WO2023070816A1 - 一种空气压缩装置以及包括空气压缩装置的燃料电池装置 - Google Patents

一种空气压缩装置以及包括空气压缩装置的燃料电池装置 Download PDF

Info

Publication number
WO2023070816A1
WO2023070816A1 PCT/CN2021/134209 CN2021134209W WO2023070816A1 WO 2023070816 A1 WO2023070816 A1 WO 2023070816A1 CN 2021134209 W CN2021134209 W CN 2021134209W WO 2023070816 A1 WO2023070816 A1 WO 2023070816A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air
auxiliary
fuel cell
compression stage
Prior art date
Application number
PCT/CN2021/134209
Other languages
English (en)
French (fr)
Inventor
刘伟
朱明明
曾强
王燕青
Original Assignee
海德韦尔(太仓)能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海德韦尔(太仓)能源科技有限公司 filed Critical 海德韦尔(太仓)能源科技有限公司
Publication of WO2023070816A1 publication Critical patent/WO2023070816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the field of fuel cells, in particular to an air compression device and a fuel cell device including the air compression device.
  • the proton exchange membrane fuel cell system is an efficient and clean new energy power system.
  • the air compressor compresses the air into high-pressure air, and then sends it to the cathode of the fuel cell.
  • the oxygen in the air reacts electrochemically with the hydrogen in the anode to generate
  • the products produced are electricity and water, and part of the heat is discharged into the atmosphere along with the excess air.
  • the fuel cell power system is very clean and environmentally friendly, and there are many production methods for hydrogen. Clean and renewable energy, countries around the world are vigorously promoting the development and promotion of hydrogen fuel cell power systems.
  • the air compressor dedicated to the fuel cell is a very important component in the hydrogen fuel cell power system. Its function is to provide a certain pressure and a certain flow rate of compressed air for the cathode of the fuel cell to meet the demand for oxygen in the air for the fuel cell chemical reaction. .
  • most fuel cell air compressors on the market are single-stage compressors and two-stage compressors.
  • two-stage compression means that one motor drives two pressure wheels one is the low-pressure stage, the other is the high-pressure stage, the high-pressure stage and the low-pressure stage are connected in series, and the air is compressed after the low-pressure stage Enter the high-pressure stage for the second compression, so the air pressure and flow obtained by the two-stage compressor are higher than that of the single-stage compressor, and the applicable fuel cell power range will be larger.
  • single-stage compression is mostly used for low-power fuel cells.
  • Stack two-stage compression is mostly used in medium and high power fuel cell stacks.
  • an air compressor with a turbo expander In order to recover and utilize the energy in the high-pressure exhaust gas of the fuel cell, an air compressor with a turbo expander has appeared in the prior art. Specifically, a compressor and a turboexpander are connected to the same electric motor. The waste gas energy is recovered through the turbo expander, and the auxiliary motor drives the compressor, which can reduce the power demand of the motor and significantly improve the efficiency of the fuel cell system.
  • the turbo expander occupies a position in the original two-stage compressor, so the air compressor with a turbo expander is limited by the stability of the bearing, and can only use a single-stage compressor. Since the speed limit of most high-speed motors can only reach 120,000 rpm, the power range of the single-stage compressor with a turbo expander is still limited, and it is not suitable for high-power fuel cell stacks.
  • the first motor drives the first compressor C1 and the second compressor C2
  • the second motor drives the third compressor C3
  • the third compressor C3 is used as an auxiliary compressor .
  • the turbo expander T recovers exhaust gas energy to assist the second motor to drive the third compressor C3.
  • such a solution generally requires at least two motors and a control system corresponding to the two motors. It is very complicated in circuit design and control logic design, resulting in high cost.
  • only when the second motor is working and rotating can the energy of the exhaust gas be recovered.
  • the turbo expander T cannot drive the third compressor C3 due to the restriction of the second motor, so the effect of recovering exhaust gas energy cannot be achieved.
  • the three compressors C3 need to work at high load, that is, the second motor needs to run at high speed. At this time, the energy of exhaust gas discharged is higher, and the efficiency improved by recovering energy is also higher.
  • the third compressor C3 does not need to work at a high load, that is, the speed of the second motor needs to be reduced, the energy of the discharged exhaust gas is low, and the utilization efficiency of the exhaust gas is also low.
  • the control system is used to control the rotation speed of the second electric motor according to the load of the fuel cell stack, the complexity of the control system will increase again, and the cost will be higher.
  • the exhaust gas discharged from the fuel cell stack contains water vapor. If the water vapor is not treated, it will affect the reliability of the second motor. If the water vapor is treated, the complexity of the control system will be increased.
  • the application provides:
  • An air compression device includes an auxiliary compression stage, and the auxiliary compression stage includes an auxiliary compressor and a turbo expander, wherein the auxiliary compressor is connected to the turbo expander through a connection mechanism.
  • connection mechanism is configured such that the auxiliary compressor rotates at the same angular velocity as the turboexpander.
  • the connecting mechanism is a rotating shaft
  • the auxiliary compressor is fixedly connected to the turbo expander through the rotating shaft.
  • the turbo expander is configured to receive exhaust gas and be driven by the exhaust gas.
  • a main compression stage is also included, and the main compression stage is connected to the auxiliary compression stage through an air path.
  • the main compression stage includes a first compressor and a second compressor, and the first compressor and the second compressor are driven by a first motor.
  • the gas outlet of the first compressor is connected to the gas inlet of the second compressor through an air path
  • the gas outlet of the second compressor is connected to the gas inlet of the auxiliary compression stage through a gas path. road connection.
  • the air inlet of the first compressor is connected to the air inlet of the second compressor through an air path
  • the air outlet of the first compressor is connected to the air outlet of the second compressor. It is connected with the air inlet of the auxiliary compression stage through an air path.
  • the main compression stage includes a first compressor, a second compressor, a third compressor, and a fourth compressor, and the first compressor and the second compressor are driven by a first motor, so The third compressor and the fourth compressor are driven by a second motor.
  • the gas outlet of the first compressor is connected to the gas inlet of the second compressor through an air path
  • the gas outlet of the third compressor is connected to the gas inlet of the fourth compressor through an air path. Gas connection.
  • both the gas outlet of the second compressor and the gas outlet of the fourth compressor are connected to the gas inlet of the auxiliary compression stage through an air path.
  • the air outlet of the auxiliary compressor is connected to the intercooler through an air path.
  • the air outlet of the second compressor is connected to the intercooler through an air path.
  • the present application also provides a fuel cell device, including a filter, an air compression device, a humidifier, a dehumidifier, and a fuel cell stack, wherein the filter, the air compression device, the humidifier, and the The dehumidifier and the fuel cell stack are connected through an air path, the air passes through the filter and enters the air compression device, is accelerated and pressurized by the air compression device, and then passes through the humidifier and enters the A fuel cell stack; exhaust gas reacted by the fuel cell stack passes through the dehumidifier and enters the turbo expander in the air compression device.
  • a fuel cell device including a filter, an air compression device, a humidifier, a dehumidifier, and a fuel cell stack, wherein the filter, the air compression device, the humidifier, and the The dehumidifier and the fuel cell stack are connected through an air path, the air passes through the filter and enters the air compression device, is accelerated and pressurized by the air compression device, and then passes through the humidifier
  • the air compression device further includes a main compression stage, and the main compression stage is connected to the auxiliary compression stage through an air circuit.
  • the main compression stage includes a first compressor and a second compressor, and the first compressor and the second compressor are driven by a first motor.
  • the gas outlet of the first compressor is connected to the gas inlet of the second compressor through an air path
  • the gas outlet of the second compressor is connected to the gas inlet of the auxiliary compression stage through a gas path. road connection.
  • the air inlet of the first compressor is connected to the air inlet of the second compressor through an air path
  • the air outlet of the first compressor is connected to the air outlet of the second compressor. It is connected with the air inlet of the auxiliary compression stage through an air path.
  • the main compression stage includes a first compressor, a second compressor, a third compressor, and a fourth compressor, and the first compressor and the second compressor are driven by a first motor, so The third compressor and the fourth compressor are driven by a second motor.
  • the gas outlet of the first compressor is connected to the gas inlet of the second compressor through an air path
  • the gas outlet of the third compressor is connected to the gas inlet of the fourth compressor through an air path.
  • Gas path connection, the gas outlet of the second compressor and the gas outlet of the fourth compressor are both connected to the inlet of the auxiliary compression stage through a gas path.
  • This application can be equipped with multiple compressors, which can be connected in series or in parallel to meet the needs of high-power fuel cell stacks for compressed air with a high pressure ratio and a larger flow rate when working at high loads;
  • the auxiliary compression stage compressor is fixedly connected and directly driven by the turbo expander through the rotating shaft, and does not need a motor, so the corresponding control system is simpler, smaller in size and lower in cost;
  • the application can still reduce the speed of the auxiliary compressor when the fuel cell stack is running at low load, and increase the speed of the auxiliary compressor when the fuel cell stack is running at high load.
  • the dynamic control of the auxiliary compressor In order to realize the dynamic control of the auxiliary compressor;
  • turbo expander directly drives the auxiliary stage compressor and gets rid of the shackles of the motor, the efficiency of the turbo expander is higher, which can further increase the recovered energy and reduce the power consumption of the entire air compression device;
  • Setting multi-stage serially connected compressors can achieve high pressure ratio or large flow rate at relatively low speed of each compressor, preventing surge under low working conditions, thus reducing air bearings, motors, controllers, etc. Difficulty in the development of components, thereby effectively reducing the overall cost of the product;
  • Fig. 1 is the structural representation of prior art
  • Fig. 2 is a schematic diagram of the connection structure of an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the connection structure of an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the connection structure of an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the connection structure of an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the connection structure of an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a connection structure of an embodiment of the present application.
  • Solid arrows represent air and compressed air circulation paths.
  • Dotted arrows represent the flow path of exhaust gas.
  • FIG. 2 is a schematic diagram of structural connection of an embodiment of the present application.
  • This embodiment provides an air compression device, including a main compression stage and an auxiliary compression stage.
  • the main compression stage relies on the motor to drive the compressor to generate compressed air, which provides compressed air for the working mechanism (such as the fuel cell stack).
  • the auxiliary compression stage assists in the generation of compressed air by recovering the energy in the exhaust air produced by the working mechanism.
  • the auxiliary compression stage in this embodiment includes an auxiliary compressor C' and a turbo expander T.
  • the auxiliary compressor C' is connected with the turbo expander T through a connection mechanism 1.
  • the connecting mechanism 1 is a rotating shaft.
  • the auxiliary compressor C' and the turbo expander T are respectively fixedly connected to both ends of the rotating shaft, so that the auxiliary compressor C' and the turbo expander T rotate at the same angular velocity.
  • the turbo expander T is configured to drive the auxiliary compressor C'.
  • the connection mechanism 1 may also have other structures and connection methods, as long as the turbo expander T drives the auxiliary compressor C'.
  • the working principle of the auxiliary compression stage in this embodiment is that the turbo expander T receives the waste gas produced by the reaction of the working mechanism (such as a fuel cell stack), and the turbo expander T is driven to rotate by the waste gas. Since the turbo expander T and the auxiliary compressor C' are fixedly connected through the rotating shaft, the auxiliary compression stage C' is driven by the turbo expander T to rotate at the same angular velocity, thereby accelerating the air entering the auxiliary compressor C', Pressurize. Therefore, the auxiliary compression stage can recover the exhaust gas energy and improve the working efficiency of the air compression device.
  • the auxiliary compression stage is not driven by a motor, but directly drives the auxiliary compression stage C' through the turbo expander T, so there is no need to set a control system corresponding to the motor, so the structure of the entire air compression device is simple and easy to assemble. And the debugging cost is very low, and the system stability is also higher.
  • the main compression stage includes a first compressor and C1, a second compressor C2 and a first electric machine E1.
  • the first compressor C1 and the second compressor C2 are driven by the first motor E1.
  • the air outlet of the first compressor C1 is connected to the air inlet of the second compressor C2 through an air path
  • the air outlet of the second compressor C2 is connected to the air inlet of the auxiliary compression stage through an air path.
  • the gas outlet of the second compressor C2 is connected to the auxiliary compressor C' in the auxiliary compression stage through an air path.
  • the first compressor C1 is used to receive air, perform first-stage compression and generate compressed air, and the compressed air enters the second compressor C2 and auxiliary compressor C' in turn for second-stage compression and third-stage compression, and then enters the working mechanism . That is, a three-stage serial air compression structure is formed by the first compressor C1, the second compressor C2 and the auxiliary compressor C'.
  • the air passes through a filter to remove impurities such as dust.
  • An intercooler is arranged between the air outlet of the second compressor C2 and the inlet of the auxiliary compression stage, that is, the air outlet of the second compressor C2 is connected to the intercooler through an air path. The temperature of the compressed air entering the auxiliary compression stage can be lowered.
  • an intercooler can also be arranged behind the auxiliary compressor C', that is, the air outlet of the auxiliary compressor C' is connected to the intercooler through an air path. The temperature of the compressed air entering the working mechanism can be reduced.
  • the speed of the turbo expander T will also change under the drive of the exhaust gas, so that the speed of the auxiliary compressor is faster in the case of high working conditions, and the speed of the auxiliary compressor is slower in the case of low working conditions. This enables dynamic control of the auxiliary compressor without the need for a control system.
  • FIG. 3 A schematic structural connection diagram of an air compression device provided in this embodiment is shown in FIG. 3 .
  • This embodiment uses the same auxiliary compression stage as in Embodiment 1.
  • the first compressor C1, the second compressor C2 and the first electric motor E1 are also arranged in the main compression stage.
  • the difference from Embodiment 1 is that the two compressors in the main compression stage in this embodiment are arranged in a parallel structure. That is, the inlet of the first compressor C1 is connected to the inlet of the second compressor C2 through an air path, and the outlet of the first compressor C1 and the outlet of the second compressor C2 are both connected to the inlet of the auxiliary compression stage.
  • the air port is connected through the air circuit.
  • the compressed air compressed by the first compressor C1 and the second compressor C2 is combined and then enters the auxiliary compressor C'.
  • the solution of this embodiment can provide a larger compressed air flow rate under the same power consumption.
  • This embodiment has more advantages in application scenarios that require a large flow rate and a low pressure ratio.
  • FIG. 4 A schematic structural connection diagram of an air compression device provided in this embodiment is shown in FIG. 4 .
  • This implementation uses the same auxiliary compression stage as in Embodiment 1.
  • Four compressors are provided in the main compression stage: a first compressor C1, a second compressor C2, a third compressor C3, and a fourth compressor C4.
  • the first compressor C1 and the second compressor C2 are driven by the first motor E1
  • the third compressor C3 and the fourth compressor C4 are driven by the second motor E2.
  • the four compressors in this embodiment form two sets of structures connected in parallel, that is, the air outlet of the first compressor C1 is connected to the air inlet of the second compressor C2 through an air path, and the air outlet of the third compressor C3 It is connected with the air inlet of the fourth compressor C4 through an air path.
  • Both the air outlet of the second compressor C2 and the air outlet of the fourth compressor C4 are connected to the air inlet of the auxiliary compression stage through an air path.
  • the first compressor C1 is connected in series with the second compressor C2
  • the third compressor C3 is connected in series with the fourth compressor C4, and these two serially connected structures are connected in parallel.
  • the compressors connected in series provide compressed air with a larger pressure ratio
  • the series structures are connected in parallel to provide a larger flow rate of compressed air. It can provide compressed air with large flow rate and high pressure ratio at the same time.
  • the auxiliary compression stage as in the first embodiment is used to utilize the recovered waste gas energy to improve the working efficiency of the air compression device.
  • more compressors can be used in series (for example, three stages in series, four stages in series, five stages in series, etc.) to obtain compressed air with a higher pressure ratio
  • more Number of parallel connection structures for example, three-way parallel connection, four-way parallel connection, five-way parallel connection, etc.
  • This embodiment provides a fuel cell device, the schematic diagram of its connection structure is shown in FIG. 5 .
  • Filters, air compression devices, humidifiers, dehumidifiers and fuel cell stacks are all connected through air pipelines.
  • the air enters the air compression device through the filter, is accelerated and pressurized by the air compression device, then passes through the humidifier to increase the humidity appropriately, and finally enters the fuel cell stack.
  • the air compression device used is the one described in Embodiment 1, and its main compression stage includes a first compressor C1, a second compressor C2 and a first motor E1.
  • the first compressor C1 and the second compressor C2 are driven by the first motor E1.
  • the air outlet of the first compressor C1 is connected to the air inlet of the second compressor C2 through an air path
  • the air outlet of the second compressor C2 is connected to the air inlet of the auxiliary compression stage through an air path.
  • Its auxiliary compression stage includes an auxiliary compressor C' and a turbo expander T.
  • the auxiliary compressor C' and the turbo expander T are connected through a connection mechanism, so that the auxiliary compressor C' and the turbo expander T rotate synchronously at the same angular velocity.
  • the connecting mechanism is a rotating shaft 1 .
  • the auxiliary compressor C' and the turbo expander T are fixedly connected to both ends of the rotating shaft 1, respectively.
  • a three-stage series connection structure is formed by the first compressor C1, the second compressor C2 and the auxiliary compressor C'.
  • the first compressor C1 is used to receive air, perform first-stage compression and generate compressed air, and the compressed air enters the second compressor C2 and auxiliary compressor C' in turn for second-stage compression and third-stage compression, and then enters the fuel cell heap.
  • the exhaust gas produced by the reaction of the fuel cell stack is received by the turbo expander T, driven by the turbo expander T, the auxiliary compressor C' rotates at the same angular speed, thereby accelerating and pressurizing the air entering the auxiliary compressor C' .
  • a dehumidifier is provided between the gas outlet of the fuel cell stack and the inlet of the turbo expander T to remove part of the water vapor.
  • an intercooler can be selected between the air outlet of the second compressor C2 and the inlet of the auxiliary compression stage, that is, the air outlet of the second compressor C2 and the intercooler pass through the air road connection.
  • the temperature of the compressed air entering the auxiliary compression stage can be lowered.
  • an intercooler can also be arranged behind the auxiliary compressor C', that is, the air outlet of the auxiliary compressor C' is connected to the intercooler through an air path. The temperature of the compressed air entering the working mechanism can be reduced.
  • the air compression device in the fuel cell device may also use the air compression device described in Embodiment 2, as shown in FIG. 6 . That is, the main compression stage of the air compression device includes a first compressor C1 and a second compressor C2, and the first compressor C1 and the second compressor C2 are driven by the first motor E1.
  • the inlet of the first compressor C1 is connected to the inlet of the second compressor C2 through an air path, and the outlet of the first compressor C1 and the outlet of the second compressor C2 are connected to the auxiliary compressor in the auxiliary compression stage.
  • the air inlet of machine C' is connected by air path. That is, the first compressor C1 and the second compressor C2 are connected in parallel. To increase the air flow into the fuel cell stack.
  • the air compression device in the fuel cell device may also use the air compression device described in Embodiment 3, as shown in FIG. 7 . That is, the main compression stage of the air compression device includes a first compressor C1, a second compressor C2, a third compressor C3 and a fourth compressor C4, and the first compressor C1 and the second compressor C2 are driven by the first motor E1 Driven, the third compressor C3 and the fourth compressor C4 are driven by the second motor E2.
  • the air outlet of the first compressor C1 is connected with the air inlet of the second compressor C2 through an air path
  • the air outlet of the third compressor C3 is connected with the air inlet of the fourth compressor C4 through an air path
  • the second compressor Both the gas outlet of C2 and the gas outlet of the fourth compressor C4 are connected to the gas inlet of the auxiliary compressor C' in the auxiliary compression stage through an air path. That is, in this embodiment, multiple sets of two-stage compressor structures connected in series are optionally arranged and connected in parallel. In this way, high flow rate and high pressure ratio compressed air can be provided at the same time.
  • the auxiliary compression stage is used to utilize the recovered waste gas energy to improve the working efficiency of the air compression device.
  • the air compression device used in this embodiment can also use a greater number of compressors to be connected in series (for example, three stages in series, four stages in series, five stages in series, etc.) to obtain compressed air with a higher pressure ratio,
  • a larger number of parallel connection structures for example, three-way parallel connection, four-way parallel connection, five-way parallel connection, etc. can also be used to obtain a higher compressed air flow rate.

Abstract

本申请提供了一种空气压缩装置,包括主压缩级和辅助压缩级,其中,辅助压缩级包括辅助压缩机和涡轮膨胀机,辅助压缩机与涡轮膨胀机通过连接机构连接,使得辅助压缩机与涡轮膨胀机以相同的角速度转动。主压缩级包括第一压缩机以及第二压缩机,第一压缩机与第二压缩机通过电机驱动。本申请还提供了一种包括空气压缩装置的燃料电池装置,包括过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆,其中,过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆通过气路连接。空气经过过滤器进入空气压缩装置,并被空气压缩装置增速增压,再经过增湿器,进入燃料电池堆;经过燃料电池堆反应的废气经过除湿器进入空气压缩装置中的涡轮膨胀机。

Description

一种空气压缩装置以及包括空气压缩装置的燃料电池装置 技术领域
本申请涉及燃料电池领域,特别涉及一种空气压缩装置,以及包括空气压缩装置的燃料电池装置。
背景技术
质子交换膜式的燃料电池系统是一种高效清洁的新能源动力系统,空气压缩机将空气压缩成高压空气,然后送入燃料电池阴极,空气中的氧气与阳极的氢气进行电化学反应,生成的产物是电和水,还有部分热量随着多余的空气排放到大气中,除此外没有其他对环境有污染的产物,所以燃料电池动力系统非常的清洁环保,并且氢气有很多制造方法,属于清洁可再生能源,目前世界各国都在大力推动氢燃料电池动力系统的开发推广。
燃料电池专用的空气压缩机是氢燃料电池动力系统里面非常重要的一个零部件,其作用是为燃料电池的阴极提供一定压力和一定流量的压缩空气,满足燃料电池化学反应对于空气中氧气的需求。目前市场上燃料电池空压机多为单级压缩机和两级压缩机。单级压缩即一个电机驱动一个压轮,两级压缩就是一个电机驱动两个压轮,一个是低压级,另一个是高压级,高压级和低压级是串联的,空气经过低压级压缩后再进入高压级进行第二次压缩,所以两级压缩机比单级压缩机获得的空气压力和流量要高,可适用的燃料电池功率范围会更大一点,目前单级压缩多用于小功率燃料电池堆,两级压缩多用于中高功率燃料电池堆。
进入燃料电池的压缩空气仅有一部分氧气参与反应,其余压缩空气会被排出到大气中,被燃料电池排出的压缩空气仍然有很高的压力,所以这部分高压空气直接排放到大气中的话,高压气体所携带的能量也就被浪费掉了。
为了回收利用燃料电池高压废气中的能量,现有技术中已经出现了带有涡轮膨胀机的空气压缩机。具体地,将一个压缩机与一个涡轮膨胀机与同一个电机连接。通过涡轮膨胀机回收废气能量,辅助电机驱动压缩机,这样可以降低电机的功率需求,显著提高燃料电池系统的效率。不过涡轮膨胀机占用了原先两级压缩机中的一个位置,所以带有涡轮膨胀机的空压机受限于轴承的稳定性,只能采用单级压缩机。由于目前绝大多数高速电机的转速上限只能达到12万转,所以带有涡轮膨胀机的单级压缩机方案能够覆盖功率范围还是会受到限制,不适用于大功率燃料电池堆。
目前燃料电池应用的范围还主要集中在轻型商用车领域,比如公交车、物流车、货车等,而对于重型商用车,比如重型卡车、渣土车、重型机械等需求的电堆功率比 轻型商用车要大很多,所以对于空气压缩机的压力、流量需求也会大很多。目前已有的单级压缩机、两级压缩机、带有膨胀机的单级压缩机均不能完全满足客户要求。如果继续提高电机功率和压气机尺寸以满足电堆要求的话会有很多难度,比如无法兼顾低负荷和高负荷工况、电机功率过大,空压机功耗过高、压气机喘振余量不足等,所以超大功率的空压机推广难度很大,成本也比较高,没有竞争优势,不具备太大可行性。
现有技术中还存在将两级压缩机和带有膨胀机的单级压缩机进行串联的方案来解决以上问题,即一共包括三级压缩机和一级涡轮膨胀机,三级压缩机用于提供满足大功率燃料电池堆所需求的高压比、大流量的压缩空气,涡轮膨胀机用于回收燃料电池堆排出的废气能量,从而减小空压机的电能消耗,提高燃料电池堆的功率密度。不过该采用的是两个电机,如图1所示,第一电机驱动第一压缩机C1和第二压缩机C2,第二电机驱动第三压缩机C3,第三压缩机C3作为辅助压缩机。涡轮膨胀机T回收废气能量辅助第二电机以驱动第三压缩机C3。但是,这样的方案整体上需要设置至少两个电机,以及与两个电机相应的控制系统。在电路设计和控制逻辑设计上非常复杂,导致成本很高。并且,只有在第二电机工作转动时,才能对废气能量进行回收。在第二电机无法正常工作时,由于第二电机的束缚,涡轮膨胀机T无法带动第三压缩机C3,因而无法达到回收废气能量的效果。实际上,当燃料电池堆处于高负荷运行状态下,需要三压缩机C3高负荷工作,即需要第二电机高速运转。此时排出的废气能量更高,回收能量所提高的效率也更高。而当燃料电池处于低负荷运行状态下,并不需要第三压缩机C3高负荷工作,即需要第二电机的转速降低,排出的废气能量较低,废气利用效率也较低。如果采用控制系统根据燃料电池堆的负荷对第二电机的转速进行控制,则控制系统的复杂程度再次提升,成本更高。另外,燃料电池堆排出的废气中含有水汽,如果不对水汽进行处理,则会对第二电机产生可靠性影响,如果对水汽进行处理,则又增加了控制系统的复杂程度。
因此,本领域技术人员致力于研发一种空气压缩装置以及包括空气压缩装置的燃料电池装置,用于解决现有技术中存在的技术问题。
发明内容
为实现上述目的,本申请提供了:
一种空气压缩装置,包括辅助压缩级,所述辅助压缩级包括辅助压缩机和涡轮膨胀机,其中,所述辅助压缩机与所述涡轮膨胀机通过连接机构连接。
可选地,所述连接机构被配置为使得所述辅助压缩机与所述涡轮膨胀机以相同的角速度转动。
可选地,所述连接机构为转轴,所述辅助压缩机与所述涡轮膨胀机通过所述转轴固定连接。
可选地,所述涡轮膨胀机被配置为接收废气,并由所述废气驱动。
可选地,还包括主压缩级,所述主压缩级与所述辅助压缩级通过气路连接。
可选地,所述主压缩级包括第一压缩机以及第二压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动。
可选地,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述辅助压缩级的进气口通过气路连接。
可选地,所述第一压缩机的进气口与所述第二压缩机的进气口通过气路连接,所述第一压缩机的出气口与所述第二压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
可选地,所述主压缩级包括第一压缩机、第二压缩机、第三压缩机以及第四压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动,所述第三压缩机与所述第四压缩机通过第二电机驱动。
可选地,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第三压缩机的出气口与所述第四压缩机的进气口通过气路连接。
可选地,所述第二压缩机的出气口与所述第四压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
可选地,所述辅助压缩机的出气口与中冷器通过气路连接。
可选地,所述第二压缩机的出气口与中冷器通过气路连接。
本申请还提供了一种燃料电池装置,包括过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆,其中,所述过滤器、所述空气压缩装置、所述增湿器、所述除湿器以及所述燃料电池堆通过气路连接,空气经过所述过滤器进入所述空气压缩装置,并被所述空气压缩装置增速增压,再经过所述增湿器,进入所述燃料电池堆;经过所述燃料电池堆反应的废气经过所述除湿器进入所述空气压缩装置中的所述涡轮膨胀机。
可选地,所述空气压缩装置还包括主压缩级,所述主压缩级与所述辅助压缩级通过气路连接。
可选地,所述主压缩级包括第一压缩机以及第二压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动。
可选地,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述辅助压缩级的进气口通过气路连接。
可选地,所述第一压缩机的进气口与所述第二压缩机的进气口通过气路连接,所述第一压缩机的出气口与所述第二压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
可选地,所述主压缩级包括第一压缩机、第二压缩机、第三压缩机以及第四压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动,所述第三压缩机与所述第 四压缩机通过第二电机驱动。
可选地,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第三压缩机的出气口与所述第四压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述第四压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
相比于现有技术,本申请的技术方案至少具备以下有益技术效果:
1、本申请可以设置多个压缩机,通过串联或并联的连接,在高负荷工作时可以满足大功率燃料电池堆对于跟高压比、更大流量压缩空气的需求;
2、本申请中,辅助压缩级压缩机由涡轮膨胀机通过转轴固定连接并直接驱动,不需要电机,所以相应的控制系统更简单,体积更小,成本更低;
3、尽管不包含第二个电机以及相应的控制系统,但本申请仍然能够在燃料电池堆低负荷运转时降低辅助压缩机的转速,在燃料电池堆高负荷运转时提高辅助压缩机的转速,从而实现对辅助压缩机的动态控制;
3、由于涡轮膨胀机直接驱动辅助级压缩机,摆脱了电机的束缚,涡轮膨胀机的效率更高,可以进一步提高回收的能量,降低整个空气压缩装置的功耗;
4、设置多级串联连接的压缩机可以在每个压缩机相对比较低的转速下实现高压比或者大流量,防止在低工况下的喘振,因此降低了空气轴承、电机、控制器等零部件的开发难度,从而有效降低产品的整体成本;
5、涡轮膨胀机与辅助级压缩机之间不设置电机,所以燃料电池堆排出的废气中的水蒸气就不会对电机可靠性产生影响,进一步提高了系统的可靠性,降低了开发难度。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是现有技术的结构示意图;
图2是本申请一个实施例的连接结构示意图;
图3是本申请一个实施例的连接结构示意图;
图4是本申请一个实施例的连接结构示意图;
图5是本申请一个实施例的连接结构示意图;
图6是本申请一个实施例的连接结构示意图;
图7是本申请一个实施例的连接结构示意图。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便 于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
对本说明书附图中的连线以及字母含义说明:
实线箭头:代表空气以及压缩空气的流通路径。
虚线箭头:代表废气的流通路径。
C1=Compressor 1=第一压缩机,如有更多的压缩机,则数字依次增大。
E1=Engine 1=第一电机,如有更多的电机,则数字依次增大。
T=Turbine=涡轮膨胀机
实施例一
如图2所示为本申请一个实施例的结构连接示意图。
本实施例提供一种空气压缩装置,包括主压缩级以及辅助压缩级。其中,主压缩级依靠电机驱动压缩机以产生压缩空气,为工作机构(如燃料电池堆)提供压缩空气。辅助压缩级通过回收由工作机构产生的废气中的能量,辅助产生压缩空气。
具体地,在本实施例中的辅助压缩级包括辅助压缩机C’以及涡轮膨胀机T。其中,辅助压缩机C’与涡轮膨胀机T通过连接机构1连接。在本实施例中优选地,连接机构1为转轴。辅助压缩机C’与涡轮膨胀机T分别与转轴的两端固定连接,使得辅助压缩机C’与涡轮膨胀机T以相同的角速度转动。以此,涡轮膨胀机T被配置为驱动辅助压缩机C’。在其他类似的实施例中,连接机构1也可以是其他的结构以及连接方式,只需实现由涡轮膨胀机T驱动辅助压缩机C’即可。本实施例中的辅助压缩级的工作原理是,通过涡轮膨胀机T接收由工作机构(如燃料电池堆)反应产生的废气,由废气驱动涡轮膨胀机T转动。由于涡轮膨胀机T与辅助压缩机C’通过转轴固定连接,因此辅助压缩级C’在涡轮膨胀机T的驱动下,以相同的角速度转动,从而对进入辅助压缩机C’的空气进行加速、加压。因此该辅助压缩级能够回收废气能量,提高空气压缩装置的工作效率。同时,该辅助压缩级中并不设置电机驱动,而是通过涡轮膨胀机T直接驱动辅助压缩级C’,因此也无需设置与电机相对应的控制系统,因此整个空气压缩装置的结构简单,装配和调试成本很低,系统稳定性也更高。
在本实施例中,主压缩级包括第一压缩机和C1、第二压缩机C2以及第一电机E1。具体地,第一压缩机C1与第二压缩机C2通过第一电机E1驱动。第一压缩机C1的出气口与第二压缩机C2的进气口通过气路连接,第二压缩机C2的出气口与辅助压缩级的进气口通过气路连接。具体地在本实施例中,第二压缩机C2的出气口与辅助压缩级中的辅助压缩机C’通过气路连接。第一压缩机C1用于接收空气,进行第一级压缩并产生压缩空气,压缩空气依次进入第二压缩机C2和辅助压缩机C’进行第二级压缩以及第三级压缩,然后进入工作机构。即,通过第一压缩机C1、第二压缩机C2以及辅助压缩机C’形成三级串联的空气压缩结构。
优选地,空气在进入第一压缩机C1之前首先经过过滤器去除粉尘等杂质。在第二压缩机C2的出气口与辅助压缩级进气口之间设置中冷器,即,第二压缩机C2的出气口与中冷器通过气路连接。可以降低进入辅助压缩级的压缩空气的温度。可选地,还可以在辅助压缩机C’后面设置中冷器,即,辅助压缩机C’的出气口与中冷器通过气路连接。可以降低进入工作机构的压缩空气的温度。
在本实施例中,尽管在辅助压缩级中没有设置电机以及相应的控制系统,但由于来自工作机构(例如燃料电池堆)的废气量是根据工况变化的,在高工况下,废气量较大,流速较快,在低工况下,废气量较小,流速较慢。因此涡轮膨胀机T在废气的驱动下,转速也会有变化,使得在高工况的情况下,辅助压缩机的转速较快,在低工况的情况下,辅助压缩机的转速较慢,从而在无需控制系统的情况下即可对辅助压缩机进行动态的控制。
实施例二
本实施例中提供的一种空气压缩装置的结构连接示意图如图3所示。本实施例采用与实施例一中相同的辅助压缩级。主压缩级中同样设置第一压缩机C1、第二压缩机C2以及第一电机E1。与实施例一的区别为,本实施例中的主压缩级中的两个压缩机设置成并联结构。即,第一压缩机C1的进气口与第二压缩机C2的进气口通过气路连接,第一压缩机C1的出气口与第二压缩机C2的出气口均与辅助压缩级的进气口通过气路连接。经过第一压缩机C1与第二压缩机C2压缩后的压缩空气汇总后再进入辅助压缩机C’。与实施例一相比,本实施例的方案在同样的功耗下可以提供更大的压缩空气流量。在需要大流量、低压比的应用场景中,本实施例更有优势。
实施例三
本实施例中提供的一种空气压缩装置的结构连接示意图如图4所示。本实施采用与实施例一中相同的辅助压缩级。在主压缩级中设置了4个压缩机:第一压缩机C1,第二压缩机C2,第三压缩机C3,以及第四压缩机C4。其中第一压缩机C1与第二压缩机C2通过第一电机E1驱动,第三压缩机C3与第四压缩机C4通过第二电机E2驱动。本实施例中的4个压缩机形成两组并联连接的结构,即,第一压缩机C1的出气口与第二压缩机C2的进气口通过气路连接,第三压缩机C3的出气口与第四压缩机C4的进气口通过气路连接。第二压缩机C2的出气口与第四压缩机C4的出气口均与辅助压缩级的进气口通过气路连接。第一压缩机C1与第二压缩机C2串联连接,第三压缩机C3与第四压缩机C4串联连接,这两个串联连接的结构并联连接。本实施例通过串联连接的压缩机提供更大压比的压缩供气,并通过将串联结构并联连接,提供更大的压缩空气流量。可以同时提供大流量,高压比的压缩空气。此外采用如实施例一中的辅助压缩级对回收的废气能量进行利用,提高空气压缩装置的工作效率。
在其他类似的实施例中,可以采用更多数量的压缩机进行串联(例如,三级串联、四级串联、五级串联等等),以获得更高压比的压缩空气,也可以采用更多数量的并联连接结构(例如,三路并联,四路并联、五路并联等等),以获得更高的压缩空气流量。
实施例四
本实施例提供一种燃料电池装置,其连接结构示意图如图5所示。包括过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆。过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆均通过气路管道连接。空气经过过滤器进入空气压缩装置,并被空气压缩装置增速增压,再经过增湿器适当增加湿度,最后进入燃料电池堆。图5中所示的燃料电池装置中,采用的空气压缩装置为实施例一所描述的空气压缩装置,其主压缩级包括第一压缩机和C1、第二压缩机C2以及第一电机E1。第一压缩机C1与第二压缩机C2通过第一电机E1驱动。第一压缩机C1的出气口与第二压缩机C2的进气口通过气路连接,第二压缩机C2的出气口与辅助压缩级的进气口通过气路连接。其辅助压缩级包括辅助压缩机C’以及涡轮膨胀机T,辅助压缩机C’与涡轮膨胀机T通过连接机构连接,使得辅助压缩机C’与涡轮膨胀机T同步地以相同的角速度转动。优选地,连接机构为转轴1。辅助压缩机C’与涡轮膨胀机T分别与转轴1的两端固定连接。因此,本实施例中的空气压缩装置中通过第一压缩机C1、第二压缩机C2以及辅助压缩机C’形成三级串联连接的结构。第一压缩机C1用于接收空气,进行第一级压缩并产生压缩空气,压缩空气依次进入第二压缩机C2和辅助压缩机C’进行第二级压缩以及第三级压缩,然后进入燃料电池堆。通过涡轮膨胀机T接收由燃料电池堆反应产生的废气,在涡轮膨胀机T的驱动下,辅助压缩机C’以相同的角速度转动,从而对进入辅助压缩机C’的空气进行加速、加压。以提高燃料电池装置对能量的利用效率。可选地,在燃料电池堆的出气口与涡轮膨胀机T的进气口之间设置除湿器,以去除部分水汽。
在本实施例中可选地,可以选择在第二压缩机C2的出气口与辅助压缩级进气口之间设置中冷器,即,第二压缩机C2的出气口与中冷器通过气路连接。可以降低进入辅助压缩级的压缩空气的温度。可选地,还可以在辅助压缩机C’后面设置中冷器,即,辅助压缩机C’的出气口与中冷器通过气路连接。可以降低进入工作机构的压缩空气的温度。
在与本实施例类似的实施例中,可选地,燃料电池装置中的空气压缩装置也可以采用如实施例二中所描述的空气压缩装置,如图6所示。即,空气压缩装置的主压缩级包括第一压缩机C1以及第二压缩机C2,第一压缩机C1与第二压缩机C2通过第一电机E1驱动。第一压缩机C1的进气口与第二压缩机C2的进气口通过气路连接,第一压缩机C1的出气口与第二压缩机C2的出气口均与辅助压缩级中的辅助压缩机C’的进气口通过气路连接。即第一压缩机C1与第二压缩机C2形成并联连接的结构。以 提高进入燃料电池堆的空气流量。
在与本实施例类似的实施例中,可选地,燃料电池装置中的空气压缩装置也可以采用如实施例三中所描述的空气压缩装置,如图7所示。即,空气压缩装置的主压缩级包括第一压缩机C1、第二压缩机C2、第三压缩机C3以及第四压缩机C4,第一压缩机C1与第二压缩机C2通过第一电机E1驱动,第三压缩机C3与第四压缩机C4通过第二电机E2驱动。第一压缩机C1的出气口与第二压缩机C2的进气口通过气路连接,第三压缩机C3的出气口与第四压缩机C4的进气口通过气路连接,第二压缩机C2的出气口与第四压缩机C4的出气口均与辅助压缩级中的辅助压缩机C’的进气口通过气路连接。即,本实施例可选地设置多组两级串联连接的压缩机结构,并将它们并联连接。以此同时提供大流量,高压比的压缩空气。同时采用辅助压缩级对回收的废气能量进行利用,提高空气压缩装置的工作效率。如需要,本实施例中采用的空气压缩装置也可以采用更多数量的压缩机进行串联(例如,三级串联、四级串联、五级串联等等),以获得更高压比的压缩空气,也可以采用更多数量的并联连接结构(例如,三路并联,四路并联、五路并联等等),以获得更高的压缩空气流量。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种空气压缩装置,包括辅助压缩级,所述辅助压缩级包括辅助压缩机和涡轮膨胀机,其中,所述辅助压缩机与所述涡轮膨胀机通过连接机构连接。
  2. 如权利要求1所述的空气压缩装置,其中,所述连接机构被配置为使得所述辅助压缩机与所述涡轮膨胀机以相同的角速度转动。
  3. 如权利要求2所述的空气压缩装置,其中,所述连接机构为转轴,所述辅助压缩机与所述涡轮膨胀机通过所述转轴固定连接。
  4. 如权利要求1所述的空气压缩装置,其中,所述涡轮膨胀机被配置为接收废气,并由所述废气驱动。
  5. 如权利要求1所述的空气压缩装置,其中,还包括主压缩级,所述主压缩级与所述辅助压缩级通过气路连接。
  6. 如权利要求5所述的空气压缩装置,其中,所述主压缩级包括第一压缩机以及第二压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动。
  7. 如权利要求6所述的空气压缩装置,其中,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述辅助压缩级的进气口通过气路连接。
  8. 如权利要求6所述的空气压缩装置,其中,所述第一压缩机的进气口与所述第二压缩机的进气口通过气路连接,所述第一压缩机的出气口与所述第二压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
  9. 如权利要求5所述的空气压缩装置,其中,所述主压缩级包括第一压缩机、第二压缩机、第三压缩机以及第四压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动,所述第三压缩机与所述第四压缩机通过第二电机驱动。
  10. 如权利要求9所述的空气压缩装置,其中,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第三压缩机的出气口与所述第四压缩机的进 气口通过气路连接。
  11. 如权利要求10所述的空气压缩装置,其中,所述第二压缩机的出气口与所述第四压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
  12. 如权利要求1所述的空气压缩装置,其中,所述辅助压缩机的出气口与中冷器通过气路连接。
  13. 如权利要求6所述的空气压缩装置,其中,所述第二压缩机的出气口与中冷器通过气路连接。
  14. 一种燃料电池装置,包括过滤器、空气压缩装置、增湿器、除湿器以及燃料电池堆,其中,所述过滤器、所述空气压缩装置、所述增湿器、所述除湿器以及所述燃料电池堆通过气路连接,所述空气压缩装置包括如权利要求1所述的空气压缩装置,空气经过所述过滤器进入所述空气压缩装置,并被所述空气压缩装置增速增压,再经过所述增湿器,进入所述燃料电池堆;经过所述燃料电池堆反应的废气经过所述除湿器进入所述空气压缩装置中的所述涡轮膨胀机。
  15. 如权利要求14所述的燃料电池装置,其中,所述空气压缩装置还包括主压缩级,所述主压缩级与所述辅助压缩级通过气路连接。
  16. 如权利要求15所述的燃料电池装置,其中,所述主压缩级包括第一压缩机以及第二压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动。
  17. 如权利要求16所述的燃料电池装置,其中,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述辅助压缩级的进气口通过气路连接。
  18. 如权利要求16所述的燃料电池装置,其中,所述第一压缩机的进气口与所述第二压缩机的进气口通过气路连接,所述第一压缩机的出气口与所述第二压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
  19. 如权利要求15所述的燃料电池装置,其中,所述主压缩级包括第一压缩机、第二压缩机、第三压缩机以及第四压缩机,所述第一压缩机与所述第二压缩机通过第一电机驱动,所述第三压缩机与所述第四压缩机通过第二电机驱动。
  20. 如权利要求19所述的燃料电池装置,其中,所述第一压缩机的出气口与所述第二压缩机的进气口通过气路连接,所述第三压缩机的出气口与所述第四压缩机的进气口通过气路连接,所述第二压缩机的出气口与所述第四压缩机的出气口均与所述辅助压缩级的进气口通过气路连接。
PCT/CN2021/134209 2021-10-26 2021-11-30 一种空气压缩装置以及包括空气压缩装置的燃料电池装置 WO2023070816A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111246053 2021-10-26
CN202111246053.8 2021-10-26
CN202111393573.1 2021-11-23
CN202111393573.1A CN116031439A (zh) 2021-10-26 2021-11-23 一种空气压缩装置以及包括空气压缩装置的燃料电池装置

Publications (1)

Publication Number Publication Date
WO2023070816A1 true WO2023070816A1 (zh) 2023-05-04

Family

ID=86069480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134209 WO2023070816A1 (zh) 2021-10-26 2021-11-30 一种空气压缩装置以及包括空气压缩装置的燃料电池装置

Country Status (2)

Country Link
CN (1) CN116031439A (zh)
WO (1) WO2023070816A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312843B1 (en) * 1998-09-16 2001-11-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell apparatus
CN102163731A (zh) * 2010-02-19 2011-08-24 通用汽车环球科技运作有限责任公司 具有自由轮膨胀机的压缩机系统
CN202254464U (zh) * 2011-10-14 2012-05-30 天津城市建设学院 跨临界二氧化碳循环制冷系统
CN103940134A (zh) * 2014-04-03 2014-07-23 天津大学 蒸汽压缩制冷循环膨胀功回收系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312843B1 (en) * 1998-09-16 2001-11-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Fuel cell apparatus
CN102163731A (zh) * 2010-02-19 2011-08-24 通用汽车环球科技运作有限责任公司 具有自由轮膨胀机的压缩机系统
CN202254464U (zh) * 2011-10-14 2012-05-30 天津城市建设学院 跨临界二氧化碳循环制冷系统
CN103940134A (zh) * 2014-04-03 2014-07-23 天津大学 蒸汽压缩制冷循环膨胀功回收系统

Also Published As

Publication number Publication date
CN116031439A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN111244506B (zh) 新能源汽车燃料电池系统、工作方法、氢气进气流量计算方法、效率评价方法
US20190145416A1 (en) Multi-stage compressor with turbine section for fuel cell system
CN215644595U (zh) 一种用于氢燃料电池的压缩空气系统
CN109167087B (zh) 一种燃料电池空气管理系统
CN115117394A (zh) 一种空气压缩装置以及包括空气压缩装置的燃料电池装置
CN113764700B (zh) 一种燃电系统、燃电系统的控制方法及车辆
CN111224130A (zh) 一种燃料电池及其空气供给系统
CN114388843B (zh) 一种燃料电池系统及控制方法
CN112382779A (zh) 一种带有能量回收系统的燃料电池装置
CN217387224U (zh) 一种基于涡轮管的燃料电池系统
CN108172867A (zh) 一种燃料电池用电辅助单级涡轮增压系统
WO2023070816A1 (zh) 一种空气压缩装置以及包括空气压缩装置的燃料电池装置
CN209087991U (zh) 一种燃料电池及其空气供给系统
WO2022193393A1 (zh) 一种空气压缩装置以及包括空气压缩装置的燃料电池装置
CN209526159U (zh) 一种基于有机朗肯循环的燃料电池汽车空气供给系统
CN116435546A (zh) 基于压缩膨胀一体机的燃料电池空气供气系统及控制方法
CN217719688U (zh) 一种燃料电池用空气压缩机的布置结构
CN213928844U (zh) 燃料电池空压机系统
CN213845337U (zh) 一种带有能量回收系统的燃料电池装置
CN114899450A (zh) 一种带燃气涡轮增压器的燃料电池系统
CN207925582U (zh) 一种燃料电池用电辅助单级涡轮增压系统
CN210429978U (zh) 一种氢燃料电池系统
CN215377454U (zh) 一种四级压缩的空压机布置结构
WO2022151574A1 (zh) 一种压气机和包括压气机的空气压缩机以及燃料电池装置
CN113809354B (zh) 一种利用膨胀机助力压气机的燃料电池空气供应系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962159

Country of ref document: EP

Kind code of ref document: A1