WO2023071914A1 - 微显示器及其制作方法 - Google Patents

微显示器及其制作方法 Download PDF

Info

Publication number
WO2023071914A1
WO2023071914A1 PCT/CN2022/126452 CN2022126452W WO2023071914A1 WO 2023071914 A1 WO2023071914 A1 WO 2023071914A1 CN 2022126452 W CN2022126452 W CN 2022126452W WO 2023071914 A1 WO2023071914 A1 WO 2023071914A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion layer
self
wavelength
light
Prior art date
Application number
PCT/CN2022/126452
Other languages
English (en)
French (fr)
Inventor
仉旭
庄永漳
刘纪美
Original Assignee
镭昱光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 镭昱光电科技(苏州)有限公司 filed Critical 镭昱光电科技(苏州)有限公司
Publication of WO2023071914A1 publication Critical patent/WO2023071914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present application particularly relates to a microdisplay and a manufacturing method thereof, which belong to the field of microdisplay technology.
  • a manufacturing method of a wavelength conversion matrix is disclosed in prior art 1 (US9904097 B2, US8459855B2), as shown in FIG. 133 is a pad, 141/142/143 is a red, green and blue quantum dot film), which uses transparent photoresist to build a wall structure, and then helps to limit the distribution of the quantum dot film made by the air spray method, specifically the wavelength conversion material Direct coating and patterning on the display panel, in which the photoluminescent material is dispersed in a low-viscosity solvent and then printed on the display panel using an air jet method.
  • the thickness of the material is difficult to accumulate, so the photoinduced conversion is insufficient to affect the display quality.
  • the printing process requires high alignment accuracy and is time-consuming, so when the microdisplay As the resolution and pixel density of the screen continue to increase, the productivity of the printing process will be very problematic.
  • prior art 2 discloses that the wavelength conversion material is first coated on a transparent substrate and patterned, and then covered on the display panel by flip-chip packaging.
  • the photoluminescent material is dispersed in the photoresist and patterned by photolithography, the production efficiency is greatly improved, and the light conversion efficiency is also improved due to the increase in material thickness.
  • the resolution is limited due to the severe scattering of light conversion materials.
  • the concentration of photoluminescent materials must be controlled at a low level, but the corresponding absorption and conversion characteristics will be affected. degradation occurs, so balancing resolution and conversion efficiency in this approach is very challenging.
  • the main purpose of this application is to provide a microdisplay and its manufacturing method to overcome the deficiencies in the prior art.
  • the embodiment of the present application provides a kind of manufacturing method of microdisplay, it comprises:
  • a substrate is provided, the substrate has a first surface, and a plurality of self-luminous pixels are distributed on the first surface;
  • a mask is covered on the surface of the wavelength conversion layer, and the mask is set corresponding to some or all of the self-luminous pixels;
  • the rest of the wavelength conversion layer not protected by the mask is removed by dry etching, so as to form a wavelength conversion matrix.
  • the embodiment of the present application also provides a kind of microdisplay, it comprises:
  • the substrate has a first surface, and a plurality of self-luminous pixels are distributed on the first surface;
  • a wavelength conversion matrix which includes at least one wavelength conversion layer disposed on the first surface of the substrate, the wavelength conversion layer includes a mask protection area and a dry etching area, and the mask protection area corresponds to part or all of the self-luminous pixels, the wavelength conversion layer covers part or all of the self-luminous pixels.
  • the pattern of the wavelength conversion layer of a method for manufacturing a wavelength conversion matrix provided in the embodiment of the present application is obtained by dry etching, and the etching mask is obtained by using a high-resolution photoresist through additional photolithography steps and The metallization step is defined so that the resolution of the obtained wavelength conversion matrix is higher;
  • the photoluminescent material in the manufacturing method of a wavelength conversion matrix provided by the embodiment of the present application can be dispersed in the polymer film material at a relatively high concentration.
  • a relatively thick photoluminescent material film can be It can be realized by adjusting the process parameters of photolithography and dry etching, so as to obtain high conversion efficiency.
  • Fig. 1a, Fig. 1b are the schematic structural diagrams of the fabrication principle of a wavelength conversion matrix in the prior art
  • Fig. 2 is a schematic structural view of a microdisplay provided in a typical implementation case of the present application
  • Fig. 3a-Fig. 31 are the structural schematic diagrams of the manufacturing process of a microdisplay provided in a typical implementation case of the present application;
  • FIG. 4 is a schematic diagram of the distribution pattern of self-luminous pixel points 20 provided in a typical implementation case of the present application;
  • Fig. 5a, Fig. 5b, and Fig. 5c are schematic diagrams of the arrangement structure of red, green and blue pixels in full-color pixels.
  • the embodiment of the present application provides a kind of manufacturing method of microdisplay, it comprises:
  • a substrate is provided, the substrate has a first surface, and a plurality of self-luminous pixels are distributed on the first surface;
  • a mask is covered on the surface of the wavelength conversion layer, and the mask is set corresponding to some or all of the self-luminous pixels;
  • the rest of the wavelength conversion layer not protected by the mask is removed by dry etching, so as to form a wavelength conversion matrix.
  • the manufacturing method specifically includes: coating a wavelength conversion material on the first surface of the substrate, curing the wavelength conversion material by means of ultraviolet light irradiation or thermal baking to form the wavelength conversion layer.
  • the mask is a hard mask
  • the hard mask is any one or a combination of two or more of a dielectric material mask, a photoresist mask, and a metal mask, but Not limited to this.
  • the material of the dielectric material mask includes any one or a combination of two or more of titanium dioxide, zirconium dioxide, silicon dioxide, silicon nitride, and aluminum oxide, but is not limited thereto .
  • the material of the metal mask includes any one or a combination of two or more of cadmium, aluminum, nickel, gold, copper, chromium, titanium, platinum, but is not limited thereto.
  • the material of the photoresist mask includes positive photoresist or negative photoresist.
  • the dry etching method includes physical etching, chemical etching or physicochemical etching and the like.
  • the physical etching includes ion beam etching, and the etching gas used in the ion beam etching includes an inert gas, such as argon, etc.; the chemical etching includes plasma etching, and the plasma etching
  • the etching gas used includes fluorine-containing gas, such as sulfur hexafluoride, carbon tetrafluoride, trifluoromethane, etc.; the physical and chemical etching includes reactive ion etching, and the etching gas used in the reactive ion etching includes
  • the gas of fluorine, chlorine or sulfur for example, may be any one or a combination of two or more of chlorine, boron trichloride, sulfur hexafluoride, carbon tetrafluoride, and inert gases, but is not limited thereto.
  • the manufacturing method specifically includes: first coating an etching barrier layer on the first surface of the substrate, and then coating a wavelength conversion layer on the surface of the etching barrier layer.
  • the manufacturing method further includes: forming a passivation layer on the first surface of the substrate, the passivation layer filling the gaps of the wavelength conversion matrix, the surface of the passivation layer and The surface of the wavelength conversion layer is flush with or lower than the surface of the wavelength conversion layer.
  • a plurality of first self-luminous pixels are distributed on the first surface of the substrate; and the manufacturing method further includes:
  • the remaining part of the first wavelength conversion layer not protected by the first mask is removed by dry etching, so as to form the wavelength conversion matrix; wherein, the first self-luminous pixel points superimpose the first wavelength
  • the conversion layer emits light at the first optical wavelength.
  • the manufacturing method further includes: disposing a first filter layer on the first wavelength conversion layer, and the first filter layer is capable of passing light of the first light wavelength.
  • At least first self-luminous pixel points and second self-luminous pixel points are distributed on the first surface of the substrate; and the manufacturing method further includes:
  • a second mask is set on a second area on the surface of the second wavelength conversion layer, and the second area is set corresponding to the second self-luminous pixel;
  • the remaining part of the second wavelength conversion layer not protected by the second mask is removed by dry etching, so as to form the wavelength conversion matrix; wherein, the first self-luminous pixel points superimpose the first wavelength
  • the conversion layer emits light of the first light wavelength
  • the second self-luminous pixel point overlaps with the second wavelength conversion layer to emit light of the second light wavelength.
  • the wavelengths of light emitted by the first self-luminous pixel point and the second self-luminous pixel point are the same or different, and the photoluminescence contained in the first wavelength conversion layer and the second wavelength conversion layer
  • the materials are the same or different, and the light of the first light wavelength is different from the light of the second light wavelength.
  • the manufacturing method further includes: respectively disposing a first filter layer and a second filter layer on the first wavelength conversion layer and the second wavelength conversion layer, the first The filter layer is capable of passing light of the first light wavelength; the second filter layer is capable of passing light of the second light wavelength.
  • the first surface of the substrate is also distributed with third self-luminous pixels; and the manufacturing method further includes:
  • Dry etching is used to remove the remaining part of the third wavelength conversion layer that is not protected by the third mask, so as to form the wavelength conversion matrix; wherein, the third self-luminous pixel overlaps the third The wavelength converting layer emits light at a third optical wavelength.
  • the wavelengths of light emitted by the first self-luminous pixel, the second self-luminous pixel and the third self-luminous pixel are the same or different, and the first wavelength conversion layer, the second wavelength conversion layer
  • the photoluminescent materials contained in the first wavelength conversion layer and the third wavelength conversion layer are the same or different, and the first light wavelength light, the second light wavelength light and the third light wavelength light are different.
  • the manufacturing method further includes: respectively disposing a first filter layer, a second wavelength conversion layer on the first wavelength conversion layer, the second wavelength conversion layer and the third wavelength conversion layer.
  • a filter layer and a third filter layer the first filter layer can pass the first light wavelength light; the second filter layer can pass the second light wavelength light, and the third filter layer can pass the light of the second light wavelength.
  • the filter layer passes the third light wavelength light.
  • the manufacturing method further includes: removing the mask after forming the wavelength conversion matrix.
  • the embodiment of the present application also provides a kind of microdisplay, it comprises:
  • the substrate has a first surface, and a plurality of self-luminous pixels are distributed on the first surface;
  • a wavelength conversion matrix which includes at least one wavelength conversion layer disposed on the first surface of the substrate, the wavelength conversion layer includes a mask protection area and a dry etching area, and the mask protection area corresponds to part or all of the self-luminous pixels, the wavelength conversion layer covers part or all of the self-luminous pixels.
  • the substrate includes silicon-based CMOS or thin film field effect transistors and the like.
  • the self-luminous pixels include micro light-emitting diodes, wherein the plurality of self-luminous pixels are distributed in an array, and the distance between the plurality of self-luminous pixels is 1-100 ⁇ m.
  • first self-luminous pixels are distributed on the first surface of the substrate, the wavelength conversion matrix includes a first wavelength conversion layer, and the first wavelength conversion layer is correspondingly covered with the first self-luminous pixels. point, the first self-luminous pixel is superimposed on the first wavelength conversion layer to emit light of the first light wavelength.
  • a first optical filter layer is further disposed on the first wavelength conversion layer, and the first optical filter layer can allow light of the first light wavelength to pass through.
  • first self-luminous pixels and second self-luminous pixels are distributed on the first surface of the substrate, the wavelength conversion matrix includes a first wavelength conversion layer and a second wavelength conversion layer, the The first wavelength conversion layer and the second wavelength conversion layer respectively cover the first self-luminous pixel point and the second self-luminous pixel point, and the first self-luminous pixel point overlaps the first wavelength conversion layer to emit light of the first light wavelength, The second self-luminous pixel superimposes the second wavelength conversion layer to emit light of the second light wavelength;
  • the wavelengths of light emitted by the first self-luminous pixel point and the second self-luminous pixel point are the same or different, and the photoluminescent materials contained in the first wavelength conversion layer and the second wavelength conversion layer are the same or different,
  • the first optical wavelength light is different from the second optical wavelength light.
  • a first filter layer and a second filter layer are respectively arranged on the first wavelength conversion layer and the second wavelength conversion layer, and the first filter layer can make the The light of the first light wavelength passes through, and the second filter layer is capable of passing the light of the second light wavelength.
  • third self-luminous pixels are further distributed on the first surface of the substrate, and the wavelength conversion matrix further includes a third wavelength conversion layer covering the third self-luminous pixels, and the first Three self-luminous pixels superimposed on the third wavelength conversion layer to emit light of a third light wavelength;
  • the wavelengths of light emitted by the first self-luminous pixel, the second self-luminous pixel and the third self-luminous pixel are the same or different, and the first wavelength conversion layer, the second wavelength conversion layer, the third wavelength
  • the photoluminescent materials contained in the conversion layer are the same or different, and the first light wavelength, the second light wavelength and the third light wavelength are different.
  • a third optical filter layer is disposed on the third wavelength conversion layer, and the third optical filter layer can allow the light of the third optical wavelength to pass through.
  • the first filter layer, the second filter layer, and the third first filter layer include organic color filter photoresists or inorganic distributed drag reflectors, but are not limited thereto.
  • the wavelength conversion material contained in the wavelength conversion layer includes a photoluminescence material, a polymer film material and a solvent.
  • the photoluminescent material includes phosphors or quantum dots
  • the phosphors can be yttrium aluminum garnet, cerium phosphors, (oxy)nitride phosphors, silicate phosphors, and Mn 4+ activated fluoride phosphors, etc.
  • the quantum dots can be group II-VI compound quantum dots (such as cadmium sulfide, cadmium selenide, cadmium telluride, zinc oxide, zinc selenide, zinc telluride, etc.), III - Group V quantum dots (such as gallium arsenide, gallium phosphide, gallium antimonide, mercury sulfide, mercury selenide, mercury antimonide, indium arsenide, indium phosphide, indium antimonide, aluminum arsenide, phosphide aluminum, aluminum antimonide, etc.), perovskite quantum dots, of course, the photoluminescent material can also be an organic dye, etc.
  • the photoluminescent material includes fluorescent powder or quantum dots
  • the polymer film material includes any one or a combination of two or more of acrylic acid, polyethylene, and resin
  • the solvent includes propylene glycol Any one or a combination of two or more of methyl ether acetate, toluene and alcohol, but not limited thereto.
  • a passivation layer is further provided on the first surface of the substrate, and the passivation layer fills the gaps of the wavelength conversion matrix, and the surface of the passivation layer and the wavelength conversion layer The surface is flush with or lower than the surface of the wavelength conversion layer.
  • the material of the passivation layer includes any one or a combination of two or more of organic black matrix photoresist, color filter photoresist, and polyimide, but is not limited thereto.
  • the first surface of the substrate is further covered with an etching barrier layer, and the wavelength conversion layer and the passivation layer are disposed on the etching barrier layer.
  • the material of the etching stopper layer includes any one or a combination of two or more of silicon dioxide, silicon nitride, and aluminum oxide, but is not limited thereto.
  • the self-illuminating pixel points provide initial luminescence with the first wavelength
  • the initial luminescence can be monochromatic light, such as ultraviolet, blue, green, etc.; of course, it can also be bicolor light, such as ultraviolet Add blue, blue plus green, etc.; of course, it can also be white light, such as red, green, blue, blue, yellow, etc.
  • the wavelength conversion material corresponding to the wavelength can be omitted. For example, if the initial luminescence of the display panel (which includes a driving panel and self-luminous pixels) is blue, then Corresponding blue wavelength conversion materials do not need to be made again.
  • the wavelength of the light converted by the wavelength conversion layer is longer than the wavelength of the original light, and the light with the second wavelength formed after conversion can be monochromatic light (such as blue, green, yellow, red light, etc.) , or polychromatic light (such as blue-green, blue-red, red-green, blue-green-red, etc.).
  • monochromatic light such as blue, green, yellow, red light, etc.
  • polychromatic light such as blue-green, blue-red, red-green, blue-green-red, etc.
  • the initial light emission of the display panel is blue, it can be converted into a monochromatic green display by using only green wavelength conversion materials.
  • any other color combination is also possible, as long as the corresponding color conversion materials are selected. That's it.
  • a microdisplay including a driving panel 10, a self-luminous pixel point 20, an etching barrier layer 30, wavelength conversion layers 41, 42, 43 and a passivation layer 60, wherein the self-luminous pixel
  • the point 20 is arranged on the driving panel 10, the etching barrier layer 30 is stacked on the driving panel 10, and covers the self-luminous pixel point 20, the wavelength conversion layers 41, 42, 43 and
  • the passivation layer 60 is disposed on the etching barrier layer 30, the wavelength conversion layers 41, 42, 43 correspond to the self-luminous pixel points 20, and the passivation layer 60 is disposed on the multiple wavelength conversion layers 41, 42, 43, wherein the self-luminous pixel 20 is superimposed on the wavelength conversion layer 41, 42, 43 to emit light with a specified wavelength.
  • the driving panel 10 may be a thin film field effect transistor, such as silicon-based CMOS.
  • the self-illuminating pixel point 20 may be a micro light emitting diode, or a micro organic light emitting diode, wherein the micro light emitting diode is formed based on an inorganic semiconductor material, for example, the inorganic semiconductor
  • the inorganic semiconductor material can be gallium nitride, aluminum gallium nitride, gallium arsenide, aluminum gallium indium phosphide, etc.
  • the micro organic light-emitting diodes are formed based on organic materials, for example, the organic materials can be small molecules, polymers, phosphorescent materials, etc. .
  • the self-illuminating pixel point 20 provides initial luminescence with a first wavelength
  • the initial luminescence can be monochromatic light, such as ultraviolet, blue, green, etc.; of course, it can also be bicolor light , such as ultraviolet plus blue, blue plus green, etc.; of course, it can also be white light, such as red, green, blue, blue, yellow, etc.
  • the wavelength conversion layer (material) corresponding to the light of this wavelength can be omitted. For example, if the initial luminescence of the display panel is blue, then the corresponding blue The color wavelength conversion material just does not need to be made again.
  • multiple self-luminous pixel points 20 may be provided, and a plurality of self-luminous pixel points 20 are distributed in the first area of the driving panel 10, and a plurality of self-luminous pixel points 20
  • the pixel points 20 may be distributed in a patterned array, wherein the first area may be considered as a light emitting area.
  • the pixel pitch of the self-illuminating pixels 20 is 1-100 ⁇ m, and the pixel resolution of the self-illuminating pixels 20 can be flexibly set, such as VGA (640*480), XGA (1024*768), FHD(1920*1080), etc.
  • the etching barrier layer 30 can protect the display panel at the bottom (the display panel includes a driving panel and self-luminous pixels) during dry etching of the wavelength conversion layer, and the etching barrier layer
  • the material of the layer 30 can be an inorganic semiconductor material, such as silicon dioxide, silicon nitride, aluminum oxide and the like.
  • the wavelength conversion layers 41, 42, 43 are disposed on the etching barrier layer 30 and at least completely cover the self-luminous pixel points 20. It can be understood that the wavelength conversion layers 41, 42 , 43 completely coincide with the orthographic projection of the self-luminous pixel point 20, or the self-luminous pixel point 20 is located within the orthographic projection of the wavelength conversion layers 41, 42, 43.
  • multiple wavelength conversion layers 41, 42, 43 may also be provided, and the wavelength conversion layers 41, 42, 43 may also be distributed in a patterned array.
  • the distribution patterns of the layers 41 , 42 , 43 are the same as or similar to the distribution pattern of the self-luminous pixel points 20 .
  • the wavelength conversion layer 41, 42, 43 may be at least one of a red wavelength conversion layer, a green wavelength conversion layer, a blue wavelength conversion layer and a yellow wavelength conversion layer, for example, the The wavelength conversion layer 41 is a red light wavelength conversion layer, the wavelength conversion layer 42 is a green light wavelength conversion layer, and the wavelength conversion layer 43 is a blue light wavelength conversion layer.
  • the second wavelength of the light converted by the wavelength conversion layers 41, 42, 43 is longer than the first wavelength of the original light, and the converted light with the second wavelength can be monochromatic light (such as blue, green, yellow, red light, etc.) or polychromatic light (such as blue-green, blue-red, red-green, blue-green-red, etc.).
  • monochromatic light such as blue, green, yellow, red light, etc.
  • polychromatic light such as blue-green, blue-red, red-green, blue-green-red, etc.
  • the initial light emission of the display panel is blue, it can be converted into a monochromatic green display by using only green wavelength conversion materials.
  • any other color combination is also possible, as long as the corresponding color conversion materials are selected. That's it.
  • the passivation layer 60 is disposed on the second region on the etching barrier layer 30, that is, it can be understood that the passivation layer 60 is disposed on the wavelength conversion layers 41, 42, 43, the thickness of the passivation layer 60 can be consistent with the thickness of the wavelength conversion layer 41, 42, 43; wherein, the material of the passivation layer can be photoresist, for example, can be Organic black matrix photoresist, color filter photoresist, etc., the specific material may be polyimide, etc.
  • the wavelength conversion layers 41, 42, 43 are also provided with corresponding filter layers 51, 52, 53, and the filter layers 51, 52, 53 allow the wavelength conversion layers 41, 43, 42, 43 The converted light with the second wavelength is passed, while the light with the first wavelength is blocked from passing.
  • the filter layers 51, 52, and 53 may be at least one of a red filter layer, a green filter layer, a blue filter layer, and a yellow filter layer, for example, the The filter layer 51 may be a red filter layer, the filter layer 52 may be a green filter layer, and the filter layer 53 may be a blue filter layer.
  • the filter layers 51, 52, 53 may be organic color filter photoresists or inorganic distributed drag reflectors (e.g., multilayer carbon dioxide deposited by electron beam evaporation or chemical vapor deposition). silicon/titanium dioxide, etc.) etc.
  • organic color filter photoresists or inorganic distributed drag reflectors e.g., multilayer carbon dioxide deposited by electron beam evaporation or chemical vapor deposition. silicon/titanium dioxide, etc.
  • the wavelength conversion layer can absorb most of the initial light emission, the corresponding filter layer may no longer be provided.
  • a kind of manufacturing method for the wavelength conversion matrix of microdisplay comprises the following steps:
  • a display panel includes a driving panel 10 and a plurality of self-luminous pixels 20 arranged on the driving panel 10, and the self-luminous pixels 20 can provide light with a first wavelength. light; wherein, a plurality of self-illuminating pixels 20 may be distributed in a patterned array, and the self-illuminating pixels 20 may be full-color pixels, for example, the plurality of self-illuminating pixels 20
  • the distribution pattern can be as shown in Figure 4, the arrangement of red, green and blue pixels in the full-color pixels can be as shown in Figure 5a, Figure 5b, and Figure 5c, 21 in the figure is a red pixel point, 22 is a green pixel point, 23 are blue pixels, and the arrangement of pixels can be adjusted flexibly without special restrictions;
  • one side surface of the driving panel provided with self-luminous pixel points 20 can be used as a light-emitting surface
  • an etching barrier layer 30 is formed on the light emitting surface of the driving panel 10, and the etching barrier layer 30 can protect the bottom display panel (
  • the display panel includes a driving panel and self-luminous pixels), and the material of the etching barrier layer 30 can be an inorganic semiconductor material, such as silicon dioxide, silicon nitride, aluminum oxide, etc.;
  • a red wavelength conversion material also called a red light wavelength conversion material
  • the red (red light) wavelength conversion layer is formed after curing 41;
  • a first mask 71 is set on the red wavelength conversion layer 41, and the first mask 71 covers a part of the red wavelength conversion layer 41. It should be noted that the first mask The film 71 corresponds to some of the self-illuminating pixels 20, which means that the shape, area, and distribution pattern of the first mask 71 are the same as the shape, area, and distribution pattern of some of the self-illuminating pixels 20 of;
  • the red wavelength conversion layer 41 not covered by the first mask 71 is removed by dry etching, and the remaining part of the red wavelength conversion layer 41 is correspondingly arranged above some self-luminous pixel points 20;
  • the dry etching includes physical etching, chemical etching or a combination of physical etching and chemical etching, wherein the physical etching can be ion beam etching, and the typical etching gas used in ion beam etching can be Argon gas, etc., the chemical etching can be plasma etching, and the typical etching gas used in plasma etching can be sulfur hexafluoride, carbon tetrafluoride, etc.; the combination of physical etching and chemical etching can be Reactive ion etching, the typical etching gas used in reactive ion etching can be chlorine, boron trichloride, sulfur hexafluoride, carbon tetrafluoride, argon, etc.;
  • a green (green light) wavelength conversion material is coated on the surface of the etching barrier layer 30, and the green (green light) wavelength conversion layer 42 is formed after curing, and then the green (green light) wavelength conversion layer 42 is formed on the surface of the green
  • a second mask 72 is set on the wavelength conversion layer 42, and the second mask 72 covers a part of the green wavelength conversion layer 42. It should be noted that the second mask 72 is in the same position as the partially self-luminous pixel points 20.
  • this correspondence means that the shape, area, and distribution pattern of the second mask 72 are the same as the shape, area, and distribution pattern of some of the self-illuminating pixels 20, and the second mask 72 and There is no overlapping area in the orthographic projection area of the first mask 71;
  • the green wavelength conversion layer 42 not covered by the second mask 72 is removed by dry etching, and the remaining part of the green wavelength conversion layer 42 is correspondingly arranged above some self-luminous pixel points 20;
  • the third mask 73 is corresponding to some of the self-luminous pixel points 20, which means that the shape, area, and distribution pattern of the third mask 73 are the same as the shape, area, and distribution pattern of the partial self-luminous pixel points 20
  • the distribution pattern is the same, and there is no overlapping area between the third mask 73 and the orthographic projection area of the second mask 72 and the first mask 71, and then dry etching is used to remove the area not covered by the third mask.
  • the blue wavelength conversion layer 43 covered by the film 73, and the remaining part of the blue wavelength conversion layer 43 is correspondingly arranged above part of the self-luminous pixel points 20;
  • a passivation layer 60 is formed on the surface of the etching barrier layer 30, and the passivation layer 60 is arranged on the red wavelength conversion layer 41, the green wavelength conversion layer 42 and the blue wavelength conversion layer 43. in the space between
  • red wavelength conversion layer 41 Please refer to Fig. 3k and Fig. 31, on the red wavelength conversion layer 41, the green wavelength conversion layer 42 and the blue wavelength conversion layer 43, respectively form a red (red light) filter layer 51, a green (green light) Filter layer, blue (blue light) filter layer 53 .
  • red, green or blue wavelength conversion materials all include photoluminescent materials, polymer film materials and solvents.
  • the photoluminescent material includes phosphors or quantum dots
  • the phosphors can be yttrium aluminum garnet, cerium phosphors, (oxy)nitride phosphors, silicate phosphors, and Mn 4+ activated fluoride phosphors, etc.
  • the quantum dots can be group II-VI compound quantum dots (such as cadmium sulfide, cadmium selenide, cadmium telluride, zinc oxide, zinc selenide, zinc telluride, etc.), III - Group V quantum dots (such as gallium arsenide, gallium phosphide, gallium antimonide, mercury sulfide, mercury selenide, mercury antimonide, indium arsenide, indium phosphide, indium antimonide, aluminum arsenide, phosphide aluminum, aluminum antimonide, etc.), perovskite quantum dots, of course, the photoluminescent material can also be organic dyes and the like
  • the polymer film material includes acrylic acid, polyethylene or resin, but not limited thereto, and the solvent is at least used to assist in dissolving the photoluminescent material into the polymer film material, and the solvent propylene glycol Methyl ether acetate, toluene or alcohol, but not limited thereto.
  • the first, second and third masks include semiconductor masks, photoresist masks or metal masks, wherein the material of the semiconductor masks can be silicon dioxide, nitrogen Silicon or aluminum oxide, etc., the metal mask can be a plurality of metal layers stacked, the material of the metal layer includes cadmium, aluminum, nickel, gold, titanium, or platinum.
  • the red, green, and blue filter layers include organic color filter photoresist or inorganic distributed drag reflector and the like.
  • the embodiment of the present application provides a method for manufacturing a wavelength conversion matrix for microdisplays.
  • the process flow is simple, easy to operate and has better controllability.
  • the patterning of the conversion layer makes the resolution and conversion efficiency of the finally formed wavelength conversion layer higher, which is conducive to the realization of microdisplays with high resolution and high pixel density for microdisplays.
  • the pattern of the wavelength conversion layer of a method for manufacturing a wavelength conversion matrix for a microdisplay provided by the embodiment of the present application is obtained by dry etching, and the etching mask is obtained by using a high-resolution photoresist through additional light Engraving steps and metallization steps are defined, so that the resolution of the obtained wavelength conversion matrix is higher; A high concentration is dispersed in the polymer film material. On this basis, a relatively thick photoluminescent material film can be realized by adjusting the process parameters of photolithography and dry etching, thereby obtaining high conversion efficiency.

Abstract

本申请公开了一种微显示器及其制作方法。所述微显示器的制作方法包括:提供基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;在所述基板的第一表面覆设波长转换层;在所述波长转换层表面覆设掩膜,所述掩膜与部分或全部的自发光像素点对应设置;采用干法刻蚀方式去除所述波长转换层未被所述掩膜保护的其余部分,从而形成波长转换矩阵。本申请通过干法刻蚀的方法来实现波长转换材料的图形化,从而获得高分辨率、高像素密度的微型显示。

Description

微显示器及其制作方法
本申请基于并要求于2021年11月1日递交的申请号为202111286417.5、发明名称为“微显示器及其制作方法”的中国专利申请的优先权。
技术领域
本申请特别涉及一种微显示器及其制作方法,属于微显示技术领域。
背景技术
现有技术中单色Micro-LED微显示器件的制作工艺研究有很多,制作工艺也较为成熟。全彩Micro-LED显示器的制备当前主要采用三基色LED芯片拼装,三基色拼装在巨量转移方面面临巨大的难题。
通过荧光粉光转换层、量子点色转换层方案,是实现全彩显示的一种更便捷、可行的方法。其中,荧光粉效率偏低,半峰宽大,色彩纯度不好,显示效果不佳,同时荧光粉颗粒大,不适合做像素点很小的微显示;量子点材料具有发光光谱集中,色纯度高、且发光颜色可通过量子点材料的尺寸、结构或成分进行简易调节等优点,利用这些优点将其应用在显示装置中可有效地提升显示装置的色域及色彩还原能力。
现有技术1(US9904097 B2,US8459855B2)中公开了一种波长转换矩阵的制作方法,如图1a所示(图中11为驱动背板,121为黑色隔离墙,131为透明隔离墙,132/133为垫,141/142/143为红绿蓝量子点薄膜),其使用透明光刻胶搭建隔离墙结构,进而帮助限制气喷法做成的量子点薄膜的分布,具体是将波长转换材料直接涂覆在显示面板上并且实现图形化,其中,光致发光材料被分散在低粘稠度的溶剂里然后使用气喷方式打印在显示面板上。然而,由于低粘稠度溶剂的扩散作用,材料的厚度很难积累,因此光致转换不足从而影响显示质量,更多地,打印 工艺要求对准精度很高并且很耗时,因此当微显示屏的分辨率和像素密度不断增加时,打印工艺的生产效率会很有问题。
如图1b所示,现有技术2(US9690135B2)中公开了先将波长转换材料涂覆在一块透明基板上并且实现图形化,然后通过倒晶封装的方法盖在显示面板上。其中,光致发光材料分散在光刻胶里并通过光刻方法来图形化,生产效率大幅提升,光转换效率也因为材料厚度的提升而提高。但是,分辨率却因为光转换材料严重的散射现象而受限,为了提升分辨率得到5um以下的图形,光致发光材料的浓度必须控制在一个较低的水平,但相应的吸收和转换特性会发生退化,因此,在这种方法中平衡分辨率和转换效率是十分有挑战性的。
申请内容
本申请的主要目的在于提供一种微显示器及其制作方法,以克服现有技术中的不足。
为实现前述申请目的,本申请采用的技术方案包括:
本申请实施例提供了一种微显示器的制作方法,其包括:
提供基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
在所述基板的第一表面覆设波长转换层;
在所述波长转换层表面覆设掩膜,所述掩膜与部分或全部的自发光像素点对应设置;
采用干法刻蚀方式去除所述波长转换层未被所述掩膜保护的其余部分,从而形成波长转换矩阵。
本申请实施例还提供了一种微显示器,其包括:
基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
波长转换矩阵,其包括设置在所述基板的第一表面上的至少一个波长转换层,所述波长转换层包括掩膜保护区域以及干法刻蚀区域,所述掩膜保护区域对应部分或全部的自发光像素点,所述波长转换层覆设部分或全部的自发光像素点。
与现有技术相比,本申请的优点包括:
1)本申请实施例提供的一种波长转换矩阵的制作方法的波长转换层的图形是通过干法刻蚀获得,其刻蚀掩膜是使用高分辨的光刻胶通过另外的光刻步骤以及金属化步骤来定义,使得所获波长转换矩阵的分辨率更高;
2)本申请实施例提供的一种波长转换矩阵的制作方法中的光致发光材料可以相当高的浓度分散在聚合物薄膜材料里,在此基础上,相对较厚的光致发光材料薄膜就可以通过调整光刻以及干法刻蚀的工艺参数来实现,进而获得高转换效率。
附图说明
图1a、图1b为现有技术中的一种波长转换矩阵的制作原理结构示意图;
图2是本申请一典型实施案例中提供的一种微显示器的结构示意图;
图3a-图31是本申请一典型实施案例中提供的一种微显示器的制作流程结构示意图;
图4是本申请一典型实施案例中提供的自发光的像素点20的分布图形示意图;
图5a、图5b、图5c是全彩像素点中红绿蓝像素点的排布结构示意图。
具体实施方式
鉴于现有技术中的不足,本案申请人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例提供了一种微显示器的制作方法,其包括:
提供基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
在所述基板的第一表面覆设波长转换层;
在所述波长转换层表面覆设掩膜,所述掩膜与部分或全部的自发光像素点对应设置;
采用干法刻蚀方式去除所述波长转换层未被所述掩膜保护的其余部分,从而形成波长转换矩阵。
在一具体实施方式中,所述的制作方法具体包括:在所述基板的第一表面涂布波长转换材料,采用紫外光照射或热烤等方式使所述波长转换材料固化后形成所述的波长转换层。
在一具体实施方式中,所述掩膜为硬掩膜,所述硬掩膜为介电材料掩膜、光刻胶掩膜和金属掩膜中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述介电材料掩膜的材质包括、二氧化钛,二氧化锆、二氧化硅、氮化硅、氧化铝中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述金属掩膜的材质包括镉、铝、镍、金、铜、铬、钛、铂中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述光刻胶掩膜的材质包括正性光刻胶或负性光刻胶。
在一具体实施方式中,所述干法刻蚀方式包括物理刻蚀、化学刻蚀或者物理化学刻蚀等。
在一具体实施方式中,所述物理刻蚀包括离子束蚀刻,所述离子束刻蚀采用的蚀刻气体包括惰性气体,例如氩气等;所述化学刻蚀包括等离子蚀刻,所述等离子刻蚀采用的蚀刻气体包括含氟气体,例如可以是六氟化硫、四氟化碳、三氟甲烷等;所述物理化学刻蚀包括反应离子蚀刻,所述反应离子刻蚀采用的蚀刻气体包括含氟、氯或者硫的气体,例如可以是氯气、三氯化硼、六氟化硫、四氟化碳、惰性气体中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述的制作方法具体包括:先在所述基板的第一表面覆设刻蚀阻挡层,再在所述刻蚀阻挡层表面覆设波长转换层。
在一具体实施方式中,所述的制作方法还包括:在所述基板的第一表面形成钝化层,所述钝化层填充所述波长转换矩阵的间隙,所述钝化层的表面与所述波长转换层的表面齐平或低于所述波长转换层的表面。
在一具体实施方式中,所述基板的第一表面分布有多个第一自发光像素点;并且所述的制作方法还包括:
在所述基板的第一表面覆设第一波长转换层;
在所述第一波长转换层表面的预定区域设置第一掩膜,所述预定区域与所述第一自发光像素点对应设置;
采用干法刻蚀方式去除所述第一波长转换层未被所述第一掩膜保护的其余部分,从而形成所述的波长转换矩阵;其中,所述第一自发光像素点叠加第一波长转换层发射第一光波长光。
在一具体实施方式中,所述的制作方法还包括:在所述第一波长转换层上设置第一滤光层,所述第一滤光层能够使所述第一光波长光通过。
在一具体实施方式中,所述基板的第一表面至少分布有第一自发光像素点和第二自发光像素点;并且所述的制作方法还包括:
在所述基板的第一表面覆设第一波长转换层;
在所述第一波长转换层表面的第一区域设置第一掩膜,所述第一区域与所述第一自发光像素点对应设置;
采用干法刻蚀方式去除所述第一波长转换层未被所述第一掩膜保护的其余部分;
在所述基板的第一表面覆设第二波长转换层;
在所述第二波长转换层表面的第二区域设置第二掩膜,所述第二区域与所述第二自发光像素点对应设置;
采用干法刻蚀方式去除所述第二波长转换层未被所述第二掩膜保护的其余部分,从而形成所述的波长转换矩阵;其中,所述第一自发光像素点叠加第一波长转换层发射第一光波长光,所述第二自发光像素点叠加第二波长转换层发射第二光波长光。
在一具体实施方式中,所述第一自发光像素点和第二自发光像素点所发射的光波长相同或不同,所述第一波长转换层和第二波长转换层所含的光致发光材料相同或不同,所述第一光波长光与所述第二光波长光不同。
在一具体实施方式中,所述的制作方法还包括:在所述第一波长转换层和所述第二波长转换层上分别设置第一滤光层以及第二滤光层,所述第一滤光层能够使所述第一光波长光通过;所述第二滤光层能够使所述第二光波长光通过。
在一具体实施方式中,所述基板的第一表面还分布有第三自发光像素点;并且所述的制作方法还包括:
在所述基板的第一表面覆设第三波长转换层;
在所述第三波长转换层表面的第三区域设置第三掩膜,所述第三区域与所述第三自发光像素点对应设置;
采用干法刻蚀方式去除所述第三波长转换层未被所述第三掩膜保护的其余部分,,从而形成所述的波长转换矩阵;其中,所述第三自发光像素点叠加第三波长转换层发射第三光波长光。
在一具体实施方式中,所述第一自发光像素点、第二自发光像素点以及第三自发光像素点所发射的光波长相同或不同,所述第一波长转换层、第二波长转换层以及第三波长转换层所含的光致发光材料相同或不同,所述第一光波长光、所述第二光波长光及所述第三光波长光不同。
在一具体实施方式中,所述的制作方法还包括:在所述第一波长转换层、所述第二波长转换层以及所述第三波长转换层上分别设置第一滤光层、第二滤光层、第三滤光层,所述第一滤光层能够使所述第一光波长光通过;所述第二滤光层能够使所述第二光波长光通过,所述第三滤光层使所述第三光波长光通过。
在一具体实施方式中,所述的制作方法还包括:在形成所述波长转换矩阵之后去除所述掩膜。
本申请实施例还提供了一种微显示器,其包括:
基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
波长转换矩阵,其包括设置在所述基板的第一表面上的至少一个波长转换层,所述波长转换层包括掩膜保护区域以及干法刻蚀区域,所述掩膜保护区域对应部分或全部的自发光像素点,所述波长转换层覆设部分或全部的自发光像素点。
在一具体实施方式中,所述基板包括硅基CMOS或薄膜场效应管等。
在一具体实施方式中,所述自发光的像素点包括微型发光二极管,其中,该多个自发光的像素点呈阵列分布,该多个自发光的像素点的间距为1-100μm。
在一具体实施方式中,所述基板的第一表面分布有第一自发光像素点,所述波长转换矩阵包括第一波长转换层,所述第一波长转换层对应覆设第一自发光像素点,所述第一自发光像素点叠加第一波长转换层发射第一光波长光。
在一具体实施方式中,所述第一波长转换层上还设置有第一滤光层,所述第一滤光层能够使所述第一光波长光通过。
在一具体实施方式中,所述基板的第一表面分布有第一自发光像素点和第二自发光像素点,所述波长转换矩阵包括第一波长转换层和第二波长转换层,所述第一波长转换层和第二波长转换层分别对应覆设第一自发光像素点和第二自发光像素点,所述第一自发光像素点叠加第一波长转换层发射第一光波长光,所述第二自发光像素点叠加第二波长转换层发射第二光波长光;
其中,所述第一自发光像素点和第二自发光像素点所发射的光波长相同或不同,所述第一波长转换层和第二波长转换层所含的光致发光材料相同或不同,所述第一光波长光与所述第二光波长光不同。
在一具体实施方式中,所述第一波长转换层和所述第二波长转换层上还分别设置有第一滤光层以及第二滤光层,所述第一滤光层能够使所述第一光波长光通过,所述第二滤光层能够使所述第二光波长光通过。
在一具体实施方式中,所述基板的第一表面还分布第三自发光像素点,所述波长转换矩阵还包括覆设所述第三自发光像素点的第三波长转换层,所述第三自发光像素点叠加第三波长转换层发射第三光波长光;
其中,所述第一自发光像素点、第二自发光像素点和第三自发光像素点所发射的光波长相同或不同,所述第一波长转换层、第二波长转换层、第三波长转换层所含的光致发光材料相同或不同,所述第一光波长光、所述第二光波长光与第三光波长光不同。
在一具体实施方式中,所述第三波长转换层上设置有第三滤光层,所述第三滤光层能够使所述第三光波长光通过。
在一具体实施方式中,所述第一滤光层、第二滤光层、第三第一滤光层包括有机滤色器光刻胶或无机分布式拖曳反射器等,但不限于此。
在一具体实施方式中,所述波长转换层所含波长转换材料包含光致发光材料、聚合物薄膜材料和溶剂。
在一具体实施方式中,所述光致发光材料包括荧光粉或量子点,所述荧光粉可以是钇铝石榴石、铈荧光粉、(氧)氮化物荧光粉、硅酸盐荧光粉和Mn 4+激活的氟化物荧光粉等,所述量子点可以是II-VI族化合物量子点(例如硫化鎘、硒化镉、碲化镉、氧化锌、硒化锌、碲化锌 等)、III-V族量化合物量子点(例如砷化镓、磷化镓、锑化镓、硫化汞、硒化汞、锑化汞、砷化铟、磷化铟、锑化铟、砷化铝、磷化铝、锑化铝等)、钙钛矿量子点,当然,所述光致发光材料还可以是有机染剂等;所述聚合物薄膜材料包括丙烯酸、聚乙烯或树脂,但不限于此;所述溶剂至少用于辅助使光致发光材料溶剂到聚合物薄膜材料中,所述溶剂丙二醇甲醚醋酸酯、甲苯或酒精,但不限于此。
在一具体实施方式中,所述光致发光材料包括荧光粉或量子点,所述聚合物薄膜材料包括丙烯酸、聚乙烯和树脂中的任意一种或两种以上的组合,所述溶剂包括丙二醇甲醚醋酸酯、甲苯和酒精中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述基板的第一表面上还设置有钝化层,所述钝化层填充所述波长转换矩阵的间隙,所述钝化层的表面与所述波长转换层的表面齐平或低于所述波长转换层的表面。
在一具体实施方式中,所述钝化层的材质包括有机黑矩阵光刻胶、彩色滤光光刻胶、聚酰亚胺中的任意一种或两种以上的组合,但不限于此。
在一具体实施方式中,所述基板的第一表面还覆设有刻蚀阻挡层,所述波长转换层和钝化层设置在所述刻蚀阻挡层上。
在一具体实施方式中,所述刻蚀阻挡层的材质包括二氧化硅、氮化硅、氧化铝中的任意一种或两种以上的组合,但不限于此。
需要说明的是,所述自发光的像素点提供的具有第一波长的为初始发光,该初始发光可以是单色光,比如紫外、蓝色、绿色等;当然也可以是双色光,比如紫外加蓝色、蓝色加绿色等;当然还可以是是白色光,比如红绿蓝、蓝黄等。如果初始发光包含要实现的微显示需要的某一波长,那么该波长对应的波长转换材料可以省略,例如,若显示面板(其包含驱动面板与自发光像素点)的初始发光是蓝色,那么相应的蓝色波长转换材料就不需要再做。
一般的,经波长转换层转换得到的光的波长要比初始光的波长更长,经过转换后形成的具有第二波长的光可以是单色光(例如蓝、绿、黄、红色光等),或者多色光(例如蓝绿、蓝红、红绿、蓝绿红等等)。例如,显示面板的初始发光是蓝色,那么可以只采用绿色波长转换 材料就可以将其转换成单色的绿色显示,当然,其他任何颜色的组合也是可能的,只要选择相对应的颜色转换材料即可。
如下将结合附图以及具体实施案例对该技术方案、其实施过程及原理等作进一步的解释说明,除非特别说明的之外,本申请实施例中所采用的外延、涂布、刻蚀等工艺均可以是本领域技术人员已知的。
实施例1
请参阅图2,一种微显示器,包括驱动面板10、自发光的像素点20、刻蚀阻挡层30、波长转换层41、42、43和钝化层60,其中,所述自发光的像素点20设置在所述驱动面板10上,所述刻蚀阻挡层30叠设在所述驱动面板10上,并覆盖所述自发光的像素点20,所述波长转换层41、42、43和钝化层60设置在所述刻蚀阻挡层30上,所述波长转换层41、42、43与自发光的像素点20相对应,所述钝化层60设置在多个波长转换层41、42、43之间,其中,所述自发光的像素点20叠加所述波长转换层41、42、43能够发射具有指定波长的光。
在一具体实施方式中,所述驱动面板10可以是薄膜场效应晶体管,例如硅基CMOS等。
在一具体实施方式中,所述自发光的像素点20可以是微型发光二极管,也可以是微型有机发光二极管,其中,所述微型发光二极管是基于无机半导体材料形成的,例如,所述无机半导体材料可以是氮化镓、铝镓氮、砷化镓、铝镓铟磷等,所述微型有机发光二极管基于有机材料形成的,例如,所述有机材料可以是小分子、聚合物、磷光材料等。
在一具体实施方式中,所述自发光的像素点20提供的具有第一波长的为初始发光,该初始发光可以是单色光,比如紫外、蓝色、绿色等;当然也可以是双色光,比如紫外加蓝色、蓝色加绿色等;当然还可以是是白色光,比如红绿蓝、蓝黄等。如果初始发光包含了要实现的微显示需要的某一波长的光,那么该波长的光对应的波长转换层(材料)可以省略,例如,若显示面板的初始发光是蓝色,那么相应的蓝色波长转换材料就不需要再做。
在一具体实施方式中,所述自发光的像素点20可以设置有多个,多个所述自发光的像素点20分布在所述驱动面板10的第一区域,且多个所述自发光的像素点20可以是呈图形化的阵列分布,其中,所述的第一区域可以是被认为是发光区域。
在一具体实施方式中,所述自发光的像素点20的像素间距尺寸为1-100μm,所述自发光的像素点20的像素的分辨率可以灵活设置,例如VGA(640*480),XGA(1024*768),FHD(1920*1080)等。
在一具体实施方式中,所述刻蚀阻挡层30可以在进行干法刻蚀波长转换层的过程中保护底部的显示面板(显示面板包括驱动面板和自发光像素点),所述刻蚀阻挡层30的材质可以是无机半导体材料,比如二氧化硅,氮化硅,氧化铝等。
在一具体实施方式中,所述波长转换层41、42、43设置在所述刻蚀阻挡层30上,并至少完全覆盖自发光像素点20,可以理解地,所述波长转换层41、42、43与自发光像素点20的正投影完全重合,或者,所述自发光像素点20位于所述波长转换层41、42、43的正投影内。
在一具体实施方式中,所述波长转换层41、42、43也可以是设置有多个,所述波长转换层41、42、43也可以是呈图形化的阵列分布的,所述波长转换层41、42、43的分布图形是与自发光像素点20分布图形是相同或相近的。
在一具体实施方式中,所述波长转换层41、42、43可以是红光波长转换层、绿光波长转换层、蓝光波长转换层和黄光转换层中的至少一种,例如,所述波长转换层41为红光波长转换层,所述波长转换层42为绿光波长转换层,所述波长转换层43为蓝光波长转换层。
需要说明的是,一般经波长转换层41、42、43转换得到的光的第二波长要比初始光的第一波长更长,经过转换后形成的具有第二波长的光可以是单色光(例如蓝、绿、黄、红色光等)或者多色光(例如蓝绿、蓝红、红绿、蓝绿红等等)。例如,显示面板的初始发光是蓝色,那么可以只采用绿色波长转换材料就可以将其转换成单色的绿色显示,当然,其他任何颜色的组合也是可能的,只要选择相对应的颜色转换材料即可。
在一具体实施方式中,所述钝化层60设置在所述刻蚀阻挡层30上的第二区域,即可以理解为,所述钝化层60设置在所述波长转换层41、42、43之间的空隙内,所述钝化层60的厚度可以是与波长转换层41、42、43的厚度保持一致;其中,所述钝化层的材质可以是光刻胶,例如,可以是有机黑矩阵光刻胶、彩色滤光光刻胶等,具体材质可以是聚酰亚胺等。
在一具体实施方式中,所述波长转换层41、42、43上还设置有与之对应的滤光层51、52、53,所述滤光层51、52、53允许波长转换层41、42、43转换形成的具有第二波长的光通过,而阻止具有第一波长的光通过。
在一具体实施方式中,所述滤光层51、52、53可以是红光滤光层、绿光滤光层、蓝光滤光层、黄光滤光层中的至少一种,例如,所述滤光层51可以是红光滤光层,所述滤光层52可以是绿光滤光层,所述滤光层53可以是蓝光滤光层。
在一具体实施方式中,所述滤光层51、52、53可以是有机滤色器光刻胶或无机分布式拖曳反射器(例如,通过电子束蒸发或化学气相沉积沉积的多层二氧化硅/二氧化钛等)等。
需要说明的是,如果波长转换层层可以吸收绝大部分的初始发光,则可以不再设置相应的滤光层。
请参阅图3a-图31,一种用于微显示器的波长转换矩阵的制作方法,包括如下步骤:
1)请参阅图3a,提供显示面板,所述显示面板包括驱动面板10和设置在驱动面板10上的多个自发光的像素点20,所述自发光的像素点20能够提供具有第一波长的光;其中,多个自发光的像素点20可以是呈图形化的阵列分布的,所述自发光的像素点20可以是全彩像素点,例如,该多个自发光的像素点20的分布图形可以如图4所示,全彩像素点中红绿蓝像素点的排布可以如图5a、图5b、图5c所示,图中的21为红色像素点,22为绿色像素点,23为蓝色像素点,像素点的排布方式可以灵活调整,没有特殊限制;
需要说明的是,设置有自发光的像素点20的驱动面板的一侧表面可以作为发光面;
2)请参阅图3b,在所述驱动面板10的发光面上形成刻蚀阻挡层30,所述刻蚀阻挡层30可以在进行干法刻蚀波长转换层的过程中保护底部的显示面板(显示面板包括驱动面板和自发光像素点),所述刻蚀阻挡层30的材质可以是无机半导体材料,比如二氧化硅,氮化硅,氧化铝等;
3)请参阅图3c,在所述刻蚀阻挡层30表面涂布红色波长转换材料(也可以称之为红光波长转换材料),经固化后形成所述的红色(红光)波长转换层41;
4)请参阅图3d,在所述的红色波长转换层41上设置第一掩膜71,所述第一掩膜71覆盖红色波长转换层41的一部分,需要说明的是,所述第一掩膜71是与部分自发光的像素点20相 对应的,该对应是指第一掩膜71的形状、面积、分布图形是与部分的自发光的像素点20的形状、面积、分布图形是相同的;
5)请参阅图3e,采用干法刻蚀的方式除去未被第一掩膜71覆盖的红色波长转换层41,余留的部分红色波长转换层41对应设置在部分自发光像素点20上方;所述干法刻蚀包括物理刻蚀、化学刻蚀或者物理刻蚀和化学刻蚀的组合,其中,所述物理刻蚀可以是离子束蚀刻,离子束刻蚀采用的典型的蚀刻气体可以是氩气等,所述化学刻蚀可以是等离子蚀刻,等离子刻蚀采用的典型的蚀刻气体可以是六氟化硫、四氟化碳等;所述物理刻蚀和化学刻蚀组合的方式可以是反应离子蚀刻,反应离子刻蚀采用的典型的蚀刻气体可以是氯气、三氯化硼、六氟化硫、四氟化碳、氩气等;
6)请参阅图3f,在所述刻蚀阻挡层30表面涂布绿色(绿光)波长转换材料,经固化后形成所述的绿色(绿光)波长转换层42,之后在所述的绿色波长转换层42上设置第二掩膜72,所述第二掩膜72覆盖绿色波长转换层42的一部分,需要说明的是,所述第二掩膜72是与部分自发光的像素点20相对应的,该对应是指第二掩膜72的形状、面积、分布图形是与部分的自发光的像素点20的形状、面积、分布图形是相同的,并且,所述第二掩膜72与第一掩膜71的正投影区域不存在重叠区域;
7)请参阅图3g,采用干法刻蚀的方式除去未被第二掩膜72覆盖的绿色波长转换层42,余留的部分绿色波长转换层42对应设置在部分自发光像素点20上方;
8)请参阅图3h,参照步骤3)-5)或步骤6)-7),在所述刻蚀阻挡层30表面涂布蓝色(蓝光)波长转换材料,经固化后形成所述的蓝色(蓝光)波长转换层43,在所述的蓝色波长转换层43上设置第三掩膜73,所述第三掩膜73覆盖蓝色波长转换层43的一部分,需要说明的是,所述第三掩膜73是与部分自发光的像素点20相对应的,该对应是指第三掩膜73的形状、面积、分布图形是与部分的自发光的像素点20的形状、面积、分布图形是相同的,并且,所述第三掩膜73与第二掩膜72、第一掩膜71的正投影区域不存在重叠区域,之后采用干法刻蚀的方式除去未被第三掩膜73覆盖的蓝色波长转换层43,余留的部分蓝色波长转换层43对应设置在部分自发光像素点20上方;
10)请参阅图3i,在所述刻蚀阻挡层30表面形成钝化层60,所述钝化层60设置在所述红色波长转换层41、绿色波长转换层42以及蓝色波长转换层43之间的空隙内;
11)请参阅图3j,除去所述的第一掩膜71、第二掩膜72和第三掩膜73;
12)请参阅图3k和图31,分别在所述红色波长转换层41、绿色波长转换层42以及蓝色波长转换层43上对应形成红色(红光)滤光层51、绿色(绿光)滤光层、蓝色(蓝光)滤光层53。
需要说明的是,所述红色、绿色或蓝色波长转换材料均包含光致发光材料、聚合物薄膜材料和溶剂。
在一具体实施方式中,所述光致发光材料包括荧光粉或量子点,所述荧光粉可以是钇铝石榴石、铈荧光粉、(氧)氮化物荧光粉、硅酸盐荧光粉和Mn 4+激活的氟化物荧光粉等,所述量子点可以是II-VI族化合物量子点(例如硫化鎘、硒化镉、碲化镉、氧化锌、硒化锌、碲化锌等)、III-V族量化合物量子点(例如砷化镓、磷化镓、锑化镓、硫化汞、硒化汞、锑化汞、砷化铟、磷化铟、锑化铟、砷化铝、磷化铝、锑化铝等)、钙钛矿量子点,当然,所述光致发光材料还可以是有机染剂等。
在一具体实施方式中,所述聚合物薄膜材料包括丙烯酸、聚乙烯或树脂,但不限于此,所述溶剂至少用于辅助使光致发光材料溶剂到聚合物薄膜材料中,所述溶剂丙二醇甲醚醋酸酯、甲苯或酒精,但不限于此。
在一具体实施方式中,所述第一、第二、第三掩膜包括半导体掩膜、光刻胶掩膜或金属掩膜,其中,所述半导体掩膜的材质可以是二氧化硅、氮化硅或氧化铝等,所述金属掩膜可以是叠层设置的多个金属层,所述金属层的材质包括镉、铝、镍、金、钛或铂等。
在一具体实施方式中,所述红色、绿色、蓝色滤光层包括有机滤色器光刻胶或无机分布式拖曳反射器等。
本申请实施例提供的一种用于微显示器的波长转换矩阵的制作方法,工艺流程简单,易于操作且可控性更好,本申请提供的制作方法中通过干法刻蚀的方法来实现波长转换层的图形化,使得最终形成的波长转换层的分辨率和转换效率更高,有利于实现微显示器的高分辨率、高像素密度的微型显示。
本申请实施例提供的一种用于微显示器的波长转换矩阵的制作方法的波长转换层的图形是通过干法刻蚀获得,其刻蚀掩膜是使用高分辨的光刻胶通过另外的光刻步骤以及金属化步骤来定义,使得所获波长转换矩阵的分辨率更高;以及,本申请实施例提供的一种用于微显示器的波长转换矩阵的制作方法中的光致发光材料可以相当高的浓度分散在聚合物薄膜材料里,在此基础上,相对较厚的光致发光材料薄膜就可以通过调整光刻以及干法刻蚀的工艺参数来实现,进而获得高转换效率。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (23)

  1. 一种微显示器的制作方法,其特征在于包括:
    提供基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
    在所述基板的第一表面覆设波长转换层;
    在所述波长转换层表面覆设掩膜,所述掩膜与部分或全部的自发光像素点对应设置;
    采用干法刻蚀方式去除所述波长转换层未被所述掩膜保护的其余部分,从而形成波长转换矩阵。
  2. 根据权利要求1所述的制作方法,其特征在于:所述掩膜为硬掩膜,所述硬掩膜为介电材料掩膜、光刻胶掩膜和金属掩膜中的任意一种或两种以上的组合;所述干法刻蚀方式包括物理刻蚀、化学刻蚀或者物理化学刻蚀。
  3. 根据权利要求1所述的制作方法,其特征在于包括:先在所述基板的第一表面覆设刻蚀阻挡层,再在所述刻蚀阻挡层表面覆设波长转换层。
  4. 根据权利要求1所述的制作方法,其特征在于还包括:在所述基板的第一表面形成钝化层,所述钝化层填充所述波长转换矩阵的间隙,所述钝化层的表面与所述波长转换层的表面齐平或低于所述波长转换层的表面。
  5. 根据权利要求1所述的制作方法,其特征在于:所述基板的第一表面分布有多个第一自发光像素点;并且所述的制作方法还包括:
    在所述基板的第一表面覆设第一波长转换层;
    在所述第一波长转换层表面的预定区域设置第一掩膜,所述预定区域与所述第一自发光像素点对应设置;
    采用干法刻蚀方式去除所述第一波长转换层未被所述第一掩膜保护的其余部分,从而形成所述的波长转换矩阵;其中,所述第一自发光像素点叠加第一波长转换层发射第一光波长光。
  6. 根据权利要求5所述的制作方法,其特征在于还包括:在所述第一波长转换层上设置第一滤光层,所述第一滤光层能够使所述第一光波长光通过。
  7. 根据权利要求1所述的制作方法,其特征在于:所述基板的第一表面至少分布有第一自发光像素点和第二自发光像素点;并且所述的制作方法还包括:
    在所述基板的第一表面覆设第一波长转换层;
    在所述第一波长转换层表面的第一区域设置第一掩膜,所述第一区域与所述第一自发光像素点对应设置;
    采用干法刻蚀方式去除所述第一波长转换层未被所述第一掩膜保护的其余部分;
    在所述基板的第一表面覆设第二波长转换层;
    在所述第二波长转换层表面的第二区域设置第二掩膜,所述第二区域与所述第二自发光像素点对应设置;
    采用干法刻蚀方式去除所述第二波长转换层未被所述第二掩膜保护的其余部分,从而形成所述的波长转换矩阵;其中,所述第一自发光像素点叠加第一波长转换层发射第一光波长光,所述第二自发光像素点叠加第二波长转换层发射第二光波长光。
  8. 根据权利要求7所述的制作方法,其特征在于:所述第一自发光像素点和第二自发光像素点所发射的光波长相同或不同,所述第一波长转换层和第二波长转换层所含的光致发光材料相同或不同,所述第一光波长光与所述第二光波长光不同。
  9. 根据权利要求8所述的制作方法,其特征在于还包括:在所述第一波长转换层和所述第二波长转换层上分别设置第一滤光层以及第二滤光层,所述第一滤光层能够使所述第一光波长光通过;所述第二滤光层能够使所述第二光波长光通过。
  10. 根据权利要求7所述的制作方法,其特征在于:所述基板的第一表面还分布有第三自发光像素点;并且所述的制作方法还包括:
    在所述基板的第一表面覆设第三波长转换层;
    在所述第三波长转换层表面的第三区域设置第三掩膜,所述第三区域与所述第三自发光像素点对应设置;
    采用干法刻蚀方式去除所述第三波长转换层未被所述第三掩膜保护的其余部分,从而形成所述的波长转换矩阵,其中,所述第三自发光像素点叠加第三波长转换层发射第三光波长光。
  11. 根据权利要求10所述的制作方法,其特征在于:所述第一自发光像素点、第二自发光像素点以及第三自发光像素点所发射的光波长相同或不同,所述第一波长转换层、第二波长转换层以及第三波长转换层所含的光致发光材料相同或不同,所述第一光波长光、所述第二光波长光及所述第三光波长光不同。
  12. 根据权利要求11所述的制作方法,其特征在于还包括:在所述第一波长转换层、所述第二波长转换层以及所述第三波长转换层上分别设置第一滤光层、第二滤光层、第三滤光层,所述第一滤光层能够使所述第一光波长光通过;所述第二滤光层能够使所述第二光波长光通过,所述第三滤光层使所述第三光波长光通过。
  13. 根据权利要求1所述的制作方法,其特征在于还包括:在形成所述波长转换矩阵之后去除所述掩膜。
  14. 一种微显示器,其特征在于包括:
    基板,所述基板具有第一表面,并且所述第一表面分布有多个自发光像素点;
    波长转换矩阵,其包括设置在所述基板的第一表面上的至少一个波长转换层,所述波长转换层包括掩膜保护区域以及干法刻蚀区域,所述掩膜保护区域对应部分或全部的自发光像素点,所述波长转换层覆设部分或全部的自发光像素点。
  15. 根据权利要求14所述的微显示器,其特征在于:所述自发光的像素点包括微型发光二极管,其中,该多个自发光的像素点呈阵列分布,该多个自发光的像素点的间距为1-100μm。
  16. 根据权利要求14所述的微显示器,其特征在于:所述基板的第一表面分布有第一自发光像素点,所述波长转换矩阵包括第一波长转换层,所述第一波长转换层对应覆设第一自发光像素点,所述第一自发光像素点叠加第一波长转换层发射第一光波长光。
  17. 根据权利要求16所述的微显示器,其特征在于:所述第一波长转换层上还设置有第一滤光层,所述第一滤光层能够使所述第一光波长光通过。
  18. 根据权利要求14所述的微显示器,其特征在于:所述基板的第一表面分布有第一自发光像素点和第二自发光像素点,所述波长转换矩阵包括第一波长转换层和第二波长转换层,所述第一波长转换层和第二波长转换层分别对应覆设第一自发光像素点和第二自发光像素点,所 述第一自发光像素点叠加第一波长转换层发射第一光波长光,所述第二自发光像素点叠加第二波长转换层发射第二光波长光;
    其中,所述第一自发光像素点和第二自发光像素点所发射的光波长相同或不同,所述第一波长转换层和第二波长转换层所含的光致发光材料相同或不同,所述第一光波长光与所述第二光波长光不同。
  19. 根据权利要求18所述的微显示器,其特征在于:所述第一波长转换层和所述第二波长转换层上还分别设置有第一滤光层以及第二滤光层,所述第一滤光层能够使所述第一光波长光通过,所述第二滤光层能够使所述第二光波长光通过。
  20. 根据权利要求18所述的微显示器,其特征在于:所述基板的第一表面还分布第三自发光像素点,所述波长转换矩阵还包括覆设所述第三自发光像素点的第三波长转换层,所述第三自发光像素点叠加第三波长转换层发射第三光波长光;
    其中,所述第一自发光像素点、第二自发光像素点和第三自发光像素点所发射的光波长相同或不同,所述第一波长转换层、第二波长转换层、第三波长转换层所含的光致发光材料相同或不同,所述第一光波长光、所述第二光波长光与第三光波长光不同。
  21. 根据权利要求20所述的微显示器,其特征在于:在所述第三波长转换层上还设置有第三滤光层,所述第三滤光层使所述第三光波长光通过。
  22. 根据权利要求14所述的微显示器,其特征在于:所述基板的第一表面上还设置有钝化层,所述钝化层填充所述波长转换矩阵的间隙,所述钝化层的表面与所述波长转换层的表面齐平或低于所述波长转换层的表面。
  23. 根据权利要求14所述的微显示器,其特征在于:所述基板的第一表面与所述波长转换层之间设置有刻蚀阻挡层。
PCT/CN2022/126452 2021-11-01 2022-10-20 微显示器及其制作方法 WO2023071914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111286417.5 2021-11-01
CN202111286417.5A CN113990999A (zh) 2021-11-01 2021-11-01 微显示器及其制作方法

Publications (1)

Publication Number Publication Date
WO2023071914A1 true WO2023071914A1 (zh) 2023-05-04

Family

ID=79745628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126452 WO2023071914A1 (zh) 2021-11-01 2022-10-20 微显示器及其制作方法

Country Status (2)

Country Link
CN (1) CN113990999A (zh)
WO (1) WO2023071914A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990999A (zh) * 2021-11-01 2022-01-28 镭昱光电科技(苏州)有限公司 微显示器及其制作方法
CN116364817A (zh) * 2023-05-31 2023-06-30 季华实验室 全彩化显示面板的制备方法、显示面板以及显示装置
CN116344686A (zh) * 2023-05-31 2023-06-27 季华实验室 全彩化显示面板的制备方法、显示面板以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170254934A1 (en) * 2015-10-08 2017-09-07 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method for patterning quantum dot layer and method for manufacturing quantum dot color filter
CN108615740A (zh) * 2018-05-26 2018-10-02 矽照光电(厦门)有限公司 柔性有源彩色半导体发光显示模块及柔性显示屏
US20190355702A1 (en) * 2018-05-20 2019-11-21 Scott Brad Herner Light emitting device with small size and large density
US11004895B1 (en) * 2020-10-30 2021-05-11 Black Peak LLC Pixel or display with sub pixels selected by antifuse programming
CN113990999A (zh) * 2021-11-01 2022-01-28 镭昱光电科技(苏州)有限公司 微显示器及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369097A (zh) * 2007-08-15 2009-02-18 联华电子股份有限公司 彩色滤光片的制造方法
CN106876406B (zh) * 2016-12-30 2023-08-08 上海君万微电子科技有限公司 基于iii-v族氮化物半导体的led全彩显示器件结构及制备方法
KR102360351B1 (ko) * 2017-11-15 2022-02-09 삼성디스플레이 주식회사 표시 장치
CN112750862B (zh) * 2019-10-31 2022-11-11 成都辰显光电有限公司 色彩转换结构、显示装置及色彩转换结构的制备方法
CN111883633B (zh) * 2020-07-03 2021-10-01 深圳市思坦科技有限公司 显示模组的制作方法及显示屏
CN111933634B (zh) * 2020-09-17 2021-01-05 山东元旭光电股份有限公司 一种Micro-LED芯片的制备方法
CN112750886A (zh) * 2020-12-31 2021-05-04 安徽熙泰智能科技有限公司 基于bm技术的改善串扰的微显示器结构及其制备方法
CN113097242A (zh) * 2021-03-25 2021-07-09 安徽熙泰智能科技有限公司 一种高分辨率微显示器结构及其制备方法
CN113140690A (zh) * 2021-04-28 2021-07-20 安徽熙泰智能科技有限公司 一种硅基oled器件亚微米级彩色滤光层制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170254934A1 (en) * 2015-10-08 2017-09-07 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method for patterning quantum dot layer and method for manufacturing quantum dot color filter
US20190355702A1 (en) * 2018-05-20 2019-11-21 Scott Brad Herner Light emitting device with small size and large density
CN108615740A (zh) * 2018-05-26 2018-10-02 矽照光电(厦门)有限公司 柔性有源彩色半导体发光显示模块及柔性显示屏
US11004895B1 (en) * 2020-10-30 2021-05-11 Black Peak LLC Pixel or display with sub pixels selected by antifuse programming
CN113990999A (zh) * 2021-11-01 2022-01-28 镭昱光电科技(苏州)有限公司 微显示器及其制作方法

Also Published As

Publication number Publication date
CN113990999A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023071914A1 (zh) 微显示器及其制作方法
WO2023071911A1 (zh) 波长转换矩阵及其制作方法
CN111505866B (zh) 显示装置及其制作方法
KR102093628B1 (ko) 유기전계 발광소자 및 이의 제조 방법
US11362148B2 (en) Quantum dot display panel and manufacturing method thereof
US11839093B2 (en) Image rendering in organic light emitting diode (OLED) displays, apparatuses, systems, and methods
CN109390372B (zh) 像素结构及其形成方法、显示屏
US20210336096A1 (en) Display panel and manufacturing method thereof
US20210336100A1 (en) Display device and manufacturing method of display device
KR20180101302A (ko) 유기발광 디스플레이 소자 및 그 제조방법
WO2020001061A1 (zh) 显示基板及制造方法、显示装置
WO2019165755A1 (zh) 一种发光二极管芯片及其制备方法
US20230135964A1 (en) Integrated micro led chip and fabrication method therefor
KR101965157B1 (ko) 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법
US20220285455A1 (en) Display panel, manufacturing method thereof and display device
WO2020224010A1 (zh) Oled 显示面板及其制备方法
KR20180014334A (ko) 유기발광 디스플레이 소자 및 그 제조방법
CN109346506A (zh) 一种阵列基板及其制备方法、显示面板
US20220158109A1 (en) Flexible display panel, flexible display device and method of forming flexible display panel
WO2021093028A1 (zh) 彩膜基板及其制备方法
CN113097242A (zh) 一种高分辨率微显示器结构及其制备方法
US10503064B2 (en) Method for manufacturing color filter substrate
TW202018997A (zh) 發光元件及其製造方法
US11289665B2 (en) Organic light-emitting display screen and manufacturing method thereof
WO2023060855A1 (zh) MicroLED三基色发光结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885791

Country of ref document: EP

Kind code of ref document: A1