WO2023070813A1 - 移动式余热回收发电装置和燃气轮机发电设备 - Google Patents

移动式余热回收发电装置和燃气轮机发电设备 Download PDF

Info

Publication number
WO2023070813A1
WO2023070813A1 PCT/CN2021/133978 CN2021133978W WO2023070813A1 WO 2023070813 A1 WO2023070813 A1 WO 2023070813A1 CN 2021133978 W CN2021133978 W CN 2021133978W WO 2023070813 A1 WO2023070813 A1 WO 2023070813A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
chassis
waste heat
condenser
evaporator
Prior art date
Application number
PCT/CN2021/133978
Other languages
English (en)
French (fr)
Inventor
刘志杰
冯宁
邹江磊
毕付伦
张亭
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023070813A1 publication Critical patent/WO2023070813A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • At least one embodiment of the present disclosure relates to a mobile waste heat recovery power plant and a gas turbine power plant.
  • the gas turbine generating set is mainly used for backup power necessary for oil fields, power plants, telecommunication buildings, high-rise buildings and other important places, as well as mobile power necessary for emergencies and field operations.
  • the gas turbine generator set can also form a combined cycle unit with auxiliary equipment such as a waste heat boiler for combined heat, electricity, and cooling.
  • Embodiments of the present disclosure relate to a mobile waste heat recovery power plant and a gas turbine power plant.
  • the mobile waste heat recovery power generation device of the present disclosure realizes the miniaturized mobile equipment for waste heat recovery and transformation into electric energy, and improves the overall power generation and energy conversion efficiency of the mobile gas turbine generator set.
  • An embodiment of the present disclosure provides a mobile waste heat recovery power generation device.
  • the mobile waste heat recovery power generation device includes: a chassis, and an air intake component arranged on the chassis, an expansion power generation module, an evaporator, a condenser and a radiator.
  • a waste heat exchanger is arranged in the intake assembly, the evaporator and the condenser are stacked in a direction perpendicular to the chassis, and both the evaporator and the condenser are arranged with the expansion power generation module along a first direction parallel to the chassis, In a second direction parallel to the chassis and perpendicular to the first direction, the chassis comprises a first area, a second area and a third area.
  • the intake assembly is arranged in the first area, the expansion power generation module, the evaporator and the condenser are arranged in the second area, and the radiator is arranged in the third area.
  • the waste heat exchanger and the evaporator are provided with a first pipeline forming a closed cycle
  • the first pipeline is provided with a first heat exchange medium
  • the parts of the evaporator other than the first pipeline A working medium is provided
  • the working medium outlet of the evaporator is connected to the working medium inlet of the expansion power generation module
  • the working medium outlet of the expansion power generation module is connected to the working medium inlet of the condenser
  • the working medium outlet of the condenser is connected to the working medium inlet of the evaporator Connection
  • the condenser and the radiator are provided with a second pipeline forming another closed cycle
  • the second pipeline is provided with a second heat exchange medium
  • the part of the condenser other than the second pipeline is provided with this working medium.
  • a pump set is arranged between the radiator and the chassis, and the pump set includes a first pump arranged on the first pipeline.
  • the first heat exchange medium includes heat transfer oil.
  • the chassis is disposed on the loading mechanism
  • the loading structure includes a traction portion
  • the traction portion is disposed at one end of the chassis
  • the first area is further away from the traction portion than the third area.
  • the chassis includes components for support and height adjustment on the side opposite to the side where the air intake assembly, expansion power generation module, evaporator, condenser and radiator are located.
  • the intake assembly is mounted on the chassis by a sliding pin guide mechanism.
  • the expansion power generation module is a turbo expansion power generation module.
  • Embodiments of the present disclosure provide a gas turbine power plant.
  • the gas turbine power generation equipment includes the above-mentioned mobile waste heat recovery power generation device and a gas turbine generator set.
  • the gas turbine generating set is arranged on another chassis.
  • the air intake assembly of the mobile waste heat recovery power generation device is connected to the exhaust port of the gas turbine generator set, so that the exhaust gas from the gas turbine generator set can exchange heat with the waste heat exchanger in the air intake assembly.
  • another chassis is arranged on another load-carrying mechanism, and the other load-carrying mechanism includes another traction part, and the exhaust port of the gas turbine generator set is disposed on a side away from the other traction part.
  • Figure 1 illustrates a schematic diagram of a gas-steam combined cycle
  • FIG. 2 illustrates a schematic diagram of a mobile waste heat recovery power generation device according to an embodiment of the present disclosure
  • Fig. 3 illustrates the working principle diagram of the mobile waste heat recovery power generation device according to an embodiment of the present disclosure
  • Fig. 4 illustrates a top block diagram of a mobile waste heat recovery power generation device according to an embodiment of the present disclosure
  • FIG. 5 illustrates a schematic diagram of a turbine disk and a generator in an expansion power generation module of a mobile waste heat recovery power generation device according to an embodiment of the present disclosure
  • FIG. 6 illustrates a schematic diagram of a gas turbine power plant according to an embodiment of the disclosure.
  • the mobile gas turbine generator set has the characteristics of high power density, strong mobility, and convenient use. It can quickly arrive at the scene to provide power, and is widely used in emergency rescue and local power supply projects in areas with underdeveloped power grids.
  • the inventors of the present application found that the output power of the gas turbine generating set is affected by the ambient temperature and altitude. The higher the temperature and the higher the altitude, the smaller the power generated. Therefore, in a high temperature or high altitude environment, the maximum power of the mobile gas turbine generator set is lower than the power under its standard conditions (15°C, 0m altitude), which will affect the performance of electrical equipment due to insufficient power supply.
  • the inventors of the present application also found that the single-cycle power generation efficiency of the gas turbine is about 35%, and the exhaust gas of the gas turbine is discharged to the atmosphere at a temperature of about 500° C. and has not been utilized. From the perspective of energy conversion efficiency, there is a problem of low conversion efficiency.
  • FIG. 1 illustrates a schematic diagram of a gas-steam combined cycle.
  • the exhaust heat energy of the gas turbine generator set 1 is recovered in the waste heat boiler 5 to be converted into high-temperature and high-pressure steam, and the high-temperature and high-pressure steam works in the steam turbine 2 to generate electricity, improving the total electric power and overall efficiency.
  • the steam generated by power generation in the steam turbine 2 passes through the condenser 3 and condenses through the cooling tower 4 to be circulated back to the waste heat boiler 5 .
  • the weight and size of the equipment are limited.
  • the size and weight of the steam turbine 2, condenser 3, cooling tower 4, and waste heat boiler 5 cannot meet the requirements of mobile equipment.
  • the current existing designs of gas-steam combined cycle equipment cannot be integrated into mobile power generation equipment or separately integrated into mobile gas-steam combined cycle equipment.
  • the disclosure provides a mobile waste heat recovery power generation device, which recycles high-temperature exhaust gas and converts it into electric energy, and realizes the design of a miniaturized mobile device that recovers waste heat and converts it into electric energy.
  • FIG. 2 illustrates a schematic diagram of a mobile waste heat recovery power generation device according to an embodiment of the present disclosure.
  • the mobile waste heat recovery power generation device of the embodiment of the present disclosure includes: a chassis 6 , an air intake component 7 , an expansion power generation module 8 , an evaporator 9 , a condenser 10 and a radiator 11 .
  • the intake assembly 7 , the expansion power generation module 8 , the evaporator 9 , the condenser 10 and the radiator 11 are arranged on the chassis 6 .
  • the waste heat recovery power generation device is skid-mounted to realize a mobile design.
  • Fig. 3 illustrates a working principle diagram of a mobile waste heat recovery power generation device according to an embodiment of the present disclosure
  • Fig. 4 illustrates a top block diagram of the mobile waste heat recovery power generation device according to an embodiment of the present disclosure.
  • a waste heat exchanger 71 is arranged in the intake assembly 7 .
  • the evaporator 9 and the condenser 10 are stacked in the direction x perpendicular to the chassis 6, and as shown in Figure 4, both the evaporator 9 and the condenser 10 are parallel to the chassis
  • the first direction z is arranged.
  • the waste heat exchanger 71 may include a finned tube heat exchanger.
  • the chassis 6 in a second direction y parallel to the chassis 6 and perpendicular to the first direction z, the chassis 6 includes a first area 61 , a second area 62 and a third area 63 .
  • the intake assembly 7 is arranged in the first area 61
  • the expansion power generation module 8 the evaporator 9 and the condenser 10 are arranged in the second area 62
  • the radiator 11 is arranged in the third area 63 .
  • the first area 61 , the second area 62 and the third area 63 are sequentially arranged in a direction opposite to the second direction y.
  • the air intake assembly 7 is arranged in the first area 61 of the chassis 6, the expansion power generation module 8, the evaporator 9 and the condenser 10 are arranged in the second area 62 of the chassis 6, and the radiator 11 is arranged in the chassis 6, and the expansion power generation module 8, evaporator 9 and condenser 10 are stacked and arranged in parallel in a modular manner, so as to realize the miniaturization design of the mobile waste heat recovery power generation device.
  • the installation position can be adjusted according to the size of each subdivision of the mobile waste heat recovery power generation device.
  • the expansion power generation module 8 , the evaporator 9 and the condenser 10 may also be arranged in the third region 63 , and the radiator 11 may be arranged in the second region 62 .
  • the embodiments of the present disclosure are not limited thereto, as long as the skid-mounted and miniaturized design of the mobile waste heat recovery power generation device is realized.
  • the evaporator 9 and the condenser 10 can completely overlap in the direction x perpendicular to the chassis 6, that is, the orthographic projection of the evaporator 9 on the chassis 6 and the condenser The orthographic projections of 10 on chassis 6 overlap completely.
  • the evaporator 9 and the condenser 10 may partially overlap in the direction x perpendicular to the chassis 6, that is, the orthographic projection of the evaporator 9 on the chassis 6 and the orthographic projection of the condenser 10 on the chassis 6 overlap (not shown).
  • the evaporator 9 can be arranged on the side of the condenser 10 away from the chassis 6, as shown in FIG. 2 .
  • the condenser 10 may be disposed on the side of the evaporator 9 away from the chassis 6, (not shown).
  • the waste heat exchanger 71 and the evaporator 9 are provided with a first pipeline 12 forming a closed cycle, and the first pipeline 12 is provided with a first heat exchange medium (not shown Out), the first heat exchange medium can circulate in the closed first pipeline 12.
  • the part of the evaporator 9 other than the first pipeline 12 is provided with a working medium (not shown).
  • the working medium outlet 91 of the evaporator 9 is connected to the working medium inlet (not shown) of the expansion power generation module 8 .
  • the working medium outlet (not shown) of the expansion power generation module 8 is connected with the working medium inlet 101 of the condenser 10 .
  • a second pipeline 13 forming another closed loop is arranged in the condenser 10 and the radiator 11 .
  • a second heat exchange medium (not shown) is provided in the second pipeline 13 , and the working medium is provided in parts of the condenser 10 except the second pipeline 13 .
  • the working medium outlet 102 of the condenser 10 is connected to the working medium inlet 92 of the evaporator 9 .
  • the expansion power generation module 8 , the evaporator 9 and the condenser 10 may constitute an organic Rankine cycle power generation system.
  • the basic working principle of the organic Rankine cycle power generation system of the present disclosure is as follows.
  • the high-temperature exhaust gas (for example, the high-temperature exhaust gas of the gas turbine generator set 1) is introduced into the intake assembly 7 provided with a waste heat exchanger 71 (for example, including a finned tube heat exchanger), and the high-temperature exhaust gas and the waste heat heat exchanger 71
  • the first medium in the first pipeline 12 performs heat exchange, and the high-temperature first medium after heat exchange is transported to the evaporator 9 in the first pipeline 12, and the working medium in the evaporator 9 absorbs the heat of the high-temperature first medium Evaporated with heat absorption, the first medium after heat absorption and heat exchange is transported back to the waste heat exchanger 71 in the intake assembly 7 in the first pipeline 12 .
  • the working medium that absorbs heat and evaporates enters the expansion power generation module 8 through the working medium inlet of the expansion power generation module 8, and performs power generation in the expansion power generation module 8, and the working medium after doing work passes through the working medium outlet of the expansion power generation module 8 and the condenser 10.
  • the working medium inlet 101 enters the condenser 10, and exchanges heat with the second medium in the second pipeline 13 of the condenser 10 for condensation, and the second medium that absorbs the heat released by condensation is sent to the radiator 11 for condensation
  • the released heat is released to the environment in the heat sink 11 .
  • the condensed working medium enters the evaporator 9 through the working medium outlet 102 of the condenser 10 and the working medium inlet 92 of the evaporator 9, thus completing the cycle of waste heat recovery and power generation.
  • the working medium of the embodiments of the present disclosure may be an organic medium, for example, R245fa.
  • the organic Rankine cycle power generation system of the present disclosure uses an organic medium as a working medium, and the organic medium has a low boiling point and a high density. Due to the low boiling point of the working medium of the organic Rankine cycle power generation system, the temperature of the absorbed heat source does not exceed 350°C, while the temperature of the exhaust gas (including flue gas) of the gas turbine generator set is higher than 500°C. Therefore, the mobile waste heat recovery power generation device including the organic Rankine cycle power generation system of the present disclosure is suitable for gas turbine generator sets or other suitable equipment with high-temperature exhaust gas.
  • the first heat exchange medium includes heat transfer oil.
  • the heat transfer oil is not easy to vaporize, has stable performance and good heat conduction effect.
  • the mobile waste heat recovery power generation device uses heat transfer oil as the first medium (for example, an intermediate heat exchange medium for the high-temperature exhaust gas from the equipment of the gas turbine generator set and the working medium), and solves the problem of the organic Rankine cycle The problem of being unable to directly use 500°C high-temperature exhaust gas (including flue gas).
  • the waste heat exchanger provided with heat transfer oil can recover more than 60% of the exhaust heat energy and provide it to the organic Rankine cycle for use.
  • the second medium may include cooling water.
  • the heat sink is modularized so that the heat sink is reduced in size and easy to install.
  • the heat sink includes a plurality of heat dissipation plates arranged in parallel.
  • the problems of complex steam Rankine cycle power generation equipment and excessive volume and weight are solved by modularizing radiators, evaporators, expansion power generation modules, and condensers.
  • the intake assembly 7 has functions of heat exchange and exhaust.
  • the intake assembly 7 may be provided with an air intake 73 and an exhaust port 72, and the air intake 73 is configured to introduce high-temperature exhaust gas (for example, high-temperature exhaust gas from a gas turbine generating set), so that the imported The high-temperature exhaust gas exchanges heat with the first medium in the waste heat heat exchanger 71 , and the exhaust gas after exchanging heat with the waste heat heat exchanger is discharged from the exhaust port 72 .
  • high-temperature exhaust gas for example, high-temperature exhaust gas from a gas turbine generating set
  • the exhaust port 72 may be disposed on a portion of the exhaust assembly 7 that is perpendicular to the chassis 6 , that is, a portion that is parallel to the direction x. This is beneficial to discharge the high-temperature exhaust gas from the air intake assembly 7 to the external environment after exchanging heat with the first medium.
  • the air inlet 73 may be disposed on a portion of the exhaust assembly 7 parallel to the chassis 6 , ie, on a portion parallel to the direction y. This is beneficial for the introduced high-temperature exhaust gas to fully contact with the first pipeline 12 in the intake assembly 7 , thereby fully exchanging heat with the first medium in the first pipeline 12 .
  • a pump set 14 is arranged between the radiator 11 and the chassis 6 .
  • the pump set 14 includes a first pump 141 arranged on the first pipeline 12 .
  • the first pump provides power for transporting the first medium from the evaporator 9 to the waste heat exchanger 71 .
  • the heat exchange temperature between the first medium and the working medium can be precisely controlled by adjusting the flow rate of the first pump 141 to avoid overheating of the evaporator.
  • the second pipeline 13 is provided with a second pump 142 .
  • the second pump provides power for transporting the second medium from the condenser 10 to the radiator 11 .
  • the heat exchange temperature between the second medium and the working medium can be controlled by adjusting the flow rate of the second pump 142 .
  • a third pipeline 19 is provided between the working medium inlet 92 of the evaporator 9 and the working medium outlet 102 of the condenser 10 , and a third pump is provided on the third pipeline 19 143.
  • the third pump 143 provides power for transporting the working medium from the condenser 10 to the evaporator 9 .
  • the pump set 14 may further include a second pump 142 and a third pump 143 .
  • the chassis 6 is disposed on a loading mechanism 15 , and the loading structure 15 includes a traction portion 151 .
  • the traction portion 151 is disposed at one end of the chassis 6 .
  • the first area 61 is farther away from the traction portion 151 than the third area 63 .
  • the first area 61 is farther away from the traction part 151 than the third area 63, so that the air intake assembly 7 disposed in the first area 61 is easy to connect with equipment with high-temperature exhaust gas (for example, a gas turbine generator set) .
  • high-temperature exhaust gas for example, a gas turbine generator set
  • the load carrier may be a truck.
  • the third area 63 may be close to the traction portion 151 (eg, the head of the truck), that is, the radiator may be disposed close to the traction portion 151 .
  • the first region 61 may be close to the tail of the load carrying mechanism (for example, the tail of a truck), that is, the air intake assembly 7 may be arranged close to the tail of the load carrying mechanism, Therefore, it is easy to realize the quick connection between the mobile waste heat recovery power generation device and equipment with high-temperature exhaust gas (for example, gas turbine generator set).
  • the load carrying mechanism for example, the tail of a truck
  • high-temperature exhaust gas for example, gas turbine generator set
  • the chassis 6 includes support for supporting And height adjustment parts 16.
  • the component 16 for support and height adjustment is used for rigid support and level adjustment of the chassis 6, so as to complete the on-site quick connection of the mobile waste heat recovery power generation device.
  • the components 16 for support and height adjustment may be decompression legs.
  • the intake assembly 7 is mounted on the chassis 6 through a sliding pin guide mechanism (not shown).
  • the intake assembly is mounted on the chassis by a slide pin guide mechanism to achieve its centering with the high temperature exhaust port of the gas turbine generator set or other suitable equipment.
  • the sliding pin guide mechanism includes expansion joints to compensate for the thermal expansion of the intake assembly due to the introduction of high-temperature exhaust gas during operation.
  • Expanders used in organic Rankine cycle power generation include screw expanders and turbo expanders.
  • the efficiency of the turbo expander is higher, but the greater the power of the turbo expander, the larger the volume size, and the parallel operation of multiple low-power units also affects the space arrangement on the loading mechanism.
  • the expansion power generation module 8 of the embodiment of the present disclosure may be a turbo expansion power generation module including a turbo expander.
  • 5 illustrates a schematic diagram of a turbine disk and a generator in an expandable power generation module according to an embodiment of the present disclosure.
  • the turboexpansion power generation module adopts the form of two sets of turbine discs 81 and 82 arranged symmetrically, and the two sets of turbine discs 81 and 82 drive the generator 83 on one side of the generator 83 .
  • This arrangement doubles the power of the single disc unit, and balances the axial thrust of the impeller, which is conducive to the stable operation of the equipment.
  • the mobile waste heat recovery power generation device adopts a skid-mounted and modular design to realize quick connection with applicable equipment with high-temperature exhaust and convert the heat energy of high-temperature exhaust into electrical energy, which improves energy efficiency. utilization rate.
  • FIG. 6 illustrates a schematic diagram of a gas turbine power plant according to an embodiment of the disclosure.
  • Embodiments of the present disclosure provide a gas turbine power plant.
  • the gas turbine power generation equipment includes: the above-mentioned mobile waste heat recovery power generation device and a gas turbine generator set 1 according to an embodiment of the present disclosure.
  • the gas turbine generator set 1 is arranged on another chassis 17 .
  • the air intake assembly 7 of the mobile waste heat recovery power generation device is connected to the exhaust port 1001 of the gas turbine generator set 1, so that the high-temperature exhaust gas (including flue gas) from the gas turbine generator set 1 can exchange heat with the waste heat in the air intake assembly 7 71 for heat exchange.
  • the mobile waste heat recovery power generation device is used to recycle the high-temperature exhaust gas of the gas turbine generator set and convert it into electric energy, thereby improving the overall power generation power and energy conversion efficiency.
  • another chassis 17 is set on another loading mechanism 18, and the other loading mechanism 18 includes another traction part 181, and the exhaust port 1001 of the gas turbine generating set 1 is set away from the other loading mechanism 18.
  • a pulling part 181 is set away from the other loading mechanism 18.
  • the other loading mechanism 18 may be another truck, and the exhaust port 1001 is provided at the rear of the other truck, for example. In this way, quick connection between the exhaust port 1001 and the air intake assembly 7 of the mobile waste heat recovery power generation device can be realized.
  • the energy output form of the gas turbine generator set is roughly: about 35% is output as electrical energy, about 60% is lost to the atmosphere as high-temperature exhaust, and the remaining energy is output in the form of mechanical loss and heat dissipation.
  • the mobile waste heat recovery power generation device of the present disclosure greatly increases the electric power and electrical efficiency of the gas turbine generator set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

提供移动式余热回收发电装置和燃气轮机发电设备。该移动式余热回收发电装置包括:底盘(6)、以及设置在底盘(6)上的进气组件(7)、膨胀发电模块(8)、蒸发器(9)、冷凝器(10)和散热器(11)。进气组件(7)中设置有余热换热器(71)。蒸发器(9)和冷凝器(10)在垂直于底盘(6)的方向上叠置,且蒸发器(9)和冷凝器(10)二者与膨胀发电模块(8)沿平行于底盘的第一方向(z)排列。在平行于底盘(6)且垂直于第一方向(z)的第二方向(y)上,底盘(6)包括第一区域(61)、第二区域(62)和第三区域(63),进气组件(7)设置在第一区域(61),膨胀发电模块(8)、蒸发器(9)和冷凝器(10)设置在第二区域(62),散热器(11)设置在第三区域(63)。本公开的移动式余热回收发电装置实现余热回收转化电能的小型化移动式设备,并提升移动式燃气轮机发电机组的整体发电功率和能量转化效率。

Description

移动式余热回收发电装置和燃气轮机发电设备
本申请要求于2021年10月27日递交的第202122597968.5号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的至少一个实施例涉及移动式余热回收发电装置和燃气轮机发电设备。
背景技术
燃气轮机发电机组主要用于油田、发电厂、电信大楼、高层建筑等重要场所必需的备用电源及作为紧急事件、野外作业等必需的移动电源。另外,燃气轮机发电机组也可与余热锅炉等辅助设备组成联合循环机组,用于热、电、冷联供。
发明内容
本公开的实施例涉及移动式余热回收发电装置和燃气轮机发电设备。本公开的移动式余热回收发电装置实现了余热回收转化电能的小型化移动式设备,并提升了移动式燃气轮机发电机组的整体发电功率和能量转化效率。
本公开的实施例提供一种移动式余热回收发电装置。该移动式余热回收发电装置包括:底盘、以及设置在底盘上的进气组件、膨胀发电模块、蒸发器、冷凝器和散热器。进气组件中设置有余热换热器,蒸发器和冷凝器在垂直于所述底盘的方向上叠置,且蒸发器和冷凝器二者与膨胀发电模块沿平行于底盘的第一方向排列,在平行于所述底盘且垂直于第一方向的第二方向上,底盘包括第一区域、第二区域和第三区域。进气组件设置在第一区域,膨胀发电模块、蒸发器和冷凝器设置在第二区域,散热器设置在第三区域。
在一些实施例中,余热换热器和蒸发器中设置有形成闭合循环的第一管 路,第一管路中设置有第一换热介质,蒸发器中除第一管路之外的部分设置有工作介质,蒸发器的工作介质出口与膨胀发电模块的工作介质进口连接,膨胀发电模块的工作介质出口与冷凝器的工作介质进口连接,冷凝器的工作介质出口与蒸发器的工作介质进口连接,冷凝器和散热器中设置有形成另一闭合循环的第二管路,第二管路中设置有第二换热介质,且冷凝器中除第二管路之外的部分设置有该工作介质。
在一些实施例中,散热器和底盘之间设置有泵组,泵组包括设置在第一管路上的第一泵。
在一些实施例中,第一换热介质包括导热油。
在一些实施例中,底盘设置在载重机构上,载重结构包括牵引部,牵引部设置在底盘的一端,第一区域比第三区域更远离牵引部。
在一些实施例中,底盘在与设置有进气组件、膨胀发电模块、蒸发器、冷凝器和散热器的一侧相反的一侧包括用于支撑和调节高度的部件。
在一些实施例中,进气组件通过滑销导向机构安装在底盘上。
在一些实施例中,膨胀发电模块是涡轮膨胀发电模块。
本公开的实施例提供一种燃气轮机发电设备。该燃气轮机发电设备包括上述移动式余热回收发电装置和燃气轮机发电机组。燃气轮机发电机组设置在另一底盘上。移动式余热回收发电装置的进气组件与燃气轮发电机组的排气接口连接,以使来自燃气轮发电机组的排气与进气组件中的余热换热器进行热交换。
在一些实施例中,另一底盘设置在另一载重机构上,另一载重机构包括另一牵引部,燃气轮机发电机组的排气接口设置在远离另一牵引部的一侧。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1例示燃气蒸汽联合循环的示意图;
图2例示根据本公开的实施例的移动式余热回收发电装置的示意图;
图3例示根据本公开的实施例的移动式余热回收发电装置的工作原 理图;
图4例示根据本公开的实施例的移动式余热回收发电装置的俯视框图;
图5例示根据本公开的实施例的移动式余热回收发电装置的膨胀发电模块中的涡轮轮盘和发电机的示意图;以及
图6例示根据本公开的实施例的燃气轮机发电设备的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
移动式燃气轮机发电机组具有功率密度大、机动性强、使用方便等特点,可以快速到达现场提供电力,被广泛用于应急抢险和电网不发达地区的就地供电项目。本申请的发明人发现燃气轮机发电机组的输出功率受到环境温度和海拔高度的影响。温度越高、海拔越高,则发电功率越小。因此移动式燃机发电机组在高温或高海拔的环境中,最大功率低于其标准条件(15℃,0米海拔)下的功率,造成用电设备因供电不足而影响性能。另外,本申请的发明人还发现燃气轮机单循环发电效率约为35%,燃气轮机的排气以500℃ 左右的温度排向大气,没有得到利用。从能量转化效率来看,存在转化效率偏低的问题。
在固定式电站项目上,为解决燃气轮机出力不足,电效率偏低的问题,采用联合循环发电的模式。图1例示燃气蒸汽联合循环的示意图。如图1所示,燃气轮机发电机组1的排气热能在余热锅炉5中被回收以转化成高温高压蒸汽,高温高压蒸汽在蒸汽轮机2中做功发电,提升总电功率和综合效率。蒸汽轮机2中经做功发电的蒸汽通过凝汽器3经由冷却塔4冷凝,以循环回到余热锅炉5。然而,对于移动式燃机发电机组来说,设备的重量和尺寸都受到限制。蒸汽轮机2、凝汽器3、冷却塔4、余热锅炉5的尺寸和重量无法满足移动式设备的要求。当前燃气蒸汽联合循环设备的现有设计并不能集成在移动式发电设备中或者单独集成为移动式的燃气蒸汽联合循环设备。
本公开提供一种移动式余热回收发电装置,其使高温排气得到回收利用,转化成电能,并实现余热回收转化为电能的小型化移动设备设计。
图2例示根据本公开的实施例的移动式余热回收发电装置的示意图。
如图2所示,本公开的实施例的移动式余热回收发电装置包括:底盘6、进气组件7、膨胀发电模块8、蒸发器9、冷凝器10和散热器11。进气组件7、膨胀发电模块8、蒸发器9、冷凝器10和散热器11设置在底盘6上。
根据本公开的实施例,通过将进气组件、膨胀发电模块、蒸发器、冷凝器和散热器设置在底盘上,实现余热回收发电装置的撬装以实现移动式设计。
图3例示根据本公开的实施例的移动式余热回收发电装置的工作原理图,并且图4例示根据本公开的实施例的移动式余热回收发电装置的俯视框图。
如图3所示,进气组件7中设置有余热换热器71。如图2所示,蒸发器9和冷凝器10在垂直于底盘6的方向x上叠置,且如图4所示,蒸发器9和冷凝器10二者与膨胀发电模块8沿平行于底盘的第一方向z排列。例如,余热换热器71可以包括翅片管换热器。如图4所示,在平行于底盘6且垂直于第一方向z的第二方向y上,底盘6包括第一区域61、第二区域62和第三区域63。进气组件7设置在第一区域61,膨胀发电模块8、蒸发器9和冷凝器10设置在第二区域62,散热器11设置在第三区域63。例如,第一区域61、第二区域62和第三区域63在与第二方向y相反的方向上顺序设置。
根据本公开的实施例,将进气组件7设置在底盘6的第一区域61,膨胀发电模块8、蒸发器9和冷凝器10设置在底盘6的第二区域62,散热器11设置在底盘6的第三区域63,并且将膨胀发电模块8、蒸发器9和冷凝器10以模块化的方式进行叠置和平行排列设置,从而实现移动式余热回收发电装置的小型化设计。当然,可以根据移动式余热回收发电装置的各个分部的尺寸进行设置位置的调整。例如,也可以将膨胀发电模块8、蒸发器9和冷凝器10设置在第三区域63,将散热器11设置在第二区域62。本公开的实施例不限于此,只要实现移动式余热回收发电装置的撬装和小型化设计即可。
在一些实施例中,如图2和图4所示,蒸发器9和冷凝器10可以在垂直于底盘6的方向x上完全重叠,即,蒸发器9在底盘6上的正投影和冷凝器10在底盘6上的正投影完全重叠。
在一些实施例中,蒸发器9和冷凝器10可以在垂直于底盘6的方向x上部分重叠,即,蒸发器9在底盘6上的正投影和冷凝器10在底盘6上的正投影部分重叠(未示出)。
在一些实施例中,蒸发器9可以设置在冷凝器10的远离底盘6的一侧,如图2所示。
在一些实施例中,冷凝器10可以设置在蒸发器9的远离底盘6的一侧,(未示出)。
在一些实施例中,如图3所示,余热换热器71和蒸发器9中设置有形成闭合循环的第一管路12,第一管路中12设置有第一换热介质(未示出),第一换热介质可以在闭合的第一管路12中循环。蒸发器9中除第一管路12之外的部分设置有工作介质(未示出)。蒸发器9的工作介质出口91与膨胀发电模块8的工作介质进口(未示出)连接。膨胀发电模块8的工作介质出口(未示出)与冷凝器10的工作介质进口101连接。冷凝器10和散热器11中设置有形成另一闭合循环的第二管路13。第二管路13中设置有第二换热介质(未示出),冷凝器10中除第二管路13之外的部分设置有该工作介质。冷凝器10的工作介质出口102与蒸发器9的工作介质进口92连接。
根据本公开的实施例,膨胀发电模块8、蒸发器9和冷凝器10可以组成有机朗肯循环发电系统。
根据本公开的实施例,如图3所示,本公开的有机朗肯循环发电系统的基本工作原理如下。高温排气(例如,燃气轮机发电机组1的高温排气)导 入设置有余热换热器71(例如,包括翅片管换热器)的进气组件7,高温排气与余热换热器71的第一管路12中的第一介质进行换热,换热后的高温第一介质在第一管路12中输送至蒸发器9中,蒸发器9中的工作介质吸收高温第一介质的热量以吸热蒸发,被吸热换热后的第一介质在第一管路12中输送回到进气组件7中的余热换热器71。吸热蒸发的工作介质经由膨胀发电模块8的工作介质进口进入膨胀发电模块8,并在膨胀发电模块8中做功发电,做功后的工作介质经由膨胀发电模块8的工作介质出口和冷凝器10的工作介质进口101进入冷凝器10,且与冷凝器10的第二管路13中的第二介质进行换热以进行冷凝,吸收了冷凝释放的热量的第二介质输送至散热器11以使得冷凝释放的热量在散热器11中释放到环境中。冷凝后的工作介质经由冷凝器10的工作介质出口102和蒸发器9的工作介质进口92进入蒸发器9,这样完成余热回收发电的循环。
在一些实施例中,本公开的实施例的工作介质可以是有机介质,例如,R245fa。本公开的有机朗肯循环发电系统以有机介质作为工作介质,有机介质的沸点低且密度大。有机朗肯循环发电系统的工作介质由于沸点低,吸收的热源温度不超过350℃,而燃气轮机发电机组的排气(包括烟气)的温度高于500℃。因此,本公开的包括有机朗肯循环发电系统的移动式余热回收发电装置适用于燃气轮机发电机组或者其他适合的具有高温排气的设备。
在一些实施例中,第一换热介质包括导热油。导热油不易气化、性能稳定、导热效果好。
根据本公开的实施例,移动式余热回收发电装置采用导热油作为第一介质(用于例如来自燃气轮机发电机组的设备的高温排气和工作介质的中间换热介质),解决了有机朗肯循环无法直接利用500℃高温排气(包括烟气)的问题。
根据本公开的实施例,设置有导热油的余热换热器可以回收60%以上的排气热能,并提供给有机朗肯循环使用。
在一些实施例中,第二介质可以包括冷却水。
在一些实施例中,散热器被模块化,以使得散热器的体积被减小且易于安装。例如,散热器包括多个平行设置的散热板。
根据本公开的实施例,通过模块化散热器、蒸发器、膨胀发电模块、冷凝器,解决了蒸汽朗肯循环发电设备复杂、体积重量超标的问题。
根据本公开的实施例,进气组件7具有换热和排气功能。例如,如图2所示,进气组件7可以设置有进气口73和排气口72,进气口73配置为导入高温排气(例如,燃气轮机发电机组的高温排气),使得导入的高温排气与余热换热器71中的第一介质进行换热,与余热换热器换热后的排气从排气口72排出。
在一些实施例中,例如,排气口72可以设置在排气组件7的垂直于底盘6的部分上,即平行于方向x的部分上。这样有利于与第一介质换热后的高温排气从进气组件7中排放至外部环境。
在一些实施例中,例如,进气口73可以设置在排气组件7的平行于底盘6的部分上,即平行于方向y的部分上。这样有利于导入的高温排气与进气组件7中的第一管路12充分接触,从而与第一管路12中的第一介质充分换热。
在一些实施例中,如图2所示,散热器11和底盘6之间设置有泵组14。如图3所示,泵组14包括设置在第一管路12上的第一泵141。
根据本公开的实施例,第一泵为第一介质从蒸发器9输送至余热换热器71提供动力。第一介质与工作介质的换热温度可以通过调节第一泵141的流速来精确地控制,以避免蒸发器超温。
在一些实施例中,如图3所示,第二管路13上设置有第二泵142。第二泵为第二介质从冷凝器10输送至散热器11提供动力。第二介质与工作介质的换热温度可通过调节第二泵142的流速来控制。
在一些实施例中,如图3所示,蒸发器9的工作介质进口92和冷凝器10的工作介质出口102之间设置有第三管路19,第三管路19上设置有第三泵143。
根据本公开的实施例,第三泵143为工作介质从冷凝器10输送至蒸发器9提供动力。
在一些实施例中,泵组14还可以包括第二泵142和第三泵143。
在一些实施例中,如图2所示,底盘6设置在载重机构15上,载重结构15包括牵引部151。牵引部151设置在底盘6的一端。如图2和图4所示,第一区域61比第三区域63更远离牵引部151。
根据本公开的实施例,第一区域61比第三区域63更远离牵引部151,使得设置在第一区域61的进气组件7易于与具有高温排气的设备(例如,燃 气轮机发电机组)连接。
在一些实施例中,载重机构可以是载重汽车。
根据本公开的实施例,如图2和图4所示,第三区域63可以靠近牵引部151(例如,载重汽车的头部),即,散热器可以设置为靠近牵引部151。
根据本公开的实施例,如图2和图4所示,第一区域61可以靠近载重机构的尾部(例如,载重汽车的尾部),即,进气组件7可以设置为靠近载重机构的尾部,从而易于实现移动式余热回收发电装置与具有高温排气的设备(例如,燃气轮机发电机组)的快速连接。
在一些实施例中,如图2所示,底盘6在与设置有进气组件7、膨胀发电模块8、蒸发器9、冷凝器10和散热器11的一侧相反的一侧包括用于支撑和调节高度的部件16。
根据本公开的实施例,用于支撑和调节高度的部件16用于底盘6的刚性支撑和水平高度调节,以完成移动式余热回收发电装置的现场快速连接。例如,用于支撑和高度调节的部件16可以是解压撑腿。
在一些实施例中,进气组件7通过滑销导向机构(未示出)安装在底盘6上。
根据本公开的实施例,进气组件通过滑销导向机构安装在底盘上,实现其与燃气轮机发电机组或其他适合设备的高温排气口的对中。滑销导向机构包括膨胀节,从而补偿工作过程中进气组件由于导入高温排气引起的热膨胀。
用于有机朗肯循环发电的膨胀机包括螺杆膨胀机和涡轮膨胀机。涡轮膨胀机效率较高,但涡轮膨胀机功率越大,则体积尺寸越大,且多台小功率机组并列运行也影响载重机构上的空间布置。
本公开的实施例的膨胀发电模块8可以是包括涡轮膨胀机的涡轮膨胀发电模块。图5例示根据本公开的实施例的膨胀发电模块中的涡轮轮盘和发电机的示意图。如图5所示,该涡轮膨胀发电模块采用2组涡轮轮盘81和82对称布置的形式,2组涡轮轮盘81和82在发电机83的一侧驱动发电机83。该布置比单轮盘机组增加一倍的功率,并平衡了叶轮的轴向推力,有利于设备稳定运行。
根据本公开的实施例,移动式余热回收发电装置采用撬装化、模块化设计,以实现与适用的具有高温排气的设备的快速连接并将高温排气的热能转化为电能,提高了能源利用率。
图6例示根据本公开的实施例的燃气轮机发电设备的示意图。
本公开的实施例提供一种燃气轮机发电设备。如图6所示,该燃气轮机发电设备包括:根据本公开的实施例的上述移动式余热回收发电装置和燃气轮机发电机组1。燃气轮机发电机组1设置在另一底盘17上。移动式余热回收发电装置的进气组件7与燃气轮发电机组1的排气接口1001连接,以使来自燃气轮机发电机组1的高温排气(包括烟气)与进气组件7中的余热换热器71进行热交换。
根据本公开的实施例,利用移动式余热回收发电装置,使燃气轮机发电机组的高温排气得到回收利用,转化成电能,从而提升整体发电功率和能量转化效率。
在一些实施例中,如图6所示,另一底盘17设置在另一载重机构18上,另一载重机构18包括另一牵引部181,燃气轮机发电机组1的排气接口1001设置为远离另一牵引部181。
根据本公开的实施例,另一载重机构18可以是另一载重汽车,排气接口1001例如设置在该另一载重汽车的尾部。这样可以实现排气接口1001与移动式余热回收发电装置的进气组件7的快速对接。
燃气轮机发电机组的能量输出形式大概为:35%左右以电能输出,60%左右以高温排气散失到大气中,其余能量以机械损失、散热等形式输出。利用本公开的实施例的移动式余热回收发电装置,在有机朗肯循环发电系统的发电效率约为15~20%的情况下,燃气轮机发电机组的高温排气转化为电能的比例大于5.4%,其是这样计算出的:60%(燃气轮机发电机组的能量输出的60%为高温排气)×60%(余热换热器回收60%的排气热能)×15%(有机朗肯循环发电系统的发电效率为15%)=5.4%。这样燃气轮机发电机组35%的发电转化率提升至少到40.4%,发电功率提升幅度大于15.4%。
不论移动式燃气轮机发电机组运行在标准环境状态下,还是运行在高温或高海拔条件下,本公开的移动式余热回收发电装置均大幅地增加了燃气轮机发电机组的电功率和电效率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种移动式余热回收发电装置,其特征在于,包括:底盘、以及设置在底盘上的进气组件、膨胀发电模块、蒸发器、冷凝器和散热器,其中,
    进气组件中设置有余热换热器,
    所述蒸发器和所述冷凝器在垂直于所述底盘的方向上叠置,且所述蒸发器和所述冷凝器二者与所述膨胀发电模块沿平行于底盘的第一方向排列,
    在平行于所述底盘且垂直于所述第一方向的第二方向上,所述底盘包括第一区域、第二区域和第三区域,所述进气组件设置在所述第一区域,所述膨胀发电模块、所述蒸发器和所述冷凝器设置在所述第二区域,所述散热器设置在所述第三区域。
  2. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述余热换热器和所述蒸发器中设置有形成闭合循环的第一管路,所述第一管路中设置有第一换热介质,所述蒸发器中除第一管路之外的部分设置有工作介质,所述蒸发器的工作介质出口与所述膨胀发电模块的工作介质进口连接,所述膨胀发电模块的工作介质出口与所述冷凝器的工作介质进口连接,所述冷凝器的工作介质出口与所述蒸发器的工作介质进口连接,所述冷凝器和所述散热器中设置有形成另一闭合循环的第二管路,所述第二管路中设置有第二换热介质,且所述冷凝器中除第二管路之外的部分设置有所述工作介质。
  3. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述散热器和所述底盘之间设置有泵组,所述泵组包括设置在所述第一管路上的第一泵。
  4. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述第一换热介质包括导热油。
  5. 如权利要求1至4中任一项所述的移动式余热回收发电装置,其特征在于,所述底盘设置在载重机构上,所述载重结构包括牵引部,所述牵引部设置在所述底盘的一端,所述第一区域比所述第三区域更远离所述牵引部。
  6. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述底盘在与设置有所述进气组件、所述膨胀发电模块、所述蒸发器、所述冷凝器和所述散热器的一侧相反的一侧包括用于支撑和调节高度的部件。
  7. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述进 气组件通过滑销导向机构安装在所述底盘上。
  8. 如权利要求1所述的移动式余热回收发电装置,其特征在于,所述膨胀发电模块是涡轮膨胀发电模块。
  9. 一种燃气轮机发电设备,其特征在于,包括:
    如权利要求1所述的移动式余热回收发电装置;
    燃气轮机发电机组,设置在另一底盘上,
    其中,所述移动式余热回收发电装置的所述进气组件与所述燃气轮发电机组的排气接口连接,以使来自所述燃气轮发电机组的排气与所述进气组件中的所述余热换热器进行热交换。
  10. 如权利要求9所述的燃气轮机发电设备,其特征在于,所述另一底盘设置在另一载重机构上,所述另一载重机构包括另一牵引部,所述燃气轮机发电机组的排气接口设置在远离所述另一牵引部的一侧。
PCT/CN2021/133978 2021-10-27 2021-11-29 移动式余热回收发电装置和燃气轮机发电设备 WO2023070813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122597968.5 2021-10-27
CN202122597968.5U CN218844402U (zh) 2021-10-27 2021-10-27 移动式余热回收发电装置和燃气轮机发电设备

Publications (1)

Publication Number Publication Date
WO2023070813A1 true WO2023070813A1 (zh) 2023-05-04

Family

ID=85876274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133978 WO2023070813A1 (zh) 2021-10-27 2021-11-29 移动式余热回收发电装置和燃气轮机发电设备

Country Status (2)

Country Link
CN (1) CN218844402U (zh)
WO (1) WO2023070813A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064484A1 (en) * 2012-10-23 2014-05-01 Renault Trucks Vehicle comprising a rankine system
US20160222833A1 (en) * 2015-02-03 2016-08-04 Borgwarner Inc. Waste heat recovery system layout and packaging strategy
CN106164419A (zh) * 2014-03-14 2016-11-23 伊顿公司 Orc系统发动机停闭后压力管理
CN107250493A (zh) * 2014-10-27 2017-10-13 康明斯公司 余热回收集成冷却模块
CN113485489A (zh) * 2021-06-18 2021-10-08 淮阴工学院 一种orc系统蒸发器出口温度的调控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064484A1 (en) * 2012-10-23 2014-05-01 Renault Trucks Vehicle comprising a rankine system
CN106164419A (zh) * 2014-03-14 2016-11-23 伊顿公司 Orc系统发动机停闭后压力管理
CN107250493A (zh) * 2014-10-27 2017-10-13 康明斯公司 余热回收集成冷却模块
US20160222833A1 (en) * 2015-02-03 2016-08-04 Borgwarner Inc. Waste heat recovery system layout and packaging strategy
CN113485489A (zh) * 2021-06-18 2021-10-08 淮阴工学院 一种orc系统蒸发器出口温度的调控方法

Also Published As

Publication number Publication date
CN218844402U (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN107630726B (zh) 一种基于超临界二氧化碳循环的多能混合发电系统及方法
WO2019165807A1 (zh) 一种冷热电联供系统
CN111140298B (zh) 一种分布式热电联供压缩空气储能系统
CN112762424B (zh) 一种基于储热和压缩式热泵相结合的太阳能热电解耦系统及其运行方法
CN218669484U (zh) 一种耦合有机朗肯循环系统的非补燃式压缩空气储能系统
WO2023070813A1 (zh) 移动式余热回收发电装置和燃气轮机发电设备
CN108869213B (zh) 光子增强热离子发射与二氧化碳循环联合发电装置及方法
CN209875395U (zh) 一种槽式太阳能热发电系统
CN202813542U (zh) 一种电厂余热提取与供热阶梯加热的系统
CN106968903B (zh) 混合式太阳能热发电系统及其方法
CN115425911A (zh) 一种太阳能二氧化碳热泵温差发电系统及方法
CN212837985U (zh) 一种电解铝槽边壁余热回收系统
CN211851944U (zh) 一种用于电解槽余热回收的发电系统
CN207999293U (zh) 一种有机朗肯循环发电系统
CN111396164A (zh) 一种电解铝槽边壁余热回收系统及方法
WO2023040186A1 (zh) 零碳数据中心冷电系统及应用
CN114804259B (zh) 一种燃料电池余热利用系统
CN217685948U (zh) 一种用于多能源供给电热双制冷的数据中心供冷系统
CN117823247A (zh) 核能携同光热单工质联合循环蒸汽动力装置
CN117663516A (zh) 一种热源适用广且热量全回收的高效冷热电联产布雷顿系统
CN118148867A (zh) 光热型多能携同单工质联合循环蒸汽动力装置
CN118423143A (zh) 用于太阳能热电联产的二次分流超临界二氧化碳系统及运行方法
CN118008518A (zh) 燃料型多能携同单工质联合循环蒸汽动力装置
CN117346381A (zh) 一种基于最小辐射器面积的月球基地冷、电联产系统
CN118030229A (zh) 核能型多能携同联合循环蒸汽动力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE