WO2023068850A1 - Composition for preventing or treating ischemic stroke comprising inhibitor of apoptosis proteins - Google Patents

Composition for preventing or treating ischemic stroke comprising inhibitor of apoptosis proteins Download PDF

Info

Publication number
WO2023068850A1
WO2023068850A1 PCT/KR2022/016060 KR2022016060W WO2023068850A1 WO 2023068850 A1 WO2023068850 A1 WO 2023068850A1 KR 2022016060 W KR2022016060 W KR 2022016060W WO 2023068850 A1 WO2023068850 A1 WO 2023068850A1
Authority
WO
WIPO (PCT)
Prior art keywords
xaa
ischemic stroke
group
formula
amino acid
Prior art date
Application number
PCT/KR2022/016060
Other languages
French (fr)
Korean (ko)
Inventor
이상경
이민형
정성은
김민경
박성준
편선홍
이유종
김채연
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2023068850A1 publication Critical patent/WO2023068850A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an injectable composition for preventing or treating ischemic stroke containing an apoptosis inhibitor protein.
  • Cerebrovascular disease also called stroke, is one of the three leading causes of death for centuries along with malignant tumors and heart disease. Stroke is a disease that occurs when a blood vessel supplying blood to the brain is blocked or burst, resulting in damage to a local part of the brain, commonly known as 'paralysis'. Symptoms include hemiplegia, sensory disturbances, speech difficulties, speech difficulties, vision and vision disturbances, double vision, headaches, dizziness, impaired consciousness, vegetative state, and dementia.
  • Strokes include “ischemic” stroke (80-85%), which occurs when blood vessels in the brain are completely blocked or severely narrowed and blood flow is not supplied to tissues, and hemorrhagic stroke (15-20%), which is a symptom in which the function of brain cells is damaged by hemorrhage divided into Stroke ranks second in mortality in Korea and third in mortality worldwide, and more than 50% of patients who survive stroke remain with various disabilities, placing a social burden on not only patients but also those who care for them.
  • Ischemic stroke occurs in an overwhelmingly larger proportion than hemorrhagic stroke, and various types of pathological abnormalities appear in the cerebral blood vessels that supply blood to the brain, causing cerebral blood circulation disorders in certain parts of the brain, resulting in reduced brain function or The brain ultimately develops an ischemic infarction.
  • Ischemia refers to a state in which blood supply to a body organ, tissue, or part is reduced, and ultimately leads to irreversible damage, i.e., necrosis of cells and tissues.
  • the brain and heart are the most sensitive organs of the body to lack of blood flow, and when tissue ischemia occurs, for example, as a result of a stroke or head injury, processes called the ischemic cascade are triggered, resulting in permanent damage to brain tissue. .
  • the tissue around it has a penumbra zone that can be recovered, so this area becomes the target of medical treatment.
  • ischemic stroke which accounts for the majority of all strokes, the prognosis of future patients is often determined by the clinical course of the acute phase (within 7 days) or subacute phase (within 4 weeks).
  • recanalization treatment is performed to resupply blood flow so that the brain tissue of the brain-ischemic penumbra, which is a physiological target of acute treatment, functions again.
  • the prognosis of the patient can be improved only when recanalization is performed within 4.5 hours of symptom onset with the intravenous administration method or within 6 hours with the intraarterial method.
  • An object of the present invention is to provide a peptide for inhibiting Fas signaling that exhibits a therapeutic effect on ischemic stroke by using a brain-targeting peptide that passes through the blood-brain barrier in the form of an intravenous injection.
  • the present invention provides a composition for preventing or treating ischemic stroke comprising a complex represented by the following general formula 1:
  • Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
  • PEG is polyethylene glycol
  • FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
  • Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid
  • Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
  • the present invention also provides a method of treating ischemic stroke comprising administering a therapeutically effective amount of the complex to a subject in need thereof.
  • the present invention can be applied as a drug delivery platform for various brain diseases by maximizing convenience and fewer side effects through a systemic dosage form that passes through the blood-brain barrier.
  • conventional thrombolytic drugs which are conventional stroke treatments
  • using a peptide for inhibiting Fas signal transmission that can actually inhibit the death of nerve cells can contribute to improving survival rate by delaying cerebral infarction.
  • Figure 1 shows the drug synthesis and fluorescent substance binding of Leptin-PEG-FBP of the present invention.
  • Figure 2 shows the result of confirming apoptosis in the hypoxic neuronal cell model of Leptin-PEG-FBP of the present invention through flow cytometry.
  • Figure 3 shows the results of measuring Fas overexpression in an ischemic stroke mouse model through RT-PCR.
  • FIG. 6 shows fluorescence images of drug delivery for each organ through intravascular middle cerebral artery occlusion modeling.
  • Figure 7 shows confocal microscopy images of drug delivery through fluorescence pool screening.
  • TTC 9 shows the results of cerebral infarct volume measurement using triphenyltetrazolium chloride (TTC).
  • Figure 10 shows the result of measuring the size of the brain infarct in neural tissue through Nissl staining.
  • Figure 13 shows the results of confirming the decrease in the expression of apoptosis proteins through Western blotting.
  • ischemic stroke cells receive signals of apoptosis due to lack of oxygen and limited nutrient supply.
  • FBP Fas Blocking Peptide
  • the leptin peptide having the ability to bind to the Leptin receptor expressed in the brain thalamus is bound to FBP-PEG and then intravenously injected, and the complex is blood-brain It was confirmed that it passed through the barrier and was delivered to the part where cerebral ischemia occurred and inhibited the death of brain cells.
  • the present invention relates to a composition for preventing or treating ischemic stroke comprising a complex represented by the following general formula 1:
  • Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
  • PEG is polyethylene glycol
  • FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
  • Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid
  • Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
  • Fas Blocking Peptide an active ingredient of the composition for preventing or treating ischemic stroke of the present invention, has been known as a peptide sequence for inhibiting the interaction between Fas and its ligand, FasL.
  • Fas and its specific ligand, FasL are members of proteins belonging to the TNF receptor and TNF ligand superfamily (TNFSF), respectively. Interaction between Fas and FasL triggers a cascade of intracellular events leading to cell death in Fas-expressing targets.
  • Fas is a membrane protein expressed in various tissue cells including brain cells, and FasL is mainly expressed in lymphoid organs and immune-related tissues.
  • Fas expression increases during brain damage caused by ischemia (Expression of Fas and Fas Ligand After Experimental Traumatic Brain Injury in the Rat, "J” Cereb “Blood Flow” Metab. "Vol. 20, No. 4, 2000).
  • the FBP of the present invention is a Fas peptide mimetic, and inhibits Fas activity, particularly Fas-mediated signaling.
  • the effective substance does not easily pass through the BBB (Blood-Brain Barrier) and the delivery efficiency to the brain is significantly reduced. Therefore, the present invention uses a Leptin peptide having the ability to pass through the BBB by binding to a Leptin receptor overexpressed in the brain thalamus, and binds FBP using PEG to the Leptin peptide to deliver to the stroke ischemic site through intravenous administration, It is characterized by preventing or treating ischemic stroke by inhibiting brain cell death by blocking the Fas apoptosis pathway.
  • the term “Lep” or “Leptin” as used herein refers to leptin or a leptin-derived brain-targeting peptide.
  • the leptin-derived brain-targeting peptide of the present invention comprises an amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1 , preferably an amino acid sequence of 1-33 or 61-90, more preferably an amino acid sequence of 61-90 (SEQ ID NO: 2).
  • the polyethylene glycol is a method for stabilizing proteins and inhibiting contact with proteolytic enzymes and kidney loss.
  • PEG non-specifically binds to specific or various sites of the target protein to increase solubility As a result, it is known to be effective in stabilizing proteins and preventing protein hydrolysis and not causing any particular side effects (Sada et al ., J. Fermentation Bioengineering, 71: pp 137-139, 1991).
  • the average molecular weight of PEG usable in the present invention is 500 Da to 2 kDa, or 1 kDa to 2 kDa.
  • the molecular weight of a preferred PEG is about 2 kDa.
  • EG is used to cover both linear and branched polymers. Most PEGs are commercially available.
  • both ends of PEG may be modified to facilitate binding with Lep, linker peptide, or FBP. For example, it may be modified with a maleimide group, an amide group, or the like.
  • the Lep and PEG may be connected by a linker peptide serving as a spacer, and may be connected to PEG whose surface is modified by binding to one end of Lep.
  • linker peptides include GGGC and RRR.
  • GGGC the -SH group of cysteine and one end may be connected through a bond with a modified PEG moiety.
  • Fas is also called Fas, Fas receptor (Fas receptor), apoptosis antigen 1 (APO-1), or cluster of differentiation 95 (CD95), a tumor necrosis factor that regulates apoptosis. It is a type of receptor (tumor necrosis factor, TNF).
  • Fas binds to a ligand, it is activated through multimerization, and as a result, several adapter proteins bind to Fas.
  • the bound adapter proteins activate various apoptosis signal transduction systems, and representative signal transduction regulators include caspase, NF- ⁇ B, stress-activated protein kinase (SAPK), and the Bcl-2 family.
  • Fas signaling inhibitory peptide Frazier peptide
  • Fas Blocking Peptide FBP
  • the FBP is represented by the general formula (2). Specifically, in the above general formula 2,
  • Xaa 1 and Xaa 3 are each independently absent or selected from the group consisting of Tyr, Phe and Trp;
  • Xaa 2 is absent or selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
  • Xaa 1 and Xaa 3 are each independently selected from the group consisting of Tyr, Phe and Trp;
  • Xaa 2 is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
  • Xaa 1 and Xaa 3 may each independently not exist or may be any amino acid, preferably each independently selected from the group consisting of Tyr, Phe and Trp.
  • Xaa 2 in Formula 1 may not exist or may be selected from the group consisting of Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn and Gln, preferably Gly, It may be selected from the group consisting of Ala, Ser, Thr and Cys.
  • Xaa 2 can exist without both Xaa 1 and Xaa 3
  • Xaa 2 can exist while either Xaa 1 or Xaa 3 exists
  • 3) Xaa 1 to Xaa Various combinations are possible, such as none of 3 .
  • amino acid sequence of Formula 2 may be a sequence listed in Table 1 below.
  • the peptide for inhibiting Fas signaling used in the present invention has improved stability of the peptide, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (eg, broad biological activity spectrum), reduced antigen
  • the N- and/or C-terminus of the peptide may be modified.
  • the formula may be in the form of an acetyl group, a fluorenyl methoxy carbonyl group, an amide group, a formyl group, a myristyl group, a stearyl group, or polyethylene glycol (PEG) bonded to the N- and/or C-terminus of the peptide.
  • any component that can improve peptide modification, particularly stability of the peptide may be included without limitation.
  • stability refers to storage stability (eg, storage stability at room temperature) as well as in vivo stability that protects the peptides of the present invention from attack by proteolytic enzymes in vivo.
  • the Lep-PEG-FBP complex of the present invention includes a cross-linking site for complex formation, and the cross-linking site may be one terminal amino acid itself for an amide bond between monomers, a disulfide bond, an imine bond, or an ester bond It may be a specific amino acid for.
  • Mal-PEG-NH2 was used to remove the thiol group present in the cysteine of the linker peptide bound to Leptin and the front end of PEG.
  • a Lep-PEG conjugate can be formed through a reaction between maleimides, and then a Lep-PEG-PBP complex can be formed through an EDC/sulfo-NHS amine covalent bond between an amine group at the PEG terminal and an amine group at the N-terminus of PBP. .
  • treatment refers to all activities that improve or beneficially change symptoms of ischemic stroke by administration of the pharmaceutical composition according to the present invention.
  • the term "administration” means introducing a predetermined substance, ie, a pharmaceutical composition according to the present invention, into a subject by any suitable method.
  • the term "therapeutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the type, severity, and activity of the drug of the patient's disease. , sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitantly used drugs, and other factors well known in the medical field.
  • composition of the present invention includes a pharmaceutically acceptable carrier in addition to the active ingredient.
  • Pharmaceutically acceptable carriers included in the composition of the present invention are those commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate , microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, but are not limited thereto no.
  • composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components.
  • a lubricant e.g., a talc, a kaolin, a kaolin, a kaolin, a kaolin, a kaolin, kaolin, kaolin, sorbiol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol
  • composition of the present invention is preferably administered by systemic parenteral administration, and may be administered using, for example, intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration, or local administration.
  • a suitable daily dosage is 0.0001-100 mg/kg (body weight). Administration may be administered once a day, or may be administered in several divided doses.
  • composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art, or It can be prepared by placing it in a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally contain a dispersing agent or stabilizer.
  • the present invention also relates to a method of treating ischemic stroke comprising administering a therapeutically effective amount of the complex to a subject in need thereof.
  • the subject may be a human or a non-human animal such as a cow, monkey, bird, cat, mouse, rat, hamster, pig, dog, rabbit, sheep, or horse.
  • the formulation, administration method, etc. of the complex are the same as those described in the pharmaceutical composition, and detailed descriptions are omitted to avoid redundant description.
  • Leptin-PEG-FBP complex was prepared as shown in Figure 1. Briefly, Leptin (61-90, 30mer, SEQ ID NO: 2) peptide, which has the ability to pass through the blood-brain barrier by binding to the Leptin receptor overexpressed in the brain thalamus, is additionally custom-made and used with 4 amino acids GGGC did The LeptinGGGC (34mer) peptide was dissolved in DMSO at a concentration of 100 mg/mL and then diluted 10-fold in PBS (pH 7.4) buffer for use. Leptin peptide at a concentration of 10 mg/mL was blocked at the N-terminus with acetic anhydride for 1 hour at 4°C.
  • Leptin-PEG-FBP can inhibit the apoptosis pathway by binding to Fas by observing apoptosis Annexin V fluorescence intensity that is about 30% lower than that of the control group.
  • receptor-mediated blood-brain barrier penetration drug delivery was confirmed through intravenous injection of a peptide drug combining a fluorescent sample in a leptin receptor deficient animal model (db/db) and a general animal model. After 3 hours from photothrombosis-induced stroke modeling, each peptide drug to which alexa647 fluorescent sample was bound was intravenously injected. Twelve hours after the intravenous injection, the brain, lung, liver, spleen, and kidney organs were sampled and fluorescence images were taken.
  • the brain tissue was put in an OCT compound and stored at -80 ° C to make a cryoblock and cut into sections to check whether the FBP peptide was bound to Fas expressed on the actual cell membrane.
  • the nucleus was stained using hoechest2000 in a section cut into 5 mm thickness, and as a result of overlapping with the peptide to which the alexa647 fluorescent substance was bound, it was confirmed that the intensity of red peptide fluorescence was strong around the nucleus (FIG. 7).
  • ischemic stroke modeling In order to confirm the therapeutic effect of the drug on inhibition of neuronal cell death through ischemic stroke modeling, as shown in FIG. 8, intravenous injection of FBP at 5 mg/kg twice 3 hours and 6 hours after middle cerebral artery occlusion modeling was performed did The number of n for each group was 5. All experimental animals were sacrificed 48 hours after MCAO, and phosphate-buffered saline was perfused through the left ventricle to remove intravascular blood components, and then brains were removed. The brain tissue excised from the cerebral ischemia induction model is equally divided into sections at 2 mm intervals on a mold. After that, it was reacted at 37 °C for 15 minutes in a 2% TTC solution dissolved in sterile physiological saline. After the reaction was completed, it was stored in a 4% paraformaldehyde solution at 4° C. for 24 hours, and then the unstained white brain infarct area was measured through Image J analysis program.
  • the L-P-F group showed about 19% less brain infarction (FIG. 9).
  • Brain tissue slices were stained using 0.5% Nissl staining (cresyl violte), photographed using a full screening microscope, and the size of the infarcted area was measured using an image analysis program.
  • the size of cerebral infarction was measured using an indirect method, which was measured by subtracting the normal area on the cerebral infarct-induced side from the brain area on the opposite side of the cerebral infarct-induced area.
  • the L-P-F group showed 17.2% less brain infarction than the other groups.
  • Brain tissue made of cryoblock was cut into sections, fixed in 4% paraformaldehyde for 15 minutes, and then H&E staining was performed.
  • H&E staining was performed.
  • FIG. 11 a lot of tissue empty space was found due to apoptosis in the other groups compared to the L-P-F drug group, and the shape of the nucleus was triangular and pointed It could be seen that the contraction was
  • Tissue samples sectioned from cryoblocks made using brain tissue were stained with TUNEL, and the degree of cell death was measured by fluorescence.
  • the protein expression level of cleaved Caspase-3 which plays a key role in the apoptosis pathway, was observed in brain tissue sections through immunohistochemical staining.
  • the present invention can be applied as a systemic dosage form that passes through the blood-brain barrier in the field of treatment of brain diseases such as ischemic stroke.

Abstract

The present invention relates to a composition for preventing or treating ischemic stroke, comprising an inhibitor of apoptosis proteins. More specifically, unlike thrombolytic drugs, which are conventional therapeutic agents for stroke, the present invention can prevent or treat ischemic stroke through a systemic dosage form that penetrates to the blood-brain barrier by using a peptide for inhibiting Fas signaling, which is an inhibitor of apoptosis proteins that is capable of suppressing actual neuronal cell death.

Description

세포사멸 억제 단백질을 포함하는 허혈성 뇌졸중 예방 또는 치료용 조성물Composition for preventing or treating ischemic stroke containing an apoptosis inhibitory protein
본 발명은 세포사멸 억제 단백질을 포함하는 허혈성 뇌졸중 예방 또는 치료용 주사 제형 조성물에 관한 것이다. The present invention relates to an injectable composition for preventing or treating ischemic stroke containing an apoptosis inhibitor protein.
뇌졸중이라고 불리는 뇌혈관 질환은 악성 종양, 심장 질환과 함께 인류 3대 사망원인의 하나이며 특히 우리나라 인구의 고령화 시대에 접어드는 속도가 빨라질수록 중요한 질환의 하나로 자리 잡고 있다. 뇌졸중은 뇌에 혈액을 공급하고 있는 혈관이 막히거나 터짐으로써, 뇌의 국소적인 부분이 손상되어 나타나는 질환으로, 흔히 '중풍'으로 알려져 있다. 증상으로는 반신마비, 감각장애, 언어장애, 발음장애, 시력 및 시야장애, 복시, 두통, 어지럼증, 의식장애, 식물인간 상태 및 치매 등이 있다. 뇌졸중은 뇌의 혈관이 완전히 막히거나 심하게 좁아져 조직 내 혈류가 공급되지 못하여 발생하는 허혈성 뇌졸중(80~85%)과 출혈에 의해 뇌세포의 기능이 손상되는 증상인 출혈성 뇌졸중(15~20%)으로 나뉜다. 뇌졸중은 우리나라 사망률의 2위, 전 세계적 사망률의 3위를 차지하고 있으며 뇌졸중에서 살아남은 환자도 약 50% 이상에서 여러 가지 장애가 남아 환자뿐 아니라 환자를 돌봐야 하는 사람들에게 사회적 부담을 주고 있다.Cerebrovascular disease, also called stroke, is one of the three leading causes of death for mankind along with malignant tumors and heart disease. Stroke is a disease that occurs when a blood vessel supplying blood to the brain is blocked or burst, resulting in damage to a local part of the brain, commonly known as 'paralysis'. Symptoms include hemiplegia, sensory disturbances, speech difficulties, speech difficulties, vision and vision disturbances, double vision, headaches, dizziness, impaired consciousness, vegetative state, and dementia. Strokes include “ischemic” stroke (80-85%), which occurs when blood vessels in the brain are completely blocked or severely narrowed and blood flow is not supplied to tissues, and hemorrhagic stroke (15-20%), which is a symptom in which the function of brain cells is damaged by hemorrhage divided into Stroke ranks second in mortality in Korea and third in mortality worldwide, and more than 50% of patients who survive stroke remain with various disabilities, placing a social burden on not only patients but also those who care for them.
허혈성 뇌졸중이 출혈성 뇌졸중에 비해 압도적으로 많은 비중으로 발병되며, 뇌에 혈류를 공급하는 뇌혈관에 여러 가지 형태의 병리학적 이상이 발현하여 뇌의 일정한 부위에 뇌혈행장애를 일으켜 뇌기능이 떨어지거나 아니면 뇌가 궁극적으로 허혈성 경색이 발생하게 된다. 허혈(Ischemia)이란 신체기관, 조직 또는 부위로의 혈류 공급 감소 상태를 말하며, 궁극적으로 비가역적인 손상인 세포 및 조직의 괴사(necrosis)로 이어지게 된다. 특히, 뇌나 심장은 혈류 부족에 가장 민감한 신체 기관으로서, 예를 들어, 뇌졸중 또는 두부 손상 등으로 조직에 허혈이 발생하면 허혈폭포반응(ischemic cascade)이라고 불리는 과정들이 촉발되어 뇌 조직이 영구적으로 손상된다. 다만, 그 주위 조직은 회복될 수 있는 반 음영 영역(Penumbra zone)이 있어서 이 부위가 의학적 치료의 대상이 된다.Ischemic  stroke occurs in an overwhelmingly larger proportion than hemorrhagic stroke, and various types of pathological abnormalities appear in the cerebral blood vessels that supply blood to the brain, causing cerebral blood circulation disorders in certain parts of the brain, resulting in reduced brain function or The brain ultimately develops an ischemic infarction. Ischemia refers to a state in which blood supply to a body organ, tissue, or part is reduced, and ultimately leads to irreversible damage, i.e., necrosis of cells and tissues. In particular, the brain and heart are the most sensitive organs of the body to lack of blood flow, and when tissue ischemia occurs, for example, as a result of a stroke or head injury, processes called the ischemic cascade are triggered, resulting in permanent damage to brain tissue. . However, the tissue around it has a penumbra zone that can be recovered, so this area becomes the target of medical treatment.
전체 뇌졸중의 대부분을 차지하고 있는 허혈성 뇌졸중은 급성기(7일 이내) 혹은 아급성기(4주 이내) 임상 경과에 따라 향후 환자의 예후가 결정되는 경우가 많다. 이러한 허혈성 뇌졸중에서 급성기 치료의 생리적 표적인 뇌-허혈반음영(ischemic penumbra)의 뇌조직이 다시 기능을 하도록 혈류를 재공급시키기 위해서 재개통치료가 수행된다. 하지만, 현재까지 정맥제 투여방법으로는 증상발현 4.5시간 이내까지 또는 동맥 내 방법으로는 6시간 이내에 재개통이 되어야 환자의 예후를 호전시킬 수 있는 것으로 알려져 있다. 하지만, 우리나라를 포함하여 세계적으로도 뇌졸중 환자가 시간 내에 발견되어 적절한 응급실에서 재개통 치료를 받을 수 있는 비율은 극히 낮은 수준이다. 따라서 대부분의 급성 허혈성 뇌졸중 환자들이 적절한 치료를 받지 못하고 있는 실정이기 때문에 급성기 환자에서 안전하고 효과적인 새로운 치료법은 너무도 절실하다.For ischemic stroke, which accounts for the majority of all strokes, the prognosis of future patients is often determined by the clinical course of the acute phase (within 7 days) or subacute phase (within 4 weeks). In this "ischemic" stroke, recanalization treatment is performed to resupply blood flow so that the brain tissue of the brain-ischemic penumbra, which is a physiological target of acute treatment, functions again. However, until now, it is known that the prognosis of the patient can be improved only when recanalization is performed within 4.5 hours of symptom onset with the intravenous administration method or within 6 hours with the intraarterial method. However, even in Korea and around the world, the rate at which a stroke patient can be found in time and receive recanalization treatment in an appropriate emergency room is extremely low. Therefore, since most patients with acute, ischemic, or stroke do not receive appropriate treatment, a safe and effective new treatment for patients in the acute phase is so urgently needed.
본 발명의 목적은 혈액-뇌 장벽을 통과하는 뇌 타겟팅 펩타이드를 이용하여 허혈성 뇌졸중에 치료적 효과를 나타내는 Fas 신호전달 억제용 펩타이드를 정맥주사제 형태로 제공하는 것이다. An object of the present invention is to provide a peptide for inhibiting Fas signaling that exhibits a therapeutic effect on ischemic stroke by using a brain-targeting peptide that passes through the blood-brain barrier in the form of an intravenous injection.
상기 목적을 달성하기 위해, 본 발명은 하기 일반식 1로 표시되는 복합체를 포함하는 허혈성 뇌졸중의 예방 또는 치료용 조성물을 제공한다: In order to achieve the above object, the present invention provides a composition for preventing or treating ischemic stroke comprising a complex represented by the following general formula 1:
[일반식 1][Formula 1]
Lep-PEG-FBPLep-PEG-FBP
상기 식에서,In the above formula,
Lep은 렙틴 또는 SEQ ID NO: 1의 아미노산 서열 중 1-33, 12-32, 15-32 또는 61-90의 아미노산 서열을 포함하는 렙틴-유래 뇌 타겟팅 펩타이드이고,Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
PEG는 폴리에틸렌글리콜이며,PEG is polyethylene glycol,
FBP는 하기 일반식 2로 표시되는 아미노산 서열로 이루어진 Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide)를 나타낸다.FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
[일반식 2][Formula 2]
Xaa1-Cys-Asp-Glu-His-Phe-Xaa2-Xaa3 Xaa 1 -Cys-Asp-Glu-His-Phe-Xaa 2 -Xaa 3
상기 식에서,In the above formula,
Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 임의의 아미노산이고,Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid;
Xaa2는 존재하지 않거나 Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn 및 Gln으로 이루어진 군에서 선택된다.Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
본 발명은 또한 치료적 유효량의 상기 복합체를 이를 필요로 하는 대상체에게 투여하는 것을 포함하는 허혈성 뇌졸중의 치료방법을 제공한다.The present invention also provides a method of treating ischemic stroke comprising administering a therapeutically effective amount of the complex to a subject in need thereof.
본 발명은 혈액-뇌 장벽을 통과하는 전신성 투여 제형을 통해 부작용이 적고 간편성을 극대화시켜 다양한 뇌질환 약물 전달 플랫폼으로 적용할 수 있다. 또한, 기존의 뇌졸중 치료제인 혈전 용해 약물과는 달리 실질적인 신경세포의 사멸을 억제시킬 수 있는 Fas 신호전달 억제용 펩타이드를 이용하여 뇌경색을 늦춰 생존률 향상에 기여할 수 있다.The present invention can be applied as a drug delivery platform for various brain diseases by maximizing convenience and fewer side effects through a systemic dosage form that passes through the blood-brain barrier. In addition, unlike conventional thrombolytic drugs, which are conventional stroke treatments, using a peptide for inhibiting Fas signal transmission that can actually inhibit the death of nerve cells can contribute to improving survival rate by delaying cerebral infarction.
도 1은 본 발명의 Leptin-PEG-FBP의 약물 합성 및 형광물질 결합을 도시한 것이다.Figure 1 shows the drug synthesis and fluorescent substance binding of Leptin-PEG-FBP of the present invention.
도 2는 유세포 분석을 통한 본 발명의 Leptin-PEG-FBP의 저산소 신경세포 모델에서의 세포사멸 확인 결과를 나타낸 것이다.Figure 2 shows the result of confirming apoptosis in the hypoxic neuronal cell model of Leptin-PEG-FBP of the present invention through flow cytometry.
도 3은 RT-PCR을 통한 허혈성 뇌졸중 마우스 모델에서의 Fas 과발현 측정 결과를 나타낸 것이다.Figure 3 shows the results of measuring Fas overexpression in an ischemic stroke mouse model through RT-PCR.
도 4는 광 혈전 유도 뇌졸중 모델링을 통한 장기 별 약물 전달 형광 이미지를 도시한 것이다.4 illustrates fluorescence images of drug delivery for each organ through photothrombosis-induced stroke modeling.
도 5는 leptin 수용체 결핍 마우스를 통한 약물 전달 형광 이미지를 도시한 것이다.5 shows fluorescence images of drug delivery through leptin receptor deficient mice.
도 6은 혈관내 중대뇌 동맥 폐쇄 모델링을 통한 장기 별 약물 전달 형광 이미지를 도시한 것이다.6 shows fluorescence images of drug delivery for each organ through intravascular middle cerebral artery occlusion modeling.
도 7은 형광 풀 스크리닝을 통한 약물 전달 공초점 현미경 이미지를 도시한 것이다.Figure 7 shows confocal microscopy images of drug delivery through fluorescence pool screening.
도 8은 본 발명의 동물 약효 평가 실험 계획을 도시한 것이다.8 shows an experimental plan for evaluating drug efficacy in animals according to the present invention.
도 9는 Triphenyltetrazolium chloride(TTC)를 이용한 뇌경색 부피 측정 결과를 나타낸 것이다.9 shows the results of cerebral infarct volume measurement using triphenyltetrazolium chloride (TTC).
도 10은 Nissl 염색을 통한 신경조직 뇌 경색 크기 측정 결과를 나타낸 것이다.Figure 10 shows the result of measuring the size of the brain infarct in neural tissue through Nissl staining.
도 11은 H&E염색을 통한 조직학적 변화 관찰 결과를 나타낸 것이다.11 shows the results of observation of histological changes through H&E staining.
도 12는 TUNEL 염색을 통한 신경세포 사멸 억제 치료 효과를 나타낸 것이다.12 shows the treatment effect of inhibiting neuronal cell death through TUNEL staining.
도 13은 웨스턴 블랏을 통한 세포사멸 단백질 발현량 감소 확인 결과를 나타낸 것이다.Figure 13 shows the results of confirming the decrease in the expression of apoptosis proteins through Western blotting.
도 14는 면역조직화학염색을 통한 Cleaved caspase-3 단백질 관찰 결과를 나타낸 것이다.14 shows the result of observation of cleaved caspase-3 protein through immunohistochemical staining.
허혈성 뇌졸중 발생시 세포는 산소의 결핍과 영양분의 공급 제한으로 세포 사멸의 신호를 받는다. 이와 관련하여, 본 발명자들은 세포사멸 억제 기능을 가진 Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide; FBP)를 비강-뇌 전달을 통하여 허혈성 뇌졸중 치료가 가능함을 보고한 바 있다. 본 발명은 정맥주사로 FBP를 뇌에 전달하여 허혈성 뇌졸중을 치료하고자 뇌 시상에서 발현하는 Leptin 수용체에 결합 능력을 가진 leptin 펩타이드를 FBP-PEG에 결합시킨 후 정맥주사하고, 상기의 복합체는 혈액-뇌 장벽을 통과하여 뇌허혈이 발생한 부분에 전달되어 뇌세포의 사멸을 억제함을 확인하였다.During ischemic stroke, cells receive signals of apoptosis due to lack of oxygen and limited nutrient supply. In this regard, the present inventors have reported that ischemic stroke treatment is possible through nasal-to-brain delivery of a Fas Blocking Peptide (FBP) having an apoptosis inhibitory function. In order to treat ischemic stroke by delivering FBP to the brain by intravenous injection, the leptin peptide having the ability to bind to the Leptin receptor expressed in the brain thalamus is bound to FBP-PEG and then intravenously injected, and the complex is blood-brain It was confirmed that it passed through the barrier and was delivered to the part where cerebral ischemia occurred and inhibited the death of brain cells.
따라서, 본 발명은 하기 일반식 1로 표시되는 복합체를 포함하는 허혈성 뇌졸중의 예방 또는 치료용 조성물에 관한 것이다: Accordingly, the present invention relates to a composition for preventing or treating ischemic stroke comprising a complex represented by the following general formula 1:
[일반식 1][Formula 1]
Lep-PEG-FBPLep-PEG-FBP
상기 식에서,In the above formula,
Lep은 렙틴 또는 SEQ ID NO: 1의 아미노산 서열 중 1-33, 12-32, 15-32 또는 61-90의 아미노산 서열을 포함하는 렙틴-유래 뇌 타겟팅 펩타이드이고,Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
PEG는 폴리에틸렌글리콜이며,PEG is polyethylene glycol,
FBP는 하기 일반식 2로 표시되는 아미노산 서열로 이루어진 Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide)를 나타낸다.FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
[일반식 2][Formula 2]
Xaa1-Cys-Asp-Glu-His-Phe-Xaa2-Xaa3 Xaa 1 -Cys-Asp-Glu-His-Phe-Xaa 2 -Xaa 3
상기 식에서,In the above formula,
Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 임의의 아미노산이고,Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid;
Xaa2는 존재하지 않거나 Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn 및 Gln으로 이루어진 군에서 선택된다.Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
본 발명의 허혈성 뇌졸중의 예방 또는 치료용 조성물의 유효 성분인 FBP(Fas Blocking Peptide)는 Fas와 이의 리간드인 FasL 간의 상호작용을 억제하기 위한 펩타이드 시퀀스로서 알려져 왔다. Fas 및 이의 특이적 리간드인 FasL은 각각 TNF 수용체 및 TNF 리간드 수퍼패밀리(TNF lignad superfamily, TNFSF)에 속하는 단백질의 구성원이다. Fas와 FasL 간의 상호작용은 Fas-발현 타겟에서 세포 사멸을 초래하는 세포내 이벤트들의 캐스캐이드(cascade)를 촉발시킨다. Fas는 뇌세포를 비롯한 다양한 조직 세포에서 발현되는 막 단백질이고, FasL은 림프기관 및 면역-관련 조직들에서 주로 발현되는데, 허혈에 의한 뇌손상시 Fas의 발현이 증가함이 보고된 바 있다(Expression of Fas and Fas Ligand After Experimental Traumatic Brain Injury in the Rat, J Cereb Blood Flow Metab. Vol. 20, No. 4, 2000). Fas Blocking Peptide (FBP), an active ingredient of the composition for preventing or treating ischemic stroke of the present invention, has been known as a peptide sequence for inhibiting the interaction between Fas and its ligand, FasL. Fas and its specific ligand, FasL, are members of proteins belonging to the TNF receptor and TNF ligand superfamily (TNFSF), respectively. Interaction between Fas and FasL triggers a cascade of intracellular events leading to cell death in Fas-expressing targets. Fas is a membrane protein expressed in various tissue cells including brain cells, and FasL is mainly expressed in lymphoid organs and immune-related tissues. It has been reported that Fas expression increases during brain damage caused by ischemia (Expression of Fas and Fas Ligand After Experimental Traumatic Brain Injury in the Rat, "J" Cereb "Blood Flow" Metab. "Vol. 20, No. 4, 2000).
본 발명의 FBP는 Fas 펩타이드 모방체(mimetics)로서, Fas 활성, 특히 Fas-매개된 시그널링을 억제한다. 다만, FBP를 정맥 투여 또는 경구 투여 하는 경우, 유효물질이 BBB(Blood-Brain Barrier)를 쉽게 통과하지 못하고 뇌로의 전달 효율이 현저히 떨어지게 된다. 따라서, 본 발명은 뇌 시상에 과발현하는 Leptin 수용체에 결합하여 BBB를 통과하는 능력을 가진 Leptin 펩타이드를 이용하고, Leptin 펩타이드에 PEG를 이용하여 FBP를 결합시켜 정맥투여를 통해 뇌졸중 허혈 부위에 전달하고, Fas 세포사멸 경로를 차단하여 뇌세포의 사멸을 억제함으로써 허혈성 뇌졸중을 예방 또는 치료하는 것을 특징으로 한다. The FBP of the present invention is a Fas peptide mimetic, and inhibits Fas activity, particularly Fas-mediated signaling. However, when FBP is administered intravenously or orally, the effective substance does not easily pass through the BBB (Blood-Brain Barrier) and the delivery efficiency to the brain is significantly reduced. Therefore, the present invention uses a Leptin peptide having the ability to pass through the BBB by binding to a Leptin receptor overexpressed in the brain thalamus, and binds FBP using PEG to the Leptin peptide to deliver to the stroke ischemic site through intravenous administration, It is characterized by preventing or treating ischemic stroke by inhibiting brain cell death by blocking the Fas apoptosis pathway.
본 명세서 상에서의 용어 "Lep" 또는 "Leptin"는 렙틴 또는 렙틴-유래 뇌 타겟팅 펩타이드를 의미한다. 본 발명의 일 구현예에 있어서, 본 발명의 상기 렙틴-유래 뇌 타겟팅 펩타이드는 SEQ ID NO: 1의 아미노산 서열 중 1-33, 12-32, 15-32 또는 61-90의 아미노산 서열을 포함하고, 바람직하게는 1-33 또는 61-90의 아미노산 서열을 포함하며, 더 바람직하게는 61-90 아미노산 서열(SEQ ID NO: 2)을 포함한다. The term “Lep” or “Leptin” as used herein refers to leptin or a leptin-derived brain-targeting peptide. In one embodiment of the present invention, the leptin-derived brain-targeting peptide of the present invention comprises an amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1 , preferably an amino acid sequence of 1-33 or 61-90, more preferably an amino acid sequence of 61-90 (SEQ ID NO: 2).
상기 폴리에틸렌글리콜(polyethylene glycol, 또는 PEG)은 단백질을 안정화시키고 단백질 가수분해효소와의 접촉 및 신장 소실을 억제하기 위한 방법으로, PEG는 목적 단백질의 특정 부위 또는 다양한 부위에 비특이적으로 결합하여 용해도를 높임으로써 단백질을 안정화시키고, 단백질의 가수분해를 방지하는데 효과가 있으며 특별한 부작용도 일으키지 않는 것으로 알려져 있다(Sada et al., J. Fermentation Bioengineering, 71: pp 137-139, 1991). 본 발명에서 사용할 수 있는 PEG의 평균 분자량은 500 Da 내지 2 kDa, 또는 1 kDa 내지 2 kDa이다. 바람직한 PEG의 분자량은 약 2 kDa이다. EG는 선형 및 분지형 중합체 둘 다를 포괄하는 것으로 사용된다. 대부분의 PEG는 상업적으로 이용가능하다. 또한, PEG는 Lep, 링커 펩타이드 또는 FBP와 결합이 용이하도록 양 말단이 개질되어 있을 수 있다. 예컨대, 말레이미드기, 아미드기 등으로 개질되어 있을 수 있다.The polyethylene glycol (or PEG) is a method for stabilizing proteins and inhibiting contact with proteolytic enzymes and kidney loss. PEG non-specifically binds to specific or various sites of the target protein to increase solubility As a result, it is known to be effective in stabilizing proteins and preventing protein hydrolysis and not causing any particular side effects (Sada et al ., J. Fermentation Bioengineering, 71: pp 137-139, 1991). The average molecular weight of PEG usable in the present invention is 500 Da to 2 kDa, or 1 kDa to 2 kDa. The molecular weight of a preferred PEG is about 2 kDa. EG is used to cover both linear and branched polymers. Most PEGs are commercially available. In addition, both ends of PEG may be modified to facilitate binding with Lep, linker peptide, or FBP. For example, it may be modified with a maleimide group, an amide group, or the like.
상기 Lep 과 PEG 사이는 스페이서 역할을 하는 링커 펩타이드로 연결 가능하며, Lep의 일 말단에 결합되어 표면이 개질된 PEG와 연결될 수 있다. 이러한 링커 펩타이드 일예로 GGGC, RRR 등을 사용할 수 있다. 특히 GGGC의 경우 시스테인의 -SH 기와 일 말단이 개질된 PEG의 모이어티와의 결합을 통해 연결될 수 있다.The Lep and PEG may be connected by a linker peptide serving as a spacer, and may be connected to PEG whose surface is modified by binding to one end of Lep. Examples of such linker peptides include GGGC and RRR. In particular, in the case of GGGC, the -SH group of cysteine and one end may be connected through a bond with a modified PEG moiety.
본 명세서에 사용된 용어, "Fas"는 Fas, FasR(Fas receptor), APO-1 (apoptosis antigen 1), 또는 CD95(cluster of differentiation 95)로도 불리며, 세포사멸(apoptosis)을 조절하는 종양 괴사 인자 수용체(tumor necrosis factor, TNF)의 일종이다. Fas가 리간드와 결합하게 되면 다중화(multimerization)를 통해 활성화되고, 그 결과로 여러 어댑터(adaptor) 단백질들이 Fas에 결합한다. 결합한 어댑터 단백질들은 다양한 세포사멸 신호전달 체계를 활성화시키며, 대표적인 신호전달 조절인자에는 카스파제, NF-κB, SAPK(stress-activated protein kinase), Bcl-2 패밀리 등이 있다.As used herein, the term "Fas" is also called Fas, Fas receptor (Fas receptor), apoptosis antigen 1 (APO-1), or cluster of differentiation 95 (CD95), a tumor necrosis factor that regulates apoptosis. It is a type of receptor (tumor necrosis factor, TNF). When Fas binds to a ligand, it is activated through multimerization, and as a result, several adapter proteins bind to Fas. The bound adapter proteins activate various apoptosis signal transduction systems, and representative signal transduction regulators include caspase, NF-κB, stress-activated protein kinase (SAPK), and the Bcl-2 family.
본 명세서에 사용된 용어, "Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide, FBP)"는 상기에서 설명한 Fas에 결합하여 통상적인 Fas 리간드와 반대로 Fas의 하위 신호전달 체계를 억제하는 활성, 세포사멸 억제 활성을 갖는 펩타이드를 의미한다.As used herein, the term "fas signaling inhibitory peptide (Fas Blocking Peptide, FBP)" binds to the above-described Fas and inhibits the sub-signaling system of Fas as opposed to the conventional Fas ligand, inhibiting activity and apoptosis Means a peptide having an activity.
상기 FBP는 상기 일반식 2로 표시된다. 구체적으로, 상기 일반식 2에서,The FBP is represented by the general formula (2). Specifically, in the above general formula 2,
Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고, Xaa 1 and Xaa 3 are each independently absent or selected from the group consisting of Tyr, Phe and Trp;
Xaa2는 존재하지 않거나 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택된다.Xaa 2 is absent or selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
보다 구체적으로, 상기 일반식 2에서,More specifically, in the above general formula 2,
Xaa1 및 Xaa3는 각각 독립적으로 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고,Xaa 1 and Xaa 3 are each independently selected from the group consisting of Tyr, Phe and Trp;
Xaa2는 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택된다.Xaa 2 is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
본 발명의 일 구체예에 있어서, 상기 일반식 2에서 Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 임의의 아미노산일 수 있고, 바람직하게는 각각 독립적으로 Tyr, Phe 및 Trp로 이루어진 군에서 선택될 수 있다.In one embodiment of the present invention, in Formula 2, Xaa 1 and Xaa 3 may each independently not exist or may be any amino acid, preferably each independently selected from the group consisting of Tyr, Phe and Trp. can
또한, 상기 일반식 1에서 Xaa2는 존재하지 않거나 Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn 및 Gln으로 이루어진 군에서 선택될 수 있고, 바람직하게는 Gly, Ala, Ser, Thr 및 Cys로 이루어진 군에서 선택될 수 있다.In addition, Xaa 2 in Formula 1 may not exist or may be selected from the group consisting of Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn and Gln, preferably Gly, It may be selected from the group consisting of Ala, Ser, Thr and Cys.
예를 들어, 1) Xaa1 및 Xaa3는 모두 존재하지 않으면서 Xaa2만 존재할 수 있고, 2) Xaa1 및 Xaa3 중에서 어느 하나가 존재하면서 Xaa2가 존재할 수 있으며, 3) Xaa1 내지 Xaa3 모두 존재하지 않는 등 다양한 조합이 가능하다.For example, 1) only Xaa 2 can exist without both Xaa 1 and Xaa 3 , 2) Xaa 2 can exist while either Xaa 1 or Xaa 3 exists, 3) Xaa 1 to Xaa Various combinations are possible, such as none of 3 .
본 발명의 일 구체예에 있어서, 상기 일반식 2의 아미노산 서열은 하기 표 1에 나열된 서열일 수 있다.In one embodiment of the present invention, the amino acid sequence of Formula 2 may be a sequence listed in Table 1 below.
서열번호sequence number 아미노산 서열(5'-3')Amino acid sequence (5'-3')
33 CDEHFCDEHF
44 YCDEHFYCDEHF
55 YCDEHFYYCDEHFY
66 YCDEHFAYCDEHFA
77 YCDEHFCYCDEHFC
88 YCDEHFMYCDEHFM
99 FCDEHFC FCDEHFC
1010 YCDEHFCYYCDEHFCY
1111 YCDEHFMYYCDEHFMY
1212 YCDEHFCFYCDEHFCF
한편, 본 발명에서 사용되는 Fas 신호전달 억제용 펩타이드는 펩타이드의 향상된 안정성, 강화된 약리 특성(반감기, 흡수성, 역가, 효능 등), 변경된 특이성 (예를 들어, 광범위한 생물학적 활성 스펙트럼), 감소된 항원성을 획득하기 위하여, 펩타이드의 N- 및/또는 C-말단이 수식(modification)될 수 있다. 상기 수식은 상기 펩타이드의 N- 및/또는 C-말단에 아세틸기, 플루오레닐 메톡시 카르보닐기, 아미드기, 포르밀기, 미리스틸기, 스테아릴기 또는 폴리에틸렌글리콜(PEG)이 결합된 형태일 수 있으나, 펩타이드의 개질, 특히 펩타이드의 안정성을 향상시킬 수 있는 성분이라면, 제한 없이 포함할 수 있다. 본 명세서에서 사용되는 용어, "안정성"은 생체 내 단백질 절단효소의 공격으로부터 본 발명의 펩타이드를 보호하는 인 비보 안정성뿐만 아니라, 저장 안정성(예컨대, 상온 저장 안정성)도 의미한다.On the other hand, the peptide for inhibiting Fas signaling used in the present invention has improved stability of the peptide, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (eg, broad biological activity spectrum), reduced antigen To obtain properties, the N- and/or C-terminus of the peptide may be modified. The formula may be in the form of an acetyl group, a fluorenyl methoxy carbonyl group, an amide group, a formyl group, a myristyl group, a stearyl group, or polyethylene glycol (PEG) bonded to the N- and/or C-terminus of the peptide. However, any component that can improve peptide modification, particularly stability of the peptide, may be included without limitation. As used herein, the term "stability" refers to storage stability (eg, storage stability at room temperature) as well as in vivo stability that protects the peptides of the present invention from attack by proteolytic enzymes in vivo.
본 발명의 Lep-PEG-FBP 복합체는 복합체 형성을 위한 상호 결합부위를 포함하며, 상기 상호 결합부위는 단량체 간의 아미드 결합을 위한 일 말단 아미노산 그 자체일 수 있고, 이황화결합, 이민결합, 또는 에스테르 결합을 위한 특정의 아미노산일 수 있다. The Lep-PEG-FBP complex of the present invention includes a cross-linking site for complex formation, and the cross-linking site may be one terminal amino acid itself for an amide bond between monomers, a disulfide bond, an imine bond, or an ester bond It may be a specific amino acid for.
예컨대, 도 1과 같이, Leptin-GGGC 펩타이드(34mer)의 N'-말단을 차단시킨 후, Mal-PEG-NH2를 사용하여 상기 Leptin에 결합된 링커 펩타이드의 시스테인에 존재하는 티올기와 PEG의 앞단의 말레이미드 간의 반응을 통해 Lep-PEG 컨쥬게이트를 생성한 다음 PEG 말단의 아민기와 PBP의 N-말단의 아민기 간의 EDC/sulfo-NHS 아민 공유결합을 통해 Lep-PEG-PBP 복합체를 형성할 수 있다.For example, as shown in FIG. 1, after blocking the N'-terminus of the Leptin-GGGC peptide (34mer), Mal-PEG-NH2 was used to remove the thiol group present in the cysteine of the linker peptide bound to Leptin and the front end of PEG. A Lep-PEG conjugate can be formed through a reaction between maleimides, and then a Lep-PEG-PBP complex can be formed through an EDC/sulfo-NHS amine covalent bond between an amine group at the PEG terminal and an amine group at the N-terminus of PBP. .
본 명세서에 사용된 용어, "치료"는 본 발명에 따른 약학적 조성물의 투여로 허혈성 뇌졸중의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다. As used herein, the term "treatment" refers to all activities that improve or beneficially change symptoms of ischemic stroke by administration of the pharmaceutical composition according to the present invention.
본 명세서에 사용된 용어, "투여"는 임의의 적절한 방법으로 대상에게 소정의 물질, 즉 본 발명에 따른 약학적 조성물을 도입하는 것을 의미한다. As used herein, the term "administration" means introducing a predetermined substance, ie, a pharmaceutical composition according to the present invention, into a subject by any suitable method.
본 발명에서, "치료적 유효량"이라는 용어는, 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. In the present invention, the term "therapeutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the type, severity, and activity of the drug of the patient's disease. , sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitantly used drugs, and other factors well known in the medical field.
본 발명의 조성물은 유효성분 이외에 약학적으로 허용되는 담체를 포함한다. 본 발명의 조성물에 포함되는 약학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.The composition of the present invention includes a pharmaceutically acceptable carrier in addition to the active ingredient. Pharmaceutically acceptable carriers included in the composition of the present invention are those commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate , microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, but are not limited thereto no. The composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components. Suitable pharmaceutically acceptable carriers and agents are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 조성물은 전신성 비경구 투여가 바람직하고, 예컨대 정맥내 투여, 복강내 투여, 근육내 투여, 피하투여, 또는 국부 투여를 이용하여 투여할 수 있다.The composition of the present invention is preferably administered by systemic parenteral administration, and may be administered using, for example, intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration, or local administration.
본 발명의 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 질병 증상의 정도, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련 의사는 목적하는 치료에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 적합한 1일 투여량은, 0.0001-100 mg/kg(체중)이다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수 있다.The suitable dosage of the composition of the present invention varies depending on factors such as formulation method, administration method, patient's age, weight, sex, severity of disease symptoms, food, administration time, administration route, excretion rate and reaction sensitivity, Ordinarily, the skilled practitioner can readily determine and prescribe effective dosages for the desired treatment. According to a preferred embodiment of the present invention, a suitable daily dosage is 0.0001-100 mg/kg (body weight). Administration may be administered once a day, or may be administered in several divided doses.
본 발명의 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art, or It can be prepared by placing it in a multi-dose container. In this case, the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or may be in the form of an extract, powder, granule, tablet or capsule, and may additionally contain a dispersing agent or stabilizer.
본 발명은 또한 치료적 유효량의 상기 복합체를 이를 필요로 하는 대상체에게 투여하는 것을 포함하는 허혈성 뇌졸중의 치료방법에 관한 것이다.The present invention also relates to a method of treating ischemic stroke comprising administering a therapeutically effective amount of the complex to a subject in need thereof.
상기 대상체는 인간 또는 소, 원숭이, 새, 고양이, 마우스, 랫트, 햄스터, 돼지, 개, 토끼, 양, 말 등의 비인간 동물일 수 있다. The subject may be a human or a non-human animal such as a cow, monkey, bird, cat, mouse, rat, hamster, pig, dog, rabbit, sheep, or horse.
본 발명의 치료 방법에서, 상기 복합체의 제형, 투여 방식 등은 약학적 조성물에서 기재한 바와 같으며 중복 기재를 피하기 위해 구체적인 설명은 생략한다.In the treatment method of the present invention, the formulation, administration method, etc. of the complex are the same as those described in the pharmaceutical composition, and detailed descriptions are omitted to avoid redundant description.
이하, 본 발명을 하기 실시예에 의거하여 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail based on the following examples. However, the following examples are only for exemplifying the present invention, but the scope of the present invention is not limited thereto.
<실시예 1> Leptin-PEG-FBP의 제조<Example 1> Preparation of Leptin-PEG-FBP
Leptin-PEG-FBP 복합체는 도 1에 도시된 바와 같이 제조하였다. 간략히 설명하면, 뇌 시상에 과발현하는 Leptin 수용체에 결합해 혈액-뇌 장벽을 통과시키는 능력이 있는 Leptin(61-90, 30mer, SEQ ID NO: 2) 펩타이드에 아미노산 GGGC 4개를 추가적으로 주문 제작하여 사용하였다. LeptinGGGC(34mer) 펩타이드는 100 mg/mL의 농도로 DMSO에 녹인 후 PBS(pH7.4) 버퍼에 10배 희석하여 사용하였다. 10 mg/mL 농도의 Leptin 펩타이드를 4℃에서 1시간동안 무수아세트산(Acetic anhydride)을 이용해 N-말단을 블록킹 시켰다. 이후 2kDa 크기의 Mal-PEG-NH2를 사용해 Leptin의 시스테인과 PEG의 Thiol-Maleimide 반응으로 일차적으로 1:1 몰비로 18시간 동안 4℃에서 반응시켰다. 반응이 끝난 후 PBS(pH7.4) 버퍼에서 2kDa MWCO 카세트를 이용해 결합하지 않은 PEG를 제거하였다. 정제 후 100 mg/mL DMSO에 녹인 후 MES(pH6.5) 버퍼에 10배 희석한 FBP 펩타이드와 Leptin-PEG를 1:1 몰비로 상온에서 3시간 EDC/sulfo-NHS 아민 공유결합을 시켰다. 반응 후 이전과 동일한 방법으로 정제하여 -20℃에서 보관하였다.Leptin-PEG-FBP complex was prepared as shown in Figure 1. Briefly, Leptin (61-90, 30mer, SEQ ID NO: 2) peptide, which has the ability to pass through the blood-brain barrier by binding to the Leptin receptor overexpressed in the brain thalamus, is additionally custom-made and used with 4 amino acids GGGC did The LeptinGGGC (34mer) peptide was dissolved in DMSO at a concentration of 100 mg/mL and then diluted 10-fold in PBS (pH 7.4) buffer for use. Leptin peptide at a concentration of 10 mg/mL was blocked at the N-terminus with acetic anhydride for 1 hour at 4°C. Then, 2 kDa Mal-PEG-NH2 was used to react with Leptin's cysteine and PEG's Thiol-Maleimide at a 1:1 molar ratio for 18 hours at 4°C. After the reaction was completed, unbound PEG was removed using a 2kDa MWCO cassette in PBS (pH 7.4) buffer. After purification, the mixture was dissolved in 100 mg/mL DMSO and then covalently bonded to EDC/sulfo-NHS amine at a 1:1 molar ratio of FBP peptide and Leptin-PEG diluted 10-fold in MES (pH 6.5) buffer for 3 hours at room temperature. After the reaction, it was purified in the same way as before and stored at -20 ℃.
<실험예 1> 세포 실험을 통한 약물의 세포사멸 억제 효과 입증 확인<Experimental Example 1> Confirmation of the apoptosis inhibitory effect of the drug through cell experiments
Fas 결합 펩타이드에 Leptin을 PEG로 결합시킨 Leptin-PEG-FBP의 세포사멸 억제 효과를 확인하기 위해 Annexin V(PE)로 염색 후 유세포 분석기로 형광 세기 관찰을 진행하였다. 저산소 신경세포 모델을 유도하기 위해 Neuro2a 세포를 무혈청-DMEM 배지에 분주하였다. 이후 4시간동안 FasL(0.1 nM)를 1% O2 조건의 저산소(Hypoxia) 인큐베이터에서 미리 처리한 후 300 μM 농도의 펩타이드를 처리하여 12시간 후에 각 그룹의 세포를 Annexin V 형광염료로 염색하였다. In order to confirm the apoptosis inhibitory effect of Leptin-PEG-FBP, in which Leptin was conjugated to Fas-binding peptide with PEG, fluorescence intensity was observed by flow cytometry after staining with Annexin V (PE). To induce a hypoxic neuron model, Neuro2a cells were seeded in serum-free DMEM medium. Thereafter, FasL (0.1 nM) was pre-treated in a hypoxia (Hypoxia) incubator under 1% O 2 conditions for 4 hours, and then treated with a peptide at a concentration of 300 μM, and cells in each group were stained with Annexin V fluorescent dye after 12 hours.
도 2에 나타난 바와 같이, 대조군에 비해 30% 가량 더 낮은 세포사멸 Annexin V 형광세기 관찰로 Leptin-PEG-FBP가 Fas에 결합하여 세포사멸 경로를 억제할 수 있음을 확인하였다. As shown in Figure 2, it was confirmed that Leptin-PEG-FBP can inhibit the apoptosis pathway by binding to Fas by observing apoptosis Annexin V fluorescence intensity that is about 30% lower than that of the control group.
<실험예 2> 허혈성 뇌졸중 모델에서의 형광 펩타이드 정맥주사를 통한 장기 별 약물전달 차이 확인<Experimental Example 2> Confirmation of drug delivery difference by organ through intravenous injection of fluorescent peptide in ischemic stroke model
감광성 염료 Rose bengal을 15 mg/mL로 멸균 생리식염수에 녹인 후 마우스 한 마리당 10mg/kg로 복강 주사를 한 뒤 5분 후 561 nm 초록 레이저 빛을 시상 봉합과 관상 봉합이 교차되는 지점 브레그마(bregma)로부터 2.5 mm 오른쪽 두개골에 약 10분간 조사하여 혈전을 형성해 허혈성 뇌졸중 모델링을 진행하였다. 허혈성 뇌졸중 유도 24시간 후에 뇌조직을 채취하였다. 조직 샘플의 왼쪽과 오른쪽을 각각 RNA를 분리하여 cDNA를 합성한 후 Fas 프라이머로 RT-PCR를 시행한 결과, 도 3에 나타난 바와 같이, 허혈성 조직에서 정상군 대비 2배 이상의 Fas 유전자 발현을 확인할 수 있었다. 도 1과 같이 Lep-PEG-FBP 복합체를 제조한 다음 형광물질을 결합한 합성 펩타이드가 실제 뇌경색 영역에 선택적으로 전달이 되는지 확인하였다. 감광성 염료 rose bengal을 15 mg/mL로 멸균생리식염수에 녹인 후 마우스 마리당 10 mg/kg로 복강 주사를 한 뒤 5분 후 561 nm 레이저 빛을 시상봉합과 관상봉합이 교차되는 지점 bregma로부터 2.5 mm 오른쪽 두개골에 약 10분간 조사한 결과 혈전을 형성해 허혈성 뇌졸중 모델링을 진행하였다. 모델링을 한 12시간 후 형광이 결합된 펩타이드를 2.5 mg/kg로 정맥주사 하였다. 각 그룹당 n수는 3으로 진행하였다. 약물을 주입한 16시간 후에 뇌, 폐, 간, 비장, 신장 각 장기를 형광 이미징 기기에 넣어 약물 전달 정도를 확인하였다. After dissolving the photosensitive dye Rose bengal at 15 mg/mL in sterile saline, intraperitoneally injected at 10 mg/kg per mouse, and after 5 minutes, 561 nm green laser light was applied to the bregma at the intersection of the sagittal and coronal sutures. ) was irradiated to the right skull at 2.5 mm for about 10 minutes to form a blood clot, and ischemic stroke modeling was performed. Brain tissue was collected 24 hours after ischemic stroke induction. After RNA was isolated from the left and right sides of the tissue sample, cDNA was synthesized, and RT-PCR was performed with the Fas primer. there was. After preparing the Lep-PEG-FBP complex as shown in FIG. 1, it was confirmed whether the synthetic peptide to which the fluorescent substance was coupled was selectively delivered to the actual cerebral infarct region. After dissolving the photosensitive dye rose bengal at 15 mg/mL in sterile physiological saline, 10 mg/kg per mouse was intraperitoneally injected. After 5 minutes, 561 nm laser light was applied 2.5 mm right from bregma, the point where the sagittal and coronal sutures intersected. As a result of irradiation on the skull for about 10 minutes, a blood clot was formed, and ischemic stroke modeling was performed. After 12 hours of modeling, the fluorescence-coupled peptide was intravenously injected at 2.5 mg/kg. The number of n for each group was 3. 16 hours after drug injection, each organ of brain, lung, liver, spleen, and kidney was put into a fluorescence imaging device to confirm the degree of drug delivery.
도 4에 나타난 바와 같이, 모델링을 하지 않은 그룹은 대부분 신장에 걸러져 있고 leptin을 이용한 그룹은 모델링을 진행한 오른쪽 뇌경색 부위에 강한 형광 세기를 보였다. 이를 통해 leptin을 이용해 합성한 L-P-F 가 정확하게 뇌경색 부위에 남아 약물이 전달된 것을 확인하였다.As shown in FIG. 4, most of the group without modeling was filtered in the kidney, and the group using leptin showed strong fluorescence intensity in the right cerebral infarct area where modeling was performed. Through this, it was confirmed that L-P-F, which was synthesized using leptin, remained at the cerebral infarction site and delivered the drug.
다음으로, Leptin 수용체 결핍 동물 모델(db/db)과 일반 동물모델에서의 형광 시료를 결합시킨 펩타이드 약물의 정맥주사를 통해 수용체 매개 혈관 뇌 장벽 투과 약물 전달을 확인하였다. 광혈전 유도 뇌졸중(Photothrombosis Stroke) 모델링으로부터 3시간 후에 alexa647 형광 시료를 결합시킨 각각의 펩타이드 약물을 정맥주사하였다. 정맥주사로부터 12시간 후 뇌, 폐, 간, 비장, 신장 각 장기 조직을 샘플링하여 형광이미지를 촬영하였다. Next, receptor-mediated blood-brain barrier penetration drug delivery was confirmed through intravenous injection of a peptide drug combining a fluorescent sample in a leptin receptor deficient animal model (db/db) and a general animal model. After 3 hours from photothrombosis-induced stroke modeling, each peptide drug to which alexa647 fluorescent sample was bound was intravenously injected. Twelve hours after the intravenous injection, the brain, lung, liver, spleen, and kidney organs were sampled and fluorescence images were taken.
도 5에 나타난 바와 같이, leptin 수용체가 결핍된 동물모델에서는 뇌 조직에 약물이 남아 있지 않고 대부분 신장을 통해 여과되는 것을 확인할 수 있었다. 반면 일반 동물 모델은 허혈성 뇌졸중 모델에 의해 손상 입은 오른쪽 뇌 조직에 약물이 결합하여 남아 있었다.As shown in FIG. 5, in the leptin receptor-deficient animal model, it was confirmed that most of the drug was filtered through the kidney without remaining in the brain tissue. On the other hand, in the general animal model, the drug remained bound to the right brain tissue damaged by the ischemic stroke model.
형광물질을 경합한 펩타이드가 실제 뇌경색 영역에 선택적으로 전달이 되는지 확인하기 위해, 뇌졸중 쥐 모델에서 가장 흔히 사용되는 모델링 방법으로, 봉합용 모노필라멘트 실을 오른쪽 중대뇌동맥에 삽입하여 60분간 폐쇄함으로써 우측 중대뇌동맥으로 가는 혈류를 차단하고 60분 후 필라멘트를 제거해 재 관류시켰다. 허혈성 뇌졸중 유도 수술을 한 후 Fas 발현이 높다고 연구된 6시간 후에 형광이 결합된 펩타이드를 기준으로 2.5 mg/kg 정맥주사로 주입한 후 12시간 후에 장기를 적출하였다. In order to confirm that peptides competing with fluorescent substances are selectively delivered to the actual cerebral infarction area, this is the most commonly used modeling method in stroke rat models. Blood flow to the cerebral artery was blocked, and the filament was removed and reperfused after 60 minutes. After ischemic stroke induction surgery, 2.5 mg/kg of fluorescence-coupled peptide was intravenously injected 6 hours after the study showed that Fas expression was high, and organs were harvested 12 hours later.
도 6에 나타난 바와 같이, PEG-FBP에 비해 Leptin과 L-P-F 그룹은 가장 선명하게 오른쪽 뇌경색 부위에 약물이 전달된 것을 확인하였다.As shown in FIG. 6, it was confirmed that the drug was delivered to the right cerebral infarction site most clearly in the Leptin and L-P-F groups compared to PEG-FBP.
장기 별 약물 전달을 형광 세기로 확인 한 후 실제 세포막에 발현하는 Fas에 FBP 펩타이드가 결합했는지 뇌조직을 OCT 컴파운드에 넣어 -80℃에 보관해 cryoblock을 만들어 섹션을 썰어 확인하였다. 5 mm 두께로 썰은 섹션에서 hoechest2000을 사용해 핵을 염색하였고 alexa647 형광물질을 결합시킨 펩타이드와 중첩해서 본 결과 핵 주변부에 붉은색 펩타이드 형광 세기가 강하게 나타난 것을 확인하였다(도 7). After confirming organ-specific drug delivery by fluorescence intensity, the brain tissue was put in an OCT compound and stored at -80 ° C to make a cryoblock and cut into sections to check whether the FBP peptide was bound to Fas expressed on the actual cell membrane. The nucleus was stained using hoechest2000 in a section cut into 5 mm thickness, and as a result of overlapping with the peptide to which the alexa647 fluorescent substance was bound, it was confirmed that the intensity of red peptide fluorescence was strong around the nucleus (FIG. 7).
<실험예 3> 허혈성 뇌졸중 모델링을 통한 약물의 신경세포 사멸 억제 치료 효과 확인 <Experimental Example 3> Confirmation of the therapeutic effect of inhibiting apoptosis of drugs through ischemic stroke modeling
허혈성 뇌졸중 모델링을 통한 약물의 신경세포 사멸 억제 치료 효과를 확인하기 위해, 도 8과 같이, 중대뇌동맥 폐쇄 모델링을 진행한 후 3시간, 6시간 후에 2번에 걸쳐 FBP를 5 mg/kg씩 정맥 주사하였다. 각 그룹당 n수는 5로 진행하였다. 모든 실험 동물은 MCAO를 실시한 후 48시간 후에 희생시켰으며 좌심실을 통하여 인산 염 완충 식염수를 관류시켜 혈관 내 혈액 성분을 제거한 후 뇌를 적출하였다. 뇌허혈 유도 모델에서 적출한 뇌 조직을 몰드(mold) 위에서 2 mm 간격으로 동일하게 섹션을 나눠준다. 그 후 멸균생리식염수에 용해시킨 2% TTC 용액에 15분간 37℃에서 반응시켰다. 반응이 끝나면 4% 파라포름알데히드 용액에 4℃에서 24시간 보관한 후 염색이 되지 않은 하얀 뇌 경색 부위를 Image J 분석 프로그램을 통해 측정하였다. In order to confirm the therapeutic effect of the drug on inhibition of neuronal cell death through ischemic stroke modeling, as shown in FIG. 8, intravenous injection of FBP at 5 mg/kg twice 3 hours and 6 hours after middle cerebral artery occlusion modeling was performed did The number of n for each group was 5. All experimental animals were sacrificed 48 hours after MCAO, and phosphate-buffered saline was perfused through the left ventricle to remove intravascular blood components, and then brains were removed. The brain tissue excised from the cerebral ischemia induction model is equally divided into sections at 2 mm intervals on a mold. After that, it was reacted at 37 ℃ for 15 minutes in a 2% TTC solution dissolved in sterile physiological saline. After the reaction was completed, it was stored in a 4% paraformaldehyde solution at 4° C. for 24 hours, and then the unstained white brain infarct area was measured through Image J analysis program.
결과적으로 L-P-F그룹은 약 19% 정도 적은 뇌 경색을 보였다(도 9). As a result, the L-P-F group showed about 19% less brain infarction (FIG. 9).
뇌조직 절편을 0.5% Nissl staining(cresyl violte)을 이용하여 염색한 후 풀 스크리닝(Full screening) 현미경을 이용하여 촬영한 뒤 이미지 분석 프로그램을 이용하여 뇌경색 부위의 크기를 측정하였다. 뇌경색 크기 측정은 뇌경색을 유발한 부위의 반대쪽 뇌 면적에서 뇌경색을 유발한 쪽의 정상 면적을 빼서 측정하는 간접법을 사용하였다.Brain tissue slices were stained using 0.5% Nissl staining (cresyl violte), photographed using a full screening microscope, and the size of the infarcted area was measured using an image analysis program. The size of cerebral infarction was measured using an indirect method, which was measured by subtracting the normal area on the cerebral infarct-induced side from the brain area on the opposite side of the cerebral infarct-induced area.
도 10에 나타난 바와 같이, L-P-F 그룹이 타 그룹에 비해 17.2% 정도 적은 뇌 경색을 보였다.As shown in FIG. 10, the L-P-F group showed 17.2% less brain infarction than the other groups.
Cryoblock으로 만들어 놓은 뇌조직을 절편으로 만들어 4% 파라포름알데히드에 15분간 고정시킨 후 H&E 염색을 시행하였다. 광학현미경으로 허혈성 음염(ischemic penumbra)를 동일하게 관찰한 결과, 도 11에 나타난 바와 같이, L-P-F 약물 그룹에 비해 타 그룹에서 세포사멸에 의해 조직의 빈 공간이 많이 발견되었고 핵의 모양이 삼각형으로 뾰족하게 수축된 것을 확인할 수 있었다.Brain tissue made of cryoblock was cut into sections, fixed in 4% paraformaldehyde for 15 minutes, and then H&E staining was performed. As a result of the same observation of ischemic penumbra with an optical microscope, as shown in FIG. 11, a lot of tissue empty space was found due to apoptosis in the other groups compared to the L-P-F drug group, and the shape of the nucleus was triangular and pointed It could be seen that the contraction was
뇌조직을 이용해 제작한 Cryoblock을 절편한 조직 샘플을 TUNEL 염색을 진행해 세포 사멸 정도를 형광으로 측정하였다. Tissue samples sectioned from cryoblocks made using brain tissue were stained with TUNEL, and the degree of cell death was measured by fluorescence.
도 12에 나타난 바와 같이, L-P-F 약물 군에 비해 타 그룹에서 현저히 적은 핵 DAPI 형광 세기가 우선 측정되었고 붉은색의 세포사멸을 나타내는 TUNEL 세기가 강하게 나타났다. 통계적 분석 결과 약 28% 정도의 세포사멸 감소를 보였다.As shown in FIG. 12 , significantly less nuclear DAPI fluorescence intensity was measured in the other groups than in the L-P-F drug group, and TUNEL intensity indicating apoptosis in red color was strong. Statistical analysis showed about 28% reduction in apoptosis.
뇌조직의 오른쪽 경색(Infarct) 조직 만을 분리해 단백질을 추출해 12% gradient gel에 각 웰에 그룹당 30 ㎍의 단백질을 걸어 웨스턴 블롯 실험을 진행하였다. Only the right infarct tissue of the brain tissue was isolated, protein was extracted, and 30 μg of protein per group was applied to each well in a 12% gradient gel to conduct a Western blot experiment.
도 13에서와 같이, Fas와 Cleaved Caspase-3의 1차 항체를 사용해 확인한 결과 Fas는 약 2배, Cleaved Caspase-3는 0.5배 감소한 단백질 발현도를 확인하여 약물 처리한 그룹에서 Fas 세포사멸 경로 차단을 통해 치료 효과를 보였다는 것을 분자생물학적으로 입증하였다.As shown in FIG. 13, as a result of confirming using the primary antibodies of Fas and Cleaved Caspase-3, the protein expression levels of Fas were reduced by about 2 times and Cleaved Caspase-3 by 0.5 times, indicating that the Fas apoptosis pathway was blocked in the drug-treated group. It was proved molecularly that the treatment effect was shown through
면역조직화학 염색을 통해 절편한 뇌조직에서 세포사멸경로의 핵심적인 역할인 cleaved Caspase-3의 단백질 발현도를 관찰하였다. The protein expression level of cleaved Caspase-3, which plays a key role in the apoptosis pathway, was observed in brain tissue sections through immunohistochemical staining.
도 14에서와 같이, 그 결과 L-P-F 약물 군에서 cleaved Caspase-3 형광이 약 13% 정도의 감소된 경향을 보여 FBP의 Fas 결합으로 세포사멸 억제에 의한 허혈성 뇌졸중 치료 효과를 입증하였다.As shown in FIG. 14, as a result, the cleaved Caspase-3 fluorescence decreased by about 13% in the L-P-F drug group, demonstrating the effect of ischemic stroke treatment by inhibiting apoptosis by FBP binding to Fas.
본 발명은 허혈성 뇌졸중과 같은 뇌질환 치료 분야에서 혈액-뇌 장벽을 통과하는 전신성 투여 제형으로 적용할 수 있다.The present invention can be applied as a systemic dosage form that passes through the blood-brain barrier in the field of treatment of brain diseases such as ischemic stroke.

Claims (14)

  1. 하기 일반식 1로 표시되는 복합체를 포함하는 허혈성 뇌졸중의 예방 또는 치료용 조성물:A composition for preventing or treating ischemic stroke comprising a complex represented by Formula 1 below:
    [일반식 1][Formula 1]
    Lep-PEG-FBPLep-PEG-FBP
    상기 식에서,In the above formula,
    Lep은 렙틴 또는 SEQ ID NO: 1의 아미노산 서열 중 1-33, 12-32, 15-32 또는 61-90의 아미노산 서열을 포함하는 렙틴-유래 뇌 타겟팅 펩타이드이고,Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
    PEG는 폴리에틸렌글리콜이며,PEG is polyethylene glycol,
    FBP는 하기 일반식 2로 표시되는 아미노산 서열로 이루어진 Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide)를 나타낸다.FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
    [일반식 2][Formula 2]
    Xaa1-Cys-Asp-Glu-His-Phe-Xaa2-Xaa3 Xaa 1 -Cys-Asp-Glu-His-Phe-Xaa 2 -Xaa 3
    상기 식에서,In the above formula,
    Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 임의의 아미노산이고,Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid;
    Xaa2는 존재하지 않거나 Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn 및 Gln으로 이루어진 군에서 선택된다. Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
  2. 제1항에 있어서, According to claim 1,
    렙틴-유래 뇌 타겟팅 펩타이드는 SEQ ID NO: 2의 아미노산 서열을 포함하는, 허혈성 뇌졸중의 예방 또는 치료용 조성물.A composition for preventing or treating ischemic stroke, wherein the leptin-derived brain-targeting peptide comprises the amino acid sequence of SEQ ID NO: 2.
  3. 제1항에 있어서, 상기 일반식 2에서, The method of claim 1, wherein in the general formula 2,
    Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고, Xaa 1 and Xaa 3 are each independently absent or selected from the group consisting of Tyr, Phe and Trp;
    Xaa2는 존재하지 않거나 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택되는, 허혈성 뇌졸중의 예방 또는 치료용 조성물.A composition for preventing or treating ischemic stroke, wherein Xaa 2 does not exist or is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
  4. 제1항에 있어서, 상기 일반식 2에서, The method of claim 1, wherein in the general formula 2,
    Xaa1 및 Xaa3는 각각 독립적으로 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고,Xaa 1 and Xaa 3 are each independently selected from the group consisting of Tyr, Phe and Trp;
    Xaa2는 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택되는, 허혈성 뇌졸중의 예방 또는 치료용 조성물.Xaa 2 is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys, a composition for preventing or treating ischemic stroke.
  5. 제1항에 있어서, According to claim 1,
    일반식 2로 표시되는 아미노산 서열은 SEQ ID NOS: 3 내지 12로 이루어진 군에서 선택되는 어느 하나인, 허혈성 뇌졸중의 예방 또는 치료용 조성물.The amino acid sequence represented by Formula 2 is SEQ ID NOS: any one selected from the group consisting of 3 to 12, a composition for preventing or treating ischemic stroke.
  6. 제1항에 있어서, According to claim 1,
    상기 조성물은 전신성 투여를 통해 전달되는, 허혈성 뇌졸중의 예방 또는 치료용 조성물.The composition is delivered through systemic administration, a composition for preventing or treating ischemic stroke.
  7. 제6항에 있어서,According to claim 6,
    상기 전신성 투여는 정맥 투여인, 허혈성 뇌졸중의 예방 또는 치료용 조성물.The systemic administration is intravenous administration, a composition for preventing or treating ischemic stroke.
  8. 치료적 유효량의 하기 일반식 1로 표시되는 복합체를 이를 필요로 하는 대상체에게 투여하는 것을 포함하는 허혈성 뇌졸중의 치료방법:A method for treating ischemic stroke comprising administering a therapeutically effective amount of a complex represented by Formula 1 below to a subject in need thereof:
    [일반식 1][Formula 1]
    Lep-PEG-FBPLep-PEG-FBP
    상기 식에서,In the above formula,
    Lep은 렙틴 또는 SEQ ID NO: 1의 아미노산 서열 중 1-33, 12-32, 15-32 또는 61-90의 아미노산 서열을 포함하는 렙틴-유래 뇌 타겟팅 펩타이드이고,Lep is leptin or a leptin-derived brain-targeting peptide comprising the amino acid sequence of 1-33, 12-32, 15-32 or 61-90 of the amino acid sequence of SEQ ID NO: 1,
    PEG는 폴리에틸렌글리콜이며,PEG is polyethylene glycol,
    FBP는 하기 일반식 2로 표시되는 아미노산 서열로 이루어진 Fas 신호전달 억제용 펩타이드(Fas Blocking Peptide)를 나타낸다.FBP represents a Fas Blocking Peptide consisting of an amino acid sequence represented by Formula 2 below.
    [일반식 2][Formula 2]
    Xaa1-Cys-Asp-Glu-His-Phe-Xaa2-Xaa3 Xaa 1 -Cys-Asp-Glu-His-Phe-Xaa 2 -Xaa 3
    상기 식에서,In the above formula,
    Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 임의의 아미노산이고,Xaa 1 and Xaa 3 are each independently absent or an arbitrary amino acid;
    Xaa2는 존재하지 않거나 Ala, Gly, Val, Leu, Ile, Met, Pro, Ser, Cys, Thr, Asn 및 Gln으로 이루어진 군에서 선택된다. Xaa 2 is absent or selected from the group consisting of Ala, Gly, Val, Leu, He, Met, Pro, Ser, Cys, Thr, Asn and Gln.
  9. 제8항에 있어서, According to claim 8,
    렙틴-유래 뇌 타겟팅 펩타이드는 SEQ ID NO: 2의 아미노산 서열을 포함하는, 허혈성 뇌졸중의 치료방법.A method of treating ischemic stroke, wherein the leptin-derived brain-targeting peptide comprises the amino acid sequence of SEQ ID NO: 2.
  10. 제8항에 있어서, 상기 일반식 2에서, The method of claim 8, wherein in the general formula 2,
    Xaa1 및 Xaa3는 각각 독립적으로 존재하지 않거나 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고, Xaa 1 and Xaa 3 are each independently absent or selected from the group consisting of Tyr, Phe and Trp;
    Xaa2는 존재하지 않거나 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택되는, 허혈성 뇌졸중의 치료방법.A method for treating ischemic stroke, wherein Xaa 2 does not exist or is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys.
  11. 제8항에 있어서, 상기 일반식 2에서, The method of claim 8, wherein in the general formula 2,
    Xaa1 및 Xaa3는 각각 독립적으로 Tyr, Phe 및 Trp로 이루어진 군에서 선택되고,Xaa 1 and Xaa 3 are each independently selected from the group consisting of Tyr, Phe and Trp;
    Xaa2는 Gly, Ala, Ser, Thr, Met 및 Cys로 이루어진 군에서 선택되는, 허혈성 뇌졸중의 치료방법.Xaa 2 is selected from the group consisting of Gly, Ala, Ser, Thr, Met and Cys, a method for treating ischemic stroke.
  12. 제8항에 있어서, According to claim 8,
    일반식 2로 표시되는 아미노산 서열은 SEQ ID NOS: 3 내지 12로 이루어진 군에서 선택되는 어느 하나인, 허혈성 뇌졸중의 치료방법.The amino acid sequence represented by Formula 2 is any one selected from the group consisting of SEQ ID NOS: 3 to 12, a method for treating ischemic stroke.
  13. 제8항에 있어서, According to claim 8,
    상기 복합체는 전신성 투여를 통해 전달되는, 허혈성 뇌졸중의 치료방법.The method of treating ischemic stroke, wherein the complex is delivered through systemic administration.
  14. 제13항에 있어서,According to claim 13,
    상기 전신성 투여는 정맥 투여인, 허혈성 뇌졸중의 치료방법.The systemic administration is an intravenous administration, a method for treating ischemic stroke.
PCT/KR2022/016060 2021-10-22 2022-10-20 Composition for preventing or treating ischemic stroke comprising inhibitor of apoptosis proteins WO2023068850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0141892 2021-10-22
KR1020210141892A KR20230057747A (en) 2021-10-22 2021-10-22 Composition for preventing or treating ischemic stroke comprising Fas-blocking peptide

Publications (1)

Publication Number Publication Date
WO2023068850A1 true WO2023068850A1 (en) 2023-04-27

Family

ID=86059539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016060 WO2023068850A1 (en) 2021-10-22 2022-10-20 Composition for preventing or treating ischemic stroke comprising inhibitor of apoptosis proteins

Country Status (2)

Country Link
KR (1) KR20230057747A (en)
WO (1) WO2023068850A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057148A (en) * 2015-11-13 2017-05-24 한양대학교 산학협력단 Composition for Treatment of Brain Stroke by Intranasal Delivery
KR20200096449A (en) * 2018-12-04 2020-08-12 주식회사 시그넷바이오텍 Pharmaceutical composition for preventing or treating of obesity or fatty liver comprising Fas signal blocking peptides
KR102234112B1 (en) * 2014-06-27 2021-04-02 한양대학교 산학협력단 Brain Specific Nuecleic Acid delivery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405916B2 (en) 2002-05-23 2010-01-27 トラスティース・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア FAS peptidomimetics and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234112B1 (en) * 2014-06-27 2021-04-02 한양대학교 산학협력단 Brain Specific Nuecleic Acid delivery
KR20170057148A (en) * 2015-11-13 2017-05-24 한양대학교 산학협력단 Composition for Treatment of Brain Stroke by Intranasal Delivery
KR20200096449A (en) * 2018-12-04 2020-08-12 주식회사 시그넷바이오텍 Pharmaceutical composition for preventing or treating of obesity or fatty liver comprising Fas signal blocking peptides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAYA, ALI EL.: "New Polyethylene Glycols (PEG) as versatile biochemical linkers", TEBUBIO, 13 July 2016 (2016-07-13), XP009545864, Retrieved from the Internet <URL:https://www.tebu-bio.com/blog/polyethylene-glycols-peg-as-versatile-biochemical-linkers>> *
CHUNG, SUNGEUN: "Systemic treatment of Fas-blocking peptide attenuates apoptosis in brain ischemia", MASTER'S THESIS, DEPARTMENT OF BIOENGINEERING, GRADUATE SCHOOL OF HANYANG UNIVERSITY, 2021, pages 1 - 31, XP009546590 *
ZHAO XUAN, YANG ZHIMIN, HE HUINING, LIN AND MEINA: "Novel Cell-Penetrating Drug Delivery System for siRNA ", 2018 TIDES POSTER PRESENTATION, 1 January 2018 (2018-01-01), XP093058729, Retrieved from the Internet <URL:https://www.jenkemusa.com/wp-content/uploads/2018/01/Novel-Cell-Penetrating-Drug-Delivery-System-for-siRNA-_-JenKem-Technology.pdf> *

Also Published As

Publication number Publication date
KR20230057747A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
EP2489361B1 (en) Use of cell-permeable peptide inhibitors of the JNK signal transduction pathway for the treatment of various diseases
RU2266129C2 (en) Method for treating neurodegenerative disorder or myelinogenesis disorder
US20070048286A1 (en) Method of treating dopaminergic and GABA-nergic disorders
US20050176627A1 (en) Long acting erythropoietins that maintain tissue protective activity of endogenous erythropoietin
WO2005025606A1 (en) Long acting erythropoietins that maintain tissue protective activity of endogenous erythropoietin
US10808018B2 (en) Erythropoietin-derived peptides and methods of protecting cells from oxidative damage induced by reactive oxygen species
US20100184692A1 (en) Amidated Dopamine Neuron Stimulating Peptides for CNS Dopaminergic Upregulation
US20050164948A1 (en) Methods of treatment with prosaposin-derived peptides
WO2017082707A1 (en) Composition for treating apoplexy through nasal administration
US6680295B1 (en) Method and pharmaceutical composition for prevention and treatment of brain damage
KR20010101218A (en) Brain cell or nerve cell-protective agents comprising ginsenoside Rb1
PT792160E (en) NEUROTROPHIC FACTOR DERIVED FROM GLIAL CELLS USED AS A NEUROPROTECTOR AGENT
Sosa Testé et al. Intranasal administration of recombinant human erythropoietin exerts neuroprotective effects on post-ischemic brain injury in Mongolian gerbils
US20140248234A1 (en) Use of g-csf dimer in preparation of medicament for treatment of neurodegenerative diseases
WO2023068850A1 (en) Composition for preventing or treating ischemic stroke comprising inhibitor of apoptosis proteins
JP2006511468A (en) Long-acting erythropoietin maintains the tissue protective activity of endogenous erythropoietin
JP7002788B2 (en) Pharmaceutically acceptable salts of polypeptides and their use
US20190091284A1 (en) Amidated Dopamine Neuron Stimulating Peptides for CNS Dopaminergic Upregulation
KR102419584B1 (en) Composition comprising blood-brain barrier penetrating peptide as effective component and uses thereof
WO2022114906A1 (en) Novel pharmaceutical composition for treating neurodegenerative diseases
CN101820756A (en) Protein kinase c-d inhibitors that protect against cellular injury and inflammation and promote astrocyte proliferation
US20180117113A1 (en) Amidated Dopamine Neuron Stimulating Peptide Restoration of Mitochondrial Activity
JP2001139483A (en) Protecting agent for brain cell or nerve cell, consisting of ginseng
WO2023128122A1 (en) Peptides having blood-brain barrier penetrating ability, and uses thereof
WO2018048046A2 (en) Pharmaceutical composition containing mtor inhibitor for treating macular degeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884072

Country of ref document: EP

Kind code of ref document: A1