WO2023072029A1 - 一种故障定位方法、设备及存储介质 - Google Patents

一种故障定位方法、设备及存储介质 Download PDF

Info

Publication number
WO2023072029A1
WO2023072029A1 PCT/CN2022/127244 CN2022127244W WO2023072029A1 WO 2023072029 A1 WO2023072029 A1 WO 2023072029A1 CN 2022127244 W CN2022127244 W CN 2022127244W WO 2023072029 A1 WO2023072029 A1 WO 2023072029A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
information
configuration information
data stream
response information
Prior art date
Application number
PCT/CN2022/127244
Other languages
English (en)
French (fr)
Inventor
王东
蔡谦
孙将
张德朝
李晗
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023072029A1 publication Critical patent/WO2023072029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present application relates to the technical field of communications, and in particular to a fault location method, device and storage medium.
  • the medium-scale C-RAN (centralized radio access network, Centralized Radio Access Network) with 10 stations is becoming the main networking scenario of the 5G fronthaul network.
  • the fiber direct drive solution in 4G D-RAN (Distributed Radio Access Network) mode is low in cost, but requires a lot of fiber resources.
  • WDM Widelength Division Multiplexing
  • Fronthaul solutions based on WDM technology usually include active WDM/OTN (Optical Transport Network, Optical Transport Network) and passive WDM.
  • active WDM/OTN Optical Transport Network, Optical Transport Network
  • passive WDM passive WDM
  • FIG. 1 is a schematic diagram of an active WDM/OTN transmission system.
  • the active WDM/OTN solution deploy a network on the AAU (Active Antenna Unit, Active Antenna Unit) side and the DU (Distributed Unit, Distributed Unit) side.
  • the source WDM/OTN equipment is connected to the AAU and DU through the gray optical interface, and the line side of the two WDM/OTN equipment adopts WDM or high-speed Ethernet interface.
  • AAU and DU are located in the wireless management domain, and active WDM/OTN equipment and optical lines between them are located in the transmission management domain.
  • FIG. 2 is a schematic diagram of a passive WDM transmission system.
  • the passive WDM solution deploy passive WDM multiplexers and demultiplexers on the AAU side and DU side respectively, and the AAU and DU use WDM optical modules.
  • the AAU and DU are located in the wireless management domain, and the passive WDM multiplexers and demultiplexers on the AAU side and DU side and the optical lines between them are located in the transmission management domain.
  • the active WDM/OTN solution has rich management and operation and maintenance capabilities, and the wireless and transmission professional management and operation and maintenance interface is clear.
  • the cost is high, remote power supply is required, and deployment is limited.
  • the passive WDM solution has flexible deployment locations, no need for power supply, and low cost. However, the ability to detect fiber link faults is weak. Regarding the division of the management and operation interface, if the transmission management domain only includes the AAU side and the DU side passive WDM The splitter and the optical line between them lack online management methods and control systems, and manual troubleshooting or wireless network management alarms are required.
  • FIG. 3 is a schematic diagram of a semi-active Open-WDM transmission system.
  • the remote end of this solution uses a passive multiplexer and demultiplexer, which is flexible in deployment;
  • the AAU optical module uses top-tuning technology to load OAM (Operation Administration and Maintenance, Operation Administration and Maintenance) information, low-cost to achieve lightweight management and control, and solved the problem of fronthaul network dumb resource management.
  • this solution also includes two management domains of wireless and transmission. Since the AAU optical module is not only the control handle of the semi-active system, but also located in the AAU equipment, the wireless domain cannot be defined in the management operation and maintenance. , Transmission equipment failure.
  • the present application provides a fault location method, device and storage medium, which are used to solve the problem that in the semi-active Open-WDM solution, the failure of wireless and transmission equipment cannot be defined in the management operation and maintenance.
  • a fault location method comprising:
  • the second optical module sends configuration information to the first optical module; and/or, after receiving the response information from the first optical module, the second optical module sends a data stream to the first optical module, wherein the response information is the After receiving the configuration information of the second optical module, the module configures the first optical module to implement loopback, and sends a response message to the second optical module to confirm the completion of the loopback configuration;
  • the second optical module receives the data stream sent back by the first optical module
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU.
  • the second optical module sends configuration information to the first optical module, including:
  • the control unit of the second optical module receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the configuration information is low frequency OAM information.
  • the response information of the configuration information is confirmed and returned, including:
  • the second optical module After receiving the response information of the configuration information through the ROSA, the second optical module demodulates the response information through the control unit, and sends it back according to the confirmation of the response information.
  • the response information of configuration information is low-frequency OAM information.
  • sending the data stream and receiving the returned data stream includes:
  • the data stream sent after being sent back by the first optical module is received.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • the second optical module performs fault location according to the response information of the configuration information and/or the returned data stream, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • a fault location method comprising:
  • the first optical module receives configuration information sent by the second optical module, where the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • the first optical module After the first optical module performs the loopback configuration according to the configuration information, it returns the response information of the configuration information to confirm that the loopback configuration is completed, and the response information is used for the second optical module to perform fault location according to the response information of the configuration information;
  • the first optical module receives the data stream sent by the second optical module
  • the first optical module returns the data stream through the loopback mechanism, which is used for the second optical module and/or the active WDM device to locate the fault according to the returned data stream.
  • the first optical module receives the configuration information sent by the second optical module through the loopback mechanism, including:
  • the first optical module After receiving the configuration information through the ROSA, the first optical module demodulates the configuration information through the control unit.
  • the configuration information is low frequency OAM information.
  • the first optical module after the first optical module performs loopback configuration according to the configuration information, it returns the response information of the configuration information, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the response information of configuration information is low-frequency OAM information.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • An optical module located in an active WDM device comprising:
  • a processor configured to read a program in memory and perform the following processes:
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • a transceiver configured to receive and transmit data under control of the processor.
  • configuration information is sent to the first optical module, including:
  • the control unit receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the configuration information is low frequency OAM information.
  • the response information of the configuration information is confirmed and returned, including:
  • the response information of configuration information is received by ROSA, the response information is demodulated by the control unit, and returned according to the confirmation of the response information.
  • the response information of configuration information is low-frequency OAM information.
  • sending the data stream and receiving the returned data stream includes:
  • the data stream sent after being sent back by the first optical module is received.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • fault location is performed according to the response information of the configuration information and/or the returned data flow, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • An optical module located in an active WDM device comprising:
  • the second optical module sending module is configured to send configuration information to the first optical module; and/or, after receiving the response information from the first optical module, the second optical module sends a data stream to the first optical module, wherein the response
  • the information is that the first optical module configures the first optical module to implement loopback after receiving the configuration information of the second optical module, and sends a response message to the second optical module to confirm the completion of the loopback configuration
  • the second optical module receiving module is configured to receive the data stream sent back by the first optical module
  • the second optical module positioning module is configured to perform fault positioning according to the response information of the configuration information and/or the returned data stream;
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU.
  • the second optical module sending module is configured to send configuration information to the first optical module, including:
  • the control unit receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the second optical module sending module is configured to send the configuration information of the low-frequency OAM information.
  • the sending module of the second optical module is configured to confirm the completion and return through the response information of the configuration information, including:
  • the response information of configuration information is received by ROSA, the response information is demodulated by the control unit, and returned according to the confirmation of the response information.
  • the sending module of the second optical module is configured to receive the response information of the configuration information of the low-frequency OAM information.
  • the second optical module sending module is configured to send the data stream and receive the returned data stream, including:
  • the data stream sent after being sent back by the first optical module is received.
  • the second optical module sending module is configured to send the data stream of the PRBS code stream.
  • the second optical module sending module is configured to send the data stream in the optical module service offline detection information frame.
  • the second optical module locating module is configured to perform fault locating according to the response information of the configuration information and/or the returned data stream, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • An optical module located in AAU including:
  • a processor configured to read a program in memory and perform the following processes:
  • the data stream is returned through the loopback mechanism for the second optical module and/or the active WDM device to locate the fault according to the returned data stream;
  • a transceiver configured to receive and transmit data under control of the processor.
  • receiving the configuration information sent by the second optical module through the loopback mechanism includes:
  • the configuration information is received by the ROSA, the configuration information is demodulated by the control unit.
  • the configuration information is low frequency OAM information.
  • the response information of the configuration information is returned, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the response information of configuration information is low-frequency OAM information.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • An optical module located in AAU including:
  • the first optical module receiving module is configured to receive configuration information sent by the second optical module, wherein the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • the sending module of the first optical module is configured to return the response information of the configuration information to confirm the completion of the loopback configuration after performing the loopback configuration according to the configuration information, and the response information is used for the second optical module to perform fault location according to the response information of the configuration information ;
  • the first optical module receiving module is further configured to receive the data stream sent by the second optical module;
  • the sending module of the first optical module is further configured to return a data stream through a loopback mechanism, so that the second optical module and/or the active WDM device can locate faults according to the returned data stream.
  • the receiving module of the first optical module is configured to receive the configuration information sent by the second optical module through the loopback mechanism, including:
  • the configuration information is received by the ROSA, the configuration information is demodulated by the control unit.
  • the receiving module of the first optical module is configured to receive the configuration information of the low-frequency OAM information.
  • the sending module of the first optical module is configured to return the response information of the configuration information after performing the loopback configuration according to the configuration information, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the sending module of the first optical module is configured to send the response information of the configuration information of the low-frequency OAM information.
  • the receiving module of the first optical module is configured to receive the data stream of the PRBS code stream.
  • the first optical module receiving module is configured to receive the data stream in the optical module service offline detection information frame.
  • a computer-readable storage medium stores a computer program for executing the above fault location method.
  • the semi-active system is expected to become the mainstream solution for 5G C-RAN fronthaul, there is no solution for how to define wireless and transmission equipment failures.
  • the second optical The module sends information through the loopback mechanism, so that fault location can be performed according to the information returned by the first optical module, so as to support fault definition of wireless and transmission equipment.
  • the information of OAM information, loopback configuration message, PRBS code stream, and service offline detection message is provided for fault location.
  • FIG. 1 is a schematic diagram of an active WDM/OTN transmission system in the background technology
  • FIG. 2 is a schematic diagram of a passive WDM transmission system in the background technology
  • FIG. 3 is a schematic diagram of a semi-active Open-WDM transmission system in the background technology
  • FIG. 4 is a schematic diagram of the implementation flow of the fault location method on the active WDM device side in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of the implementation flow of the fault location method on the AAU side in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fault location background for a 5G C-RAN fronthaul network in an embodiment of the present application
  • FIG. 7 is a schematic diagram of the architecture of the first optical module in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a second optical module and a core unit in an active device in an embodiment of the present application
  • FIG. 9 is a schematic diagram of an optical module structure in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the second structure of the optical module in the embodiment of the present application.
  • a fault location scheme for 5G C-RAN fronthaul network is proposed to support fault definition of wireless and transmission equipment and improve system management and operation and maintenance capabilities.
  • Figure 4 is a schematic diagram of the implementation process of the fault location method on the active WDM device side, as shown in the figure, which may include:
  • Step 401 the second optical module sends configuration information to the first optical module; and/or, after receiving the response information from the first optical module, the second optical module sends a data stream to the first optical module, wherein the response information is
  • the first optical module configures the first optical module to implement loopback, and sends a response message to the second optical module to confirm the completion of the loopback configuration;
  • Step 402 the second optical module receives the data stream sent back by the first optical module
  • Step 403 perform fault location according to the response information of the configuration information and/or the returned data flow.
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU.
  • Figure 5 is a schematic diagram of the implementation process of the fault location method on the AAU side, as shown in the figure, which may include:
  • Step 501 the first optical module receives the configuration information sent by the second optical module, wherein the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • Step 502 after the first optical module performs loopback configuration according to the configuration information, return the response information of the configuration information to confirm the completion of the loopback configuration, and the response information is used for the second optical module to perform fault location according to the response information of the configuration information;
  • Step 503 the first optical module receives the data stream sent by the second optical module
  • Step 504 the first optical module returns the data stream through the loopback mechanism, so that the second optical module and/or the active WDM device can locate the fault according to the returned data stream.
  • Figure 6 is a schematic diagram of the fault location background for the 5G C-RAN fronthaul network.
  • the implementation environment diagram of the fault location solution for the 5G C-RAN fronthaul network is shown in Figure 6.
  • the first optical module of the AAU and the combination of the AAU side It consists of a wave splitter, a multiplexer/demultiplexer on the DU side, and an active WDM device on the DU side.
  • Figure 7 is a schematic diagram of the first optical module architecture.
  • the first optical module may include: the core unit is controlled by TOSA (Transmitter Optical Subassembly), ROSA (Receiver Optical Subassembly), and Unit, CDR (data and clock recovery, clock and data recovery), etc., its architecture is shown in Figure 7.
  • the control unit supports loading and extracting low-frequency control information, supports reading the register information in the optical module and controls the CDR;
  • the CDR supports the return function of the line side;
  • FIG 8 is a schematic diagram of the second optical module and the core unit in the active device.
  • the active WDM device may include: a second optical module, a PRBS (Pseudo Random Binary Sequence, Pseudo Random Binary Sequence) processing unit (optional ), the main control unit, etc., and its architecture is shown in Figure 8.
  • the core unit of the second optical module is composed of TOSA, ROSA, control unit, CDR and so on.
  • the control unit of the second optical module supports loading and extracting low-frequency control information, and supports reading register information;
  • the main control unit supports sending control commands, sending PRBS data streams, and comparing sending and receiving PRBS.
  • the second optical module sends configuration information to the first optical module, including:
  • the control unit of the second optical module receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the configuration information is low-frequency OAM information.
  • the main control unit sends the remote optical module (first optical module) return instruction to the second optical module; the control unit of the second optical module searches the register after receiving the instruction, and loads the low-frequency OAM information, and sends it to the second optical module. an optical module.
  • the central office issues the loopback configuration of the remote optical module (the first optical module), and the format of the loopback configuration message sent by the central office optical module (second optical module) to the remote end may be as shown in Table 1.
  • Table 1 The format of the remote send loopback configuration feedback message
  • confirm the completion and return through the response information of the configuration information including:
  • the second optical module After receiving the response information of the configuration information through the ROSA, the second optical module demodulates the response information through the control unit, and sends it back according to the confirmation of the response information.
  • the first optical module receives the configuration information sent by the second optical module through the loopback mechanism, including:
  • the first optical module After receiving the configuration information through the ROSA, the first optical module demodulates the configuration information through the control unit.
  • the first optical module after the first optical module performs loopback configuration according to the configuration information, it returns the response information of the configuration information, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the response to the configuration information is low-frequency OAM information.
  • the low-frequency OAM information is demodulated by the control unit, and the register is searched, and a return command is issued to the CDR; the CDR performs the return operation on the line side according to the command of the control unit, and returns the control The unit execution is completed; the control unit queries the register and loads the low-frequency OAM information, and sends it to the second optical module through TOSA;
  • the low-frequency OAM information is demodulated by the control unit, and the register is searched, and the confirmation is returned.
  • sending the data stream and receiving the returned data stream includes:
  • the data stream sent after being sent back by the first optical module is received.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • control unit issues a control command, sends the PRBS code stream, and compares the sent and received PRBS to determine the link quality after being returned by the first optical module;
  • the near-end DU-side optical module (second optical module) sends a service offline detection packet, and returns to the DU-side optical module (second optical module) ) and the system side for detection
  • the configured optical module service offline detection information frame format can be seen in Table 3.
  • Table 3 The information frame format of the off-line detection information frame issued by the central office to configure the remote optical module service
  • the second optical module performs fault location according to the response information of the configuration information and/or the returned data stream, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • the second optical module does not receive the OAM information returned by the first optical module or cannot correctly demodulate the OAM information, then the DU side
  • the transmission link and components between the active WDM transmission equipment and the AAU, the AAU wireless equipment, and the optical module all have the risk of failure, and other cooperation schemes can be used to jointly confirm the failure point.
  • the main control unit sends the remote optical module (first optical module) return command, and the second optical module can receive and correctly demodulate the OAM information returned by the first optical module, then the active WDM transmission device on the DU side to the AAU
  • the transmission links and devices between them have connectivity.
  • the main control unit of the active WDM transmission device sends and compares the received PRBS code stream, and adopts the same rate code stream (such as 25G) as the original wireless service.
  • the transmission link and devices are normal, and the fault point may be the AAU wireless device; if there is a certain bit error, the performance of the transmission link and the device between the active WDM transmission device on the DU side and the AAU is degraded, and the transmission maintenance personnel can use other Cooperate with the plan to confirm the fault point.
  • an optical module and a computer-readable storage medium are also provided in the embodiment of the present application. Since the problem-solving principle of these devices is similar to the fault location method, the implementation of these devices can refer to the implementation of the method. Repeat The place will not be repeated.
  • Figure 9 is a schematic diagram of an optical module structure, which is located in an active WDM transmission device. As shown in the figure, the optical module includes:
  • the processor 900 is configured to read the program in the memory 920, and execute the following processes:
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • the transceiver 910 is configured to receive and send data under the control of the processor 900 .
  • configuration information is sent to the first optical module, including:
  • the control unit receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the configuration information is low frequency OAM information.
  • the response information of the configuration information is confirmed and returned, including:
  • the control unit demodulates the response information, and returns it according to the response information confirmation.
  • the response information of configuration information is low-frequency OAM information.
  • sending the data stream and receiving the returned data stream includes:
  • the data stream sent after being sent back by the first optical module is received.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • fault location is performed according to the response information of the configuration information and/or the returned data flow, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 910 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • the embodiment of the present application also provides an optical module located in an active WDM device, including:
  • the second optical module sending module is configured to send configuration information to the first optical module; and/or, after receiving the response information from the first optical module, the second optical module sends a data stream to the first optical module, wherein the response
  • the information is that the first optical module configures the first optical module to implement loopback after receiving the configuration information of the second optical module, and sends a response message to the second optical module to confirm the completion of the loopback configuration
  • the second optical module receiving module is configured to receive the data stream sent back by the first optical module
  • the second optical module positioning module is configured to perform fault positioning according to the response information of the configuration information and/or the returned data stream;
  • the second optical module is located in the active WDM device, and the first optical module is located in the AAU.
  • the second optical module sending module is configured to send configuration information to the first optical module, including:
  • the control unit receives the loopback configuration instruction issued by the main control unit;
  • the configuration information is loaded according to the instruction, it is sent to the first optical module.
  • the second optical module sending module is configured to send the configuration information of the low-frequency OAM information.
  • the sending module of the second optical module is configured to confirm the completion and return through the response information of the configuration information, including:
  • the response information of configuration information is received by ROSA, the response information is demodulated by the control unit, and returned according to the confirmation of the response information.
  • the sending module of the second optical module is configured to receive the response information of the configuration information of the low-frequency OAM information.
  • the second optical module sending module is configured to send the data stream and receive the returned data stream, including:
  • the data stream sent after being sent back by the first optical module is received.
  • the second optical module sending module is configured to send the data stream of the PRBS code stream.
  • the second optical module sending module is configured to send the data stream in the optical module service offline detection information frame.
  • the second optical module locating module is configured to perform fault locating according to the response information of the configuration information and/or the returned data stream, including:
  • the second optical module does not receive the response information returned by the first optical module or cannot correctly demodulate the response information, the transmission link between the active WDM transmission device and the AAU, the device, the AAU wireless device, one of the optical modules or There is a risk of failure in its combination;
  • the second optical module can receive and correctly demodulate the response information returned by the first optical module, the transmission link and device between the active WDM transmission device and the AAU have connectivity;
  • the transmission link and devices between the active WDM transmission equipment and the AAU are normal;
  • each part of the device described above is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in one or more pieces of software or hardware.
  • Figure 10 is a schematic diagram of the second structure of the optical module, which is located in the AAU. As shown in the figure, the optical module includes:
  • the processor 1000 is configured to read the program in the memory 1020 and execute the following processes:
  • the data stream is returned through the loopback mechanism for the second optical module and/or the active WDM device to locate the fault according to the returned data stream;
  • the transceiver 1010 is configured to receive and send data under the control of the processor 1000 .
  • receiving the configuration information sent by the second optical module through the loopback mechanism includes:
  • the configuration information is received by the ROSA, the configuration information is demodulated by the control unit.
  • the configuration information is low frequency OAM information.
  • the response information of the configuration information is returned, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the response information of configuration information is low-frequency OAM information.
  • the data stream is a PRBS code stream.
  • the PRBS code stream is the data stream in the optical module service offline detection information frame.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1010 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • the embodiment of the present application also provides an optical module located in the AAU, including:
  • the first optical module receiving module is configured to receive configuration information sent by the second optical module, wherein the second optical module is located in the active WDM device, and the first optical module is located in the AAU;
  • the sending module of the first optical module is configured to return the response information of the configuration information to confirm the completion of the loopback configuration after performing the loopback configuration according to the configuration information, and the response information is used for the second optical module to perform fault location according to the response information of the configuration information ;
  • the first optical module receiving module is further configured to receive the data stream sent by the second optical module;
  • the sending module of the first optical module is further configured to return a data stream through a loopback mechanism, so that the second optical module and/or the active WDM device can locate faults according to the returned data stream.
  • the receiving module of the first optical module is configured to receive the configuration information sent by the second optical module through the loopback mechanism, including:
  • the configuration information is received by the ROSA, the configuration information is demodulated by the control unit.
  • the receiving module of the first optical module is configured to receive the configuration information of the low-frequency OAM information.
  • the sending module of the first optical module is configured to return the response information of the configuration information after performing the loopback configuration according to the configuration information, including:
  • the CDR executes the return operation on the line side, and returns to the control unit to complete the execution
  • the control unit loads the response information of the configuration information, and sends it to the second optical module through the TOSA.
  • the sending module of the first optical module is configured to send the response information of the configuration information of the low-frequency OAM information.
  • the receiving module of the first optical module is configured to receive the data stream of the PRBS code stream.
  • the first optical module receiving module is configured to receive the data stream in the optical module service offline detection information frame.
  • each part of the device described above is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in one or more pieces of software or hardware.
  • An embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for executing the above fault location method.
  • the technical solution provided by the embodiment of this application supports The fault definition of wireless and transmission equipment, through the rapid troubleshooting of the management and control system, reduces labor costs, shortens troubleshooting time, improves system management and operation and maintenance capabilities, and enhances the reliability of 5G fronthaul networks.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种故障定位方法、设备及存储介质,包括:第二光模块向第一光模块发送配置信息;和/或,第二光模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;第二光模块接收第一光模块发送回的数据流;根据配置信息的响应信息和/或返回的数据流进行故障定位;其中,第二光模块位于有源WDM设备,第一光模块位于AAU。采用本申请能够支持无线和传输设备的故障界定。通过管控系统快速排障,可以减少人力成本、缩短故障排查时间,提升系统管理运维能力,增强了5G前传网络的可靠性。

Description

一种故障定位方法、设备及存储介质
相关申请的交叉引用
本申请基于申请号为202111260186.0、申请日为2021年10月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别涉及一种故障定位方法、设备及存储介质。
背景技术
10站集中的中等规模C-RAN(集中式无线接入网络,Centralized Radio Access Network)正成为5G前传网络的主要组网场景。4G D-RAN(分布式无线接入网络,Distributed Radio Access Network)模式下的光纤直驱方案成本低,但是对光纤资源需求大。5G前传引入WDM(波分复用,Wavelength Division Multiplexing)技术,从而大幅节省光纤资源,已成为业界共识。
基于WDM技术的前传方案通常包括有源WDM/OTN(光传送网,Optical Transport Network)、无源WDM。
图1为有源WDM/OTN传输系统示意图,如图所示,有源WDM/OTN方案:在AAU(有源天线单元,Active Antenna Unit)侧和DU(分布单元,Distributed Unit)侧分别部署有源WDM/OTN设备,通过灰光接口与AAU、DU连接,2台WDM/OTN设备的线路侧采用WDM或高速以太接口。AAU、DU位于无线管理域,有源WDM/OTN设备及之间的光线路位于传输管理域。
图2为无源WDM传输系统示意图,如图所示,无源WDM方案:在AAU侧和DU侧分别部署无源WDM合分波器,AAU和DU采用WDM光模块。无源WDM方案的管理界面划分,通常认为AAU、DU位于无线管理域,AAU侧 和DU侧无源WDM合分波器及之间的光线路位于传输管理域。
有源WDM/OTN方案具备丰富的管理运维能力,无线和传输专业的管理运维界面清晰,但是,成本高,远端需供电、部署受限。
无源WDM方案部署位置灵活、无需供电,成本较低,但是,对光纤链路故障感知能力弱,对于管理运维界面的划分方式,若传输管理域仅包含AAU侧和DU侧无源WDM合分波器及之间的光线路,则缺少在线管理手段和管控系统,需通过人工排障或无线网管告警。
基于此,有公司提出了半有源Open-WDM(开放式WDM)方案,由AAU彩光模块、AAU侧无源波分复用器、DU侧有源WDM设备组成,构成统一管控的前传网络。图3为半有源Open-WDM传输系统示意图,如图所示,该方案远端采用无源合分波器,部署灵活;AAU光模块采用调顶技术加载OAM(操作管理维护,Operation Administration and Maintenance)信息,低成本实现轻量级管控,破解了前传网络哑资源管理的难题。
现有技术的不足在于:该方案同样包含无线、传输2个管理域,由于AAU光模块既作为半有源系统的管控抓手,又位于AAU设备中,因此,在管理运维中不能界定无线、传输设备故障。
发明内容
本申请提供了一种故障定位方法、设备及存储介质,用以解决半有源Open-WDM方案中,在管理运维中不能界定无线、传输设备故障的问题。
本申请提供以下技术方案:
一种故障定位方法,包括:
第二光模块向第一光模块发送配置信息;和/或,第二光模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
第二光模块接收第一光模块发送回的数据流;
根据配置信息的响应信息和/或返回的数据流进行故障定位;
其中,第二光模块位于有源WDM设备,第一光模块位于AAU。
实施中,第二光模块向第一光模块发送配置信息,包括:
第二光模块的控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
实施中,配置信息是低频OAM信息。
实施中,通过配置信息的响应信息确认完成还回,包括:
第二光模块经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
实施中,配置信息的响应信息是低频OAM信息。
实施中,发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
实施中,第二光模块根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
一种故障定位方法,包括:
第一光模块接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
第一光模块按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
第一光模块接收第二光模块发送的数据流;
第一光模块通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
实施中,第一光模块接收第二光模块通过环回机制发送的配置信息,包括:
第一光模块经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,配置信息是低频OAM信息。
实施中,第一光模块按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
实施中,配置信息的响应信息是低频OAM信息。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
一种光模块,位于有源WDM设备,包括:
处理器,配置为读取存储器中的程序,执行下列过程:
向第一光模块发送配置信息;和/或,接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
接收第一光模块发送回的数据流;
根据配置信息的响应信息和/或返回的数据流进行故障定位;
其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
收发机,配置为在处理器的控制下接收和发送数据。
实施中,向第一光模块发送配置信息,包括:
控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
实施中,配置信息是低频OAM信息。
实施中,通过配置信息的响应信息确认完成还回,包括:
经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
实施中,配置信息的响应信息是低频OAM信息。
实施中,发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
实施中,根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
一种光模块,位于有源WDM设备,包括:
第二光模块发送模块,配置为向第一光模块发送配置信息;和/或,第二光 模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
第二光模块接收模块,配置为接收第一光模块发送回的数据流;
第二光模块定位模块,配置为根据配置信息的响应信息和/或返回的数据流进行故障定位;
其中,第二光模块位于有源WDM设备,第一光模块位于AAU。
实施中,第二光模块发送模块,配置为向第一光模块发送配置信息,包括:
控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
实施中,第二光模块发送模块,配置为发送低频OAM信息的配置信息。
实施中,第二光模块发送模块,配置为通过配置信息的响应信息确认完成还回,包括:
经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
实施中,第二光模块发送模块,配置为接收低频OAM信息的配置信息的响应信息。
实施中,第二光模块发送模块,配置为发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
实施中,第二光模块发送模块,配置为发送PRBS码流的数据流。
实施中,第二光模块发送模块,配置为发送光模块业务离线检测信息帧中的数据流。
实施中,第二光模块定位模块,配置为根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信 息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
一种光模块,位于AAU,包括:
处理器,配置为读取存储器中的程序,执行下列过程:
接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
接收第二光模块发送的数据流;
通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位;
收发机,配置为在处理器的控制下接收和发送数据。
实施中,接收第二光模块通过环回机制发送的配置信息,包括:
经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,配置信息是低频OAM信息。
实施中,按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
实施中,配置信息的响应信息是低频OAM信息。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
一种光模块,位于AAU,包括:
第一光模块接收模块,配置为接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
第一光模块发送模块,配置为按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
第一光模块接收模块,还配置为接收第二光模块发送的数据流;
第一光模块发送模块,还配置为通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
实施中,第一光模块接收模块,配置为接收第二光模块通过环回机制发送的配置信息,包括:
经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,第一光模块接收模块,配置为接收低频OAM信息的配置信息。
实施中,第一光模块发送模块,配置为按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
实施中,第一光模块发送模块,配置为发送低频OAM信息的配置信息的响应信息。
实施中,第一光模块接收模块,配置为接收PRBS码流的数据流。
实施中,第一光模块接收模块,配置为接收光模块业务离线检测信息帧中的数据流。
一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述故障定位方法的计算机程序。
本申请有益效果如下:
在半有源系统有望成为5G C-RAN前传的主流方案的背景下,面对如何界定无线、传输设备故障,尚无解决方案的情况,本申请实施例提供的技术方案中,由于第二光模块通过环回机制来发送信息,从而可以根据第一光模块返回的信息进行故障定位,从而能够支持无线和传输设备的故障界定。
优选地,提供了OAM信息、环回配置消息、PRBS码流、业务离线检测报文的信息来进行故障定位。
优选地,通过管控系统快速排障,可以减少人力成本、缩短故障排查时间,提升系统管理运维能力,增强了5G前传网络的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为背景技术中有源WDM/OTN传输系统示意图;
图2为背景技术中无源WDM传输系统示意图;
图3为背景技术中半有源Open-WDM传输系统示意图;
图4为本申请实施例中有源WDM设备侧的故障定位方法实施流程示意图;
图5为本申请实施例中AAU侧的故障定位方法实施流程示意图;
图6为本申请实施例中面向5G C-RAN前传网络的故障定位背景示意图;
图7为本申请实施例中第一光模块架构示意图;
图8为本申请实施例中有源设备中第二光模块及核心单元示意图;
图9为本申请实施例中光模块结构一示意图;
图10为本申请实施例中光模块结构二示意图。
具体实施方式
本申请实施例中提出了一种面向5G C-RAN前传网络的故障定位方案,用以支持无线和传输设备故障界定,提升系统管理运维能力。
下面结合附图对本申请的具体实施方式进行说明。
在说明过程中,将分别从位于AAU的第二光模块与位于有源WDM设备的第一光模块的实施进行说明,这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当它们分开实施时,其也各自解决自身一侧的问题,而二者结合使用时,会获得更好的技术效果。
图4为有源WDM设备侧的故障定位方法实施流程示意图,如图所示,可以包括:
步骤401、第二光模块向第一光模块发送配置信息;和/或,第二光模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
步骤402、第二光模块接收第一光模块发送回的数据流;
步骤403、根据配置信息的响应信息和/或返回的数据流进行故障定位。
其中,第二光模块位于有源WDM设备,第一光模块位于AAU。
图5为AAU侧的故障定位方法实施流程示意图,如图所示,可以包括:
步骤501、第一光模块接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
步骤502、第一光模块按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
步骤503、第一光模块接收第二光模块发送的数据流;
步骤504、第一光模块通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
下面先对涉及的设备进行说明。
图6为面向5G C-RAN前传网络的故障定位背景示意图,该面向5G C-RAN前传网络的故障定位方案的实施环境示意图如图6所示,由AAU的第一光模块、AAU侧的合分波器、DU侧的合分波器、DU侧的有源WDM设备组成。
图7为第一光模块架构示意图,如图所示,第一光模块可以包括:核心单元由TOSA(光发射次模块,Transmitter Optical Subassembly)、ROSA(光接收次组件,Receiver Optical Subassembly)、控制单元、CDR(数据和时钟恢复,clock and data recovery)等组成,其架构如图7所示。其中,控制单元支持加载和提取低频管控信息,支持读取光模块中寄存器信息并控制CDR;CDR支持线路侧还回功能;
图8为有源设备中第二光模块及核心单元示意图,如图所示,有源WDM设备可以包括:第二光模块、PRBS(伪随机二进制序列,Pseudo Random Binary Sequence)处理单元(可选)、主控单元等组成,其架构如图8所示。第二光模块的核心单元由TOSA、ROSA、控制单元、CDR等组成。其中,第二光模块的控制单元支持加载和提取低频管控信息,支持读取寄存器信息;主控单元支持发送控制指令,发送PRBS数据流,并比对发送和接收PRBS。
实施中,第二光模块向第一光模块发送配置信息,包括:
第二光模块的控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
具体实施中,配置信息是低频OAM信息。
具体的,主控单元向第二光模块下发远端光模块(第一光模块)还回指令;第二光模块的控制单元收到指令后查找寄存器,并加载低频OAM信息,发送给第一光模块。
局端下发远端光模块(第一光模块)环回配置,局端光模块(第二光模块)向远端发送环回配置消息格式可以如表1所示。
表1:远端发送环回配置反馈消息格式
Figure PCTCN2022127244-appb-000001
Figure PCTCN2022127244-appb-000002
实施中,对于第二光模块,有:通过配置信息的响应信息确认完成还回,包括:
第二光模块经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
实施中,对于第一光模块,有:
第一光模块接收第二光模块通过环回机制发送的配置信息,包括:
第一光模块经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,第一光模块按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
具体实施中,配置信息的响应是低频OAM信息。
具体的,第一光模块经ROSA接收后,通过控制单元解调出低频OAM信息,并查找寄存器,向CDR下发还回指令;CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;控制单元查询寄存器并加载低频OAM信息,通过TOSA发送给第二光模块;
第二光模块经ROSA接收后,通过控制单元解调出低频OAM信息,并查找寄存器,确认完成还回。
远端发送环回配置反馈消息格式可以参见表2所示。
表2:环回配置消息格式
Figure PCTCN2022127244-appb-000003
实施中,发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
具体实施中,数据流是PRBS码流。
具体实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
具体的,控制单元下发控制指令,发送PRBS码流,经第一光模块还回后,比对发送和接收PRBS,判断链路质量;
在配置AAU侧远端光模块(第一光模块)外环时,近端DU侧光模块(第二光模块)发送业务离线检测报文,环回后返回DU侧光模块(第二光模块)和系统侧进行检测,配置的光模块业务离线检测信息帧格式可以见表3所示。
表3:局端下发配置远端光模块业务离线检测信息帧格式
Figure PCTCN2022127244-appb-000004
Figure PCTCN2022127244-appb-000005
下面对第二光模块进行故障定位的实施进行说明。
实施中,第二光模块根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
具体的,若主控单元下发远端光模块(第一光模块)还回指令后,第二光模块未收到第一光模块返回的OAM信息或无法正确解调OAM信息,则DU侧有源WDM传输设备到AAU之间的传输链路及器件、AAU无线设备及光模块均存在故障风险,可采用其他配合方案共同确认故障点。
若主控单元下发远端光模块(第一光模块)还回指令后,第二光模块能够接收并正确解调第一光模块返回的OAM信息,则DU侧有源WDM传输设备 到AAU之间的传输链路及器件具有连通性。有源WDM传输设备的主控单元发送和比对接收的PRBS码流,采用与原无线业务同速率码流(如25G),若无误码,则DU侧有源WDM传输设备到AAU之间的传输链路及器件均正常,故障点可能为AAU无线设备;若有一定误码,则DU侧有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化,传输维护人员可采用其他配合方案共同确认故障点。
基于同一申请构思,本申请实施例中还提供了一种光模块、及计算机可读存储介质,由于这些设备解决问题的原理与故障定位方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本申请实施例提供的技术方案时,可以按如下方式实施。
图9为光模块结构一示意图,位于有源WDM传输设备,如图所示,光模块中包括:
处理器900,配置为读取存储器920中的程序,执行下列过程:
向第一光模块发送配置信息;和/或,接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
接收第一光模块发送回的数据流;
根据配置信息的响应信息和/或返回的数据流进行故障定位;
其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
收发机910,配置为在处理器900的控制下接收和发送数据。
实施中,向第一光模块发送配置信息,包括:
控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
实施中,配置信息是低频OAM信息。
实施中,通过配置信息的响应信息确认完成还回,包括:
经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根 据响应信息确认完成还回。
实施中,配置信息的响应信息是低频OAM信息。
实施中,发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
实施中,根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
本申请实施例中还提供了一种光模块,位于有源WDM设备,包括:
第二光模块发送模块,配置为向第一光模块发送配置信息;和/或,第二光 模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
第二光模块接收模块,配置为接收第一光模块发送回的数据流;
第二光模块定位模块,配置为根据配置信息的响应信息和/或返回的数据流进行故障定位;
其中,第二光模块位于有源WDM设备,第一光模块位于AAU。
实施中,第二光模块发送模块,配置为向第一光模块发送配置信息,包括:
控制单元收到主控单元下发环回配置的指令;
根据指令加载配置信息后,发送给第一光模块。
实施中,第二光模块发送模块,配置为发送低频OAM信息的配置信息。
实施中,第二光模块发送模块,配置为通过配置信息的响应信息确认完成还回,包括:
经ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
实施中,第二光模块发送模块,配置为接收低频OAM信息的配置信息的响应信息。
实施中,第二光模块发送模块,配置为发送数据流,接收返回的数据流,包括:
根据控制单元下发控制指令,发送数据流;
接收经第一光模块还回后发送的数据流。
实施中,第二光模块发送模块,配置为发送PRBS码流的数据流。
实施中,第二光模块发送模块,配置为发送光模块业务离线检测信息帧中的数据流。
实施中,第二光模块定位模块,配置为根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信 息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
图10为光模块结构二示意图,位于AAU,如图所示,光模块中包括:
处理器1000,配置为读取存储器1020中的程序,执行下列过程:
接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
接收第二光模块发送的数据流;
通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位;
收发机1010,配置为在处理器1000的控制下接收和发送数据。
实施中,接收第二光模块通过环回机制发送的配置信息,包括:
经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,配置信息是低频OAM信息。
实施中,按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
实施中,配置信息的响应信息是低频OAM信息。
实施中,数据流是PRBS码流。
实施中,PRBS码流是光模块业务离线检测信息帧中的数据流。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
本申请实施例中还提供了一种光模块,位于AAU,包括:
第一光模块接收模块,配置为接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
第一光模块发送模块,配置为按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
第一光模块接收模块,还配置为接收第二光模块发送的数据流;
第一光模块发送模块,还配置为通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
实施中,第一光模块接收模块,配置为接收第二光模块通过环回机制发送的配置信息,包括:
经ROSA接收配置信息后,通过控制单元解调出配置信息。
实施中,第一光模块接收模块,配置为接收低频OAM信息的配置信息。
实施中,第一光模块发送模块,配置为按配置信息进行环回配置后,返回配置信息的响应信息,包括:
根据解调出的配置信息向CDR下发还回指令;
CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
实施中,第一光模块发送模块,配置为发送低频OAM信息的配置信息的响应信息。
实施中,第一光模块接收模块,配置为接收PRBS码流的数据流。
实施中,第一光模块接收模块,配置为接收光模块业务离线检测信息帧中的数据流。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本申请实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述故障定位方法的计算机程序。
具体实施可以参见位于有源WDM设备的第二光模块和/或位于AAU的第一光模块上的故障定位方法的实施。
综上所述,在半有源系统有望成为5G C-RAN前传的主流方案的背景下,面对如何界定无线、传输设备故障,尚无解决方案的情况,本申请实施例提供的技术方案支持无线和传输设备的故障界定,通过管控系统快速排障,减少人力成本、缩短故障排查时间,提升系统管理运维能力,增强了5G前传网络的可靠性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/ 或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种故障定位方法,包括:
    第二光模块向第一光模块发送配置信息;和/或,第二光模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
    第二光模块接收第一光模块发送回的数据流;
    根据配置信息的响应信息和/或返回的数据流进行故障定位;
    其中,第二光模块位于有源波分复用WDM设备,第一光模块位于有源天线单元AAU。
  2. 如权利要求1所述的方法,其中,通过配置信息的响应信息确认完成还回,包括:
    第二光模块经光接收次组件ROSA接收配置信息的响应信息后,通过控制单元解调出响应信息,根据响应信息确认完成还回。
  3. 如权利要求2所述的方法,其中,配置信息的响应信息是低频操作管理维护OAM信息。
  4. 如权利要求1所述的方法,其中,发送数据流,接收返回的数据流,包括:
    根据控制单元下发控制指令,发送数据流;
    接收经第一光模块还回后发送的数据流。
  5. 如权利要求4所述的方法,其中,数据流是伪随机二进制序列PRBS码流。
  6. 如权利要求5所述的方法,其中,PRBS码流是光模块业务离线检测信息帧中的数据流。
  7. 如权利要求1所述的方法,其中,第二光模块向第一光模块发送配置信息,包括:
    第二光模块的控制单元收到主控单元下发环回配置的指令;
    根据指令加载配置信息后,发送给第一光模块。
  8. 如权利要求7所述的方法,其中,配置信息是低频OAM信息。
  9. 如权利要求1至8任一所述的方法,其中,第二光模块根据配置信息的响应信息和/或返回的数据流进行故障定位,包括:
    若第二光模块未收到第一光模块返回的响应信息或无法正确解调响应信息,则有源WDM传输设备到AAU之间的传输链路、器件、AAU无线设备、光模块之一或者其组合存在故障风险;
    若第二光模块能够接收并正确解调第一光模块返回的响应信息,则有源WDM传输设备到AAU之间的传输链路及器件具有连通性;
    若第二光模块发送与接收的数据流无误码,则有源WDM传输设备到AAU之间的传输链路及器件均正常;
    若第二光模块发送与接收的数据流有误码,则有源WDM传输设备到AAU之间的传输链路及器件存在性能劣化。
  10. 一种故障定位方法,包括:
    第一光模块接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
    第一光模块按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
    第一光模块接收第二光模块发送的数据流;
    第一光模块通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
  11. 如权利要求10所述的方法,其中,第一光模块接收第二光模块发送的配置信息,包括:
    第一光模块经ROSA接收配置信息后,通过控制单元解调出配置信息。
  12. 如权利要求11所述的方法,其中,配置信息是低频OAM信息。
  13. 如权利要求10所述的方法,其中,第一光模块按配置信息进行环回配置后,返回配置信息的响应信息,包括:
    根据解调出的配置信息向CDR下发还回指令;
    CDR根据控制单元指令,执行线路侧还回操作,并返回控制单元执行完成;
    控制单元加载配置信息的响应信息,通过TOSA发送给第二光模块。
  14. 如权利要求13所述的方法,其中,配置信息的响应信息是低频OAM信息。
  15. 如权利要求10所述的方法,其中,数据流是PRBS码流。
  16. 如权利要求15所述的方法,其中,PRBS码流是光模块业务离线检测信息帧中的数据流。
  17. 一种光模块,位于有源WDM设备,包括:
    处理器,配置为读取存储器中的程序,执行下列过程:
    向第一光模块发送配置信息;和/或,接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
    接收第一光模块发送回的数据流;
    根据配置信息的响应信息和/或返回的数据流进行故障定位;
    其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
    收发机,配置为在处理器的控制下接收和发送数据。
  18. 一种光模块,位于有源WDM设备,包括:
    第二光模块发送模块,配置为向第一光模块发送配置信息;和/或,第二光模块接收第一光模块的响应信息后,向第一光模块发送数据流,其中,所述响应信息是第一光模块接收第二光模块的配置信息后,配置第一光模块实现环回,并向第二光模块发送响应信息确认完成环回配置;
    第二光模块接收模块,配置为接收第一光模块发送回的数据流;
    第二光模块定位模块,配置为根据配置信息的响应信息和/或返回的数据流进行故障定位;
    其中,第二光模块位于有源WDM设备,第一光模块位于AAU。
  19. 一种光模块,位于AAU,包括:
    处理器,配置为读取存储器中的程序,执行下列过程:
    接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
    按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
    接收第二光模块发送的数据流;
    通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位;
    收发机,配置为接收和发送数据。
  20. 一种光模块,位于AAU,包括:
    第一光模块接收模块,配置为接收第二光模块发送的配置信息,其中,第二光模块位于有源WDM设备,第一光模块位于AAU;
    第一光模块发送模块,配置为按配置信息进行环回配置后,返回配置信息的响应信息确认完成环回配置,所述响应信息用以供第二光模块根据配置信息的响应信息进行故障定位;
    第一光模块接收模块,还配置为接收第二光模块发送的数据流;
    第一光模块发送模块,还配置为通过环回机制返回数据流,用以供第二光模块和/或有源WDM设备根据返回的数据流进行故障定位。
  21. 一种计算机可读存储介质,所述计算机可读存储介质存储有执行权利要求1至16任一所述方法的计算机程序。
PCT/CN2022/127244 2021-10-28 2022-10-25 一种故障定位方法、设备及存储介质 WO2023072029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111260186.0 2021-10-28
CN202111260186.0A CN116055921A (zh) 2021-10-28 2021-10-28 一种故障定位方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023072029A1 true WO2023072029A1 (zh) 2023-05-04

Family

ID=86129965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127244 WO2023072029A1 (zh) 2021-10-28 2022-10-25 一种故障定位方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116055921A (zh)
WO (1) WO2023072029A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241711A1 (en) * 2013-02-28 2014-08-28 Aoptix Technologies, Inc. Low Latency Data Transmission Network
CN105785335A (zh) * 2016-03-28 2016-07-20 电子科技大学 一种基于cPCI的数字阵接收通道性能自动测试系统
CN113541784A (zh) * 2020-04-22 2021-10-22 中兴通讯股份有限公司 光模块及其远程监控方法、监控方法、前传系统、存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241711A1 (en) * 2013-02-28 2014-08-28 Aoptix Technologies, Inc. Low Latency Data Transmission Network
CN105785335A (zh) * 2016-03-28 2016-07-20 电子科技大学 一种基于cPCI的数字阵接收通道性能自动测试系统
CN113541784A (zh) * 2020-04-22 2021-10-22 中兴通讯股份有限公司 光模块及其远程监控方法、监控方法、前传系统、存储介质

Also Published As

Publication number Publication date
CN116055921A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
EP1460801B1 (en) System and method for fault diagnosis using distributed alarm correlation
US20060010441A1 (en) Network management system
US8477596B2 (en) Application of hardware-based mailboxes in network transceivers and distributed approach for predictable software-based protection switching
CN102882704B (zh) 一种issu的软重启升级过程中的链路保护方法和设备
CN101573940A (zh) 用于tcp高可用性的方法和装置
KR20180039465A (ko) 소프트웨어 정의 네트워크 기반 서비스 기능 체인의 서비스 기능 경로 설정 장치 및 방법
CN112118070A (zh) 一种前传网络的控制方法、网络设备及系统
CN103684954A (zh) 能冗余操作的工业通信系统和用于操作所述工业通信系统的方法
US20110208844A1 (en) Cluster system, method and device for expanding cluster system
CN107040403A (zh) 基于dds技术提高分布式系统可靠性的方法
CN109474341A (zh) 一种光纤网络及其网络拓扑方法
TW201531108A (zh) 電光信號傳輸技術
US8902898B2 (en) Apparatus and method for transferring a data signal by bypassing a power-saving segment in a communication network
WO2023072029A1 (zh) 一种故障定位方法、设备及存储介质
CN111953524B (zh) 一种流水线机制的保护倒换方法及通信设备
CN105763442A (zh) 主备倒换lacp聚合链路不中断的pon系统及方法
CN105610555A (zh) 一种实用的系统级冗余通信网络架构
US20230246726A1 (en) Orchestration control protocol
CN106533771A (zh) 一种网络设备以及控制信息传输方法
CN110213162A (zh) 一种面向大规模计算机系统的容错路由方法
JP5974852B2 (ja) 伝送装置、および伝送方法
CN103501239A (zh) 一种端口状态同步方法、相关设备及系统
CN209930282U (zh) 一种利用控制面链路自动保护数据面链路的系统
CN104219126A (zh) 一种有虚拟通道方式下子环协议vlan的自动学习方法和设备
WO2017016464A1 (zh) 一种层邻接发现的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885906

Country of ref document: EP

Kind code of ref document: A1