WO2023070491A1 - 一种低速车锂电池集成式保护板 - Google Patents

一种低速车锂电池集成式保护板 Download PDF

Info

Publication number
WO2023070491A1
WO2023070491A1 PCT/CN2021/127269 CN2021127269W WO2023070491A1 WO 2023070491 A1 WO2023070491 A1 WO 2023070491A1 CN 2021127269 W CN2021127269 W CN 2021127269W WO 2023070491 A1 WO2023070491 A1 WO 2023070491A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
pin
resistor
pole
lithium battery
Prior art date
Application number
PCT/CN2021/127269
Other languages
English (en)
French (fr)
Inventor
郭长寿
区志伟
李斌
谢中鹏
陈柯宇
杜小勇
Original Assignee
深圳市菲尼基科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市菲尼基科技有限公司 filed Critical 深圳市菲尼基科技有限公司
Priority to PCT/CN2021/127269 priority Critical patent/WO2023070491A1/zh
Publication of WO2023070491A1 publication Critical patent/WO2023070491A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells

Definitions

  • the invention relates to the field of protective plates, in particular to an integrated protective plate for lithium batteries of low-speed vehicles.
  • lithium batteries Compared with lead-acid batteries, lithium batteries have the advantages of high cycle life, small size, and high energy density. With the gradual popularization of lithium batteries in the field of two-wheel battery replacement, lead-acid batteries will gradually be replaced in some high-utilization areas such as battery replacement leasing scenarios. In the field of battery replacement and leasing, because lithium batteries need intelligent monitoring, in addition to providing functions such as normal charging and discharging of lithium batteries, battery information (SOC, voltage, current, temperature, location, etc.) must be uploaded to the cloud platform regularly, so that users can keep abreast of them battery information. For battery swap applications, the lithium battery pack must also have external communication capabilities such as RS485 or CAN communication, so as to facilitate communication and interaction with the battery swap cabinet and complete functions such as charging in the power swap cabinet.
  • battery information SOC, voltage, current, temperature, location, etc.
  • the lithium battery pack must also have external communication capabilities such as RS485 or CAN communication, so as to facilitate communication and interaction with the battery swap cabinet and complete functions such as charging in the power swap
  • the existing software protection board needs to be equipped with an additional network connection module (2G/4G+GPS) to complete the interconnection with the cloud platform.
  • Protection board manufacturers usually purchase communication modules from other manufacturers for protocol adaptation, resulting in expensive software protection board systems currently used for battery replacement, which reduces the competitiveness of lithium battery packs against lead-acid batteries.
  • the system usually consists of a software protection board + network connection module to form a separate system.
  • the software protection board and the network connection module are connected through a TTL-level UART port.
  • the whole system is relatively loose and the power supply and PCB cannot be shared.
  • the single-chip microcomputer on the protection board is an important component that must be used as the core control, which greatly increases the system cost. .
  • the battery information collected by the protection board needs to be forwarded through the network connection module protocol before it can be sent to the cloud platform. The real-time performance of information transmission cannot be guaranteed and needs to be improved.
  • the object of the present invention is to provide an integrated protective plate for lithium batteries of low-speed vehicles to solve the problems raised in the above-mentioned background technology.
  • the present invention provides the following technical solutions:
  • An integrated protection board for a low-speed vehicle lithium battery comprising:
  • DC-DC module for supplying DC voltage
  • the analog front-end module is used to sample the voltage information and current information of the lithium battery and transmit it to the main control circuit;
  • the main control module is used to comprehensively process lithium battery information and transmit it to the cloud platform;
  • MOS control module used for charge and discharge control of lithium battery
  • the main control module includes chip U9A, the external circuit of chip U9A includes I/O control circuit, serial port level conversion circuit, USB circuit, SIM card circuit, radio frequency interface circuit, chip U9A is a 4G CAT1 module;
  • the DC-DC module is connected to the main control module, the main control module is bidirectionally connected to the analog front-end module, and the analog front-end module is connected to the MOS control module.
  • the DC-DC module includes a voltage regulator U4, the No. 3 pin of the voltage regulator U4 is connected to the negative pole of the diode D2, the positive pole of the diode D2 is connected to the positive pole of the lithium battery, and the No. 4 pin of the voltage regulator U4 The pin is connected to the negative pole of the diode D5, the No. 5 pin of the voltage regulator U4, and the inductor L1 through the capacitor C6.
  • the positive pole of the diode D5 is grounded, and the other end of the inductor L1 is connected to the resistor R15.
  • the other end of the resistor R15 is connected to the resistor R14.
  • pin 1 of regulator U4 the other end of resistor R14 is grounded
  • pin 1 of regulator U5 is connected to pin 3 of regulator U5, capacitor C33, and the other end of inductor L1, and the other end of capacitor C33 is grounded
  • pin 2 of the voltage regulator U5 is grounded.
  • the I/O control circuit includes a triode Q32 and a triode Q34, the base of the triode Q32 is connected to the No. 5 pin of the chip U9A, the base of the triode Q34 is connected to the No. 24 pin of the chip U9A, and the triode Q32
  • the collector of the transistor Q34 is connected to the cathode of the diode D6, the emitter of the transistor Q32 is grounded, the collector of the transistor Q34 is connected to the cathode of the diode D7, and the emitter of the transistor Q34 is grounded.
  • the serial port level conversion circuit includes a triode Q33, the base of the triode Q33 is connected to a resistor R12 and a capacitor C14, the other end of the resistor R12 is connected to the other end of the capacitor C14, the voltage is 1.8V, and the collector of the triode Q33 Connect pin 68 of chip U9A and resistor R23, and the other end of resistor R23 is connected to 1.8V voltage.
  • the USB circuit includes a chip USB, the No. 1 pin of the chip USB is connected to the No. 71 pin of the chip U9A, and the No. 2 and No. 3 pins of the chip USB are connected to the power USB port.
  • the SIM card circuit includes chip SIM2, No. 14 pins of chip U9A are connected to resistor R167, No. 8 pins of chip SIM2, No. 15 pins of chip U9A are connected to the other end of resistor R167, chip SIM2 No. 3 pin of chip SIM2, No. 6 pin of chip SIM2 is connected with No. 16 pin of chip U9A, and No. 7 pin of chip SIM2 is connected with No. 17 pin of chip U9A.
  • the radio frequency interface circuit includes an antenna J7, the No. 1 pin of the antenna J7 is connected to the No. 49 pin of the chip U9A, and the No. 2 and No. 3 pins of the antenna J7 are grounded.
  • the analog front-end module includes a chip U7, the No. 27 pin of the chip U7 is connected to the No. 42 pin of the chip U9A, and the No. 26 pin of the chip U7 is connected to the No. 41 pin of the chip U9A.
  • the MOS control module includes MOS tube Q35, MOS tube Q36, MOS tube Q25, MOS tube Q2, MOS tube Q3, MOS tube Q39, MOS tube Q40, MOS tube Q30, and the D pole of MOS tube Q35 Connect the D pole of the MOS transistor Q36, the D pole of the MOS transistor Q25, the D pole of the MOS transistor Q2, the D pole of the MOS transistor Q3, the D pole of the MOS transistor Q39, the D pole of the MOS transistor Q40, and the D pole of the MOS transistor Q30;
  • Pin 34 of chip U7 is connected to resistor R117, and the other end of resistor R117 is connected to G pole of MOS transistor Q35 through resistor R131, G pole of MOS transistor Q36 through resistor R157, G pole of MOS transistor Q25 through resistor R155, and G pole of MOS transistor Q25 through resistor R155.
  • the resistor R156 is connected to the G pole of the MOS transistor Q2;
  • Pin 36 of the chip U7 is connected to the resistor R114, the other end of the resistor R114 is connected to the emitter of the transistor Q61, the collector of the transistor Q61 is connected to the anode of the diode D47, the cathode of the diode D47 is connected to the G pole of the MOS transistor Q3 through the resistor R136, The G pole of the MOS transistor Q39 is connected through the resistor R160, the G pole of the MOS transistor Q40 is connected through the resistor R159, and the G pole of the MOS transistor Q30 is connected through the resistor R16.
  • the beneficial effect of the present invention is: the present invention utilizes the CPU of the 4G CAT1 module itself as the control core, replaces multiple single-chip microcomputers in the original separation system, simplifies the software and hardware design of the system, thereby reduces the system cost.
  • Figure 1 is a schematic diagram of the protection board separation system.
  • Figure 2 is a schematic diagram of the software protection board.
  • Figure 3 is a schematic diagram of the network connection module.
  • Figure 4 is a schematic diagram of a low-speed car lithium battery integrated protection board.
  • Fig. 5 is a circuit diagram of the DC-DC module.
  • Figure 6 is a circuit diagram of the main control module.
  • FIG. 7 is a circuit diagram of an analog front-end module.
  • Fig. 8 is a circuit diagram of the MOS control module.
  • a low-speed car lithium battery integrated protection board including:
  • DC-DC module for supplying DC voltage
  • the analog front-end module is used to sample the voltage information and current information of the lithium battery and transmit it to the main control circuit;
  • the main control module is used to comprehensively process lithium battery information and transmit it to the cloud platform;
  • MOS control module used for charge and discharge control of lithium battery
  • the main control module includes chip U9A, the external circuit of chip U9A includes I/O control circuit, serial port level conversion circuit, USB circuit, SIM card circuit, radio frequency interface circuit, chip U9A is a 4G CAT1 module;
  • the DC-DC module is connected to the main control module, the main control module is bidirectionally connected to the analog front-end module, and the analog front-end module is connected to the MOS control module.
  • Quectel's CAT1 module EC200U can be selected as the 4G CAT1 module.
  • the other functional parts of the protection board are directly controlled by the 4G CAT1 module, omitting the single chip microcomputer of the protection board and the single chip microcomputer of the network connection module in the original separate scheme, and the power system is shared, and all components are arranged on the same PCB, which greatly reduces cost.
  • the 4G CAT1 module directly communicates with the analog front-end module through the IIC or SPI communication interface to realize the configuration of the analog front-end protection parameters and obtain information such as the voltage of the single unit and the charge and discharge current collected by the analog front-end module.
  • the 4G CAT1 module After the 4G CAT1 module analyzes and reorganizes the collected information, it can be sent to the host computer or the charging and changing cabinet through the isolated 485 module. At the same time, the GPS positioning information and battery information are packaged according to the cloud message protocol, and sent to the cloud server through the antenna. In this way, the original software protection board and network module as shown in Fig. 1, Fig. 2 and Fig. 3 no longer need a redundant network module, which saves volume and does not affect the communication with the cloud platform.
  • the DC-DC module includes a voltage regulator U4, the No. 3 pin of the voltage regulator U4 is connected to the negative pole of the diode D2, the positive pole of the diode D2 is connected to the positive pole of the lithium battery, and the voltage regulator U4
  • the No. 4 pin of the diode D5 is connected to the cathode of the diode D5, the No. 5 pin of the regulator U4, and the inductor L1 through the capacitor C6.
  • the anode of the diode D5 is grounded, and the other end of the inductor L1 is connected to the resistor R15, and the other end of the resistor R15 is connected to the resistor R14.
  • No. 3 pin of the voltage regulator U4 is connected to the negative pole of the diode D2
  • the positive pole of the diode D2 is connected to the positive pole of the lithium battery
  • the voltage regulator U4 The No. 4 pin of the diode D5 is connected to the cathode of the diode D5, the No.
  • the voltage regulator U4 outputs 4V voltage through the inductor L1, and the voltage regulator U5 outputs 3.3V voltage through the capacitor C34 and the capacitor C45, so as to supply power for the system.
  • I/O control circuit comprises triode Q32, triode Q34, the base of triode Q32 connects No. 5 pins of chip U9A, the base of triode Q34 connects No. 24 pins of chip U9A
  • the collector of the transistor Q32 is connected to the cathode of the diode D6, the emitter of the transistor Q32 is connected to the ground, the collector of the transistor Q34 is connected to the cathode of the diode D7, and the emitter of the transistor Q34 is connected to the ground.
  • the No. 5 pin and No. 24 pin of the chip U9A output high level to the bases of the transistors Q32 and Q34, so that the transistors are turned on, so that the negative poles of the light-emitting diodes D6 and D7 are connected to the ground, and after the current flows in the tubes glow.
  • the light indication is completed through the I/O interface.
  • the serial port level conversion circuit includes a transistor Q33, the base of the transistor Q33 is connected to a resistor R12 and a capacitor C14, the other end of the resistor R12 is connected to the other end of the capacitor C14, and the voltage is 1.8V, and the transistor Q33 The collector is connected to pin 68 of chip U9A and resistor R23, and the other end of resistor R23 is connected to 1.8V voltage.
  • the USB circuit includes a chip USB, pin 1 of the chip USB is connected to pin 71 of the chip U9A, and pins 2 and 3 of the chip USB are connected to the power USB port.
  • the USB circuit is used for program programming or debugging information monitoring, directly connected to the computer USB port.
  • the SIM card circuit includes chip SIM2, No. 14 pin of chip U9A is connected to resistor R167, No. 8 pin of chip SIM2, and No. 15 pin of chip U9A is connected to the other end of resistor R167 1.
  • Pin No. 3 of the chip SIM2 pin No. 6 of the chip SIM2 is connected to pin No. 16 of the chip U9A
  • pin No. 7 of the chip SIM2 is connected to pin No. 17 of the chip U9A.
  • SIM Subscriber Identity Module
  • SIM Subscriber Identity Module
  • the radio frequency interface circuit includes an antenna J7, the No. 1 pin of the antenna J7 is connected to the No. 49 pin of the chip U9A, and the No. 2 and No. 3 pins of the antenna J7 are grounded.
  • the RF interface circuit is used to send and receive 4G signals (J7 in the figure is a 4G antenna), collect GPS signals (J5 in the figure is a GPS ceramic antenna), and send and receive Bluetooth data (A1 in the figure is a 2.4G ceramic antenna).
  • the analog front-end module includes a chip U7, the 27th pin of the chip U7 is connected to the 42nd pin of the chip U9A, and the 26th pin of the chip U7 is connected to the 41st pin of the chip U9A.
  • the chip U7 adopts the SH367309 of Zhongying Company.
  • the circuit also includes a single voltage sampling circuit, a current sampling circuit, and a MOS tube control signal.
  • the analog front-end chip can choose front-end protection chips from IC manufacturers such as TI, Panasonic, and Zhongying according to the number of acquisition units.
  • the cell sampling circuit connects the positive and negative poles of the battery to the front-end sampling chip through the resistance-capacitance filter method to sample the cell voltage.
  • the voltage at both ends of the current sampling resistor R105 in the figure is filtered and then sent to the current sampling terminal of the front-end chip.
  • the analog front-end chip outputs the control signal of charging and discharging MOS according to the protection parameters (charging control signal CHG_M, discharging control signal DSG_M in the figure).
  • the MOS control module includes MOS transistors Q35, MOS transistors Q36, MOS transistors Q25, MOS transistors Q2, MOS transistors Q3, MOS transistors Q39, MOS transistors Q40, MOS transistors Q30, MOS transistors Q35
  • MOS transistors Q35 The D pole of the MOS transistor Q36, the D pole of the MOS transistor Q25, the D pole of the MOS transistor Q2, the D pole of the MOS transistor Q3, the D pole of the MOS transistor Q39, the D pole of the MOS transistor Q40, the D pole of the MOS transistor Q30 D pole;
  • Pin 34 of chip U7 is connected to resistor R117, and the other end of resistor R117 is connected to G pole of MOS transistor Q35 through resistor R131, G pole of MOS transistor Q36 through resistor R157, G pole of MOS transistor Q25 through resistor R155, and G pole of MOS transistor Q25 through resistor R155.
  • the resistor R156 is connected to the G pole of the MOS transistor Q2;
  • Pin 36 of the chip U7 is connected to the resistor R114, the other end of the resistor R114 is connected to the emitter of the transistor Q61, the collector of the transistor Q61 is connected to the anode of the diode D47, the cathode of the diode D47 is connected to the G pole of the MOS transistor Q3 through the resistor R136, The G pole of the MOS transistor Q39 is connected through the resistor R160, the G pole of the MOS transistor Q40 is connected through the resistor R159, and the G pole of the MOS transistor Q30 is connected through the resistor R16.
  • the RS terminal is connected to the RS terminal of the sampling resistor R105 in Figure 7, and P- is connected to the negative pole of the external load.
  • the analog front-end chip wants to turn on the discharge MOS (Q35, Q36, Q25, and Q2 in the figure are four N-channel MOS transistors connected in parallel for discharge control to increase the overcurrent capability), then by setting the MOS control signal DSG_M high (for example, 10V), output to the G pole of the discharge MOS.
  • the MOS tube Since the voltage VGS between the G pole and the S pole is greater than the conduction voltage of the MOS tube (such as 2V), the MOS tube is turned on, providing a path for the discharge current, so that the discharge The current can flow from the P- terminal to RS, and then flow to the negative terminal B- of the battery through the sampling resistor.
  • the principle of turning on the charge MOS is similar to that of the discharge MOS.
  • the analog front-end chip only needs to set the corresponding control signals CHG_M and DSG_M to 0.
  • the working principle of the present invention is: the DC-DC module supplies DC voltage, the analog front-end module samples the voltage information and current information of the lithium battery, and transmits it to the main control circuit, the main control module comprehensively processes the lithium battery information and transmits it to the cloud platform, and the MOS control The module controls the charging and discharging of the lithium battery.
  • the main control module includes the chip U9A.
  • the chip U9A is a 4G CAT1 module, and the 4G The CAT1 module can transmit information to the cloud platform while completing the corresponding work of the main control, which simplifies the software and hardware design of the system, thereby reducing the system cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Sources (AREA)

Abstract

本发明公开了一种低速车锂电池集成式保护板,涉及保护板领域,该低速车锂电池集成式保护板包括:DC-DC模块,用于供给4V和3.3V的直流电压;模拟前端模块,用于采样锂电池的电压信息和电流信息,传输给主控电路;主控模块,用于综合处理锂电池信息并传输给云端平台;MOS控制模块,用于对锂电池进行充放电控制;主控模块包括芯片U9A,芯片U9A的外部电路包含I/O控制电路、串口电平转换电路、USB电路、SIM卡电路、射频接口电路,芯片U9A为4G CAT1模块;与现有技术相比,本发明的有益效果是:本发明利用了4G CAT1模块本身的CPU作为控制核心,代替了原分离系统中的多个单片机,简化了系统的软硬件设计,从而降低系统成本。

Description

一种低速车锂电池集成式保护板 技术领域
本发明涉及保护板领域,具体是一种低速车锂电池集成式保护板。
背景技术
锂电池相比铅酸电池具有循环寿命高,体积小,能量密度高等优点。随着锂电池在两轮换电领域的逐渐普及,在某些高利用率的领域比如换电租赁场景中将逐渐替代铅酸电池。在换电和租赁领域由于锂电池需要智能化监控,除了提供锂电池正常充放电等功能外还要定时上传电池信息(SOC,电压,电流,温度,位置等)给云平台,方便用户及时了解电池信息。对于换电应用锂电包还必须具备RS485或者CAN通信等对外通信能力,以方便与换电柜进行通信交互,完成在换电柜中充电等功能。
现有软件保护板除了具备软件保护板一般功能外,还需要搭配额外的网联模块(2G/4G+GPS)才能完成与云端平台的互联。保护板厂家通常购买其它厂家的通信模块进行协议适配,造成当前用于换电的软件保护板系统价格昂贵,降低了锂电池包对铅酸电池的竞争力。
现有技术方案如图1所示,系统通常由软件保护板+网联模块构成分离式系统。软件保护板和网联模块之间通过TTL电平的UART口连接,整个系统比较松散且电源和PCB无法共用,保护板上的单片机作为核心控制是必须具备的重要元器件,大大增加了系统成本。保护板采集到的电池信息需要通过网联模块协议转发后才能送到云端平台,信息传输的实时性不能得到保证,需要改进。
技术解决方案
本发明的目的在于提供一种低速车锂电池集成式保护板,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种低速车锂电池集成式保护板,包括:
DC-DC模块,用于供给直流电压;
模拟前端模块,用于采样锂电池的电压信息和电流信息,传输给主控电路;
主控模块,用于综合处理锂电池信息并传输给云端平台;
MOS控制模块,用于对锂电池进行充放电控制;
主控模块包括芯片U9A,芯片U9A的外部电路包含I/O控制电路、串口电平转换电路、USB电路、SIM卡电路、射频接口电路,芯片U9A为4G CAT1模块;
DC-DC模块连接主控模块,主控模块双向连接模拟前端模块,模拟前端模块连接MOS控制模块。
作为本发明再进一步的方案:DC-DC模块包括稳压器U4,稳压器U4的3号引脚连接二极管D2的负极,二极管D2的正极连接锂电池的正极,稳压器U4的4号引脚通过电容C6连接二极管D5的负极、稳压器U4的5号引脚、电感L1,二极管D5的正极接地,电感L1的另一端连接电阻R15,电阻R15的另一端连接电阻R14、稳压器U4的1号引脚,电阻R14的另一端接地,稳压器U5的1号引脚连接稳压器U5的3号引脚、电容C33、电感L1的另一端,电容C33的另一端接地,稳压器U5的2号引脚接地。
作为本发明再进一步的方案:I/O控制电路包括三极管Q32、三极管Q34,三极管Q32的基极连接芯片U9A的5号引脚,三极管Q34的基极连接芯片U9A的24号引脚,三极管Q32的集电极连接二极管D6的负极,三极管Q32的发射极接地,三极管Q34的集电极连接二极管D7的负极,三极管Q34的发射极接地。
作为本发明再进一步的方案:串口电平转换电路包括三极管Q33,三极管Q33的基极连接电阻R12、电容C14,电阻R12的另一端连接电容C14的另一端、电压1.8V,三极管Q33的集电极连接芯片U9A的68号引脚、电阻R23,电阻R23的另一端连接1.8V电压。
作为本发明再进一步的方案:USB电路包括芯片USB,芯片USB的1号引脚连接芯片U9A的71号引脚,芯片USB的2号引脚、3号引脚连接电能USB口。
作为本发明再进一步的方案:SIM卡电路包括芯片SIM2,芯片U9A的14号引脚连接电阻R167、芯片SIM2的8号引脚,芯片U9A的15号引脚连接电阻R167的另一端、芯片SIM2的3号引脚,芯片SIM2的6号引脚连接芯片U9A的16号引脚,芯片SIM2的7号引脚连接芯片U9A的17号引脚。
作为本发明再进一步的方案:射频接口电路包括天线J7,天线J7的1号引脚连接芯片U9A的49号引脚,天线J7的2号引脚、3号引脚接地。
作为本发明再进一步的方案:模拟前端模块包括芯片U7,芯片U7的27号引脚连接芯片U9A的42号引脚,芯片U7的26号引脚连接芯片U9A的41号引脚。
作为本发明再进一步的方案:MOS控制模块包括MOS管Q35、MOS管Q36、MOS管Q25、MOS管Q2、MOS管Q3、MOS管Q39、MOS管Q40、MOS管Q30,MOS管Q35的D极连接MOS管Q36的D极、MOS管Q25的D极、MOS管Q2的D极、MOS管Q3的D极、MOS管Q39的D极、MOS管Q40的D极、MOS管Q30的D极;
芯片U7的34号引脚连接电阻R117,电阻R117的另一端通过电阻R131连接MOS管Q35的G极、通过电阻R157连接MOS管Q36的G极、通过电阻R155连接MOS管Q25的G极、通过电阻R156连接MOS管Q2的G极;
芯片U7的36号引脚连接电阻R114,电阻R114的另一端连接三极管Q61的发射极,三极管Q61的集电极连接二极管D47的正极,二极管D47的负极连接通过电阻R136连接MOS管Q3的G极、通过电阻R160连接MOS管Q39的G极、通过电阻R159连接MOS管Q40的G极、通过电阻R16连接MOS管Q30的G极。
有益效果
与现有技术相比,本发明的有益效果是:本发明利用了4G CAT1模块本身的CPU作为控制核心,代替了原分离系统中的多个单片机,简化了系统的软硬件设计,从而降低系统成本。
附图说明
图1为保护板分离式系统的原理图。
图2为软件保护板的原理图。
图3为网联模块的原理图。
图4为一种低速车锂电池集成式保护板的原理图。
图5为DC-DC模块的电路图。
图6为主控模块的电路图。
图7为模拟前端模块的电路图。
图8为MOS控制模块的电路图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2、图3和图4,一种低速车锂电池集成式保护板,包括:
DC-DC模块,用于供给直流电压;
模拟前端模块,用于采样锂电池的电压信息和电流信息,传输给主控电路;
主控模块,用于综合处理锂电池信息并传输给云端平台;
MOS控制模块,用于对锂电池进行充放电控制;
主控模块包括芯片U9A,芯片U9A的外部电路包含I/O控制电路、串口电平转换电路、USB电路、SIM卡电路、射频接口电路,芯片U9A为4G CAT1模块;
DC-DC模块连接主控模块,主控模块双向连接模拟前端模块,模拟前端模块连接MOS控制模块。
在具体实施例中:4G CAT1模块可选用移远公司的CAT1 模组EC200U。保护板的其它功能部分直接通过4G CAT1模块进行控制,省略了原有分离式方案中的保护板单片机和网联模块单片机,且电源系统共用,所有元器件均布置在同一个PCB上面,大大降低成本。4G CAT1模块直接通过IIC或者SPI通信接口与模拟前端模块进行通信,实现对模拟前端保护参数的配置,获取模拟前端模块采集到的单体电压、充放电电流等信息。4G CAT1模块对采集到的信息进行分析重组后可以通过隔离485模块发送给上位机或者充换电柜。同时把GPS定位信息和电池信息按照云端报文协议组包,利用天线发送给云端服务器。这样使得原有的如图1、图2和图3所示的软件保护板和网络模块不在需要多余的网络模块,节省体积的同时不影响与云端平台通信。
在本实施例中:请参阅图5,DC-DC模块包括稳压器U4,稳压器U4的3号引脚连接二极管D2的负极,二极管D2的正极连接锂电池的正极,稳压器U4的4号引脚通过电容C6连接二极管D5的负极、稳压器U4的5号引脚、电感L1,二极管D5的正极接地,电感L1的另一端连接电阻R15,电阻R15的另一端连接电阻R14、稳压器U4的1号引脚,电阻R14的另一端接地,稳压器U5的1号引脚连接稳压器U5的3号引脚、电容C33、电感L1的另一端,电容C33的另一端接地,稳压器U5的2号引脚接地。
稳压器U4通过电感L1输出4V电压,稳压器U5通过电容C34、电容C45输出3.3V电压,以此为系统供电。
在本实施例中:请参阅图6,I/O控制电路包括三极管Q32、三极管Q34,三极管Q32的基极连接芯片U9A的5号引脚,三极管Q34的基极连接芯片U9A的24号引脚,三极管Q32的集电极连接二极管D6的负极,三极管Q32的发射极接地,三极管Q34的集电极连接二极管D7的负极,三极管Q34的发射极接地。
芯片U9A的5号引脚和24号引脚通过输出高电平至三极管Q32、Q34的基极,使三极管导通,从而使发光二极管D6和D7的负极与地接通,管内流过电流后发光。通过I/O接口完成灯光指示。
在本实施例中:请参阅图6,串口电平转换电路包括三极管Q33,三极管Q33的基极连接电阻R12、电容C14,电阻R12的另一端连接电容C14的另一端、电压1.8V,三极管Q33的集电极连接芯片U9A的68号引脚、电阻R23,电阻R23的另一端连接1.8V电压。
当外部输入电平UART0_RX_3V3为高电平即3.3V时,由于NPN三极管Q33的基极为1.8V,则三极管Q33反向截止,此时输入到芯片U9A的68号引脚的信号为高电平1.8V;当外部输入电平UART0_RX_3V3为低电平即0V时,由于NPN三极管Q33的基极为1.8V,则三极管Q33导通,此时基极压降为0.6V,三极管Q33的正向导通,此时输入到芯片U9A的68号引脚的信号为低电平0V。从而实现输入高低电平的转换。
在本实施例中:请参阅图6,USB电路包括芯片USB,芯片USB的1号引脚连接芯片U9A的71号引脚,芯片USB的2号引脚、3号引脚连接电能USB口。
USB电路用于程序烧写或者调试信息监控,直接接电脑USB口。
在本实施例中:请参阅图6,SIM卡电路包括芯片SIM2,芯片U9A的14号引脚连接电阻R167、芯片SIM2的8号引脚,芯片U9A的15号引脚连接电阻R167的另一端、芯片SIM2的3号引脚,芯片SIM2的6号引脚连接芯片U9A的16号引脚,芯片SIM2的7号引脚连接芯片U9A的17号引脚。
SIM( Subscriber Identity Module)卡是移动用户所持有的IC卡,称为用户识别卡。通过SIM卡来识别用户。
在本实施例中:请参阅图6,射频接口电路包括天线J7,天线J7的1号引脚连接芯片U9A的49号引脚,天线J7的2号引脚、3号引脚接地。
射频接口电路用于收发4G信号(图中J7为4G天线),采集GPS信号(图中J5为GPS陶瓷天线),收发蓝牙数据(图中A1为2.4G陶瓷天线)。
在本实施例中:请参阅图7,模拟前端模块包括芯片U7,芯片U7的27号引脚连接芯片U9A的42号引脚,芯片U7的26号引脚连接芯片U9A的41号引脚。
芯片U7采用中颖公司的SH367309。电路还包括单体电压采样电路,电流采样电路,MOS管控制信号。模拟前端芯片根据采集单体数量可以选用TI、松下、中颖等IC厂家的前端保护芯片。单体采样电路通过阻容滤波方式把电池正负极接入前端采样芯片进行单体电压采样。图中电流采样电阻R105两端的电压经滤波后送入前端芯片的电流采样端,通过AD转换结果计算压差,再根据欧姆定律I=U/R 实现采样电流的计算。模拟前端芯片根据保护参数对外输出充放电MOS的控制信号(图中充电控制信号CHG_M,放电控制信号DSG_M)。
在本实施例中:请参阅图8,MOS控制模块包括MOS管Q35、MOS管Q36、MOS管Q25、MOS管Q2、MOS管Q3、MOS管Q39、MOS管Q40、MOS管Q30,MOS管Q35的D极连接MOS管Q36的D极、MOS管Q25的D极、MOS管Q2的D极、MOS管Q3的D极、MOS管Q39的D极、MOS管Q40的D极、MOS管Q30的D极;
芯片U7的34号引脚连接电阻R117,电阻R117的另一端通过电阻R131连接MOS管Q35的G极、通过电阻R157连接MOS管Q36的G极、通过电阻R155连接MOS管Q25的G极、通过电阻R156连接MOS管Q2的G极;
芯片U7的36号引脚连接电阻R114,电阻R114的另一端连接三极管Q61的发射极,三极管Q61的集电极连接二极管D47的正极,二极管D47的负极连接通过电阻R136连接MOS管Q3的G极、通过电阻R160连接MOS管Q39的G极、通过电阻R159连接MOS管Q40的G极、通过电阻R16连接MOS管Q30的G极。
图中RS端接图7中的采样电阻R105的RS端,P-接外部负载的负极。当模拟前端芯片欲打开放电MOS(图中Q35、Q36、Q25、Q2 为4个N沟道MOS管并联进行放电控制,用于增大过流能力),则通过将MOS控制信号DSG_M置高(比如10V),输出至放电MOS的G极,由于此时G极与S极间的电压VGS大于MOS管导通电压(比如2V),则MOS管导通,为放电电流提供了通路,使放电电流可以从P-端流到RS,从而经过采样电阻流到电池负极B-。打开充电MOS的原理和放电MOS类似。若欲关闭充放电MOS,则模拟前端芯片只需要将对应控制信号CHG_M和DSG_M置为0即可。
本发明的工作原理是:DC-DC模块供给直流电压,模拟前端模块采样锂电池的电压信息和电流信息,传输给主控电路,主控模块综合处理锂电池信息并传输给云端平台,MOS控制模块对锂电池进行充放电控制,主控模块包括芯片U9A,芯片U9A为4G CAT1模块,4G CAT1模块,在完成主控的相应工作的同时,能够传输信息给云端平台,简化了系统的软硬件设计,从而降低系统成本。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (9)

  1. 一种低速车锂电池集成式保护板,其特征在于:
    该低速车锂电池集成式保护板包括:
    DC-DC模块,用于供给直流电压;
    模拟前端模块,用于采样锂电池的电压信息和电流信息,传输给主控电路;
    主控模块,用于综合处理锂电池信息并传输给云端平台;
    MOS控制模块,用于对锂电池进行充放电控制;
    主控模块包括芯片U9A,芯片U9A的外部电路包含I/O控制电路、串口电平转换电路、USB电路、SIM卡电路、射频接口电路,芯片U9A为4G CAT1模块;
    DC-DC模块连接主控模块,主控模块双向连接模拟前端模块,模拟前端模块连接MOS控制模块。
  2. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,DC-DC模块包括稳压器U4,稳压器U4的3号引脚连接二极管D2的负极,二极管D2的正极连接锂电池的正极,稳压器U4的4号引脚通过电容C6连接二极管D5的负极、稳压器U4的5号引脚、电感L1,二极管D5的正极接地,电感L1的另一端连接电阻R15,电阻R15的另一端连接电阻R14、稳压器U4的1号引脚,电阻R14的另一端接地,稳压器U5的1号引脚连接稳压器U5的3号引脚、电容C33、电感L1的另一端,电容C33的另一端接地,稳压器U5的2号引脚接地。
  3. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,I/O控制电路包括三极管Q32、三极管Q34,三极管Q32的基极连接芯片U9A的5号引脚,三极管Q34的基极连接芯片U9A的24号引脚,三极管Q32的集电极连接二极管D6的负极,三极管Q32的发射极接地,三极管Q34的集电极连接二极管D7的负极,三极管Q34的发射极接地。
  4. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,串口电平转换电路包括三极管Q33,三极管Q33的基极连接电阻R12、电容C14,电阻R12的另一端连接电容C14的另一端、电压1.8V,三极管Q33的集电极连接芯片U9A的68号引脚、电阻R23,电阻R23的另一端连接1.8V电压。
  5. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,USB电路包括芯片USB,芯片USB的1号引脚连接芯片U9A的71号引脚,芯片USB的2号引脚、3号引脚连接电能USB口。
  6. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,SIM卡电路包括芯片SIM2,芯片U9A的14号引脚连接电阻R167、芯片SIM2的8号引脚,芯片U9A的15号引脚连接电阻R167的另一端、芯片SIM2的3号引脚,芯片SIM2的6号引脚连接芯片U9A的16号引脚,芯片SIM2的7号引脚连接芯片U9A的17号引脚。
  7. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,射频接口电路包括天线J7,天线J7的1号引脚连接芯片U9A的49号引脚,天线J7的2号引脚、3号引脚接地。
  8. 根据权利要求1所述的低速车锂电池集成式保护板,其特征在于,模拟前端模块包括芯片U7,芯片U7的27号引脚连接芯片U9A的42号引脚,芯片U7的26号引脚连接芯片U9A的41号引脚。
  9. 根据权利要求8所述的低速车锂电池集成式保护板,其特征在于,MOS控制模块包括MOS管Q35、MOS管Q36、MOS管Q25、MOS管Q2、MOS管Q3、MOS管Q39、MOS管Q40、MOS管Q30,MOS管Q35的D极连接MOS管Q36的D极、MOS管Q25的D极、MOS管Q2的D极、MOS管Q3的D极、MOS管Q39的D极、MOS管Q40的D极、MOS管Q30的D极;
    芯片U7的34号引脚连接电阻R117,电阻R117的另一端通过电阻R131连接MOS管Q35的G极、通过电阻R157连接MOS管Q36的G极、通过电阻R155连接MOS管Q25的G极、通过电阻R156连接MOS管Q2的G极;
    芯片U7的36号引脚连接电阻R114,电阻R114的另一端连接三极管Q61的发射极,三极管Q61的集电极连接二极管D47的正极,二极管D47的负极连接通过电阻R136连接MOS管Q3的G极、通过电阻R160连接MOS管Q39的G极、通过电阻R159连接MOS管Q40的G极、通过电阻R16连接MOS管Q30的G极。
PCT/CN2021/127269 2021-10-29 2021-10-29 一种低速车锂电池集成式保护板 WO2023070491A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127269 WO2023070491A1 (zh) 2021-10-29 2021-10-29 一种低速车锂电池集成式保护板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127269 WO2023070491A1 (zh) 2021-10-29 2021-10-29 一种低速车锂电池集成式保护板

Publications (1)

Publication Number Publication Date
WO2023070491A1 true WO2023070491A1 (zh) 2023-05-04

Family

ID=86160392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127269 WO2023070491A1 (zh) 2021-10-29 2021-10-29 一种低速车锂电池集成式保护板

Country Status (1)

Country Link
WO (1) WO2023070491A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134303A1 (zh) * 2010-04-30 2011-11-03 重庆长安汽车股份有限公司 一种锂电池管理系统
CN206301908U (zh) * 2016-10-27 2017-07-04 深圳市尚亿芯科技有限公司 一种锂电池的管理监控系统
CN109301380A (zh) * 2018-09-04 2019-02-01 重庆工业职业技术学院 一种电动汽车用锂系动力电池散热装置及方法
CN211320973U (zh) * 2019-12-31 2020-08-21 深圳市康胜新能源产品有限公司 一种锂电池智能保护电路
CN211519731U (zh) * 2019-12-17 2020-09-18 深圳市明电环球科技有限公司 一种低速车共享锂电池智能充电检测保养系统
CN113525172A (zh) * 2021-07-16 2021-10-22 深圳市闪盾能源科技有限公司 锂电池集成式保护板、动力电池包及电动车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134303A1 (zh) * 2010-04-30 2011-11-03 重庆长安汽车股份有限公司 一种锂电池管理系统
CN206301908U (zh) * 2016-10-27 2017-07-04 深圳市尚亿芯科技有限公司 一种锂电池的管理监控系统
CN109301380A (zh) * 2018-09-04 2019-02-01 重庆工业职业技术学院 一种电动汽车用锂系动力电池散热装置及方法
CN211519731U (zh) * 2019-12-17 2020-09-18 深圳市明电环球科技有限公司 一种低速车共享锂电池智能充电检测保养系统
CN211320973U (zh) * 2019-12-31 2020-08-21 深圳市康胜新能源产品有限公司 一种锂电池智能保护电路
CN113525172A (zh) * 2021-07-16 2021-10-22 深圳市闪盾能源科技有限公司 锂电池集成式保护板、动力电池包及电动车辆

Similar Documents

Publication Publication Date Title
CN106786967B (zh) 一种电池管理装置及具有所述管理装置的电池充电系统
US20210313815A1 (en) Battery monitoring system provided with battery monitoring control circuit for reducing consumption power in sleep state
CN101127608A (zh) 无线网卡过流保护方法及装置
WO2021057947A1 (zh) 一种提高电池输出能效的控制系统、方法及电子设备
CN102780249A (zh) 利用超级电容实现电动汽车快速充电的方法
CN201397383Y (zh) 电动汽车磷酸铁锂动力电池检测装置
CN105576746A (zh) 一种电池管理系统的定时激活电路
CN110601296A (zh) 一种电池管理系统主动均衡电路
CN112078370B (zh) 一种城市轨道交通列车再生制动能量的回馈系统
WO2023070491A1 (zh) 一种低速车锂电池集成式保护板
CN107394882A (zh) 一种基于gnss高精度定位移动终端设备的不间断供电系统
CN101997328B (zh) 锂电池管理系统
CN113525172A (zh) 锂电池集成式保护板、动力电池包及电动车辆
CN213754057U (zh) 一种带无线通讯功能的智能充电器
CN214409233U (zh) 一种电池电压采集系统和电池
CN102449872B (zh) 电池充电电路以及电子装置
CN211765057U (zh) 一种提高电池输出能效的控制系统及电子设备
CN113140814A (zh) 一种适用于多电芯的芯片级联采集装置
EP3712007A1 (en) Conversion circuit, battery equalization system, and battery management system
CN209946704U (zh) 一种应对车辆故障的云诊断系统
CN110597127B (zh) 一种带有激活功能的电动车控制系统
CN221177318U (zh) 一种锂电池管理系统
CN111403832A (zh) 一种可扩展电池保护方法
CN113370845B (zh) Bms主动均衡系统的电流换向控制装置、方法和汽车
US20240154447A1 (en) Power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961854

Country of ref document: EP

Kind code of ref document: A1