WO2023070838A1 - 水下吸光光度计及水质检测方法 - Google Patents

水下吸光光度计及水质检测方法 Download PDF

Info

Publication number
WO2023070838A1
WO2023070838A1 PCT/CN2021/135757 CN2021135757W WO2023070838A1 WO 2023070838 A1 WO2023070838 A1 WO 2023070838A1 CN 2021135757 W CN2021135757 W CN 2021135757W WO 2023070838 A1 WO2023070838 A1 WO 2023070838A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical fiber
optical
light source
underwater
Prior art date
Application number
PCT/CN2021/135757
Other languages
English (en)
French (fr)
Inventor
祝铭
李剑平
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023070838A1 publication Critical patent/WO2023070838A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention belongs to the technical field of water quality monitoring, and in particular relates to an underwater absorbance photometer and a water quality detection method.
  • the detection range of COD sensor in sewage monitoring is 0-1000mg/L, corresponding to an optical path of 2-5mm, while the detection range required in seawater detection is 0-10mg/L, corresponding to an optical path of 50-100mm. Therefore, the existing underwater photometer needs to be improved to meet the detection needs of different optical paths, and then meet the needs of different measurement environments.
  • the object of the present invention is to provide an underwater absorbance photometer and a water quality detection method, aiming to provide an underwater absorbance photometer and a water quality detection method suitable for various measurement environments.
  • the photometer includes an optical unit, and the optical unit includes a tuning module and a basic fixing module; the tuning module is connected to the basic fixing module through a first connecting optical fiber, and the tuning module includes a sample cell,
  • the transmission mechanism arranged on the sample pool and the moving optical fiber collimation frame connected to the transmission mechanism, the length of the optical path of the sample can be adjusted, and the moving optical fiber collimation frame can move on the transmission mechanism;
  • the base is fixed
  • the module includes a light source element and a photodetection element.
  • one end of the first connecting fiber is coupled with the first fiber collimator in the movable fiber collimator frame, and the other end is coupled with the second fiber collimator in the fixed fiber collimator frame or passed through the fiber flange Connect with 1/2 optical fiber.
  • the photodetection element is divided into a first photodetection element and a second photodetection element.
  • the light beam emitted by the light source element is reflected by the half mirror and then enters the first photodetection element to form a reference optical path.
  • the light beam emitted by the light source element passes through the second fiber collimating mirror after being transmitted through the half mirror, then is coupled to the first connecting fiber and then enters the first fiber collimating mirror, then passes through the sample pool, and finally enters the The second photoelectric detection module forms a measurement optical path.
  • the light beam emitted by the light source element enters the first photodetection element after passing through the splitting optical fiber to form a reference optical path.
  • the light beam emitted by the light source element is coupled to the first connecting fiber through the fiber flange after passing through the splitting fiber, then passes through the first fiber collimating mirror, passes through the sample cell, is coupled to the second connecting fiber, and finally emits into the second photoelectric detection module to form a measurement optical path.
  • the photometer also includes a software unit and an electrical unit electrically connected to the optical unit
  • the software unit is also electrically connected to the electrical unit
  • the software unit includes a micro-controller
  • the micro-controller and the transmission mechanism connect.
  • the electrical unit includes an energy storage carrier or a power line and a power supply interface, and the energy storage carrier or power line is respectively electrically connected to the light source element, the first photodetection element, the second photodetection element, the transmission mechanism and the microcontroller.
  • the photometer also includes a mechanical unit, the mechanical unit includes a housing, the cross-sectional shape of the housing is L-shaped, the housing has an optical window, and the fixed optical fiber collimation frame passes through The adapter is fixed to the optical window and forms a sealed cavity.
  • the water quality detection method comprises:
  • the light source beam emitted by the light source module enters the lens or the third fiber collimator;
  • the light source beam passes through a semi-reflective lens or a split-two optical fiber, a part of it passes through the lens or the fifth fiber collimator, and then enters the first photoelectric detection module to form a reference path; the other part passes through the second optical fiber collimator Mirror or optical fiber flange, first connecting optical fiber, first optical fiber collimating mirror, sample pool, optical window, lens or fourth optical fiber collimating mirror are injected into the second photoelectric detection module to form a measurement path;
  • the first photodetection module measures the reference light intensity of the wavelength ⁇
  • the method for spectroscopic design includes:
  • the arrangement order of the detectors in the first photodetection element and the second photodetection element corresponds to the arrangement order of the LEDs in the light source element one by one, and the LEDs of different wavelengths in the light source element are set to emit light in different time periods, And set the start and end time of the corresponding detector according to the emission time of the LED.
  • the present invention provides an underwater absorbance photometer, the photometer includes an optical unit, and the optical unit includes a track and a moving optical fiber collimating frame that is movably connected on the track, so that the moving optical fiber collimating frame is driven to and fro by a motor
  • the optical path can be tuned in a wide range, so it can meet the needs of sea water, lake water, domestic water, sewage and other multi-scenario waters at the same time water quality monitoring requirements; in the present invention, the arrangement sequence of the LEDs in the multi-wavelength light source element corresponds to the arrangement sequence of the photodetector elements, and no filter is needed during the propagation of the light source beam, which can greatly reduce the cost.
  • the present invention provides a kind of water quality detection method, through the first fiber optic collimating lens in the moving optical fiber collimating mirror frame and the second fiber collimating mirror in the fixed fiber collimating mirror frame through the coupling of the first connecting fiber, by changing The position of the moving fiber optic collimating frame relative to the fixed fiber collimating frame is used to adjust the optical path, and the motor drives the moving fiber collimating frame to reciprocate, thereby realizing continuous tuning of the optical path, and the system is suitable for multi-scenario waters.
  • Fig. 1 is the optical schematic diagram of the sealed photometer on the right side of the fixed optical fiber collimating frame with the movable fiber collimating frame in the present invention
  • Fig. 2 is the optical schematic diagram of the sealed photometer with the moving optical fiber collimating frame located on the left side of the fixed fiber collimating frame;
  • Fig. 3 is the optical schematic diagram of open photometer among the present invention.
  • Fig. 4 is the structural representation of optical fiber collimating spectacle frame among the present invention.
  • Fig. 5 is a schematic diagram of the electronic control module of the present invention.
  • Fig. 6 is a timing diagram of the method for splitting light in the present invention.
  • the embodiment of the present invention provides an absorbance photometer and a water quality detection device suitable for the underwater in-situ working environment, which can continuously adjust the optical path.
  • the optical path length can be adjusted continuously in real time by actually measuring the in-situ environment. While measuring the optical path interval, the measurement accuracy is also improved, and a single sensor can be applied to various measurement environments such as water sources, rivers, sewage, estuaries, offshore seas, and deep seas. Select an appropriate measurement range for the measurement parameters of the sensor (COD, TOC, nitrate-ammonia, nitrite-ammonia, total suspended particulate matter, etc.), so as to meet the water quality of multiple scenes such as seawater, lake water, domestic water and sewage at the same time monitoring requirements.
  • the present invention provides a photometer with continuously tunable optical path
  • the photometer includes a tuning module and a basic fixing module
  • the optical fiber 17 includes a first connecting optical fiber 171 and a second connecting optical fiber 172
  • the tuning module is connected to the basic fixed module through the first connecting optical fiber 171
  • the optical fiber 17 is an underwater optical fiber
  • the underwater optical fiber has good pressure resistance and watertightness sex.
  • the surface of the optical fiber 17 is coated with an armor layer and a corrosion-resistant layer, and the armor layer is used to strengthen the optical cable and protect the optical fiber 17 (cable core), so as to adapt to the harsh laying and working environment of the optical cable.
  • the armor layer can adopt materials such as steel (aluminum) plastic composite tape, steel wire, non-metallic fiber, because the quantity of optical fiber 17 is large in use, considering the artificial influence factors such as weight, degree of convenience, the material of described optical fiber 17 is preferred choose non-metallic fiber materials.
  • the armor layer can be one layer or multiple layers, and those skilled in the art can determine the number of layers of the armor layer according to the laying requirements of the optical cable, the underwater working environment and the degree of protection expected for the optical cable.
  • the tuning module includes a sample pool 7, a transmission mechanism 5 arranged on the sample pool 7, and a moving optical fiber collimator frame 61 connected to the transmission mechanism 5.
  • the length of the sample optical path can be tuned.
  • the cross-sectional shape of the sample cell 7 is square or oval.
  • the sample pool 7 is adapted to the transmission mechanism 5. Since the cross-sectional shape of the transmission mechanism 5 is square, the cross-sectional shape of the sample pool 7 is preferably square.
  • a first fiber collimator 101 is installed in the movable fiber collimator frame 61, and the first fiber collimator 101 is placed in a cavity in the movable fiber collimator frame 61, and the first fiber collimator
  • the collimating mirror 101 is used for converging the light source beam passing through the first fiber collimating mirror 101 into a collimated parallel beam and emitting it.
  • the material of the fiber collimating mirror is fused silica with high ultraviolet light transmittance.
  • the moving optical fiber collimator frame 61 can move on the transmission mechanism 5 .
  • the transmission mechanism 5 can be a ball screw 51 mechanism or a combination mechanism of a linear motor and a track or a combination mechanism of an electric push rod and a track. Because the structure of the ball screw 51 mechanism is simple and integrated, the transmission mechanism 5 selects the ball screw 51 mechanism, and the moving optical fiber collimating mirror frame 61 is installed on the nut seat of the ball screw 51 mechanism by bolts, and then The rotation of the lead screw in the ball screw 51 mechanism realizes the reciprocating linear motion of the moving optical fiber collimator frame 61, thereby achieving the purpose of continuously tuning the optical path in the photometer.
  • the transmission mechanism 5 selects the ball screw 51 mechanism
  • the cross section of the ball screw 51 is rectangular, in order to make the sample pool 7 and the ball screw 51 fit, the sample pool 7
  • the cross-sectional shape is preferably rectangular, that is, the optical path length of the sample is the length of the rectangular cross-section of the sample cell 7 .
  • the basic fixed module includes a light source element 1 and a photodetection element 2, and the light source element 1 is a light source element 1 composed of a plurality of single-wavelength LEDs or a light source composed of a wide-spectrum light source and a filter
  • the element 1 is either a light source element 1 composed of a wide-spectrum light source and a monochromator or a light source element 1 composed of a plurality of single-wavelength laser diodes LD.
  • the arrangement shape of the plurality of single-wavelength LEDs may be linear, circular, or irregular.
  • the photodetection element 2 is a photodetection element 2 composed of a plurality of detectors or a photodetection element 2 composed of a spectrometer or a photodetection element 2 composed of a spectrometer-like beam splitter.
  • the arrangement sequence of the LEDs in the multi-wavelength light source element 1 corresponds to the arrangement sequence of the detectors in the photodetector element.
  • the photodetection element 2 is divided into a first photodetection element 21 and a second photodetection element 22 .
  • the basic fixed module also includes a fixed fiber collimator frame 62, a second fiber collimator 102 is installed in the fixed fiber collimator frame 62, and the second fiber collimator 102 is also placed on the fixed fiber collimator.
  • the second fiber collimator 102 couples the light source beam to the optical fiber 17 and passes through the first fiber collimator 101 .
  • the difference between the moving optical fiber collimating frame 61 and the fixed optical fiber collimating frame 62 is that its motion state is mobile or fixed, and their common feature is that the optical fiber collimating frame 6 has pressure resistance And water tightness, suitable for underwater water quality measurement conditions.
  • the ball screw 51 mechanism drives the moving optical fiber collimating frame 61 to perform a reciprocating linear motion, and then in the direction of the X axis, the moving optical fiber collimating frame 61 can be positioned on the fixed optical fiber collimating frame 62 Work on the left side, or work on the right side of the fixed fiber collimator frame 62, the purpose is to expand the range of the tuning area of the optical path, and then make the photometer suitable for various measurement environments.
  • the light beam emitted by the light source element 1 first passes through the lens 4, then is reflected by the half-mirror 84 and then changes the direction of the light source beam through the reflector, that is, the light source beam is changed into a parallel light beam, and finally It enters into the first photodetection element 21 to form a reference optical path.
  • the first photodetection element 21 is used for measuring the reference light intensity IR( ⁇ ) of the wavelength ⁇ .
  • the light beam emitted by the light source element 1 is transmitted through the half mirror 84, passes through the optical window 3, passes through the second fiber collimating mirror 102, is then coupled to the first connecting optical fiber 171, and then enters the first fiber collimating mirror 101 , and then enter the optical window 3 through the sample cell 7, change the direction of the light source beam after being reflected by two mirrors, that is, change the light source beam into a parallel beam, and finally inject into the second photodetection module to form a measurement optical path.
  • the half mirror 84 is used to divide the light beam of the light source into two to form a measuring light path and a reference light path.
  • the photometer further includes a mechanical unit, and the mechanical unit includes a housing 11 and structural connectors located in the housing 11, the cross-sectional shape of the housing 11 is L-shaped, and the housing 11 It is used to accommodate optical elements, photodetection elements 2 and lenses 4. Since the application scenario of the absorptiometer is underwater water quality detection, the housing 11 has corrosion resistance, watertightness and pressure resistance.
  • the housing 11 is provided with two optical windows 3 , which are respectively used for sealing with the fixed fiber collimator frame 62 and fixing with the ball screw 51 .
  • the structural connector is used as a rigid connection of each element in the photometer, and plays a role of stability and support.
  • the optical window 3 is fixedly connected to the fiber collimating frame 6 through an adapter 14, and a cavity is formed inside the fiber collimating frame 6 for accommodating the optical fiber Collimating mirror 10.
  • the shape of the adapter 14 is ring. Symmetrical sealed cavities are formed on both sides thereof for coupling the fiber collimator 10 with the first connecting optical fiber 171 .
  • the optical window 3 and the optical fiber collimator frame 6 are sealed by a sealing ring 15 , and the sealing ring 15 is an O-shaped sealing ring 15 .
  • the photometer also includes an electrical unit, the electrical unit includes an energy storage carrier 12 or a power cord and a power supply interface, and the power supply interface is a watertight interface, the purpose is to prevent the The water flow intrudes into the housing 11 through the power supply interface, causing accidents.
  • the power line and the power supply interface are used to directly supply power to the electric components in the photometer.
  • the energy storage carrier 12 and the power supply interface are used to indirectly supply power to the electric components in the photometer, and the function of the energy storage carrier 12 is the same as that of the secondary battery. Since the photometer can be applied to measurement environments in different water areas, its geographical location is remote, and unexpected situations may occur where it is difficult to directly connect to the power supply. Therefore, the electrical unit of the photometer is preferably the energy storage carrier 12 .
  • the electrical part also includes a display screen or a signal exchange interface located on the housing 11, and the information exchange interface is used to realize the information exchange between the optical system and the computer, thereby achieving the optical The purpose of transferring data information in the system to a computer.
  • the photometer also includes a software unit, and the software unit includes a micro-controller 13, the micro-controller 13 is electrically connected with the ball screw 51 mechanism, and the micro-controller 13 is used to control the ball screw
  • the switch of the motor in the bar 51 mechanism makes the photometer precisely tune the optical path in the sample cell 7.
  • the micro-controller 13 also includes a power supply control module electrically connected to the energy storage carrier 12, the power supply control module is electrically connected to the energy storage carrier 12, so as to control the power on and off of the light source element 1 and the photodetection element 2 in real time.
  • the micro-controller 13 is also electrically connected to the display screen, so that the work of displaying images can be completed independently away from the micro-controller 13 under the premise of being connected to the micro-controller 13 .
  • embodiment 1 is a closed photometer
  • embodiment 2 is an open photometer
  • the opening or closing here refers to the opening or closing of the optical path
  • the light source beam enters the third optical fiber collimator 103, passes through the split-two optical fiber 9, passes through the fifth optical fiber collimator 105, and then enters the first photodetection element 21 to form a reference optical path .
  • the light source beam enters the third fiber collimating mirror 103, passes through the split-two optical fiber 9 and couples to the first connecting optical fiber 171 through the fiber flange, and then passes through the first fiber collimating mirror 101 and
  • the fifth optical fiber collimating mirror 105 is coupled to the second connecting optical fiber 172, and finally enters the second photodetection element 22 to form a measurement optical path.
  • the arrangement order of the first photodetection element 21 and the second photodetection element 22 corresponds to the arrangement order of the LEDs in the light source element 1 one by one, that is, it adopts a special control sequence design , control the LEDs of different wavelengths in the light source element 1 to emit light in different time periods, and design the start and end times of the detectors in the photodetection element 2 to be the emission times of the corresponding LEDs.
  • the time-sequential spectroscopic design method no optical filter is required, and the cost can be greatly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

水下吸光光度计及水质检测方法,光度计包括光学单元,光学单元包括调谐模块和基础固定模块;调谐模块通过光纤(171)与基础固定模块连接,调谐模块包括样品池(7)、设置在样品池(7)上的传动机构(5)和连接在传动机构(5)上的移动光纤准直镜架(61),样品光程的长度可调谐,移动光纤准直镜架(61)能够在传动机构(5)上运动;基础固定模块包括光源元件(1)和光电探测元件(2)。采用了光纤(171)和移动光纤准直镜架(61),其通过电机驱动移动光纤准直镜架(61)运动来连续调谐光程长度,达到计算出波长λ吸光值的目的,其光程的可调谐区间范围大,遂能够同时满足海水、湖沼水、生活用水和污水等多场景水域的水质监测需求。

Description

水下吸光光度计及水质检测方法 技术领域
本发明属于水质监测技术领域,具体涉及水下吸光光度计及水质检测方法。
背景技术
随着水资源污染日益加剧,对水质的检测成为一种必需的手段,由于基于光学法检测水质的设备具有无需消耗试剂,不会造成二次污染的优点,目前基于光学的水质分析技术受到广泛关注。当前基于紫外—可见吸收光谱技术的海洋原位传感器产品都采用固定光程的方式,造成单一传感器无法同时胜任水源地、河流、河口、近海、深远海等不同的测量环境,需要适用多个不同光程的传感器来满足需求,导致大量的资源浪费。比如,COD传感器应用在污水监测中需要探测的范围为0-1000mg/L,对应光程2-5mm,而应用在海水检测中需要的探测范围为0-10mg/L对应光程50-100mm,因此现有的水下光度计需要改进以适应不同光程的检测需要,进而满足不同测量环境下的需求。
发明内容
本发明的目的在于提供一种水下吸光光度计及水质检测方法,旨在提供一种适用于多种测量环境的水下吸光光度计及水质检测方法。
本发明是这样实现的,所述光度计包括光学单元,所述光学单元包括调谐模块和基础固定模块;所述调谐模块通过第一连接光纤与基础固定模块连接,所述调谐模块包括样品池、设置在样品池上的传动机构和连接在传动机构上的移动光纤准直镜架,所述样品光程的长度可调谐,所述移动光纤准直镜架能够在传动机构上运动;所述基础固定模块包括光源元件和光电探测元件。
优选的,所述第一连接光纤一端与移动光纤准直镜架内的第一光纤准直镜耦合,另一端与固定光纤准直镜架内的第二光纤准直镜耦合或通过光纤法兰与一分二光纤连接。
优选的,所述光电探测元件分为第一光电探测元件和第二光电探测元件。
优选的,所述光源元件发射出的光束经过半反半透镜反射后射入第一光电探测元件,形成参比光路。所述光源元件发射出的光束通过半反半透镜透射后穿射过第二光纤准直镜,然后耦合到第一连接光纤后射入第一光纤准直镜,再通过样品池,最后射入第二光电探测模块,形成测量光路。
优选的,所述光源元件发射出的光束经过一分二光纤后射入第一光电探测元件,形成参比光路。所述光源元件发射出的光束经过一分二光纤后通过光纤法兰耦合到第一连接光纤,然后穿射过第一光纤准直镜后通过样品池,再耦合到第二连接光纤,最后射入第二光电探测模块,形成测量光路。
优选的,所述光度计还包括分别与光学单元电连接的软件单元和电器单元,所述软件单元还与电器单元电连接,所述软件单元包括微型控制器,所述微型控制器与传动机构连接。所述电器单元包括储能载体或电源线和供电接口,所述储能载体或电源线分别与光源元件、第一光电探测元件、第二光电探测元件、传动机构和微型控制器电连接。
优选的,所述光度计还包括机械单元,所述机械单元包括壳体,所述壳体的横截面形状为L形,所述壳体上具有光学窗口,所述固定光纤准直镜架通过转接件与光学窗口固定,并形成密封腔体。
优选的,所述水质检测方法包括:
光源模块发射出的光源光束,射入透镜或第三光纤准直镜;
光源光束经过半反半透镜或一分二光纤,一部分穿射过透镜或第五光纤准直镜,再射入第一光电探测模块,形成参比路;另一部分穿射过第二光纤准直镜或光纤法兰、第一连接光纤、第一光纤准直镜、样品池、光学窗口、透镜或第四光纤准直镜后射入第二光电探测模块,形成测量路;
第一光电探测模块测量出波长λ的参比光强,第二光电探测模块测量出波长λ的信号光强,并通过公式A(λ)=Log[IR(λ)/IS(λ)]计算出不同波长的吸光值。
优选的,所述分光设计的方法包括:
所述第一光电探测元件、第二光电探测元件中探测器的排列顺序均与光源元件中LED的排列顺序一一对应,将光源元件中不同波长的LED设置为在不同的时间段内发光,并根据LED的发射时间设置对应探测器的起止时间。
有益效果:
1.本发明提供了一种水下吸光光度计,光度计包括光学单元,光学单元包括轨道、活动连接在轨道上的移动光纤准直镜架,从而通过电机驱动移动光纤准直镜架往复运动来连续调谐光程长度,达到通过第二光电探测元件测量出波长λ吸光值的目的,其光程可调谐区间的范围大,遂能够同时满足海水、湖沼水、生活用水和污水等多场景水域的水质监测需求;本发明中,多波长光源元件中LED的排列顺序与光电探测器元件的排列顺序对应,在光源光束传播过程中,无需使用滤光片,其能够大幅度降低成本。
2.本发明提供了一种水质检测方法,通过第一连接光纤耦合移动光纤准直镜架中的第一光纤准直镜与固定光纤准直镜架中的第二光纤准直镜,通过改变移动光纤准直镜架相对于固定光纤准直镜架的位置来调谐光程,通过电机驱动移动光纤准直镜架往复运动,进而实现可连续调谐光程,且该系统适用于多场景水域。
附图说明:
图1是本发明中移动光纤准直镜架位于固定光纤准直镜架右侧的密封光度计光学示意图;
图2是中移动光纤准直镜架位于固定光纤准直镜架左侧的密封光度计的光学示意图;
图3是本发明中开放光度计的光学示意图;
图4是本发明中光纤准直镜架的结构示意图;
图5是本发明的电控模块的示意简图;
图6是本发明中分光设计方法的时序图。
附图标记:
1-光源元件;2-光电探测元件;21-第一光电探测元件;22-第二光电探测元件;3-光学窗口;4-透镜;5-传动机构;51-滚珠丝杠;6-光纤准直镜架;61-移动光纤准直镜架;62-固定光纤准直镜架;7-样品池;8-半反半透镜;9-一分二光纤;10-光纤准直镜;101-第一光纤准直镜;102-第二光纤准直镜;103-第三光纤准直镜;104-第四光纤准直镜;105-第五光纤准直镜;11-壳体;12-储能载体;13-微型控制器;14-转接件;15-密封圈;16-密封腔体;17-光纤;171-第一连接光纤;172-第二连接光纤。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种适用于水下原位工作环境的可连续调谐光程的吸光光度计及水质检测放过发,通过实际地测量环境原位来实时连续调整光程长度,其扩大测量光程区间的同时也提高了测量精度,实现单个传感器即能够适用于水源地、河流、污水、河口、近海、深远海等多种测量环境。针对传感器的测量参数(COD、TOC、硝酸盐-氨、亚硝酸盐-氨、总悬浮颗粒物等)选择适当的测量范围,以同时满足海水、湖沼水、生活用水和污水等多场景水的水质监测要求。
实施例1
参见图1和图2所示,本发明提供了可连续调谐光程的光度计,所述光度 计包括调谐模块和基础固定模块,所述光纤17包括第一连接光纤171和第二连接光纤172,所述调谐模块通过第一连接光纤171与基础固定模块连接,所述光纤17为水下光纤,由于该光度计的测量环境为水下,所述水下光纤具有良好的耐压性和水密性。所述光纤17表面包覆有铠装层和耐腐蚀层,所述铠装层用于加强光缆、保护光纤17(缆芯),以便于适应光缆严酷的敷设和工作环境。所述铠装层可以采用钢(铝)塑复合带、钢丝、非金属纤维等材料,由于光纤17在使用时数量多,考虑到重量、便利程度等人为影响因素,所述光纤17的材料优先选用非金属纤维材料。所述铠装层可以是一层,也可以是多层,本领域技术人员可以根据光缆的敷设需求、水下工作环境和光缆预期需要保护的程度确定铠装层的层数。
参见图1和图2所示,本实施例中,所述调谐模块包括样品池7、设置在样品池7上的传动机构5和连接在传动机构5上的移动光纤准直镜架61,所述样品光程的长度可调谐。所述样品池7的横截面形状为方形或椭圆形。所述样品池7与传动机构5适配,由于传动机构5的横截面形状为方形,遂样品池7的截面形状优先选择方形。所述移动光纤准直镜架61内安装有第一光纤准直镜101,所述第一光纤准直镜101置于移动光纤准直镜架61内的空腔中,所述第一光纤准直镜101用于将通过第一光纤准直镜101的光源光束汇聚成准直平行光束射出。所述光纤准直镜的材料为紫外光高透过率的熔融石英。所述移动光纤准直镜架61能够在传动机构5上运动。
本实施例中,所述传动机构5可以为滚珠丝杠51机构或直线电机与轨道的组合机构或电动推杆与轨道的组合机构。由于滚珠丝杠51机构结构简单,且成一体,所述传动机构5选择滚珠丝杠51机构,所述移动光纤准直镜架61通过螺栓安装在滚珠丝杠51机构的螺母座上,并随着滚珠丝杠51机构中的丝杆的转动实现移动光纤准直镜架61往复直线运动,进而达到可连续调谐光度计中光程的目的。
本实施例中,由于所述传动机构5选择滚珠丝杠51机构,所述滚珠丝杠 51的横截面为长方形,为了使样品池7与滚珠丝杠51相适配,所述样品池7的横截面形状优先选择长方形,即样品的光程长度为样品池7长方形横截面的长。
本实施例中,所述基础固定模块包括光源元件1和光电探测元件2,所述光源元件1为由多个单波长LED组成的光源元件1或由宽谱光源与滤光片组合成的光源元件1或由宽谱光源与单色仪组合成的光源元件1或由多个单波长激光二极管LD组成的光源元件1。多个所述单波长LED的排列形状可以为线性、环形和不规则形状等。所述光电探测元件2为由多个探测器组成的光电探测元件2或由光谱仪组合成的光电探测元件2或由类光谱仪分光器组成的光电探测元件2。多波长所述光源元件1中LED的排列顺序与光电探测器元件中探测器的排列顺序一一对应。所述光电探测元件2分为第一光电探测元件21和第二光电探测元件22。所述基础固定模块还包括固定光纤准直镜架62,所述固定光纤准直镜架62中安装有第二光纤准直镜102,所述第二光纤准直镜102还置于固定光纤准直镜架62的空腔内,所述第二光纤准直镜102将光源光束耦合到光纤17后穿射过第一光纤准直镜101。
本实施例中,所述移动光纤准直镜架61和固定光纤准直镜架62的不同之处在于其运动状态是移动或固定,其共同之处即光纤准直镜架6具有耐压性和水密性,适用于水下水质测量工况。在工作过程中,所述滚珠丝杠51机构带动移动光纤准直镜架61作往复直线运动,遂在X轴方向上,所述移动光纤准直镜架61可以在固定光纤准直镜架62左侧工作,也可以在固定光纤准直镜架62右侧工作,目的是为了扩大光程的调谐区域范围,进而使该光度计适用于多种测量环境。
本实施例中,所述光源元件1发射出的光束先穿射过透镜4,再经过半反半透镜84反射后经由反射镜改变光源光束的穿射方向,即将光源光束改变为平行光束,最后射入第一光电探测元件21,形成参比光路。所述第一光电探测元件21用于测量波长λ的参比光强IR(λ)。所述光源元件1发射出的光束 通过半反半透镜84透射后通过光学窗口3穿射过第二光纤准直镜102,然后耦合到第一连接光纤171后射入第一光纤准直镜101,再通过样品池7射入光学窗口3,通过两个反射镜反射后改变光源光束的穿射方向,即将光源光束改变为平行光束,最后射入第二光电探测模块,形成测量光路。所述半反半透镜84用于将光源光束一分为二来形成测量光路和参比光路。
本实施例中,在测量过程中,通过公式A(λ)=Log[IR(λ)/IS(λ)]来计算不同波长的吸光值,其中A(λ)为波长λ的吸光值,IR(λ)为波长λ的参比光强,其由所述第一光电探测模块测得,IS(λ)为波长λ的信号光强,其由所述第二光电探测模块测得。
本实施例中,所述光度计还包括机械单元,所述机械单元包括壳体11和位于壳体11内的结构连接件,所述壳体11的截面形状为L形,所述壳体11用于容置光学元件、光电探测元件2和透镜4,由于该吸光光度计的应用场景为水下水质检测,遂所述壳体11具有耐腐蚀性、水密性和耐压性。所述壳体11上设置有两个光学窗口3,分别用于实现与固定光纤准直镜架62的密封和与滚珠丝杠51的固定。所述结构连接件用作该光度计内各元件的刚性连接,起稳定、支撑作用。
参见图4所示,本实施例中,所述光学窗口3通过转接件14与光纤准直镜架6固定连接,并在光纤准直镜架6内部形成一个空腔,用于容置光纤准直镜10。所述转接件14的形状为环形。在其两侧形成对称的密封腔体,用于供光纤准直镜10与第一连接光纤171耦合。所述光学窗口3与光纤准直镜架6之间通过密封圈15密封,所述密封圈15为O型密封圈15。
参见图5所示,本实施例中,所述光度计还包括电器单元,所述电器单元包括储能载体12或电源线与供电接口,所述供电接口为水密接口,目的是为了防止水域中的水流通过供电接口侵入壳体11内,造成事故的发生。所述电源线与供电接口用于给该光度计内的用电元件直接供电。所述储能载体12与供电接口用于给该光度计内的用电元件间接供电,所述储能载体12的功能与 二次电池的功能相同。由于该光度计能够应用于不同水域的测量环境中,其地理位置偏僻,可能会发生难以直接连接电源的突发状况,遂所述该光度计中电器单元优先采用储能载体12。
本实施例中,所述电器部分还包括位于所述壳体11上的显示屏或信号交换接口,所述信息交换接口用于实现该光学系统与计算机之间的信息交换,进而达到将该光学系统内的数据信息传输至计算机上的目的。
本实施例中,所述光度计还包括软件单元,所述软件单元包括微型控制器13,所述微型控制器13与滚珠丝杠51机构电连接,所述微型控制器13用于控制滚珠丝杠51机构中电机的开关,进而使该光度计精准调谐样品池7中的光程。所述微型控制器13还包括与储能载体12电连接的供电控制模块,所述供电控制模块与储能载体12电连接,以便于实时控制光源元件1和光电探测元件2的电源通断。
本实施例中,所述微型控制器13还与显示屏电连接,以便于在与微型控制器13连接的前提下,能够远离微型控制器13独立完成显示影像的工作。
实施例2
参见图3所示,本实施例与实施例1的区别在于,实施例1为闭合的光度计,实施例2为开放的光度计,这里的开放或闭合指的是光路的开放或闭合,所述光源单元与半反半透镜84之间的透镜4换为第三光纤准直镜103,所述半反半透镜84与第一光电探测单元之间的透镜4换为第五光纤准直镜105。
本实施例中,所述光源光束射入第三光纤准直镜103后经过一分二光纤9穿射过第五光纤准直镜105,再射入第一光电探测元件21,形成参比光路。
本实施例中,所述光源光束射入第三光纤准直镜103后经过一分二光纤9通过光纤法兰耦合到第一连接光纤171,再依次穿射过第一光纤准直镜101和第五光纤准直镜105后耦合到第二连接光纤172,最后射入第而光电探测元件22,形成测量光路。
实施例3
参见图6所示,本实施例中,所述第一光电探测元件21、第二光电探测元件22排列顺序均与光源元件1中LED的排列顺序一一对应,即其采用特殊的控制时序设计,控制光源元件1中不同波长的LED在不同的时间段内发光,并将光电探测元件2中探测器的起止时间设计成与之对应的LED的发射时间。通过采用时序分光设计方法,无需使用滤光片,能够大幅度降低成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 水下吸光光度计,其特征在于:所述光度计包括光学单元,所述光学单元包括调谐模块和基础固定模块;所述调谐模块通过第一连接光纤与基础固定模块连接,所述调谐模块包括样品池、设置在样品池上的传动机构和连接在传动机构上的移动光纤准直镜架,所述样品光程的长度可调谐,所述移动光纤准直镜架能够在传动机构上运动;所述基础固定模块包括光源元件和光电探测元件。
  2. 如权利要求1所述的水下吸光光度计,其特征在于,所述第一连接光纤一端与移动光纤准直镜架内的第一光纤准直镜耦合,另一端与固定光纤准直镜架内的第二光纤准直镜耦合或通过光纤法兰与一分二光纤连接。
  3. 如权利要求1所述的水下吸光光度计,其特征在于,所述移动光纤准直镜架与传动机构活动或可拆卸连接。
  4. 如权利要求1所述的水下吸光光度计,其特征在于,所述光电探测元件分为第一光电探测元件和第二光电探测元件。
  5. 如权利要求4所述的水下吸光光度计,其特征在于,所述光源元件发射出的光束经过半反半透镜反射后射入第一光电探测元件,形成参比光路;所述光源元件发射出的光束通过半反半透镜透射后穿射过第二光纤准直镜,然后耦合到第一连接光纤后射入第一光纤准直镜,再通过样品池,最后射入第二光电探测模块,形成测量光路。
  6. 如权利要求4所述的水下吸光光度计,其特征在于,所述光源元件发射出的光束经过一分二光纤后射入第一光电探测元件,形成参比光路;所述光源元件发射出的光束经过一分二光纤后通过光纤法兰耦合到第一连接光纤,然后穿射过第一光纤准直镜后通过样品池,再耦合到第二连接光纤,最后射入第二光电探测模块,形成测量光路。
  7. 如权利要求1所述的水下吸光光度计,其特征在于,所述光度计还包括分别与光学单元电连接的软件单元和电器单元,所述软件单元还与电器单元电 连接,所述软件单元包括微型控制器,所述微型控制器与传动机构连接;所述电器单元包括储能载体或电源线和供电接口,所述储能载体或电源线分别与光源元件、第一光电探测元件、第二光电探测元件、传动机构和微型控制器电连接。
  8. 如权利要求2所述的水下吸光光度计,其特征在于,所述光度计还包括机械单元,所述机械单元包括壳体,所述壳体的横截面形状为L形,所述壳体上具有光学窗口,所述固定光纤准直镜架通过转接件与光学窗口固定来形成密封腔体。
  9. 利用水下吸光光度计检测水质的方法,其特征在于,所述水质检测方法包括:
    光源模块发射出的光源光束,射入透镜或第三光纤准直镜;
    光源光束经过半反半透镜或一分二光纤,一部分穿射过透镜或第五光纤准直镜,再射入第一光电探测模块,形成参比路;另一部分穿射过第二光纤准直镜或光纤法兰、第一连接光纤、第一光纤准直镜、样品池、光学窗口、透镜或第四光纤准直镜后射入第二光电探测模块,形成测量路;
    第一光电探测模块测量出波长λ的参比光强,第二光电探测模块测量出波长λ的信号光强,并通过公式A(λ)=Log[IR(λ)/IS(λ)]计算出不同波长的吸光值。
  10. 如权利要求9所述的方法,其特征在于,所述分光设计的方法包括:
    所述第一光电探测元件、第二光电探测元件中探测器的排列顺序均与光源元件中LED的排列顺序一一对应,将光源元件中不同波长的LED设置为在不同的时间段内发光,并根据LED的发射时间设置对应探测器的起止时间。
PCT/CN2021/135757 2021-10-26 2021-12-06 水下吸光光度计及水质检测方法 WO2023070838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111250588.2A CN114199795A (zh) 2021-10-26 2021-10-26 水下吸光光度计及水质检测方法
CN202111250588.2 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023070838A1 true WO2023070838A1 (zh) 2023-05-04

Family

ID=80646373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135757 WO2023070838A1 (zh) 2021-10-26 2021-12-06 水下吸光光度计及水质检测方法

Country Status (2)

Country Link
CN (1) CN114199795A (zh)
WO (1) WO2023070838A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116519622B (zh) 2023-02-03 2023-10-10 湖北工业大学 基于光程可调光谱检测的复杂混合气体检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268736A (en) * 1992-02-28 1993-12-07 Prather William S Light absorption cell combining variable path and length pump
CN202614664U (zh) * 2012-05-16 2012-12-19 江苏大学 一种cod测量池光程调节装置
CN208060369U (zh) * 2018-03-14 2018-11-06 沈阳圣泰环保科技有限公司 总铬水质在线检测分析仪
CN110018123A (zh) * 2019-05-16 2019-07-16 厦门斯坦道科学仪器股份有限公司 一种原位光谱法多参数水质监测方法及装置
CN110887801A (zh) * 2019-11-27 2020-03-17 中国科学院西安光学精密机械研究所 基于光谱法对复杂水体进行长时间原位探测的装置及方法
CN112903611A (zh) * 2021-01-25 2021-06-04 中国海洋大学 一种多波段吸光度检测系统及其工作方法
CN213986174U (zh) * 2020-12-10 2021-08-17 中国科学院深圳先进技术研究院 一种可变光程水下吸光光度计

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2502265Y (zh) * 2001-10-12 2002-07-24 国家海洋局第一海洋研究所 便携式实时全光纤荧光光度计
GB0223546D0 (en) * 2002-10-10 2002-11-20 Council Cent Lab Res Councils Sample cell
CN102095706B (zh) * 2009-12-11 2012-07-04 烟台海岸带可持续发展研究所 一种浸入式光纤荧光浮游植物测量系统
CN203385656U (zh) * 2013-08-19 2014-01-08 杭州辉道环境技术有限公司 一种基于光电比色法的水质监测装置
CN105334171A (zh) * 2015-10-16 2016-02-17 北京农业智能装备技术研究中心 水体cod在线监测系统及采用该系统监测水体cod的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268736A (en) * 1992-02-28 1993-12-07 Prather William S Light absorption cell combining variable path and length pump
CN202614664U (zh) * 2012-05-16 2012-12-19 江苏大学 一种cod测量池光程调节装置
CN208060369U (zh) * 2018-03-14 2018-11-06 沈阳圣泰环保科技有限公司 总铬水质在线检测分析仪
CN110018123A (zh) * 2019-05-16 2019-07-16 厦门斯坦道科学仪器股份有限公司 一种原位光谱法多参数水质监测方法及装置
CN110887801A (zh) * 2019-11-27 2020-03-17 中国科学院西安光学精密机械研究所 基于光谱法对复杂水体进行长时间原位探测的装置及方法
CN213986174U (zh) * 2020-12-10 2021-08-17 中国科学院深圳先进技术研究院 一种可变光程水下吸光光度计
CN112903611A (zh) * 2021-01-25 2021-06-04 中国海洋大学 一种多波段吸光度检测系统及其工作方法

Also Published As

Publication number Publication date
CN114199795A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN108931504B (zh) 一种环形多点反射式光电气体传感器探头
US7593107B2 (en) Method and system for diffusion attenuated total reflection based concentration sensing
CN2551992Y (zh) 一种盐水浓度测量装置
WO2023070838A1 (zh) 水下吸光光度计及水质检测方法
CN102735633B (zh) 一种光程在线标定式腔增强型大气痕量气体探测系统
CN102042973B (zh) 一种水浑浊程度实时在线监测系统
CN1808100A (zh) 便携式红外半导体激光吸收式瓦斯气体检测方法及其装置
CN209148538U (zh) 一种基于红外吸收光谱的气体检测系统
CN111751948B (zh) 一种压力自平衡式深海仪器光学镜头封装结构
CN102866136A (zh) 一种探头式水体石油污染物在线监测系统与方法
CN101825564B (zh) 一种长期连续监测液体浓度的光学检测方法
CN101852727A (zh) 连续监测液体浓度的光学检测方法
GB2399879A (en) Electrophoretic mobility measuring apparatus
CN217466657U (zh) 水下吸光光学系统和光度计
CN209311327U (zh) 一种光谱型水质检测装置
CN115219446A (zh) 激光甲烷探测模组
CN216955085U (zh) 一种多角度测量发光源光学数据的装置
CN1184466C (zh) 便携式实时全光纤荧光光度计
CN214472735U (zh) 一种吸收光谱仪
CN213121592U (zh) 一种光谱水质探头和光谱水质检测装置
CN212083227U (zh) 海水盐度检测系统
CN2502265Y (zh) 便携式实时全光纤荧光光度计
CN111855611A (zh) 一种光程可调气体吸收池及气体检测装置
CN2632670Y (zh) 激光遥感瓦斯探测器
CN101281126B (zh) 光纤式光学外差法倏逝波腔衰荡光谱分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE