WO2023071888A1 - 雷达测速方法、雷达、雷达测速设备、服务器及存储介质 - Google Patents

雷达测速方法、雷达、雷达测速设备、服务器及存储介质 Download PDF

Info

Publication number
WO2023071888A1
WO2023071888A1 PCT/CN2022/126199 CN2022126199W WO2023071888A1 WO 2023071888 A1 WO2023071888 A1 WO 2023071888A1 CN 2022126199 W CN2022126199 W CN 2022126199W WO 2023071888 A1 WO2023071888 A1 WO 2023071888A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
speed
target
measured
absolute
Prior art date
Application number
PCT/CN2022/126199
Other languages
English (en)
French (fr)
Inventor
党彦锋
赵尔鑫
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2023071888A1 publication Critical patent/WO2023071888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Definitions

  • Embodiments of the present invention relate to the technical field of radar speed measurement, and in particular, to a radar speed measurement method, radar, radar speed measurement equipment, server and storage medium.
  • the current traffic speed measurement radar In order to realize the punishment of traffic violations, radar is usually used for speed measurement to obtain the correct vehicle speed.
  • the current traffic speed measurement radar only supports the working mode at a fixed height and a fixed pitch angle.
  • the existing The current radar data acquisition models are basically established on a two-dimensional plane. When working in a three-dimensional space, the three-dimensional pitch angle will cause the existing data acquisition model to fail. At the same time, the existence of the pitch angle in the three-dimensional data acquisition plane will make the data acquisition plane Rotation occurs, which leads to large errors in the existing speed identification results.
  • Embodiments of the present invention provide a radar speed measurement method, radar, radar speed measurement equipment, server and storage medium, so as to accurately measure the moving speed of a target at any height and pitch angle in a three-dimensional space.
  • an embodiment of the present invention provides a radar speed measurement method, the method comprising:
  • the absolute moving speed of the target to be measured along its own moving direction is determined according to the relative moving speed and the position information.
  • the acquiring the measurement parameter set between the radar and the target to be measured includes at least: acquiring a target distance, a target height difference, and a target horizontal angle between the radar and the target to be measured;
  • the determining the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and the position information at least includes:
  • the absolute moving speed is determined according to the relative moving speed, the instantaneous azimuth and the instantaneous elevation angle of the target to be measured relative to the radar.
  • the acquiring the target distance between the radar and the target to be measured includes:
  • the target distance is determined through a constant false alarm detection algorithm.
  • the acquiring the target horizontal angle between the radar and the target to be measured includes:
  • the radar is carried on an unmanned aerial vehicle, and the acquisition of the target height difference between the radar and the target to be measured includes:
  • the target altitude difference is measured by the flight control system of the drone.
  • the radar is carried on an unmanned aerial vehicle, and before the absolute moving speed is determined according to the relative moving speed, the instantaneous azimuth angle and the instantaneous pitch angle of the target to be measured relative to the radar, further include:
  • the determining the absolute moving speed according to the relative moving speed, the instantaneous azimuth and the instantaneous elevation angle of the target to be measured relative to the radar includes:
  • the absolute movement speed is determined according to the target absolute speed, the instantaneous azimuth angle, and the instantaneous pitch angle.
  • the target distance, the target height difference, the target horizontal angle, the instantaneous azimuth angle, and the instantaneous pitch angle satisfy the following relationship:
  • represents the instantaneous azimuth angle
  • represents the instantaneous pitch angle
  • R represents the target distance
  • ⁇ radar represents the target horizontal angle
  • asin() represents an arcsine function
  • the relative moving speed, the absolute moving speed and the instantaneous azimuth angle and the instantaneous pitch angle satisfy the following relationship:
  • v c represents the absolute moving speed
  • v r represents the relative moving speed
  • represents the instantaneous azimuth angle
  • represents the instantaneous pitch angle
  • the embodiment of the present invention also provides a radar, which includes:
  • processors one or more processors
  • memory for storing one or more programs
  • the one or more processors are made to implement the radar speed measuring method provided in any embodiment of the present invention.
  • the embodiment of the present invention also provides a radar speed measuring device, the radar speed measuring device includes a plurality of radars provided in any embodiment of the present invention, and the plurality of radars are used to measure the speed of the same target to be measured, so as to The absolute moving speed of the target to be measured along its own moving direction is obtained.
  • the speed measurement of the same target to be measured to obtain the absolute moving speed of the target to be measured along its own moving direction includes:
  • a plurality of the radars measure the speed of the same target to be measured, so as to obtain absolute moving speed samples measured by each of the radars;
  • performing vector averaging on each of the absolute moving speed samples to obtain the absolute moving speed includes: performing vector averaging on each of the absolute moving speed samples to obtain a vector average speed;
  • the vector average speed is used as the absolute moving speed.
  • performing vector averaging on each of the absolute moving speed samples to obtain the absolute moving speed includes:
  • the second vector average speed is used as the absolute moving speed.
  • an embodiment of the present invention also provides a radar speed measuring device, the radar speed measuring device includes a plurality of radars provided in any embodiment of the present invention, and the plurality of radars are used to measure the speed of a plurality of targets to be measured, The absolute moving speeds of the plurality of targets to be measured along their own moving directions are obtained.
  • the moving directions of the multiple targets to be measured are different from each other.
  • the embodiment of the present invention also provides a server, the server is used for:
  • the absolute moving speed of the target to be measured or the multiple targets to be measured is displayed on the display screen of the server for the user to determine whether the target to be measured or the multiple targets to be measured is overspeed.
  • an embodiment of the present invention further provides an unmanned aerial vehicle, including the radar speed measuring device provided in any embodiment of the present invention, wherein a plurality of the radars are installed on the nose of the unmanned aerial vehicle.
  • the nose is provided with a pan-tilt
  • the radar is installed on the pan-tilt.
  • the embodiment of the present invention also provides an unmanned aerial vehicle, including the radar speed measuring device provided in any embodiment of the present invention, wherein a plurality of the radars are respectively installed on the nose of the unmanned aerial vehicle, the machine tail, left fuselage and right fuselage.
  • an embodiment of the present invention further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the radar speed measurement method provided in any embodiment of the present invention is implemented.
  • An embodiment of the present invention provides a radar speed measurement method. Firstly, the measurement parameter set between the radar and the target to be measured is obtained, and then the position information of the target to be measured relative to the radar is determined according to the measurement parameter set, and at the same time, the position information of the target to be measured is measured by the radar. The relative moving speed of the target along the line of sight of the beam, so as to determine the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and position information.
  • the radar speed measurement method provided by the embodiment of the present invention solves the speed conversion problem under the three-dimensional model by calculating the relative position information of the target to be measured, and realizes accurate measurement of the target at any height and any pitch angle in the three-dimensional space. The speed in the direction of travel makes it easier for law enforcement agencies to determine and track violations.
  • FIG. 1 is a flow chart of the radar speed measurement method provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a radar three-dimensional data acquisition model provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a radar speed measuring device provided in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a radar provided in Embodiment 3 of the present invention.
  • UAVs can also meet the needs of many application scenarios in the transportation industry. As the "third eye flying in the air", UAVs provide great convenience for safety supervision and emergency protection in the field of transportation. Due to the large traffic flow and serious congestion, the UAV law enforcement department can ensure that when the traffic police fail to arrive at the scene in time, the UAV can arrive at the scene as soon as possible, and conduct aerial photography, recording, evidence collection and traffic guidance, so as to Avoid worse traffic jams.
  • drones can also be used for intelligent tracking of illegal vehicles on highways or other relatively open scenes, and can also implement autonomous flight through the flight control system to achieve intelligent monitoring.
  • the embodiment of the present invention is described by taking the radar mounted on the drone as an example.
  • the radar can also be mounted on other airborne equipment, which is not limited in the embodiment of the present invention.
  • FIG. 1 is a flow chart of a radar speed measurement method provided by Embodiment 1 of the present invention. This embodiment is applicable to the situation of monitoring the driving speed of various vehicles, and the method can be executed by the radar provided in the embodiment of the present invention, the radar can be realized by hardware or hardware plus software, and multiple radars Constitute radar speed measuring equipment. As shown in Figure 1, it specifically includes the following steps:
  • the target to be measured can be vehicles, ships and other vehicles, and the radar used can be millimeter-wave radar.
  • Millimeter-wave radar has the characteristics of small size, light weight and high spatial resolution, and has the ability to penetrate fog, smoke and dust. Strong, all-weather and all-weather, anti-jamming and anti-stealth capabilities are also superior to others, and can also distinguish and identify small targets, and can identify multiple targets at the same time. The accuracy of the final speed measurement result can be improved by using millimeter wave radar .
  • the acquiring the measurement parameter set between the radar and the target to be measured at least includes: acquiring the target distance, the height difference of the target and the horizontal angle of the target between the radar and the target to be measured, that is, the measurement
  • the parameter set can at least include target distance, target height difference, and target horizontal angle, and can further include parameters such as the attitude of the airborne equipment on which the radar is mounted.
  • the measurement parameter set can be Parameters such as the attitude of the man-machine.
  • the position C of the millimeter-wave radar can be used as the origin
  • the vertical radar antenna surface can be used as the X axis
  • the radar center direction can be used as the Z axis
  • the Y axis can be determined according to the right-hand rule to establish the radar coordinate system CXYZ.
  • the X1 axis may be parallel to the moving direction of the target to be measured, that is, may be the direction of the road, wherein, the Z axis and the X1 axis intersect at point B.
  • the target distance between the millimeter-wave radar and the target to be measured is R
  • the height difference of the target is H
  • the horizontal angle of the target is the distance between the line connecting the millimeter-wave radar and the target to be measured and the vertical plane on the ground where the radar normal is located.
  • Rs is the radar center slant distance, which is BC
  • is the instantaneous azimuth angle of the target to be measured relative to the millimeter-wave radar
  • is the angle of the target to be measured relative to the millimeter-wave radar
  • is the pitch angle of the radar center, that is, the angle between the normal direction of the radar and the horizontal direction when the millimeter-wave radar is working.
  • the acquiring the target distance between the radar and the target to be measured includes: transmitting a frequency-modulated continuous wave signal through the radar, and receiving a reflected echo signal of the target to be measured;
  • the reflected echo signal is digitally down-converted and sorted into a two-dimensional matrix, and then the two-dimensional range Doppler matrix corresponding to the target to be measured is obtained through two-dimensional fast Fourier transform; according to the two-dimensional range Doppler matrix, and the target distance is determined by a constant false alarm detection algorithm.
  • a frequency modulated continuous wave (FMCW) radar can be used to transmit a frequency modulated continuous wave signal.
  • the frequency of the frequency modulated continuous wave signal can be linearly changed in each frequency modulation period.
  • the reflected echo signal can be first The wave signal is digitally down-converted, and then the sample values are sorted into a two-dimensional matrix, and then the time-domain echo signal is transformed into the frequency domain dimension by two-dimensional (2-D) fast Fourier transform (FFT), so as to obtain the measured
  • the target distance R of the target to be measured can be obtained by combining the two-dimensional Doppler matrix (RDM) corresponding to the target with the constant false alarm detection (CFAR) algorithm.
  • RDM Doppler matrix
  • CFAR constant false alarm detection
  • the acquiring the target horizontal angle between the radar and the target to be measured includes: determining a corresponding azimuth steering vector and a direction-of-arrival vector according to the target distance and the target height difference a signal vector; estimating a direction of arrival according to the azimuth steering vector and the signal vector, so as to obtain the target horizontal angle.
  • the steering vector is the response of all elements of the array antenna to the narrowband signal source with unit energy. Since the array response is different in different directions, the steering vector and the direction of the signal source are interrelated. The uniqueness of this correlation Depending on the geometry of the array, each element of the steering vector has unit magnitude for the same array of elements.
  • the angular position of a certain point target in space relative to the radar is ( ⁇ , ⁇ ), where ⁇ (- ⁇ /2, ⁇ /2), ⁇ (0, ⁇ /2) represent the instantaneous azimuth and instantaneous elevation angle
  • DOA direction of arrival
  • A represents the scattering coefficient of an arbitrary point target
  • a( ⁇ , ⁇ ) represents the signal steering vector, which can be expressed as
  • the azimuth estimation angle can be obtained by the following method
  • the radar is carried on the drone, and the acquisition of the radar and the measured
  • the target height difference between targets includes: measuring the target height difference through the flight control system of the UAV, that is, the height difference can be accurately measured by the UAV flight control system, so that it can be used for 2D DOA estimation for other point targets.
  • the azimuth steering vector can be expressed as
  • d is the uniform array element spacing
  • N is the number of receiving antennas
  • [] H represents the transpose conjugate of the matrix
  • the DOA estimated output angle is ⁇ DCG.
  • the three-dimensional coordinates of any point D in the scene in the radar coordinate system are [DG,-GE,CE], further calculations can be obtained on this basis
  • the corresponding three-dimensional coordinates can be obtained as In particular, if the three-dimensional data acquisition model provided in this embodiment is set to zero at the same time, it can degenerate to the traditional two-dimensional data acquisition model.
  • the methods provided in this embodiment are all applicable, that is, this implementation The method provided by the example has good scalability.
  • the relative position information of the target to be measured can be determined according to the obtained measurement parameter set, so as to facilitate subsequent tracking of the target to be measured based on the position information in different directions.
  • the movement speed is converted to get its actual movement speed in its own direction.
  • the relative moving speed is a three-dimensional vector.
  • the moving speed measured by the radar at a certain height is the relative moving speed of the target to be measured along the line of sight of the beam, that is, the projection of the real moving speed on the radar beam.
  • the absolute moving speed is also a three-dimensional vector.
  • the determining the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and the position information includes at least: according to the relative moving speed, the relative moving speed of the target to be measured.
  • the instantaneous azimuth and the instantaneous elevation angle of the radar determine the absolute moving speed, that is, the position information may at least include the instantaneous azimuth and the instantaneous elevation angle.
  • the target to be measured is driving at point D in Fig. 2
  • the target distance, the target height difference, the target horizontal angle, the instantaneous azimuth angle, and the instantaneous pitch angle satisfy the following relationship:
  • represents the instantaneous azimuth angle
  • represents the instantaneous pitch angle
  • H represents the target height difference
  • R represents the target distance
  • ⁇ radar represents the target horizontal angle
  • asin() represents an arcsine function
  • the instantaneous azimuth angle and instantaneous The pitch angle converts the measured v r to obtain v c , that is, to obtain the absolute moving speed of the target to be measured along its own moving direction.
  • the relative moving speed, the absolute moving speed, the instantaneous azimuth angle and the instantaneous pitch angle satisfy the following relationship:
  • v c represents the absolute moving speed
  • v r represents the relative moving speed
  • represents the instantaneous azimuth angle
  • represents the instantaneous pitch angle. Therefore, the speed along the line of sight of the beam can be back-projected to the actual driving direction, that is, transformed into the driving coordinate system, and the speed in the actual driving direction can be obtained, which provides an effective basis for accurate punishment of subsequent violations.
  • the radar is carried on the UAV, and the radar is determined according to the relative moving speed, the instantaneous azimuth angle and the instantaneous pitch angle of the target to be measured relative to the radar.
  • the absolute moving speed Before the absolute moving speed, it also includes: obtaining the actual flying speed of the drone and the pitch angle information of the gimbal; projecting the actual flying speed onto the beam line of sight direction according to the pitch angle information to obtain the projection flight speed; correspondingly, determining the absolute moving speed according to the relative moving speed, the instantaneous azimuth angle and the instantaneous pitch angle of the target to be measured relative to the radar includes: according to the relative moving speed and the The projected flight speed determines the target absolute speed of the target to be measured along the line of sight of the beam; the absolute moving speed is determined according to the target absolute speed, the instantaneous azimuth angle and the instantaneous pitch angle.
  • the method provided in this embodiment is based on the working state of any height and pitch angle, wherein the radar can be carried on the UAV, or on other airborne equipment that mounts the radar. Traffic regulation can be easily implemented.
  • the measurement during flight can be realized by considering the speed of the UAV, that is, the radar speed measurement method provided in this embodiment is suitable for dynamic models.
  • the actual flight speed of the UAV can be synthesized first, and then the pitch angle information of the gimbal can be used to project it to the direction of the beam line of sight, and then the absolute speed of the target along the line of sight of the beam can be obtained by making a difference, so that the above conversion can be used
  • the method (such as replacing v r in the formula with the absolute speed of the target), according to the absolute speed of the target is determined to obtain the corresponding absolute moving speed.
  • the radar speed measurement method provided in this embodiment can also measure the speed of the target to be measured.
  • the actual flight speed of the UAV is zero, so there is no need to use the pitch angle information of the gimbal Project the speed of the UAV to the direction of the beam line of sight, and directly convert the absolute speed of the target along the direction of the beam line of sight according to the above conversion method (such as replacing v r in the formula with the absolute speed of the target), that is The corresponding absolute movement speed is obtained, so the method is also suitable for static models.
  • the measurement parameter set between the radar and the target to be measured is obtained first, and then the position information of the target to be measured relative to the radar is determined according to the measurement parameter set, and the edge of the target to be measured is measured by the radar.
  • the relative moving speed in the line of sight direction of the beam so as to determine the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and position information.
  • Fig. 3 is a schematic structural diagram of a radar speed measuring device provided in Embodiment 2 of the present invention.
  • the device can be realized by hardware and/or software, and generally can be integrated into a radar to implement the radar provided in any embodiment of the present invention. speed measurement method. As shown in Figure 3, the device includes:
  • a parameter acquisition module 21 configured to acquire a measurement parameter set between the radar and the target to be measured
  • a position determining module 22 configured to determine position information of the target to be measured relative to the radar according to the measurement parameter set;
  • a relative speed measurement module 23 configured to obtain the relative moving speed of the target to be measured along the beam line-of-sight direction of the radar through the radar measurement;
  • the absolute speed determining module 24 is configured to determine the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and the position information.
  • the measurement parameter set between the radar and the target to be measured is obtained first, and then the position information of the target to be measured relative to the radar is determined according to the measurement parameter set, and the edge of the target to be measured is measured by the radar.
  • the relative moving speed in the line of sight direction of the beam so as to determine the absolute moving speed of the target to be measured along its own moving direction according to the relative moving speed and position information.
  • the parameter acquisition module 21 is specifically used for:
  • the absolute speed determination module 24 is specifically used for:
  • the absolute moving speed is determined according to the relative moving speed, the instantaneous azimuth and the instantaneous elevation angle of the target to be measured relative to the radar.
  • the parameter acquisition module 21 includes:
  • a signal transceiving unit configured to transmit a frequency-modulated continuous wave signal through the radar, and receive a reflected echo signal of the target to be measured;
  • a signal processing unit configured to perform digital down-conversion on the reflected echo signal, sort it into a two-dimensional matrix, and then obtain a two-dimensional range Doppler matrix corresponding to the target to be measured through two-dimensional fast Fourier transform;
  • the target distance determining unit is configured to determine the target distance through a constant false alarm detection algorithm according to the two-dimensional range-Doppler matrix.
  • the parameter acquisition module 21 includes:
  • a steering vector determining unit configured to determine a corresponding azimuth steering vector and a signal vector for estimating a direction of arrival according to the target distance and the target height difference;
  • a target horizontal angle determining unit configured to estimate a direction of arrival according to the azimuth steering vector and the signal vector, so as to obtain the target horizontal angle.
  • the radar is carried on the UAV, and the parameter acquisition module 21 includes:
  • the target height difference measuring unit is used to measure the target height difference through the flight control system of the drone.
  • the radar is carried on the unmanned aerial vehicle, and the radar speed measuring device also includes:
  • a flight parameter acquisition module used to obtain the UAV's flight speed before determining the absolute speed according to the relative speed, the instantaneous azimuth and the instantaneous pitch angle of the target to be measured relative to the radar. Actual flight speed and gimbal pitch angle information;
  • a projected flight speed determination module configured to project the actual flight speed onto the beam line-of-sight direction according to the pitch angle information, so as to obtain the projected flight speed
  • the absolute speed determination module 24 includes:
  • a target absolute speed determining unit configured to determine the target absolute speed of the target to be measured along the line of sight of the beam according to the relative moving speed and the projected flight speed;
  • An absolute speed determining unit configured to determine the absolute moving speed according to the target absolute speed, the instantaneous azimuth angle, and the instantaneous pitch angle.
  • the radar speed measuring device provided in the embodiment of the present invention can execute the radar speed measuring method provided in any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the included units and modules are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized; in addition, The specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present invention.
  • Fig. 4 is a schematic structural diagram of a radar provided in Embodiment 3 of the present invention, showing a block diagram of an exemplary radar suitable for implementing the embodiment of the present invention.
  • the radar shown in FIG. 4 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
  • the radar includes a processor 31, a memory 32, an input device 33, and an output device 34; the number of processors 31 in the radar can be one or more, and in Figure 4, a processor 31 is taken as an example, the radar
  • the processor 31, the memory 32, the input device 33 and the output device 34 can be connected through a bus or in other ways. In FIG. 4, the connection through a bus is taken as an example.
  • the memory 32 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the radar speed measurement method in the embodiment of the present invention (for example, parameter acquisition in the radar speed measurement device) module 21, position determination module 22, relative speed measurement module 23 and absolute speed determination module 24).
  • the processor 31 executes various functional applications and data processing of the radar by running the software programs, instructions and modules stored in the memory 32 , that is, realizes the above-mentioned radar speed measurement method.
  • the memory 32 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the radar, and the like.
  • the memory 32 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 32 may further include memory located remotely from the processor 31, and these remote memories may be connected to the radar through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 33 can be used to measure the relative moving speed of the target to be measured along the radar beam line-of-sight direction, and generate key signal input related to the user setting and function control of the radar.
  • An output device 34 may be used to feed back measured speed data, etc. to a user.
  • Embodiment 4 of the present invention also provides a radar speed measuring device, the radar speed measuring device includes a plurality of radars provided in any embodiment of the present invention, and the plurality of radars are used to measure the speed of the same target to be measured, so as to obtain the Measure the absolute moving speed of the target along its own moving direction.
  • multiple radars can be used to respectively apply the radar speed measurement method provided by any embodiment of the present invention to measure the speed of the same target to be measured, thereby further improving the accuracy of the measurement result.
  • each of the multiple radars has an independent chip, and the chip models of the radars may be the same.
  • the measuring the speed of the same target to be measured to obtain the absolute moving speed of the target to be measured along its own moving direction includes: measuring the speed of the same target to be measured by a plurality of radars to obtain Absolute moving speed samples measured by each of the radars; vector averaging is performed on each of the absolute moving speed samples to obtain the absolute moving speed.
  • performing vector averaging on each of the absolute moving speed samples to obtain the absolute moving speed includes: performing vector averaging on each of the absolute moving speed samples to obtain a vector average speed; determining each of the absolute moving speed samples Relative to the error of the vector average speed; if each of the errors does not exceed a preset error, then use the vector average speed as the absolute moving speed.
  • performing vector averaging on each of the absolute moving speed samples to obtain the absolute moving speed includes: performing vector averaging on each of the absolute moving speed samples to obtain a first vector average speed; determining each of the absolute moving speed The error of the speed sample relative to the first vector average speed; the absolute moving speed samples whose error is greater than the preset error in each error are screened out, and then the remaining part of the absolute moving speed samples are vector averaged to obtain the first Two vector average speeds; the second vector average speed is used as the absolute moving speed.
  • an absolute moving speed sample of the target to be measured can be obtained through each radar, and then all absolute moving speed samples can be vector averaged to obtain the vector average speed as For the measurement result of the final absolute moving speed, of course, it is also possible to screen out the absolute moving speed samples with large errors first, and then perform vector averaging on the remaining part of the absolute moving speed samples to obtain the vector average speed, thereby correcting the measurement results . After determining the average velocity of the vector, it is also possible to determine the error of each absolute moving velocity sample relative to the average velocity of the vector, and only when each error does not exceed the preset error, the average velocity of the vector is taken as the final measurement result.
  • Embodiment 5 of the present invention also provides a radar speed measuring device, the radar speed measuring device includes a plurality of radars provided in any embodiment of the present invention, and the plurality of radars are used to measure the speed of a plurality of targets to be measured, so as to obtain the The absolute moving speed of multiple targets to be measured along their own moving direction.
  • multiple radars can also be used to respectively apply the radar speed measurement method provided by any embodiment of the present invention to measure the speed of multiple targets to be measured, thereby improving the speed measurement efficiency.
  • each of the multiple radars has an independent chip, and the chip models of the radars may be the same.
  • the moving directions of the multiple targets to be measured are different from each other, that is, multiple radars can be used simultaneously to measure the speed of multiple targets to be measured with different moving directions. Measure the speed of passing vehicles.
  • Embodiment 6 of the present invention also provides a server, the server is used to receive the absolute moving speed of the target to be measured uploaded by the radar speed measuring device provided in any embodiment of the present invention; or, receive the absolute moving speed of the target provided in any embodiment of the present invention
  • the absolute moving speeds of the multiple targets to be measured uploaded by the radar speed measuring equipment; the absolute moving speeds of the target to be measured or the multiple targets to be measured are displayed on the display screen of the server for the user to determine the Whether the target to be tested or the multiple targets to be tested is speeding.
  • the server provided in this embodiment can receive the measurement result of the absolute moving speed uploaded by the radar speed measuring device provided in any embodiment of the present invention, that is, it can receive the measurement result of the radar speed measuring device for the same target to be measured, or it can receive The measurement results of radar speed measuring equipment for different targets to be measured.
  • the measurement results can be displayed on the display screen connected to the server, so that the traffic police can view them, so as to perform statistical analysis on the measurement results and so on.
  • Embodiment 7 of the present invention also provides an unmanned aerial vehicle, which includes the radar speed measuring device provided in Embodiment 4 of the present invention, wherein a plurality of radars are installed on the nose of the unmanned aerial vehicle.
  • the radar speed measurement equipment measures the speed of the same target to be measured, it only needs to measure the same direction at the same time.
  • the radar can be installed on the nose of the UAV to facilitate speed measurement during flight.
  • the radar can be fixed on the nose.
  • the UAV adjusts the flight attitude (for example, flight height and flight speed, etc.)
  • the target can be tracked and measured at close range, or the UAV can also directly measure the speed of the target to be measured in the distance.
  • the nose is provided with a pan-tilt
  • the radar can be installed on the pan-tilt of the nose.
  • the radar of the drone can adjust the measurement range (for example, measurement angle and measurement height) along with the rotation of the pan-tilt. etc.), for close or long-distance speed measurement of the target to be measured.
  • Embodiment 8 of the present invention also provides an unmanned aerial vehicle, which includes the radar speed measuring device provided in Embodiment 5 of the present invention, wherein a plurality of the radars are respectively installed on the nose and tail of the unmanned aerial vehicle , the left side of the fuselage and the right side of the fuselage.
  • the radar speed measurement equipment measures the speed of different targets to be measured, it may be necessary to measure different directions at the same time.
  • the radar can be installed on the nose, tail, left side and right side of the drone respectively Side, in order to carry out coordinated speed measurement on the target to be measured in multiple directions at the same time, where the nose is the optimal position for setting the radar.
  • the radar When the radar is installed on the tail, the left side of the fuselage and the right side of the fuselage, its implementation method and principle are similar to those installed on the nose. It can be fixed or rotated with the gimbal or similar products to monitor the target. Speed measurement, in order to avoid duplication of content, no more details here.
  • Embodiment 9 of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute a radar speed measurement method when executed by a computer processor.
  • the method includes:
  • the absolute moving speed of the target to be measured along its own moving direction is determined according to the relative moving speed and the position information.
  • the storage medium may be any of various types of memory devices or storage devices.
  • the term "storage medium” is intended to include: installation media such as CD-ROMs, floppy disks, or tape drives; computer system memory or random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc. ; non-volatile memory, such as flash memory, magnetic media (eg hard disk or optical storage); registers or other similar types of memory elements, etc.
  • the storage medium may also include other types of memory or combinations thereof.
  • the storage medium may be located in a computer system in which the program is executed, or may be located in a different second computer system connected to the computer system through a network such as the Internet.
  • the second computer system may provide program instructions to the computer for execution.
  • storage medium may include two or more storage media that may reside in different locations, such as in different computer systems connected by a network.
  • the storage medium may store program instructions (eg embodied as computer programs) executable by one or more processors.
  • the computer-executable instructions are not limited to the method operations described above, and can also perform the radar speed measurement method provided by any embodiment of the present invention. related operations.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • the present invention can be realized by means of software and necessary general-purpose hardware, and of course it can also be realized by hardware, but in many cases the former is a better implementation mode .
  • the essence of the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including a number of instructions to make an electronic device (which can be a personal computer) , server, or network device, etc.) execute the methods described in various embodiments of the present invention.
  • a computer-readable storage medium such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达测速方法、雷达、雷达测速设备、服务器及存储介质。该方法包括:获取雷达与待测目标之间的测量参数集(S11);根据测量参数集确定待测目标相对于雷达的位置信息(S12);通过雷达测量得到待测目标沿雷达的波束视线方向上的相对移动速度(S13);根据相对移动速度以及位置信息确定待测目标沿自身移动方向上的绝对移动速度(S14)。通过计算待测目标的相对位置信息,解决了三维模型下的速度转换问题,实现了在三维空间中任意高度和任意俯仰角下准确的测量目标在实际行驶方向上的速度,从而更便于执法部门对违章的判定和追踪。

Description

雷达测速方法、雷达、雷达测速设备、服务器及存储介质
本申请要求于2021年10月28日提交中国专利局、申请号为2021112660657、申请名称为“雷达测速方法、雷达、雷达测速设备、服务器及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及雷达测速技术领域,尤其涉及一种雷达测速方法、雷达、雷达测速设备、服务器及存储介质。
背景技术
随着全球城市规模的迅猛发展,促使城市车辆增多、交通网络日趋复杂、城际列车、高铁等交通工具也得到了高速发展。在城市交通网为人们生活带来便捷的同时,车多路繁的状况亦给交通安全埋下了隐患,更是为交通控制和管理留下了更多的难题。
为实现对交通违章行为的判罚,通常会用到雷达进行测速,以得到正确的车辆行驶速度,但目前存在的交通测速雷达仅支持固定高度和固定俯仰角下的工作模式,相应的,现有的雷达数据录取模型基本都建立在二维平面,当工作在三维空间中时,三维俯仰角会导致现有的数据录取模型失效,同时在三维数据采集平面中俯仰角的存在会使数据录取平面发生旋转,从而导致现有的速度认定结果存在较大的误差。
发明内容
本发明实施例提供一种雷达测速方法、雷达、雷达测速设备、服务器及存储介质,以实现在三维空间中任意高度和俯仰角下准确测量目标的移动速度。
第一方面,本发明实施例提供了一种雷达测速方法,该方法包括:
获取雷达与待测目标之间的测量参数集;
根据所述测量参数集确定所述待测目标相对于所述雷达的位置信息;
通过所述雷达测量得到所述待测目标沿所述雷达的波束视线方向上的相对移动速度;
根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度。
可选的,所述获取雷达与待测目标之间的测量参数集,至少包括:获取所述雷达与所述待测目标之间的目标距离、目标高度差和目标水平角;
所述根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度,至少包括:
根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度。
可选的,所述获取所述雷达与所述待测目标之间的目标距离,包括:
通过所述雷达发射调频连续波信号,并接收所述待测目标的反射回波信号;
对所述反射回波信号进行数字下变频,并排序为二维矩阵,再通过二维快速傅里叶变换得到所述待测目标对应的二维距离多普勒矩阵;
根据所述二维距离多普勒矩阵,通过恒虚警检测算法确定所述目标距离。
可选的,所述获取所述雷达与所述待测目标之间的目标水平角,包括:
根据所述目标距离和所述目标高度差确定对应的方位导向矢量及用于估计波达方向的信号向量;
根据所述方位导向矢量和所述信号向量估计波达方向,以得到所述目标水平角。
可选的,所述雷达载于无人机上,所述获取所述雷达与所述待测目标之间的目标高度差,包括:
通过所述无人机的飞控系统对所述目标高度差进行测量。
可选的,所述雷达载于无人机上,在所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度之前,还包括:
获取所述无人机的实际飞行速度及云台的俯仰角信息;
根据所述俯仰角信息将所述实际飞行速度投影到波束视线方向上,以得到投影飞行速度;
相应的,所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度,包括:
根据所述相对移动速度和所述投影飞行速度确定所述待测目标沿波束视线方向上的目标绝对速度;
根据所述目标绝对速度、所述瞬时方位角以及所述瞬时俯仰角确定所述绝对移动速度。
可选的,所述目标距离、所述目标高度差、所述目标水平角与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
Figure PCTCN2022126199-appb-000001
Figure PCTCN2022126199-appb-000002
其中,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角,表示所述目标高度差,R表示所述目标距离,θ radar表示所述目标水平角,asin()表示反正弦函数。
可选的,所述相对移动速度、所述绝对移动速度与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
Figure PCTCN2022126199-appb-000003
其中,v c表示所述绝对移动速度,v r表示所述相对移动速度,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角。
第二方面,本发明实施例还提供了一种雷达,该雷达包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明任意实施例所提供的雷达测速方法。
第三方面,本发明实施例还提供了一种雷达测速设备,该雷达测速设备包括多个本发明任意实施例所提供的雷达,多个所述雷达用于对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度。
可选的,所述对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度,包括:
多个所述雷达对同一所述待测目标进行测速,以获得各个所述雷达测得的绝对移动速度样本;
对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度。
可选的,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:对各个所述绝对移动速度样本进行矢量平均得到矢量平均速度;
确定各个所述绝对移动速度样本相对于所述矢量平均速度的误差;
若各个所述误差不超过预设误差,则将所述矢量平均速度作为所述绝对移动速度。
可选的,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:
对各个所述绝对移动速度样本进行矢量平均得到第一矢量平均速度;
确定各个所述绝对移动速度样本相对于所述第一矢量平均速度的误差;
对各个误差中所述误差大于预设误差的所述绝对移动速度样本进行筛除,再对剩余的部分绝对移动速度样本进行矢量平均得到第二矢量平均速度;
将所述第二矢量平均速度作为所述绝对移动速度。
第四方面,本发明实施例还提供了一种雷达测速设备,该雷达测速设备包括多个本发明任意实施例所提供的雷达,多个所述雷达用于对多个待测目标进行测速,以获得所述多个待测目标沿自身移动方向上的绝对移动速度。
可选的,所述多个待测目标的移动方向互不相同。
第五方面,本发明实施例还提供了一种服务器,该服务器用于:
接收本发明任意实施例所提供的雷达测速设备上传的所述待测目标的绝对移动速度;
或者,接收本发明任意实施例所提供的雷达测速设备上传的所述多个待测目标的绝对移动速度;
在所述服务器的显示屏上显示所述待测目标或者所述多个待测目标的绝对移动速度,以供用户判定所述待测目标或者所述多个待测目标是否超速。
第六方面,本发明实施例还提供了一种无人机,包括本发明任意实施例所提供的雷达测速设备,其中,多个所述雷达安装于所述无人机的机头。
可选的,所述机头设置有云台,所述雷达安装于所述云台。
第七方面,本发明实施例还提供了一种无人机,包括本发明任意实施例所提供的雷达测速设备,其中,多个所述雷达分别安装于所述无人机的机头、机尾、机身左侧和机身右侧。
第八方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明任意实施例所提供的雷达测速方法。
本发明实施例提供了一种雷达测速方法,首先获取雷达与待测目标之间的测量参数集,然后根据该测量参数集确定待测目标相对于雷达的位置信息,同时通过雷达测得待测目标沿波束视线方向上的相对移动速度,从而根据该相对移动速度以及位置信息确定待测目标沿自身移动方向上的绝对移动速度。本发明实施例所提供的雷达测速方法,通过计算待测目标的相对位置信息,解决了三维模型下的速度转换问题,实现了在三维空间中任意高度和任意俯仰角下准确的测量目标在实际行驶方向上的速度,从而更便于执法部门对违章的判定和追踪。
附图说明
图1为本发明实施例一提供的雷达测速方法的流程图;
图2为本发明实施例一提供的雷达三维数据录取模型的结构示意图;
图3为本发明实施例二提供的雷达测速装置的结构示意图;
图4为本发明实施例三提供的雷达的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
随着无人机的普及和民用化,无人机的使用成本越来越低,已在警用、城市管理、农业、地质、电力、抢险救灾、视频拍摄等行业,发挥着越来越重要的作用。无人机同样也可满足交通行业中诸多应用场景的需求,作为“飞行在空中的第三只眼”,无人机为交通运输领域的安全监管和应急保障提供了很大便利。由于交通流量大、拥挤严重,无人机执法部门可以确保当交通警察未能及时赶到现场时,无人机可以在第一时间赶到现场,并进行航拍、录音、取证和交通疏导,以避免更严重的交通拥挤。同时,无人机也可用于高速公路或其他 相对空旷场景中违章车辆的智能追踪,还可通过飞控系统实施自主飞行,实现智能监控。本发明实施例以雷达挂载在无人机上为例进行说明,当然,雷达还可以挂载在其他机载设备上,本发明实施例对此不做限制。
实施例一
图1为本发明实施例一提供的雷达测速方法的流程图。本实施例可适用于对各种交通工具的行驶速度进行监测的情况,该方法可以由本发明实施例所提供的雷达来执行,该雷达可以由硬件或者硬件加软件的方式来实现且多个雷达构成雷达测速设备。如图1所示,具体包括如下步骤:
S11、获取雷达与待测目标之间的测量参数集。
其中,待测目标可以是车、船等交通工具,所使用的雷达可以是毫米波雷达,毫米波雷达具有体积小、质量轻和空间分辨率高的特点,穿透雾、烟、灰尘的能力强,可全天候全天时,同时抗干扰和反隐身能力也优于其他,还能够分辨识别很小的目标,且能同时识别多个目标,通过使用毫米波雷达可以提高最终测速结果的准确性。可选的,所述获取雷达与待测目标之间的测量参数集,至少包括:获取所述雷达与所述待测目标之间的目标距离、目标高度差和目标水平角,即所述测量参数集至少可以包括目标距离、目标高度差和目标水平角,进一步还可以包括挂载雷达的机载设备的姿态等参数,例如,若挂载设备为无人机,则测量参数集可以是无人机的姿态等参数。具体的,如图2所示,首先可以毫米波雷达所在位置C为原点,以垂直雷达天线面为X轴,以雷达中心方向为Z轴,并按照右手规则确定Y轴建立雷达坐标系CXYZ,再以毫米波雷达位置在地面投影O为原点,以与X轴同方向为Y1轴,以垂直地面向上为Z1轴,并以地面上垂直Y1轴的方向为X1轴来建立行驶坐标系OX1Y1Z1,其中, X1轴可以平行于待测目标的移动方向,即可以是道路方向,其中,Z轴与X1轴相交于B点。假设场景中任意一点D处存在一待测目标,雷达到D点直线距离为R,过D点做垂直于OB的直线DG,过G点做垂直于CB的直线GE,由三垂线定理可得DE⊥BC,向XCZ平面内做DQ⊥面XCZ,过D点做垂直于CX的直线QJ,并分别连接OD、CD、CG、CQ和EQ等。其中,毫米波雷达与待测目标之间的目标距离即为R,目标高度差即为H,目标水平角即毫米波雷达与待测目标的连线同雷达法线所在的地面垂面之间的夹角,即为∠DCG,另外,Rs为雷达中心斜距,即为BC,∠γ为待测目标相对于毫米波雷达的瞬时方位角,∠ψ为待测目标相对于毫米波雷达的瞬时俯仰角,∠α为雷达中心俯仰角,即毫米波雷达工作时雷达法线方向与水平向之间的夹角。
可选的,所述获取所述雷达与所述待测目标之间的目标距离,包括:通过所述雷达发射调频连续波信号,并接收所述待测目标的反射回波信号;对所述反射回波信号进行数字下变频,并排序为二维矩阵,再通过二维快速傅里叶变换得到所述待测目标对应的二维距离多普勒矩阵;根据所述二维距离多普勒矩阵,通过恒虚警检测算法确定所述目标距离。具体的,可以通过调频连续波(FMCW)雷达发射调频连续波信号,该调频连续波信号的频率可以在每个调频周期内呈线性变化,当接收到反射回波信号时,可以首先对反射回波信号进行数字下变频,然后将样本值排序为二维矩阵,再将时域回波信号经二维(2-D)快速傅里叶变换(FFT)变换到频域维,从而得到待测目标对应的二维多普勒矩阵(RDM),结合恒虚警检测(CFAR)算法即可得到待测目标的目标距离R。
可选的,所述获取所述雷达与所述待测目标之间的目标水平角,包括:根据所述目标距离和所述目标高度差确定对应的方位导向矢量及用于估计波达方 向的信号向量;根据所述方位导向矢量和所述信号向量估计波达方向,以得到所述目标水平角。其中,导向矢量是阵列天线的所有阵元对具有单位能量窄带信源的响应,由于阵列响应在不同方向上是不同的,导向矢量与信源的方向是相互关联的,这种关联的独特性依赖于阵列的几何结构,对于同一阵元阵列,导向矢量的每一个元素具有单位幅度。具体的,对于待测目标,为生成N维向量,需要由N个天线组成的雷达阵列,假设天线阵元间隔为的d=λ/2,其中λ为波长。假设空间中某一点目标相对于雷达的角度位置为(γ,ψ),其中γ∈(-π/2,π/2),ψ∈(0,π/2)分别表示任意点目标对应的瞬时方位角和瞬时俯仰角,则用于估计波达方向(DOA)的信号向量s可以表示为
s=A·a(γ,ψ)
其中,A表示任意点目标的散射系数,a(γ,ψ)表示信号导向矢量,可以被表示为
a(γ,ψ)=[1,e -j2πdsinγcosψ/λ,···e -j2π(N-1)dsinγcosψ/λ] H
对于传统的一维DOA估计,仅考虑方位角的导向矢量可表示为
b=[1,e -j2πdsinγ/λ,···e -j2π(N-1)dsinγ/λ] H
因此可以通过下列方法得到方位估计角度
Figure PCTCN2022126199-appb-000004
为解决三维测角问题,在本实施例中考虑到任意点目标相较于雷达存在高度差H,可选的,所述雷达载于无人机上,所述获取所述雷达与所述待测目标之间的目标高度差,包括:通过所述无人机的飞控系统对所述目标高度差进行测量,即该高度差可以通过无人机的飞控系统准确测量,从而将其用于其他点目标的二维DOA估计。
在确定了目标距离R和目标高度差H之后,如图2所示,雷达与任意点目标之间的瞬时俯仰角可以表示为
Figure PCTCN2022126199-appb-000005
因此,考虑由高度引起的俯仰角对应的方位导向矢量可以表示为
Figure PCTCN2022126199-appb-000006
其中,d为均匀阵元间隔,N为接收天线数量,[] H表示矩阵的转置共轭,则此时通过波达方向估计得到目标水平角为
Figure PCTCN2022126199-appb-000007
结合上述导向矢量表达式,在采用一维线性MIMO阵进行测角时,雷达与待测目标D之间的角度为θ radar,结合图2中的几何关系可得
sin∠θ radar=cos∠DCQ*sin∠QCE
根据立体几何中的折叠角公式可得
cos∠DCE=cos∠QCE*cos∠DCQ
从而可以得到
Figure PCTCN2022126199-appb-000008
结合图2中的几何关系可以进一步简化为
QE=DG=Rsinθ radar
由于CG⊥DG,从而有
∠θ radar=∠DCG
从而可以得到,在三维数据录取模型中,在存在高度和俯仰角情况下,DOA估计输出的角度为∠DCG。进一步的,还可以确定场景中任意一点在雷达坐标系 下的坐标,从而解决雷达三维数据录取模型的构建问题,并通过构建该模型,解决在高度和俯仰角变化时数据录取平面发生变化的问题。场景中任意一点D在雷达坐标系中的三维坐标为[DG,-GE,CE],在此基础上进一步计算可得
Figure PCTCN2022126199-appb-000009
再根据图2中的几何关系可得
CE=Hsinα+OGcosα
利用相似三角形可得
Figure PCTCN2022126199-appb-000010
其中
BE=Rs-CE
由此可得到对应的三维坐标为
Figure PCTCN2022126199-appb-000011
特别的,本实施例所提供的三维数据录取模型,若将高度和俯仰角同时置零,便可退化至传统的二维数据录取模型,本实施例所提供的方法均可适用,即本实施例所提供的方法具有很好的可扩展性。
S12、根据所述测量参数集确定所述待测目标相对于所述雷达的位置信息。
具体的,由于雷达只能测量得到待测目标相对于雷达的移动速度,则可以根据获得的测量参数集确定待测目标的相对位置信息,从而便于后续根据该位置信息基于不同方向对待测目标的移动速度进行转换,以得到其在自身移动方向上的实际移动速度。
S13、通过所述雷达测量得到所述待测目标沿所述雷达的波束视线方向上的相对移动速度。
其中,相对移动速度为三维矢量。具体的,通过雷达以一定高度测量得到的移动速度为待测目标沿波束视线方向上的相对移动速度,即真实移动速度在雷达波束上的投影。
S14、根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度。
其中,绝对移动速度同为三维矢量。可选的,所述根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度,至少包括:根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度,即位置信息至少可以包括瞬时方位角和瞬时俯仰角。具体的,当待测目标行驶在图2中的D点时,可以利用测得的目标距离、目标高度差、目标水平角以及图2中的几何关系确定雷达到待测目标的波束在地面上的投影与雷达法线在地面上的投影之间的夹角(即瞬时方位角),并利用测得的目标距离和目标高度差确定雷达到待测目标的波束与水平向之间的夹角(即瞬时俯仰角)。可选的,所述目标距离、所述目标高度差、所述目标水平角与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
Figure PCTCN2022126199-appb-000012
Figure PCTCN2022126199-appb-000013
其中,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角,H表示所述目标高度差,R表示所述目标距离,θ radar表示所述目标水平角,asin()表示反正弦函数。
具体的,当待测目标向雷达靠近时,由于俯仰角变大,实际测量的速度会 逐渐变小,而当待测目标向雷达远离时,由于俯仰角变小,实际测量的速度会逐渐变大。因此,如对车辆进行测速,为得到车辆准确的行驶速度以用于交通违章行为的判罚依据,需要进行三维速度转换,以将雷达坐标系下的测量速度转换到行驶坐标系中,即获得车辆的实际行驶速度。如图2所示,假设待测目标以速度v c沿与道路方向平行的方向行驶,在任意时刻雷达测量的沿波束视线方向的速度为v r,则可以根据上述确定的瞬时方位角以及瞬时俯仰角将测得的v r转换得到v c,即获得待测目标沿自身移动方向上的绝对移动速度。
可选的,根据图2中的几何关系,所述相对移动速度、所述绝对移动速度与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
Figure PCTCN2022126199-appb-000014
其中,v c表示所述绝对移动速度,v r表示所述相对移动速度,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角。从而可以将沿波束视线方向的速度反向投影到实际行驶方向上,即转换到行驶坐标系下,得到了实际行驶方向的速度,以为后续违章行为的准确判罚提供了有效的依据。
在上述技术方案的基础上,可选的,所述雷达载于无人机上,在所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度之前,还包括:获取所述无人机的实际飞行速度及云台的俯仰角信息;根据所述俯仰角信息将所述实际飞行速度投影到波束视线方向上,以得到投影飞行速度;相应的,所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度,包括:根据所述相对移动速度和所述投影飞行速度确定所述待测目标沿波束视线方向上的目标绝对速度;根据所述目标绝对速度、所述瞬时方位角以及所述瞬时俯 仰角确定所述绝对移动速度。具体的,本实施例所提供的方法是基于任意高度和俯仰角的工作状态,其中的雷达可以载于无人机上,也可以载于其他挂载雷达的机载设备上,载于无人机可以轻松实现对交通的监管。当载于无人机上时,由于无人机本身可以飞行移动,则可以通过考虑无人机的速度来实现飞行过程中的测量,即本实施例所提供的雷达测速方法适用于动态模型。具体可以首先将无人机的实际飞行速度合成之后利用云台的俯仰角信息投影到波束视线方向,然后通过作差可以得到待测目标沿波束视线方向上的目标绝对速度,从而可以利用上述转换的方法(如将公式中的v r替换为该目标绝对速度),根据该目标绝对速度确定得到相应的绝对移动速度。另外,当无人机处于悬停状态时,本实施例提供的雷达测速方法同样可以对待测目标进行测速,此时无人机的实际飞行速度为零,因此,无需利用云台的俯仰角信息对无人机速度进行投影到波束视线方向,直接将待测目标沿波束视线方向上的目标绝对速度按照上述转换的方法(如将公式中的v r替换为该目标绝对速度)进行转换,即可得到相应的绝对移动速度,因此,该方法也适用于静态模型。
本发明实施例所提供的技术方案,首先获取雷达与待测目标之间的测量参数集,然后根据该测量参数集确定待测目标相对于雷达的位置信息,同时通过雷达测得待测目标沿波束视线方向上的相对移动速度,从而根据该相对移动速度以及位置信息确定待测目标沿自身移动方向上的绝对移动速度。通过计算待测目标的相对位置信息,解决了三维模型下的速度转换问题,实现了在三维空间中任意高度和任意俯仰角下准确的测量目标在实际行驶方向上的速度,从而更便于执法部门对违章的判定和追踪。
实施例二
图3为本发明实施例二提供的雷达测速装置的结构示意图,该装置可以由硬件和/或软件的方式来实现,一般可集成于雷达中,用于执行本发明任意实施例所提供的雷达测速方法。如图3所示,该装置包括:
参数获取模块21,用于获取雷达与待测目标之间的测量参数集;
位置确定模块22,用于根据所述测量参数集确定所述待测目标相对于所述雷达的位置信息;
相对速度测量模块23,用于通过所述雷达测量得到所述待测目标沿所述雷达的波束视线方向上的相对移动速度;
绝对速度确定模块24,用于根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度。
本发明实施例所提供的技术方案,首先获取雷达与待测目标之间的测量参数集,然后根据该测量参数集确定待测目标相对于雷达的位置信息,同时通过雷达测得待测目标沿波束视线方向上的相对移动速度,从而根据该相对移动速度以及位置信息确定待测目标沿自身移动方向上的绝对移动速度。通过计算待测目标的相对位置信息,解决了三维模型下的速度转换问题,实现了在三维空间中任意高度和任意俯仰角下准确的测量目标在实际行驶方向上的速度,从而更便于执法部门对违章的判定和追踪。
在上述技术方案的基础上,可选的,参数获取模块21具体用于:
获取所述雷达与所述待测目标之间的目标距离、目标高度差和目标水平角;
绝对速度确定模块24具体用于:
根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬 时俯仰角确定所述绝对移动速度。
在上述技术方案的基础上,可选的,参数获取模块21,包括:
信号收发单元,用于通过所述雷达发射调频连续波信号,并接收所述待测目标的反射回波信号;
信号处理单元,用于对所述反射回波信号进行数字下变频,并排序为二维矩阵,再通过二维快速傅里叶变换得到所述待测目标对应的二维距离多普勒矩阵;
目标距离确定单元,用于根据所述二维距离多普勒矩阵,通过恒虚警检测算法确定所述目标距离。
在上述技术方案的基础上,可选的,参数获取模块21,包括:
导向矢量确定单元,用于根据所述目标距离和所述目标高度差确定对应的方位导向矢量及用于估计波达方向的信号向量;
目标水平角确定单元,用于根据所述方位导向矢量和所述信号向量估计波达方向,以得到所述目标水平角。
在上述技术方案的基础上,可选的,所述雷达载于无人机上,参数获取模块21,包括:
目标高度差测量单元,用于通过所述无人机的飞控系统对所述目标高度差进行测量。
在上述技术方案的基础上,可选的,所述雷达载于无人机上,该雷达测速装置,还包括:
飞行参数获取模块,用于在所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度之前,获取所 述无人机的实际飞行速度及云台的俯仰角信息;
投影飞行速度确定模块,用于根据所述俯仰角信息将所述实际飞行速度投影到波束视线方向上,以得到投影飞行速度;
相应的,绝对速度确定模块24,包括:
目标绝对速度确定单元,用于根据所述相对移动速度和所述投影飞行速度确定所述待测目标沿波束视线方向上的目标绝对速度;
绝对速度确定单元,用于根据所述目标绝对速度、所述瞬时方位角以及所述瞬时俯仰角确定所述绝对移动速度。
本发明实施例所提供的雷达测速装置可执行本发明任意实施例所提供的雷达测速方法,具备执行方法相应的功能模块和有益效果。
值得注意的是,在上述雷达测速装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
实施例三
图4为本发明实施例三提供的雷达的结构示意图,示出了适于用来实现本发明实施方式的示例性雷达的框图。图4显示的雷达仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。如图4所示,该雷达包括处理器31、存储器32、输入装置33及输出装置34;雷达中处理器31的数量可以是一个或多个,图4中以一个处理器31为例,雷达中的处理器31、存储器32、输入装置33及输出装置34可以通过总线或其他方式连接,图4中以通过总线 连接为例。
存储器32作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的雷达测速方法对应的程序指令/模块(例如,雷达测速装置中的参数获取模块21、位置确定模块22、相对速度测量模块23及绝对速度确定模块24)。处理器31通过运行存储在存储器32中的软件程序、指令以及模块,从而执行雷达的各种功能应用以及数据处理,即实现上述的雷达测速方法。
存储器32可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据雷达的使用所创建的数据等。此外,存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器32可进一步包括相对于处理器31远程设置的存储器,这些远程存储器可以通过网络连接至雷达。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置33可用于测量得到待测目标沿雷达的波束视线方向上的相对移动速度,以及产生与雷达的用户设置和功能控制有关的键信号输入等。输出装置34可用于向用户反馈测得的速度数据等等。
实施例四
本发明实施例四还提供一种雷达测速设备,该雷达测速设备包括多个本发明任意实施例所提供的雷达,多个所述雷达用于对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度。具体的,可以使用多个 雷达分别应用本发明任意实施例所提供的雷达测速方法对同一个待测目标进行测速,从而进一步提高测量结果的准确性。其中,多个雷达各自具有独立的芯片,各个雷达的芯片型号可以一致。
可选的,所述对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度,包括:多个所述雷达对同一所述待测目标进行测速,以获得各个所述雷达测得的绝对移动速度样本;对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度。进一步可选的,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:对各个所述绝对移动速度样本进行矢量平均得到矢量平均速度;确定各个所述绝对移动速度样本相对于所述矢量平均速度的误差;若各个所述误差不超过预设误差,则将所述矢量平均速度作为所述绝对移动速度。或者可选的,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:对各个所述绝对移动速度样本进行矢量平均得到第一矢量平均速度;确定各个所述绝对移动速度样本相对于所述第一矢量平均速度的误差;对各个误差中所述误差大于预设误差的所述绝对移动速度样本进行筛除,再对剩余的部分绝对移动速度样本进行矢量平均得到第二矢量平均速度;将所述第二矢量平均速度作为所述绝对移动速度。具体的,在使用多个雷达对同一待测目标进行测速时,可以通过各个雷达分别得到待测目标的一个绝对移动速度样本,然后可以对所有的绝对移动速度样本进行矢量平均得到矢量平均速度作为最终绝对移动速度的测量结果,当然,也可以首先对其中误差较大的绝对移动速度样本进行筛除,再对剩余的部分绝对移动速度样本进行矢量平均得到矢量平均速度,从而对测量结果进行校正。在确定了矢量平均速度之后,也可以首先确定各个绝对移动速度样本相对于该矢量 平均速度的误差,并仅当各个误差均不超过预设误差时,将该矢量平均速度作为最终的测量结果。
实施例五
本发明实施例五还提供一种雷达测速设备,该雷达测速设备包括多个本发明任意实施例所提供的雷达,多个所述雷达用于对多个待测目标进行测速,以获得所述多个待测目标沿自身移动方向上的绝对移动速度。具体的,还可以使用多个雷达分别应用本发明任意实施例所提供的雷达测速方法对多个待测目标进行测速,从而提高测速效率。其中,多个雷达各自具有独立的芯片,各个雷达的芯片型号可以一致。
可选的,所述多个待测目标的移动方向互不相同,即可以同时使用多个雷达对移动方向不完全相同的多个待测目标进行测速,示例性的,如可以在交通十字路口处对来往车辆进行测速。
实施例六
本发明实施例六还提供一种服务器,该服务器用于接收本发明任意实施例所提供的雷达测速设备上传的所述待测目标的绝对移动速度;或者,接收本发明任意实施例所提供的雷达测速设备上传的所述多个待测目标的绝对移动速度;在所述服务器的显示屏上显示所述待测目标或者所述多个待测目标的绝对移动速度,以供用户判定所述待测目标或者所述多个待测目标是否超速。
具体的,本实施例所提供的服务器可以接收本发明任意实施例所提供的雷达测速设备上传的绝对移动速度的测量结果,即可以接收雷达测速设备针对同 一待测目标的测量结果,也可以接收雷达测速设备针对不同待测目标的测量结果。在接收到测量结果之后,可以通过连接在服务器的显示屏对测量结果进行显示,以便交警进行查看,从而对测量结果进行统计分析等等。
实施例七
本发明实施例七还提供一种无人机,该无人机包括本发明实施例四所提供的雷达测速设备,其中,多个所述雷达安装于所述无人机的机头。具体的,当雷达测速设备对同一待测目标进行测速时,同一时刻仅需测量同一方向,此时可以将雷达安装于无人机的机头,以便于在飞行过程中进行测速。需要说明的是,雷达安装于机头时,雷达可以固定设置于机头,此时,无人机根据待测目标的运动状态调整飞行姿态(例如,飞行高度和飞行速度等),以对待测目标进行近距离跟踪测速,或者,无人机也可以对远处待测目标进行直接测速。更优地,所述机头设置有云台,所述雷达可以安装于机头的云台,此时无人机的雷达可以随着云台的旋转调整测量范围(例如,测量角度和测量高度等),以对待测目标进行近距离或者远距离测速。
实施例八
本发明实施例八还提供一种无人机,该无人机包括本发明实施例五所提供的雷达测速设备,其中,多个所述雷达分别安装于所述无人机的机头、机尾、机身左侧和机身右侧。具体的,当雷达测速设备对不同待测目标进行测速时,同一时刻可能需要测量不同方向,此时可以将雷达分别安装于无人机的机头、机尾、机身左侧和机身右侧,以便于同时对多个方向的待测目标进行协同测速, 其中,机头为设置雷达的最优位置。当雷达安装于机尾、机身左侧和机身右侧时,其实现方式和原理与安装于机头类似,既可以固定安装也可以随云台或者类似产品进行旋转,以对待测目标进行测速,为了避免内容上的重复,这里不再赘述。
实施例九
本发明实施例九还提供一种包含计算机可执行指令的存储介质,该计算机可执行指令在由计算机处理器执行时用于执行一种雷达测速方法,该方法包括:
获取雷达与待测目标之间的测量参数集;
根据所述测量参数集确定所述待测目标相对于所述雷达的位置信息;
通过所述雷达测量得到所述待测目标沿所述雷达的波束视线方向上的相对移动速度;
根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度。
存储介质可以是任何的各种类型的存储器设备或存储设备。术语“存储介质”旨在包括:安装介质,例如CD-ROM、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如DRAM、DDR RAM、SRAM、EDO RAM、兰巴斯(Rambus)RAM等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。另外,存储介质可以位于程序在其中被执行的计算机系统中,或者可以位于不同的第二计算机系统中,第二计算机系统通过网络(诸如因特网)连接到计算机系统。第二计算机系统可以提供程序指令给计算机用于执行。术 语“存储介质”可以包括可以驻留在不同位置中(例如在通过网络连接的不同计算机系统中)的两个或更多存储介质。存储介质可以存储可由一个或多个处理器执行的程序指令(例如具体实现为计算机程序)。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的雷达测速方法中的相关操作。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种雷达测速方法,其特征在于,包括:
    获取雷达与待测目标之间的测量参数集;
    根据所述测量参数集确定所述待测目标相对于所述雷达的位置信息;
    通过所述雷达测量得到所述待测目标沿所述雷达的波束视线方向上的相对移动速度;
    根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度。
  2. 根据权利要求1所述的雷达测速方法,其特征在于,所述获取雷达与待测目标之间的测量参数集,至少包括:获取所述雷达与所述待测目标之间的目标距离、目标高度差和目标水平角;
    所述根据所述相对移动速度以及所述位置信息确定所述待测目标沿自身移动方向上的绝对移动速度,至少包括:
    根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度。
  3. 根据权利要求2所述的雷达测速方法,其特征在于,所述获取所述雷达与所述待测目标之间的目标距离,包括:
    通过所述雷达发射调频连续波信号,并接收所述待测目标的反射回波信号;
    对所述反射回波信号进行数字下变频,并排序为二维矩阵,再通过二维快速傅里叶变换得到所述待测目标对应的二维距离多普勒矩阵;
    根据所述二维距离多普勒矩阵,通过恒虚警检测算法确定所述目标距离。
  4. 根据权利要求2所述的雷达测速方法,其特征在于,所述获取所述雷达与所述待测目标之间的目标水平角,包括:
    根据所述目标距离和所述目标高度差确定对应的方位导向矢量及用于估计波达方向的信号向量;
    根据所述方位导向矢量和所述信号向量估计波达方向,以得到所述目标水平角。
  5. 根据权利要求2所述的雷达测速方法,其特征在于,所述雷达载于无人机上,所述获取所述雷达与所述待测目标之间的目标高度差,包括:
    通过所述无人机的飞控系统对所述目标高度差进行测量。
  6. 根据权利要求2至5任一所述的雷达测速方法,其特征在于,所述雷达载于无人机上,在所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度之前,还包括:
    获取所述无人机的实际飞行速度及云台的俯仰角信息;
    根据所述俯仰角信息将所述实际飞行速度投影到波束视线方向上,以得到投影飞行速度;
    相应的,所述根据所述相对移动速度、所述待测目标相对于所述雷达的瞬时方位角和瞬时俯仰角确定所述绝对移动速度,包括:
    根据所述相对移动速度和所述投影飞行速度确定所述待测目标沿波束视线方向上的目标绝对速度;
    根据所述目标绝对速度、所述瞬时方位角以及所述瞬时俯仰角确定所述绝对移动速度。
  7. 根据权利要求6所述的雷达测速方法,其特征在于,所述目标距离、所述目标高度差、所述目标水平角与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
    Figure PCTCN2022126199-appb-100001
    Figure PCTCN2022126199-appb-100002
    其中,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角,H表示所述目标高度差,R表示所述目标距离,θ radar表示所述目标水平角,asin()表示反正弦函数。
  8. 根据权利要求6所述的雷达测速方法,其特征在于,所述相对移动速度、所述绝对移动速度与所述瞬时方位角及所述瞬时俯仰角之间满足以下关系式:
    Figure PCTCN2022126199-appb-100003
    其中,v c表示所述绝对移动速度,v r表示所述相对移动速度,γ表示所述瞬时方位角,ψ表示所述瞬时俯仰角。
  9. 一种雷达,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-8中任一所述的雷达测速方法。
  10. 一种雷达测速设备,其特征在于,包括多个如权利要求9所述的雷达,多个所述雷达用于对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度。
  11. 根据权利要求10所述的雷达测速设备,其特征在于,所述对同一待测目标进行测速,以获得所述待测目标沿自身移动方向上的绝对移动速度,包括:
    多个所述雷达对同一所述待测目标进行测速,以获得各个所述雷达测得的 绝对移动速度样本;
    对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度。
  12. 根据权利要求11所述的雷达测速设备,其特征在于,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:
    对各个所述绝对移动速度样本进行矢量平均得到矢量平均速度;
    确定各个所述绝对移动速度样本相对于所述矢量平均速度的误差;
    若各个所述误差不超过预设误差,则将所述矢量平均速度作为所述绝对移动速度。
  13. 根据权利要求11所述的雷达测速设备,其特征在于,对各个所述绝对移动速度样本进行矢量平均以得到所述绝对移动速度,包括:
    对各个所述绝对移动速度样本进行矢量平均得到第一矢量平均速度;
    确定各个所述绝对移动速度样本相对于所述第一矢量平均速度的误差;
    对各个误差中所述误差大于预设误差的所述绝对移动速度样本进行筛除,再对剩余的部分绝对移动速度样本进行矢量平均得到第二矢量平均速度;
    将所述第二矢量平均速度作为所述绝对移动速度。
  14. 一种雷达测速设备,其特征在于,包括多个如权利要求9所述的雷达,多个所述雷达用于对多个待测目标进行测速,以获得所述多个待测目标沿自身移动方向上的绝对移动速度。
  15. 根据权利要求14所述的雷达测速设备,其特征在于,所述多个待测目标的移动方向互不相同。
  16. 一种服务器,其特征在于,所述服务器用于:
    接收如权利要求10至13任一所述的雷达测速设备上传的所述待测目标的 绝对移动速度;
    或者,接收如权利要求14至15任一所述的雷达测速设备上传的所述多个待测目标的绝对移动速度;
    在所述服务器的显示屏上显示所述待测目标或者所述多个待测目标的绝对移动速度,以供用户判定所述待测目标或者所述多个待测目标是否超速。
  17. 一种无人机,其特征在于,包括如权利要求10至13任一所述的雷达测速设备,其中,多个所述雷达安装于所述无人机的机头。
  18. 根据权利要求17所述的无人机,其特征在于,所述机头设置有云台,所述雷达安装于所述云台。
  19. 一种无人机,其特征在于,包括如权利要求14至15任一所述的雷达测速设备,其中,多个所述雷达分别安装于所述无人机的机头、机尾、机身左侧和机身右侧。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的雷达测速方法。
PCT/CN2022/126199 2021-10-28 2022-10-19 雷达测速方法、雷达、雷达测速设备、服务器及存储介质 WO2023071888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266065.7A CN116047493A (zh) 2021-10-28 2021-10-28 雷达测速方法、雷达、雷达测速设备、服务器及存储介质
CN202111266065.7 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071888A1 true WO2023071888A1 (zh) 2023-05-04

Family

ID=86115362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126199 WO2023071888A1 (zh) 2021-10-28 2022-10-19 雷达测速方法、雷达、雷达测速设备、服务器及存储介质

Country Status (2)

Country Link
CN (1) CN116047493A (zh)
WO (1) WO2023071888A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798374B1 (en) * 2002-11-05 2004-09-28 Decatur Electronics Inc. Traffic surveillance radar using ranging for accurate target identification
CN101135696A (zh) * 2007-10-19 2008-03-05 台南科技大学 动态测速方法
TW200834103A (en) * 2007-02-13 2008-08-16 Univ Southern Taiwan Tech A dynamic speed-measuring method
US20090066570A1 (en) * 2007-09-12 2009-03-12 Southern Taiwan University Dynamic speed finding method
CN103630890A (zh) * 2013-09-02 2014-03-12 中国科学院电子学研究所 一种自适应微波测速装置及其方法
CN106375706A (zh) * 2015-07-22 2017-02-01 宇龙计算机通信科技(深圳)有限公司 利用双摄像头进行运动物体测速的方法、装置及移动终端
CN109239701A (zh) * 2018-09-03 2019-01-18 安徽文康科技有限公司 车载雷达动态测速方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798374B1 (en) * 2002-11-05 2004-09-28 Decatur Electronics Inc. Traffic surveillance radar using ranging for accurate target identification
TW200834103A (en) * 2007-02-13 2008-08-16 Univ Southern Taiwan Tech A dynamic speed-measuring method
TWI325062B (zh) * 2007-02-13 2010-05-21 Univ Southern Taiwan Tech
US20090066570A1 (en) * 2007-09-12 2009-03-12 Southern Taiwan University Dynamic speed finding method
CN101135696A (zh) * 2007-10-19 2008-03-05 台南科技大学 动态测速方法
CN103630890A (zh) * 2013-09-02 2014-03-12 中国科学院电子学研究所 一种自适应微波测速装置及其方法
CN106375706A (zh) * 2015-07-22 2017-02-01 宇龙计算机通信科技(深圳)有限公司 利用双摄像头进行运动物体测速的方法、装置及移动终端
CN109239701A (zh) * 2018-09-03 2019-01-18 安徽文康科技有限公司 车载雷达动态测速方法

Also Published As

Publication number Publication date
CN116047493A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US11036237B2 (en) Radar-based system and method for real-time simultaneous localization and mapping
US20190339384A1 (en) System and method of radar-based obstacle avoidance for unmanned aerial vehicles
CN106526551B (zh) 一种雷达天线动态性能测试系统及方法
EP3642645B1 (en) Methods and apparatus for distributed, multi-node, low-frequency radar systems for degraded visual environments
WO2022184127A1 (zh) 一种车辆、传感器的仿真方法及装置
US11044025B1 (en) Characterizing antenna patterns
US20220128995A1 (en) Velocity estimation and object tracking for autonomous vehicle applications
CN107783133A (zh) 毫米波雷达的固定翼无人机防撞系统及防撞方法
Akmaykin et al. Theoretical foundations of radar location and radio navigation
Xu et al. Heuristic path planning method for multistatic UAV-borne SAR imaging system
CN107783128A (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统
CN115524666A (zh) 用于检测和缓解汽车雷达干扰的方法和系统
Melo et al. 24 GHz interferometric radar for road hump detections in front of a vehicle
Maas et al. A portable primary radar for general aviation
WO2023071888A1 (zh) 雷达测速方法、雷达、雷达测速设备、服务器及存储介质
Long et al. Wideband Radar System Applications
Kojima et al. Development of Pi-SAR2 along-track interferometric SAR system
Khudov et al. The method of the high accuracy finding 2D coordinates in MIMO-radar based on existing surveillance radars
WO2020244467A1 (zh) 一种运动状态估计方法及装置
Lou et al. UAV detection and positioning based on 5G base station real aperture in 5G network
Mattei et al. Improving Radar Detection of Drones and Air Mobility Systems in Urban Areas
Moses Radar based collision avoidance for unmanned aircraft systems
Huang et al. Multiple targets estimation and tracking for ADS-B radar system
CN110824419A (zh) 一种物流车辆的定位方法及系统
Menichino et al. Radar-On-Chip laboratory characterization for UAM applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE