界坐标系中铲斗齿尖与动臂支点之间的相对位移;基于世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置。
此外,上述的存储器630中的逻辑命令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供的电子设备中的处理器可以调用存储器中的逻辑指令,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:
基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;基于挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及挖掘机的动臂长度、斗杆长度和铲斗长度, 确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移;基于车身坐标系中铲斗齿尖与动臂支点之间的相对位移和坐标转换矩阵,确定世界坐标系中铲斗齿尖与动臂支点之间的相对位移;基于世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及动臂支点在世界坐标系中的实时位置,确定铲斗齿尖在世界坐标系中的实时位置。
本申请实施例提供的非暂态计算机可读存储介质上存储的计算机程序被执行时,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种挖掘机铲斗齿尖定位方法,其特征在于,包括:
    基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
    基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移;
    基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
    基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
  2. 根据权利要求1所述的挖掘机铲斗齿尖定位方法,其特征在于,还包括:
    当所述挖掘机进行回转运动时,基于所述挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前所述铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
    基于所述回转运动前铲斗齿尖与回转中心之间的相对位移,以及所述挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
    基于所述回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之间的相对位移,确定回转运动后所述铲斗齿尖在世界坐标系中的实时位置。
  3. 根据权利要求1或2所述的挖掘机铲斗齿尖定位方法,其特征在于,所述基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移,包括:
    基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
    基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
    基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
    基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
    基于第一变换矩阵、第二变换矩阵及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
  4. 根据权利要求3所述的挖掘机铲斗齿尖定位方法,其特征在于,
    所述动臂坐标系以动臂支点为原点,所述斗杆坐标系以斗杆支点为原点,所述铲斗坐标系以斗杆支点为原点,所述铲斗齿尖坐标系以铲斗齿尖为原点;其中,所述动臂支点为动臂相对于所述挖掘机的回转平台的枢转点,所述斗杆支点为斗杆相对于所述动臂的枢转点,所 述铲斗支点为铲斗相对于所述斗杆的枢转点。
  5. 根据权利要求4所述的挖掘机铲斗齿尖定位方法,其特征在于,所述动臂倾角为所述动臂支点与所述斗杆支点所确定的直线和动臂支点所在的水平面之间的夹角;
    所述斗杆倾角为所述动臂支点与所述斗杆支点所确定的直线和所述斗杆支点与所述铲斗支点所确定的直线之间的夹角;
    所述铲斗倾角为所述斗杆支点与所述铲斗支点所确定的直线和所述铲斗支点与所述铲斗齿尖所确定的直线之间的夹角;
    所述动臂长度为所述动臂支点与所述斗杆支点之间的直线距离;所述斗杆长度为所述斗杆支点与所述铲斗支点之间的直线距离;所述铲斗长度为所述铲斗支点与所述铲斗齿尖之间的直线距离;
    所述车身姿态信息包括所述挖掘机在世界坐标系中的俯仰角、偏航角和横滚角。
  6. 根据权利要求1-5中任一项所述的挖掘机铲斗齿尖定位方法,其特征在于,所述动臂支点在世界坐标系中的实时位置是基于如下步骤确定的:
    基于所述挖掘机上GNSS接收器获取的实时位置、以及所述GNSS接收器和所述动臂支点在所述挖掘机的回转平台上的相对位置,确定所述动臂支点在世界坐标系中的实时位置。
  7. 一种挖掘机铲斗齿尖定位装置,其特征在于,包括:
    获取模块,用于获取挖掘机的车身姿态信息,以及所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角;
    控制模块,用于基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
    所述控制模块还用于基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移;并用于基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
    所述控制模块还用于基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
  8. 根据权利要求7所述的挖掘机铲斗齿尖定位装置,其特征在于,所述控制模块包括:
    转换矩阵确定单元,用于基于挖掘机的车身姿态信息,确定车身坐标系与世界坐标系之间的坐标转换矩阵;
    相对位移确定单元,用于基于所述挖掘机的动臂倾角、斗杆倾角和铲斗倾角,以及所述挖掘机的动臂长度、斗杆长度和铲斗长度,确定所述车身坐标系中铲斗齿尖与动臂支点之间 的相对位移;
    相对位移转换单元,用于基于所述车身坐标系中铲斗齿尖与动臂支点之间的相对位移和所述坐标转换矩阵,确定所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移;
    铲斗齿尖定位单元,用于基于所述世界坐标系中铲斗齿尖与动臂支点之间的相对位移,以及所述动臂支点在世界坐标系中的实时位置,确定所述铲斗齿尖在世界坐标系中的实时位置。
  9. 根据权利要求8所述的挖掘机铲斗齿尖定位装置,其特征在于,所述控制模块还包括:回转定位单元,用于当所述挖掘机进行回转运动时,基于所述挖掘机的回转中心在世界坐标系中的实时位置,以及回转运动前铲斗齿尖在世界坐标系中的实时位置,确定回转运动前铲斗齿尖与回转中心之间的相对位移;
    基于所述回转运动前铲斗齿尖与回转中心之间的相对位移,以及所述挖掘机在回转运动中的回转角度变化值,确定回转运动后铲斗齿尖与回转中心之间的相对位移;
    基于所述回转中心在世界坐标系中的实时位置,以及回转运动后铲斗齿尖与回转中心之间的相对位移,确定回转运动后所述铲斗齿尖在世界坐标系中的实时位置。
  10. 根据权利要求8所述的挖掘机铲斗齿尖定位装置,其特征在于,所述相对位移确定单元具体用于:
    基于D-H模型构建动臂坐标系、斗杆坐标系、铲斗坐标系以及铲斗齿尖坐标系;
    基于动臂倾角,确定动臂坐标系至斗杆坐标系的第一变换矩阵;
    基于斗杆倾角和动臂长度,确定斗杆坐标系至铲斗坐标系的第二变换矩阵;
    基于铲斗倾角和斗杆长度,确定铲斗坐标系至铲斗齿尖坐标系的第三变换矩阵;
    基于第一变换矩阵、第二变换矩阵及第三变换矩阵,确定动臂坐标系至铲斗齿尖坐标系的第四变换矩阵,以确定车身坐标系中铲斗齿尖与动臂支点之间的相对位移。
  11. 根据权利要求7-10中任意一项所述的挖掘机铲斗齿尖定位装置,其特征在于,还包括设置在所述挖掘机上的GNSS接收器;
    所述控制模块还用于基于所述挖掘机上GNSS接收器获取的实时位置、以及所述GNSS接收器和所述动臂支点在所述挖掘机的回转平台上的相对位置,确定所述动臂支点在世界坐标系中的实时位置。
  12. 一种挖掘机,其特征在于,包括权利要求7-11中任意一项所述的挖掘机铲斗齿尖定位装置。
  13. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6中任一项 所述挖掘机铲斗齿尖定位方法的步骤。
  14. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述挖掘机铲斗齿尖定位方法的步骤。
PCT/CN2022/127290 2021-10-25 2022-10-25 挖掘机铲斗齿尖定位方法、装置和挖掘机 WO2023072044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241445.5A CN114045893B (zh) 2021-10-25 2021-10-25 挖掘机铲斗齿尖定位方法、装置和挖掘机
CN202111241445.5 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023072044A1 true WO2023072044A1 (zh) 2023-05-04

Family

ID=80205929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127290 WO2023072044A1 (zh) 2021-10-25 2022-10-25 挖掘机铲斗齿尖定位方法、装置和挖掘机

Country Status (2)

Country Link
CN (1) CN114045893B (zh)
WO (1) WO2023072044A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045893B (zh) * 2021-10-25 2023-09-22 上海华兴数字科技有限公司 挖掘机铲斗齿尖定位方法、装置和挖掘机
CN115126020A (zh) * 2022-04-14 2022-09-30 网易(杭州)网络有限公司 一种挖掘机控制方法以及装置
CN115030247B (zh) * 2022-05-27 2023-10-31 三一重机有限公司 一种臂架位姿信息的校正方法、装置及挖掘机
CN115288218A (zh) * 2022-07-28 2022-11-04 中联重科股份有限公司 用于控制臂架的方法、挖掘机、存储介质及处理器
CN116330270A (zh) * 2022-10-14 2023-06-27 丰疆智能(深圳)有限公司 机械臂标定方法、装置及计算机可读存储介质
CN115795580B (zh) * 2023-02-10 2023-05-26 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) 基于云计算的智能开挖施工管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740448A (zh) * 2017-11-30 2018-02-27 南京工业大学 一种无人自动化挖掘机智能施工系统
CN108643277A (zh) * 2018-05-21 2018-10-12 山东天星北斗信息科技有限公司 基于gnss-sins与位移传感器的挖掘机位置信息服务系统及方法
CN110409528A (zh) * 2019-07-25 2019-11-05 中国航空工业集团公司西安飞行自动控制研究所 一种挖掘机铲斗轨迹自动控制装置、方法和计算机可读存储介质
CN112095710A (zh) * 2020-09-16 2020-12-18 上海三一重机股份有限公司 挖掘机位姿显示方法、装置及其所应用的挖掘机
CN114045893A (zh) * 2021-10-25 2022-02-15 上海华兴数字科技有限公司 挖掘机铲斗齿尖定位方法、装置和挖掘机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014000091B4 (de) * 2014-05-14 2016-11-24 Komatsu Ltd. Kalibriersystem und Kalibrierverfahren für einen Bagger
CN107905275B (zh) * 2017-11-15 2020-08-25 山东天星北斗信息科技有限公司 一种挖掘机数字化辅助施工系统及其辅助施工方法
CN110565711A (zh) * 2019-09-20 2019-12-13 太原科技大学 一种反铲液压挖掘机轨迹控制系统及轨迹规划方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740448A (zh) * 2017-11-30 2018-02-27 南京工业大学 一种无人自动化挖掘机智能施工系统
CN108643277A (zh) * 2018-05-21 2018-10-12 山东天星北斗信息科技有限公司 基于gnss-sins与位移传感器的挖掘机位置信息服务系统及方法
CN110409528A (zh) * 2019-07-25 2019-11-05 中国航空工业集团公司西安飞行自动控制研究所 一种挖掘机铲斗轨迹自动控制装置、方法和计算机可读存储介质
CN112095710A (zh) * 2020-09-16 2020-12-18 上海三一重机股份有限公司 挖掘机位姿显示方法、装置及其所应用的挖掘机
CN114045893A (zh) * 2021-10-25 2022-02-15 上海华兴数字科技有限公司 挖掘机铲斗齿尖定位方法、装置和挖掘机

Also Published As

Publication number Publication date
CN114045893A (zh) 2022-02-15
CN114045893B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2023072044A1 (zh) 挖掘机铲斗齿尖定位方法、装置和挖掘机
CN109614743B (zh) 挖掘机及其铲斗定位方法、电子设备、存储介质
CN107905275B (zh) 一种挖掘机数字化辅助施工系统及其辅助施工方法
CN102047075B (zh) 对矿用电铲的采掘组件进行位置校准的方法
KR101802968B1 (ko) 굴삭기 버킷의 최대 굴삭력 및 암의 최대 굴삭력을 산출하기 위한 시뮬레이션 방법
CN113494104B (zh) 建设作业机械的定位校正方法及其定位校正控制器
CN102995673B (zh) 一种拉绳定位控制方法、装置及系统
CN112267516A (zh) 一种挖掘机施工引导系统及施工方法
CN112987069B (zh) 一种基于车体位姿的作业部件末端位姿测量方法
CN111485879A (zh) 一种掘进机车体及其截割滚筒的定位方法及定位系统
CN108519613A (zh) 一种螺旋钻挖掘机辅助施工系统及其施工方法
JP2008025163A (ja) 削岩機搭載台車における穿孔位置決め制御方法及び建設機械におけるブーム位置決め制御方法
CN111501872A (zh) 平地机铲刀刮坡角的确定方法、装置、系统以及存储介质
CN114411840A (zh) 平地控制方法、装置和挖掘机
Wang et al. A control method for hydraulic manipulators in automatic emulsion filling
WO2018164078A1 (ja) 建築作業機械における回転部材の回転中心取得方法
CN108643277B (zh) 基于gnss-sins与位移传感器的挖掘机位置信息服务系统及方法
Yamamoto et al. Basic technology toward autonomous hydraulic excavator
CN108867727A (zh) 一种挖掘机
CN114482160B (zh) 作业控制方法、装置和作业机械
JP2015001385A (ja) 建設機械
US20230417548A1 (en) Determination of an excavator swing boom angle based on an angular velocity ratio
WO2023032949A1 (ja) 制御システム、制御方法および制御プログラム
CN111119919B (zh) 一种柔臂掘进机推进系统控制计算方法
JP7263854B2 (ja) 作業車両及び作業車両の位置検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885921

Country of ref document: EP

Kind code of ref document: A1