WO2023068736A1 - Arginine decarboxylase variant and functional polypeptide variant-albumin conjugate prepared using same - Google Patents

Arginine decarboxylase variant and functional polypeptide variant-albumin conjugate prepared using same Download PDF

Info

Publication number
WO2023068736A1
WO2023068736A1 PCT/KR2022/015832 KR2022015832W WO2023068736A1 WO 2023068736 A1 WO2023068736 A1 WO 2023068736A1 KR 2022015832 W KR2022015832 W KR 2022015832W WO 2023068736 A1 WO2023068736 A1 WO 2023068736A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
variant
arginine decarboxylase
adc
amino acid
Prior art date
Application number
PCT/KR2022/015832
Other languages
French (fr)
Korean (ko)
Inventor
권인찬
김승균
임수진
Original Assignee
주식회사 프로앱텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로앱텍 filed Critical 주식회사 프로앱텍
Publication of WO2023068736A1 publication Critical patent/WO2023068736A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/51Lyases (4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • ADC variant an arginine decarboxylase variant comprising one or more unnatural amino acids.
  • One embodiment of the present application relates to arginine decarboxylase variant-albumin conjugates.
  • Arginine decarboxylase is an enzyme that catalyzes the conversion of L-arginine to agmatine and carbon dioxide. The conversion process consumes protons in the decarboxylation reaction and similar to other enzymes involved in amino acid metabolism such as ornithine decarboxylase and glutamine decarboxylase, pyridoxal-5'-phosphate ; PLP) using a cofactor.
  • arginine decarboxylase which catalyzes the conversion of arginine to agmatine and carbon dioxide, can be used as an anticancer agent (Philip, R., E. Campbell, and D. N. Wheatley. “Arginine deprivation, growth inhibition and tumor cell death. : 2. Enzymatic degradation of arginine in normal and malignant cell cultures.” British journal of cancer 88.4 (2003): 613-623.). Arginine decarboxylases can interfere with the growth and differentiation of cancer cells by depleting arginine required for metabolic activity in arginine auxotrophy tumor cells. Philip, R et al., pegylated human arginine decarboxylase and disclose that the pegylated arginine decarboxylase was stable but reduced in efficacy by 40%.
  • One object of the present application is to provide an arginine decarboxylase variant having increased stability and/or plasma half-life or a conjugate using the same.
  • the enzymatic activity of the arginine decarboxylase variant provided by the present application or a conjugate using the same is characterized by a small or higher difference when compared to wild-type arginine decarboxylase.
  • FPV is a functional polypeptide variant unit, said functional polypeptide variant unit is an arginine decarboxylase variant unit, said arginine decarboxylase variant unit is derived from an arginine decarboxylase variant, said arginine decarboxylase variant contains one or more unnatural amino acids;
  • the non-natural amino acid includes a first click chemical functional group, wherein the first click chemical functional group can undergo a click chemical reaction with a second click chemical functional group, wherein the first click chemical functional group is a terminal alkyne ) group, azide group, strained alkyne group, diene group, dienophile group, trans-cyclooctene group, alkene group, Including any one group selected from a thiol group, a tetrazine group, a triazine group, a dibenzocyclooctyne (DBCO) and a bicyclononyne group,
  • DBCO dibenzocyclooctyne
  • J 1 is a first bonding unit, and the first bonding unit has a structure formed by a click chemical reaction between the first click chemical functional group and the second click chemical functional group;
  • a 2 is a second anchor moiety, said second anchor unit being a substituted hydrocarbon chain containing one or more heteroatoms;
  • J 2 is a second junction unit, wherein the second junction unit has a structure formed by a reaction between a thiol-reactive group and a thiol group, wherein the thiol-reactive group is a maleimide group or an APN group;
  • P 1 is an albumin unit, said albumin unit being derived from albumin;
  • a is an integer greater than or equal to 1 and less than or equal to 10;
  • the arginine decarboxylase variant is a decamer of 10 arginine decarboxylase subunit variants, wherein the arginine decarboxylase subunit variant comprises one or more non-natural amino acids.
  • the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), an amino acid having at least 90% sequence identity with a sequence in which any one or more residues selected from glutamine at position 488, lysine at position 522, and glycine at position 657 are substituted with non-natural amino acids can have a sequence.
  • the arginine decarboxylase subunit variant may have an amino acid sequence of any one of the amino acid sequences of SEQ ID NOs: 02 to SEQ ID NOs: 08 and amino acid sequences having 90% or more sequence identity thereto. .
  • the first click chemofunctional group may include a tetrazine group or an azide group.
  • the unnatural amino acid can be frTet or AzF.
  • the second click chemical functional group may include any one group selected from a trans cyclooctyne (TCO) group, a DBCO group, and a bicyclononine group.
  • TCO trans cyclooctyne
  • DBCO DBCO
  • bicyclononine group any one group selected from a trans cyclooctyne (TCO) group, a DBCO group, and a bicyclononine group.
  • the second click chemofunctional group may include a trans cyclooctyne (TCO) group.
  • the second bonding unit may have the following structure:
  • the S atom is derived from albumin.
  • the second bonding unit may have the following structure:
  • the S atom is derived from albumin.
  • said second anchor unit is -A 21 -A 22 -A 23 -;
  • a 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -substituted or unsubstituted C 1-12 alkylene-[EG] n -, -Substituted or unsubstituted C 1-12- Heteroalkylene-[EG] n -, -Substituted or unsubstituted C 1-12 Alkylene-[EG] n -Substituted or unsubstituted C 1-12 Alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted C 1-12 heteroalkylene -[EG] any one selected from n -substituted or unsubstituted C 1-12 heteroalkylene-
  • EG is an ethylene glycol unit
  • the ethylene glycol unit has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -, where n is an integer of 2 or more and 6 or less,
  • heteroalkylene is each independently selected from N, O, and S,
  • a 21 A case in which both A 22 and A 23 are simultaneously bonded may not exist.
  • the second anchor unit may have any one of the following structures:
  • n is an integer of 2 or more and 8 or less
  • 3' is an attachment site with the first bonding unit
  • 4' is an attachment site with the second bonding unit
  • the albumin may have an amino acid sequence of any one of the amino acid sequences of SEQ ID NO: 09 to SEQ ID NO: 20.
  • a pharmaceutical composition for treating arginine auxotrophic tumors comprising a compound having the structure of Formula 1, is provided.
  • the arginine auxotrophic tumor is melanoma, liver cancer, hepatocellular carcinoma (HCC), prostate cancer, pancreatic cancer, breast cancer cancer), mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (Glioblastoma multiforme; GBM), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
  • HCC hepatocellular carcinoma
  • GBM glioblastoma multiforme
  • AML acute myeloid leukemia
  • Threonine at position 39 Asparagine at position 85, Asparagine at position 245, Lysine at position 312, Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01 ), a sequence in which any one or more residues selected from lysine at position 522, and glycine at position 657 are substituted with a non-natural amino acid, or an arginine decarboxylase sub having a sequence having at least 90% sequence identity therewith Unit variants are provided.
  • the arginine decarboxylase subunit variant may have a sequence in which the 39th threonine of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith. there is.
  • the arginine decarboxylase subunit variant may have a sequence in which the 312th lysine of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith. there is.
  • the non-natural amino acid can be frTet.
  • the non-natural amino acid can be AzF.
  • the arginine decarboxylase subunit variant may have any one of the amino acid sequence of SEQ ID NO: 02 to SEQ ID NO: 08 and an amino acid sequence having at least 90% sequence identity therewith. there is.
  • a pharmaceutical composition for treating arginine auxotrophic tumors comprising the arginine decarboxylase subunit variant of the present application.
  • the arginine auxotrophic tumor is melanoma, liver cancer, hepatocellular carcinoma (HCC), prostate cancer, pancreatic cancer, breast cancer cancer), mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (Glioblastoma multiforme; GBM), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
  • HCC hepatocellular carcinoma
  • GBM glioblastoma multiforme
  • AML acute myeloid leukemia
  • a method of treating arginine auxotrophic tumor in a subject comprising: administering to the subject a compound having the structure of Formula 1 or a composition comprising an arginine decarboxylase variant. .
  • composition comprising a compound having the structure of Formula 1 or an arginine decarboxylase subunit variant for treating arginine auxotrophic tumor in a subject.
  • the functional polypeptide variant-albumin conjugate prepared from the arginine decarboxylase variant according to one embodiment of the present application has improved plasma half-life and immunogenicity than wild-type arginine decarboxylase, and the enzyme activity is higher than that of wild-type arginine decarboxylase. Compared to raises, there is no significant difference or a higher advantage.
  • the arginine decarboxylase variant and/or the arginine decarboxylase subunit variant according to one embodiment of the present application includes an unnatural amino acid, and has no significant difference or no significant difference in enzymatic activity compared to wild-type arginine decarboxylase. has high advantages.
  • ADC_WT wild-type E. coli-derived arginine decarboxylase
  • FIG. 4 shows the metabolic activity measurement results for each cell line according to ADC_WT treatment and treatment concentration. Specifically, FIG. 4 is a result of breast cancer and/or mammary cancer-related cell lines.
  • FIG. 5 shows the metabolic activity measurement results for each cell line according to ADC_WT treatment and treatment concentration. Specifically, FIG. 5 is a result of lung cancer-related cell lines.
  • FIG. 5 is a result of pancreatic cancer-related cell lines.
  • ADC_Q488AzF and ADC_K522AzF show the results of performing PAGE after expressing ADC variants. (a) shows the results before purification and (b) after purification.
  • FIG. 13 shows PAGE results for ADC variants (ADC_T39frTet, ADC_N85frTet, and ADC_N245frTet). PAGE was performed after ADC_WT and ADC variant expression and purification.
  • ADC_K312frTet shows PAGE results for ADC variants (ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, ADC_G657frTet). SDS-PAGE was performed after ADC variant expression and purification.
  • ADC_K312frTet ADC variant (K312frTet) and ADC (K312frTet)-HSA conjugate.
  • the term "about” means approximately as close to a quantity as, relative to a reference amount, level, value, number, frequency, percentage, dimension, size, amount, weight, or length, such as 30, 25, 20, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1%.
  • polypeptide is used to mean a compound formed by consecutively linking a plurality of amino acids.
  • polypeptide is used to include both peptides and proteins.
  • a polypeptide can include, for example, but is not limited to, three or more amino acid residues.
  • a polypeptide can include, but is not limited to, 15 or more amino acid residues. In other instances, it may include, but is not limited to, 50 or more amino acid residues. In other instances, a polypeptide may include, but is not limited to, 200 or more amino acid residues.
  • Halogen or "halo” refers to a group containing fluorine, chlorine, bromine and iodine included in the halogen group of elements in the periodic table.
  • hetero refers to a compound or group containing at least one heteroatom.
  • heteroatom is an atom other than carbon or hydrogen, including, for example, B, Si, N, P, O, S, F, Cl, Br, I and Se.
  • polyvalent elements such as N, O, and S or monovalent elements such as F, Cl, Br, and I are included, but are not limited thereto.
  • substituted means that one or more hydrogen atoms on an atom are replaced with a substituent, wherein the valence of the atom is normal and the substituted compound is stable.
  • the substituents are each independently selected.
  • Substituents may include deuterium and hydrogen variants.
  • one substituent is a halogen (eg, Cl, F, Br, and I, etc.)
  • halogen eg, Cl, F, Br, and I, etc.
  • substituents can be arbitrary, as long as they are chemically achievable.
  • substituted C 10-20 alkylene may mean that one or more hydrogen atoms linked to the main chain are substituted with substituents, and each substituent may be independently selected.
  • alkyl or “alkane” is used to mean a fully saturated chain or branched hydrocarbon group.
  • Chain and branched alkyl groups include, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, iso-butyl, pentyl, hexyl, heptyl (heptyl), octyl, nonyl, and decyl.
  • Alkyl groups may include cyclic structures.
  • C xy for example when used with the term alkyl, is intended to include moieties containing from x to y carbons in the chain or ring.
  • C xy alkyl includes substituted or unsubstituted, chain-like alkyl groups, branched alkyl groups, or alkyl groups containing a cyclic structure containing x to y carbons in the chain; , and further haloalkyl groups such as difluoromethyl and 2,2,2-trifluoroethyl, and the like.
  • C 0 Alkyl means hydrogen.
  • C 1-4 alkyl examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, iso-butyl, difluoromethyl, and 2,2,2-trifluoro roethyl and the like, but are not limited thereto.
  • heteroalkyl refers to an alkyl containing one or more heteroatoms.
  • alkenyl or “alkene” is used to mean a chain or branched non-aromatic hydrocarbon group containing one or more double bonds.
  • a chain-like or branched alkenyl group can have 2 to about 50, 2 to 20, or 2 to 10 carbon atoms.
  • Alkenyl groups can include cyclic structures.
  • heteroalkene refers to an alkene containing one or more heteroatoms.
  • alkynyl or “alkyne” is used to mean a chain or branched non-aromatic hydrocarbon group containing one or more triple bonds.
  • a chain or branched alkynyl group can have 2 to about 50, 2 to 20, or 2 to 10 carbon atoms.
  • An alkynyl group may contain one or more double bonds in addition to one or more triple bonds.
  • Alkynyl groups can include cyclic structures.
  • heteroalkyn refers to an alkyne containing one or more heteroatoms.
  • alkylene when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from an alkyl.
  • alkylene may be used with the terms “substituted” or “unsubstituted”, as appropriate.
  • alkylene is intended to include both substituted and unsubstituted alkylenes.
  • Alkylene may be exemplified by -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, and -CH 2 CH 2 CH 2 CH 2 -, but is not limited thereto.
  • alkylene may be used as C 2 alkylene, which refers to an alkylene group containing two carbon atoms in the main chain.
  • C xy alkylene is used to mean an alkylene including both substituted and unsubstituted alkylenes having X to Y number of carbon atoms in the main chain.
  • heteroalkylene when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkyl.
  • heteroalkylene may be used with the terms “substituted” or “unsubstituted” as appropriate.
  • heteroalkylene when the term “heteroalkylene” is not used in conjunction with the terms “substituted” or “unsubstituted”, the term “heteroalkylene” includes both substituted and unsubstituted heteroalkylenes.
  • heteroalkylene groups include, but are not limited to —CH 2 —CH 2 —O—CH 2 —CH 2 —, and —CH 2 —O—CH 2 —CH 2 —NH—CH 2 —.
  • Heteroalkylene groups can contain one or more heteroatoms, and each heteroatom can be the same or different.
  • a heteroalkylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different.
  • a heteroalkylene group can contain one or more heteroatoms at each or all ends of a chain or branch, and each heteroatom can be the same or different.
  • C xy heteroalkylene is used to include all substituted or unsubstituted heteroalkylenes having x to y carbon atoms in the main chain.
  • alkenylene when used as a molecule by itself or as part of a molecule refers to a divalent radical derived from an alkene.
  • alkenylene may be used with the terms “substituted” or “unsubstituted” as appropriate.
  • the term “alkenylene” is intended to include both substituted and unsubstituted alkenylene.
  • C xy alkenylene is used to include all substituted or unsubstituted alkenylene having X to Y number of carbon atoms in the main chain.
  • heteroalkenylene when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkene.
  • heteroalkenylene may be used with the terms “substituted” or “unsubstituted” as appropriate.
  • heteroalkenylene when the term “heteroalkenylene” is not used with the terms “substituted” or “unsubstituted”, the term “heteroalkenylene” includes both substituted and unsubstituted heteroalkenylenes. it is intended to A heteroalkenylene group can contain one or more heteroatoms, and each heteroatom can be the same or different.
  • a heteroalkenylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different.
  • a heteroalkenylene group may contain one or more heteroatoms at each or all ends of the chain or branch, and each heteroatom may be the same or different.
  • alkynylene when used as a molecule by itself or as part of a molecule refers to a divalent radical derived from an alkyne.
  • alkynylene may be used with the terms “substituted” or “unsubstituted” as appropriate.
  • the term “alkynylene” is intended to include both substituted and unsubstituted alkynylenes.
  • an alkynylene group includes, but is not limited to, -C ⁇ C-, -CH 2 C ⁇ CCH 2 -, and -C ⁇ CC ⁇ C-.
  • C xy alkynylene is used to include all substituted or unsubstituted alkynylene having X to Y number of carbon atoms in the main chain.
  • heteroalkynylene when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkyne.
  • heteroalkynylene may be used with the terms “substituted” or “unsubstituted” as appropriate.
  • heteroalkynylene when the term “heteroalkynylene” is not used with the terms “substituted” or “unsubstituted”, the term “heteroalkynylene” includes both substituted and unsubstituted heteroalkynylene. It is intended to A heteroalkynylene group can contain one or more heteroatoms, and each heteroatom can be the same or different.
  • a heteroalkynylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different.
  • a heteroalkynylene group can contain one or more heteroatoms at each or all ends of a chain or branch, and each heteroatom can be the same or different.
  • Compounds herein may have certain geometric or stereoisomeric forms. Where a compound is disclosed in this application unless otherwise specified, cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, portions of said compound Isomers such as stereoisomers, (D)-isomers, (L)-isomers, and racemates are included within the scope of this application. That is, an indication related to an isomer in a formula or structure disclosed in this application (eg, *, , , and etc.), the formula or structure disclosed is meant to include all possible isomers.
  • click-chemistry as used herein is defined by K. Barry Sharpless of the Scripps Research Institute to describe complementary chemical groups and chemical reactions designed to quickly and stably form a covalent bond between two molecules. It is a chemical concept introduced for Click chemistry in the present specification does not mean a specific reaction, but means a concept of a fast and stable reaction. In one embodiment, in order to form bonds between molecules by click chemistry, several conditions must be satisfied. The conditions are high yield, excellent selectivity for the reaction site, organic molecular bonding by operating in a modular manner, and rapid and accurate product production by proceeding in a thermodynamically stabilized direction.
  • the click chemistry of the present specification is a click chemical functional group (eg, terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclo Octyne (trans-cyclooctene), alkene (alkene), thiol (thiol), tetrazine (tetrazine), triazine (triazine), dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4- Including yne), a pair having reactivity with each other reacts.
  • DBCO dibenzocyclooctyne
  • bicyclononyne bicyclo[6.1.0]non-4- Including yne
  • click chemistry reactions include Huisgen 1,3-dipolar cycloaddition (see Tornoe et al., Journal of Organic Chemistry (2002) 67: 3075-3064, etc.); Diels-Alder reaction; inverse-demand Diels-Alder reaction; Nucleophilic addition to small strained rings such as epoxides and aziridines; a nucleophilic addition reaction to an activated carbonyl group; and addition reactions to carbon-carbon double bonds or triple bonds.
  • the term "natural amino acid” or "standard amino acid” refers to 20 types of amino acids synthesized through gene transcription and translation in the body of an organism. do. Specifically, the standard amino acids are Alanine (Ala, A), Arginine (Arg, R), Asparagine (Asn, N), Aspartic acid (Asp, D), Cysteine (Cys) , C), glutamic acid (Glu, E), glutamine (Gln, Q), glycine (Gly, G), histidine (His, H), isoleucine (Ile, I), Leucine (Leu, L), Lysine (Lys K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro, P), Serine (Ser, S), threonine (Thr, T), tryptophan (Trp, W), tyrosine (Tyr, Y), and valine (Val, V).
  • the standard amino acids are Alanine (Ala,
  • Each of the above standard amino acids has a corresponding DNA codon, and can be represented by a general amino acid one-letter or three-letter notation.
  • the subject referred to by the term standard amino acid should be appropriately interpreted according to the context, and includes all other meanings that can be recognized by those skilled in the art.
  • nonnatural amino acid refers to an amino acid that is not synthesized in the body but artificially synthesized.
  • the non-natural amino acids include, for example, p-Azido-L-phenylalanine (AzF), p-ethynyl-phenylalanine (pEthF), L-homopropargylglycine (L-Homopropargylglycine; HPG), O-propargyl-L-tyrosine (oPa), p-propargyloxyphenylalanine (pPa), 2-amino-3-(4 -Azidophenyl)propanoic acid (2-amino-3-(4-azidophenyl)propanoic acid), 2-amino-4-(4-azidophenyl)butanoic acid (2-amino-4-(4-azidophenyl) butanoic acid), and 4-(1,2,4,5-tetrazin
  • non-natural amino acid does not have a corresponding DNA codon and cannot be expressed in a general amino acid one-letter or three-letter notation, it is indicated using other characters and additionally supplemented.
  • the subject referred to by the term non-natural amino acid should be appropriately interpreted according to the context, and includes all other meanings that can be recognized by those skilled in the art.
  • amino acid can be used to refer to both amino acids not bound to other amino acids and amino acid residues included in proteins or peptides bound to other amino acids, and the contents of the paragraph in which the amino acid term is used Or it may be appropriately interpreted according to the context.
  • amino acid may be used to include both natural amino acids and non-natural amino acids.
  • alanine may be used to refer to alanine and/or an alanine residue.
  • arginine can be used to refer to arginine and/or arginine residues.
  • amino acid may be used to include both L-type amino acids and D-type amino acids. In some embodiments, where there is no reference to the L or D form, it can be interpreted as an L-form amino acid.
  • amino acid residue refers to an amino acid contained in a compound, peptide, and/or protein that is covalently linked to another portion of the compound, peptide, and/or protein. structure derived from it. For example, when alanine, arginine, and glutamic acid are linked through an amide bond to form a peptide having an ARE sequence, the peptide includes three amino acid residues, wherein A is an alanine residue, R is an arginine residue, and E is may be referred to as glutamic acid residues.
  • the peptide may include three amino acids, and A is alanine, R is arginine, and E is glutamic acid.
  • A is alanine
  • R is arginine
  • E is glutamic acid.
  • the peptide when aspartic acid, phenylalanine, and lysine are linked through an amide bond to form a peptide having a DFK sequence, the peptide includes three amino acid residues, wherein D is an aspartic acid residue, F is a phenylalanine residue, and K may be referred to as a lysine residue.
  • the peptide may include three amino acids, and D may be referred to as aspartic acid, F may be phenylalanine, and K may be referred to as lysine.
  • amino acid sequences are described in the N-terminal to C-terminal direction using one-letter notation or three-letter notation when describing amino acid sequences in the present specification.
  • RNVP when expressed as RNVP, it means a peptide in which arginine, asparagine, valine, and proline are sequentially connected from the N-terminal to the C-terminal.
  • Thr-Leu-Lys when expressed as Thr-Leu-Lys, it means a peptide in which threonine, leucine, and lysine are sequentially connected from the N-terminal to the C-terminal.
  • Sequences presented herein are at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequences of the presented sequences, provided that the desired function is identical. Sequences with identity may be included.
  • treatment refers to an approach for obtaining a beneficial or desirable clinical result.
  • a beneficial or desirable clinical result is limited to alleviation of symptoms, reduction of disease extent, stabilization of the disease state. (i.e., not worsening), delay or slowing of disease progression, prevention of disease, amelioration or palliation of disease state, and alleviation (partial or total), detectable or undetectable.
  • Treatment refers to both therapeutic treatment and prophylactic or prophylactic measures.
  • the term "subject" refers to an animal in need of treatment that can be achieved by a molecule of the invention.
  • Animals that can be treated according to the present invention include vertebrates, with mammals such as murine, bovine, canine, equine, feline, ovine, porcine and primates (including humans and non-human primates) being particularly preferred examples. .
  • arginine auxotrophy A characteristic that requires arginine as a nutrient source is called arginine auxotrophy, and a tumor that has a characteristic that requires arginine as a nutrient source is called an arginine auxotrophic tumor.
  • Arginine auxotrophy is increasingly recognized as a frequent feature of human malignancies. Arginine auxotrophy has been found in various tumors in addition to tumors such as malignant melanoma and hepatocellular carcinoma (HCC).
  • Tumors for which arginine auxotrophy has been found include: prostate, pancreatic, breast, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell. head and neck squamous cell carcinoma, Glioblastoma multiforme (GBM), acute myeloid leukemia (AML) primary and relapsed lymphomas (Riess, Christin, et al. Arginine-depleting enzymes-An increasingly recognized treatment strategy for therapy-refractory malignancies.” Cellular Physiology and Biochemistry 51.2 (2016): 854-870.).
  • GBM Glioblastoma multiforme
  • AML acute myeloid leukemia
  • arginine auxotrophic tumors As described above, studies have been conducted to treat arginine auxotrophic tumors using arginine degrading enzymes. Drugs that treat tumors by degrading arginine in arginine auxotrophic tumors and the environment surrounding the tumors may be referred to as anticancer agents.
  • Arginine decarboxylase one of the cancer metabolites, is an enzyme that catalyzes the conversion of arginine into agmatine and carbon dioxide. It is mainly found in bacteria and viruses.
  • arginine decarboxylase is part of an enzyme system present in Escherichia coli ( E. coli ), Salmonella Typhimurium , and the methanogenic bacterium Methanococcus jannaschii , which protects these organisms from highly acidic environments.
  • arginine decarboxylase from Escherichia coli has been shown to have maximum enzymatic activity at about pH 5.2 and decrease at pH 7.0 (Blethen, Sandra L., ELIZABETH A. Boeker, and EE4870599 Snell. " Arginine Decarboxylase from Escherichia coli: I. PURIFICATION AND SPECIFICITY FOR SUBSTRATES AND COENZYME.” Journal of Biological Chemistry 243.8 (1968): 1671-1677.). Arginine decarboxylase is a multimeric form of protein subunits (arginine decarboxylase subunits).
  • arginine decarboxylase found in Escherichia coli is in the form of a decamer formed by 10 homogeneous subunits and has a molecular weight of about 800 kDa.
  • Arginine decarboxylase of the decamer is composed of 5 dimers of arginine decarboxylase subunits. That is, arginine decarboxylase is a pentamer form of arginine decarboxylase subunit dimer.
  • Arginine decarboxylase derived from Escherichia coli is a bacterial-derived polymeric protein, and has immunogenicity when administered to the human body and has a short half-life and disappears from the body quickly after injection. Because of these problems, arginine decarboxylase, when administered alone, is expected to be difficult to reach the target site of cancer or tumor formation, and accordingly, it is expected that repeated injections will be required. In addition, due to the immune response generated during the first injection and subsequent injections, it is expected that the drug introduced into the body will be eliminated more rapidly during repeated injections.
  • arginine decarboxylase As an anticancer agent for treating tumors, attempts have been made to increase in vivo stability such as plasma half-life. As described above, Philip, R et al. pegylated arginine decarboxylase and confirmed its high stability. However, Philip, R et al. disclose a 40% reduction in the enzymatic activity of arginine decarboxylase. Furthermore, PEGylation was still reported to have immunogenicity.
  • arginine decarboxylase variants or albumin conjugates thereof with no reduced enzymatic activity, improved immunogenicity, and increased in vivo stability (eg plasma half-life).
  • an arginine decarboxylase variant provided by the present application an arginine decarboxylase variant subunit, a dimer of the arginine decarboxylase variant subunit, and a functional polypeptide variant-albumin conjugate prepared using the same are disclosed. do.
  • the present application provides functional polypeptide variant-albumin conjugates.
  • the functional polypeptide variant-albumin conjugate of the present application has a form in which the functional polypeptide variant is covalently linked to albumin through a linker.
  • Functional polypeptide variants, albumin, and linkers are used to prepare functional polypeptide variant-albumin conjugates.
  • the functional polypeptide variant is any one of an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of an arginine decarboxylase subunit variant.
  • the functional polypeptide variant-albumin conjugate is prepared by site-specifically linking (i) functional polypeptide variant and (ii) albumin through (iii) a linker.
  • the functional polypeptide variant may be an arginine decarboxylase variant, an arginine decarboxylase subunit variant, or a dimer of an arginine decarboxylase subunit variant.
  • Functional polypeptide variants include non-natural amino acid residues.
  • the linker includes a thiol reactive group and a click chemofunctional group.
  • the linker includes a thiol-reactive group at one end and a click chemofunctional group at the other end.
  • the thiol-reactive group of the linker reacts with the thiol group of albumin
  • the click chemistry functional group of the linker reacts with another click chemistry functional group included in the non-natural amino acid residue of the functional polypeptide variant.
  • Functional polypeptide variants, albumins, and linkers are each described in detail in the relevant sections.
  • a functional polypeptide variant-albumin conjugate having the structure of Formula 1 is provided:
  • FPV is a functional polypeptide variant unit.
  • a functional polypeptide variant unit may be a conjugated functional polypeptide variant. That is, a functional polypeptide variant unit is derived from a functional polypeptide variant.
  • the functional polypeptide variants include an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of the arginine decarboxylase subunit variant. variant).
  • J 1 is a first junction unit.
  • the first conjugation unit has a structure formed by a click chemical reaction between a first click chemical functional group included in the functional polypeptide variant and a second click chemical functional group capable of performing a click chemical reaction with the first click chemical functional group.
  • a 2 is a second anchor unit.
  • the second anchor unit refers to a construct linking the functional polypeptide variant unit and the albumin unit.
  • the second anchor unit may serve to adjust the distance between the functional polypeptide variant unit and the albumin unit, and is not particularly limited as long as it is a structure commonly used for adjusting the distance in the art.
  • the second anchor unit is derived from a linker.
  • J 2 is a second junction unit.
  • the second conjugation unit has a structure formed by reaction of a thiol reactive group with a thiol group of albumin.
  • P 1 is an albumin unit.
  • the albumin unit may be conjugated albumin. That is, the albumin unit is derived from albumin.
  • a is an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10.
  • a when the functional polypeptide variant is an arginine decarboxylase subunit variant and the arginine decarboxylase subunit variant contains one non-natural amino acid, a may be 1.
  • a when the functional polypeptide variant is a dimer of the arginine decarboxylase subunit variant and the arginine decarboxylase subunit variant contains one non-natural amino acid, a may be an integer of 1 to 2.
  • a when the functional polypeptide variant is an arginine decarboxylase variant, a may be an integer from 1 to 10.
  • functional polypeptide variant-albumin conjugates are prepared using a functional polypeptide, a linker, and albumin. Furthermore, in the conjugate, the functional polypeptide variant unit is derived from the functional polypeptide variant, the albumin unit is derived from albumin, and the second anchor unit is derived from the linker.
  • the elements used in the preparation of functional polypeptide variant-albumin conjugates are described in detail.
  • the term functional polypeptide is used herein to include all peptides, polypeptides, and proteins having more than one function.
  • the function may be related to treatment and/or prevention of a certain disease.
  • the function may be related to diagnosis.
  • the function may be to act with other polypeptides to form complexes.
  • the function may be to act with a cognate polypeptide to form a complex.
  • the complex can be used to treat any disease.
  • a function may be related to manipulation of a gene.
  • the function may be related to binding to other molecules (eg, antigens and targets, etc.).
  • the functional polypeptide is any one of arginine decarboxylase, arginine decarboxylase subunit, and dimer of arginine decarboxylase subunit.
  • Functional polypeptide variants are functional polypeptides that have been modified to include non-natural amino acids.
  • functional polypeptide variants may be those in which one or more amino acid residues included in the functional polypeptide are substituted with non-natural amino acid residues. That is, functional polypeptide variants contain one or more non-natural amino acid residues.
  • the non-natural amino acid residue may include a click chemofunctional group.
  • Functional polypeptide variants may be described by reference sequences (sequences of functional polypeptides) or reference polypeptides (functional polypeptides).
  • functional polypeptide variants can be specified by describing substitution positions and/or amino acids to be substituted in the reference sequence.
  • the functional polypeptide variant is any one selected from arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants.
  • FPV is a functional polypeptide variant unit.
  • a functional polypeptide variant unit may be a conjugated functional polypeptide variant.
  • a functional polypeptide variant unit may be derived from a functional polypeptide variant.
  • the term functional polypeptide variant may be used to include both functional polypeptide variants not conjugated with other compounds and functional polypeptide variants conjugated with other compounds.
  • the functional polypeptide variant may have any one amino acid sequence selected from SEQ ID NO: 02 to SEQ ID NO: 08.
  • the functional polypeptide variant unit FPV in Formula 1 may be referred to as a functional polypeptide variant.
  • non-natural amino acid may be used to refer to both non-natural amino acids not bound to other amino acids and non-natural amino acid residues included in proteins and/or peptides bound to other amino acids.
  • the natural amino acid term may be appropriately interpreted depending on the content or context of the paragraph in which it is used.
  • a functional polypeptide variant contains non-natural amino acid residues.
  • a functional polypeptide variant is one in which one or more natural amino acid residues contained in the functional polypeptide are substituted with non-natural amino acid residues.
  • Non-natural amino acids containing a first click chemical functional group are non-natural amino acids containing a first click chemical functional group
  • a non-natural amino acid according to one embodiment of the present application includes a click chemofunctional group.
  • the non-natural amino acid may include a first click chemofunctional group.
  • the first click chemistry functional group has a click chemistry functional group capable of performing a click chemistry reaction with the aforementioned second click chemistry functional group.
  • the first click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclooctyne (trans) -cyclooctene, alkene, thiol, tetrazine, triazine, methylcyclopropene, norbornene, cyclopentene, styrene ), (including dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne)).
  • the first click chemistry functional group may be any one selected from a tetrazine group or an analog thereof, a triazine group or an analog thereof, and an azide group.
  • the non-natural amino acid may include a tetrazine group. In one embodiment, the non-natural amino acid may include a triazine group. In one embodiment, the non-natural amino acid may include an azide group.
  • the non-natural amino acid can have the structure of Formula 3:
  • a 1 is the first anchor moiety.
  • H 1 is a first click chemical functional group.
  • the first click chemistry functional group has a click chemistry functional group, and the click chemistry functional group is a terminal alkyne, an azide, a strained alkyne, a diene, a diene Dienophile, trans-cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne, bicyclo[6.1 .0] non-4-yne)).
  • DBCO dibenzocyclooctyne
  • bicyclononyne bicyclo[6.1 .0] non-4-yne
  • the first click chemofunctional group can be represented by any one of the following structures:
  • the first anchor moiety can be a bond or -A 11 -A 12 -.
  • a 11 may be a bond or C 1-5 alkylene.
  • a 12 is a bond or [arylene]p, -[arylene]pC 1-5 alkylene-, -[arylene]pC 1-5 heteroalkylene-, -arylene-C 1- 5 Alkylene-arylene-, -arylene-C 1-5 Heteroalkylene-arylene-, -arylene-heteroarylene-, [heteroarylene]p, -[heteroarylene]pC 1-5 Alkylene-, -[heteroarylene]pC 1-5 Heteroalkylene-, -heteroarylene-C 1-5 Alkylene-arylene-, -heteroarylene-C 1-5 Alkylene-heteroarylene -, -heteroarylene-C 1-5 heteroalkylene-arylene-, and -heteroarylene-C 1-5 heteroalkylene-heteroarylene-.
  • p may be an integer of 0 or more and 3 or less.
  • the non-natural amino acid may include a tetrazine group. In one embodiment, the non-natural amino acid may include a triazine group. In one embodiment, the non-natural amino acid may include an azide group.
  • the non-natural amino acids are p-Azido-L-phenylalanine (AzF), p-ethynyl-phenylalanine (pEthF), LHomopropargylglycine (HPG), O-propargyl-L-tyrosine (oPa), ppropargyloxyphenylalanine (pPa), 2-amino-3-(4-azidophenyl)propanoic acid, 2-amino-4-(4-azidophenyl)butanoic acid, 4-(1,2,3,4-tetrazin-3-yl) phenylalanine (frTet), 4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenylalanine (Tet_v2.0), 4-(6-methyl -s- tetrazin-3-yl)phenylalanine, 3-(4- (1,2,4-triazin-6-yl)phenyl)
  • the non-natural amino acid may have a structure of any one of the following formulas:
  • the functional polypeptide variants of the present application may be arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants.
  • arginine decarboxylase is a decamer formed by gathering 10 identical monomers.
  • the monomer may be referred to as an arginine decarboxylase subunit. That is, arginine decarboxylase is a decamer formed by gathering 10 arginine decarboxylase subunits.
  • This paragraph discloses a variant of the arginine decarboxylase subunit constituting arginine decarboxylase, that is, an arginine decarboxylase subunit variant.
  • the arginine decarboxylase subunit variant provided according to one embodiment of the present application is characterized in that a part of the sequence of the arginine decarboxylase subunit derived from a microorganism is modified.
  • the arginine decarboxylase variants contain one or more non-natural amino acids. Furthermore, it can be site-specifically conjugated to albumin via each non-natural amino acid residue.
  • an arginine decarboxylase subunit variant may contain one or more unnatural amino acids.
  • the arginine decarboxylase subunit that is the prototype of the arginine decarboxylase subunit variant may be derived from a microorganism.
  • the arginine decarboxylase subunit may be an arginine decarboxylase subunit derived from Escherichia coli ( E. coli ).
  • E. coli-derived arginine decarboxylase subunit refers to a monomer of E. coli-derived arginine decarboxylase (decamer).
  • the arginine decarboxylase subunit derived from E. coli may have an amino acid sequence represented by SEQ ID NO: 01:
  • Arginine decarboxylase subunit variants include one or more unnatural amino acids.
  • the non-natural amino acid includes a first click chemical functional group capable of performing a click chemical reaction with a second click chemical functional group.
  • the non-natural amino acids included in the arginine decarboxylase subunit variants are described in detail in the relevant sections including the section 'Unnatural Amino Acids'.
  • the arginine decarboxylase subunit variant may be one in which one or more amino acids of the amino acid sequence of SEQ ID NO: 01 are substituted with other amino acids.
  • the one or more amino acids may be substituted with non-natural amino acids.
  • the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with another amino acid.
  • the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with a non-natural amino acid.
  • the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with frTet.
  • the arginine decarboxylase subunit variant comprises Threonine at position 39, Asparagine at position 245, Lysine at position 312, and Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01.
  • any one or more residues selected from the 522nd lysine (Lysine) may be substituted with frTet.
  • the arginine decarboxylase subunit variant may be one in which at least one residue selected from glutamine at position 488 and lysine at position 522 of the amino acid sequence of SEQ ID NO: 01 is substituted with Azf.
  • the polypeptide having the amino acid sequence of SEQ ID NO: 01 is an arginine decarboxylase subunit derived from E. coli.
  • the arginine decarboxylase subunit variant can have any one of the following sequences:
  • X means a non-natural amino acid residue.
  • X may be a frTet moiety.
  • X may be an AzF moiety.
  • the functional polypeptide variant may be an arginine decarboxylase variant.
  • One embodiment of the present application provides arginine decarboxylase variants.
  • arginine decarboxylase variants are also decamer proteins containing 10 subunits.
  • the arginine decarboxylase variants include 1 to 10 arginine decarboxylase subunit variants, and the arginine decarboxylase subunit variants are derived from one or more wild-type arginine decarboxylase subunits. Characterized in that an amino acid is substituted with a non-natural amino acid.
  • the arginine decarboxylase variant may be an E. coli-derived arginine decarboxylase variant.
  • the E. coli-derived arginine decarboxylase variant includes 1 to 10 E. coli-derived arginine decarboxylase subunit variants.
  • an arginine decarboxylase variant may comprise any of the following:
  • the functional polypeptide variant may be a dimer of an arginine decarboxylase subunit variant.
  • One embodiment of the present application provides dimers of arginine decarboxylase subunit variants.
  • arginine decarboxylase is in the form of a complex of dimers of five arginine decarboxylase subunits.
  • Arginine decarboxylase variants may also be complexes of dimers of five arginine decarboxylase subunit variants.
  • the dimer of the arginine decarboxylase subunit variant includes one or two arginine decarboxylase subunit variants, and the arginine decarboxylase subunit variant is a wild-type arginine decarboxylase subunit that is the prototype. Characterized in that one or more amino acids in the unit are substituted with non-natural amino acids.
  • the dimer of the arginine decarboxylase subunit variant may be a dimer of an arginine decarboxylase subunit variant derived from E. coli.
  • the dimer of the E. coli-derived arginine decarboxylase subunit variant includes one or two E. coli-derived arginine decarboxylase subunit variants.
  • a dimer of an arginine decarboxylase subunit variant may comprise any of the following:
  • Linker contains click chemofunctional groups and thiol reactive groups
  • the linker of the present application includes a click chemofunctional group and a thiol reactive group. More specifically, the linker of the present application includes a first click chemical functional group, a second click chemical functional group capable of a click chemical reaction, and a thiol reactive group capable of reacting with a thiol group.
  • Functional polypeptide variants are linked to albumin via a linker.
  • an albumin-linker conjugate may be prepared by reacting albumin with a linker
  • a functional polypeptide variant-albumin conjugate may be prepared by reacting the albumin-linker conjugate with a functional polypeptide variant.
  • a functional polypeptide variant-linker conjugate is prepared by reacting the functional polypeptide variant with a linker
  • a functional polypeptide variant-albumin conjugate is prepared by reacting the functional polypeptide variant-linker conjugate with albumin.
  • the linker contains a thiol reactive group and a click chemofunctional group.
  • the thiol-reactive group reacts with the thiol group of albumin to form a structure included in the second conjugation unit.
  • the click chemical functional group reacts with other click chemical functional groups included in the non-natural amino acid of the functional polypeptide variant to form a structure included in the first conjugation unit.
  • a linker can include a thiol reactive group and a second click chemofunctional group.
  • the thiol-reactive group may react with a thiol group, and the second click chemical functional group may undergo a click chemical reaction with the first click chemical functional group.
  • Linkers of the present application include thiol reactive groups.
  • a thiol-reactive group is reactive with a thiol group.
  • the thiol-reactive group can be a maleimide group or a 3-Arylpropiolonitriles (APN) group.
  • a thiol reactive group included in a linker of the present application may have the following structure:
  • One embodiment of the present application provides a linker having the structure of Formula 2:
  • H 2 is a second click chemical functional group.
  • the second click chemistry functional group may have a click chemistry functional group.
  • the second click chemistry functional group may undergo a click chemistry reaction with the first click chemistry functional group.
  • B is a thiol reactive group.
  • the thiol reactive group can be a maleimide group or an APN group.
  • a 2 is a second anchor unit.
  • the second anchor unit serves to adjust the distance between the second click chemofunctional group and the thiol reactive group.
  • the second anchor unit serves to control the distance between the functional polypeptide variant unit and the albumin unit.
  • the second click chemistry functional group has a click chemistry functional group.
  • the second click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclooctyne (trans) -cyclooctene, alkene, thiol, tetrazine, triazine, methylcyclopropene, norbornene, cyclopentene, styrene ), (including dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne)).
  • trans trans cyclooctyne
  • alkene alkene
  • thiol thiol
  • tetrazine triazine
  • methylcyclopropene norbornene
  • cyclopentene styrene
  • DBCO dibenzocyclooctyne
  • bicyclononyne bicyclo[6.1.0]non-4-
  • the second click chemistry functional group is a trans-bicyclo[6.1.0]nonene group, a trans-cyclooctene (TCO) group, a methylcyclopropene group (methylcyclopropene) group, bicyclo[6.1.0]nonyne group, cyclooctyne group, norbornene group, cyclopentene group, styrene group, and a dibenzocyclooctyne group, but is not limited thereto.
  • TCO trans-cyclooctene
  • TCO trans-cyclooctene
  • methylcyclopropene group methylcyclopropene
  • bicyclo[6.1.0]nonyne group cyclooctyne group
  • norbornene group norbornene group
  • cyclopentene group styrene group
  • dibenzocyclooctyne group but is not limited thereto.
  • the second click chemofunctional group can have any one of the following structures:
  • the wavy line represents an attachment site to another part of the linker.
  • a wavy line may indicate an attachment site with the second anchor unit.
  • the second click chemofunctional group can have the following structure:
  • the second click chemofunctional group can have the following structure:
  • the wavy line represents an attachment site to another part of the linker.
  • a wavy line may indicate an attachment site with the second anchor moiety.
  • a 2 is a second anchor unit.
  • the second anchor unit is a substituted hydrocarbon chain comprising one or more heteroatoms.
  • the hetero atom may be each independently selected from N, O, and S.
  • the second anchor unit may include a polyethylene glycol unit composed of a plurality of ethylene glycol units.
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 12 or less.
  • the second anchor unit can be -substituted C 1-6 heteroalkylene-[EG] n -substituted C 3-15 heteroalkylene-.
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -.
  • n may be an integer of 1 or more and 6 or less.
  • the second anchor unit can be a substituted C 5-30 heteroalkylene.
  • the linker may have the structure of Formula 2-1:
  • H 2 is a second click chemical functional group, which is described in detail in the section 'Second click chemical functional group (H 2 )'.
  • -A 21 -A 22 -A 23 - is a second anchor unit.
  • a 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -[EG] n -, -substituted or unsubstituted C 1- 12 alkylene-[EG] n -, -substituted or unsubstituted C 1-12- heteroalkylene-[EG] n -, -substituted or unsubstituted C 1-12 alkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted It may be any one selected from C 1-12 heteroalkylene-[EG] n -substituted or unsubstit
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 6 or less.
  • B is a group containing a thiol reactive group.
  • the thiol reactive group can be a maleimide group or an APN group.
  • the linker can have a structure of any one of the following formulas:
  • n may be an integer of 2 or more and 8 or less.
  • albumin is used in the preparation of functional polypeptide variant-albumin conjugates.
  • Albumin is a simple protein that is widely distributed in body fluids, and serves as a transport protein that binds and transports various molecules.
  • a representative example of albumin is serum albumin.
  • P 1 is an albumin unit.
  • the albumin unit may be conjugated albumin.
  • the albumin unit may be derived from albumin.
  • albumin may be used to include both albumin unconjugated with other compounds and albumin conjugated with other compounds.
  • albumin can be a protein having the sequence of SEQ ID NO: 09.
  • albumin unit P 1 in Formula 1 may be referred to as albumin.
  • albumin Specific examples include albumin
  • the albumin can be mammalian albumin, eg serum albumin.
  • the albumin may be any one selected from human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin, other vertebrate albumin, and variants thereof. . They may be wild-type or recombinant forms (recombinant albumins).
  • the albumin can be wild type or recombinant human serum albumin.
  • the human serum albumin has a long half-life of 2 weeks or more. This is because 1) it is not easily filtered in the glomerulus due to the electrostatic repulsion of the albumin molecule, and 2) it is degraded in the body due to the recycling action mediated by the neonatal Fc receptor (FcRn) of the endothelium. because it is long
  • the albumin can be human serum albumin, wherein the human serum albumin can comprise the amino acid sequence below.
  • the albumin can be human serum albumin or a variant thereof, and the human serum albumin or variant thereof can comprise a sequence selected from any one of the following sequences:
  • a thiol residue of a cysteine included in human serum albumin or a variant thereof can react with a thiol-reactive group at one end of the linker.
  • a thiol residue of cysteine contained in human serum albumin or a variant thereof may react with a maleimide group or an APN group at one end of a linker.
  • a thiol residue of cysteine included in human serum albumin or a variant thereof may react with a thiol-reactive group at one end of the linker.
  • the cysteine reacting with one end of the linker may be cysteine 34 (Cys 34).
  • the functional polypeptide variant-albumin conjugate of the present application has the structure of Formula 1:
  • FPV is a functional polypeptide variant unit.
  • Examples of functional polypeptide variant units are detailed in the section relating to functional polypeptide variants.
  • J 1 is a first junction unit.
  • the first conjugation unit has a structure formed by a click chemical reaction between a first click chemical functional group included in the functional polypeptide variant and a second click chemical functional group capable of performing a click chemical reaction with the first click chemical functional group.
  • Each of the first click chemofunctional group and the second click chemofunctional group is described in detail in the relevant section.
  • a 2 is a second anchor unit.
  • the second anchor unit refers to a construct linking the functional polypeptide variant unit and the albumin unit.
  • the second anchor unit serves to adjust the distance between the functional polypeptide variant unit and the albumin unit. If it is a structure commonly used for distance control in the art, it is not significantly limited.
  • the second anchor unit is derived from a linker.
  • the second anchor unit is described in detail in the section 'Linker: contains a click chemofunctional group and a thiol reactive group' and is also described below.
  • J 2 is a second junction unit.
  • the second conjugation unit has a structure formed by reaction of a thiol reactive group with a thiol group of albumin.
  • a is an integer of 1 or more and 20 or less. In certain embodiments, a is an integer greater than or equal to 1 and less than or equal to 10.
  • a 2 is a second anchor unit. As described above, the second anchor unit is derived from a linker.
  • the second anchor unit is a substituted hydrocarbon chain comprising one or more heteroatoms.
  • hydrocarbon chains may consist of 1 to 500 atoms.
  • the hetero atom may be each independently selected from N, O, and S.
  • the second anchor unit may include a polyethylene glycol unit composed of a plurality of ethylene glycol units.
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -.
  • n may be an integer of 1 or more and 12 or less.
  • the second anchor unit can be a substituted -C 1-6 heteroalkylene-[EG] n -substituted C 3-15 heteroalkylene.
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -.
  • n may be an integer of 1 or more and 6 or less.
  • the second anchor unit can be a substituted C 5-30 heteroalkylene.
  • -A 2 - can be -A 21 -A 22 -A 23 -.
  • EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 2 or more and 6 or less.
  • the second anchor unit can have any one of the following structures:
  • n may be an integer of 2 or more and 8 or less.
  • 3' may be an attachment site with the first bonding unit.
  • 4' may be an attachment site with the second bonding unit.
  • 3' may be an attachment site with the second bonding unit.
  • 4' may be an attachment site with the first bonding unit.
  • J 1 is a first junction unit.
  • the first bonding unit has a structure formed by a click chemical reaction between a first click chemical functional group and a second click chemical functional group.
  • the first conjugation unit may have a structure formed by a click chemical reaction between a first click chemical functional group included in a non-natural amino acid residue of a functional polypeptide variant and a second click chemical functional group at one end of a linker.
  • the first click chemistry functional group is a terminal alkyne, an azide, a strained alkyne, a diene, a dienophile, a trans-cyclooctyne (trans- cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne). ) may include any one group selected from among the groups.
  • the first click chemofunctional group may include any one of tetrazine, triazine, and azide groups.
  • the second click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans-cyclooctyne (trans- cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne). ) may include any one group selected from among the groups.
  • the second click chemofunctional group may include any one of TCO, DBCO, and bicyclononine groups.
  • the first bonding unit can have any one of the following structures:
  • 1' may be an attachment site with a functional polypeptide variant. More specifically, 1' may be an attachment site with the first anchor unit. In this case, 2' may be an attachment site to another structure of the linker. More specifically, 2' may be an attachment site with the second anchor unit.
  • 1' may be an attachment site with another structure of the linker. More specifically, 1' may be an attachment site with the second anchor unit. In this case, 2' may be an attachment site with a functional polypeptide variant. More specifically, 2' may be an attachment site with the first anchor unit.
  • J 2 is a second junction unit.
  • the second junction unit has a structure formed by reaction of a thiol reactive group with a thiol group.
  • the second conjugation unit may have a structure formed by reaction of a thiol group of albumin with a thiol-reactive group at one end of a linker.
  • the second conjugation unit may have a structure formed by reaction of a maleimide group at one end of a linker with a thiol group of albumin.
  • the second conjugation unit may have a structure formed by the reaction of a thiol group of albumin with an APN group at one end of a linker.
  • the thiol group of albumin can be a Cys 34 thiol group.
  • the second bonding unit may have any one of the following structures:
  • the S atom may be derived from albumin. Specifically, the S atom may be derived from a cysteine residue of albumin. More specifically, the S atom may be derived from a thiol group of a cysteine residue of albumin. In certain embodiments, the S atom may be derived from the thiol group of cysteine 34 (Cys 34) of albumin.
  • FPV is a functional polypeptide variant unit.
  • a functional polypeptide unit may be derived from a functional polypeptide variant.
  • a functional polypeptide variant is one in which the functional polypeptide has been modified to include non-natural amino acids.
  • the functional polypeptide may be any one selected from arginine decarboxylase, arginine decarboxylase subunit, and dimer of arginine decarboxylase subunit, but is not limited thereto.
  • the functional polypeptide has an amino acid sequence having about 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% sequence identity to the amino acid sequence represented by SEQ ID NO: 01 can have a sequence.
  • the functional polypeptide variant may be any one selected from arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants. That is, the functional polypeptide variant unit may be any one selected from an arginine decarboxylase variant unit, an arginine decarboxylase subunit variant unit, and a dimer unit of an arginine decarboxylase subunit variant. Functional polypeptides and functional polypeptide variants are described in detail in the relevant paragraphs.
  • P 1 is an albumin unit.
  • the albumin unit may be derived from albumin.
  • the albumin may be any one selected from human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin, other vertebrate albumin, and variants thereof. . They may be wild-type or recombinant forms (recombinant albumins).
  • the albumin is about 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% of the amino acid sequence represented by any one of SEQ ID NOs: 09 to 20. It may have an amino acid sequence having sequence identity.
  • the S atom adjacent to the albumin unit is derived from albumin.
  • the S atom adjacent to the albumin unit is derived from a thiol group of albumin.
  • the S atom adjacent to the albumin unit may be derived from a thiol group of a cysteine residue of albumin.
  • the S atom adjacent to the albumin unit may be derived from the thiol group of cysteine 34 of human serum albumin.
  • n may be an integer of 1 or more and 12 or less. In certain embodiments, n may be an integer greater than or equal to 2 and less than or equal to 6.
  • a may be an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10.
  • the functional polypeptide variant unit is an arginine decarboxylase subunit variant unit
  • the functional polypeptide variant unit may be an arginine decarboxylase subunit variant.
  • a may be an integer of 1 or more and 4 or less.
  • an arginine decarboxylase subunit variant may comprise one unnatural amino acid, where a is 1.
  • an arginine decarboxylase subunit variant may comprise two unnatural amino acids, where a is 1 or 2.
  • an arginine decarboxylase subunit variant may comprise three unnatural amino acids, where a is an integer greater than or equal to 1 and less than or equal to 3.
  • an arginine decarboxylase subunit variant may comprise four unnatural amino acids, where a is an integer greater than or equal to 1 and less than or equal to 4.
  • the functional polypeptide variant unit is an arginine decarboxylase variant unit
  • arginine decarboxylase is in the form of a decamer formed by gathering 10 arginine decarboxylase subunits, and arginine decarboxylase variants are formed by gathering 10 arginine decarboxylase subunit variants, or arginine decarboxylase variants. It is a decamer form formed by gathering 10 reboxylase subunit variants and arginine decarboxylase subunits.
  • a may be an integer of 1 to 20 or less.
  • a is 1.
  • a is 6.
  • the arginine decarboxylase variants include 10 arginine decarboxylase subunit variants and one albumin is conjugated to each of the 10 arginine decarboxylase subunit variants
  • a is 10.
  • the arginine decarboxylase variant comprises nine arginine decarboxylase subunit variants and one arginine decarboxylase subunit variant, and each of the nine arginine decarboxylase subunit variants contains one albumin. In this conjugated case, a is 9.
  • a is 20 . That is, when the functional polypeptide variant unit is an arginine decarboxylase variant unit, a is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, It may be 17, 18, 19, or 20.
  • the functional polypeptide variant unit is a dimer unit of an arginine decarboxylase subunit variant
  • arginine decarboxylase subunits and/or arginine decarboxylase subunit variants may form dimers.
  • a may be an integer of 1 to 8 or less.
  • the dimer of the arginine decarboxylase subunit variant comprises two arginine decarboxylase subunit variants, and each of the two arginine decarboxylase subunit variants is conjugated with one albumin a is 2.
  • a is 1
  • the dimer of the arginine decarboxylase subunit variant contains two arginine decarboxylase subunit variants, and one albumin is conjugated to one arginine decarboxylase subunit variant
  • a is 4
  • the dimer of the arginine decarboxylase subunit variant comprises the arginine decarboxylase subunit variant and the arginine decarboxylase subunit, and one albumin is present in one arginine decarboxylase subunit variant.
  • a is 1.
  • a functional polypeptide variant-albumin conjugate can be prepared by reacting a functional polypeptide variant, albumin, and a linker.
  • the functional polypeptide variant-albumin conjugate can be prepared by (1) reacting albumin with a linker to prepare an albumin-linker conjugate, and then reacting the functional polypeptide variant with the prepared albumin-linker conjugate; or (2) a functional polypeptide variant-linker conjugate is prepared by reacting the linker with the functional polypeptide variant, and then reacted with albumin to prepare the functional polypeptide variant-linker conjugate.
  • the functional polypeptide variant-albumin conjugate can be prepared regardless of the reaction order of the three elements (linker, functional polypeptide variant, albumin).
  • a functional polypeptide variant is required to prepare a functional polypeptide variant-albumin conjugate.
  • a method for preparing a functional polypeptide variant will be described through an example of an arginine decarboxylase subunit variant.
  • substitution sites may be selected from those with high solvent accessibility.
  • the substitution site may be selected from amino acids constituting a random coil.
  • the substitution site may be selected from among amino acids that are not located at dimer/decamer forming sites.
  • the substitution site may be selected from positions in which there is no difference in score between the mutant and the wild-type arginine decarboxylase subunit when substituted in a rosetta design.
  • the location of substitution with a non-natural amino acid in the wild-type arginine decarboxylase subunit sequence can be determined by referring to molecular modeling simulation results.
  • the molecular modeling simulation result may be a scoring result of a Rosetta molecular modeling package.
  • the change to the non-natural amino acid may be a substitution of one or more residues of the amino acid sequence of SEQ ID NO: 01.
  • threonine at position 39, asparagine at position 85, asparagine at position 245, lysine at position 312, glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01, Any one or more residues selected from Lysine at position 522 and Glycine at position 657 may be substituted with a non-natural amino acid.
  • the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with frTet.
  • the arginine decarboxylase subunit variant comprises Threonine at position 39, Asparagine at position 245, Lysine at position 312, and Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01.
  • the arginine decarboxylase subunit variant may be one in which at least one residue selected from glutamine at position 488 and lysine at position 522 of the amino acid sequence of SEQ ID NO: 01 is substituted with Azf.
  • it is an arginine decarboxylase subunit derived from E. coli having the amino acid sequence of SEQ ID NO: 01.
  • the method for preparing the arginine decarboxylase subunit variant involves the following components: a cell line to express the arginine decarboxylase subunit variant; foreign suppressor tRNA (foreign suppressor tRNA) recognizing a specific stop codon; foreign tRNA synthetase; and a vector encoding an arginine decarboxylase subunit variant encoding an unnatural amino acid using the stop codon.
  • the exogenous suppressor tRNA and the exogenous tRNA synthetase are introduced from the outside, not the suppressor tRNA and tRNA synthetase native to the expressing cell line.
  • the exogenous suppressor tRNA is characterized in that it does not react with the tRNA synthetase native to the expressing cell line.
  • the exogenous tRNA synthetase reacts i) only with the exogenous suppressor tRNA, and ii) shows activity only with the non-natural amino acid to be included in the arginine decarboxylase variant.
  • the non-natural amino acid can be introduced into the amino acid sequence by specifically linking the exogenous suppressor tRNA with the non-natural amino acid.
  • the method for producing a functional polypeptide variant includes: 1) in the cell line, 2) involving the exogenous suppressor tRNA and exogenous tRNA synthetase, 3) based on a vector encoding the functional polypeptide variant, 4) the functional polypeptide It is a method for expressing a variant.
  • the order of each process is not particularly limited as long as the functional polypeptide variant can be expressed in the cell line, and additional processes may be included as necessary.
  • the method for producing the arginine decarboxylase subunit variant is characterized in that the arginine decarboxylase subunit variant is obtained by expressing the arginine decarboxylase subunit variant in a cell line.
  • the cell line expressing the arginine decarboxylase subunit variant is not particularly limited as long as it can produce the arginine decarboxylase subunit variant.
  • the release facotr recognizing the stop codon in the cell line functions properly, the release factor competes with the foreign-derived tRNA, resulting in a low yield. Therefore, it is preferable to use a cell line in which the release factor that recognizes the stop codon is inactivated.
  • the cell line expressing the arginine decarboxylase subunit variant may be selected from the following:
  • genus Escherichia Erwinia genus; Serratia genus; Providencia genus; Corynebacterium genus; Pseudomonas ( Pseudomonas ) genus; genus Leptospira ; genus Salmonella ; Brevibacterium genus; Hypomonas ( Hyphomonas ) genus; Chromobacterium ( chromobactorium ) genus; genus norcardia ; Fungi ; and Yeast .
  • the cell line may be one in which a release factor that recognizes a stop codon to terminate translation is inactivated.
  • the stop codon is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA-3). ') may be selected.
  • the cell line expressing the arginine decarboxylase subunit variant may be the cell line used in the registration publication KR 1637010 B1. Specifically, the cell line may be E.Coli C321. ⁇ A.exp (Addgene, ID: 49018).
  • the exogenous suppressor tRNA is a tRNA that functions to recognize a specific stop codon, and does not react with the tRNA synthesizing enzyme native to the expressing cell line.
  • the exogenous suppressor tRNA specifically reacts with the exogenous tRNA synthetase, and the exogenous tRNA synthetase functions to link a non-natural amino acid to the exogenous suppressor tRNA.
  • the exogenous suppressor tRNA can recognize the specific stop codon and introduce the non-natural amino acid at the corresponding position.
  • the suppressor tRNA is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA). -3') can be recognized.
  • the suppressor tRNA may recognize an amber codon.
  • the suppressor tRNA may be a suppressor tRNA (MjtRNA Tyr CUA ) derived from Methanococcus jannaschii (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand DielsAlder Reaction, Bioconjugate Chemistry, 2020, 2456-2464).
  • the exogenous tRNA synthetase selectively reacts with a specific non-natural amino acid and serves to link the specific non-natural amino acid to the exogenous suppressor tRNA.
  • the exogenous tRNA synthetase does not react with the suppressor tRNA native to the expressing cell line, but specifically reacts only with the exogenous suppressor tRNA.
  • the tRNA synthetase may have a function of linking a non-natural amino acid including a tetrazine derivative and/or a triazine derivative to the exogenous suppressor tRNA.
  • the tRNA synthetase may have a function of linking AzF to the exogenous suppressor tRNA.
  • the tRNA synthetase may be tyrosyl-tRNA synthetase (MjTyrRS) derived from Methanococcus jannaschii (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464).
  • the tRNA synthetase may be the C11 variant of MjTyrRS.
  • an exogenous suppressor tRNA that specifically reacts only with an exogenous tRNA synthetase is collectively referred to as an orthogonal tRNA/synthetase pair.
  • an orthogonal tRNA/synthetase pair it is important to express the orthogonal tRNA/synthetase pair in the expression cell line, and if this purpose can be achieved, the method will greatly Not limited.
  • the method for producing the arginine decarboxylase subunit variant includes transforming a vector capable of expressing the orthogonal tRNA/synthetase pair into the cell line.
  • a vector capable of expressing the orthogonal tRNA/synthetase pair is Yang et.al (Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464) may be pDule_C11.
  • vectors encoding functional polypeptide variants will be described.
  • the present application discloses vectors encoding functional polypeptide variants.
  • the vector encoding the variant functional polypeptide is characterized in that a non-natural amino acid in the sequence of the variant functional polypeptide is encoded using a stop codon.
  • the standard amino acid is encoded by a codon corresponding to the standard amino acid found in nature, and the non-natural amino acid is encoded by a stop codon.
  • the stop codon is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA-3'). 3') may be selected.
  • the stop codon may be selected from among 5'-TAG-3', 5'-TAA-3', and 5'-TGA-3'.
  • the vector encoding the functional polypeptide variant may be codon-optimized for the expression cell line.
  • a vector encoding the functional polypeptide variant may be E. coli codon optimized.
  • functional polypeptide variant-albumin conjugates can be prepared through the following methods:
  • a functional polypeptide variant-albumin conjugate is prepared by reacting the albumin-linker conjugate with the functional polypeptide variant.
  • the linker may be connected through a specific amino acid residue of albumin.
  • an albumin-linker conjugate may be prepared by reacting a thiol group of a cysteine contained in human serum albumin (HSA) with a thiol reactive group of a linker.
  • an albumin-linker conjugate may be prepared by reacting a thiol group of cysteine 34 (Cys 34) of human serum albumin (HSA) with a thiol-reactive group of a linker.
  • a functional polypeptide variant-albumin conjugate in which functional polypeptide variants are linked through a linker, can be prepared.
  • a functional polypeptide variant-albumin conjugate may be prepared by reacting a click chemical functional group at one end of the albumin-linker conjugate with a click chemical functional group included in a non-natural amino acid of the functional polypeptide variant.
  • the functional polypeptide variant-albumin conjugate can be prepared by reacting the second click chemical functional group at one end of the albumin-linker conjugate with the first click chemical functional group of the functional polypeptide variant.
  • a functional polypeptide variant-albumin conjugate can be prepared by reacting the TCO at one end of the albumin-linker conjugate with the tetrazine of the functional polypeptide variant.
  • a functional polypeptide variant-albumin conjugate can be prepared by reacting DBCO at one end of the albumin-linker conjugate with the azide of the functional polypeptide variant.
  • functional polypeptide variant-albumin conjugates can be prepared via a method comprising:
  • the albumin-linker conjugate reacts with the functional polypeptide variant to produce a functional polypeptide variant-albumin conjugate.
  • functional polypeptide variant-albumin conjugates can be prepared through the following methods:
  • a functional polypeptide variant-linker conjugate reacts with albumin to prepare a functional polypeptide variant-albumin conjugate.
  • a functional polypeptide variant-linker conjugate can be prepared by a click chemistry reaction between a click chemistry functional group at one end of a linker and a click chemistry functional group of a non-natural amino acid of a functional polypeptide variant.
  • a functional polypeptide variant-linker conjugate may be prepared by reacting a second click chemical functional group at one end of a linker with a first click chemical functional group included in a functional polypeptide variant.
  • a functional polypeptide variant-albumin conjugate can be prepared by reacting a thiol reactive group of a functional polypeptide variant-linker conjugate with a thiol group of cysteine contained in human serum albumin (HSA).
  • HSA human serum albumin
  • a functional polypeptide variant-albumin conjugate is prepared by reacting a thiol reactive group of a functional polypeptide variant-linker conjugate with a thiol group of cysteine 34 (Cys 34) of human serum albumin (HSA).
  • Cys 34 cysteine 34
  • HSA human serum albumin
  • functional polypeptide variant-albumin conjugates can be prepared via a method comprising:
  • a functional polypeptide variant-linker conjugate reacts with albumin to produce a functional polypeptide variant-albumin conjugate.
  • an albumin-linker conjugate can be prepared through the reaction of a linker with albumin.
  • One embodiment of the present application provides an albumin-linker conjugate.
  • the albumin-linker conjugate can have the structure of Formula 4:
  • H 2 is a second click chemical functional group.
  • the second click chemistry functional group includes a click chemistry functional group.
  • the second click chemistry functional group may undergo a click chemistry reaction with the first click chemistry functional group capable of performing a click chemistry reaction with the second click chemistry functional group.
  • the first bonding unit is formed by a click chemical reaction between the second click chemical functional group and the first click chemical functional group.
  • the second click chemofunctional group is described in detail in a related section.
  • a 2 is a second anchor unit.
  • the second anchor unit may refer to a component connecting the second click chemical functional group and the second conjugation unit and/or the albumin unit. If it is a structure commonly used for distance control in the art, it is not significantly limited.
  • the second anchor unit is derived from a linker. The second anchor unit is described in detail in the section related to the second anchor unit including the section 'Linker: containing a click chemofunctional group and a thiol reactive group'.
  • J 2 is a second junction unit.
  • the second junction unit has a structure formed by reaction of a thiol reactive group with a thiol group.
  • the second conjugation unit may have a structure formed by reaction of a thiol group of albumin with a thiol-reactive group at one end of a linker.
  • the thiol group of albumin can be that of cysteine 34 (Cys 34).
  • the second bonding unit is described in detail in the section related to the second bonding unit including the section 'second bonding unit'.
  • P 1 is an albumin unit.
  • Albumin units are derived from albumin.
  • Albumin and albumin units are each described in detail in the sections relating to albumin units, including the section 'Albumin and albumin units'.
  • a functional polypeptide variant-linker conjugate can be prepared by reacting a linker with a functional polypeptide variant.
  • One embodiment of the present application provides functional polypeptide variant-linker conjugates.
  • the functional polypeptide variant-linker conjugate may have the structure of Formula 5:
  • FPV is a Functional Polypeptide Variant Unit.
  • a functional polypeptide variant unit is derived from a functional polypeptide variant.
  • Each of the Functional Polypeptide Variants and Functional Polypeptide Variant Units is described in detail in the relevant section.
  • J 1 is a first junction unit.
  • the first bonding unit is described in detail in the section related to the first bonding unit including the section 'first bonding unit'.
  • a 2 is a second anchor unit.
  • the second anchor unit is described in detail in the section related to the second anchor unit including the section 'Linker: containing a click chemofunctional group and a thiol reactive group'.
  • J 2 is a second junction unit.
  • the second bonding unit is described in detail in the section related to the second bonding unit including the section 'second bonding unit'.
  • B is a thiol reactive group.
  • the thiol reactive group can be a maleimide group.
  • a thiol reactive group can be an APN group.
  • Thiol-reactive groups are described in detail in the sections relating to thiol-reactive groups, including the section 'Linkers: Including click chemofunctional groups and thiol-reactive groups'.
  • a may be an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10.
  • One embodiment of the present application provides a composition for the treatment of a target disease comprising a functional polypeptide variant-albumin conjugate as an active ingredient.
  • One embodiment of the present application provides a pharmaceutical composition for treating a target disease comprising a functional polypeptide variant-albumin conjugate as an active ingredient.
  • the target disease may be a tumor. More specifically, the target disease may be an arginine auxotrophic tumor.
  • the target disease is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), breast cancer ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
  • melanoma malignant melanoma
  • liver cancer liver cancer
  • liver cancer liver cancer
  • HCC hepatocellular carcinoma
  • prostate cancer prostate cancer
  • pancreatic cancer pancreatic cancer
  • breast cancer breast cancer
  • mammary gland cancer lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM)
  • composition for diagnosis comprising a functional polypeptide variant-albumin conjugate as an active ingredient may be provided.
  • treatment refers to any activity that improves or beneficially transforms the symptoms of a target disease by the administration of the pharmaceutical composition according to the present application, and includes prevention of the target disease.
  • prevention refers to any action that suppresses a target disease or delays the onset of a target disease by administration of the pharmaceutical composition according to the present application.
  • the pharmaceutical composition of the present application may further include a pharmaceutically acceptable carrier in addition to containing the functional polypeptide variant-albumin conjugate as an active ingredient.
  • the type of carrier that can be used in the present application is not particularly limited, and any carrier commonly used in the art may be used.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, maltodextrin, glycerol, ethanol, and the like. can These may be used alone or in combination of two or more.
  • the pharmaceutical composition of the present application may be used by adding other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
  • other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
  • the term "administration” means introducing the pharmaceutical composition of the present application to a patient by any suitable method, and the route of administration of the composition of the present application can be oral or parenteral as long as it can reach the target tissue. It can be administered via any route.
  • composition of the present application may be formulated and used in various dosage forms suitable for oral or parenteral administration.
  • Non-limiting examples of formulations for oral administration using the pharmaceutical composition of the present application include troches, lozenges, tablets, aqueous suspensions, oily suspensions, powdered preparations, granules, emulsions, hard capsules, and soft capsules, syrups or elixirs; and the like.
  • a binder such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; excipients such as dicalcium phosphate and the like; disintegrants such as corn starch or sweet potato starch; Lubricants such as magnesium stearate, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax may be used, and sweeteners, aromatics, syrups, and the like may also be used.
  • a liquid carrier such as fatty oil may be additionally used in addition to the above-mentioned materials.
  • Non-limiting examples of parenteral preparations using the pharmaceutical composition of the present application include injection solutions, suppositories, powders for respiratory inhalation, aerosols for sprays, ointments, powders for application, oils, creams, and the like.
  • aqueous solutions In order to formulate the pharmaceutical composition of the present application for parenteral administration, sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, external preparations, etc. may be used, and the non-aqueous solvents and suspensions include propylene glycol, polyethylene Glycols, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used.
  • the pharmaceutical composition of the present application is formulated as an injection solution
  • the pharmaceutical composition of the present application is mixed in water together with a stabilizer or buffer to prepare a solution or suspension, which is used for unit administration in an ampoule or vial can be formulated.
  • a propellant or the like may be blended with additives so that the water-dispersed concentrate or wet powder is dispersed.
  • composition of the present application When the pharmaceutical composition of the present application is formulated into an ointment, cream, powder for application, oil, external skin preparation, etc., animal oil, vegetable oil, wax, paraffin, starch, tracanth, cellulose derivative, polyethylene glycol, silicone, bentonite , silica, talc, zinc oxide, etc. may be formulated using a carrier.
  • the pharmaceutically effective amount and effective dose of the pharmaceutical composition of the present application may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type of response to be achieved by administration of the pharmaceutical composition. and degree, type of subject to be administered, age, weight, general health condition, symptom or severity of disease, sex, diet, excretion, drugs used simultaneously or simultaneously with the subject, and other components of the composition, etc. It can be varied according to factors and similar factors well known in the medical field, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment.
  • the daily dose of the pharmaceutical composition of the present application is 0.01 to 1000 mg/kg, preferably 0.1 to 100 mg/kg, and may be administered once or several times a day.
  • Administration of the pharmaceutical composition of the present application may be administered once a day, or may be divided and administered several times.
  • the pharmaceutical composition of the present application may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Considering all of the above factors, it can be administered in an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the administration route and administration method of the pharmaceutical composition of the present application may be independent, and may follow any route and administration method without particular limitation as long as the pharmaceutical composition can reach the target site.
  • the pharmaceutical composition may be administered orally or parenterally.
  • intravenous administration intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, etc.
  • a method of applying, spraying, or inhaling the composition to the diseased area It can also be used, but is not limited thereto.
  • the pharmaceutical composition of the present application may be additionally used in combination with various methods such as hormone therapy and drug therapy to prevent or treat a target disease.
  • One embodiment of the present application provides a composition for the treatment of a target disease comprising a functional polypeptide variant as an active ingredient and its use.
  • One embodiment of the present application provides a pharmaceutical composition for treating a target disease comprising a functional polypeptide variant as an active ingredient.
  • Another embodiment of the present application provides a method for treating a target disease, eg, cancer, comprising administering a pharmaceutical composition comprising a functional polypeptide variant as an active ingredient.
  • One embodiment of the present application provides the use of a functional polypeptide variant of the present invention for the manufacture of a cancer therapeutic.
  • any one of the arginine decarboxylase variant, the arginine decarboxylase subunit variant, and the dimer of the arginine decarboxylase subunit variant can be used in the preparation of a cancer therapeutic agent.
  • the functional polypeptide variant may be any one of an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of an arginine decarboxylase subunit variant. Since the arginine decarboxylase variant of the present application shows similar or superior enzymatic activity compared to arginine decarboxylase, it can be used as a therapeutic agent for arginine auxotrophic tumors.
  • the target disease may be a tumor. More specifically, the target disease may be an arginine auxotrophic tumor.
  • the target disease is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), breast cancer ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
  • melanoma malignant melanoma
  • liver cancer liver cancer
  • liver cancer liver cancer
  • HCC hepatocellular carcinoma
  • prostate cancer prostate cancer
  • pancreatic cancer pancreatic cancer
  • breast cancer breast cancer
  • mammary gland cancer lung cancer, small cell lung cancer, malignant pleural mesot
  • composition of the present application may further include a pharmaceutically acceptable carrier in addition to containing the functional polypeptide variant as an active ingredient.
  • the type of carrier that can be used in the present application is not particularly limited, and any carrier commonly used in the art may be used.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, maltodextrin, glycerol, ethanol, and the like. can These may be used alone or in combination of two or more.
  • the pharmaceutical composition of the present application may be used by adding other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
  • other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
  • the term "administration” means introducing the pharmaceutical composition of the present application to a patient by any suitable method, and the route of administration of the composition of the present application can be oral or parenteral as long as it can reach the target tissue. It can be administered via any route.
  • composition of the present application may be formulated and used in various dosage forms suitable for oral or parenteral administration.
  • Non-limiting examples of formulations for oral administration using the pharmaceutical composition of the present application include troches, lozenges, tablets, aqueous suspensions, oily suspensions, powdered preparations, granules, emulsions, hard capsules, and soft capsules, syrups or elixirs; and the like.
  • a binder such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; excipients such as dicalcium phosphate and the like; disintegrants such as corn starch or sweet potato starch; Lubricants such as magnesium stearate, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax may be used, and sweeteners, aromatics, syrups, and the like may also be used.
  • a liquid carrier such as fatty oil may be additionally used in addition to the above-mentioned materials.
  • Non-limiting examples of parenteral preparations using the pharmaceutical composition of the present application include injection solutions, suppositories, powders for respiratory inhalation, aerosols for sprays, ointments, powders for application, oils, creams, and the like.
  • aqueous solutions In order to formulate the pharmaceutical composition of the present application for parenteral administration, sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, external preparations, etc. may be used, and the non-aqueous solvents and suspensions include propylene glycol, polyethylene Glycols, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used.
  • the pharmaceutical composition of the present application is formulated as an injection solution
  • the pharmaceutical composition of the present application is mixed in water together with a stabilizer or buffer to prepare a solution or suspension, which is used for unit administration in an ampoule or vial can be formulated.
  • a propellant or the like may be blended with additives so that the water-dispersed concentrate or wet powder is dispersed.
  • composition of the present application When the pharmaceutical composition of the present application is formulated into an ointment, cream, powder for application, oil, external skin preparation, etc., animal oil, vegetable oil, wax, paraffin, starch, tracanth, cellulose derivative, polyethylene glycol, silicone, bentonite , silica, talc, zinc oxide, etc. may be formulated using a carrier.
  • the pharmaceutically effective amount and effective dose of the pharmaceutical composition of the present application may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type of response to be achieved by administration of the pharmaceutical composition. and degree, type of subject to be administered, age, weight, general health condition, symptom or severity of disease, sex, diet, excretion, drugs used simultaneously or simultaneously with the subject, and other components of the composition, etc. It can be varied according to factors and similar factors well known in the medical field, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment.
  • the daily dose of the pharmaceutical composition of the present application is 0.01 to 1000 mg/kg, preferably 0.1 to 100 mg/kg, and may be administered once or several times a day.
  • Administration of the pharmaceutical composition of the present application may be administered once a day, or may be divided and administered several times.
  • the pharmaceutical composition of the present application may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Considering all of the above factors, it can be administered in an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the administration route and administration method of the pharmaceutical composition of the present application may be independent, and may follow any route and administration method without particular limitation as long as the pharmaceutical composition can reach the target site.
  • the pharmaceutical composition may be administered orally or parenterally.
  • intravenous administration intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, etc.
  • a method of applying, spraying, or inhaling the composition to the diseased area It can also be used, but is not limited thereto.
  • the pharmaceutical composition of the present application may be additionally used in combination with various methods such as hormone therapy and drug therapy to prevent or treat a target disease.
  • Yeast extract, tryotone, and agar were purchased from BD Biosciences (San Jose, CA, USA).
  • Nickel charged nitrilotriacetic acid (Ni-NTA) resin was purchased from qiagen (Valencia, CA, USA).
  • frTet (4-(1,2,3,4-tetazin-3-yl)phenylalanine) was purchased from Aldlab Chemicals (Woburn, MA, USA).
  • TCO-Cy3 was purchased from AAT Bioquest (Sunnyvale, CA, USA).
  • TCO-PEG4-maleidime (TCO-PEG4-MAL) was purchased from FutureChem (Seoul, Korea).
  • Disposable PD-10 desalting column and Superdex 200 10/300 GL increase column were purchased from Cytiva (Uppsala, Sweden).
  • Vivaspin 6 centrifugal concentrators with a molecular weight cut-off (MWCO) 10 kDa and 100 kDa were purchased from Sartorius (Gottingen, Germany).
  • HSA and all other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).
  • E. coli genomic DNA was extracted using a genomic DNA extraction kit. PCR amplification was performed to amplify the gene translating the ADC from the extracted gDNA.
  • a primer having the sequence of 5'-ATCGGGATCCATGAAAGTATTAATTGTTGAAAGCGAG-3' (SEQ ID NO: 21) was used as a forward primer, and 5'-ATCGACTAGTTTAATGGTGATGGTGATGGTGCGCTTTCACGCACATAAC-3' (SEQ ID NO: 22) was used as a reverse primer.
  • a primer was designed to fusion a hexahistidine tag at the C-terminus of ADC for purification by affinity chromatography.
  • the amino acid sequence of the C-terminal hexahistidine tagged ADC is set forth below:
  • the pQE80 vector containing the amplified ADC gene and SpeI was treated with SpeI and BamHI restriction enzymes at 37°C for 3 hours. After that, ligation was performed according to the manual using Takara ligation mix. After transforming the TOP10 E.coli strain according to the Mix & Go transformation manual, spread it on an agar plate containing 100 ⁇ g/mL ampicillin and spread it to E. coli for 12 hours at 37°C. raised Thereafter, a single colony was inoculated into fresh LB media and cultured. The plasmid gene was obtained from E. coli cultured through mini-prep, and the sequence of the wild-type ADC was confirmed through sequencing to construct pQE80-ADC WT (wild-type, wild-type) plasmid.
  • the pQE80-ADC WT gene was transformed into a TOP10 E. coli strain according to the Mix & Go transformation manual, followed by 12 hours at 37 degrees, containing 100 ⁇ g/mL ampicillin.
  • TOP10 [pQE80-ADC WT] was obtained by growth on an agar plate. Thereafter, a single colony was inoculated into fresh LB media containing 100 ⁇ g/mL ampicillin and grown overnight at 37°C. Thereafter, 2 mL of TOP10 [pQE80-ADC WT] incubated in 200 mL fresh LB media containing 100 ⁇ g/mL ampicillin was added, and shaking culture was performed at 37 ° C and 200 rpm.
  • IPTG isopropyl ⁇ -D-1-thiogalactopyranoside
  • BI indicates before induction
  • AI indicates after induction
  • P indicates purified.
  • transcription and translation of pQE80-ADC WT through IPTG can be confirmed through a newly identified band near ⁇ 75 kDa in the AI lane, followed by purification obtained through affinity chromatography. It was confirmed that the purified ADC WT (purified ADC WT) was obtained with high purity.
  • ADC WT 10 mg/mL of ADC was added to 20 mM potassium phosphate buffer (pH 7.4). Thereafter, incubation was performed at 37° C., and ADC WT activity was measured at 0, 0.5, 1, 3, 6, 12, and 24 time points to confirm stability.
  • 0.1 mg/mL ADC WT was mixed with 1 mM arginine and 200 ⁇ M pyridoxal 5'-phosphate (PLP) in 0.2 M sodium acetate (pH 5.2) and incubated at 37 degrees for 1 hour. proceeded. After this, 'Goldschmidt et al.
  • HeLa cells were seeded in a 96-well plate at 10,000 cells/well.
  • a pH 6.4 medium (DMEM, 15% FBS, 2% AA) was used.
  • the ADC solution was filtered through a 0.2 ⁇ m cellulose acetate filter and mixed with the medium to adjust the ADC concentration.
  • Each concentration of ADC solution was treated with the cells and cultured for 3 days. After 3 days of culture, the MTT assay was performed to measure the metabolic activity of the cells. MTT assay shows the intensity according to the metabolism of mitochondria in cells, and cell growth is suppressed as arginine is removed from the media.
  • FIGS. 04 to 06 The measurement results of metabolic activity for each cell line according to the ADC_WT treatment are shown in FIGS. 04 to 06.
  • 04 shows the metabolic activity measurement results of breast cancer and/or mammary cancer-related cell lines (MCF7, T47D) according to ADC_WT treatment.
  • 05 shows the metabolic activity measurement results of lung cancer-related cell lines (A549, NCI-H1299, HCC-827) according to ADC_WT treatment.
  • 06 shows the metabolic activity measurement results of pancreatic cancer-related cell lines (AsPC-1, Capan-1, Capan-2, MIA-PaCa-2).
  • ADC_WT is confirmed to be effective in inhibiting the metabolic activity of breast cancer and/or mammary cancer-related cell lines, lung cancer-related cell lines, and pancreatic cancer-related cell lines.
  • U is an enzymatic activity unit, and represents an active unit of an ADC enzyme that degrades 1 umol of arginine.
  • Gemcitabine was administered once a week at a dose of 125mg/kg, and 200ul was administered by intraperitoneal injection. The tumor size of the mice was observed for 26 days after administration. Information on specific experimental groups and administered samples is provided below.
  • - control group 1 mouse; ADC(-); gemcitabine (-)
  • ADC group 2 mice; ADC (0.2 U (6 mg)); gemcitabine (-)
  • - GEM group 1 mouse; ADC (-); gemcitabine (125mg/kg)
  • ADC-GEM group 2 mice; ADC (0.2 U (6 mg)); gemcitabine (125mg/kg)
  • FIG. 07 The in-vivo anticancer activity confirmation results are disclosed in FIG. 07 . As shown in FIG. 07 , it can be confirmed that tumor growth is inhibited in ADC alone and ADC-GEM combined administration.
  • the location for substituting AzF in the ADC was selected as follows. First, the active site and PLP binding site showing the enzyme activity of ADC_WT were excluded. (Refer to Andrell et al. Biochemistry 48.18 (2009): 3915-3927.) After that, through the 3D structure of ADC_WT (PDB ID: 2VYC), amino acids where protein assembly occurs were excluded. Among the remaining amino acid residues, two amino acids (Q488, K522) with the highest solvent accessibility and forming a random coil were selected by comparing solvent accessibility and random coil. .
  • ADC_AzF expression PCR was performed using pQE80_ADC-WT as a template.
  • a mutant plasmid (pQE80_ADC variant) was prepared by performing quick change PCR with an amber stop codon (TAG) at Q488 or K522 in the pQE80_ADC WT plasmid.
  • TAG amber stop codon
  • ADC_Q488Amb_F GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (SEQ ID NO: 24);
  • ADC_Q488Amb_R ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (SEQ ID NO: 25);
  • ADC_K522Amb_F CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (SEQ ID NO: 26);
  • ADC_K522Amb_R GAAAGCTGGCACGGCTTCTAGGATATTCCGGATAACTGG (SEQ ID NO: 27).
  • each mutant plasmid was transformed into C321 ⁇ A.exp [pEVOL-pAzF] competent cells, followed by C321 ⁇ Aexp [pEVOL-pAzF] [pQE80_ADC variant] E.coli cells. created Here, each of the pQE80_ADC variants used is pQE80_ADC_Q488amb (a codon encoding the 488th glutamine amino acid is substituted with an amber codon) or pQE80_ADC_K522amb.
  • Transformants were cultured overnight at 37° C. in Luria broth medium containing ampicillin (100 ⁇ g/mL) and chloroamphenicol (25 ⁇ g/mL). The pre-cultured E. coli cells were inoculated into the same fresh medium. To induce protein expression, a final concentration of 1 mM, AzF, 1 mM IPTG, and 0.4% arabinose were each added to the medium to reach an optical density of 0.5% (600 nm). After incubation at 18 °C for 18 h while shaking the culture medium, the product was obtained through centrifugation at 4 °C for 10 min at 5,000 rpm.
  • ADC variants containing AzF were prepared at 4 °C using polypropylene columns packed with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin according to the manufacturer's protocol (Qiagen). It was purified through immobilized-metal affinity chromatography. The purified ADC_AzF was desalted with PBS (pH 7.4) using a PD-10 column. The expression and purification process of ADC_WT followed a method similar to that of ADC_AzF, but chloroamphenicol and AzF were not added to the culture medium during the expression step.
  • Ni-NTA nickel-nitrilotriacetic acid
  • SDS-PAGE (run at 120V) using tris-glycine gels (5% acrylamide stacking and 12% acrylamide resolving gels) (running buffer: 25 mM Tris, 192 mM glycine, and 0.1 % SDS at pH8.3) was performed. At this time, a molecular weight standard marker (Bio-Rad Laboratories Inc. Berkeley, CA, USA) was used. 08 shows the SDS-PAGE results. Specifically, (a) shows the SDS page results before purification and (b) after purification. In FIG. 08, BI indicates before cell pellet processing (before induction cell pellet), and AI indicates after cell pellet processing (after induction cell pellet). -AzF represents a sample without AzF added. +AzF indicates a sample to which AzF was added.
  • ADC_WT and ADC_AzF were reacted with DBCO-Rhodamin (DBCO-PEG4-carboxyrhodamine dye) fluorescent dye at a molar ratio of 1:3 in PBS (pH 7.4) at room temperature. After 2 hours, the reaction mixture was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • DBCO-Rhodamin DBCO-PEG4-carboxyrhodamine dye
  • Fluorescence images of protein gels were obtained using a ChemiDoc XRS+ system (illumination at 302 nm, 510-610 nm filters, Bio-Rad Laboratories, Hercules, CA, USA). After fluorescence analysis, the protein gel was stained with Coomassie Brilliant Blue R-250 dye. Protein gel images were obtained using a ChemiDoc XRS+ system using white light illumination.
  • the fluorescence die labeling results for ADC_WT and ADC_AzF are shown in FIG. 09 .
  • the bands shown in the sample of FIG. 09 correspond to subunits and subunits labeled with fluorescent dyes.
  • Dye (-) represents the analysis result for the sample reacted without DBCO-Rhodamin.
  • Dye (+) represents the analysis result for the sample reacted with DBCO-Rhodamin. Bands in fluorescence were observed in ADC_Q488AzF Dye (+) and ADC_K522AzF Dye (+).
  • ADC_WT As a control.
  • ADC_WT and ADC_AzF variants at 0.1 mg/mL were reacted with 1 mM arginine and 200 ⁇ M PLP in 0.2 M sodium acetate (pH 5.2) buffer, respectively, at 37 °C for 1 hour. Thereafter, agmatine (an arginine degradation product by ADC) produced in each sample was compared.
  • ADC_AzF variants (ADC_Q488AzF and ADC_K522AzF) do not have lower enzymatic activity than ADC_WT.
  • DBCO-PEG4-Maleimide a linker used to prepare the arginine decarboxylase variant-albumin conjugate, was purchased from Future Chem, dissolved in DMSO at a concentration of 10 mM, and stored at -80 °C until use.
  • HSA-PEG4-DBCO An albumin-linker conjugate, HSA-PEG4-DBCO, was prepared by reacting 50 ⁇ M of albumin with 200 ⁇ M of a linker (DBCO-PEG4-Mal) in PBS (pH 7.0) for 2 hours at 23°C. Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
  • HSA-PEG4-DBCO has a molecular weight of about 66.5 kDa
  • ADC arginine decarboxylase subunit variant
  • arginine decarboxylase subunit variant-albumin conjugate has a molecular weight of about 148.5 kDa. has a molecular weight
  • the score value represents the sum of van der Waals forces, attractive forces, repulsive energies, Gaussian exclusion implicit solvation, and hydrogen bonds between atoms in different moieties (but long-range, backbone side chains and side chains) separated by distances.
  • the substitution site for frTet was selected from amino acids that have high solvent accessibility and form a random coil. At this time, an amino acid located at a site forming a dimer/decamer was tried to be excluded from the substitution site with frTet. A total of 30 loci were screened.
  • ADC_frTet PCR was performed using pQE80_ADC-WT as a template.
  • SpeI was introduced into the sfGFP coding region of the pBAD_sfGFP plasmid through PCR.
  • a mutant plasmid (pBAD_ADC variant) was prepared by performing quick change PCR with an amber stop codon (TAG) to introduce frTet into the previously selected site.
  • TAG amber stop codon
  • pBAD_sfGFP_spel_F TAAACAGTTCTTCACCTTTGCTAAACTAGTTTAATTCCTCCTGTTAGCCCAAAAAACGG (SEQ ID NO: 28)
  • pBAD_sfGFP_spel_R CCGTTTTTTGGGCTAACAGGAGGAATTAAACTAGTTTAGCAAAGGTGAAGAACTGTTTA (SEQ ID NO: 29)
  • pBAD_ADC_F AACTACTAGTATGAAAGTATTAATTGTTGAAAGCGAG (SEQ ID NO: 30)
  • pBAD_ADC_R AGATCTCGAGTTAATGGTGATGGTGATGGTG (SEQ ID NO: 31)
  • pBAD_ADC_T39Amb_F GAATGGCAAAACCATCATCAAAGGACTAGGATTTAATCACGGTAACATTTTGC (SEQ ID NO: 32)
  • pBAD_ADC_T39Amb_R GCAAAATGTTACCGTGATTAAATCCTAGTCCTTTGATGATGGTTTTGCCATTC (SEQ ID NO: 33)
  • pBAD_ADC_N85Amb_F GAAGACCGGCACCTATTGTTGGCGCTCATGAAGCTTA (SEQ ID NO: 34)
  • pBAD_ADC_N245Amb_F CAACGACCACGACATCCTAATCGGTCATGCAAGCC (SEQ ID NO: 36)
  • pBAD_ADC_K312Amb_F CCACGCAGTAAGACGGCTATTGCCCGGCTTTGTCTTTG (SEQ ID NO: 38)
  • pBAD_ADC_K312Amb_R CAAAGACAAAGCCGGGCAATAGCCGTCTTACTGCGTGG (SEQ ID NO: 39)
  • pBAD_ADC_Q488Amb_F GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (SEQ ID NO: 40)
  • pBAD_ADC_Q488Amb_R ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (SEQ ID NO: 41)
  • pBAD_ADC_K522Amb_F CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (SEQ ID NO: 42)
  • pBAD_ADC_G657Amb_F CTTCCGCCACCGGCAGCTAGGAATAGGCTTCGTTC (SEQ ID NO: 44)
  • ADC_frTet To express ADC_frTet, reference may be made to the method disclosed in Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464. there is.
  • each mutant plasmid was transformed into C321 ⁇ A.exp [pDule C11RS] competent cells, generating C321 ⁇ Aexp [pDule C11RS] [pBAD_ADC variant] E.coli cells. did.
  • each pBAD_ADC variant used is pBAD_ADC_N85amb (codon encoding the 85th asparagine amino acid is substituted with an amber codon), pBAD_ADC_N245amb, pBAD_ADC_K312amb, pBAD_ADC_Q488amb, pBAD_ADC_K522amb, or pBAD_ADC_G657amb.
  • Transformants were cultured overnight at 37°C in Luria broth medium containing ampicillin (100 ⁇ g/mL) and tetracycline (10 ⁇ g/mL). The pre-cultured E. coli cells were inoculated into the same fresh medium. To induce protein expression, a final concentration of 1 mM and 0.4% of frTet and arabinose were added to the medium to reach an optical density of 0.5% (600 nm). After incubation at 18 °C for 18 h while shaking the culture medium, the product was obtained through centrifugation at 4 °C for 10 min at 5,000 rpm.
  • ADC variants containing frTet were prepared at 4 °C using a polypropylene column packed with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin according to the manufacturer's protocol (Qiagen). It was purified through immobilized-metal affinity chromatography. The purified ADC_frTet was desalted with PBS (pH 7.4) using a PD-10 column. The expression and purification process of ADC_WT followed a similar method to that of ADC_frTet, but tetracycline and frTet were not added to the culture medium during the expression step.
  • SDS-PAGE (run at 120V) using tris-glycine gels (5% acrylamide stacking and 12% acrylamide resolving gels) (running buffer: 25 mM Tris, 192 mM glycine, and 0.1 % SDS at pH8.3) was performed. At this time, a molecular weight standard marker (Bio-Rad Laboratories Inc., Berkeley, CA, USA) was used.
  • FIGS. 13 and 14 SDS-PAGE analysis results of ADC_WT and ADC variant (ADC_frTet) are shown in FIGS. 13 and 14 . More specifically, the band identified in the samples of FIGS. 13 and 14 corresponds to a subunit having a molecular weight of about 80 kDa. 13 and 14, BI means before induction, and AI means after induction.
  • ADC WT refers to the result of a sample expressing and purifying wild-type ADC.
  • ADC T39, ADC N85, ADC N245, ADC K312, ADC Q488, ADC K522, and ADC G657 refer to the results of samples in which ADC_T39frTet, ADC_N85frTet, ADC_N245frTet, ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, and ADCG_657frTet were expressed and refined, respectively.
  • frTet variants ADC_N245frTet and ADC_G657feTet were excluded from the candidate group due to molecular weight analysis that did not correspond to ADC variants during the expression purification process.
  • ADC_frTet Purified ADC_WT and its arginine decarboxylase variants, ADC_frTet (ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively) were reacted with TCO-Cy3 fluorescent dye at a 1:2 molar ratio in PBS (pH 7.4) at room temperature. After 2 hours, the reaction mixture was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
  • Fluorescence images of protein gels were obtained using a ChemiDoc XRS+ system (illumination at 302 nm, 510-610 nm filters, Bio-Rad Laboratories, Hercules, CA, USA). After fluorescence analysis, the protein gel was stained with Coomassie Brilliant Blue R-250 dye. Protein gel images were obtained using a ChemiDoc XRS+ system using white light illumination.
  • FIG. 15 The fluorescence die labeling results for ADC_WT and ADC_frTet are shown in FIG. 15 . Specifically, the bands shown in the sample of FIG. 15 correspond to subunits and subunits labeled with fluorescent dyes.
  • Figure 15 (b) is the resulting data in fluorescence.
  • ADC_T39, ADC_N85, ADC_K312, ADC_Q488, and ADC_K522 represent ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively.
  • TCO-Cy3 represents the analysis result for the sample to which TCO-Cy3 was not added.
  • TCO-Cy3 (+) represents the analysis result of the reaction sample to which TCO-Cy3 was added.
  • ADC_WT As a control.
  • ADC_WT or ADC_frTet variant at 0.1 mg/mL was reacted with 1 mM arginine and 200 ⁇ M PLP in 0.2 M sodium acetate (pH 5.2) buffer for 1 hour at 37°C. Thereafter, the produced agmatine (an arginine degradation product by ADC) was compared.
  • ADC_T39, ADC_N85, ADC_K312, ADC_Q488, and ADC_K522 represent ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively.
  • ADC_frTet variants The inverse-electron-demand Diels-Alder (IEDDA) reaction rate of ADC_frTet variants was evaluated.
  • 25 ⁇ M ADC_WT or ADC_frTet (ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet) was incubated in 100 ⁇ M HSA-PEG4-TCO and 0.2 M sodium acetate (pH 5.2) buffer at 23 °C for 5 hours. Thereafter, SDS-PAGE analysis was performed on each sample. As a result of the analysis, it was confirmed that the strength of the band corresponding to ADC disappeared the most in ADC_K312frTet.
  • ADC_K312frTet had the highest intensity in the band corresponding to the ADC-HSA conjugate (FIG. 17). Judging from the fact that the band corresponding to the ADC-HSA conjugate was not observed in ADC_WT, it can be assumed that the newly formed uppermost band is formed through the reaction between frTet and HSA-PEG4-TCO. Through the results, it can be seen that ADC_K312frTet has the highest IEDDA (Inverse electron-demand Diels-Alder) reaction rate.
  • IEDDA Inverse electron-demand Diels-Alder
  • TCO-PEG4-Maleimide linker was purchased from Future Chem, dissolved in DMSO at a concentration of 20 mM, and stored at -80°C until use.
  • the chemical formula of TCO-PEG4-Maleimide is:
  • Albumin-linker conjugate HSA-PEG4-TCO
  • PBS pH 7.0
  • Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
  • the half-life was analyzed through a two compartment model, a representative model for analyzing the disappearance of drugs from the blood. As a result of the analysis, it was confirmed that ADC_WT had a half-life of 4.1 hours, and the ADC(K312frTet)-HSA conjugate had a half-life of 23.1 hours (FIG. 21). It was confirmed that the arginine decarboxylase variant-albumin conjugate had an improved half-life of about 5.6-fold compared to the wild-type ADC.
  • TCO-PEG4-Maleimide linker was purchased from Future Chem, dissolved in DMSO at a concentration of 20 mM, and stored at -80°C until use.
  • HSA-PEG4-TCO was prepared by reacting 50 ⁇ M albumin and 200 ⁇ M linker (TCO-PEG4-Mal) in PBS (pH 7.0) for 2 hours at 23°C. Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
  • ADC(T39frTet)-HSA conjugate, ADC_WT, and ADC_T39frTet which are arginine decarboxylase variant-albumin conjugates obtained through size exclusion chromatography. Enzyme activity was confirmed under the same conditions as those described in "2. Stability confirmation of wild-type E. coli-derived ADC (ADC_WT)" of Experimental Example I.
  • Enzyme activity confirmation results are shown in FIG. 24 .

Abstract

The present application relates to an arginine decarboxylase variant and a functional polypeptide variant-albumin conjugate prepared using same.

Description

아르기닌 디카르복실레이즈 변이체 및 이를 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트Arginine decarboxylase variants and arginine decarboxylase variants-albumin conjugates prepared using the same
본 출원의 일 실시양태는 하나 이상의 비천연아미노산을 포함하는 아르기닌 디카르복실레이즈 변이체(arginine decarboxylase variant, ADC variant)에 관한 것이다. One embodiment of the present application relates to an arginine decarboxylase variant (ADC variant) comprising one or more unnatural amino acids.
본 출원의 일 실시양태는 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트에 관한 것이다. One embodiment of the present application relates to arginine decarboxylase variant-albumin conjugates.
아르기닌 디카르복실레이즈(Arginine decarboxylase)는 L-arginine을 아그마틴(agmatine) 및 이산화탄소(carbon dioxide)로 전환하는 것을 촉매하는 효소이다. 상기 전환 과정은 탈탄산 반응에서 양성자를 소비하고 오르니틴 디카르복실레이즈 및 글루타민 디카르복실레이즈와 같은 아미노산 대사에 관여하는 다른 효소와 유사하게 피리독살-5'-인산(pyridoxal-5'-phosphate; PLP) 보조인자(cofactor)를 이용한다.Arginine decarboxylase is an enzyme that catalyzes the conversion of L-arginine to agmatine and carbon dioxide. The conversion process consumes protons in the decarboxylation reaction and similar to other enzymes involved in amino acid metabolism such as ornithine decarboxylase and glutamine decarboxylase, pyridoxal-5'-phosphate ; PLP) using a cofactor.
아르기닌을 아그마틴 및 이산화탄소로 전환하는 것을 촉매하는 아르기닌 디카르복실레이즈를 항암제로 이용할 수 있음이 밝혀졌다 (Philip, R., E. Campbell, and D. N. Wheatley. "Arginine deprivation, growth inhibition and tumour cell death: 2. Enzymatic degradation of arginine in normal and malignant cell cultures." British journal of cancer 88.4 (2003): 613-623.). 아르기닌 디카르복실레이즈는 아르기닌 영양요구성(arginine auxotrophy) 종양 세포의 대사 활동에 필요한 아르기닌을 고갈시킴으로써 암세포의 성장 및 분화를 방해할 수 있다. Philip, R et al.은 인간 유래 아르기닌 디카르복실레이즈를 페길화하였으며, 페길화된 아르기닌 디카르복실레이즈는 안정적이었으나 효과가 40%나 감소했음을 개시한다. It has been found that arginine decarboxylase, which catalyzes the conversion of arginine to agmatine and carbon dioxide, can be used as an anticancer agent (Philip, R., E. Campbell, and D. N. Wheatley. “Arginine deprivation, growth inhibition and tumor cell death. : 2. Enzymatic degradation of arginine in normal and malignant cell cultures." British journal of cancer 88.4 (2003): 613-623.). Arginine decarboxylases can interfere with the growth and differentiation of cancer cells by depleting arginine required for metabolic activity in arginine auxotrophy tumor cells. Philip, R et al., pegylated human arginine decarboxylase and disclose that the pegylated arginine decarboxylase was stable but reduced in efficacy by 40%.
본 출원의 일 과제는 안정성 및/또는 혈장 반감기가 증가된 아르기닌 디카르복실레이즈 변이체 또는 이를 이용한 컨쥬게이트를 제공하는 것이다. 본 출원에 의해 제공된 아르기닌 디카르복실레이즈 변이체 또는 이를 이용한 컨쥬게이트의 효소 활성은 야생형 아르기닌 디카르복실레이즈와 비교하였을 때 차이가 적거나 더 높은 것을 특징으로 한다. One object of the present application is to provide an arginine decarboxylase variant having increased stability and/or plasma half-life or a conjugate using the same. The enzymatic activity of the arginine decarboxylase variant provided by the present application or a conjugate using the same is characterized by a small or higher difference when compared to wild-type arginine decarboxylase.
본 출원의 일 실시양태로, 하기의 화학식 1의 구조를 갖는 화합물이 제공된다:In one embodiment of the present application, a compound having the structure of Formula 1 is provided:
[화학식 1][Formula 1]
FPV-[J1-A2-J2-P1]a,FPV-[J 1 -A 2 -J 2 -P 1 ] a ,
이때:At this time:
FPV는 기능성 폴리펩티드 변이체 유닛이고, 상기 기능성 폴리펩티드 변이체 유닛은 아르기닌 디카르복실레이즈 변이체 유닛이고, 상기 아르기닌 디카르복실레이즈 변이체 유닛은 아르기닌 디카르복실레이즈 변이체로부터 유래되며, 상기 아르기닌 디카르복실레이즈 변이체는 하나 이상의 비천연 아미노산을 포함하며, FPV is a functional polypeptide variant unit, said functional polypeptide variant unit is an arginine decarboxylase variant unit, said arginine decarboxylase variant unit is derived from an arginine decarboxylase variant, said arginine decarboxylase variant contains one or more unnatural amino acids;
이때 상기 비천연아미노산은 제1 클릭화학작용기를 포함하고, 이때 상기 제1 클릭화학작용기는 제2 클릭화학작용기와 클릭화학반응을 할 수 있으며, 이때 상기 제1 클릭화학작용기는 말단 알킨 (terminal alkyne) 그룹, 아자이드 (azide) 그룹, 스트레인된 알킨(strained alkyne) 그룹, 다이엔 (diene) 그룹, 친다이엔체 (dienophile) 그룹, 트랜스 시클로옥틴(trans-cyclooctene) 그룹, 알켄 (alkene) 그룹, 티올 (thiol) 그룹, 테트라진 (tetrazine) 그룹, 트리아진(triazine) 그룹, DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne) 그룹 중에서 선택된 어느 하나의 그룹을 포함하고, In this case, the non-natural amino acid includes a first click chemical functional group, wherein the first click chemical functional group can undergo a click chemical reaction with a second click chemical functional group, wherein the first click chemical functional group is a terminal alkyne ) group, azide group, strained alkyne group, diene group, dienophile group, trans-cyclooctene group, alkene group, Including any one group selected from a thiol group, a tetrazine group, a triazine group, a dibenzocyclooctyne (DBCO) and a bicyclononyne group,
J1은 제1 접합 유닛이고, 상기 제1 접합 유닛은 상기 제1 클릭화학작용기와 상기 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 갖고, J 1 is a first bonding unit, and the first bonding unit has a structure formed by a click chemical reaction between the first click chemical functional group and the second click chemical functional group;
A2는 제2 앵커 모이어티이고, 상기 제2 앵커 유닛은 하나 이상의 헤테로 원자를 포함하는 치환된 탄화수소 사슬이고, A 2 is a second anchor moiety, said second anchor unit being a substituted hydrocarbon chain containing one or more heteroatoms;
이때 상기 헤테로 원자는, 각각 독립적으로, N, O, 및 S 중에서 선택되고, 이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는, 각각 독립적으로, 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이며,In this case, the heteroatoms are each independently selected from N, O, and S, wherein the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are, each independently, halogen, C 1-3 Any one selected from the group consisting of alkyl, -NH 2 , =O, and =S,
J2는 제2 접합 유닛이고, 이때 상기 제2 접합 유닛은 티올 반응성 그룹과 티올기의 반응에 의해 형성된 구조를 갖고, 이때 상기 티올 반응성 그룹은 말레이미드 그룹 또는 APN 그룹이고,J 2 is a second junction unit, wherein the second junction unit has a structure formed by a reaction between a thiol-reactive group and a thiol group, wherein the thiol-reactive group is a maleimide group or an APN group;
P1은 알부민 유닛이고, 상기 알부민 유닛은 알부민으로부터 유래되며, P 1 is an albumin unit, said albumin unit being derived from albumin;
a는 1 이상 10 이하의 정수임. a is an integer greater than or equal to 1 and less than or equal to 10;
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 변이체는 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체의 데카머(decamer)이고, 이때 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 하나 이상의 비천연아미노산을 포함할 수 있다. In certain embodiments, the arginine decarboxylase variant is a decamer of 10 arginine decarboxylase subunit variants, wherein the arginine decarboxylase subunit variant comprises one or more non-natural amino acids. can
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 서열과 90% 이상의 서열 동일성(identity)을 가지는 아미노산 서열을 가질 수 있다. In a specific embodiment, the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), an amino acid having at least 90% sequence identity with a sequence in which any one or more residues selected from glutamine at position 488, lysine at position 522, and glycine at position 657 are substituted with non-natural amino acids can have a sequence.
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 02 내지 서열번호 08의 아미노산 서열, 및 이와 90% 이상의 서열 동일성(identity)을 갖는 아미노산 서열 중 어느 하나의 아미노산 서열을 가질 수 있다. In a specific embodiment, the arginine decarboxylase subunit variant may have an amino acid sequence of any one of the amino acid sequences of SEQ ID NOs: 02 to SEQ ID NOs: 08 and amino acid sequences having 90% or more sequence identity thereto. .
특정한 실시양태에서, 상기 제1 클릭화학작용기는 테트라진 그룹 또는 아자이드 그룹을 포함할 수 있다. In a specific embodiment, the first click chemofunctional group may include a tetrazine group or an azide group.
특정한 실시양태에서, 상기 비천연아미노산은 frTet 또는 AzF일 수 있다. In certain embodiments, the unnatural amino acid can be frTet or AzF.
특정한 실시양태에서, 상기 제2 클릭화학작용기는 트랜스 시클로옥틴(TCO) 그룹, DBCO 그룹, 및 비시클로노닌 그룹 중 선택된 어느 하나의 그룹을 포함할 수 있다. In a specific embodiment, the second click chemical functional group may include any one group selected from a trans cyclooctyne (TCO) group, a DBCO group, and a bicyclononine group.
특정한 실시양태에서, 상기 제2 클릭화학작용기는 트랜스 시클로옥틴(TCO) 그룹을 포함할 수 있다. In certain embodiments, the second click chemofunctional group may include a trans cyclooctyne (TCO) group.
특정한 실시양태에서, 상기 제2 접합 유닛은 하기의 구조를 가질 수 있다:In a specific embodiment, the second bonding unit may have the following structure:
Figure PCTKR2022015832-appb-img-000001
, 또는
Figure PCTKR2022015832-appb-img-000001
, or
Figure PCTKR2022015832-appb-img-000002
,
Figure PCTKR2022015832-appb-img-000002
,
이때 상기 구조에서, S 원자는 알부민으로부터 유래됨. wherein in the above structure, the S atom is derived from albumin.
특정한 실시양태에서, 상기 제2 접합 유닛은 하기의 구조를 가질 수 있다:In a specific embodiment, the second bonding unit may have the following structure:
Figure PCTKR2022015832-appb-img-000003
,
Figure PCTKR2022015832-appb-img-000003
,
이때 상기 구조에서, S 원자는 알부민으로부터 유래됨. wherein in the above structure, the S atom is derived from albumin.
특정한 실시양태에서, 상기 제2 앵커 유닛은 -A21-A22-A23- 이고, In certain embodiments, said second anchor unit is -A 21 -A 22 -A 23 -;
이때:At this time:
A21은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 이고, A 21 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC (=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-,
A22는 결합(bond), 치환 또는 비치환된 C1-12 알킬렌, 치환 또는 비치환된 C1-12 헤테로알킬렌, -치환 또는 비치환된 C1-12알킬렌-[EG]n-, -치환 또는 비치환된 C1-12-헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-12알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, 및 -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12헤테로알킬렌- 중에서 선택되는 어느 하나이고, A 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -substituted or unsubstituted C 1-12 alkylene-[EG] n -, -Substituted or unsubstituted C 1-12- Heteroalkylene-[EG] n -, -Substituted or unsubstituted C 1-12 Alkylene-[EG] n -Substituted or unsubstituted C 1-12 Alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted C 1-12 heteroalkylene -[EG] any one selected from n -substituted or unsubstituted C 1-12 heteroalkylene-;
이때 EG는 에틸렌글리콜 단위체이고, 상기 에틸렌글리콜 단위체는 -CH2CH2O- 또는 -CH2OCH2-의 구조를 가지며, 이때 n은 2 이상 6 이하의 정수이고, In this case, EG is an ethylene glycol unit, and the ethylene glycol unit has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -, where n is an integer of 2 or more and 6 or less,
이때 상기 헤테로알킬렌은 각각 독립적으로 N, O, 및 S 중에서 선택되고,In this case, the heteroalkylene is each independently selected from N, O, and S,
이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 각각 독립적으로 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, In this case, the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are each independently any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S,
A23은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 일 수 있고, A 23 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC (=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-,
이때, A21, A22, 및 A23 모두가 동시에 결합(bond)인 경우는 존재하지 않을 수 있다. At this time, A 21 , A case in which both A 22 and A 23 are simultaneously bonded may not exist.
특정한 실시양태에서, 상기 제2 앵커 유닛은 하기의 구조 중 어느 하나의 구조를 가질 수 있다:In certain embodiments, the second anchor unit may have any one of the following structures:
Figure PCTKR2022015832-appb-img-000004
Figure PCTKR2022015832-appb-img-000004
Figure PCTKR2022015832-appb-img-000005
,
Figure PCTKR2022015832-appb-img-000005
,
이때 n은 2 이상 8 이하의 정수이고, In this case, n is an integer of 2 or more and 8 or less,
이때 3'은 제1 접합 유닛과의 부착부(attachment site)이며, 4'은 제2 접합 유닛과의 부착부(attachment site)임. In this case, 3' is an attachment site with the first bonding unit, and 4' is an attachment site with the second bonding unit.
특정한 실시양태에서, 상기 알부민은 서열번호 09 내지 서열번호 20의 아미노산 서열 중 어느 하나의 아미노산 서열을 가질 수 있다. In a specific embodiment, the albumin may have an amino acid sequence of any one of the amino acid sequences of SEQ ID NO: 09 to SEQ ID NO: 20.
본 출원의 일 실시양태로, 화학식 1의 구조를 갖는 화합물을 포함하는, 아르기닌 영양요구성 종양을 치료하기 위한 약학적 조성물이 제공된다. In one embodiment of the present application, a pharmaceutical composition for treating arginine auxotrophic tumors, comprising a compound having the structure of Formula 1, is provided.
특정한 실시양태에서, 상기 아르기닌 영양요구성 종양은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나일 수 있다. In a specific embodiment, the arginine auxotrophic tumor is melanoma, liver cancer, hepatocellular carcinoma (HCC), prostate cancer, pancreatic cancer, breast cancer cancer), mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (Glioblastoma multiforme; GBM), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
본 출원의 일 실시양태로, 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 아르기닌 디카르복실레이즈 서브유닛 변이체가 제공된다.In one embodiment of the present application, Threonine at position 39, Asparagine at position 85, Asparagine at position 245, Lysine at position 312, Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01 ), a sequence in which any one or more residues selected from lysine at position 522, and glycine at position 657 are substituted with a non-natural amino acid, or an arginine decarboxylase sub having a sequence having at least 90% sequence identity therewith Unit variants are provided.
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌이 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 서열을 가질 수 있다. In a specific embodiment, the arginine decarboxylase subunit variant may have a sequence in which the 39th threonine of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith. there is.
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 312번째 라이신이 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 서열을 가질 수 있다. In a specific embodiment, the arginine decarboxylase subunit variant may have a sequence in which the 312th lysine of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith. there is.
특정한 실시양태에서, 상기 비천연아미노산은 frTet일 수 있다. In certain embodiments, the non-natural amino acid can be frTet.
특정한 실시양태에서, 상기 비천연아미노산은 AzF일 수 있다. In certain embodiments, the non-natural amino acid can be AzF.
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 02 내지 서열번호 08 중 어느 하나의 아미노산 서열 및 이와 90% 이상의 서열 동일성(identity)을 갖는 아미노산 서열 중 어느 하나의 서열을 가질 수 있다. In a specific embodiment, the arginine decarboxylase subunit variant may have any one of the amino acid sequence of SEQ ID NO: 02 to SEQ ID NO: 08 and an amino acid sequence having at least 90% sequence identity therewith. there is.
본 출원의 일 실시양태로, 본 출원의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하는, 아르기닌 영양요구성 종양을 치료하기 위한 약학적 조성물이 제공된다.In one embodiment of the present application, a pharmaceutical composition for treating arginine auxotrophic tumors is provided, comprising the arginine decarboxylase subunit variant of the present application.
특정한 실시양태에서, 상기 아르기닌 영양요구성 종양은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나일 수 있다. In a specific embodiment, the arginine auxotrophic tumor is melanoma, liver cancer, hepatocellular carcinoma (HCC), prostate cancer, pancreatic cancer, breast cancer cancer), mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (Glioblastoma multiforme; GBM), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
본 출원의 일 실시양태로, 다음을 포함하는 대상의 아르기닌 영양요구성 종양을 치료하는 방법이 제공된다: 화학식 1의 구조를 갖는 화합물 또는 아르기닌 디카르복실레이즈 변이체를 포함하는 조성물을 대상에게 투여함. In one embodiment of the present application, there is provided a method of treating arginine auxotrophic tumor in a subject comprising: administering to the subject a compound having the structure of Formula 1 or a composition comprising an arginine decarboxylase variant. .
본 출원의 일 실시양태로, 화학식 1의 구조를 갖는 화합물 또는 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하는 조성물의 대상의 아르기닌 영양요구성 종양을 치료하기 위한 용도가 제공된다. In one embodiment of the present application, the use of a composition comprising a compound having the structure of Formula 1 or an arginine decarboxylase subunit variant for treating arginine auxotrophic tumor in a subject is provided.
본 출원의 일 실시양태에 따른 아르기닌 디카르복실레이즈 변이체로부터 제조된 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 야생형 아르기닌 디카르복실레이즈보다 혈장 반감기 및 면역원성이 개선되었으며, 효소 활성은 상기 야생형 아르기닌 디카르복실레이즈와 비교할 때 별다른 차이가 없거나 더 높은 장점을 갖는다. The functional polypeptide variant-albumin conjugate prepared from the arginine decarboxylase variant according to one embodiment of the present application has improved plasma half-life and immunogenicity than wild-type arginine decarboxylase, and the enzyme activity is higher than that of wild-type arginine decarboxylase. Compared to raises, there is no significant difference or a higher advantage.
본 출원의 일 실시양태에 따른 아르기닌 디카르복실레이즈 변이체 및/또는 아르기닌 디카르복실레이즈 서브유닛 변이체는 비천연아미노산을 포함하고, 야생형 아르기닌 디카르복실레이즈와 비교할 때 효소 활성에 별다른 차이가 없거나 더 높은 장점을 갖는다. The arginine decarboxylase variant and/or the arginine decarboxylase subunit variant according to one embodiment of the present application includes an unnatural amino acid, and has no significant difference or no significant difference in enzymatic activity compared to wild-type arginine decarboxylase. has high advantages.
도 1은 야생형의 E. coli 유래 아르기닌 디카르복실레이즈(ADC_WT)에 대한 PAGE 결과이다. ADC_WT 발현 및 정제 후 PAGE를 수행하였다. 1 is a PAGE result of wild-type E. coli-derived arginine decarboxylase (ADC_WT). PAGE was performed after ADC_WT expression and purification.
도 2는 ADC_WT의 안정성을 확인한 결과이다. 2 is a result of confirming the stability of ADC_WT.
도 3은 pH 별 ADC_WT의 대사 활성 억제 효과를 확인한 결과이다. Hela cell에 ADC_WT를 처리하여 실험되었다. 3 is a result of confirming the metabolic activity inhibitory effect of ADC_WT for each pH. Experiments were conducted by treating Hela cells with ADC_WT.
도 4는 ADC_WT의 처리 및 처리농도에 따른 세포주별 대사 활성 측정 결과를 나타낸다. 구체적으로 도 4는 유방암 및/또는 유선암 관련 세포주에 대한 결과이다. Figure 4 shows the metabolic activity measurement results for each cell line according to ADC_WT treatment and treatment concentration. Specifically, FIG. 4 is a result of breast cancer and/or mammary cancer-related cell lines.
도 5는 ADC_WT의 처리 및 처리농도에 따른 세포주별 대사 활성 측정 결과를 나타낸다. 구체적으로 도 5는 폐암 관련 세포주에 대한 결과이다. Figure 5 shows the metabolic activity measurement results for each cell line according to ADC_WT treatment and treatment concentration. Specifically, FIG. 5 is a result of lung cancer-related cell lines.
도 6은 ADC_WT의 처리 및 처리농도에 따른 세포주별 대사 활성 측정 결과를 나타낸다. 구체적으로 도 5는 췌장암 관련 세포주에 대한 결과이다. Figure 6 shows the metabolic activity measurement results for each cell line according to ADC_WT treatment and treatment concentration. Specifically, FIG. 5 is a result of pancreatic cancer-related cell lines.
도 7은 ADC_WT의 in vivo 항암 활성을 확인한 결과이다. 7 is a result of confirming the in vivo anticancer activity of ADC_WT.
도 8은 ADC 변이체 (ADC_Q488AzF 및 ADC_K522AzF)발현 후 PAGE를 수행한 결과이다. (a)는 정제 전, (b)는 정제 후의 결과를 나타낸다. 8 shows the results of performing PAGE after expressing ADC variants (ADC_Q488AzF and ADC_K522AzF). (a) shows the results before purification and (b) after purification.
도 9는 ADC 변이체에 대한 형광 다이 라벨링 결과를 나타낸다. 9 shows the fluorescence die labeling results for ADC variants.
도 10은 ADC_WT 및 ADC 변이체의 효소 활성을 확인한 결과이다. 10 shows the results of confirming the enzyme activity of ADC_WT and ADC variants.
도 11은 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 제조를 PAGE를 통해 확인한 결과이다. 11 is a result of confirming the preparation of an arginine decarboxylase variant-albumin conjugate through PAGE.
도 12는 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 제조를 PAGE를 통해 확인한 결과이다. 12 is a result of confirming the preparation of an arginine decarboxylase variant-albumin conjugate through PAGE.
도 13은 ADC 변이체(ADC_T39frTet, ADC_N85frTet, ADC_N245frTet)에 대한 PAGE 결과이다. ADC_WT 및 ADC 변이체 발현 및 정제 후 PAGE를 수행하였다.13 shows PAGE results for ADC variants (ADC_T39frTet, ADC_N85frTet, and ADC_N245frTet). PAGE was performed after ADC_WT and ADC variant expression and purification.
도 14는 ADC 변이체(ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, ADC_G657frTet)에 대한 PAGE 결과이다. ADC 변이체 발현 및 정제 후 SDS-PAGE를 수행하였다.14 shows PAGE results for ADC variants (ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, ADC_G657frTet). SDS-PAGE was performed after ADC variant expression and purification.
도 15는 ADC 변이체에 대한 형광 다이 라벨링 결과를 나타낸다. 15 shows the fluorescence die labeling results for ADC variants.
도 16은 ADC_WT 및 ADC 변이체의 효소 활성을 확인한 결과를 나타낸다. 16 shows the results of confirming the enzyme activity of ADC_WT and ADC variants.
도 17은 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조 시 IEDDA reaction rate를 PAGE를 통해 확인한 결과이다.17 is a result of confirming the IEDDA reaction rate through PAGE when preparing an arginine decarboxylase variant-albumin conjugate.
도 18은 ADC(K312frTet)-HSA 컨쥬게이트 제조 후 크기 배제 크로마토그래피를 수행한 결과를 나타낸다. 18 shows the results of size exclusion chromatography after preparation of the ADC(K312frTet)-HSA conjugate.
도 19는 크기 배제 크로마토그래피를 통해 얻은 3개의 fraction(F1~F3)를 이용하여 수행한 PAGE 결과를 나타낸다. 19 shows the results of PAGE performed using three fractions (F1 to F3) obtained through size exclusion chromatography.
도 20은 ADC 변이체(ADC_K312frTet) 및 ADC(K312frTet)-HSA 컨쥬게이트의 효소 활성을 확인한 결과를 나타낸다.20 shows the result of confirming the enzyme activity of ADC variant (ADC_K312frTet) and ADC (K312frTet)-HSA conjugate.
도 21은 ADC(K312frTet)-HSA 컨쥬게이트의 PK를 확인한 결과이다. 21 is a result of confirming the PK of the ADC(K312frTet)-HSA conjugate.
도 22는 ADC(T39frTet)-HSA 컨쥬게이트 제조 후 크기 배제 크로마토그래피를 수행한 결과를 나타낸다. 22 shows the results of size exclusion chromatography after preparation of the ADC(T39frTet)-HSA conjugate.
도 23은 크기 배제 크로마토그래피를 통해 얻은 3개의 fraction(F1~F3)를 이용하여 수행한 PAGE 결과를 나타낸다.23 shows the results of PAGE performed using three fractions (F1 to F3) obtained through size exclusion chromatography.
도 24는 ADC 변이체 (ADC_T39frTet) 및 ADC(T39frTet)-HSA 컨쥬게이트의 효소 활성을 확인한 결과를 나타낸다. 24 shows the result of confirming the enzyme activity of the ADC variant (ADC_T39frTet) and the ADC(T39frTet)-HSA conjugate.
용어의 정의Definition of Terms
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술분야의 당업자에 의해 통상적으로 이해되는 것과 동일한 의미를 가진다. 본 명세서에서 언급된 모든 간행물, 특허 및 기타 다른 참고문헌은 전체가 참고로 포함된다. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patents and other references mentioned herein are incorporated by reference in their entirety.
본 명세서에서 사용되는 용어 "약"은 어떤 수량에 거의 가까운 정도를 의미하며, 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.As used herein, the term "about" means approximately as close to a quantity as, relative to a reference amount, level, value, number, frequency, percentage, dimension, size, amount, weight, or length, such as 30, 25, 20, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1%.
본 명세서에서 사용되는 용어 "폴리펩티드"는 복수의 아미노산이 연속적으로 연결되어 형성된 화합물을 의미하는 것으로 사용된다. 본 명세서에서 사용되는 용어 "폴리펩티드"는 펩티드 및 단백질을 모두 포함하는 의미로 사용된다. 폴리펩티드는, 예를 들어, 3개 이상의 아미노산 잔기를 포함할 수 있으나 이에 제한되지 않는다. 다른 예로, 폴리펩티드는 15개 이상의 아미노산 잔기를 포함할 수 있으나 이에 제한되지 않는다. 다른 예로, 50개 이상의 아미노산 잔기를 포함할 수 있으나 이에 제한되지 않는다. 다른 예로, 폴리펩티드는 200개 이상의 아미노산 잔기를 포함할 수 있으나 이에 제한되지 않는다. As used herein, the term "polypeptide" is used to mean a compound formed by consecutively linking a plurality of amino acids. As used herein, the term "polypeptide" is used to include both peptides and proteins. A polypeptide can include, for example, but is not limited to, three or more amino acid residues. In another example, a polypeptide can include, but is not limited to, 15 or more amino acid residues. In other instances, it may include, but is not limited to, 50 or more amino acid residues. In other instances, a polypeptide may include, but is not limited to, 200 or more amino acid residues.
"할로겐" 또는 "할로"는 주기율표에서 할로겐 족 원소에 포함된 플루오르, 염소, 브롬 및 요오드를 포함하는 군을 의미한다."Halogen" or "halo" refers to a group containing fluorine, chlorine, bromine and iodine included in the halogen group of elements in the periodic table.
본 명세서에서 사용되는 용어 "헤테로"는 적어도 하나의 헤테로원자를 포함하는 화합물 또는 그룹을 지칭한다. 용어 "헤테로원자"는 탄소나 수소가 아닌 원자로서, 예를 들어 B, Si, N, P, O, S, F, Cl, Br, I 및 Se 등을 포함한다. 바람직하게는, N, O, 및 S와 같은 다가 원소나 F, Cl, Br, 및 I와 같은 일가 원소 등을 포함하나 이에 제한되는 것은 아니다.As used herein, the term "hetero" refers to a compound or group containing at least one heteroatom. The term "heteroatom" is an atom other than carbon or hydrogen, including, for example, B, Si, N, P, O, S, F, Cl, Br, I and Se. Preferably, polyvalent elements such as N, O, and S or monovalent elements such as F, Cl, Br, and I are included, but are not limited thereto.
본 명세서에서 사용되는 용어 "치환된"은 원자의 원자가(valence)가 정상이고 치환된 화합물이 안정적인, 원자상의 하나 이상의 수소 원자가 치환기로 치환됨을 의미한다. 이때 치환기는 각각 독립적으로 선택된다. 치환기는 중수소 및 수소 변이체(variants)를 포함할 수 있다. 치환기가 산소(즉, =O)인 경우, 이는 두개의 수소 원자가 치환되었음을 의미한다. 하나의 치환기가 할로겐(예를 들어, Cl, F, Br, 및 I 등)인 경우, 이는 하나의 수소원자가 할로겐으로 치환되었음을 의미한다. 치환기가 하나의 그룹에 두개 이상 존재할 경우, 상기 그룹에 존재하는 치환기는 같거나 다를 수 있다. 달리 명시되지 않는 한, 치환기의 유형 및 수는 화학적으로 달성 가능한 한, 임의적일 수 있다. 예시적으로, 치환기는 할로겐, C1-6알킬, C1-6헤테로알킬, -NH2, =O, =S, -OH, 및 -SH 중에서 선택될 수 있으나 이에 제한되지 않는다. 예를 들어, 치환된 C10-20 알킬렌은 주사슬에 연결된 하나 이상의 수소원자가 치환기로 치환된 것을 의미할 수 있으며, 이때 각각의 치환기는 독립적으로 선택될 수 있다. As used herein, the term “substituted” means that one or more hydrogen atoms on an atom are replaced with a substituent, wherein the valence of the atom is normal and the substituted compound is stable. In this case, the substituents are each independently selected. Substituents may include deuterium and hydrogen variants. When the substituent is oxygen (i.e. =O), it means that two hydrogen atoms are substituted. When one substituent is a halogen (eg, Cl, F, Br, and I, etc.), it means that one hydrogen atom has been replaced with a halogen. When two or more substituents are present in one group, the substituents present in the group may be the same or different. Unless otherwise specified, the type and number of substituents can be arbitrary, as long as they are chemically achievable. Illustratively, the substituent may be selected from halogen, C 1-6 alkyl, C 1-6 heteroalkyl, -NH 2 , =O, =S, -OH, and -SH, but is not limited thereto. For example, substituted C 10-20 alkylene may mean that one or more hydrogen atoms linked to the main chain are substituted with substituents, and each substituent may be independently selected.
본 명세서에서 사용되는 용어 "알킬" 또는 "알칸"은 사슬 모양, 또는 가지 모양의 탄화수소로서 완전히 포화된 그룹을 의미하는 것으로 사용된다. 사슬 모양 및 가지 모양 알킬기는 예를 들어, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, tert-부틸, iso-부틸, 펜틸(pentyl), 헥실(hexyl), 헵틸(heptyl), 옥틸(octyl), 노닐(nonyl), 및 데실(decyl) 등일 수 있다. 알킬기는 고리형 구조를 포함할 수 있다. "Cx-y"라는 용어는, 예를 들어, 용어 알킬과 함께 사용되는 경우 사슬 또는 고리에 x 내지 y 개의 탄소를 포함하는 잔기를 포함하도록 의도된다. 예를 들어, "Cx-y알킬"이라는 용어는 치환된 또는 비치환된, 사슬 모양 알킬기, 가지 모양 알킬 기, 또는 고리형 구조를 포함하는 알킬기로써 사슬에 x 내지 y 개의 탄소를 포함하는 것을 포함하고, 나아가 디플루오로메틸 및 2,2,2-트리플루오로에틸, 등과 같은 할로알킬 기를 포함하는 것을 의미할 수 있다. C0 알킬은 수소를 의미한다. C1-4 알킬의 예에는 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, tert-부틸, iso-부틸, 디플루오로메틸, 및 2,2,2-트리플루오로에틸 등이 포함되나 이에 제한되지 않는다.As used herein, the term "alkyl" or "alkane" is used to mean a fully saturated chain or branched hydrocarbon group. Chain and branched alkyl groups include, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, iso-butyl, pentyl, hexyl, heptyl (heptyl), octyl, nonyl, and decyl. Alkyl groups may include cyclic structures. The term “C xy ”, for example when used with the term alkyl, is intended to include moieties containing from x to y carbons in the chain or ring. For example, the term "C xy alkyl" includes substituted or unsubstituted, chain-like alkyl groups, branched alkyl groups, or alkyl groups containing a cyclic structure containing x to y carbons in the chain; , and further haloalkyl groups such as difluoromethyl and 2,2,2-trifluoroethyl, and the like. C 0 Alkyl means hydrogen. Examples of C 1-4 alkyl include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, iso-butyl, difluoromethyl, and 2,2,2-trifluoro roethyl and the like, but are not limited thereto.
본 명세서에서 사용되는 용어 "헤테로알킬"은 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. As used herein, the term “heteroalkyl” refers to an alkyl containing one or more heteroatoms.
본 명세서에서 사용되는 용어 "알케닐" 또는 "알켄"은 사슬 모양 또는 가지 모양의 비방향족 탄화수소로서 하나 이상의 이중 결합을 포함하는 그룹을 의미하는 것으로 사용된다. 예를 들어, 사슬 모양 또는 가지 모양 알케닐 기는, 2 내지 약 50 개, 2 내지 20개, 또는 2 내지 10개의 탄소 원자를 가질 수 있다. 알케닐 기는 고리형 구조를 포함할 수 있다. As used herein, the term "alkenyl" or "alkene" is used to mean a chain or branched non-aromatic hydrocarbon group containing one or more double bonds. For example, a chain-like or branched alkenyl group can have 2 to about 50, 2 to 20, or 2 to 10 carbon atoms. Alkenyl groups can include cyclic structures.
본 명세서에서 사용되는 용어 "헤테로알켄"은 하나 이상의 헤테로원자를 포함하는 알켄을 의미한다. As used herein, the term “heteroalkene” refers to an alkene containing one or more heteroatoms.
본 명세서에서 사용되는 용어 "알키닐" 또는 "알킨"은 사슬 모양 또는 가지 모양의 비방향족 탄화수소로서, 하나 이상의 삼중 결합을 포함하는 그룹을 의미하는 것으로 사용된다. 예를 들어, 사슬 모양 또는 가지 모양 알키닐 기는, 2 내지 약 50 개, 2 내지 20개, 또는 2 내지 10개의 탄소 원자를 가질 수 있다. 알키닐 기는 하나 이상의 삼중 결합 외에도 하나 이상의 이중 결합을 포함할 수 있다. 알키닐 기는 고리형 구조를 포함할 수 있다. As used herein, the term "alkynyl" or "alkyne" is used to mean a chain or branched non-aromatic hydrocarbon group containing one or more triple bonds. For example, a chain or branched alkynyl group can have 2 to about 50, 2 to 20, or 2 to 10 carbon atoms. An alkynyl group may contain one or more double bonds in addition to one or more triple bonds. Alkynyl groups can include cyclic structures.
본 명세서에서 사용되는 용어 "헤테로알킨"은 하나 이상의 헤테로원자를 포함하는 알킨을 의미한다. As used herein, the term "heteroalkyn" refers to an alkyne containing one or more heteroatoms.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "알킬렌"은 알킬로부터 유도된 2가 라디칼(divalent radical)을 의미한다. 용어 "알킬렌"은, 필요에 따라, "치환된" 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "알킬렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "알킬렌"은 치환된 알킬렌 및 비치환된 알킬렌을 모두 포함하는 것으로 의도된다. 알킬렌은 -CH2-, -CH2CH2-, -CH2CH2CH2-, 및 -CH2CH2CH2CH2- 으로 예시될 수 있으나, 이에 제한되지 않는다. 예를 들어, 알킬렌은 C2 알킬렌과 같이 사용될 수 있으며, 이는 주사슬에 두개의 탄소 원자를 포함하는 알킬렌 그룹을 의미한다. 예시적으로, 본 명세서에서 "Cx-y 알킬렌" 은 주사슬에 X 내지 Y 수의 탄소 원자를 갖는, 치환된 또는 비치환된 알킬렌을 모두 포함하는 알킬렌을 의미하는 것으로 사용된다. The term "alkylene" when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from an alkyl. The term "alkylene" may be used with the terms "substituted" or "unsubstituted", as appropriate. When the term "alkylene" is not used in conjunction with the terms "substituted" or "unsubstituted", the term "alkylene" is intended to include both substituted and unsubstituted alkylenes. Alkylene may be exemplified by -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, and -CH 2 CH 2 CH 2 CH 2 -, but is not limited thereto. For example, alkylene may be used as C 2 alkylene, which refers to an alkylene group containing two carbon atoms in the main chain. Illustratively, in this specification, "C xy alkylene" is used to mean an alkylene including both substituted and unsubstituted alkylenes having X to Y number of carbon atoms in the main chain.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "헤테로알킬렌"은 헤테로알킬로부터 유도된 2가 라디칼을 의미한다. 용어 “헤테로알킬렌”은 필요에 따라, “치환된” 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "헤테로알킬렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "헤테로알킬렌"은 치환된 헤테로알킬렌 또는 비치환된 헤테로알킬렌을 모두 포함하는 것으로 의도된다. 예시적으로 헤테로알킬렌 그룹은 ―CH2―CH2―O―CH2―CH2―, 및 ―CH2―O―CH2―CH2―NH―CH2― 를 포함하나 이에 제한되지 않는다. 헤테로알킬렌 그룹은 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알킬렌 그룹은 사슬 또는 가지의 말단이 아닌 위치에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알킬렌 그룹은 사슬 또는 가지의 말단 각각, 또는 모든 말단에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예시적으로, 본 명세서에서 "Cx-y 헤테로알킬렌" 은 주사슬에 x 내지 y 수의 탄소 원자를 갖는, 치환 또는 비치환된 헤테로알킬렌을 모두 포함하는 것으로 사용된다.The term “heteroalkylene” when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkyl. The term "heteroalkylene" may be used with the terms "substituted" or "unsubstituted" as appropriate. When the term "heteroalkylene" is not used in conjunction with the terms "substituted" or "unsubstituted", the term "heteroalkylene" includes both substituted and unsubstituted heteroalkylenes. it is intended to Exemplary heteroalkylene groups include, but are not limited to —CH 2 —CH 2 —O—CH 2 —CH 2 —, and —CH 2 —O—CH 2 —CH 2 —NH—CH 2 —. Heteroalkylene groups can contain one or more heteroatoms, and each heteroatom can be the same or different. For example, a heteroalkylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different. For example, a heteroalkylene group can contain one or more heteroatoms at each or all ends of a chain or branch, and each heteroatom can be the same or different. Illustratively, in this specification, "C xy heteroalkylene" is used to include all substituted or unsubstituted heteroalkylenes having x to y carbon atoms in the main chain.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "알케닐렌"은 알켄으로부터 유도된 2가 라디칼을 의미한다. 용어 “알케닐렌”은 필요에 따라, “치환된” 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "알케닐렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "알케닐렌"은 치환된 알케닐렌 또는 비치환된 알케닐렌을 모두 포함하는 것으로 의도된다. 예시적으로 알케닐렌 그룹은 -CH=CH-, -CH2CH=CHCH2-, 및 -CH=CH-CH=CH- 을 포함하나 이에 제한되지 않는다. 예시적으로, 본 명세서에서 "Cx-y 알케닐렌" 은 주사슬에 X 내지 Y 수의 탄소 원자를 갖는, 치환 또는 비치환된 알케닐렌을 모두 포함하는 것으로 사용된다.The term "alkenylene" when used as a molecule by itself or as part of a molecule refers to a divalent radical derived from an alkene. The term “alkenylene” may be used with the terms “substituted” or “unsubstituted” as appropriate. When the term "alkenylene" is not used in conjunction with the terms "substituted" or "unsubstituted", the term "alkenylene" is intended to include both substituted and unsubstituted alkenylene. Illustratively, the alkenylene group includes, but is not limited to, -CH=CH-, -CH 2 CH=CHCH 2 -, and -CH=CH-CH=CH-. Illustratively, in this specification, "C xy alkenylene" is used to include all substituted or unsubstituted alkenylene having X to Y number of carbon atoms in the main chain.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "헤테로알케닐렌"은 헤테로알켄으로부터 유도된 2가 라디칼을 의미한다. 용어 “헤테로알케닐렌”은 필요에 따라, “치환된” 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "헤테로알케닐렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "헤테로알케닐렌"은 치환된 헤테로알케닐렌 또는 비치환된 헤테로알케닐렌을 모두 포함하는 것으로 의도된다. 헤테로알케닐렌 그룹은 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알케닐렌 그룹은 사슬 또는 가지의 말단이 아닌 위치에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알케닐렌 그룹은 사슬 또는 가지의 말단 각각, 또는 모든 말단에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. The term "heteroalkenylene" when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkene. The term “heteroalkenylene” may be used with the terms “substituted” or “unsubstituted” as appropriate. When the term "heteroalkenylene" is not used with the terms "substituted" or "unsubstituted", the term "heteroalkenylene" includes both substituted and unsubstituted heteroalkenylenes. it is intended to A heteroalkenylene group can contain one or more heteroatoms, and each heteroatom can be the same or different. For example, a heteroalkenylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different. For example, a heteroalkenylene group may contain one or more heteroatoms at each or all ends of the chain or branch, and each heteroatom may be the same or different.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "알키닐렌"은 알킨으로부터 유도된 2가 라디칼을 의미한다. 용어 “알키닐렌”은 필요에 따라, “치환된” 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "알키닐렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "알키닐렌"은 치환된 알키닐렌 또는 비치환된 알키닐렌을 모두 포함하는 것으로 의도된다. 예컨데, 알키닐렌 그룹은 -C≡C-, -CH2C≡CCH2-, 및 -C≡C-C≡C-를 포함하나 이에 한정되는 것은 아니다. 예시적으로, 본 명세서에서 "Cx-y 알키닐렌" 은 주사슬에 X 내지 Y 수의 탄소 원자를 갖는, 치환 또는 비치환된 알키닐렌을 모두 포함하는 것으로 사용된다.The term "alkynylene" when used as a molecule by itself or as part of a molecule refers to a divalent radical derived from an alkyne. The term “alkynylene” may be used with the terms “substituted” or “unsubstituted” as appropriate. In cases where the term "alkynylene" is not used in conjunction with the terms "substituted" or "unsubstituted", the term "alkynylene" is intended to include both substituted and unsubstituted alkynylenes. For example, an alkynylene group includes, but is not limited to, -C≡C-, -CH 2 C≡CCH 2 -, and -C≡CC≡C-. Illustratively, in this specification, “C xy alkynylene” is used to include all substituted or unsubstituted alkynylene having X to Y number of carbon atoms in the main chain.
그 자체인 분자로 쓰이거나 또는 분자의 일부로 사용되는 용어 "헤테로알키닐렌"은 헤테로알킨으로부터 유도된 2가 라디칼을 의미한다. 용어 “헤테로알키닐렌”은 필요에 따라, “치환된” 또는 "비치환된"의 용어와 함께 사용될 수 있다. 용어 "헤테로알키닐렌"이 "치환된" 또는 "비치환된"의 용어와 함께 사용되지 않는 경우에는, 용어 "헤테로알키닐렌"은 치환된 헤테로알키닐렌 또는 비치환된 헤테로알키닐렌을 모두 포함하는 것으로 의도된다. 헤테로알키닐렌 그룹은 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알키닐렌 그룹은 사슬 또는 가지의 말단이 아닌 위치에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다. 예를 들어, 헤테로알키닐렌 그룹은 사슬 또는 가지의 말단 각각, 또는 모든 말단에 하나 이상의 헤테로원자를 포함할 수 있고, 각각의 헤테로원자는 같거나 다를 수 있다.The term "heteroalkynylene" when used as a molecule on its own or as part of a molecule refers to a divalent radical derived from a heteroalkyne. The term “heteroalkynylene” may be used with the terms “substituted” or “unsubstituted” as appropriate. When the term "heteroalkynylene" is not used with the terms "substituted" or "unsubstituted", the term "heteroalkynylene" includes both substituted and unsubstituted heteroalkynylene. it is intended to A heteroalkynylene group can contain one or more heteroatoms, and each heteroatom can be the same or different. For example, a heteroalkynylene group may contain one or more heteroatoms at non-terminal positions of a chain or branch, and each heteroatom may be the same or different. For example, a heteroalkynylene group can contain one or more heteroatoms at each or all ends of a chain or branch, and each heteroatom can be the same or different.
본 명세서의 화합물은 특정 기하(geometric) 또는 입체 이성질체 형태를 가질 수 있다. 달리 명시되지 않고 본 출원에 화합물이 개시되는 경우, 상기 화합물의, 시스 및 트랜스 이성질체, (-)- 및 (+)- 거울상 이성질체(enantiomers), (R)- 및 (S)- 거울상 이성질체, 부분입체이성질체, (D)- 이성질체, (L)-이성질체, 및 라세미체 등의 이성질체는 본 출원의 범위에 포함된다. 즉, 본 출원에 개시된 화학식 또는 구조에 이성질체와 관련된 표시(예를 들어, *,
Figure PCTKR2022015832-appb-img-000006
,
Figure PCTKR2022015832-appb-img-000007
, 및
Figure PCTKR2022015832-appb-img-000008
등)가 없는 경우, 개시된 화학식 또는 구조는 가능한 모든 이성질체를 포함함을 의미한다.
Compounds herein may have certain geometric or stereoisomeric forms. Where a compound is disclosed in this application unless otherwise specified, cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, portions of said compound Isomers such as stereoisomers, (D)-isomers, (L)-isomers, and racemates are included within the scope of this application. That is, an indication related to an isomer in a formula or structure disclosed in this application (eg, *,
Figure PCTKR2022015832-appb-img-000006
,
Figure PCTKR2022015832-appb-img-000007
, and
Figure PCTKR2022015832-appb-img-000008
etc.), the formula or structure disclosed is meant to include all possible isomers.
본 명세서에서 사용되는 용어 “클릭화학(click-chemistry)”은 Scripps Research Institute의 K. Barry Sharpless에 의하여, 두 개의 분자가 빠르고 안정적으로 공유 결합을 형성하도록 설계된 상보적인 화학작용기 및 화학 반응을 설명하기 위해 도입된 화학적 개념이다. 본 명세서의 클릭화학은 특정한 반응을 의미하는 것이 아닌, 빠르고 안정적인 반응의 개념을 의미한다. 일 실시양태로, 클릭화학으로 분자들 사이의 결합을 형성하기 위해서는 몇 가지 조건을 만족해야 한다. 상기 조건은 높은 수득률, 반응 자리에 대한 뛰어난 선택성, 모듈식으로 작동하여 유기적으로 분자가 결합되는 것 및 열역학적으로 안정화된 방향으로 진행되어 빠르고 정확한 생성물을 만드는 것이다. 본 명세서의 클릭화학은 클릭화학작용기(예를 들어, 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함)중에서 서로 반응성을 갖는 쌍이 반응하는 것을 포함한다. 클릭화학반응의 예시로는, 휴이스겐 1,3-이극성 고리화첨가 (Huisgen 1,3-dipolar cycloaddition; Tornoe et al. Journal of Organic Chemistry (2002) 67: 3075-3064 등 참조); 디엘스-알더 반응 (Diels-Alder reaction); inverse-demand 디엘스-알더(Diels-Alder) 반응; 에폭사이드 (epoxide) 및 아지리딘 (aziridine)과 같은 작은 스트레인된 고리 (strained ring)에 대한 친핵성 첨가 반응 (Nucleophilic addition); 활성화된 카르보닐기 (activated carbonyl group)에 대한 친핵성 첨가 반응; 및 탄소-탄소 이중결합 또는 삼중결합에 대한 첨가 반응이 있다.The term “click-chemistry” as used herein is defined by K. Barry Sharpless of the Scripps Research Institute to describe complementary chemical groups and chemical reactions designed to quickly and stably form a covalent bond between two molecules. It is a chemical concept introduced for Click chemistry in the present specification does not mean a specific reaction, but means a concept of a fast and stable reaction. In one embodiment, in order to form bonds between molecules by click chemistry, several conditions must be satisfied. The conditions are high yield, excellent selectivity for the reaction site, organic molecular bonding by operating in a modular manner, and rapid and accurate product production by proceeding in a thermodynamically stabilized direction. The click chemistry of the present specification is a click chemical functional group (eg, terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclo Octyne (trans-cyclooctene), alkene (alkene), thiol (thiol), tetrazine (tetrazine), triazine (triazine), dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4- Including yne), a pair having reactivity with each other reacts. Examples of click chemistry reactions include Huisgen 1,3-dipolar cycloaddition (see Tornoe et al., Journal of Organic Chemistry (2002) 67: 3075-3064, etc.); Diels-Alder reaction; inverse-demand Diels-Alder reaction; Nucleophilic addition to small strained rings such as epoxides and aziridines; a nucleophilic addition reaction to an activated carbonyl group; and addition reactions to carbon-carbon double bonds or triple bonds.
본 명세서에서 사용되는 용어 "천연 아미노산(natural amino acid)" 또는 "표준 아미노산(standard amino acid)"은 유기체(organism)의 체내에서 유전자의 전사 및 번역 과정을 통해 합성되는 20종의 아미노산을 통틀어 의미한다. 구체적으로, 상기 표준 아미노산은 알라닌(Alanine; Ala, A), 아르기닌(Arginine; Arg, R), 아스파라긴(Asparagine; Asn, N), 아스파르트산(Aspartic acid; Asp, D), 시스테인(Cysteine; Cys, C), 글루탐산(Glutamic acid; Glu, E), 글루타민(Glutamine; Gln, Q), 글리신(Glycine; Gly, G), 히스티딘(Histidine; His, H), 이소류신(Isoleucine; Ile, I), 류신(Leucine; Leu, L), 리신(Lysine; Lys K), 메티오닌(Methionine; Met, M), 페닐알라닌(Phenylalanine; Phe, F), 프롤린(Proline; Pro, P), 세린(Serine; Ser, S), 트레오닌(Threonine; Thr, T), 트립토판(Tryptophan; Trp, W), 티로신(Tyrosine; Tyr, Y), 및 발린(Valine; Val, V)을 포함한다. 상기 표준 아미노산 각각은 모두 대응하는 DNA 코돈이 존재하며, 일반적인 아미노산 일문자 또는 세문자 표기법으로 나타낼 수 있다. 상기 표준 아미노산이라는 용어가 지칭하는 대상은 문맥에 따라 적절하게 해석되어야 하며, 그 외 통상의 기술자가 인식할 수 있는 의미를 모두 포함한다.As used herein, the term "natural amino acid" or "standard amino acid" refers to 20 types of amino acids synthesized through gene transcription and translation in the body of an organism. do. Specifically, the standard amino acids are Alanine (Ala, A), Arginine (Arg, R), Asparagine (Asn, N), Aspartic acid (Asp, D), Cysteine (Cys) , C), glutamic acid (Glu, E), glutamine (Gln, Q), glycine (Gly, G), histidine (His, H), isoleucine (Ile, I), Leucine (Leu, L), Lysine (Lys K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro, P), Serine (Ser, S), threonine (Thr, T), tryptophan (Trp, W), tyrosine (Tyr, Y), and valine (Val, V). Each of the above standard amino acids has a corresponding DNA codon, and can be represented by a general amino acid one-letter or three-letter notation. The subject referred to by the term standard amino acid should be appropriately interpreted according to the context, and includes all other meanings that can be recognized by those skilled in the art.
본 명세서에서 사용되는 “비천연 아미노산(nonnatural amino acid)”이라는 용어는, 체내에서 합성되지 않고 인공적으로 합성한 아미노산을 지칭한다. 상기 비천연 아미노산은 예들 들어, p-아지도-L-페닐알라닌(p-Azido-L-phenylalanine; AzF), p-에티닐-페닐알라닌(p-ethynyl-phenylalanine; pEthF), L-호모프로파길글리신 (L-Homopropargylglycine; HPG), O-프로파길-L-티로신 (O-propargyl-L-tyrosine; oPa), p-프로파길옥시페닐알라닌 (p-propargyloxyphenylalanine; pPa), 2-아미노-3-(4-아지도페닐)프로판산 (2-amino-3-(4-azidophenyl)propanoic acid), 2-아미노-4-(4-아지도페닐)부탄산 (2-amino-4-(4-azidophenyl)butanoic acid), 및 4-(1,2,4,5-테트라진-3-일) 페닐알라닌 (4-(1,2,4,5-tetrazin-3-yl) phenylalanine; frTet) 등이 있다. 상기 비천연 아미노산은 이에 대응하는 DNA 코돈이 존재하지 않으며, 일반적인 아미노산 일문자 또는 세문자 표기법으로 나타낼 수 없으므로, 다른 문자를 사용하여 표기하며, 추가적으로 보충하여 설명한다. 상기 비천연 아미노산이라는 용어가 지칭하는 대상은 문맥에 따라 적절하게 해석되어야 하며, 그 외 통상의 기술자가 인식할 수 있는 의미를 모두 포함한다.The term “nonnatural amino acid” as used herein refers to an amino acid that is not synthesized in the body but artificially synthesized. The non-natural amino acids include, for example, p-Azido-L-phenylalanine (AzF), p-ethynyl-phenylalanine (pEthF), L-homopropargylglycine (L-Homopropargylglycine; HPG), O-propargyl-L-tyrosine (oPa), p-propargyloxyphenylalanine (pPa), 2-amino-3-(4 -Azidophenyl)propanoic acid (2-amino-3-(4-azidophenyl)propanoic acid), 2-amino-4-(4-azidophenyl)butanoic acid (2-amino-4-(4-azidophenyl) butanoic acid), and 4-(1,2,4,5-tetrazin-3-yl) phenylalanine (frTet). Since the non-natural amino acid does not have a corresponding DNA codon and cannot be expressed in a general amino acid one-letter or three-letter notation, it is indicated using other characters and additionally supplemented. The subject referred to by the term non-natural amino acid should be appropriately interpreted according to the context, and includes all other meanings that can be recognized by those skilled in the art.
본 명세서에서 사용되는 용어 "아미노산"은 다른 아미노산과 결합되지 않은 아미노산 및 다른 아미노산과 결합된, 단백질 또는 펩타이드에 포함된 아미노산 잔기를 모두 지칭하는 것으로 사용될 수 있으며, 상기 아미노산 용어가 사용된 단락의 내용 또는 문맥에 따라 적절히 해석될 수 있다. 본 명세서에서 사용되는 용어 "아미노산"은 천연 아미노산 및 비천연 아미노산을 모두 포함하는 의미로 사용될 수 있다. 예를 들어, 알라닌은 알라닌 및/또는 알라닌 잔기를 지칭하는 것으로 사용될 수 있다. 예를 들어, 아르기닌은 아르기닌 및/또는 아르기닌 잔기를 지칭하는 것으로 사용될 수 있다. 본 명세서에서 사용되는 용어 "아미노산"은 L형 아미노산 및 D형 아미노산 모두를 포함하는 것으로 사용될 수 있다. 일부 실시양태에서, L형 또는 D형에 대한 언급이 없는 경우, L형 아미노산으로 해석될 수 있다.As used herein, the term "amino acid" can be used to refer to both amino acids not bound to other amino acids and amino acid residues included in proteins or peptides bound to other amino acids, and the contents of the paragraph in which the amino acid term is used Or it may be appropriately interpreted according to the context. As used herein, the term "amino acid" may be used to include both natural amino acids and non-natural amino acids. For example, alanine may be used to refer to alanine and/or an alanine residue. For example, arginine can be used to refer to arginine and/or arginine residues. As used herein, the term "amino acid" may be used to include both L-type amino acids and D-type amino acids. In some embodiments, where there is no reference to the L or D form, it can be interpreted as an L-form amino acid.
본 명세서에서 사용되는 용어 "아미노산 잔기(amino acid residue)"는 화합물, 펩타이드, 및/또는 단백질에 포함된, 상기 화합물, 펩타이드, 및/또는 단백질의 다른 부분과 공유결합으로 연결되어 있는, 아미노산으로부터 유래된 구조를 의미한다. 예를 들어, 알라닌, 아르기닌 및 글루탐산이 아마이드 결합을 통해 연결되어 ARE 서열을 갖는 펩타이드가 형성된 경우, 상기 펩타이드는 3개의 아미노산 잔기를 포함하며, 이때, A는 알라닌 잔기, R은 아르기닌 잔기, E는 글루탐산 잔기로 지칭될 수 있다. 나아가, 전술한 바와 같이, ARE 서열을 갖는 펩타이드에서, 상기 펩타이드는 3개의 아미노산을 포함할 수 있고, A는 알라닌, R은 아르기닌, E는 글루탐산으로도 지칭될 수 있다. 다른 예로, 아스파르트산, 페닐알라닌, 라이신이 아마이드 결합을 통해 연결되어 DFK 서열을 갖는 펩타이드가 형성된 경우, 상기 펩타이드는 3개의 아미노산 잔기를 포함하며, 이때, D는 아스파르트산 잔기, F는 페닐알라닌 잔기, K는 라이신 잔기로 지칭될 수 있다. 나아가, 전술한 바와 같이, DFK 서열을 갖는 펩타이드에서, 상기 펩타이드는 3개의 아미노산을 포함할 수 있고, D는 아스파르트산, F는 페닐알라닌, K는 라이신으로도 지칭될 수 있다. As used herein, the term "amino acid residue" refers to an amino acid contained in a compound, peptide, and/or protein that is covalently linked to another portion of the compound, peptide, and/or protein. structure derived from it. For example, when alanine, arginine, and glutamic acid are linked through an amide bond to form a peptide having an ARE sequence, the peptide includes three amino acid residues, wherein A is an alanine residue, R is an arginine residue, and E is may be referred to as glutamic acid residues. Furthermore, as described above, in a peptide having an ARE sequence, the peptide may include three amino acids, and A is alanine, R is arginine, and E is glutamic acid. As another example, when aspartic acid, phenylalanine, and lysine are linked through an amide bond to form a peptide having a DFK sequence, the peptide includes three amino acid residues, wherein D is an aspartic acid residue, F is a phenylalanine residue, and K may be referred to as a lysine residue. Furthermore, as described above, in a peptide having a DFK sequence, the peptide may include three amino acids, and D may be referred to as aspartic acid, F may be phenylalanine, and K may be referred to as lysine.
달리 서술하지 않는 한, 본 명세서에서는 아미노산 서열을 기재할 때는 아미노산 일문자 표기법, 또는 세문자 표기법을 사용하여, N-터미널에서 C-터미널 방향으로 기재한다. 예를 들어, RNVP로 표기하는 경우, N-터미널에서 C-터미널 방향으로 아르기닌(arginine), 아스파라긴(asparagine), 발린(valine), 및 프롤린(proline)이 차례로 연결된 펩타이드를 의미한다. 또 다른 예를 들어, Thr-Leu-Lys로 표기하는 경우, N-터미널에서 C-터미널 방향으로 트레오닌(Threonine), 류신(Leucine), 및 리신(Lysine)이 차례로 연결된 펩타이드를 의미한다. 상기 일문자 표기법, 또는 세문자 표기법으로 나타낼 수 없는 아미노산의 경우, 다른 문자를 사용하여 표기하며, 추가적으로 보충하여 설명한다. 본 명세서에서 제시하는 서열은, 목적하는 기능이 동일유사하다면, 제시 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 이상의 서열 일치성을 가지는 서열을 포함할 수 있다.Unless otherwise stated, amino acid sequences are described in the N-terminal to C-terminal direction using one-letter notation or three-letter notation when describing amino acid sequences in the present specification. For example, when expressed as RNVP, it means a peptide in which arginine, asparagine, valine, and proline are sequentially connected from the N-terminal to the C-terminal. For another example, when expressed as Thr-Leu-Lys, it means a peptide in which threonine, leucine, and lysine are sequentially connected from the N-terminal to the C-terminal. In the case of amino acids that cannot be expressed by the one-letter notation or the three-letter notation, other characters are used and additionally supplemented descriptions are provided. Sequences presented herein are at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequences of the presented sequences, provided that the desired function is identical. Sequences with identity may be included.
용어 "치료”는 이롭거나 바람직한 임상적 결과를 수득하기 위한 접근을 의미한다. 본 발명의 목적을 위해서, 이롭거나 바람직한 임상적 결과는 제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 질병의 예방, 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로), 검출 가능하거나 또는 검출되지 않거나의 여부를 포함한다. 상기 치료는 치료학적 치료 및 예방적 또는 예방조치 방법 모두를 가리킨다. The term "treatment" refers to an approach for obtaining a beneficial or desirable clinical result. For the purposes of this invention, a beneficial or desirable clinical result is limited to alleviation of symptoms, reduction of disease extent, stabilization of the disease state. (i.e., not worsening), delay or slowing of disease progression, prevention of disease, amelioration or palliation of disease state, and alleviation (partial or total), detectable or undetectable. Treatment refers to both therapeutic treatment and prophylactic or prophylactic measures.
본 명세서에서 사용되는 용어 "대상"은 본 발명의 분자에 의해 달성될 수 있는 처치를 필요로 하는 동물을 지칭한다. 본 발명에 따라 처치될 수 있는 동물에는 척추동물이 포함되고, 포유동물 예컨대 쥐과, 소과, 개과, 말과, 고양이과, 양과, 돼지과 및 영장류 (인간 및 비-인간 영장류 포함) 동물이 특히 바람직한 예이다.As used herein, the term "subject" refers to an animal in need of treatment that can be achieved by a molecule of the invention. Animals that can be treated according to the present invention include vertebrates, with mammals such as murine, bovine, canine, equine, feline, ovine, porcine and primates (including humans and non-human primates) being particularly preferred examples. .
이하, 발명의 구체적인 내용을 개시한다.Hereinafter, specific details of the invention are disclosed.
아르기닌 영양요구성 종양(arginine auxotrophic tumor) 및 아르기닌 디카르복실레이즈(Arginine decarboxylase; ADC)를 이용한 종양 억제 방법 Arginine auxotrophic tumor and tumor suppression method using arginine decarboxylase (ADC)
아르기닌에 대한 '영양 요구'는 일부 종양 유형의 특징이다. 아르기닌을 영양원으로써 요구하는 특징을 아르기닌 영양요구성(arginine auxotrophy)이라 하며, 아르기닌을 영양원으로써 요구하는 특징을 지닌 종양을 아르기닌 영양요구성 종양 (arginine auxotrophic tumor)이라 한다. 아르기닌 영양요구성은 점점 더 인간 악성 종양의 빈번한 특징으로 인식되고 있다. 아르기닌 영양요구성은 악성 흑색종(malignant melanoma), 간세포 암종(hepatocellular carcinoma; HCC) 등의 종양 외에도 다양한 종양에서 발견되었다. 아르기닌 영양요구성의 특성이 발견된 종양은 다음과 같다: 전립선(prostate), 췌장(pancreatic), 유방(breast), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML) 원발성 및 재발성 림프종(primary and relapsed lymphomas) (Riess, Christin, et al. "Arginine-depleting enzymes-An increasingly recognized treatment strategy for therapy-refractory malignancies." Cellular Physiology and Biochemistry 51.2 (2018): 854-870.). An 'auxotrophic requirement' for arginine is a hallmark of some tumor types. A characteristic that requires arginine as a nutrient source is called arginine auxotrophy, and a tumor that has a characteristic that requires arginine as a nutrient source is called an arginine auxotrophic tumor. Arginine auxotrophy is increasingly recognized as a frequent feature of human malignancies. Arginine auxotrophy has been found in various tumors in addition to tumors such as malignant melanoma and hepatocellular carcinoma (HCC). Tumors for which arginine auxotrophy has been found include: prostate, pancreatic, breast, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell. head and neck squamous cell carcinoma, Glioblastoma multiforme (GBM), acute myeloid leukemia (AML) primary and relapsed lymphomas (Riess, Christin, et al. Arginine-depleting enzymes-An increasingly recognized treatment strategy for therapy-refractory malignancies." Cellular Physiology and Biochemistry 51.2 (2018): 854-870.).
전술한 바와 같이, 아르기닌 영양요구성 종양을 아르기닌 분해 효소를 이용하여 치료하려는 연구가 수행되었다. 아르기닌 영양요구성 종양 및 종양 주변의 환경에서 아르기닌을 분해하여 종양을 치료하는 약물은 대사항암제로 지칭될 수 있다. 아르기닌을 분해하는 효소인 아르기닌 디카르복실레이즈를 대사항암제로 이용하려는 연구가 수행되었다. As described above, studies have been conducted to treat arginine auxotrophic tumors using arginine degrading enzymes. Drugs that treat tumors by degrading arginine in arginine auxotrophic tumors and the environment surrounding the tumors may be referred to as anticancer agents. A study was conducted to use arginine decarboxylase, an enzyme that degrades arginine, as an anticancer drug.
상기 대사항암제 중 하나인 아르기닌 디카르복실레이즈(arginine decarboxylase; ADC)는 아르기닌을 아그마틴 및 이산화탄소로 전환하는 것을 촉매하는 효소이다. 주로 박테리아와 바이러스에서 발견된다. 예를 들어, 아르기닌 디카르복실레이즈는 대장균(Escherichia coli; E. coli), 살모넬라 티피무리움 (Salmonella Typhimurium), 및 메탄 생성 박테리아인 Methanococcus jannaschii 등에 존재하는 효소 시스템의 일부로 이러한 유기체를 고산성의 환경에서 견딜 수 있도록 한다. 예를 들어, 대장균 유래 아르기닌 디카르복실레이즈는 약 pH 5.2에서 최대 효소 활성을 갖고, pH 7.0에서는 효소 활성이 감소하는 것으로 확인되었다 (Blethen, Sandra L., ELIZABETH A. Boeker, and EE4870599 Snell. "Arginine Decarboxylase from Escherichia coli: I. PURIFICATION AND SPECIFICITY FOR SUBSTRATES AND COENZYME." Journal of Biological Chemistry 243.8 (1968): 1671-1677.). 아르기닌 디카르복실레이즈는 단백질 서브유닛(아르기닌 디카르복실레이즈 서브유닛)의 다량체 형태이다. 예를 들어, 대장균에서 발견되는 아르기닌 디카르복실레이즈는 10개의 동종의 서브유닛이 형성한 데카머(decamer) 형태이며, 약 800kDa의 분자량을 갖는다. 상기 데카머의 아르기닌 디카르복실레이즈는 아르기닌 디카르복실레이즈 서브유닛의 이량체 5개가 모여 구성된다. 즉, 아르기닌 디카르복실레이즈는 아르기닌 디카르복실레이즈 서브유닛 이량체의 오량체 형태이다. Arginine decarboxylase (ADC), one of the cancer metabolites, is an enzyme that catalyzes the conversion of arginine into agmatine and carbon dioxide. It is mainly found in bacteria and viruses. For example, arginine decarboxylase is part of an enzyme system present in Escherichia coli ( E. coli ), Salmonella Typhimurium , and the methanogenic bacterium Methanococcus jannaschii , which protects these organisms from highly acidic environments. make it bearable For example, arginine decarboxylase from Escherichia coli has been shown to have maximum enzymatic activity at about pH 5.2 and decrease at pH 7.0 (Blethen, Sandra L., ELIZABETH A. Boeker, and EE4870599 Snell. " Arginine Decarboxylase from Escherichia coli: I. PURIFICATION AND SPECIFICITY FOR SUBSTRATES AND COENZYME." Journal of Biological Chemistry 243.8 (1968): 1671-1677.). Arginine decarboxylase is a multimeric form of protein subunits (arginine decarboxylase subunits). For example, arginine decarboxylase found in Escherichia coli is in the form of a decamer formed by 10 homogeneous subunits and has a molecular weight of about 800 kDa. Arginine decarboxylase of the decamer is composed of 5 dimers of arginine decarboxylase subunits. That is, arginine decarboxylase is a pentamer form of arginine decarboxylase subunit dimer.
아르기닌 디카르복실레이즈의 PEGylation 및 이의 문제점PEGylation of arginine decarboxylase and its problems
대장균으로부터 유래된 아르기닌 디카르복실레이즈는 세균 유래의 고분자 단백질로써, 인체에 투여되었을 때 면역원성이 존재하며 반감기가 짧아 주입 후 빠른 시간 내에 체내에서 사라지는 문제가 있다. 이러한 문제 때문에 아르기닌 디카르복실레이즈는, 단독 투여 시, 표적 위치인 암 또는 종양 발생 위치까지 도달하기 어려울 것으로 예상되며, 이에 따라 반복 주사가 요구될 것으로 예상된다. 또한 첫 주사 및 이후의 주사 시 생성된 면역 반응으로 인해, 반복 주사시 체내로 투입된 약물은 더욱 빠르게 제거될 것으로 예상된다. Arginine decarboxylase derived from Escherichia coli is a bacterial-derived polymeric protein, and has immunogenicity when administered to the human body and has a short half-life and disappears from the body quickly after injection. Because of these problems, arginine decarboxylase, when administered alone, is expected to be difficult to reach the target site of cancer or tumor formation, and accordingly, it is expected that repeated injections will be required. In addition, due to the immune response generated during the first injection and subsequent injections, it is expected that the drug introduced into the body will be eliminated more rapidly during repeated injections.
이러한 문제를 해결하여 아르기닌 디카르복실레이즈를 종양을 치료하는 항암제로 이용하기 위해서 혈장 반감기 등과 같은 체내 안정성을 높이기 위한 시도가 있었다. 전술한 바와 같이, Philip, R et al.은 아르기닌 디카르복실레이즈를 페길화 하였으며 안정성이 높은 것을 확인하였다. 그러나 Philip, R et al.은 아르기닌 디카르복실레이즈의 효소 활성이 40%나 감소했음을 개시한다. 나아가, PEGylation은 여전히 면역 원성(immunogenicity)이 있는 것으로 보고되었다. In order to solve these problems and use arginine decarboxylase as an anticancer agent for treating tumors, attempts have been made to increase in vivo stability such as plasma half-life. As described above, Philip, R et al. pegylated arginine decarboxylase and confirmed its high stability. However, Philip, R et al. disclose a 40% reduction in the enzymatic activity of arginine decarboxylase. Furthermore, PEGylation was still reported to have immunogenicity.
본 출원의 발명자들은 효소 활성이 감소되지 않고, 면역원성이 개선된, 그리고 체내 안정성 (예를 들어 혈장 반감기)가 증가된 아르기닌 디카르복실레이즈 변이체 또는 이의 알부민 컨쥬게이트를 개발하였다. 이하에서, 본 출원에 의해 제공되는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 변이체 서브유닛, 아르기닌 디카르복실레이즈 변이체 서브유닛의 다이머 및 이를 이용하여 제조된 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 개시한다. The inventors of the present application have developed arginine decarboxylase variants or albumin conjugates thereof with no reduced enzymatic activity, improved immunogenicity, and increased in vivo stability (eg plasma half-life). Hereinafter, an arginine decarboxylase variant provided by the present application, an arginine decarboxylase variant subunit, a dimer of the arginine decarboxylase variant subunit, and a functional polypeptide variant-albumin conjugate prepared using the same are disclosed. do.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트 개괄Overview of Functional Polypeptide Variants-Albumin Conjugates
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조에 사용되는 요소Elements Used in the Preparation of Functional Polypeptide Variant-Albumin Conjugates
본 출원은 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 제공한다. 본 출원의 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 기능성 폴리펩티드 변이체가, 링커를 통해, 알부민과 공유적으로 연결된 형태를 가진다. 기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조에는 기능성 폴리펩티드 변이체, 알부민, 및 링커가 사용된다. 여기서 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 중 어느 하나이다. 구체적으로, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 (i) 기능성 폴리펩티드 변이체(functional polypeptide variant)와 (ii) 알부민이 (iii) 링커를 통해 위치-특이적으로 연결되어 제조된다. 여기서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 또는 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머일 수 있다. 기능성 폴리펩티드 변이체는 비천연 아미노산 잔기를 포함한다. 여기서, 링커는 티올 반응성 그룹 및 클릭화학작용기를 포함한다. 구체적으로, 링커는 일 말단에 티올 반응성 그룹 및 다른 말단에 클릭화학작용기를 포함한다. 링커의 티올 반응성 그룹은 알부민의 티올기와 반응하며, 링커의 클릭화학작용기는 기능성 폴리펩티드 변이체의 비천연 아미노산 잔기에 포함된 다른 클릭화학작용기와 클릭화학반응을 한다. 기능성 폴리펩티드 변이체, 알부민, 및 링커 각각은 관련 단락에서 상세히 기술된다. The present application provides functional polypeptide variant-albumin conjugates. The functional polypeptide variant-albumin conjugate of the present application has a form in which the functional polypeptide variant is covalently linked to albumin through a linker. Functional polypeptide variants, albumin, and linkers are used to prepare functional polypeptide variant-albumin conjugates. Here, the functional polypeptide variant is any one of an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of an arginine decarboxylase subunit variant. Specifically, the functional polypeptide variant-albumin conjugate is prepared by site-specifically linking (i) functional polypeptide variant and (ii) albumin through (iii) a linker. Here, the functional polypeptide variant may be an arginine decarboxylase variant, an arginine decarboxylase subunit variant, or a dimer of an arginine decarboxylase subunit variant. Functional polypeptide variants include non-natural amino acid residues. Here, the linker includes a thiol reactive group and a click chemofunctional group. Specifically, the linker includes a thiol-reactive group at one end and a click chemofunctional group at the other end. The thiol-reactive group of the linker reacts with the thiol group of albumin, and the click chemistry functional group of the linker reacts with another click chemistry functional group included in the non-natural amino acid residue of the functional polypeptide variant. Functional polypeptide variants, albumins, and linkers are each described in detail in the relevant sections.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 구조Structure of Functional Polypeptide Variant-Albumin Conjugates
본 출원의 일 실시양태로, 화학식 1의 구조를 갖는 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제공된다:In one embodiment of the present application, a functional polypeptide variant-albumin conjugate having the structure of Formula 1 is provided:
[화학식 1][Formula 1]
FPV-[J1-A2-J2-P1]a FPV-[J 1 -A 2 -J 2 -P 1 ] a
화학식 1에서, FPV는 기능성 폴리펩티드 변이체 유닛(functional polypeptide variant unit)이다. 기능성 폴리펩티드 변이체 유닛은 컨쥬게이트된 기능성 폴리펩티드 변이체일 수 있다. 즉, 기능성 폴리펩티드 변이체 유닛(functional polypeptide variant unit)은 기능성 폴리펩티드 변이체로부터 유래된다. 여기서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체(Arginine decarboxylase variant), 아르기닌 디카르복실레이즈 서브유닛 변이체(Arginine decarboxylase subunit variant), 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머(Dimer of arginine decarboxylase subunit variant)일 수 있다. In Formula 1, FPV is a functional polypeptide variant unit. A functional polypeptide variant unit may be a conjugated functional polypeptide variant. That is, a functional polypeptide variant unit is derived from a functional polypeptide variant. Here, the functional polypeptide variants include an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of the arginine decarboxylase subunit variant. variant).
화학식 1에서, J1은 제1 접합 유닛이다. 제1 접합 유닛은 기능성 폴리펩티드 변이체에 포함된 제1 클릭화학작용기와, 제1 클릭화학작용기와 클릭화학반응을 할 수 있는 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 갖는다. In Formula 1, J 1 is a first junction unit. The first conjugation unit has a structure formed by a click chemical reaction between a first click chemical functional group included in the functional polypeptide variant and a second click chemical functional group capable of performing a click chemical reaction with the first click chemical functional group.
화학식 1에서, A2는 제2 앵커 유닛이다. 컨쥬게이트에서, 제2 앵커 유닛은 기능성 폴리펩티드 변이체 유닛과 알부민 유닛을 연결하는 구성을 지칭한다. 제2 앵커 유닛은 기능성 폴리펩티드 변이체 유닛과 알부민 유닛 사이의 거리를 조절하는 역할을 할 수 있으며, 당해 분야에서 거리조절을 위해 통상적으로 사용되는 구조라면, 크게 제한되지 않는다. 제2 앵커 유닛은 링커로부터 유래된다. In Formula 1, A 2 is a second anchor unit. In a conjugate, the second anchor unit refers to a construct linking the functional polypeptide variant unit and the albumin unit. The second anchor unit may serve to adjust the distance between the functional polypeptide variant unit and the albumin unit, and is not particularly limited as long as it is a structure commonly used for adjusting the distance in the art. The second anchor unit is derived from a linker.
화학식 1에서, J2는 제2 접합 유닛이다. 제2 접합 유닛은 티올 반응성 그룹과 알부민의 티올기의 반응에 의해 형성된 구조를 갖는다. In Formula 1, J 2 is a second junction unit. The second conjugation unit has a structure formed by reaction of a thiol reactive group with a thiol group of albumin.
화학식 1에서, P1은 알부민 유닛이다. 알부민 유닛은 컨쥬게이트된 알부민일 수 있다. 즉, 알부민 유닛은 알부민으로부터 유래된다.In Formula 1, P 1 is an albumin unit. The albumin unit may be conjugated albumin. That is, the albumin unit is derived from albumin.
화학식 1에서, a는 1 이상 20 이하의 정수이다. 특정한 실시양태에서, a는 1 이상 10 이하의 정수일 수 있다. 예를 들어, 기능성 폴리펩티드 변이체가 아르기닌 디카르복실레이즈 서브유닛 변이체이고, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체가 하나의 비천연아미노산을 포함하는 경우 a는 1일 수 있다. 다른 예로, 기능성 폴리펩티드 변이체가 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체이고, 아르기닌 디카르복실레이즈 서브유닛 변이체가 하나의 비천연아미노산을 포함하는 경우 a는 1 내지 2의 정수일 수 있다. 또 다른 예로, 기능성 폴리펩티드 변이체가 아르기닌 디카르복실레이즈 변이체인 경우, a는 1 내지 10의 정수일 수 있다. In Formula 1, a is an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10. For example, when the functional polypeptide variant is an arginine decarboxylase subunit variant and the arginine decarboxylase subunit variant contains one non-natural amino acid, a may be 1. As another example, when the functional polypeptide variant is a dimer of the arginine decarboxylase subunit variant and the arginine decarboxylase subunit variant contains one non-natural amino acid, a may be an integer of 1 to 2. As another example, when the functional polypeptide variant is an arginine decarboxylase variant, a may be an integer from 1 to 10.
전술한 바와 같이, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 기능성 폴리펩티드, 링커, 및 알부민을 사용하여 제조된다. 나아가, 컨쥬게이트에서, 기능성 폴리펩티드 변이체 유닛은 기능성 폴리펩티드 변이체로부터 유래되며, 알부민 유닛은 알부민으로부터 유래되며, 제2 앵커 유닛은 링커로부터 유래된다. 이하에서, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조에 사용되는 요소에 대하여 상세히 기술한다. As described above, functional polypeptide variant-albumin conjugates are prepared using a functional polypeptide, a linker, and albumin. Furthermore, in the conjugate, the functional polypeptide variant unit is derived from the functional polypeptide variant, the albumin unit is derived from albumin, and the second anchor unit is derived from the linker. Hereinafter, the elements used in the preparation of functional polypeptide variant-albumin conjugates are described in detail.
기능성 폴리펩티드 변이체 및 기능성 폴리펩티드 변이체 유닛Functional Polypeptide Variants and Functional Polypeptide Variant Units
기능성 폴리펩티드 (functional polypeptide)functional polypeptide
본 명세서에서 용어 기능성 폴리펩티드는 하나 이상의 기능을 가진 펩티드, 폴리펩티드, 및 단백질을 모두 포함하는 것으로 사용된다. 예를 들어, 기능은 어떤(certain) 질병의 치료 및/또는 예방과 관련된 것일 수 있다. 예를 들어, 기능은 진단과 관련된 것일 수 있다. 예를 들어, 기능은 다른 폴리펩티드와 작용하여 복합체를 형성하는 것일 수 있다. 예를 들어, 기능은 동종의 폴리펩티드와 작용하여 복합체를 형성하는 것일 수 있다. 이때 상기 복합체는 어떤 질병을 치료하기 위해 사용될 수 있다. 예를 들어, 기능은 유전자의 조작과 관련된 것일 수 있다. 예를 들어, 기능은 다른 분자(예를 들어, 항원 및 타겟 등)와의 결합과 관련된 것일 수 있다. 본 명세서에서 기능성 폴리펩티드는 아르기닌 디카르복실레이즈, 아르기닌 디카르복실레이즈 서브유닛, 및 아르기닌 디카르복실레이즈 서브유닛의 다이머 중 어느 하나이다.The term functional polypeptide is used herein to include all peptides, polypeptides, and proteins having more than one function. For example, the function may be related to treatment and/or prevention of a certain disease. For example, the function may be related to diagnosis. For example, the function may be to act with other polypeptides to form complexes. For example, the function may be to act with a cognate polypeptide to form a complex. At this time, the complex can be used to treat any disease. For example, a function may be related to manipulation of a gene. For example, the function may be related to binding to other molecules (eg, antigens and targets, etc.). In the present specification, the functional polypeptide is any one of arginine decarboxylase, arginine decarboxylase subunit, and dimer of arginine decarboxylase subunit.
기능성 폴리펩티드 변이체 (functional polypeptide variant) 개괄: 비천연 아미노산을 포함함Overview of functional polypeptide variants: including non-natural amino acids
기능성 폴리펩티드 변이체는 기능성 폴리펩티드가 비천연 아미노산을 포함하도록 변형된 것이다. 예를 들어, 기능성 폴리펩티드에 포함된 하나 이상의 아미노산 잔기가 비천연 아미노산 잔기로 치환된 것이 기능성 폴리펩티드 변이체일 수 있다. 즉, 기능성 폴리펩티드 변이체는 하나 이상의 비천연 아미노산 잔기를 포함한다. 여기서, 비천연 아미노산 잔기는 클릭화학작용기를 포함할 수 있다. 기능성 폴리펩티드 변이체는 레퍼런스 서열(기능성 폴리펩티드의 서열) 또는 레퍼런스 폴리펩티드(기능성 폴리펩티드)를 통해 설명될 수 있다. 예를 들어, 기능성 폴리펩티드 변이체는 레퍼런스 서열에서 치환 위치 및/또는 치환되는 아미노산 등을 설명함을 통해 특정될 수 있다. Functional polypeptide variants are functional polypeptides that have been modified to include non-natural amino acids. For example, functional polypeptide variants may be those in which one or more amino acid residues included in the functional polypeptide are substituted with non-natural amino acid residues. That is, functional polypeptide variants contain one or more non-natural amino acid residues. Here, the non-natural amino acid residue may include a click chemofunctional group. Functional polypeptide variants may be described by reference sequences (sequences of functional polypeptides) or reference polypeptides (functional polypeptides). For example, functional polypeptide variants can be specified by describing substitution positions and/or amino acids to be substituted in the reference sequence.
본 출원에서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 중 선택되는 어느 하나이다. In the present application, the functional polypeptide variant is any one selected from arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants.
기능성 폴리펩티드 변이체 및 기능성 폴리펩티드 변이체 유닛Functional Polypeptide Variants and Functional Polypeptide Variant Units
화학식 1에서, FPV는 기능성 폴리펩티드 변이체 유닛이다. 기능성 폴리펩티드 변이체 유닛은 컨쥬게이트된 기능성 폴리펩티드 변이체일 수 있다. 기능성 폴리펩티드 변이체 유닛은 기능성 폴리펩티드 변이체로부터 유래될 수 있다. In formula 1, FPV is a functional polypeptide variant unit. A functional polypeptide variant unit may be a conjugated functional polypeptide variant. A functional polypeptide variant unit may be derived from a functional polypeptide variant.
본 명세서에서 용어 기능성 폴리펩티드 변이체는 다른 화합물과 컨쥬게이트되지 않은 기능성 폴리펩티드 변이체 및 다른 화합물과 컨쥬게이트된 기능성 폴리펩티드 변이체를 모두 포함하는 것으로 사용될 수 있다. 예를 들어, 기능성 폴리펩티드 변이체는 서열번호 02 내지 서열번호 08 중에서 선택되는 어느 하나의 아미노산 서열을 가질 수 있다. 예를 들어, 화학식 1에서 기능성 폴리펩티드 변이체 유닛 FPV는 기능성 폴리펩티드 변이체로 지칭될 수 있다. As used herein, the term functional polypeptide variant may be used to include both functional polypeptide variants not conjugated with other compounds and functional polypeptide variants conjugated with other compounds. For example, the functional polypeptide variant may have any one amino acid sequence selected from SEQ ID NO: 02 to SEQ ID NO: 08. For example, the functional polypeptide variant unit FPV in Formula 1 may be referred to as a functional polypeptide variant.
비천연 아미노산non-natural amino acids
비천연 아미노산 개괄Overview of Unnatural Amino Acids
본 명세서에서 사용되는 용어 비천연 아미노산은 다른 아미노산과 결합되지 않은 비천연 아미노산, 및 다른 아미노산과 결합된, 단백질 및/또는 펩타이드에 포함된 비천연아미노산 잔기를 모두 지칭하는 것으로 사용될 수 있으며, 상기 비천연 아미노산 용어가 사용된 단락의 내용 또는 문맥에 따라 적절히 해석될 수 있다. As used herein, the term non-natural amino acid may be used to refer to both non-natural amino acids not bound to other amino acids and non-natural amino acid residues included in proteins and/or peptides bound to other amino acids. The natural amino acid term may be appropriately interpreted depending on the content or context of the paragraph in which it is used.
전술한 바와 같이, 기능성 폴리펩티드 변이체는 비천연 아미노산 잔기를 포함한다. 기능성 폴리펩티드 변이체는 기능성 폴리펩티드에 포함된 하나 이상의 천연 아미노산 잔기를 비천연 아미노산 잔기로 치환된 것이다. As noted above, functional polypeptide variants contain non-natural amino acid residues. A functional polypeptide variant is one in which one or more natural amino acid residues contained in the functional polypeptide are substituted with non-natural amino acid residues.
제1 클릭화학작용기를 포함하는 비천연 아미노산Non-natural amino acids containing a first click chemical functional group
본 출원의 일 실시양태에 따른 비천연 아미노산은 클릭화학작용기를 포함한다. 일 실시양태에서, 비천연 아미노산은 제1 클릭화학작용기를 포함할 수 있다. 상기 제1 클릭화학작용기는, 전술한, 제2 클릭화학작용기와 클릭화학 반응을 할 수 있는 클릭화학작용기를 갖는다. 일 실시양태에서, 제1 클릭화학작용기는 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), 메틸사이클로프로펜(methylcyclopropene), 노르보르넨(norbornene), 사이클로펜텐(cyclopentene), 스티렌(styrene), (DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함) 그룹 중에서 선택된 어느 하나의 그룹을 포함할 수 있다. 특정한 실시양태에서, 제1 클릭화학작용기는 테트라진 그룹 또는 이의 유사체, 트리아진 그룹 또는 이의 유사체, 및 아자이드 그룹 중에서 선택되는 어느 하나일 수 있다. A non-natural amino acid according to one embodiment of the present application includes a click chemofunctional group. In one embodiment, the non-natural amino acid may include a first click chemofunctional group. The first click chemistry functional group has a click chemistry functional group capable of performing a click chemistry reaction with the aforementioned second click chemistry functional group. In one embodiment, the first click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclooctyne (trans) -cyclooctene, alkene, thiol, tetrazine, triazine, methylcyclopropene, norbornene, cyclopentene, styrene ), (including dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne)). In a specific embodiment, the first click chemistry functional group may be any one selected from a tetrazine group or an analog thereof, a triazine group or an analog thereof, and an azide group.
일 실시양태에서, 비천연 아미노산은 테트라진 그룹을 포함할 수 있다. 일 실시양태에서, 비천연 아미노산은 트리아진 그룹을 포함할 수 있다. 일 실시양태에서, 비천연 아미노산은 아자이드 그룹을 포함할 수 있다. In one embodiment, the non-natural amino acid may include a tetrazine group. In one embodiment, the non-natural amino acid may include a triazine group. In one embodiment, the non-natural amino acid may include an azide group.
일 실시양태에서, 비천연 아미노산은 하기의 화학식 3의 구조를 가질 수 있다:In one embodiment, the non-natural amino acid can have the structure of Formula 3:
[화학식 3][Formula 3]
Figure PCTKR2022015832-appb-img-000009
.
Figure PCTKR2022015832-appb-img-000009
.
여기서, A1은 제1 앵커 모이어티(first anchor moiety)이다. Here, A 1 is the first anchor moiety.
여기서, H1은 제1 클릭화학작용기이다. 일 실시양태에서, 제1 클릭화학작용기는 클릭화학작용기를 갖고, 클릭화학작용기는 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함) 중에서 선택된 어느 하나일 수 있다. Here, H 1 is a first click chemical functional group. In one embodiment, the first click chemistry functional group has a click chemistry functional group, and the click chemistry functional group is a terminal alkyne, an azide, a strained alkyne, a diene, a diene Dienophile, trans-cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne, bicyclo[6.1 .0] non-4-yne)).
일 실시양태에서, 제1 클릭화학작용기는 하기의 구조 중 어느 하나로 표현될 수 있다:In one embodiment, the first click chemofunctional group can be represented by any one of the following structures:
Figure PCTKR2022015832-appb-img-000010
.
Figure PCTKR2022015832-appb-img-000010
.
이때, R1은 H, 할로겐, C1-3알킬, C3-6 시클로알킬, C3-6 헤테로시클로알킬, 아릴, 및 헤테로아릴 중에 선택되는 어느 하나이고, 이때, 상기 헤테로시클로알킬, 또는 헤테로아릴은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함할 수 있다. In this case, R 1 is any one selected from H, halogen, C 1-3 alkyl, C 3-6 cycloalkyl, C 3-6 heterocycloalkyl, aryl, and heteroaryl, wherein the heterocycloalkyl, or Heteroaryl is a group of one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 -, or O , N, and may include one or more heteroatoms selected from the group consisting of S.
일 실시양태에서, 상기 제1 앵커 모이어티는 결합(bond) 또는 -A11-A12- 일 수 있다. In one embodiment, the first anchor moiety can be a bond or -A 11 -A 12 -.
이때, A11은 결합(bond) 또는 C1-5 알킬렌일 수 있다. In this case, A 11 may be a bond or C 1-5 alkylene.
이때, A12는 결합(bond) 또는 [아릴렌]p, -[아릴렌]p-C1-5알킬렌-, -[아릴렌]p-C1-5헤테로알킬렌-, -아릴렌-C1-5알킬렌-아릴렌-, -아릴렌-C1-5헤테로알킬렌-아릴렌-, -아릴렌-헤테로아릴렌-, [헤테로아릴렌]p, -[헤테로아릴렌]p-C1-5알킬렌-, -[헤테로아릴렌]p-C1-5헤테로알킬렌-, -헤테로아릴렌-C1-5알킬렌-아릴렌-, -헤테로아릴렌-C1-5알킬렌-헤테로아릴렌-, -헤테로아릴렌-C1-5헤테로알킬렌-아릴렌-, 및 -헤테로아릴렌-C1-5헤테로알킬렌-헤테로아릴렌- 중에서 선택되는 어느 하나일 수 있다. 이때 p는 0 이상 3 이하의 정수일 수 있다. 이때 상기 헤테로알킬렌 또는 상기 헤테로아릴렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함할 수 있다. In this case, A 12 is a bond or [arylene]p, -[arylene]pC 1-5 alkylene-, -[arylene]pC 1-5 heteroalkylene-, -arylene-C 1- 5 Alkylene-arylene-, -arylene-C 1-5 Heteroalkylene-arylene-, -arylene-heteroarylene-, [heteroarylene]p, -[heteroarylene]pC 1-5 Alkylene-, -[heteroarylene]pC 1-5 Heteroalkylene-, -heteroarylene-C 1-5 Alkylene-arylene-, -heteroarylene-C 1-5 Alkylene-heteroarylene -, -heteroarylene-C 1-5 heteroalkylene-arylene-, and -heteroarylene-C 1-5 heteroalkylene-heteroarylene-. In this case, p may be an integer of 0 or more and 3 or less. In this case, the heteroalkylene or the heteroarylene is selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - It may contain one or more heteroatom groups, or one or more heteroatoms selected from the group consisting of O, N, and S.
비천연 아미노산의 구체예Specific examples of non-natural amino acids
일 실시양태에서, 비천연 아미노산은 테트라진 그룹을 포함할 수 있다. 일 실시양태에서, 비천연 아미노산은 트리아진 그룹을 포함할 수 있다. 일 실시양태에서, 비천연 아미노산은 아자이드 그룹을 포함할 수 있다. In one embodiment, the non-natural amino acid may include a tetrazine group. In one embodiment, the non-natural amino acid may include a triazine group. In one embodiment, the non-natural amino acid may include an azide group.
일 실시양태에서, 비천연 아미노산은 p-Azido-L-phenylalanine (AzF), p-ethynyl-phenylalanine (pEthF), LHomopropargylglycine(HPG), O-propargyl-L-tyrosine (oPa), ppropargyloxyphenylalanine(pPa), 2-amino-3-(4-azidophenyl)propanoic acid, 2-amino-4-(4-azidophenyl)butanoic acid, 4-(1,2,3,4-tetrazin-3-yl) phenylalanine (frTet), 4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenylalanine (Tet_v2.0), 4-(6-methyl-s-tetrazin-3-yl)phenylalanine, 3-(4-(1,2,4-triazin-6-yl)phenyl)-2-aminopropanoic acid, 2-amino-3-(4-(2-(6-methyl-1,2,4,5-tetrazin-3-yl)ethyl)phenyl)propanoic acid, 2-amino-3-(4-(6-phenyl-1,2,4,5-tetrazin-3-yl)phenyl)propanoic acid, 3-(4-((1,2,4,5-tetrazin-3-yl)amino)phenyl)-2-aminopropanoic acid, 3-(4-(2-(1,2,4,5-tetrazin-3-yl)ethyl)phenyl)-2-aminopropanoic acid, 3-(4-((1,2,4,5-tetrazin-3-yl)thio)phenyl)-2-aminopropanoic acid, 2-amino-3-(4-((6-methyl-1,2,4,5-tetrazin-3-yl)thio)phenyl)propanoic acid, 3-(4-((1,2,4,5-tetrazin-3-yl)oxy)phenyl)-2-aminopropanoic acid, 2-amino-3-(4-((6-methyl-1,2,4,5-tetrazin-3-yl)oxy)phenyl)propanoic acid, 3-(4'-(1,2,4,5-tetrazin-3-yl)-[1,1'-biphenyl]-4-yl)-2-aminopropanoic acid, 2-amino-3-(4'-(6-methyl-1,2,4,5-tetrazin-3-yl)-[1,1'-biphenyl]-4-yl)propanoic acid, 2-amino-3-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)pyridin-3-yl)propanoic acid, 3-(4-(1,2,4,5-tetrazin-3-yl)phenyl)-2-aminopropanoic acid, 및 2-amino-3-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)propanoic acid 중 어느 하나일 수 있다. In one embodiment, the non-natural amino acids are p-Azido-L-phenylalanine (AzF), p-ethynyl-phenylalanine (pEthF), LHomopropargylglycine (HPG), O-propargyl-L-tyrosine (oPa), ppropargyloxyphenylalanine (pPa), 2-amino-3-(4-azidophenyl)propanoic acid, 2-amino-4-(4-azidophenyl)butanoic acid, 4-(1,2,3,4-tetrazin-3-yl) phenylalanine (frTet), 4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenylalanine (Tet_v2.0), 4-(6-methyl -s- tetrazin-3-yl)phenylalanine, 3-(4- (1,2,4-triazin-6-yl)phenyl)-2-aminopropanoic acid, 2-amino-3-(4-(2-(6-methyl-1,2,4,5-tetrazin-3- yl)ethyl)phenyl)propanoic acid, 2-amino-3-(4-(6-phenyl-1,2,4,5-tetrazin-3-yl)phenyl)propanoic acid, 3-(4-((1 ,2,4,5-tetrazin-3-yl)amino)phenyl)-2-aminopropanoic acid, 3-(4-(2-(1,2,4,5-tetrazin-3-yl)ethyl)phenyl) -2-aminopropanoic acid, 3-(4-((1,2,4,5-tetrazin-3-yl)thio)phenyl)-2-aminopropanoic acid, 2-amino-3-(4-((6- methyl-1,2,4,5-tetrazin-3-yl)thio)phenyl)propanoic acid, 3-(4-((1,2,4,5-tetrazin-3-yl)oxy)phenyl)-2 -aminopropanoic acid, 2-amino-3-(4-((6-methyl-1,2,4,5-tetrazin-3-yl)oxy)phenyl)propanoic acid, 3-(4'-(1,2 ,4,5-tetrazin-3-yl)-[1,1'-biphenyl]-4-yl)-2-aminopropanoic acid, 2-amino-3-(4'-(6-methyl-1,2, 4,5-tetrazin-3-yl)-[1,1'-biphenyl]-4-yl)propanoic acid, 2-amino-3-(6-(6-(pyridin-2-yl)-1,2 ,4,5-tetrazin-3-yl)pyridin-3-yl)propanoic acid, 3-(4-(1,2,4,5-tetrazin-3-yl)phenyl)-2-aminopropanoic acid, and 2 -amino-3-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)propanoic acid.
일 실시양태에서, 비천연 아미노산은 하기의 화학식 중 어느 하나의 화학식의 구조를 가질 수 있다:In one embodiment, the non-natural amino acid may have a structure of any one of the following formulas:
[화학식 3-1][Formula 3-1]
Figure PCTKR2022015832-appb-img-000011
,
Figure PCTKR2022015832-appb-img-000011
,
[화학식 3-2][Formula 3-2]
Figure PCTKR2022015832-appb-img-000012
,
Figure PCTKR2022015832-appb-img-000012
,
[화학식 3-3][Formula 3-3]
Figure PCTKR2022015832-appb-img-000013
,
Figure PCTKR2022015832-appb-img-000013
,
[화학식 3-4][Formula 3-4]
Figure PCTKR2022015832-appb-img-000014
,
Figure PCTKR2022015832-appb-img-000014
,
[화학식 3-5][Formula 3-5]
Figure PCTKR2022015832-appb-img-000015
,
Figure PCTKR2022015832-appb-img-000015
,
[화학식 3-6][Formula 3-6]
Figure PCTKR2022015832-appb-img-000016
,
Figure PCTKR2022015832-appb-img-000016
,
[화학식 3-7][Formula 3-7]
Figure PCTKR2022015832-appb-img-000017
,
Figure PCTKR2022015832-appb-img-000017
,
[화학식 3-8][Formula 3-8]
Figure PCTKR2022015832-appb-img-000018
,
Figure PCTKR2022015832-appb-img-000018
,
[화학식 3-9][Formula 3-9]
Figure PCTKR2022015832-appb-img-000019
,
Figure PCTKR2022015832-appb-img-000019
,
[화학식 3-10][Formula 3-10]
Figure PCTKR2022015832-appb-img-000020
,
Figure PCTKR2022015832-appb-img-000020
,
[화학식 3-11][Formula 3-11]
Figure PCTKR2022015832-appb-img-000021
, 및
Figure PCTKR2022015832-appb-img-000021
, and
[화학식 3-12][Formula 3-12]
Figure PCTKR2022015832-appb-img-000022
.
Figure PCTKR2022015832-appb-img-000022
.
기능성 폴리펩티드 변이체 예시 (1) - 아르기닌 디카르복실레이즈 서브유닛 변이체 Examples of Functional Polypeptide Variants (1) - Arginine Decarboxylase Subunit Variants
아르기닌 디카르복실레이즈 서브유닛 변이체 개괄Overview of arginine decarboxylase subunit variants
본 출원의 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머일 수 있다. The functional polypeptide variants of the present application may be arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants.
전술한 바와 같이, 아르기닌 디카르복실레이즈는 동일한 단량체 10개가 모여 형성된 데카머(decamer)이다. 상기 단량체는 아르기닌 디카르복실레이즈 서브유닛이라고 지칭될 수 있다. 즉, 아르기닌 디카르복실레이즈는 아르기닌 디카르복실레이즈 서브유닛 10개가 모여 형성된 데카머이다. As described above, arginine decarboxylase is a decamer formed by gathering 10 identical monomers. The monomer may be referred to as an arginine decarboxylase subunit. That is, arginine decarboxylase is a decamer formed by gathering 10 arginine decarboxylase subunits.
본 단락에서는 아르기닌 디카르복실레이즈를 구성하는 아르기닌 디카르복실레이즈 서브유닛의 변이체, 즉 아르기닌 디카르복실레이즈 서브유닛 변이체를 개시한다. This paragraph discloses a variant of the arginine decarboxylase subunit constituting arginine decarboxylase, that is, an arginine decarboxylase subunit variant.
본 출원의 일 실시양태는 아르기닌 디카르복실레이즈 서브유닛 변이체를 제공한다. 본 출원의 일 실시양태에 따라 제공되는 아르기닌 디카르복실레이즈 서브유닛 변이체는 미생물 유래의 아르기닌 디카르복실레이즈 서브유닛의 서열 일부가 변형된 것을 특징으로 한다. 상기 아르기닌 디카르복실레이즈 변이체는 1개 이상의 비천연아미노산을 포함한다. 나아가, 각각의 비천연아미노산 잔기를 통해 위치-특이적으로 알부민과 접합될 수 있다. 예를 들어, 아르기닌 디카르복실레이즈 서브유닛 변이체는 1개 또는 2개 이상의 비천연아미노산을 포함할 수 있다. One embodiment of the present application provides arginine decarboxylase subunit variants. The arginine decarboxylase subunit variant provided according to one embodiment of the present application is characterized in that a part of the sequence of the arginine decarboxylase subunit derived from a microorganism is modified. The arginine decarboxylase variants contain one or more non-natural amino acids. Furthermore, it can be site-specifically conjugated to albumin via each non-natural amino acid residue. For example, an arginine decarboxylase subunit variant may contain one or more unnatural amino acids.
일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체의 원형이 되는 아르기닌 디카르복실레이즈 서브유닛은 미생물에서 유래된 것일 수 있다. 일 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛은 대장균(Escherichia coli; E. coli) 유래 아르기닌 디카르복실레이즈 서브유닛일 수 있다. 여기서, 대장균 유래 아르기닌 디카르복실레이즈 서브유닛은 대장균 유래 아르기닌 디카르복실레이즈(decamer)의 단량체를 지칭한다. In one embodiment, the arginine decarboxylase subunit that is the prototype of the arginine decarboxylase subunit variant may be derived from a microorganism. In one embodiment, the arginine decarboxylase subunit may be an arginine decarboxylase subunit derived from Escherichia coli ( E. coli ). Here, the E. coli-derived arginine decarboxylase subunit refers to a monomer of E. coli-derived arginine decarboxylase (decamer).
대장균 유래 아르기닌 디카르복실레이즈 서브유닛은 서열번호 01로 표현된 아미노산 서열을 가질 수 있다:The arginine decarboxylase subunit derived from E. coli may have an amino acid sequence represented by SEQ ID NO: 01:
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 01).MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDKLSSPYN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 01).
아르기닌 디카르복실레이즈 서브유닛 변이체 구체예Arginine decarboxylase subunit variant specific examples
아르기닌 디카르복실레이즈 서브유닛 변이체는 하나 이상의 비천연아미노산을 포함한다. 비천연아미노산은 제2 클릭화학작용기와 클릭화학반응을 할 수 있는 제1 클릭화학작용기를 포함한다. 아르기닌 디카르복실레이즈 서브유닛 변이체에 포함된 비천연아미노산은 섹션 '비천연아미노산'을 포함하는 관련 섹션에서 상세히 설명된다. Arginine decarboxylase subunit variants include one or more unnatural amino acids. The non-natural amino acid includes a first click chemical functional group capable of performing a click chemical reaction with a second click chemical functional group. The non-natural amino acids included in the arginine decarboxylase subunit variants are described in detail in the relevant sections including the section 'Unnatural Amino Acids'.
일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 하나 이상의 아미노산이 다른 아미노산으로 치환된 것일 수 있다. 일 실시양태에서, 상기 하나 이상의 아미노산은 비천연 아미노산으로 치환된 것일 수 있다. In one embodiment, the arginine decarboxylase subunit variant may be one in which one or more amino acids of the amino acid sequence of SEQ ID NO: 01 are substituted with other amino acids. In one embodiment, the one or more amino acids may be substituted with non-natural amino acids.
일 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 다른 아미노산으로 치환된 것일 수 있다. In one embodiment, the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with another amino acid.
일 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 것일 수 있다. In one embodiment, the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with a non-natural amino acid.
특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 frTet으로 치환된 것일 수 있다. 특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 및 522번째 라이신(Lysine) 중에서 선택되는 어느 하나 이상의 잔기가 frTet으로 치환된 것일 수 있다. 특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 488번째 글루타민 및 522번째 라이신 중에 선택되는 어느 하나 이상의 잔기가 Azf로 치환된 것일 수 있다. 여기서, 서열번호 01의 아미노산 서열을 갖는 폴리펩티드는 대장균 유래 아르기닌 디카르복실레이즈 서브유닛이다. In a specific embodiment, the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with frTet. In a specific embodiment, the arginine decarboxylase subunit variant comprises Threonine at position 39, Asparagine at position 245, Lysine at position 312, and Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01. , And any one or more residues selected from the 522nd lysine (Lysine) may be substituted with frTet. In a specific embodiment, the arginine decarboxylase subunit variant may be one in which at least one residue selected from glutamine at position 488 and lysine at position 522 of the amino acid sequence of SEQ ID NO: 01 is substituted with Azf. Here, the polypeptide having the amino acid sequence of SEQ ID NO: 01 is an arginine decarboxylase subunit derived from E. coli.
일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 하기의 서열 중 어느 하나의 서열을 가질 수 있다:In one embodiment, the arginine decarboxylase subunit variant can have any one of the following sequences:
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSXSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 02);MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSXSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDKLSSPYN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 02);
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQXVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 03);MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQXVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDKLSSPYN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 03);
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDXDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 04);MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYARM DWS XDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSIDEARFLYVLTQAMKEVDARQFTA PWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPLRLSVSIENGPPNFGRIPANSQELVSIENGPPNFGDKYN SLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 04);
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQXPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 05);MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQXPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDKLSSPYN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 05);
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPXTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 06);MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPXTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVLRIAANSQELVSIENGPGDKLSSPGEPYSLPGDKLSSPELN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 06);
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFXDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 07); 및MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFXDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDRIAANSSPEL QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 07); and
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSXLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (서열번호 08).MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSXLPVAEVTPREAYNAVDNNVLRQELVSIENLPGDKLSSPGEPYSLPGDKLSSPGEN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKA (SEQ ID NO: 08).
이때, X는 비천연아미노산 잔기를 의미한다. 특정한 실시양태에서, X는 frTet 잔기일 수 있다. 특정한 실시양태에서, X는 AzF 잔기일 수 있다. In this case, X means a non-natural amino acid residue. In certain embodiments, X may be a frTet moiety. In certain embodiments, X may be an AzF moiety.
기능성 폴리펩티드 변이체 예시 (2) - 아르기닌 디카르복실레이즈 변이체Examples of Functional Polypeptide Variants (2) - Arginine Decarboxylase Variants
일 실시양태에서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체일 수 있다. In one embodiment, the functional polypeptide variant may be an arginine decarboxylase variant.
본 출원의 일 실시양태는 아르기닌 디카르복실레이즈 변이체를 제공한다. One embodiment of the present application provides arginine decarboxylase variants.
아르기닌 디카르복실레이즈와 마찬가지로, 아르기닌 디카르복실레이즈 변이체도 10개의 서브유닛을 포함하는 decamer 단백질이다. 상기 아르기닌 디카르복실레이즈 변이체는 1개 내지 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하며, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 그 원형이 되는 야생형 아르기닌 디카르복실레이즈 서브유닛에서 하나 이상의 아미노산이 비천연 아미노산으로 치환된 것을 특징으로 한다. 일 실시양태에서 아르기닌 디카르복실레이즈 변이체는 대장균 유래 아르기닌 디카르복실레이즈 변이체일 수 있다. 이때 대장균 유래 아르기닌 디카르복실레이즈 변이체는 1개 내지 10개의 대장균 유래 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함한다.Like arginine decarboxylase, arginine decarboxylase variants are also decamer proteins containing 10 subunits. The arginine decarboxylase variants include 1 to 10 arginine decarboxylase subunit variants, and the arginine decarboxylase subunit variants are derived from one or more wild-type arginine decarboxylase subunits. Characterized in that an amino acid is substituted with a non-natural amino acid. In one embodiment, the arginine decarboxylase variant may be an E. coli-derived arginine decarboxylase variant. In this case, the E. coli-derived arginine decarboxylase variant includes 1 to 10 E. coli-derived arginine decarboxylase subunit variants.
일 실시양태에서, 아르기닌 디카르복실레이즈 변이체는 다음 중 어느 하나를 포함할 수 있다:In one embodiment, an arginine decarboxylase variant may comprise any of the following:
10개의 아르기닌 디카르복실레이즈 서브유닛 변이체;10 arginine decarboxylase subunit variants;
9개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 1개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 9 arginine decarboxylase subunit variants and 1 wild type arginine decarboxylase subunit;
8개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 2개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 8 arginine decarboxylase subunit variants and 2 wild-type arginine decarboxylase subunits;
7개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 3개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 7 arginine decarboxylase subunit variants and 3 wild-type arginine decarboxylase subunits;
6개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 4개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 6 arginine decarboxylase subunit variants and 4 wild-type arginine decarboxylase subunits;
5개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 5개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 5 arginine decarboxylase subunit variants and 5 wild-type arginine decarboxylase subunits;
4개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 6개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 4 arginine decarboxylase subunit variants and 6 wild-type arginine decarboxylase subunits;
3개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 7개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 3 arginine decarboxylase subunit variants and 7 wild-type arginine decarboxylase subunits;
2개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 8개의 야생형 아르기닌 디카르복실레이즈 서브유닛; 및 2 arginine decarboxylase subunit variants and 8 wild-type arginine decarboxylase subunits; and
1개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 9개의 야생형 아르기닌 디카르복실레이즈 서브유닛.One arginine decarboxylase subunit variant and nine wild-type arginine decarboxylase subunits.
기능성 폴리펩티드 변이체 예시 (3) - 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 Exemplary Functional Polypeptide Variants (3) - Dimers of Arginine Decarboxylase Subunit Variants
일 실시양태에서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머일 수 있다. In one embodiment, the functional polypeptide variant may be a dimer of an arginine decarboxylase subunit variant.
본 출원의 일 실시양태는 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머를 제공한다. One embodiment of the present application provides dimers of arginine decarboxylase subunit variants.
전술한 바와 같이, 아르기닌 디카르복실레이즈는 5개의 아르기닌 디카르복실레이즈 서브유닛의 이량체의 복합체 형태이다. 아르기닌 디카르복실레이즈 변이체 또한 5개의 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체의 복합체일 수 있다. As described above, arginine decarboxylase is in the form of a complex of dimers of five arginine decarboxylase subunits. Arginine decarboxylase variants may also be complexes of dimers of five arginine decarboxylase subunit variants.
아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체는 1개 내지 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하며, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 그 원형이 되는 야생형 아르기닌 디카르복실레이즈 서브유닛에서 하나 이상의 아미노산이 비천연 아미노산으로 치환된 것을 특징으로 한다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체는 대장균 유래 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체일 수 있다. 이때 대장균 유래 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체는 1개 내지 2개의 대장균 유래 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함한다. The dimer of the arginine decarboxylase subunit variant includes one or two arginine decarboxylase subunit variants, and the arginine decarboxylase subunit variant is a wild-type arginine decarboxylase subunit that is the prototype. Characterized in that one or more amino acids in the unit are substituted with non-natural amino acids. In one embodiment, the dimer of the arginine decarboxylase subunit variant may be a dimer of an arginine decarboxylase subunit variant derived from E. coli. In this case, the dimer of the E. coli-derived arginine decarboxylase subunit variant includes one or two E. coli-derived arginine decarboxylase subunit variants.
일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체의 이량체는 다음 중 어느 하나를 포함할 수 있다:In one embodiment, a dimer of an arginine decarboxylase subunit variant may comprise any of the following:
2개의 아르기닌 디카르복실레이즈 서브유닛 변이체; 및 two arginine decarboxylase subunit variants; and
1개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 1개의 야생형 아르기닌 디카르복실레이즈 서브유닛.One arginine decarboxylase subunit variant and one wild-type arginine decarboxylase subunit.
링커: 클릭화학작용기 및 티올 반응성 그룹을 포함함Linker: contains click chemofunctional groups and thiol reactive groups
링커 개괄linker overview
본 출원은 링커를 제공한다. 본 출원의 링커는 클릭화학작용기 및 티올 반응성 그룹을 포함한다. 보다 구체적으로, 본 출원의 링커는 제1 클릭화학작용기와 클릭화학반응 가능한 제2 클릭화학작용기, 및 티올기와 반응 가능한 티올 반응성 그룹을 포함한다. This application provides linkers. The linker of the present application includes a click chemofunctional group and a thiol reactive group. More specifically, the linker of the present application includes a first click chemical functional group, a second click chemical functional group capable of a click chemical reaction, and a thiol reactive group capable of reacting with a thiol group.
기능성 폴리펩티드 변이체는 알부민과 링커를 통해 연결된다. 예를 들어, 알부민과 링커가 반응하여 알부민-링커 컨쥬게이트가 제조되고, 알부민-링커 컨쥬게이트와 기능성 폴리펩티드 변이체가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 다른 예로, 기능성 폴리펩티드 변이체와 링커가 반응하여 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조되고, 기능성 폴리펩티드 변이체-링커 컨쥬게이트와 알부민이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. Functional polypeptide variants are linked to albumin via a linker. For example, an albumin-linker conjugate may be prepared by reacting albumin with a linker, and a functional polypeptide variant-albumin conjugate may be prepared by reacting the albumin-linker conjugate with a functional polypeptide variant. In another example, a functional polypeptide variant-linker conjugate is prepared by reacting the functional polypeptide variant with a linker, and a functional polypeptide variant-albumin conjugate is prepared by reacting the functional polypeptide variant-linker conjugate with albumin.
링커는 티올 반응성 그룹 및 클릭화학작용기를 포함한다. 상기 티올 반응성 그룹은 알부민의 티올기와 반응하여 제2 접합 유닛에 포함된 구조를 형성한다. 상기 클릭화학작용기는 기능성 폴리펩티드 변이체의 비천연아미노산에 포함된 다른 클릭화학작용기와 반응하여 제1 접합 유닛에 포함된 구조를 형성한다. 예를 들어, 링커는 티올 반응성 그룹 및 제2 클릭화학작용기를 포함할 수 있다. 티올 반응성 그룹은 티올기와 반응하고, 제2 클릭화학작용기는 제1 클릭화학작용기와 클릭화학반응을 할 수 있다. The linker contains a thiol reactive group and a click chemofunctional group. The thiol-reactive group reacts with the thiol group of albumin to form a structure included in the second conjugation unit. The click chemical functional group reacts with other click chemical functional groups included in the non-natural amino acid of the functional polypeptide variant to form a structure included in the first conjugation unit. For example, a linker can include a thiol reactive group and a second click chemofunctional group. The thiol-reactive group may react with a thiol group, and the second click chemical functional group may undergo a click chemical reaction with the first click chemical functional group.
티올 반응성 그룹thiol reactive group
본 출원의 링커는 티올 반응성 그룹을 포함한다. 티올 반응성 그룹은 티올기와 반응성을 갖는다. 일 실시양태에서, 티올 반응성 그룹은 말레이미드(maleimide) 그룹 또는 3-아릴프로피올로니트릴(3-Arylpropiolonitriles; APN) 그룹일 수 있다. Linkers of the present application include thiol reactive groups. A thiol-reactive group is reactive with a thiol group. In one embodiment, the thiol-reactive group can be a maleimide group or a 3-Arylpropiolonitriles (APN) group.
일 실시양태에서, 본 출원의 링커에 포함된 티올 반응성 그룹은 하기의 구조를 가질 수 있다:In one embodiment, a thiol reactive group included in a linker of the present application may have the following structure:
Figure PCTKR2022015832-appb-img-000023
,
Figure PCTKR2022015832-appb-img-000023
,
Figure PCTKR2022015832-appb-img-000024
, 및
Figure PCTKR2022015832-appb-img-000024
, and
Figure PCTKR2022015832-appb-img-000025
.
Figure PCTKR2022015832-appb-img-000025
.
링커의 구조 (화학식 2)Structure of the linker (Formula 2)
본 출원의 일 실시양태는 화학식 2의 구조를 갖는 링커를 제공한다:One embodiment of the present application provides a linker having the structure of Formula 2:
[화학식 2][Formula 2]
H2-A2-B.H 2 -A 2 -B.
화학식 2에서, H2는 제2 클릭화학작용기이다. 제2 클릭화학작용기는 클릭화학작용기를 가질 수 있다. 제2 클릭화학작용기는 제1 클릭화학작용기와 클릭화학반응을 할 수 있다. In Formula 2, H 2 is a second click chemical functional group. The second click chemistry functional group may have a click chemistry functional group. The second click chemistry functional group may undergo a click chemistry reaction with the first click chemistry functional group.
화학식 2에서, B는 티올 반응성 그룹이다. 일 실시양태에서, 티올 반응성 그룹은 말레이미드 그룹 또는 APN 그룹일 수 있다. In Formula 2, B is a thiol reactive group. In one embodiment, the thiol reactive group can be a maleimide group or an APN group.
화학식 2에서, A2는 제2 앵커 유닛이다. 링커에서, 제2 앵커 유닛은 제2 클릭화학작용기와 티올 반응성 그룹 사이의 거리를 조절하는 역할을 한다. 컨쥬게이트에서, 제2 앵커 유닛은 기능성 폴리펩티드 변이체 유닛과 알부민 유닛 사이의 거리를 조절하는 역할을 한다. In Formula 2, A 2 is a second anchor unit. In the linker, the second anchor unit serves to adjust the distance between the second click chemofunctional group and the thiol reactive group. In the conjugate, the second anchor unit serves to control the distance between the functional polypeptide variant unit and the albumin unit.
제2 클릭화학작용기 (H2) Second click chemical functional group (H 2 )
전술한 바와 같이, 제2 클릭화학작용기는 클릭화학작용기를 갖는다. As described above, the second click chemistry functional group has a click chemistry functional group.
일 실시양태에서, 제2 클릭화학작용기는 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), 메틸사이클로프로펜(methylcyclopropene), 노르보르넨(norbornene), 사이클로펜텐(cyclopentene), 스티렌(styrene), (DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함) 그룹 중에서 선택된 어느 하나의 그룹을 포함할 수 있다.In one embodiment, the second click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans cyclooctyne (trans) -cyclooctene, alkene, thiol, tetrazine, triazine, methylcyclopropene, norbornene, cyclopentene, styrene ), (including dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne)).
일 실시양태에서, 제2 클릭화학작용기는 트랜스-바이사이클로[6.1.0]노넨(trans-bicyclo[6.1.0]nonene) 그룹, 트랜스 사이클로옥텐(trans-cyclooctene; TCO) 그룹, 메틸사이클로프로펜(methylcyclopropene) 그룹, 바이사이클로[6.1.0]노닌(bicyclo[6.1.0]nonyne) 그룹, 사이클로옥틴 (cyclooctyne) 그룹, 노르보르넨(norbornene) 그룹, 사이클로펜텐(cyclopentene) 그룹, 스티렌(styrene) 그룹, 및 다이벤조사이클로옥틴(dibenzocyclooctyne) 그룹 중 어느 하나를 포함할 수 있으나, 이에 제한되지 않는다. In one embodiment, the second click chemistry functional group is a trans-bicyclo[6.1.0]nonene group, a trans-cyclooctene (TCO) group, a methylcyclopropene group (methylcyclopropene) group, bicyclo[6.1.0]nonyne group, cyclooctyne group, norbornene group, cyclopentene group, styrene group, and a dibenzocyclooctyne group, but is not limited thereto.
일 실시양태에서, 제2 클릭화학작용기는 하기의 구조 중 어느 하나의 구조를 가질 수 있다:In one embodiment, the second click chemofunctional group can have any one of the following structures:
Figure PCTKR2022015832-appb-img-000026
Figure PCTKR2022015832-appb-img-000026
Figure PCTKR2022015832-appb-img-000027
.
Figure PCTKR2022015832-appb-img-000027
.
여기서, 물결선은 링커의 다른 부분과의 부착부(attachment site)를 나타낸다. 예를 들어, 물결선은 제2 앵커 유닛과의 부착부(attachment site)를 나타낼 수 있다. Here, the wavy line represents an attachment site to another part of the linker. For example, a wavy line may indicate an attachment site with the second anchor unit.
특정한 실시양태에서, 제2 클릭화학작용기는 하기의 구조를 가질 수 있다:In certain embodiments, the second click chemofunctional group can have the following structure:
Figure PCTKR2022015832-appb-img-000028
.
Figure PCTKR2022015832-appb-img-000028
.
특정한 실시양태에서, 제2 클릭화학작용기는 하기의 구조를 가질 수 있다: In certain embodiments, the second click chemofunctional group can have the following structure:
Figure PCTKR2022015832-appb-img-000029
.
Figure PCTKR2022015832-appb-img-000029
.
여기서, 물결선은 링커의 다른 부분과의 부착부(attachment site)를 나타낸다. 예를 들어, 물결선은 제2 앵커 모이어티와의 부착부(attachment site)를 나타낼 수 있다. Here, the wavy line represents an attachment site to another part of the linker. For example, a wavy line may indicate an attachment site with the second anchor moiety.
제2 앵커 유닛 (A2) Second Anchor Unit (A 2 )
화학식 2에서, A2는 제2 앵커 유닛이다. In Formula 2, A 2 is a second anchor unit.
일 실시양태에서, 제2 앵커 유닛은 하나 이상의 헤테로 원자를 포함하는, 치환된 탄화수소 사슬이다. 이때 상기 헤테로 원자는, 각각 독립적으로, N, O, 및 S 중에서 선택될 수 있다. 이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는, 각각 독립적으로, 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나일 수 있다. 일 실시양태에서, 제2 앵커 유닛은 복수의 에틸렌글리콜 단위체로 구성된 폴리에틸렌글리콜 유닛을 포함할 수 있다. In one embodiment, the second anchor unit is a substituted hydrocarbon chain comprising one or more heteroatoms. In this case, the hetero atom may be each independently selected from N, O, and S. In this case, the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are each independently any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S. can In one embodiment, the second anchor unit may include a polyethylene glycol unit composed of a plurality of ethylene glycol units.
일 실시양태에서, 제2 앵커 유닛은 치환 또는 비치환된 C1-50알킬렌, 치환 또는 비치환된 C1-50헤테로알킬렌, -치환 또는 비치환된 C1-20알킬렌-[EG]n-, -치환 또는 비치환된 C1-20헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-20알킬렌-[EG]n-치환 또는 비치환된 C1-20알킬렌-, -치환 또는 비치환된 C1-20알킬렌-[EG]n-치환 또는 비치환된 C1-20헤테로알킬렌-, 및 -치환 또는 비치환된 C1-20헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-20헤테로알킬렌- 중에서 선택되는 어느 하나일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 1이상 12 이하의 정수일 수 있다. In one embodiment, the second anchor unit is a substituted or unsubstituted C 1-50 alkylene, a substituted or unsubstituted C 1-50 heteroalkylene, -substituted or unsubstituted C 1-20 alkylene-[EG ] n -, -substituted or unsubstituted C 1-20 heteroalkylene-[EG] n -, -substituted or unsubstituted C 1-20 alkylene-[EG] n -substituted or unsubstituted C 1- 20 Alkylene-, -substituted or unsubstituted C 1-20 Alkylene-[EG] n -substituted or unsubstituted C 1-20 heteroalkylene-, and -substituted or unsubstituted C 1-20 heteroalkyl [EG] n -It may be any one selected from substituted or unsubstituted C 1-20 heteroalkylene-. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. At this time, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 12 or less.
특정한 실시양태에서, 제2 앵커 유닛은 -치환된 C1-6 헤테로알킬렌-[EG]n-치환된 C3-15 헤테로알킬렌- 일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 1이상 6 이하의 정수일 수 있다.In certain embodiments, the second anchor unit can be -substituted C 1-6 heteroalkylene-[EG] n -substituted C 3-15 heteroalkylene-. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. At this time, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 6 or less.
특정한 실시양태에서, 제2 앵커 유닛은 치환된 C5-30 헤테로알킬렌일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다.In certain embodiments, the second anchor unit can be a substituted C 5-30 heteroalkylene. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other.
링커의 구체예Specific examples of linkers
일 실시양태에서, 링커는 하기의 화학식 2-1의 구조를 가질 수 있다: In one embodiment, the linker may have the structure of Formula 2-1:
[화학식 2-1][Formula 2-1]
H2-A21-A22-A23-B.H 2 -A 21 -A 22 -A 23 -B.
화학식 2-1의 구조에서, H2는 제2 클릭화학작용기이고, 섹션 '제2 클릭화학작용기 (H2)'에서 상세히 설명된다. In the structure of Formula 2-1, H 2 is a second click chemical functional group, which is described in detail in the section 'Second click chemical functional group (H 2 )'.
화학식 2-1의 구조에서, -A21-A22-A23-는 제2 앵커 유닛이다. In the structure of Formula 2-1, -A 21 -A 22 -A 23 - is a second anchor unit.
이때 A21은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 일 수 있다. In this case, A 21 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC(=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-.
이때 A22는 결합(bond), 치환 또는 비치환된 C1-12 알킬렌, 치환 또는 비치환된 C1-12 헤테로알킬렌, -[EG]n-, -치환 또는 비치환된 C1-12알킬렌-[EG]n-, -치환 또는 비치환된 C1-12-헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-12알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, 및 -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12헤테로알킬렌- 중에서 선택되는 어느 하나일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 1이상 6 이하의 정수일 수 있다. In this case, A 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -[EG] n -, -substituted or unsubstituted C 1- 12 alkylene-[EG] n -, -substituted or unsubstituted C 1-12- heteroalkylene-[EG] n -, -substituted or unsubstituted C 1-12 alkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted It may be any one selected from C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 heteroalkylene-. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. At this time, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 6 or less.
이때 A23은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 일 수 있다. In this case, A 23 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC(=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-.
이때 A21, A22, 및 A23 모두가 동시에 결합(bond)인 경우는 존재하지 않는다. At this time A 21 , There is no case where both A 22 and A 23 are simultaneously bonded.
화학식 2-1의 구조에서, B는 티올 반응성 그룹을 포함하는 그룹이다. 일 실시양태에서, 티올 반응성 그룹은 말레이미드 그룹 또는 APN 그룹일 수 있다. In the structure of Formula 2-1, B is a group containing a thiol reactive group. In one embodiment, the thiol reactive group can be a maleimide group or an APN group.
일 실시양태에서, 링커는 하기의 화학식 중 어느 하나의 화학식의 구조를 가질 수 있다:In one embodiment, the linker can have a structure of any one of the following formulas:
[화학식 2-2][Formula 2-2]
Figure PCTKR2022015832-appb-img-000030
,
Figure PCTKR2022015832-appb-img-000030
,
[화학식 2-3][Formula 2-3]
Figure PCTKR2022015832-appb-img-000031
,
Figure PCTKR2022015832-appb-img-000031
,
[화학식 2-4][Formula 2-4]
Figure PCTKR2022015832-appb-img-000032
,
Figure PCTKR2022015832-appb-img-000032
,
[화학식 2-5][Formula 2-5]
Figure PCTKR2022015832-appb-img-000033
,
Figure PCTKR2022015832-appb-img-000033
,
[화학식 2-6][Formula 2-6]
Figure PCTKR2022015832-appb-img-000034
, 및
Figure PCTKR2022015832-appb-img-000034
, and
[화학식 2-7][Formula 2-7]
Figure PCTKR2022015832-appb-img-000035
.
Figure PCTKR2022015832-appb-img-000035
.
이때, n은 2 이상 8 이하의 정수일 수 있다. In this case, n may be an integer of 2 or more and 8 or less.
알부민 및 알부민 유닛Albumin and Albumin Unit
알부민 및 알부민 유닛 개괄Overview of Albumin and Albumin Units
전술한 바와 같이, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조에는 알부민이 사용된다. 알부민은 체액 중 넓게 분포되어 있는 단순 단백질로써, 다양한 분자들과 결합하여 운반시키는 수송 단백질의 역할을 한다. 알부민의 대표적인 예로는 혈청 알부민이 있다. As noted above, albumin is used in the preparation of functional polypeptide variant-albumin conjugates. Albumin is a simple protein that is widely distributed in body fluids, and serves as a transport protein that binds and transports various molecules. A representative example of albumin is serum albumin.
화학식 1에서, P1은 알부민 유닛이다. 알부민 유닛은 컨쥬게이트된 알부민일 수 있다. 알부민 유닛은 알부민으로부터 유래될 수 있다. In Formula 1, P 1 is an albumin unit. The albumin unit may be conjugated albumin. The albumin unit may be derived from albumin.
본 명세서에서 용어 알부민은 다른 화합물과 컨쥬게이트되지 않은 알부민 및 다른 화합물과 컨쥬게이트된 알부민을 모두 포함하는 것으로 사용될 수 있다. 예를 들어, 알부민은 서열번호 09의 서열을 갖는 단백질일 수 있다. 예를 들어, 화학식 1에서 알부민 유닛 P1은 알부민으로 지칭될 수 있다. As used herein, the term albumin may be used to include both albumin unconjugated with other compounds and albumin conjugated with other compounds. For example, albumin can be a protein having the sequence of SEQ ID NO: 09. For example, albumin unit P 1 in Formula 1 may be referred to as albumin.
알부민의 구체예Specific examples of albumin
일 실시양태에서, 알부민은 포유류의 알부민, 예를 들어 혈청 알부민일 수 있다. 일 실시양태에서, 알부민은 인간 혈청 알부민 (human serum albumin; HSA), 소혈청알부민 (bovine serum albumin; BSA), 오브알부민, 기타 척추동물의 알부민, 및 이들의 변이체 중에서 선택되는 어느 하나일 수 있다. 이들은 야생형 또는 재조합 형태(재조합 알부민)일 수 있다.In one embodiment, the albumin can be mammalian albumin, eg serum albumin. In one embodiment, the albumin may be any one selected from human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin, other vertebrate albumin, and variants thereof. . They may be wild-type or recombinant forms (recombinant albumins).
일 실시양태에서, 알부민은 야생형 또는 재조합 인간 혈청 알부민일 수 있다. 상기 인간 혈청 알부민은 2주 이상의 긴 반감기를 가진다. 이는, 1) 알부민 분자의 정전기적 반발력(electrostatic repulsion)으로 인해 사구체에서 쉽게 여과되지 않으며, 2) 내피세포(endothelium)의 neonatal Fc receptor (FcRn)에 의해 매개되는 재순환 작용으로 인해 체내에서 분해되는 주기가 길기 때문이다.In one embodiment, the albumin can be wild type or recombinant human serum albumin. The human serum albumin has a long half-life of 2 weeks or more. This is because 1) it is not easily filtered in the glomerulus due to the electrostatic repulsion of the albumin molecule, and 2) it is degraded in the body due to the recycling action mediated by the neonatal Fc receptor (FcRn) of the endothelium. because it is long
일 실시양태에서, 알부민은 인간 혈청 알부민일 수 있고, 이때, 인간 혈청 알부민은 하기의 아미노산 서열을 포함할 수 있다. In one embodiment, the albumin can be human serum albumin, wherein the human serum albumin can comprise the amino acid sequence below.
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 09)DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 09)
다른 실시양태에서, 알부민은 인간 혈청 알부민 또는 이의 변이체일 수 있고, 인간 혈청 알부민 또는 이의 변이체는 하기의 서열 중 선택된 어느 하나의 서열을 포함할 수 있다:In another embodiment, the albumin can be human serum albumin or a variant thereof, and the human serum albumin or variant thereof can comprise a sequence selected from any one of the following sequences:
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQMSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 10);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQMSTPTLVEVSRTPVNLGKVGVTCCCKHPEAKRMPCAEDYLSVDRLVLNRNHK FSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 10);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSAPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 11);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSAPTLVEVSRTPNLGKVGVTCCCKHPEAKRMPCAEDYLSVDRLVLNRNHK FSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 11);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNARTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 12);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNARTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 12);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 13);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 13);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 14);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 14);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGYKLVAASQAALGL (서열번호 15);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGYKLVAASQAALGL (SEQ ID NO: 15);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLIEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 16);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLIEVSRNLGKVGVTETCCCKHPEAKRMPCAEDYLSVDRLVLNRNHK FSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 16);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRDLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 17);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPDLGKVVTSKCCKHPEAKRMPCAEDSSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 17);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCVEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 18);DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCVEKEDCLCCSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 18);
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKMPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 19); 및DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRVNLGKVVTSKMPLCCSLVVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 19); and
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFTAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (서열번호 20).DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPECKLDELRDEGKASSAKQRLKKLVKLTSCASLQKFARKFSKAWAVRFHTP CHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRTPNLGKVVTSKCCKHPEAKRMPCAEDCSLVNRRHH CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFTAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 20).
일 실시양태에서, 인간 혈청 알부민 또는 이의 변이체에 포함된 시스테인의 티올 잔기는 링커의 일 말단의 티올 반응성 그룹과 반응할 수 있다. 예를 들어, 인간 혈청 알부민 또는 이의 변이체에 포함된 시스테인의 티올 잔기는 링커의 일 말단의 말레이미드 그룹 또는 APN 그룹과 반응할 수 있다. 보다 구체적으로, 인간 혈청 알부민 또는 이의 변이체에 포함된 시스테인의 티올 잔기는 링커의 일 말단의 티올 반응성 그룹과 반응할 수 있다. 이때, 링커의 일 말단과 반응하는 시스테인은 34번 시스테인(Cys 34)일 수 있다. In one embodiment, a thiol residue of a cysteine included in human serum albumin or a variant thereof can react with a thiol-reactive group at one end of the linker. For example, a thiol residue of cysteine contained in human serum albumin or a variant thereof may react with a maleimide group or an APN group at one end of a linker. More specifically, a thiol residue of cysteine included in human serum albumin or a variant thereof may react with a thiol-reactive group at one end of the linker. At this time, the cysteine reacting with one end of the linker may be cysteine 34 (Cys 34).
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 구조Structure of Functional Polypeptide Variant-Albumin Conjugates
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 구조 개괄Structural Overview of Functional Polypeptide Variant-Albumin Conjugates
전술한 바와 같이, 본 출원의 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 화학식 1의 구조를 갖는다: As mentioned above, the functional polypeptide variant-albumin conjugate of the present application has the structure of Formula 1:
[화학식 1][Formula 1]
FPV-[J1-A2-J2-P1]a FPV-[J 1 -A 2 -J 2 -P 1 ] a
화학식 1에서, FPV는 기능성 폴리펩티드 변이체 유닛이다. 기능성 폴리펩티드 변이체 유닛의 예시는 기능성 폴리펩티드 변이체와 관련된 섹션에서 상세히 설명된다. In formula 1, FPV is a functional polypeptide variant unit. Examples of functional polypeptide variant units are detailed in the section relating to functional polypeptide variants.
화학식 1에서, J1은 제1 접합 유닛이다. 제1 접합 유닛은 기능성 폴리펩티드 변이체에 포함된 제1 클릭화학작용기와, 제1 클릭화학작용기와 클릭화학반응을 할 수 있는 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 갖는다. 제1 클릭화학작용기 및 제2 클릭화학작용기 각각은 관련된 섹션에서 상세히 설명된다. In Formula 1, J 1 is a first junction unit. The first conjugation unit has a structure formed by a click chemical reaction between a first click chemical functional group included in the functional polypeptide variant and a second click chemical functional group capable of performing a click chemical reaction with the first click chemical functional group. Each of the first click chemofunctional group and the second click chemofunctional group is described in detail in the relevant section.
화학식 1에서, A2는 제2 앵커 유닛이다. 컨쥬게이트에서, 제2 앵커 유닛은 기능성 폴리펩티드 변이체 유닛과 알부민 유닛을 연결하는 구성을 지칭한다. 제2 앵커 유닛은 기능성 폴리펩티드 변이체 유닛과 알부민 유닛 사이의 거리를 조절하는 역할을 한다. 당해 분야에서 거리조절을 위해 통상적으로 사용되는 구조라면, 크게 제한되지 않는다. 제2 앵커 유닛은 링커로부터 유래된다. 제2 앵커 유닛은 섹션 '링커: 클릭화학작용기 및 티올 반응성 그룹을 포함함'에서 상세히 설명되며 하기에서 또한 설명된다. In Formula 1, A 2 is a second anchor unit. In a conjugate, the second anchor unit refers to a construct linking the functional polypeptide variant unit and the albumin unit. The second anchor unit serves to adjust the distance between the functional polypeptide variant unit and the albumin unit. If it is a structure commonly used for distance control in the art, it is not significantly limited. The second anchor unit is derived from a linker. The second anchor unit is described in detail in the section 'Linker: contains a click chemofunctional group and a thiol reactive group' and is also described below.
화학식 1에서, J2는 제2 접합 유닛이다. 제2 접합 유닛은 티올 반응성 그룹과 알부민의 티올기의 반응에 의해 형성된 구조를 갖는다. In Formula 1, J 2 is a second junction unit. The second conjugation unit has a structure formed by reaction of a thiol reactive group with a thiol group of albumin.
화학식 1에서, a는 1 이상 20이하의 정수이다. 특정한 실시양태에서, a는 1 이상 10이하의 정수이다. In Formula 1, a is an integer of 1 or more and 20 or less. In certain embodiments, a is an integer greater than or equal to 1 and less than or equal to 10.
이하에서, 제2 앵커 유닛, 제1 접합 유닛 및 제2 접합 유닛 각각에 대하여 상세히 설명한다. Hereinafter, each of the second anchor unit, the first bonding unit, and the second bonding unit will be described in detail.
제2 앵커 유닛Second Anchor Unit
화학식 1에서, A2는 제2 앵커 유닛이다. 전술한 바와 같이 제2 앵커 유닛은 링커로부터 유래된다. In Formula 1, A 2 is a second anchor unit. As described above, the second anchor unit is derived from a linker.
일 실시양태에서, 제2 앵커 유닛은 하나 이상의 헤테로 원자를 포함하는, 치환된 탄화수소 사슬이다. 특정한 실시양태에서, 탄화수소 사슬은 1 내지 500개의 원자로 구성될 수 있다. 이때 상기 헤테로 원자는, 각각 독립적으로, N, O, 및 S 중에서 선택될 수 있다. 이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는, 각각 독립적으로, 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나일 수 있다. 일 실시양태에서, 제2 앵커 유닛은 복수의 에틸렌글리콜 단위체로 구성된 폴리에틸렌글리콜 유닛을 포함할 수 있다. In one embodiment, the second anchor unit is a substituted hydrocarbon chain comprising one or more heteroatoms. In certain embodiments, hydrocarbon chains may consist of 1 to 500 atoms. In this case, the hetero atom may be each independently selected from N, O, and S. In this case, the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are each independently any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S. can In one embodiment, the second anchor unit may include a polyethylene glycol unit composed of a plurality of ethylene glycol units.
일 실시양태에서, 제2 앵커 유닛은 치환 또는 비치환된 C1-50알킬렌, 치환 또는 비치환된 C1-50헤테로알킬렌, -치환 또는 비치환된 C1-20알킬렌-[EG]n-, -치환 또는 비치환된 C1-20헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-20알킬렌-[EG]n-치환 또는 비치환된 C1-20알킬렌-, -치환 또는 비치환된 C1-20알킬렌-[EG]n-치환 또는 비치환된 C1-20헤테로알킬렌-, 및 -치환 또는 비치환된 C1-20헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-20헤테로알킬렌- 중에서 선택되는 어느 하나일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 1이상 12 이하의 정수일 수 있다. In one embodiment, the second anchor unit is a substituted or unsubstituted C 1-50 alkylene, a substituted or unsubstituted C 1-50 heteroalkylene, -substituted or unsubstituted C 1-20 alkylene-[EG ] n -, -substituted or unsubstituted C 1-20 heteroalkylene-[EG] n -, -substituted or unsubstituted C 1-20 alkylene-[EG] n -substituted or unsubstituted C 1- 20 Alkylene-, -substituted or unsubstituted C 1-20 Alkylene-[EG] n -substituted or unsubstituted C 1-20 heteroalkylene-, and -substituted or unsubstituted C 1-20 heteroalkyl [EG] n -It may be any one selected from substituted or unsubstituted C 1-20 heteroalkylene-. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. In this case, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 12 or less.
특정한 실시양태에서, 제2 앵커 유닛은 치환된 -C1-6 헤테로알킬렌-[EG]n-치환된 C3-15 헤테로알킬렌일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 1이상 6 이하의 정수일 수 있다.In certain embodiments, the second anchor unit can be a substituted -C 1-6 heteroalkylene-[EG] n -substituted C 3-15 heteroalkylene. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. At this time, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 1 or more and 6 or less.
특정한 실시양태에서, 제2 앵커 유닛은 치환된 C5-30 헤테로알킬렌일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다.In certain embodiments, the second anchor unit can be a substituted C 5-30 heteroalkylene. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other.
일 실시양태에서, -A2-는 -A21-A22-A23-일 수 있다. In one embodiment, -A 2 - can be -A 21 -A 22 -A 23 -.
이때 A21은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 일 수 있다. In this case, A 21 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC(=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-.
이때 A22는 결합(bond), 치환 또는 비치환된 C1-12 알킬렌, 치환 또는 비치환된 C1-12 헤테로알킬렌, -치환 또는 비치환된 C1-12알킬렌-[EG]n-, -치환 또는 비치환된 C1-12-헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-12알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, 및 -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12헤테로알킬렌- 중에서 선택되는 어느 하나일 수 있다. 이때, 상기 헤테로알킬렌은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함하고, 헤테로원자 그룹 또는 헤테로원자는 각각 독립적으로 선택될 수 있다. 이때, 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, 비수소 치환기는 각각 독립적으로 선택될 수 있다. 이때, EG는 에틸렌글리콜 단위체를 의미하며, -CH2CH2O- 또는 -CH2OCH2-의 구조를 갖는다. 이때, n은 2이상 6 이하의 정수일 수 있다. In this case, A 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -substituted or unsubstituted C 1-12 alkylene-[EG] n -, -substituted or unsubstituted C 1-12- heteroalkylene-[EG] n -, -substituted or unsubstituted C 1-12 alkylene-[EG] n -substituted or unsubstituted C 1- 12 Alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted C 1-12 heteroalkyl [EG] n -It may be any one selected from substituted or unsubstituted C 1-12 heteroalkylene-. At this time, the heteroalkylene is one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 - group, or one or more heteroatoms selected from the group consisting of O, N, and S, and each heteroatom group or heteroatom may be independently selected. At this time, the substitution is substituted with one or more non-hydrogen substituents, wherein the non-hydrogen substituent is any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S, and the non-hydrogen substituent can be selected independently of each other. At this time, EG means an ethylene glycol unit and has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -. In this case, n may be an integer of 2 or more and 6 or less.
이때 A23은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 일 수 있다. In this case, A 23 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC(=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-.
이때 A21, A22, 및 A23 모두가 동시에 결합(bond)인 경우는 존재하지 않는다. At this time A 21 , There is no case where both A 22 and A 23 are simultaneously bonded.
일 실시양태에서, 제2 앵커 유닛은 하기의 구조 중 어느 하나의 구조를 가질 수 있다:In one embodiment, the second anchor unit can have any one of the following structures:
Figure PCTKR2022015832-appb-img-000036
Figure PCTKR2022015832-appb-img-000036
Figure PCTKR2022015832-appb-img-000037
Figure PCTKR2022015832-appb-img-000037
이때, n은 2 이상 8 이하의 정수일 수 있다. In this case, n may be an integer of 2 or more and 8 or less.
이때, 이때, 일 실시양태에서, 3'은 제1 접합 유닛과의 부착부(attachment site)일 수 있다. 이때, 4'은 제2 접합 유닛과의 부착부(attachment site)일 수 있다. At this time, in one embodiment, 3' may be an attachment site with the first bonding unit. In this case, 4' may be an attachment site with the second bonding unit.
이때, 이때, 다른 실시양태에서, 3'은 제2 접합 유닛과의 부착부(attachment site)일 수 있다. 이때, 4'은 제1 접합 유닛과의 부착부(attachment site)일 수 있다. At this time, in another embodiment, 3' may be an attachment site with the second bonding unit. In this case, 4' may be an attachment site with the first bonding unit.
제1 접합 유닛1st joining unit
화학식 1에서, J1은 제1 접합 유닛이다. In Formula 1, J 1 is a first junction unit.
제1 접합 유닛은 제1 클릭화학작용기와 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 갖는다. 예를 들어, 제1 접합 유닛은 기능성 폴리펩티드 변이체의 비천연 아미노산 잔기에 포함된 제1 클릭화학작용기와 링커의 일 말단의 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 가질 수 있다. The first bonding unit has a structure formed by a click chemical reaction between a first click chemical functional group and a second click chemical functional group. For example, the first conjugation unit may have a structure formed by a click chemical reaction between a first click chemical functional group included in a non-natural amino acid residue of a functional polypeptide variant and a second click chemical functional group at one end of a linker.
일 실시양태에서 제1 클릭화학작용기는 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함) 그룹 중에서 선택된 어느 하나의 그룹을 포함할 수 있다. 특정한 실시양태에서, 제1 클릭화학작용기는 테트라진, 트리아진, 및 아자이드 그룹 중 어느 하나의 그룹을 포함할 수 있다. 일 실시양태에서 제2 클릭화학작용기는 말단 알킨 (terminal alkyne), 아자이드 (azide), 스트레인된 알킨(strained alkyne), 다이엔 (diene), 친다이엔체 (dienophile), 트랜스 시클로옥틴(trans-cyclooctene), 알켄 (alkene), 티올 (thiol), 테트라진 (tetrazine), 트리아진(triazine), DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne, bicyclo[6.1.0]non-4-yne)을 포함) 그룹 중에서 선택된 어느 하나의 그룹을 포함할 수 있다. 특정한 실시양태에서, 제2 클릭화학작용기는 TCO, DBCO, 및 비시클로노닌 그룹 중 어느 하나의 그룹을 포함할 수 있다. In one embodiment, the first click chemistry functional group is a terminal alkyne, an azide, a strained alkyne, a diene, a dienophile, a trans-cyclooctyne (trans- cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne). ) may include any one group selected from among the groups. In certain embodiments, the first click chemofunctional group may include any one of tetrazine, triazine, and azide groups. In one embodiment, the second click chemistry functional group is a terminal alkyne, azide, strained alkyne, diene, dienophile, trans-cyclooctyne (trans- cyclooctene, alkene, thiol, tetrazine, triazine, dibenzocyclooctyne (DBCO) and bicyclononyne (bicyclo[6.1.0]non-4-yne). ) may include any one group selected from among the groups. In certain embodiments, the second click chemofunctional group may include any one of TCO, DBCO, and bicyclononine groups.
일 실시양태에서, 제1 접합 유닛은 하기의 구조 중 어느 하나의 구조를 가질 수 있다:In one embodiment, the first bonding unit can have any one of the following structures:
Figure PCTKR2022015832-appb-img-000038
Figure PCTKR2022015832-appb-img-000038
Figure PCTKR2022015832-appb-img-000039
Figure PCTKR2022015832-appb-img-000039
Figure PCTKR2022015832-appb-img-000040
Figure PCTKR2022015832-appb-img-000040
이때, R1은 H, 할로겐, C1-3알킬, C3-6 시클로알킬, C3-6 헤테로시클로알킬, 아릴, 및 헤테로아릴 중에 선택되는 어느 하나이고, 이때, 상기 헤테로시클로알킬, 또는 헤테로아릴은 -NH-, -O-, -S-, -O-N=, -S(=O)-, 및 -S(=O)2-로 구성된 군에서 선택되는 하나 이상의 헤테로원자 그룹, 또는 O, N, 및 S로 구성된 군에서 선택되는 하나 이상의 헤테로원자를 포함할 수 있다. In this case, R 1 is any one selected from H, halogen, C 1-3 alkyl, C 3-6 cycloalkyl, C 3-6 heterocycloalkyl, aryl, and heteroaryl, wherein the heterocycloalkyl, or Heteroaryl is a group of one or more heteroatoms selected from the group consisting of -NH-, -O-, -S-, -ON=, -S(=O)-, and -S(=O) 2 -, or O , N, and may include one or more heteroatoms selected from the group consisting of S.
이때, 일 실시양태에서, 1'은 기능성 폴리펩티드 변이체와의 부착부(attachment site)일 수 있다. 보다 구체적으로, 1'은 제1 앵커 유닛과의 부착부(attachment site)일 수 있다. 이때, 2'은 링커의 다른 구조와의 부착부(attachment site)일 수 있다. 보다 구체적으로, 2'은 제2 앵커 유닛과의 부착부(attachment site)일 수 있다. In this case, in one embodiment, 1' may be an attachment site with a functional polypeptide variant. More specifically, 1' may be an attachment site with the first anchor unit. In this case, 2' may be an attachment site to another structure of the linker. More specifically, 2' may be an attachment site with the second anchor unit.
이때, 다른 실시양태에서, 1'은 링커의 다른 구조와의 부착부(attachment site)일 수 있다. 보다 구체적으로 1'은 제2 앵커 유닛과의 부착부(attachment site)일 수 있다. 이때, 2'은 기능성 폴리펩티드 변이체와의 부착부(attachment site)일 수 있다. 보다 구체적으로, 2'은 제1 앵커 유닛과의 부착부(attachment site)일 수 있다. At this time, in another embodiment, 1' may be an attachment site with another structure of the linker. More specifically, 1' may be an attachment site with the second anchor unit. In this case, 2' may be an attachment site with a functional polypeptide variant. More specifically, 2' may be an attachment site with the first anchor unit.
제2 접합 유닛Second bonding unit
화학식 1에서, J2는 제2 접합 유닛이다. In Formula 1, J 2 is a second junction unit.
제2 접합 유닛은 티올 반응성 그룹과 티올기의 반응에 의해 형성된 구조를 갖는다. 예를 들어, 제2 접합 유닛은 알부민의 티올기와 링커의 일 말단의 티올 반응성 그룹의 반응에 의해 형성된 구조를 가질 수 있다. 일 실시양태에서, 제2 접합 유닛은 알부민의 티올기와 링커의 일 말단의 말레이미드 그룹의 반응에 의해 형성된 구조를 가질 수 있다. 일 실시양태에서, 제2 접합 유닛은 알부민의 티올기와 링커의 일 말단의 APN 그룹의 반응에 의해 형성된 구조를 가질 수 있다. 일 실시양태에서, 알부민의 티올기는 Cys 34의 티올기일 수 있다. The second junction unit has a structure formed by reaction of a thiol reactive group with a thiol group. For example, the second conjugation unit may have a structure formed by reaction of a thiol group of albumin with a thiol-reactive group at one end of a linker. In one embodiment, the second conjugation unit may have a structure formed by reaction of a maleimide group at one end of a linker with a thiol group of albumin. In one embodiment, the second conjugation unit may have a structure formed by the reaction of a thiol group of albumin with an APN group at one end of a linker. In one embodiment, the thiol group of albumin can be a Cys 34 thiol group.
일 실시양태에서, 제2 접합 유닛은 하기의 구조 중 어느 하나의 구조를 가질 수 있다:In one embodiment, the second bonding unit may have any one of the following structures:
Figure PCTKR2022015832-appb-img-000041
;
Figure PCTKR2022015832-appb-img-000041
;
Figure PCTKR2022015832-appb-img-000042
; 및
Figure PCTKR2022015832-appb-img-000042
; and
Figure PCTKR2022015832-appb-img-000043
.
Figure PCTKR2022015832-appb-img-000043
.
이때 S 원자는 알부민으로부터 유래된 것일 수 있다. 구체적으로, S 원자는 알부민의 시스테인 잔기로부터 유래될 수 있다. 보다 구체적으로, S 원자는 알부민의 시스테인 잔기의 티올기로부터 유래된 것일 수 있다. 특정한 실시양태에서, S 원자는 알부민의 34번 시스테인 (Cys 34)의 티올기로부터 유래된 것일 수 있다.In this case, the S atom may be derived from albumin. Specifically, the S atom may be derived from a cysteine residue of albumin. More specifically, the S atom may be derived from a thiol group of a cysteine residue of albumin. In certain embodiments, the S atom may be derived from the thiol group of cysteine 34 (Cys 34) of albumin.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 구체예Specific examples of functional polypeptide variant-albumin conjugates
이하에서는, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 구체예를 개시한다. In the following, specific examples of functional polypeptide variant-albumin conjugates are disclosed.
본 출원의 일 실시양태에 따른 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 하기의 화학식 중 어느 하나의 화학식의 구조를 가질 수 있다:The functional polypeptide variant-albumin conjugate according to one embodiment of the present application may have a structure of any one of the following formulas:
[화학식 1-1][Formula 1-1]
Figure PCTKR2022015832-appb-img-000044
,
Figure PCTKR2022015832-appb-img-000044
,
[화학식 1-2][Formula 1-2]
Figure PCTKR2022015832-appb-img-000045
, 및
Figure PCTKR2022015832-appb-img-000045
, and
[화학식 1-3][Formula 1-3]
Figure PCTKR2022015832-appb-img-000046
.
Figure PCTKR2022015832-appb-img-000046
.
이때, FPV는 기능성 폴리펩티드 변이체 유닛이다. 기능성 폴리펩티드 유닛은 기능성 폴리펩티드 변이체로부터 유래된 것일 수 있다. 전술한 바와 같이, 기능성 폴리펩티드 변이체는 기능성 폴리펩티드가 비천연 아미노산을 포함하도록 변형된 것이다. 일 실시양태에서, 기능성 폴리펩티드는 아르기닌 디카르복실레이즈, 아르기닌 디카르복실레이즈 서브유닛, 및 아르기닌 디카르복실레이즈 서브유닛의 다이머 중 선택되는 어느 하나일 수 있으나 이에 제한되지 않는다. 일 실시양태에서, 기능성 폴리펩티드는 서열번호 01으로 표시되는 아미노산 서열과 약 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 또는 100%의 서열 동일성(identity)을 가지는 아미노산 서열을 가질 수 있다. 일 실시양태에서, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 중 선택되는 어느 하나일 수 있다. 즉, 기능성 폴리펩티드 변이체 유닛은 아르기닌 디카르복실레이즈 변이체 유닛, 아르기닌 디카르복실레이즈 서브유닛 변이체 유닛, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 유닛 중 선택되는 어느 하나일 수 있다. 기능성 폴리펩티드 및 기능성 폴리펩티드 변이체는 관련 단락에서 상세히 설명된다. Here, FPV is a functional polypeptide variant unit. A functional polypeptide unit may be derived from a functional polypeptide variant. As noted above, a functional polypeptide variant is one in which the functional polypeptide has been modified to include non-natural amino acids. In one embodiment, the functional polypeptide may be any one selected from arginine decarboxylase, arginine decarboxylase subunit, and dimer of arginine decarboxylase subunit, but is not limited thereto. In one embodiment, the functional polypeptide has an amino acid sequence having about 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% sequence identity to the amino acid sequence represented by SEQ ID NO: 01 can have a sequence. In one embodiment, the functional polypeptide variant may be any one selected from arginine decarboxylase variants, arginine decarboxylase subunit variants, and dimers of arginine decarboxylase subunit variants. That is, the functional polypeptide variant unit may be any one selected from an arginine decarboxylase variant unit, an arginine decarboxylase subunit variant unit, and a dimer unit of an arginine decarboxylase subunit variant. Functional polypeptides and functional polypeptide variants are described in detail in the relevant paragraphs.
이때, P1은 알부민 유닛이다. 알부민 유닛은 알부민으로부터 유래된 것일 수 있다. 일 실시양태에서, 알부민은 인간 혈청 알부민 (human serum albumin; HSA), 소혈청알부민 (bovine serum albumin; BSA), 오브알부민, 기타 척추동물의 알부민, 및 이들의 변이체 중에서 선택되는 어느 하나일 수 있다. 이들은 야생형 또는 재조합 형태(재조합 알부민)일 수 있다. 일 실시양태에서, 알부민은 서열번호 09 내지 서열번호 20 중 어느 하나의 서열로 표시되는 아미노산 서열과 약 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 또는 100%의 서열 동일성(identity)을 가지는 아미노산 서열을 가질 수 있다.At this time, P 1 is an albumin unit. The albumin unit may be derived from albumin. In one embodiment, the albumin may be any one selected from human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin, other vertebrate albumin, and variants thereof. . They may be wild-type or recombinant forms (recombinant albumins). In one embodiment, the albumin is about 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% of the amino acid sequence represented by any one of SEQ ID NOs: 09 to 20. It may have an amino acid sequence having sequence identity.
이때, 알부민 유닛에 인접한 S 원자는 알부민으로부터 유래된다. 일 실시양태에서 알부민 유닛에 인접한 S 원자는 알부민의 티올기로부터 유래된다. 일 실시양태에서, 알부민 유닛에 인접한 S 원자는 알부민의 시스테인 잔기의 티올기로부터 유래될 수 있다. 특정한 실시양태에서, 알부민 유닛에 인접한 S 원자는 인간 혈청 알부민의 34번 시스테인의 티올기로부터 유래된 것일 수 있다. At this time, the S atom adjacent to the albumin unit is derived from albumin. In one embodiment the S atom adjacent to the albumin unit is derived from a thiol group of albumin. In one embodiment, the S atom adjacent to the albumin unit may be derived from a thiol group of a cysteine residue of albumin. In certain embodiments, the S atom adjacent to the albumin unit may be derived from the thiol group of cysteine 34 of human serum albumin.
이때, n은 1 이상 12 이하의 정수일 수 있다. 특정한 실시양태에서, n은 2 이상 6 이하의 정수일 수 있다. In this case, n may be an integer of 1 or more and 12 or less. In certain embodiments, n may be an integer greater than or equal to 2 and less than or equal to 6.
이때, a는 1 이상 20 이하의 정수일 수 있다. 특정한 실시양태에서, a는 1 이상 10 이하의 정수일 수 있다. In this case, a may be an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10.
기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 서브유닛 변이체 유닛인 경우When the functional polypeptide variant unit is an arginine decarboxylase subunit variant unit
전술한 바와 같이, 기능성 폴리펩티드 변이체 유닛은 아르기닌 디카르복실레이즈 서브유닛 변이체일 수 있다. 이때, a는 1 이상 4 이하의 정수일 수 있다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 하나의 비천연아미노산을 포함할 수 있고, 이때 a는 1이다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 두개의 비천연아미노산을 포함할 수 있고, 이때 a는 1 또는 2이다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 세개의 비천연아미노산을 포함할 수 있고, 이때 a는 1 이상 3 이하의 정수이다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체는 네개의 비천연아미노산을 포함할 수 있고, 이때 a는 1 이상 4 이하의 정수이다. As described above, the functional polypeptide variant unit may be an arginine decarboxylase subunit variant. In this case, a may be an integer of 1 or more and 4 or less. In one embodiment, an arginine decarboxylase subunit variant may comprise one unnatural amino acid, where a is 1. In one embodiment, an arginine decarboxylase subunit variant may comprise two unnatural amino acids, where a is 1 or 2. In one embodiment, an arginine decarboxylase subunit variant may comprise three unnatural amino acids, where a is an integer greater than or equal to 1 and less than or equal to 3. In one embodiment, an arginine decarboxylase subunit variant may comprise four unnatural amino acids, where a is an integer greater than or equal to 1 and less than or equal to 4.
기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 변이체 유닛인 경우When the functional polypeptide variant unit is an arginine decarboxylase variant unit
전술한 바와 같이, 아르기닌 디카르복실레이즈는 아르기닌 디카르복실레이즈 서브유닛 10개가 모여 형성된 데카머 형태이며, 아르기닌 디카르복실레이즈 변이체는 아르기닌 디카르복실레이즈 서브유닛 변이체 10개가 모여 형성된, 또는 아르기닌 디카르복실레이즈 서브유닛 변이체 및 아르기닌 디카르복실레이즈 서브유닛이 10개가 모여 형성된 데카머 형태이다. As described above, arginine decarboxylase is in the form of a decamer formed by gathering 10 arginine decarboxylase subunits, and arginine decarboxylase variants are formed by gathering 10 arginine decarboxylase subunit variants, or arginine decarboxylase variants. It is a decamer form formed by gathering 10 reboxylase subunit variants and arginine decarboxylase subunits.
기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 변이체 유닛인 경우 a는 1 내지 20 이하의 정수일 수 있다. 예를 들어, 아르기닌 디카르복실레이즈 변이체가 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 하나의 아르기닌 디카르복실레이즈 서브유닛 변이체에 알부민이 컨쥬게이트 된 경우에는 a는 1 이다. 다른 예로, 아르기닌 디카르복실레이즈 변이체가 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 6개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 알부민이 하나씩 컨쥬게이트 된 경우에는 a는 6이다. 또 다른 예로, 아르기닌 디카르복실레이즈 변이체가 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 알부민이 하나씩 컨쥬게이트 된 경우에는 a는 10이다. 또 다른 예로, 아르기닌 디카르복실레이즈 변이체가 9개의 아르기닌 디카르복실레이즈 서브유닛 변이체 및 1개의 아르기닌 디카르복실레이즈 서브유닛을 포함하고, 9개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 하나의 알부민이 컨쥬게이트 된 경우에는 a는 9이다. 또 다른 예로, 아르기닌 디카르복실레이즈 변이체가 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 두개의 알부민이 컨쥬게이트 된 경우에는 a는 20이다. 즉, 기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 변이체 유닛인 경우 a는 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 또는 20일 수 있다. When the functional polypeptide variant unit is an arginine decarboxylase variant unit, a may be an integer of 1 to 20 or less. For example, when the arginine decarboxylase variant includes 10 arginine decarboxylase subunit variants and albumin is conjugated to one arginine decarboxylase subunit variant, a is 1. As another example, when the arginine decarboxylase variant includes 10 arginine decarboxylase subunit variants and one albumin is conjugated to each of the six arginine decarboxylase subunit variants, a is 6. As another example, when the arginine decarboxylase variants include 10 arginine decarboxylase subunit variants and one albumin is conjugated to each of the 10 arginine decarboxylase subunit variants, a is 10. In another example, the arginine decarboxylase variant comprises nine arginine decarboxylase subunit variants and one arginine decarboxylase subunit variant, and each of the nine arginine decarboxylase subunit variants contains one albumin. In this conjugated case, a is 9. As another example, when the arginine decarboxylase variant contains 10 arginine decarboxylase subunit variants, and two albumins are conjugated to each of the 10 arginine decarboxylase subunit variants, a is 20 . That is, when the functional polypeptide variant unit is an arginine decarboxylase variant unit, a is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, It may be 17, 18, 19, or 20.
기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 유닛인 경우When the functional polypeptide variant unit is a dimer unit of an arginine decarboxylase subunit variant
전술한 바와 같이, 아르기닌 디카르복실레이즈 서브유닛 및/또는 아르기닌 디카르복실레이즈 서브유닛 변이체는 이량체(dimer)를 형성할 수 있다. As described above, arginine decarboxylase subunits and/or arginine decarboxylase subunit variants may form dimers.
기능성 폴리펩티드 변이체 유닛이 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 유닛인 경우 a는 1 내지 8 이하의 정수일 수 있다. 예를 들어, 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머가 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 하나의 알부민이 컨쥬게이트된 경우 a는 2이다. 다른 예로, 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머가 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 1개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 하나의 알부민이 컨쥬게이트된 경우, a는 1이다. 또 다른 예로, 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머가 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하고, 2개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 각각 두개의 알부민이 컨쥬게이트된 경우, a는 4이다. 또 다른 예로, 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머가 아르기닌 디카르복실레이즈 서브유닛 변이체 및 아르기닌 디카르복실레이즈 서브유닛을 포함하고, 1개의 아르기닌 디카르복실레이즈 서브유닛 변이체에 하나의 알부민이 컨쥬게이트된 경우, a는 1이다.When the functional polypeptide variant unit is a dimer unit of an arginine decarboxylase subunit variant, a may be an integer of 1 to 8 or less. For example, when the dimer of the arginine decarboxylase subunit variant comprises two arginine decarboxylase subunit variants, and each of the two arginine decarboxylase subunit variants is conjugated with one albumin a is 2. As another example, when the dimer of the arginine decarboxylase subunit variant contains two arginine decarboxylase subunit variants and one albumin is conjugated to one arginine decarboxylase subunit variant, a is is 1 As another example, when the dimer of the arginine decarboxylase subunit variant contains two arginine decarboxylase subunit variants, and two albumins are conjugated to each of the two arginine decarboxylase subunit variants, a is 4 In another example, the dimer of the arginine decarboxylase subunit variant comprises the arginine decarboxylase subunit variant and the arginine decarboxylase subunit, and one albumin is present in one arginine decarboxylase subunit variant. When conjugated, a is 1.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조Preparation of Functional Polypeptide Variant-Albumin Conjugates
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조 개괄Overview of Preparation of Functional Polypeptide Variant-Albumin Conjugates
본 출원의 일 실시양태로, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조방법이 제공된다. 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 기능성 폴리펩티드 변이체, 알부민, 및 링커가 반응하여 제조될 수 있다. 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 (1) 알부민과 링커가 반응하여 알부민-링커 컨쥬게이트가 제조되고, 이후 기능성 폴리펩티드 변이체와 제조된 알부민-링커 컨쥬게이트가 반응하여 제조될 수 있거나; 또는 (2) 링커와 기능성 폴리펩티드 변이체가 반응하여 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조되고, 이후 알부민과 제조된 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 반응하여 제조될 수 있다. 또는, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 3 요소(링커, 기능성 폴리펩티드 변이체, 알부민)의 반응 순서와 무관하게 제조될 수 있다. In one embodiment of the present application, a method for producing a functional polypeptide variant-albumin conjugate is provided. A functional polypeptide variant-albumin conjugate can be prepared by reacting a functional polypeptide variant, albumin, and a linker. The functional polypeptide variant-albumin conjugate can be prepared by (1) reacting albumin with a linker to prepare an albumin-linker conjugate, and then reacting the functional polypeptide variant with the prepared albumin-linker conjugate; or (2) a functional polypeptide variant-linker conjugate is prepared by reacting the linker with the functional polypeptide variant, and then reacted with albumin to prepare the functional polypeptide variant-linker conjugate. Alternatively, the functional polypeptide variant-albumin conjugate can be prepared regardless of the reaction order of the three elements (linker, functional polypeptide variant, albumin).
기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 제조하기 위해서는 기능성 폴리펩티드 변이체가 필요하다. 이하에서, 기능성 폴리펩티드 변이체의 제조 방법을 아르기닌 디카르복실레이즈 서브유닛 변이체의 예시를 통해 설명한다. A functional polypeptide variant is required to prepare a functional polypeptide variant-albumin conjugate. Hereinafter, a method for preparing a functional polypeptide variant will be described through an example of an arginine decarboxylase subunit variant.
기능성 폴리펩티드 변이체의 제조 예시 - 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 Examples of Preparation of Functional Polypeptide Variants - Preparation of Arginine Decarboxylase Subunit Variants
비천연 아미노산을 포함하는 아르기닌 디카르복실레이즈 서브유닛 변이체를 생산하기 위해, 야생형 아르기닌 디카르복실레이즈 서브유닛의 아미노산 서열에서 하나 이상의 잔기를 비천연아미노산으로 변경할 수 있다. 이를 위해, 본래 아르기닌 디카르복실레이즈 서브유닛의 구조와 기능에 가능한 영향을 미치지 않는 최적의 위치를 결정하는 것이 필요하다. 예를 들어, 치환 위치는 용매 접근성이 높은 위치 중에서 선택될 수 있다. 다른 예로, 치환 위치는 랜덤 코일을 이루는 아미노산 중에서 선택될 수 있다. 또 다른 예로, 치환 위치는 dimer/decamer를 형성하는 자리에 위치하지 않은 아미노산 중에서 선택될 수 있다. 또 다른 예로, 치환 위치는 로제타 디자인(rosetta design)에서, 치환되었을 때 변이체와 야생형 아르기닌 디카르복실레이즈 서브유닛의 점수의 차이가 없는 위치 중에서 선택될 수 있다. 일 실시양태에서, 아르기닌 디카르복실레이즈 서브유닛 변이체를 만들기 위해, 상기 야생형 아르기닌 디카르복실레이즈 서브유닛 서열 중 비천연 아미노산으로 치환하는 위치는 분자 모델링 시뮬레이션 결과를 참조하여 결정할 수 있다. 구체적으로, 상기 분자 모델링 시뮬레이션 결과는 Rosetta 분자 모델링 패키지의 스코어링 결과일 수 있다.To produce an arginine decarboxylase subunit variant comprising an unnatural amino acid, one or more residues in the amino acid sequence of the wild-type arginine decarboxylase subunit may be changed to an unnatural amino acid. To this end, it is necessary to determine an optimal position that does not possibly affect the structure and function of the native arginine decarboxylase subunit. For example, substitution sites may be selected from those with high solvent accessibility. As another example, the substitution site may be selected from amino acids constituting a random coil. As another example, the substitution site may be selected from among amino acids that are not located at dimer/decamer forming sites. As another example, the substitution site may be selected from positions in which there is no difference in score between the mutant and the wild-type arginine decarboxylase subunit when substituted in a rosetta design. In one embodiment, in order to create an arginine decarboxylase subunit variant, the location of substitution with a non-natural amino acid in the wild-type arginine decarboxylase subunit sequence can be determined by referring to molecular modeling simulation results. Specifically, the molecular modeling simulation result may be a scoring result of a Rosetta molecular modeling package.
일 실시양태로, 상기 비천연 아미노산으로의 변경은 서열번호 01의 아미노산 서열의 하나 이상의 잔기가 치환되는 것일 수 있다. 구체적인 일 실시양태로, 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 것일 수 있다. 특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 frTet으로 치환된 것일 수 있다. 특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 및 522번째 라이신(Lysine) 중에서 선택되는 어느 하나 이상의 잔기가 frTet으로 치환된 것일 수 있다. 특정한 실시양태에서, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 488번째 글루타민 및 522번째 라이신 중에 선택되는 어느 하나 이상의 잔기가 Azf로 치환된 것일 수 있다. 여기서, 서열번호 01의 아미노산 서열을 갖는 대장균 유래 아르기닌 디카르복실레이즈 서브유닛이다. In one embodiment, the change to the non-natural amino acid may be a substitution of one or more residues of the amino acid sequence of SEQ ID NO: 01. In a specific embodiment, threonine at position 39, asparagine at position 85, asparagine at position 245, lysine at position 312, glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01, Any one or more residues selected from Lysine at position 522 and Glycine at position 657 may be substituted with a non-natural amino acid. In a specific embodiment, the arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine of the amino acid sequence of SEQ ID NO: 01 ), at least one residue selected from glutamine at position 488, lysine at position 522, and glycine at position 657 may be substituted with frTet. In a specific embodiment, the arginine decarboxylase subunit variant comprises Threonine at position 39, Asparagine at position 245, Lysine at position 312, and Glutamine at position 488 of the amino acid sequence of SEQ ID NO: 01. , And any one or more residues selected from the 522nd lysine (Lysine) may be substituted with frTet. In a specific embodiment, the arginine decarboxylase subunit variant may be one in which at least one residue selected from glutamine at position 488 and lysine at position 522 of the amino acid sequence of SEQ ID NO: 01 is substituted with Azf. Here, it is an arginine decarboxylase subunit derived from E. coli having the amino acid sequence of SEQ ID NO: 01.
이하에서는 기능성 폴리펩티드 변이체의 예시로 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 방법의 예시를 개시한다. Hereinafter, an example of a method for preparing an arginine decarboxylase subunit variant as an example of a functional polypeptide variant is disclosed.
상기 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조방법에는 다음 구성 요소가 관여된다: 아르기닌 디카르복실레이즈 서브유닛 변이체를 발현시킬 세포주; 특정 종결 코돈을 인식하는 외래 유래 suppressor tRNA(foreign suppressor tRNA); 외래 유래 tRNA 합성효소(foreign tRNA synthetase); 및 상기 종결코돈을 이용하여 비천연 아미노산을 암호화한, 아르기닌 디카르복실레이즈 서브유닛 변이체를 암호화하는 벡터. 여기서, 상기 외래 유래 suppressor tRNA 및 상기 외래 유래 tRNA 합성효소는, 상기 발현 세포주 고유의 suppressor tRNA 및 tRNA 합성효소가 아닌 외부에서 도입된 것이다. 상기 외래 유래 suppressor tRNA는 상기 발현 세포주 고유의 tRNA 합성효소와 반응하지 않는 것을 특징으로 한다. 상기 외래 유래 tRNA 합성효소는, i) 상기 외래 유래 suppressor tRNA와만 반응하며, ii) 상기 아르기닌 디카르복실레이즈 변이체에 포함시킬 비천연 아미노산에만 활성을 보인다. 결과적으로, 상기 외래 유래 tRNA 합성효소를 사용하는 경우, 상기 외래 유래 suppressor tRNA에 상기 비천연 아미노산을 특이적으로 연결시켜 아미노산 서열 내 상기 비천연 아미노산을 도입할 수 있다.The method for preparing the arginine decarboxylase subunit variant involves the following components: a cell line to express the arginine decarboxylase subunit variant; foreign suppressor tRNA (foreign suppressor tRNA) recognizing a specific stop codon; foreign tRNA synthetase; and a vector encoding an arginine decarboxylase subunit variant encoding an unnatural amino acid using the stop codon. Here, the exogenous suppressor tRNA and the exogenous tRNA synthetase are introduced from the outside, not the suppressor tRNA and tRNA synthetase native to the expressing cell line. The exogenous suppressor tRNA is characterized in that it does not react with the tRNA synthetase native to the expressing cell line. The exogenous tRNA synthetase reacts i) only with the exogenous suppressor tRNA, and ii) shows activity only with the non-natural amino acid to be included in the arginine decarboxylase variant. As a result, when the exogenous tRNA synthetase is used, the non-natural amino acid can be introduced into the amino acid sequence by specifically linking the exogenous suppressor tRNA with the non-natural amino acid.
기능성 폴리펩티드 변이체의 제조방법은 1) 상기 세포주 내에서, 2) 상기 외래 유래 suppressor tRNA 및 외래 유래 tRNA 합성효소가 관여되어, 3) 상기 기능성 폴리펩티드 변이체를 암호화하는 벡터에 기반해, 4) 상기 기능성 폴리펩티드 변이체가 발현되도록 하는 방법이다. 상기 기능성 폴리펩티드 변이체 제조방법에서, 상기 세포주 내 상기 기능성 폴리펩티드 변이체가 발현될 수 있다면 각 과정의 순서는 특별히 제한되지 않으며, 필요에 따라 추가적인 과정을 포함할 수 있다.The method for producing a functional polypeptide variant includes: 1) in the cell line, 2) involving the exogenous suppressor tRNA and exogenous tRNA synthetase, 3) based on a vector encoding the functional polypeptide variant, 4) the functional polypeptide It is a method for expressing a variant. In the method for preparing the functional polypeptide variant, the order of each process is not particularly limited as long as the functional polypeptide variant can be expressed in the cell line, and additional processes may be included as necessary.
아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 - 아르기닌 디카르복실레이즈 서브유닛 변이체 발현 세포주Preparation of arginine decarboxylase subunit variants - cell lines expressing arginine decarboxylase subunit variants
상기 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조방법은 상기 아르기닌 디카르복실레이즈 서브유닛 변이체를 세포주 내에서 발현시켜 수득하는 것을 특징으로 한다. 상기 아르기닌 디카르복실레이즈 서브유닛 변이체 발현 세포주는 상기 아르기닌 디카르복실레이즈 서브유닛 변이체를 생산할 수 있는 것이면 특별히 제한되지 않는다. 다만, 상기 세포주 내 종결 코돈을 인식하는 release facotr가 제 기능을 하는 경우, 상기 release factor가 상기 외래 유래 tRNA와 경쟁적으로 작용하게 되어 수율이 떨어지는 문제가 있다. 따라서, 종결 코돈을 인식하는 release factor가 비활성화 된 세포주를 사용하는 것이 바람직하다.The method for producing the arginine decarboxylase subunit variant is characterized in that the arginine decarboxylase subunit variant is obtained by expressing the arginine decarboxylase subunit variant in a cell line. The cell line expressing the arginine decarboxylase subunit variant is not particularly limited as long as it can produce the arginine decarboxylase subunit variant. However, when the release facotr recognizing the stop codon in the cell line functions properly, the release factor competes with the foreign-derived tRNA, resulting in a low yield. Therefore, it is preferable to use a cell line in which the release factor that recognizes the stop codon is inactivated.
일 구현예로, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체를 발현시키는 세포주는 다음에서 선택된 것일 수 있다:In one embodiment, the cell line expressing the arginine decarboxylase subunit variant may be selected from the following:
에스케리키아 (Escherichia) 속; 어위니아 (Erwinia) 속; 세라티아 (Serratia) 속; 프로비덴시아 (Providencia) 속; 코리네박테리움 (Corynebacterium) 속; 슈도모나스 (Pseudomonas) 속; 렙토스피라 (Leptospira) 속; 살모넬라 (Salmonellar) 속; 브레비박테리움 (Brevibacterium) 속; 하이포모나스 (Hyphomonas) 속; 크로모박테리움 (chromobactorium) 속; 노카디아 (norcardia) 속; 펀자이류 (Fungi); 및 효모류 (Yeast).genus Escherichia ; Erwinia genus; Serratia genus; Providencia genus; Corynebacterium genus; Pseudomonas ( Pseudomonas ) genus; genus Leptospira ; genus Salmonella ; Brevibacterium genus; Hypomonas ( Hyphomonas ) genus; Chromobacterium ( chromobactorium ) genus; genus norcardia ; Fungi ; and Yeast .
일 구현예로, 상기 세포주는 종결 코돈을 인식하여 번역을 종결시키는 release factor가 비활성화 된 것일 수 있다. 구체적으로, 상기 종결 코돈은 엠버 코돈(ambber codon; 5'-UAG-3'), 오커 코돈(ocher codon; 5'-UAA-3'), 및 오팔 코돈(opal codon; 5'-UGA-3') 중 선택된 것일 수 있다.In one embodiment, the cell line may be one in which a release factor that recognizes a stop codon to terminate translation is inactivated. Specifically, the stop codon is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA-3). ') may be selected.
일 구현예로, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체를 발현시키는 세포주는 등록공보 KR 1637010 B1에서 사용된 세포주일 수 있다. 구체적으로, 상기 세포주는 E.Coli C321.ΔA.exp(Addgene, ID:49018) 일 수 있다.In one embodiment, the cell line expressing the arginine decarboxylase subunit variant may be the cell line used in the registration publication KR 1637010 B1. Specifically, the cell line may be E.Coli C321.ΔA.exp (Addgene, ID: 49018).
아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 - 외래 유래 suppressor tRNAPreparation of arginine decarboxylase subunit variants - exogenous suppressor tRNA
상기 외래 유래 suppressor tRNA는 특정 종결코돈을 인식하는 기능을 하는 tRNA이며, 발현 세포주 고유의 tRNA 합성 효소와는 반응하지 않는다. 상기 외래 유래 suppressor tRNA는 상기 외래 유래 tRNA 합성효소와 특이적으로 반응하며, 상기 외래 유래 tRNA 합성효소는 상기 외래 유래 suppressor tRNA에 비천연 아미노산을 연결시키는 기능을 한다. 결과적으로, 상기 외래 유래 suppressor tRNA는 상기 특정 종결코돈을 인식해서, 해당 위치에 상기 비천연 아미노산을 도입할 수 있다.The exogenous suppressor tRNA is a tRNA that functions to recognize a specific stop codon, and does not react with the tRNA synthesizing enzyme native to the expressing cell line. The exogenous suppressor tRNA specifically reacts with the exogenous tRNA synthetase, and the exogenous tRNA synthetase functions to link a non-natural amino acid to the exogenous suppressor tRNA. As a result, the exogenous suppressor tRNA can recognize the specific stop codon and introduce the non-natural amino acid at the corresponding position.
일 구현예로, 상기 suppressor tRNA는 엠버 코돈(ambber codon; 5'-UAG-3'), 오커 코돈(ocher codon; 5'-UAA-3'), 및 오팔 코돈(opal codon; 5'-UGA-3') 중 선택된 것을 인식할 수 있다. 바람직하게, 상기 suppressor tRNA는 엠버 코돈을 인식하는 것일 수 있다. 예를 들어, 상기 suppressor tRNA는 Methanococcus jannaschii 유래의 suppressor tRNA (MjtRNATyr CUA)일 수 있다 (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand DielsAlder Reaction, Bioconjugate Chemistry, 2020, 2456-2464).In one embodiment, the suppressor tRNA is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA). -3') can be recognized. Preferably, the suppressor tRNA may recognize an amber codon. For example, the suppressor tRNA may be a suppressor tRNA (MjtRNA Tyr CUA ) derived from Methanococcus jannaschii (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand DielsAlder Reaction, Bioconjugate Chemistry, 2020, 2456-2464).
기 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 - 외래 유래 tRNA 합성효소(synthetase)Preparation of arginine decarboxylase subunit variants - exogenous tRNA synthetase
상기 외래 유래 tRNA 합성효소는 특정 비천연 아미노산과 선택적으로 반응하며, 상기 외래 유래 suppressor tRNA에 상기 특정 비천연아미노산을 연결시키는 기능을 한다. 상기 외래 유래 tRNA 합성효소는 상기 발현 세포주 고유의 suppressor tRNA와는 반응하지 않으며, 상기 외래 유래 suppressor tRNA에만 특이적으로 반응한다. 일 구현예로, 상기 tRNA 합성효소는 테트라진(tetrazine) 유도체 및/또는 트리아진(triazine) 유도체를 포함하는 비천연 아미노산을 상기 외래 유래 suppressor tRNA에 연결하는 기능을 가질 수 있다. 일 구현예로, 상기 tRNA 합성효소는 AzF를 상기 외래 유래 suppressor tRNA에 연결하는 기능을 가질 수 있다. 일 구현예로, 상기 tRNA 합성 효소는 Methanococcus jannaschii 유래의 tyrosyl-tRNA 합성효소 (MjTyrRS)일 수 있다 (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464). 바람직하게, 상기 tRNA 합성효소는 상기 MjTyrRS의 C11 변형체일 수 있다.The exogenous tRNA synthetase selectively reacts with a specific non-natural amino acid and serves to link the specific non-natural amino acid to the exogenous suppressor tRNA. The exogenous tRNA synthetase does not react with the suppressor tRNA native to the expressing cell line, but specifically reacts only with the exogenous suppressor tRNA. In one embodiment, the tRNA synthetase may have a function of linking a non-natural amino acid including a tetrazine derivative and/or a triazine derivative to the exogenous suppressor tRNA. In one embodiment, the tRNA synthetase may have a function of linking AzF to the exogenous suppressor tRNA. In one embodiment, the tRNA synthetase may be tyrosyl-tRNA synthetase (MjTyrRS) derived from Methanococcus jannaschii (Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464). Preferably, the tRNA synthetase may be the C11 variant of MjTyrRS.
아르기닌 디카르복실레이즈 서브유닛 변이체의 제조 - 직교적 tRNA/합성효소 페어 (Orthogonal tRNA/syntetase pair)Preparation of arginine decarboxylase subunit variants - orthogonal tRNA/synthetase pair (Orthogonal tRNA/syntetase pair)
본 명세서에서는, 1) 외래 유래 tRNA 합성효소와만 특이적으로 반응하는 외래 유래 suppressor tRNA, 및 2) 상기 외래 유래 tRNA 합성효소를 통틀어 직교적 tRNA/합성효소 페어이라 일컫는다. 본 명세서에서 개시하는 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조방법에 있어, 상기 발현 세포주 내에서 상기 직교적 tRNA/합성효소 페어를 발현시키는 것이 중요하며, 이러한 목적을 달성할 수 있다면 그 방법은 크게 제한되지 않는다. 일 구현예로, 상기 아르기닌 디카르복실레이즈 서브유닛 변이체의 제조방법은 상기 직교적 tRNA/합성효소 페어를 발현할 수 있는 벡터를 상기 세포주에 형질전환하는 것을 포함한다. 구체적으로, 상기 직교적 tRNA/합성효소 페어를 발현할 수 있는 벡터는 Yang et.al (Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464)에 개시된 pDule_C11일 수 있다. 이하에서, 기능성 폴리펩티드 변이체를 암호화하는 벡터에 대하여 설명한다. In the present specification, 1) an exogenous suppressor tRNA that specifically reacts only with an exogenous tRNA synthetase, and 2) the exogenous tRNA synthetase is collectively referred to as an orthogonal tRNA/synthetase pair. In the method for preparing the arginine decarboxylase subunit variant disclosed herein, it is important to express the orthogonal tRNA/synthetase pair in the expression cell line, and if this purpose can be achieved, the method will greatly Not limited. In one embodiment, the method for producing the arginine decarboxylase subunit variant includes transforming a vector capable of expressing the orthogonal tRNA/synthetase pair into the cell line. Specifically, a vector capable of expressing the orthogonal tRNA/synthetase pair is Yang et.al (Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464) may be pDule_C11. Hereinafter, vectors encoding functional polypeptide variants will be described.
기능성 폴리펩티드 변이체를 암호화하는 벡터Vectors encoding functional polypeptide variants
본 출원에서는 기능성 폴리펩티드 변이체를 암호화하는 벡터를 개시한다. 상기 기능성 폴리펩티드 변이체를 암호화하는 벡터는 상기 기능성 폴리펩티드 변이체 서열 중 비천연아미노산을 종결 코돈을 사용하여 암호화한 것을 특징으로 한다. 일 구현예로, 상기 기능성 폴리펩티드 변이체를 암호화하는 벡터는 상기 기능성 폴리펩티드 변이체 서열 중, 표준 아미노산은 자연계에서 발견되는 상기 표준 아미노산과 대응되는 코돈으로 암호화하고, 비천연아미노산은 종결 코돈으로 암호화한 것일 수 있다. 예를 들어, 상기 종결 코돈은 엠버 코돈(ambber codon; 5'-UAG-3'), 오커 코돈(ocher codon; 5'-UAA-3'), 및 오팔 코돈(opal codon; 5'-UGA-3') 중 선택된 것일 수 있다. 또 다른 예를 들어, 상기 종결 코돈은 5'-TAG-3', 5'-TAA-3', 및 5'-TGA-3' 중 선택된 것일 수 있다. 일 실시양태로, 상기 기능성 폴리펩티드 변이체를 암호화하는 벡터는 상기 발현 세포주 코돈 최적화된 것일 수 있다. 예를 들어, 상기 기능성 폴리펩티드 변이체를 암호화하는 벡터는 대장균 코돈 최적화된 것일 수 있다.The present application discloses vectors encoding functional polypeptide variants. The vector encoding the variant functional polypeptide is characterized in that a non-natural amino acid in the sequence of the variant functional polypeptide is encoded using a stop codon. In one embodiment, in the vector encoding the functional polypeptide variant, among the functional polypeptide variant sequences, the standard amino acid is encoded by a codon corresponding to the standard amino acid found in nature, and the non-natural amino acid is encoded by a stop codon. there is. For example, the stop codon is an amber codon (5'-UAG-3'), an ocher codon (5'-UAA-3'), and an opal codon (5'-UGA-3'). 3') may be selected. In another example, the stop codon may be selected from among 5'-TAG-3', 5'-TAA-3', and 5'-TGA-3'. In one embodiment, the vector encoding the functional polypeptide variant may be codon-optimized for the expression cell line. For example, a vector encoding the functional polypeptide variant may be E. coli codon optimized.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조 예시 (1) Example of Preparation of Functional Polypeptide Variant-Albumin Conjugates (1)
전술한 바와 같이, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 하기의 방법을 통해 제조될 수 있다:As described above, functional polypeptide variant-albumin conjugates can be prepared through the following methods:
1) 링커 및 알부민이 반응하여 알부민-링커 컨쥬게이트가 제조됨; 및 1) the linker and albumin react to produce an albumin-linker conjugate; and
2) 알부민-링커 컨쥬게이트와 기능성 폴리펩티드 변이체가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조됨. 2) A functional polypeptide variant-albumin conjugate is prepared by reacting the albumin-linker conjugate with the functional polypeptide variant.
이하에서, 1) 링커 및 알부민의 반응을 설명한다. In the following, 1) the reaction between the linker and albumin is described.
상기 링커는 알부민의 특정 아미노산 잔기를 통해 연결될 수 있다. The linker may be connected through a specific amino acid residue of albumin.
일 실시양태로, 시스테인 잔기를 통해 알부민과 연결될 수 있으며, 상기 연결은 링커의 티올 반응성 그룹과 알부민의 시스테인 잔기와의 반응에 의해 형성될 수 있다. 특정한 실시예에서, 인간 혈청 알부민(human serum albumin, HSA)에 포함된 시스테인의 티올기와 링커의 티올 반응성 그룹이 반응하여 알부민-링커 컨쥬게이트가 제조될 수 있다. 특정한 실시예에서, 인간 혈청 알부민(human serum albumin, HSA)의 34번 시스테인 (Cys 34)의 티올기와 링커의 티올 반응성 그룹이 반응하여 알부민-링커 컨쥬게이트가 제조될 수 있다. In one embodiment, it can be linked to albumin via a cysteine residue, which linkage can be formed by reaction of a thiol reactive group of a linker with a cysteine residue of albumin. In a specific embodiment, an albumin-linker conjugate may be prepared by reacting a thiol group of a cysteine contained in human serum albumin (HSA) with a thiol reactive group of a linker. In a specific example, an albumin-linker conjugate may be prepared by reacting a thiol group of cysteine 34 (Cys 34) of human serum albumin (HSA) with a thiol-reactive group of a linker.
이하에서, 2) 알부민-링커 컨쥬게이트와 기능성 폴리펩티드 변이체의 반응을 설명한다. Hereinafter, 2) the reaction between the albumin-linker conjugate and the functional polypeptide variant will be described.
상기 반응으로부터 기능성 폴리펩티드 변이체가 링커를 통해 연결된, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 알부민-링커 컨쥬게이트 일 말단의 클릭화학작용기와 기능성 폴리펩티드 변이체의 비천연아미노산에 포함된 클릭화학작용기가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 일 실시양태에서, 알부민-링커 컨쥬게이트의 일 말단의 제2 클릭화학작용기와 기능성 폴리펩티드 변이체의 제1 클릭화학작용기가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 특정한 실시양태에서, 알부민-링커 컨쥬게이트의 일 말단의 TCO와 기능성 폴리펩티드 변이체의 테트라진이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 특정한 실시양태에서, 알부민-링커 컨쥬게이트의 일 말단의 DBCO와 기능성 폴리펩티드 변이체의 아자이드가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다.From the above reaction, a functional polypeptide variant-albumin conjugate, in which functional polypeptide variants are linked through a linker, can be prepared. A functional polypeptide variant-albumin conjugate may be prepared by reacting a click chemical functional group at one end of the albumin-linker conjugate with a click chemical functional group included in a non-natural amino acid of the functional polypeptide variant. In one embodiment, the functional polypeptide variant-albumin conjugate can be prepared by reacting the second click chemical functional group at one end of the albumin-linker conjugate with the first click chemical functional group of the functional polypeptide variant. In a specific embodiment, a functional polypeptide variant-albumin conjugate can be prepared by reacting the TCO at one end of the albumin-linker conjugate with the tetrazine of the functional polypeptide variant. In certain embodiments, a functional polypeptide variant-albumin conjugate can be prepared by reacting DBCO at one end of the albumin-linker conjugate with the azide of the functional polypeptide variant.
일 실시양태에서, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 다음을 포함하는 방법을 통해 제조될 수 있다:In one embodiment, functional polypeptide variant-albumin conjugates can be prepared via a method comprising:
알부민-링커 컨쥬게이트와 기능성 폴리펩티드 변이체가 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조됨. The albumin-linker conjugate reacts with the functional polypeptide variant to produce a functional polypeptide variant-albumin conjugate.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 제조 예시 (2) Example of Preparation of Functional Polypeptide Variant-Albumin Conjugates (2)
전술한 바와 같이, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 하기의 방법을 통해 제조될 수 있다:As described above, functional polypeptide variant-albumin conjugates can be prepared through the following methods:
1) 링커 및 기능성 폴리펩티드 변이체가 반응하여 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조됨; 및 1) the linker and the functional polypeptide variant are reacted to produce a functional polypeptide variant-linker conjugate; and
2) 기능성 폴리펩티드 변이체-링커 컨쥬게이트와 알부민이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조됨. 2) A functional polypeptide variant-linker conjugate reacts with albumin to prepare a functional polypeptide variant-albumin conjugate.
이하에서, 1) 링커 및 기능성 폴리펩티드의 반응을 설명한다. In the following, 1) the reaction of the linker and the functional polypeptide will be described.
일 실시양태로, 링커의 일 말단의 클릭화학작용기와 기능성 폴리펩티드 변이체의 비천연아미노산의 클릭화학작용기의 클릭화학반응에 의해 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조될 수 있다. 일 실시양태에서, 링커의 일 말단의 제2 클릭화학작용기와 기능성 폴리펩티드 변이체에 포함된 제1 클릭화학작용기가 반응하여 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조될 수 있다.In one embodiment, a functional polypeptide variant-linker conjugate can be prepared by a click chemistry reaction between a click chemistry functional group at one end of a linker and a click chemistry functional group of a non-natural amino acid of a functional polypeptide variant. In one embodiment, a functional polypeptide variant-linker conjugate may be prepared by reacting a second click chemical functional group at one end of a linker with a first click chemical functional group included in a functional polypeptide variant.
이하에서, 2) 기능성 폴리펩티드 변이체-링커 컨쥬게이트와 알부민의 반응을 설명한다. Hereinafter, 2) the reaction between the functional polypeptide variant-linker conjugate and albumin will be described.
일 실시양태로, 시스테인 잔기를 통해 알부민과 연결될 수 있으며, 상기 연결은 기능성 폴리펩티드 변이체-링커 컨쥬게이트의 티올 반응성 그룹과 알부민의 시스테인 잔기와의 반응에 의해 형성될 수 있다. 특정한 실시예에서, 인간 혈청 알부민(human serum albumin, HSA)에 포함된 시스테인의 티올기와 기능성 폴리펩티드 변이체-링커 컨쥬게이트의 티올 반응성 그룹이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다. 특정한 실시예에서, 인간 혈청 알부민(human serum albumin, HSA)의 34번 시스테인 (Cys 34)의 티올기와 기능성 폴리펩티드 변이체-링커 컨쥬게이트의 티올 반응성 그룹이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조될 수 있다.In one embodiment, it can be linked to albumin via a cysteine residue, which linkage can be formed by reaction of a thiol reactive group of a functional polypeptide variant-linker conjugate with a cysteine residue of albumin. In a specific example, a functional polypeptide variant-albumin conjugate can be prepared by reacting a thiol reactive group of a functional polypeptide variant-linker conjugate with a thiol group of cysteine contained in human serum albumin (HSA). In a specific example, a functional polypeptide variant-albumin conjugate is prepared by reacting a thiol reactive group of a functional polypeptide variant-linker conjugate with a thiol group of cysteine 34 (Cys 34) of human serum albumin (HSA). can
일 실시양태에서, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트는 다음을 포함하는 방법을 통해 제조될 수 있다:In one embodiment, functional polypeptide variant-albumin conjugates can be prepared via a method comprising:
기능성 폴리펩티드 변이체-링커 컨쥬게이트와 알부민이 반응하여 기능성 폴리펩티드 변이체-알부민 컨쥬게이트가 제조됨. A functional polypeptide variant-linker conjugate reacts with albumin to produce a functional polypeptide variant-albumin conjugate.
알부민-링커 컨쥬게이트Albumin-Linker Conjugates
전술한 바와 같이, 링커와 알부민의 반응을 통해 알부민-링커 컨쥬게이트가 제조될 수 있다. 본 출원의 일 실시양태는 알부민-링커 컨쥬게이트를 제공한다. As described above, an albumin-linker conjugate can be prepared through the reaction of a linker with albumin. One embodiment of the present application provides an albumin-linker conjugate.
일 실시양태에서, 알부민-링커 컨쥬게이트는 화학식 4의 구조를 가질 수 있다:In one embodiment, the albumin-linker conjugate can have the structure of Formula 4:
[화학식 4][Formula 4]
H2-A2-J2-P1 H 2 -A 2 -J 2 -P 1
화학식 4에서, H2는 제2 클릭화학작용기이다. 제2 클릭화학작용기는 클릭화학작용기를 포함한다. 제2 클릭화학작용기는 제2 클릭화학작용기와 클릭화학반응을 할 수 있는 제1 클릭화학작용기와 클릭화학 반응을 할 수 있다. 제2 클릭화학작용기와 제1 클릭화학작용기의 클릭화학반응에 의해 제1 접합 유닛이 형성된다. 제2 클릭화학작용기는 관련된 섹션에서 상세히 설명된다. In Formula 4, H 2 is a second click chemical functional group. The second click chemistry functional group includes a click chemistry functional group. The second click chemistry functional group may undergo a click chemistry reaction with the first click chemistry functional group capable of performing a click chemistry reaction with the second click chemistry functional group. The first bonding unit is formed by a click chemical reaction between the second click chemical functional group and the first click chemical functional group. The second click chemofunctional group is described in detail in a related section.
화학식 4에서, A2는 제2 앵커 유닛이다. 알부민-링커 컨쥬게이트에서 제2 앵커 유닛은 제2 클릭화학작용기와 제2 접합 유닛 및/또는 알부민 유닛을 연결하는 구성을 지칭할 수 있다. 당해 분야에서 거리조절을 위해 통상적으로 사용되는 구조라면, 크게 제한되지 않는다. 제2 앵커 유닛은 링커로부터 유래된다. 제2 앵커 유닛은 섹션 '링커: 클릭화학작용기 및 티올 반응성 그룹을 포함함'을 포함하는 제2 앵커 유닛과 관련된 섹션에서 상세히 설명된다. In Formula 4, A 2 is a second anchor unit. In the albumin-linker conjugate, the second anchor unit may refer to a component connecting the second click chemical functional group and the second conjugation unit and/or the albumin unit. If it is a structure commonly used for distance control in the art, it is not significantly limited. The second anchor unit is derived from a linker. The second anchor unit is described in detail in the section related to the second anchor unit including the section 'Linker: containing a click chemofunctional group and a thiol reactive group'.
화학식 4에서, J2는 제2 접합 유닛이다. 전술한 바와 같이, 제2 접합 유닛은 티올 반응성 그룹과 티올기의 반응에 의해 형성된 구조를 갖는다. 예를 들어, 제2 접합 유닛은 알부민의 티올기와 링커의 일 말단의 티올 반응성 그룹의 반응에 의해 형성된 구조를 가질 수 있다. 일 실시양태에서, 알부민의 티올기는 34번 시스테인(Cys 34)의 티올기일 수 있다. 제2 접합 유닛은 섹션 '제2 접합 유닛'을 포함하는 제2 접합 유닛과 관련된 섹션에서 상세히 설명된다. In Formula 4, J 2 is a second junction unit. As described above, the second junction unit has a structure formed by reaction of a thiol reactive group with a thiol group. For example, the second conjugation unit may have a structure formed by reaction of a thiol group of albumin with a thiol-reactive group at one end of a linker. In one embodiment, the thiol group of albumin can be that of cysteine 34 (Cys 34). The second bonding unit is described in detail in the section related to the second bonding unit including the section 'second bonding unit'.
화학식 4에서, P1은 알부민 유닛이다. 알부민 유닛은 알부민으로부터 유래된다. 알부민 및 알부민 유닛 각각은 섹션 '알부민 및 알부민 유닛'을 포함하는 알부민 유닛과 관련된 섹션에서 상세히 설명된다. In Formula 4, P 1 is an albumin unit. Albumin units are derived from albumin. Albumin and albumin units are each described in detail in the sections relating to albumin units, including the section 'Albumin and albumin units'.
기능성 폴리펩티드 변이체-링커 컨쥬게이트Functional Polypeptide Variant-Linker Conjugates
전술한 바와 같이, 링커와 기능성 폴리펩티드 변이체의 반응을 통해 기능성 폴리펩티드 변이체-링커 컨쥬게이트가 제조될 수 있다. 본 출원의 일 실시양태는 기능성 폴리펩티드 변이체-링커 컨쥬게이트를 제공한다. As described above, a functional polypeptide variant-linker conjugate can be prepared by reacting a linker with a functional polypeptide variant. One embodiment of the present application provides functional polypeptide variant-linker conjugates.
일 실시양태에서, 기능성 폴리펩티드 변이체-링커 컨쥬게이트는 화학식 5의 구조를 가질 수 있다:In one embodiment, the functional polypeptide variant-linker conjugate may have the structure of Formula 5:
[화학식 5][Formula 5]
FPV-[J1-A2-J2-B]a FPV-[J 1 -A 2 -J 2 -B] a
화학식 5에서, FPV는 기능성 폴리펩티드 변이체 유닛이다. 기능성 폴리펩티드 변이체 유닛은 기능성 폴리펩티드 변이체로부터 유래된다. 기능성 폴리펩티드 변이체 및 기능성 폴리펩티드 변이체 유닛 각각은 관련된 섹션에서 상세히 설명된다. In Formula 5, FPV is a Functional Polypeptide Variant Unit. A functional polypeptide variant unit is derived from a functional polypeptide variant. Each of the Functional Polypeptide Variants and Functional Polypeptide Variant Units is described in detail in the relevant section.
화학식 5에서, J1은 제1 접합 유닛이다. 제1 접합 유닛은 섹션 '제1 접합 유닛'을 포함하는 제1 접합 유닛과 관련된 섹션에서 상세히 설명된다. In Formula 5, J 1 is a first junction unit. The first bonding unit is described in detail in the section related to the first bonding unit including the section 'first bonding unit'.
화학식 5에서, A2는 제2 앵커 유닛이다. 제2 앵커 유닛은 섹션 '링커: 클릭화학작용기 및 티올 반응성 그룹을 포함함'을 포함하는 제2 앵커 유닛과 관련된 섹션에서 상세히 설명된다.In Formula 5, A 2 is a second anchor unit. The second anchor unit is described in detail in the section related to the second anchor unit including the section 'Linker: containing a click chemofunctional group and a thiol reactive group'.
화학식 5에서, J2는 제2 접합 유닛이다. 제2 접합 유닛은 섹션 '제2 접합 유닛'을 포함하는 제2 접합 유닛과 관련된 섹션에서 상세히 설명된다. In Formula 5, J 2 is a second junction unit. The second bonding unit is described in detail in the section related to the second bonding unit including the section 'second bonding unit'.
화학식 5에서, B는 티올 반응성 그룹이다. 일 실시양태에서, 티올 반응성 그룹은 말레이미드 그룹일 수 있다. 일 실시양태에서, 티올 반응성 그룹은 APN 그룹일 수 있다. 티올 반응성 그룹은 섹션 '링커: 클릭화학작용기 및 티올 반응성 그룹을 포함함'을 포함하는 티올 반응성 그룹과 관련된 섹션에서 상세히 설명된다. In Formula 5, B is a thiol reactive group. In one embodiment, the thiol reactive group can be a maleimide group. In one embodiment, a thiol reactive group can be an APN group. Thiol-reactive groups are described in detail in the sections relating to thiol-reactive groups, including the section 'Linkers: Including click chemofunctional groups and thiol-reactive groups'.
화학식 5에서, a는 1 이상 20 이하의 정수일 수 있다. 특정한 실시양태에서, a는 1 이상 10 이하의 정수일 수 있다. In Formula 5, a may be an integer of 1 or more and 20 or less. In certain embodiments, a can be an integer greater than or equal to 1 and less than or equal to 10.
기능성 폴리펩티드 변이체-알부민 컨쥬게이트의 용도Uses of Functional Polypeptide Variant-Albumin Conjugates
본 출원의 일 실시양태는 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 유효성분으로 포함하는 표적 질환의 치료를 위한 조성물을 제공한다. 본 출원의 일 실시양태는 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 유효성분으로 포함하는 표적 질환을 치료하기 위한 약학적 조성물을 제공한다. 여기서, 표적 질환은 종양일 수 있다. 보다 구체적으로, 표적 질환은 아르기닌 영양요구성 종양일 수 있다. 예를 들어, 표적 질환은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나일 수 있다. One embodiment of the present application provides a composition for the treatment of a target disease comprising a functional polypeptide variant-albumin conjugate as an active ingredient. One embodiment of the present application provides a pharmaceutical composition for treating a target disease comprising a functional polypeptide variant-albumin conjugate as an active ingredient. Here, the target disease may be a tumor. More specifically, the target disease may be an arginine auxotrophic tumor. For example, the target disease is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), breast cancer ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
본 출원의 다른 실시양태로, 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 유효성분으로 포함하는 진단용 조성물이 제공될 수 있다. In another embodiment of the present application, a composition for diagnosis comprising a functional polypeptide variant-albumin conjugate as an active ingredient may be provided.
본 명세서에서 사용되는 용어, "치료"란 본 출원에 따른 약학적 조성물의 투여에 의해 표적 질환의 증세가 호전되거나 이롭게 변형되는 모든 행위를 의미하고, 표적 질환의 예방을 포함한다. As used herein, the term "treatment" refers to any activity that improves or beneficially transforms the symptoms of a target disease by the administration of the pharmaceutical composition according to the present application, and includes prevention of the target disease.
본 명세서에서 사용되는 용어 "예방"이란 본 출원에 따른 약학적 조성물의 투여에 의해 표적 질환을 억제시키거나 표적 질환의 발명을 지연시키는 모든 행위를 의미한다. As used herein, the term "prevention" refers to any action that suppresses a target disease or delays the onset of a target disease by administration of the pharmaceutical composition according to the present application.
본 출원의 약학적 조성물은 상기 기능성 폴리펩티드 변이체-알부민 컨쥬게이트를 유효 성분으로 포함하는 것 이외에 약학적으로 허용 가능한 담체를 추가로 포함할 수 있다.The pharmaceutical composition of the present application may further include a pharmaceutically acceptable carrier in addition to containing the functional polypeptide variant-albumin conjugate as an active ingredient.
본 출원에서 사용될 수 있는 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 말토덱스트린, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The type of carrier that can be used in the present application is not particularly limited, and any carrier commonly used in the art may be used. Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, maltodextrin, glycerol, ethanol, and the like. can These may be used alone or in combination of two or more.
또한, 본 출원의 약학적 조성물은 필요한 경우, 부형제, 희석제, 항산화제, 완충액 또는 정균제 등 기타 약학적으로 허용 가능한 첨가제들을 첨가하여 사용할 수 있으며, 충진제, 증량제, 습윤제, 붕해제, 분산제, 계면 활성제, 결합제 또는 윤활제 등을 부가적으로 첨가하여 사용할 수 있다.In addition, if necessary, the pharmaceutical composition of the present application may be used by adding other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
본 출원에서 사용된 용어, "투여"는 어떠한 적절한 방법으로 환자에게 본 출원의 약학 조성물을 도입하는 것을 의미하며, 본 출원의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.As used herein, the term "administration" means introducing the pharmaceutical composition of the present application to a patient by any suitable method, and the route of administration of the composition of the present application can be oral or parenteral as long as it can reach the target tissue. It can be administered via any route.
본 출원의 약학적 조성물은 경구 투여 또는 비경구 투여를 위한 적합하고 다양한 제형으로 제제화되어 사용될 수 있다.The pharmaceutical composition of the present application may be formulated and used in various dosage forms suitable for oral or parenteral administration.
본 출원의 약학적 조성물을 이용한 경구 투여용 제제의 비제한적인 예로는, 트로키제 (troches), 로젠지 (lozenge), 정제, 수용성 현탁액, 유성 현탁액, 조제 분말, 과립, 에멀젼, 하드 캡슐, 소프트 캡슐, 시럽 또는 엘릭시르제 등을 들 수 있다.Non-limiting examples of formulations for oral administration using the pharmaceutical composition of the present application include troches, lozenges, tablets, aqueous suspensions, oily suspensions, powdered preparations, granules, emulsions, hard capsules, and soft capsules, syrups or elixirs; and the like.
본 출원의 약학적 조성물을 경구 투여용으로 제제화하기 위하여, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴 등과 같은 결합제; 디칼슘 포스페이트 등과 같은 부형제; 옥수수 전분 또는 고구마 전분 등과 같은 붕해제; 스테아르산 마그네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌 글리콜 왁스 등과 같은 윤활유 등을 사용할 수 있으며, 감미제, 방향제, 시럽제 등도 사용할 수 있다. 나아가 캡슐제의 경우에는 상기 언급한 물질 외에도 지방유와 같은 액체 담체 등을 추가로 사용할 수 있다.In order to formulate the pharmaceutical composition of the present application for oral administration, a binder such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; excipients such as dicalcium phosphate and the like; disintegrants such as corn starch or sweet potato starch; Lubricants such as magnesium stearate, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax may be used, and sweeteners, aromatics, syrups, and the like may also be used. Furthermore, in the case of capsules, a liquid carrier such as fatty oil may be additionally used in addition to the above-mentioned materials.
본 출원의 약학적 조성물을 이용한 비경구용 제제의 비제한적인 예로는, 주사액, 좌제, 호흡기 흡입용 분말, 스프레이용 에어로졸제, 연고, 도포용 파우더, 오일, 크림 등을 들 수 있다.Non-limiting examples of parenteral preparations using the pharmaceutical composition of the present application include injection solutions, suppositories, powders for respiratory inhalation, aerosols for sprays, ointments, powders for application, oils, creams, and the like.
본 출원의 약학적 조성물을 비경구 투여용으로 제제화하기 위하여, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결 건조 제제, 외용제 등을 사용할 수 있으며, 상기 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.In order to formulate the pharmaceutical composition of the present application for parenteral administration, sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, external preparations, etc. may be used, and the non-aqueous solvents and suspensions include propylene glycol, polyethylene Glycols, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used.
본 출원의 약학적 조성물을 주사액으로 제제화하는 경우, 본 출원의 약학적 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고 이를 앰플 (ampoule) 또는 바이알 (vial)의 단위 투여용으로 제제화할 수 있다.When the pharmaceutical composition of the present application is formulated as an injection solution, the pharmaceutical composition of the present application is mixed in water together with a stabilizer or buffer to prepare a solution or suspension, which is used for unit administration in an ampoule or vial can be formulated.
본 출원의 약학적 조성물을 에어로졸제로 제제화하는 경우, 수분산된 농축물 또는 습윤 분말이 분산되도록 추진제 등이 첨가제와 함께 배합할 수 있다.When the pharmaceutical composition of the present application is formulated as an aerosol, a propellant or the like may be blended with additives so that the water-dispersed concentrate or wet powder is dispersed.
본 출원의 약학적 조성물을 연고, 크림, 도포용 파우더, 오일, 피부 외용제 등으로 제제화하는 경우에는, 동물성 유, 식물성 유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크, 산화 아연 등을 담체로 사용하여 제제화할 수 있다.When the pharmaceutical composition of the present application is formulated into an ointment, cream, powder for application, oil, external skin preparation, etc., animal oil, vegetable oil, wax, paraffin, starch, tracanth, cellulose derivative, polyethylene glycol, silicone, bentonite , silica, talc, zinc oxide, etc. may be formulated using a carrier.
본 출원의 약학적 조성물의 약학적 유효량, 유효 투여량은 약학적 조성물의 제제화 방법, 투여 방식, 투여 시간 및/또는 투여 경로 등에 의해 다양해질 수 있으며, 약학 조성물의 투여로 달성하고자 하는 반응의 종류와 정도, 투여 대상이 되는 개체의 종류, 연령, 체중, 일반적인 건강 상태, 질병의 증세나 정도, 성별, 식이, 배설, 해당 개체에 동시 또는 이시에 함께 사용되는 약물 기타 조성물의 성분 등을 비롯한 여러 인자 및 의약 분야에서 잘 알려진 유사 인자에 따라 다양해질 수 있으며, 당해 기술 분야에서 통상의 지식을 가진 자는 목적하는 치료에 효과적인 투여량을 용이하게 결정하고 처방할 수 있다. 예를 들어, 본 출원의 약학적 조성물의 일일 투여량은 0.01 내지 1000mg/kg이고, 바람직하게는 0.1 내지 100mg/kg이며, 하루 일회 내지 수회에 나누어 투여할 수 있다.The pharmaceutically effective amount and effective dose of the pharmaceutical composition of the present application may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type of response to be achieved by administration of the pharmaceutical composition. and degree, type of subject to be administered, age, weight, general health condition, symptom or severity of disease, sex, diet, excretion, drugs used simultaneously or simultaneously with the subject, and other components of the composition, etc. It can be varied according to factors and similar factors well known in the medical field, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment. For example, the daily dose of the pharmaceutical composition of the present application is 0.01 to 1000 mg/kg, preferably 0.1 to 100 mg/kg, and may be administered once or several times a day.
본 출원의 약학적 조성물의 투여는 하루에 1회 투여될 수 있고, 수회에 나누어 투여될 수도 있다. 본 출원의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양으로 투여할 수 있으며, 이는 당업자에 의해 용이하게 결정될 수 있다.Administration of the pharmaceutical composition of the present application may be administered once a day, or may be divided and administered several times. The pharmaceutical composition of the present application may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Considering all of the above factors, it can be administered in an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
본 출원의 약학적 조성물의 투여 경로 및 투여 방식은 각각 독립적일 수 있으며, 목적하는 해당 부위에 상기 약학적 조성물이 도달할 수 있는 한, 특별한 제한없이 임의의 투여 경로 및 투여 방식에 따를 수 있다. 상기 약학적 조성물은 경구 투여 또는 비경구 투여 방식으로 투여할 수 있다.The administration route and administration method of the pharmaceutical composition of the present application may be independent, and may follow any route and administration method without particular limitation as long as the pharmaceutical composition can reach the target site. The pharmaceutical composition may be administered orally or parenterally.
본 출원의 약학적 조성물의 비경구 투여 방법으로는, 정맥 내 투여, 복강 내 투여, 근육 내 투여, 경피 투여 또는 피하 투여 등을 이용할 수 있으며, 상기 조성물을 질환 부위에 도포하거나 분무, 흡입하는 방법 또한 이용할 수 있으나 이에 제한되지 않는다.As a parenteral administration method of the pharmaceutical composition of the present application, intravenous administration, intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, etc. may be used, and a method of applying, spraying, or inhaling the composition to the diseased area It can also be used, but is not limited thereto.
본 출원의 약학적 조성물은 표적 질환을 예방 또는 치료하기 위하여 추가적으로 호르몬 치료, 약물 치료 등의 다양한 방법들과 병용하여 사용될 수 있다.The pharmaceutical composition of the present application may be additionally used in combination with various methods such as hormone therapy and drug therapy to prevent or treat a target disease.
기능성 폴리펩티드 변이체의 용도Uses of Functional Polypeptide Variants
본 출원의 일 실시양태는 기능성 폴리펩티드 변이체를 유효성분으로 포함하는 표적 질환의 치료를 위한 조성물 및 이의 이용을 제공한다. One embodiment of the present application provides a composition for the treatment of a target disease comprising a functional polypeptide variant as an active ingredient and its use.
본 출원의 일 실시양태는 기능성 폴리펩티드 변이체를 유효성분으로 포함하는 표적 질환을 치료하기 위한 약학적 조성물을 제공한다. One embodiment of the present application provides a pharmaceutical composition for treating a target disease comprising a functional polypeptide variant as an active ingredient.
본 출원의 다른 실시양태는 기능성 폴리펩티드 변이체를 유효성분으로 포함하는 약학적 조성물을 투여하는 것을 포함하는 표적 질환, 예를 들어 암의 치료방법을 제공한다.Another embodiment of the present application provides a method for treating a target disease, eg, cancer, comprising administering a pharmaceutical composition comprising a functional polypeptide variant as an active ingredient.
본 출원의 일 실시양태는 암 치료제의 제조에 사용되는 본 발명의 기능성 폴리펩티드 변이체의 용도를 제공한다. 일 실시양태에서, 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 중 어느 하나는 암 치료제의 제조에 사용될 수 있다. One embodiment of the present application provides the use of a functional polypeptide variant of the present invention for the manufacture of a cancer therapeutic. In one embodiment, any one of the arginine decarboxylase variant, the arginine decarboxylase subunit variant, and the dimer of the arginine decarboxylase subunit variant can be used in the preparation of a cancer therapeutic agent.
전술한 바와 같이, 기능성 폴리펩티드 변이체는 아르기닌 디카르복실레이즈 변이체, 아르기닌 디카르복실레이즈 서브유닛 변이체, 및 아르기닌 디카르복실레이즈 서브유닛 변이체의 다이머 중 어느 하나일 수 있다. 본 출원의 아르기닌 디카르복실레이즈 변이체는 아르기닌 디카르복실레이즈와 비교할 때 유사하거나 뛰어난 효소 활성 정도를 보이므로, 아르기닌 영양요구성 종양에 대한 치료제로 사용될 수 있다. As described above, the functional polypeptide variant may be any one of an arginine decarboxylase variant, an arginine decarboxylase subunit variant, and a dimer of an arginine decarboxylase subunit variant. Since the arginine decarboxylase variant of the present application shows similar or superior enzymatic activity compared to arginine decarboxylase, it can be used as a therapeutic agent for arginine auxotrophic tumors.
표적 질환은 종양일 수 있다. 보다 구체적으로, 표적 질환은 아르기닌 영양요구성 종양일 수 있다. 예를 들어, 표적 질환은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나일 수 있다. The target disease may be a tumor. More specifically, the target disease may be an arginine auxotrophic tumor. For example, the target disease is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), breast cancer ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (AML), and primary and relapsed lymphomas.
본 출원의 약학적 조성물은 상기 기능성 폴리펩티드 변이체를 유효 성분으로 포함하는 것 이외에 약학적으로 허용 가능한 담체를 추가로 포함할 수 있다.The pharmaceutical composition of the present application may further include a pharmaceutically acceptable carrier in addition to containing the functional polypeptide variant as an active ingredient.
본 출원에서 사용될 수 있는 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 말토덱스트린, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The type of carrier that can be used in the present application is not particularly limited, and any carrier commonly used in the art may be used. Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, maltodextrin, glycerol, ethanol, and the like. can These may be used alone or in combination of two or more.
또한, 본 출원의 약학적 조성물은 필요한 경우, 부형제, 희석제, 항산화제, 완충액 또는 정균제 등 기타 약학적으로 허용 가능한 첨가제들을 첨가하여 사용할 수 있으며, 충진제, 증량제, 습윤제, 붕해제, 분산제, 계면 활성제, 결합제 또는 윤활제 등을 부가적으로 첨가하여 사용할 수 있다.In addition, if necessary, the pharmaceutical composition of the present application may be used by adding other pharmaceutically acceptable additives such as excipients, diluents, antioxidants, buffers or bacteriostats, fillers, extenders, wetting agents, disintegrants, dispersants, surfactants , a binder or a lubricant may be additionally added and used.
본 출원에서 사용된 용어, "투여"는 어떠한 적절한 방법으로 환자에게 본 출원의 약학 조성물을 도입하는 것을 의미하며, 본 출원의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.As used herein, the term "administration" means introducing the pharmaceutical composition of the present application to a patient by any suitable method, and the route of administration of the composition of the present application can be oral or parenteral as long as it can reach the target tissue. It can be administered via any route.
본 출원의 약학적 조성물은 경구 투여 또는 비경구 투여를 위한 적합하고 다양한 제형으로 제제화되어 사용될 수 있다.The pharmaceutical composition of the present application may be formulated and used in various dosage forms suitable for oral or parenteral administration.
본 출원의 약학적 조성물을 이용한 경구 투여용 제제의 비제한적인 예로는, 트로키제 (troches), 로젠지 (lozenge), 정제, 수용성 현탁액, 유성 현탁액, 조제 분말, 과립, 에멀젼, 하드 캡슐, 소프트 캡슐, 시럽 또는 엘릭시르제 등을 들 수 있다.Non-limiting examples of formulations for oral administration using the pharmaceutical composition of the present application include troches, lozenges, tablets, aqueous suspensions, oily suspensions, powdered preparations, granules, emulsions, hard capsules, and soft capsules, syrups or elixirs; and the like.
본 출원의 약학적 조성물을 경구 투여용으로 제제화하기 위하여, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴 등과 같은 결합제; 디칼슘 포스페이트 등과 같은 부형제; 옥수수 전분 또는 고구마 전분 등과 같은 붕해제; 스테아르산 마그네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌 글리콜 왁스 등과 같은 윤활유 등을 사용할 수 있으며, 감미제, 방향제, 시럽제 등도 사용할 수 있다. 나아가 캡슐제의 경우에는 상기 언급한 물질 외에도 지방유와 같은 액체 담체 등을 추가로 사용할 수 있다.In order to formulate the pharmaceutical composition of the present application for oral administration, a binder such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; excipients such as dicalcium phosphate and the like; disintegrants such as corn starch or sweet potato starch; Lubricants such as magnesium stearate, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax may be used, and sweeteners, aromatics, syrups, and the like may also be used. Furthermore, in the case of capsules, a liquid carrier such as fatty oil may be additionally used in addition to the above-mentioned materials.
본 출원의 약학적 조성물을 이용한 비경구용 제제의 비제한적인 예로는, 주사액, 좌제, 호흡기 흡입용 분말, 스프레이용 에어로졸제, 연고, 도포용 파우더, 오일, 크림 등을 들 수 있다.Non-limiting examples of parenteral preparations using the pharmaceutical composition of the present application include injection solutions, suppositories, powders for respiratory inhalation, aerosols for sprays, ointments, powders for application, oils, creams, and the like.
본 출원의 약학적 조성물을 비경구 투여용으로 제제화하기 위하여, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결 건조 제제, 외용제 등을 사용할 수 있으며, 상기 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.In order to formulate the pharmaceutical composition of the present application for parenteral administration, sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, external preparations, etc. may be used, and the non-aqueous solvents and suspensions include propylene glycol, polyethylene Glycols, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used.
본 출원의 약학적 조성물을 주사액으로 제제화하는 경우, 본 출원의 약학적 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고 이를 앰플 (ampoule) 또는 바이알 (vial)의 단위 투여용으로 제제화할 수 있다.When the pharmaceutical composition of the present application is formulated as an injection solution, the pharmaceutical composition of the present application is mixed in water together with a stabilizer or buffer to prepare a solution or suspension, which is used for unit administration in an ampoule or vial can be formulated.
본 출원의 약학적 조성물을 에어로졸제로 제제화하는 경우, 수분산된 농축물 또는 습윤 분말이 분산되도록 추진제 등이 첨가제와 함께 배합할 수 있다.When the pharmaceutical composition of the present application is formulated as an aerosol, a propellant or the like may be blended with additives so that the water-dispersed concentrate or wet powder is dispersed.
본 출원의 약학적 조성물을 연고, 크림, 도포용 파우더, 오일, 피부 외용제 등으로 제제화하는 경우에는, 동물성 유, 식물성 유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크, 산화 아연 등을 담체로 사용하여 제제화할 수 있다.When the pharmaceutical composition of the present application is formulated into an ointment, cream, powder for application, oil, external skin preparation, etc., animal oil, vegetable oil, wax, paraffin, starch, tracanth, cellulose derivative, polyethylene glycol, silicone, bentonite , silica, talc, zinc oxide, etc. may be formulated using a carrier.
본 출원의 약학적 조성물의 약학적 유효량, 유효 투여량은 약학적 조성물의 제제화 방법, 투여 방식, 투여 시간 및/또는 투여 경로 등에 의해 다양해질 수 있으며, 약학 조성물의 투여로 달성하고자 하는 반응의 종류와 정도, 투여 대상이 되는 개체의 종류, 연령, 체중, 일반적인 건강 상태, 질병의 증세나 정도, 성별, 식이, 배설, 해당 개체에 동시 또는 이시에 함께 사용되는 약물 기타 조성물의 성분 등을 비롯한 여러 인자 및 의약 분야에서 잘 알려진 유사 인자에 따라 다양해질 수 있으며, 당해 기술 분야에서 통상의 지식을 가진 자는 목적하는 치료에 효과적인 투여량을 용이하게 결정하고 처방할 수 있다. 예를 들어, 본 출원의 약학적 조성물의 일일 투여량은 0.01 내지 1000mg/kg이고, 바람직하게는 0.1 내지 100mg/kg이며, 하루 일회 내지 수회에 나누어 투여할 수 있다.The pharmaceutically effective amount and effective dose of the pharmaceutical composition of the present application may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type of response to be achieved by administration of the pharmaceutical composition. and degree, type of subject to be administered, age, weight, general health condition, symptom or severity of disease, sex, diet, excretion, drugs used simultaneously or simultaneously with the subject, and other components of the composition, etc. It can be varied according to factors and similar factors well known in the medical field, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment. For example, the daily dose of the pharmaceutical composition of the present application is 0.01 to 1000 mg/kg, preferably 0.1 to 100 mg/kg, and may be administered once or several times a day.
본 출원의 약학적 조성물의 투여는 하루에 1회 투여될 수 있고, 수회에 나누어 투여될 수도 있다. 본 출원의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양으로 투여할 수 있으며, 이는 당업자에 의해 용이하게 결정될 수 있다.Administration of the pharmaceutical composition of the present application may be administered once a day, or may be divided and administered several times. The pharmaceutical composition of the present application may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Considering all of the above factors, it can be administered in an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
본 출원의 약학적 조성물의 투여 경로 및 투여 방식은 각각 독립적일 수 있으며, 목적하는 해당 부위에 상기 약학적 조성물이 도달할 수 있는 한, 특별한 제한없이 임의의 투여 경로 및 투여 방식에 따를 수 있다. 상기 약학적 조성물은 경구 투여 또는 비경구 투여 방식으로 투여할 수 있다.The administration route and administration method of the pharmaceutical composition of the present application may be independent, and may follow any route and administration method without particular limitation as long as the pharmaceutical composition can reach the target site. The pharmaceutical composition may be administered orally or parenterally.
본 출원의 약학적 조성물의 비경구 투여 방법으로는, 정맥 내 투여, 복강 내 투여, 근육 내 투여, 경피 투여 또는 피하 투여 등을 이용할 수 있으며, 상기 조성물을 질환 부위에 도포하거나 분무, 흡입하는 방법 또한 이용할 수 있으나 이에 제한되지 않는다.As a parenteral administration method of the pharmaceutical composition of the present application, intravenous administration, intraperitoneal administration, intramuscular administration, transdermal administration, subcutaneous administration, etc. may be used, and a method of applying, spraying, or inhaling the composition to the diseased area It can also be used, but is not limited thereto.
본 출원의 약학적 조성물은 표적 질환을 예방 또는 치료하기 위하여 추가적으로 호르몬 치료, 약물 치료 등의 다양한 방법들과 병용하여 사용될 수 있다.The pharmaceutical composition of the present application may be additionally used in combination with various methods such as hormone therapy and drug therapy to prevent or treat a target disease.
이하, 실험예 또는 실시예를 통해 본 출원이 제공하는 발명에 대해 더욱 상세히 설명한다. 이들 실험예는 오로지 본 출원에 의해 개시되는 내용을 예시하기 위한 것으로, 본 명세서에 의해 개시되는 내용의 범위가 이들 실험예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the invention provided by the present application will be described in more detail through experimental examples or examples. These experimental examples are only for exemplifying the contents disclosed by this application, and it is to those skilled in the art that the scope of the contents disclosed by this specification is not construed as being limited by these experimental examples. It will be self-evident.
실험예Experimental example
재료ingredient
Yeast extract, tryotone, agar는 BD Biosciences (San Jose, CA, USA) 에서 구매되었다. Nickel charged nitrilotriacetic acid (Ni-NTA) resin은 qiagen (Valencia, CA, USA)에서 구매되었다. frTet (4-(1,2,3,4-tetazin-3-yl)phenylalanine)은 Aldlab Chemicals (Woburn, MA, USA)에서 구매되었다. TCO-Cy3는 AAT Bioquest (Sunnyvale, CA, USA)에서 구매되었다. TCO-PEG4-maleidime (TCO-PEG4-MAL)은 FutureChem(Seoul, Korea)에서 구매되었다. Disposable PD-10 desalting column 및 Superdex 200 10/300 GL increase column은 Cytiva (Uppsala, Sweden)에서 구매되었다. Vivaspin 6 centrifugal concentrators with a molecular weight cut-off (MWCO) 10kDa 및 100kDa는 Sartorius(Gottingen, Germany)에서 구매되었다. HSA 및 모든 다른 화학 약품들은 Sigma-Aldrich (St. Louis, MO, USA)에서 구매되었다. Yeast extract, tryotone, and agar were purchased from BD Biosciences (San Jose, CA, USA). Nickel charged nitrilotriacetic acid (Ni-NTA) resin was purchased from qiagen (Valencia, CA, USA). frTet (4-(1,2,3,4-tetazin-3-yl)phenylalanine) was purchased from Aldlab Chemicals (Woburn, MA, USA). TCO-Cy3 was purchased from AAT Bioquest (Sunnyvale, CA, USA). TCO-PEG4-maleidime (TCO-PEG4-MAL) was purchased from FutureChem (Seoul, Korea). Disposable PD-10 desalting column and Superdex 200 10/300 GL increase column were purchased from Cytiva (Uppsala, Sweden). Vivaspin 6 centrifugal concentrators with a molecular weight cut-off (MWCO) 10 kDa and 100 kDa were purchased from Sartorius (Gottingen, Germany). HSA and all other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).
실험예 I. 야생형 아르기닌 디카르복실레이즈(Arginine decarboxylase; ADC) 효과 확인Experimental Example I. Wild-type arginine decarboxylase (Arginine decarboxylase; ADC) effect confirmation
1. E. coli 유래 ADC 제조 1. Preparation of E. coli-derived ADC
E. coli 유래의 ADC를 제조하기 위해서, 우선 E. coli의 genomic DNA (gDNA)를 genomic DNA extraction kit를 이용하여 추출하였다. 추출된 gDNA에서 ADC를 번역하는 유전자를 증폭하기 위해 PCR 증폭을 진행하였다. Forward primer로 5'-ATCGGGATCCATGAAAGTATTAATTGTTGAAAGCGAG-3' (서열번호 21)의 서열을 가지는 프라이머를 사용하였으며, Reverse primer로써 5'-ATCGACTAGTTTAATGGTGATGGTGATGGTGCGCTTTCACGCACATAAC-3' (서열번호 22)를 사용하였다. ADC의 C- 말단엔 친화성 크로마토그래피(affinity chromatography)로 정제하기위해 헥사히스티딘 태그(hexahistidine tag)를 퓨전할 수 있도록 프라이머를 설계하였다. C 말단에 헥사히스티딘 태그가 부착된 ADC의 아미노산 서열은 하기에 개시된다:To prepare E. coli-derived ADC, first, E. coli genomic DNA (gDNA) was extracted using a genomic DNA extraction kit. PCR amplification was performed to amplify the gene translating the ADC from the extracted gDNA. A primer having the sequence of 5'-ATCGGGATCCATGAAAGTATTAATTGTTGAAAGCGAG-3' (SEQ ID NO: 21) was used as a forward primer, and 5'-ATCGACTAGTTTAATGGTGATGGTGATGGTGCGCTTTCACGCACATAAC-3' (SEQ ID NO: 22) was used as a reverse primer. A primer was designed to fusion a hexahistidine tag at the C-terminus of ADC for purification by affinity chromatography. The amino acid sequence of the C-terminal hexahistidine tagged ADC is set forth below:
MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGIERTSLGSLLDHTGAFGESEKYAARVFGADRSWSVVVGTSGSNRTIMQACMTDNDVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGLSLTQEVIDEAVDFRQAMARLYKEFTADGSWFFKPWNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAIVDNNVELVSIENLPGRIAANSVIPYPPGIPMLLSGENFGDKNSPQVSYLRSLQSWDHHFPGFEHETEGTEIIDGIYHVMCVKAHHHHHH (서열번호 23).MKVLIVESEFLHQDTWVGNAVERLADALSQQNVTVIKSTSFDDGFAILSSNEAIDCLMFSYQMEHPDEHQNVRQLIGKLHERQQNVPVFLLGDREKALAAMDRDLLELVDEFAWILEDTADFIAGRAVAAMTRYRQQLLPPLFSALMKYSDIHEYSWAAPGHQGGVGFTKTPAGRFYHDYYGENLFRTDMGINERTSVRTIMGSLLLDHTGAFGESEKYAWARWSDN DVVVVDRNCHKSIEQGLMLTGAKPVYMVPSRNRYGIIGPIYPQEMQPETLQKKISESPLTKDKAGQKPSYCVVTNCTYDGVCYNAKEAQDLLEKTSDRLHFDEAWYGYARFNPIYADHYAMRGEPGDHNGPTVFATHSTHKLLNALSQASYIHVREGRGAINFSRFNQAYMMHATTSPLYAICASNDVAVSMMDGNSGNSGLSDKFTA WNKEVVTDPQTGKTYDFADAPTKLLTTVQDCWVMHPGESWHGFKDIPDNWSMLDPIKVSILAPGMGEDGELEETGVPAALVTAWLGRHGIVPTRTTDFQIMFLFSMGVTRGKWGTLVNTLCSFKRHYDANTPLAQVMPELVEQYPDTYANMGIHDLGDTMFAWLKENNPGARLNEAYSGLPVAEVTPREAYNAVDNNVLRQELVSIENGPGDKLSSPGEPYSLPGDKLSSPYN QSWDHHFPGFEHETEGTEIIDGIYHVMCVKAHHHHHH (SEQ ID NO: 23).
PCR를 통해 증폭된 ADC 유전자를 발현 벡터(expression vector)에 도입하기 위해, 증폭된 ADC 유전자와 SpeI을 도입한 pQE80 vector에 SpeI과 BamHI 제한효소를 3시간 동안 37°C에서 처리하였다. 이 후, Takara ligation mix를 이용하여 매뉴얼에 따라 라이게이션(ligation)을 진행하였다. TOP10 E.coli strain에 Mix & Go transformation 매뉴얼에 따라 형질 전환한 후, 100 μg/mL 암피실린을 포함하고 있는 아가 플레이트(agar plate)에 뿌리고 스프레딩(spreading) 하여 37°C에서 12시간동안 대장균을 키웠다. 이 후, 단일 콜로니(single colony)를 신선한 LB 배지(fresh LB media)에 접종하여 배양하였다. mini-prep을 통해 배양된 대장균으로부터 플라스미드 유전자 확보하였으며, 시퀀싱(sequencing)을 통해 야생형 ADC의 서열을 확인하여 pQE80-ADC WT (wild-type, 야생형) 플라스미드를 제작하였다. To introduce the PCR-amplified ADC gene into an expression vector, the pQE80 vector containing the amplified ADC gene and SpeI was treated with SpeI and BamHI restriction enzymes at 37°C for 3 hours. After that, ligation was performed according to the manual using Takara ligation mix. After transforming the TOP10 E.coli strain according to the Mix & Go transformation manual, spread it on an agar plate containing 100 μg/mL ampicillin and spread it to E. coli for 12 hours at 37°C. raised Thereafter, a single colony was inoculated into fresh LB media and cultured. The plasmid gene was obtained from E. coli cultured through mini-prep, and the sequence of the wild-type ADC was confirmed through sequencing to construct pQE80-ADC WT (wild-type, wild-type) plasmid.
야생형 ADC를 E. coli를 통해 얻기 위해, pQE80-ADC WT 유전자를 TOP10 E. coli strain에 Mix & Go transformation 매뉴얼에 따라 형질 전환시킨 후, 37도에서 12시간동안, 100 μg/mL 암피실린을 포함하고 있는 아가 플레이트(agar plate)에서 성장시켜 TOP10[pQE80-ADC WT]을 얻었다. 이 후, 단일 콜로니(single colony)를 100 μg/mL 암피실린을 포함하고 있는 신선한 LB 배지(fresh LB media)에 접종하여, 37°C에서 오버나잇(overnight)으로 키웠다. 이 후, 100 μg/mL 암피실린을 포함하고 있는 200 mL 신선한 LB 배지(fresh LB media)에 인큐베이션된 TOP10[pQE80-ADC WT]을 2mL 넣어 37°C에서 200 rpm으로 진탕(shaking) 배양을 진행하였다. 600nm 에서의 광학 밀도(optical density at 600nm)가 0.6에 도달하면, 형질 전환된 E. coli에서 ADC WT을 전사할 수 있도록 해주는 isopropyl ß-D-1-thiogalactopyranoside (IPTG)을 최종 농도 1 mM이 되도록 넣어주고 37°C에서 5시간동안 200 rpm 진탕 배양(shaking incubation)을 진행하였다. 인큐베이션이 끝난 E. coli는 5,000 x g에서 10 분간 4℃ 조건에서 원심분리하고, LB 배지를 버리고 세포 pellet은 -80도에 보관하였다.To obtain wild-type ADC through E. coli, the pQE80-ADC WT gene was transformed into a TOP10 E. coli strain according to the Mix & Go transformation manual, followed by 12 hours at 37 degrees, containing 100 μg/mL ampicillin. TOP10 [pQE80-ADC WT] was obtained by growth on an agar plate. Thereafter, a single colony was inoculated into fresh LB media containing 100 μg/mL ampicillin and grown overnight at 37°C. Thereafter, 2 mL of TOP10 [pQE80-ADC WT] incubated in 200 mL fresh LB media containing 100 μg/mL ampicillin was added, and shaking culture was performed at 37 ° C and 200 rpm. . When the optical density at 600 nm reached 0.6, isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM to enable transcription of ADC WT in transformed E. coli. Put in and proceed with 200 rpm shaking incubation for 5 hours at 37 ° C. After incubation, E. coli was centrifuged at 5,000 x g for 10 minutes at 4°C, and the LB medium was discarded and the cell pellet was stored at -80 degrees.
E. coli에서 생산된 ADC WT을 얻기 위해 0.5g의 세포 pellet에 10 mL의 lysis buffer (50 mM sodium phosphate, 0.3 M NaCl, 10 mM imidazole, pH 7.4) 을 넣고 재현탁(resuspension) 하였다. 이 후, 소니케이션(sonication) (1 sec on/2sec off, total 10 min, 32% amplitude, 4 ℃)을 진행하였다. 수득한 세포 용해물에 대해 centrifugation (15,000 x g, 30 min, 4 ℃)을 진행했으며, 얻어진 상층액(supernatant)을 새로운 50 mL conical tube에 옮겼다. 500μL의 Ni-NTA resin을 상층액에 넣어준 후, 빛을 차단한 채로 15 ℃에서 30 min간 진탕 배양(shaking incubation)하였다. 이 후, 폴리프로필렌 컬럼(polypropylene column)에 세포 용해물(cell lysis)를 부어준 뒤, 세척 버퍼 (50 mM sodium phosphate, 0.3 M NaCl, 20 mM imidazole, pH 7.4)을 15 mL 흘려주고 용출 버퍼(elution buffer) (50 mM sodium phosphate, 0.3 M NaCl, 250 mM imidazole, pH 7.4) 5 mL를 흘려주어 컬럼을 통과하는 eluent 샘플을 받아주었다. 추후 분석을 위해, Eluent에 대해 실험에 필요한 완충액을 충전해놓은 PD-10 desalting column을 이용하여 buffer exchange가 수행되었다. 제조된 ADC WT는 SDS-PAGE를 통해 확인하였다 (도 01). 도 01에서 BI는 before induction, AI는 after induction, P는 purified를 나타낸다. 분석 결과, IPTG를 통해 pQE80-ADC WT의 전사 및 번역이 된 것을 AI lane에서 ~75 kDa 근처에서 새롭게 확인되는 band를 통해 확인할 수 있으며, 이 후, 친화성 크로마토그래피(affinity chromatography)를 통해 얻어진 정제된 ADC WT(purified ADC WT)은 높은 순도로 얻어진 것을 확인할 수 있었다. To obtain WT ADC produced in E. coli, 10 mL of lysis buffer (50 mM sodium phosphate, 0.3 M NaCl, 10 mM imidazole, pH 7.4) was added to 0.5 g of cell pellet, followed by resuspension. After that, sonication (1 sec on/2sec off, total 10 min, 32% amplitude, 4 °C) was performed. Centrifugation (15,000 x g, 30 min, 4 ℃) was performed on the obtained cell lysate, and the obtained supernatant was transferred to a new 50 mL conical tube. After adding 500 μL of Ni-NTA resin to the supernatant, shaking incubation was performed at 15 ° C. for 30 min while blocking light. After that, after pouring the cell lysate into a polypropylene column, 15 mL of washing buffer (50 mM sodium phosphate, 0.3 M NaCl, 20 mM imidazole, pH 7.4) was poured and the elution buffer ( 5 mL of elution buffer) (50 mM sodium phosphate, 0.3 M NaCl, 250 mM imidazole, pH 7.4) was flowed to receive the eluent sample passing through the column. For further analysis, buffer exchange was performed using a PD-10 desalting column filled with the buffer required for the experiment for Eluent. The prepared ADC WT was confirmed through SDS-PAGE (FIG. 01). In FIG. 01, BI indicates before induction, AI indicates after induction, and P indicates purified. As a result of the analysis, transcription and translation of pQE80-ADC WT through IPTG can be confirmed through a newly identified band near ~75 kDa in the AI lane, followed by purification obtained through affinity chromatography. It was confirmed that the purified ADC WT (purified ADC WT) was obtained with high purity.
2. 야생형의 E. coli 유래 ADC (ADC_WT)의 안정성 확인 2. Stability confirmation of wild-type E. coli-derived ADC (ADC_WT)
ADC WT의 안정성을 확인하기 위해, 10 mg/mL의 ADC를 20 mM 인산칼륨 버퍼(potassium phosphate buffer) (pH 7.4)에 첨가하였다. 이 후, 37 ℃에서 인큐베이션을 진행했으며, 0, 0.5, 1, 3, 6, 12, 및 24 시간 포인트에서 ADC WT 활성을 측정하여 안정성을 확인하였다. ADC WT의 활성을 측정하기 위해 0.1 mg/mL ADC WT을 0.2 M sodium acetate (pH 5.2)에서 1 mM 아르기닌, 200 μM pyridoxal 5'-phosphate (PLP)와 섞어준 뒤, 1시간 동안 37도에서 인큐베이션을 진행했다. 이 후, 문헌 'Goldschmidt et al. "Simplified rapid procedure for determination of agmatine and other guanidino-containing compounds." Analytical Chemistry 43.11 (1971): 1475-1479'에 개시된 방법을 일부 수정하여 ADC WT의 활성을 확인했다. 반응 후, ADC WT의 효소 반응을 위한 반응 혼합물과 같은 부피만큼의 NaCl이 포화된 10% KOH 용액을 첨가하였다. 이 후, n-butanol을 ADC WT의 효소 반응을 위한 반응 혼합물의 1/3 x 부피만큼 첨가하였다. 2 분간 볼텍싱(vortexing)을 진행한 후, 1,000 x g에서 1 분간 원심분리하였다. 원심분리 후, 상층의 n-butanol을 깨끗한 튜브에 옮겨주었다. 이 후, diacetyl solution A와 B를 (solution A: 0.24 % of 2,3-butanidiol in distilled water; solution B: 40 g/L 1-napthtol in solution containing 0.1M NaCl and 0.5 M NaOH) 준비하였다. Solution A와 B를 2:3 (v/v)으로 섞어준 뒤, 앞서 얻은 n-butanol과 동일한 부피로 2 분간 볼텍싱을 진행하였다. 이 후, 원심분리하여, 상층의 색이 변한 n-butanol을 96-well plate에 옮기고 광학 밀도 (optical density) 530nm (OD530)와 600nm (OD600) 값을 구하였다. 활성은 OD530-OD600 값으로 상대 활성을 비교하였다. 분석결과 ADC WT은 24 시간 동안 안정성을 유지하는 것을 확인하였다 (도 02). 배양 조건은 potassium phosphate buffer (pH 7.4), 37°C이며, 분석 조건은 sodium acetate buffer (pH 5.2) 이다. To confirm the stability of ADC WT, 10 mg/mL of ADC was added to 20 mM potassium phosphate buffer (pH 7.4). Thereafter, incubation was performed at 37° C., and ADC WT activity was measured at 0, 0.5, 1, 3, 6, 12, and 24 time points to confirm stability. To measure the activity of ADC WT, 0.1 mg/mL ADC WT was mixed with 1 mM arginine and 200 μM pyridoxal 5'-phosphate (PLP) in 0.2 M sodium acetate (pH 5.2) and incubated at 37 degrees for 1 hour. proceeded. After this, 'Goldschmidt et al. "Simplified rapid procedure for determination of agmatine and other guanidino-containing compounds." The activity of ADC WT was confirmed by partially modifying the method disclosed in Analytical Chemistry 43.11 (1971): 1475-1479'. After the reaction, a 10% KOH solution saturated with NaCl in the same volume as the reaction mixture for the enzymatic reaction of ADC WT was added. Thereafter, n-butanol was added by 1/3 x volume of the reaction mixture for the enzymatic reaction of ADC WT. After vortexing for 2 minutes, centrifugation was performed at 1,000 xg for 1 minute. After centrifugation, the upper layer of n-butanol was transferred to a clean tube. Then, diacetyl solutions A and B (solution A: 0.24% of 2,3-butanidiol in distilled water; solution B: 40 g/L 1-napthtol in solution containing 0.1M NaCl and 0.5 M NaOH) were prepared. After mixing Solution A and B at 2:3 (v/v), vortexing was performed for 2 minutes with the same volume as n-butanol previously obtained. Thereafter, by centrifugation, the color-changed n-butanol in the upper layer was transferred to a 96-well plate, and optical density 530nm (OD 530 ) and 600nm (OD 600 ) values were obtained. The activity was compared with the relative activity by OD 530 -OD 600 values. As a result of the analysis, it was confirmed that ADC WT maintained stability for 24 hours (FIG. 02). Culture conditions are potassium phosphate buffer (pH 7.4), 37°C, and analysis conditions are sodium acetate buffer (pH 5.2).
3. ADC_WT의 대사 억제 효과 확인 (3. Confirmation of metabolic inhibitory effect of ADC_WT ( in vitroin vitro ))
HeLa cell을 96 웰 플레이트에 10,000 cells/well이 되도록 시딩하였다. pH 6.4의 배지(DMEM, 15% FBS, 2% AA)를 사용하였다. ADC 용액을 0.2μm 셀룰로오스 아세테이트 필터로 여과하고, ADC의 농도를 조정하기 위해 배지와 혼합하였다. 각각의 농도의 ADC 용액을 세포에 처리하고 3일동안 배양하였다. 3일의 배양 후 MTT assay를 진행하여 세포의 대사 활성(metabolic activity)를 측정하였다. MTT assay는 세포내 미토콘드리아의 대사에 따라 intensity를 나타내는데, arginine이 media에서 제거됨에 따라 세포의 생장이 억제된다. HeLa cells were seeded in a 96-well plate at 10,000 cells/well. A pH 6.4 medium (DMEM, 15% FBS, 2% AA) was used. The ADC solution was filtered through a 0.2 μm cellulose acetate filter and mixed with the medium to adjust the ADC concentration. Each concentration of ADC solution was treated with the cells and cultured for 3 days. After 3 days of culture, the MTT assay was performed to measure the metabolic activity of the cells. MTT assay shows the intensity according to the metabolism of mitochondria in cells, and cell growth is suppressed as arginine is removed from the media.
ADC를 처리한 그룹에서 MTT assay의 intensity가 낮게 나타나는 것을 확인하였다 (도 03). 미토콘드리아의 대사가 ADC를 처리하지 않은 그룹에 비해 떨어지기 때문에, MTT assay의 intensity가 낮게 나타나 대사 활성이 떨어지는 것으로 해석할 수 있다.It was confirmed that the intensity of the MTT assay was low in the ADC-treated group (FIG. 03). Since the metabolism of mitochondria is lower than that of the group not treated with ADC, the intensity of the MTT assay is low, which can be interpreted as a decrease in metabolic activity.
4. 세포주 별 ADC_WT의 대사 억제 효과 확인 (4. Confirmation of metabolic inhibitory effect of ADC_WT by cell line ( in vitroin vitro ) )
세포를 96 웰 플레이트에 3000cells/well이 되도록 시딩하였다. pH 6.4의 배지(DMEM, 15% FBS, 2% AA)를 사용하였다. ADC 용액을 0.2μm 셀룰로오스 아세테이트 필터로 여과하고, ADC의 농도를 조정하기 위해 배지와 혼합하였다. 각각의 농도의 ADC 용액을 세포에 처리하고 3일동안 배양하였다. 3일의 배양 후 MTT assay를 진행하여 세포주 별 대사 활성(metabolic activity)를 측정하였다. 대사 활성은 "3. ADC_WT의 대사 억제 효과 확인 (in vitro)"에 개시된 방법과 유사한 방법으로 측정되었다. Cells were seeded in a 96-well plate at 3000 cells/well. A pH 6.4 medium (DMEM, 15% FBS, 2% AA) was used. The ADC solution was filtered through a 0.2 μm cellulose acetate filter and mixed with the medium to adjust the ADC concentration. Each concentration of ADC solution was treated with the cells and cultured for 3 days. After 3 days of culture, MTT assay was performed to measure the metabolic activity of each cell line. Metabolic activity was measured in a method similar to that described in "3. Confirmation of metabolic inhibitory effect of ADC_WT ( in vitro )".
ADC_WT 처리에 따른 세포주 별 대사 활성의 측정 결과를 도 04 내지 도 06에 개시한다. 도 04는 ADC_WT 처리에 따른 유방암 및/또는 유선암 관련 세포주(MCF7, T47D)의 대사 활성 측정 결과를 나타낸다. 도 05는 ADC_WT 처리에 따른 폐암 관련 세포주(A549, NCI-H1299, HCC-827)의 대사 활성 측정 결과를 나타낸다. 도 06은 췌장암 관련 세포주(AsPC-1, Capan-1, Capan-2, MIA-PaCa-2)의 대사 활성 측정 결과를 나타낸다. ADC_WT는 유방암 및/또는 유선암 관련 세포주, 폐암 관련 세포주, 및 췌장암 관련 세포주의 대사 활성 억제에 효과가 있는 것으로 확인된다.The measurement results of metabolic activity for each cell line according to the ADC_WT treatment are shown in FIGS. 04 to 06. 04 shows the metabolic activity measurement results of breast cancer and/or mammary cancer-related cell lines (MCF7, T47D) according to ADC_WT treatment. 05 shows the metabolic activity measurement results of lung cancer-related cell lines (A549, NCI-H1299, HCC-827) according to ADC_WT treatment. 06 shows the metabolic activity measurement results of pancreatic cancer-related cell lines (AsPC-1, Capan-1, Capan-2, MIA-PaCa-2). ADC_WT is confirmed to be effective in inhibiting the metabolic activity of breast cancer and/or mammary cancer-related cell lines, lung cancer-related cell lines, and pancreatic cancer-related cell lines.
5. ADC_WT의 5. ADC_WT in vivoin vivo 항암 활성 확인 Confirmation of anticancer activity
ADC의 in vivo 종양 억제 효과를 확인하였다. 마우스에 Mia-PaCa-2 종양 세포 (췌장 종양으로부터 유래된 cell line)를 다리에 피하주사하여, 종양을 가진 마우스를 제조하였다. 실험은 총 6마리의 마우스에 대해 수행되었다. ADC 및/또는 gemcitabine은 0.2U/mouse (0.03U/mg - 30mg/ml, U= 1 μmol의 arginine을 37 ℃에서 1분당 분해하는 효소의 농도)로 마우스에 일주일에 한 번씩 투여되었으며, 정맥 내 주사(intravenous injection) 방식으로 투여되었다. 여기서, U는 효소 활성 단위이며, 1umol의 아르기닌을 분해하는 ADC 효소의 활성 단위를 나타낸다. Gemcitabine은 125mg/kg의 투여 용량으로 일주일에 한 번씩 투여되었으며, 200ul가 복강 내 주사(intraperitoneal injection) 방식으로 투여되었다. 마우스의 종양의 크기를 투여 후 26일 동안 관찰하였다. 구체적인 실험 그룹 및 투여된 샘플에 대한 정보는 아래와 같다. The in vivo tumor suppression effect of ADC was confirmed. Mia-PaCa-2 tumor cells (a cell line derived from a pancreatic tumor) were subcutaneously injected into the legs of mice to prepare mice with tumors. Experiments were performed on a total of 6 mice. ADC and/or gemcitabine were administered to mice once a week at 0.2 U/mouse (0.03 U/mg - 30 mg/ml, U = concentration of enzyme that breaks down 1 μmol of arginine per minute at 37 °C), intravenously. It was administered by intravenous injection. Here, U is an enzymatic activity unit, and represents an active unit of an ADC enzyme that degrades 1 umol of arginine. Gemcitabine was administered once a week at a dose of 125mg/kg, and 200ul was administered by intraperitoneal injection. The tumor size of the mice was observed for 26 days after administration. Information on specific experimental groups and administered samples is provided below.
- control 그룹: 1마리의 마우스; ADC(-); gemcitabine (-)- control group: 1 mouse; ADC(-); gemcitabine (-)
- ADC 그룹: 2마리의 마우스; ADC (0.2 U (6mg)); gemcitabine (-)- ADC group: 2 mice; ADC (0.2 U (6 mg)); gemcitabine (-)
- GEM 그룹: 1마리의 마우스; ADC (-); gemcitabine (125mg/kg)- GEM group: 1 mouse; ADC (-); gemcitabine (125mg/kg)
- ADC-GEM 그룹: 2마리의 마우스; ADC (0.2U(6mg)); gemcitabine (125mg/kg)- ADC-GEM group: 2 mice; ADC (0.2 U (6 mg)); gemcitabine (125mg/kg)
in-vivo 항암 활성 확인 결과는 도 07에 개시된다. 도 07에 개시된 바와 같이, ADC 단독 투여 및 ADC-GEM 복합 투여에서 종양의 성장이 억제됨을 확인할 수 있다. The in-vivo anticancer activity confirmation results are disclosed in FIG. 07 . As shown in FIG. 07 , it can be confirmed that tumor growth is inhibited in ADC alone and ADC-GEM combined administration.
실험예 II. 비천연아미노산 AzF를 포함하는 아르기닌 디카르복실레이즈 (Arginine decarboxylase; ADC) 변이체 및 이를 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 제조 및 효과 확인 Experimental Example II. Arginine decarboxylase (ADC) variants containing the non-natural amino acid AzF and preparation and effect confirmation of arginine decarboxylase variant-albumin conjugates prepared using the same
1. 비천연아미노산 (AzF) 치환 위치 선정 1. Selection of non-natural amino acid (AzF) substitution sites
ADC에 AzF를 치환하기 위한 위치를 선정은 다음과 같이 이루어졌다. 우선 ADC_WT의 효소 활성을 보이는 active site 및 PLP binding site를 제외하였다. (Andrell et al. Biochemistry 48.18 (2009): 3915-3927. 참고) 이 후, ADC_WT의 3D structure (PDB ID : 2VYC)를 통해 단백질 간 assembly가 일어나는 아미노산을 제외하였다. 남은 아미노산 잔기 중, 용매 접근성(solvent accessibility) 및 랜덤 코일(random coil)을 비교하여 가장 용매 접근성(solvent accessibility)이 높고 랜덤 코일(random coil)을 이루는 아미노산을 2가지 (Q488, K522)를 선택하였다. The location for substituting AzF in the ADC was selected as follows. First, the active site and PLP binding site showing the enzyme activity of ADC_WT were excluded. (Refer to Andrell et al. Biochemistry 48.18 (2009): 3915-3927.) After that, through the 3D structure of ADC_WT (PDB ID: 2VYC), amino acids where protein assembly occurs were excluded. Among the remaining amino acid residues, two amino acids (Q488, K522) with the highest solvent accessibility and forming a random coil were selected by comparing solvent accessibility and random coil. .
2. 아르기닌 디카르복실레이즈 변이체(ADC_AzF) 제조 2. Preparation of arginine decarboxylase variant (ADC_AzF)
ADC_AzF 발현을 위해, pQE80_ADC-WT을 주형으로 이용하여 PCR을 진행하였다. pQE80_ADC WT plasmid에 Q488 혹은 K522 자리에 amber stop codon (TAG)을 quick change PCR을 통해 진행하여 변이 플라스미드(pQE80_ADC variant)를 제조하였다. 이에 이용된 primer는 아래와 같다. 프라이머는 5'에서 3' 방향으로 개시된다. For ADC_AzF expression, PCR was performed using pQE80_ADC-WT as a template. A mutant plasmid (pQE80_ADC variant) was prepared by performing quick change PCR with an amber stop codon (TAG) at Q488 or K522 in the pQE80_ADC WT plasmid. The primers used for this are as follows. Primers are initiated in the 5' to 3' direction.
ADC_Q488Amb_F: GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (서열번호 24);ADC_Q488Amb_F: GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (SEQ ID NO: 24);
ADC_Q488Amb_R: ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (서열번호 25);ADC_Q488Amb_R: ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (SEQ ID NO: 25);
ADC_K522Amb_F: CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (서열번호 26);ADC_K522Amb_F: CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (SEQ ID NO: 26);
ADC_K522Amb_R: GAAAGCTGGCACGGCTTCTAGGATATTCCGGATAACTGG (서열번호 27).ADC_K522Amb_R: GAAAGCTGGCACGGCTTCTAGGATATTCCGGATAACTGG (SEQ ID NO: 27).
AzF을 ADC에 영역 특이적으로 삽입하기 위해, 각 변이 플라스미드를 C321△A.exp [pEVOL-pAzF] 컴피턴트 세포로 형질 전환하여, C321△Aexp [pEVOL-pAzF] [pQE80_ADC variant] E.coli 세포를 생성했다. 여기서, 사용된 각각의 pQE80_ADC variant는 pQE80_ADC_Q488amb (488번째 글루타민 아미노산을 코딩하는 코돈이 엠버 코돈으로 치환된 것), 또는 pQE80_ADC_K522amb이다. For region-specific insertion of AzF into the ADC, each mutant plasmid was transformed into C321ΔA.exp [pEVOL-pAzF] competent cells, followed by C321ΔAexp [pEVOL-pAzF] [pQE80_ADC variant] E.coli cells. created Here, each of the pQE80_ADC variants used is pQE80_ADC_Q488amb (a codon encoding the 488th glutamine amino acid is substituted with an amber codon) or pQE80_ADC_K522amb.
형질 전환체를 암피실린 (100μg/mL) 및 클로로암페니콜 (25μg/mL)을 포함하는 Luria 브로스 배지에서 밤새 37 ℃ 조건으로 배양했다. 전 배양된 대장균 세포를 동일한 신선한 배지에 접종하였다. 단백질 발현을 유도하기 위해 최종 농도 1mM와 AzF, 1 mM IPTG, 아라비노스 0.4 %를 각각 배지에 첨가하여 0.5 % (600nm)의 광학 밀도에 도달하도록 하였다. 배양 배지를 흔들면서 18 ℃에서 18 시간 동안 인큐베이션 한 후, 4 ℃에서 10 분 동안 5,000rpm에서 원심 분리를 통해 생성물을 얻었다. AzF를 포함하는 ADC 변이체(ADC_AzF)는 제조업제의 프로토콜(Qiagen)에 따라 니켈-니트릴로트리아세트산(nickel-nitrilotriacetic acid, Ni-NTA) 아가로스 레진과 함께 패킹된 폴리프로필렌 컬럼을 사용하여 4℃에서 고정 금속 친화성 크로마토그래피(immobilized-metal affinity chromatography)를 통해 정제했다. 상기 정제된 ADC_AzF은 PD-10 컬럼을 사용하여 PBS(pH 7.4)로 탈염했다. ADC_WT의 발현 및 정제 과정은 ADC_AzF과 유사한 방법을 따르되, 발현 단계 동안 배양 배지에 클로로암페니콜 및 AzF을 첨가하지 않았다. 배양된 세포 및 정제된 ADC 변이체에 대하여, tris-glycine gels(5% acrylamide stacking and 12% acrylamide resolving gels)를 사용하여 SDS-PAGE (run at 120V) (running buffer: 25mM Tris, 192mM glycine, 및 0.1% SDS at pH8.3)를 수행하였다. 이때 분자량 표준 마커 (Bio-Rad Laboratories Inc. Berkeley, CA, USA)가 사용되었다. 도 08은 SDS-PAGE 결과를 나타낸다. 구체적으로 (a)는 정제 전, (b)는 정제 후의 SDS 페이지 결과를 나타낸다. 도 08에서, BI는 cell pellet 처리 전(before induction cell pellet)을 나타내며, AI는 cell pellet 처리 후 (after induction cell pellet)을 나타낸다. -AzF는 AzF가 첨가되지 않은 샘플을 나타낸다. +AzF는 AzF가 첨가된 샘플을 나타낸다. Transformants were cultured overnight at 37° C. in Luria broth medium containing ampicillin (100 μg/mL) and chloroamphenicol (25 μg/mL). The pre-cultured E. coli cells were inoculated into the same fresh medium. To induce protein expression, a final concentration of 1 mM, AzF, 1 mM IPTG, and 0.4% arabinose were each added to the medium to reach an optical density of 0.5% (600 nm). After incubation at 18 °C for 18 h while shaking the culture medium, the product was obtained through centrifugation at 4 °C for 10 min at 5,000 rpm. ADC variants containing AzF (ADC_AzF) were prepared at 4 °C using polypropylene columns packed with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin according to the manufacturer's protocol (Qiagen). It was purified through immobilized-metal affinity chromatography. The purified ADC_AzF was desalted with PBS (pH 7.4) using a PD-10 column. The expression and purification process of ADC_WT followed a method similar to that of ADC_AzF, but chloroamphenicol and AzF were not added to the culture medium during the expression step. For cultured cells and purified ADC variants, SDS-PAGE (run at 120V) using tris-glycine gels (5% acrylamide stacking and 12% acrylamide resolving gels) (running buffer: 25 mM Tris, 192 mM glycine, and 0.1 % SDS at pH8.3) was performed. At this time, a molecular weight standard marker (Bio-Rad Laboratories Inc. Berkeley, CA, USA) was used. 08 shows the SDS-PAGE results. Specifically, (a) shows the SDS page results before purification and (b) after purification. In FIG. 08, BI indicates before cell pellet processing (before induction cell pellet), and AI indicates after cell pellet processing (after induction cell pellet). -AzF represents a sample without AzF added. +AzF indicates a sample to which AzF was added.
3. 아르기닌 디카르복실레이즈 변이체에의 위치 특이적 형광 다이 라벨링3. Site-Specific Fluorescent Dye Labeling of Arginine Decarboxylase Variants
정제된 ADC_WT 및 ADC_AzF (ADC_Q488AzF 및 ADC_K522AzF 각각)을 PBS(pH 7.4)에서 실온에서 1:3 몰비로 DBCO-Rhodamin (DBCO-PEG4-carboxyrhodamine dye) 형광 염료와 반응시켰다. 2시간 후, 반응 혼합물을 SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)에 적용하였다. 단백질 겔의 형광 이미지는 ChemiDoc XRS+ 시스템(302 nm에서 일루미네이션, 510-610 nm 필터, Bio-Rad Laboratories, Hercules, CA, USA)을 사용하여 수득하였다. 형광분석 후 단백질 겔을 Coomassie Brilliant Blue R-250 염료로 염색하였다. 백색광 조명을 사용하는 ChemiDoc XRS+ 시스템을 사용하여 단백질 겔 이미지를 수득하였다. Purified ADC_WT and ADC_AzF (ADC_Q488AzF and ADC_K522AzF, respectively) were reacted with DBCO-Rhodamin (DBCO-PEG4-carboxyrhodamine dye) fluorescent dye at a molar ratio of 1:3 in PBS (pH 7.4) at room temperature. After 2 hours, the reaction mixture was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Fluorescence images of protein gels were obtained using a ChemiDoc XRS+ system (illumination at 302 nm, 510-610 nm filters, Bio-Rad Laboratories, Hercules, CA, USA). After fluorescence analysis, the protein gel was stained with Coomassie Brilliant Blue R-250 dye. Protein gel images were obtained using a ChemiDoc XRS+ system using white light illumination.
ADC_WT 및 ADC_AzF에 대한 형광 다이 라벨링 결과를 도 09에 나타내었다. 구체적으로, 도 09의 샘플에서 나타난 밴드는 서브유닛 및 형광 다이가 라벨링된 서브유닛에 대응되는 밴드이다. 도 09에서, Dye (-)는 DBCO-Rhodamin 없이 반응한 샘플에 대한 분석 결과를 나타낸다. Dye (+)는 DBCO-Rhodamin와 함께 반응한 샘플에 대한 분석 결과를 나타낸다. ADC_Q488AzF Dye (+) 및 ADC_K522AzF Dye (+)에서 형광에서의 밴드가 관찰되었다. The fluorescence die labeling results for ADC_WT and ADC_AzF are shown in FIG. 09 . Specifically, the bands shown in the sample of FIG. 09 correspond to subunits and subunits labeled with fluorescent dyes. In FIG. 09, Dye (-) represents the analysis result for the sample reacted without DBCO-Rhodamin. Dye (+) represents the analysis result for the sample reacted with DBCO-Rhodamin. Bands in fluorescence were observed in ADC_Q488AzF Dye (+) and ADC_K522AzF Dye (+).
4. 아르기닌 디카르복실레이즈 변이체(ADC_AzF) 효소 활성 확인4. Confirmation of arginine decarboxylase variant (ADC_AzF) enzyme activity
AzF 도입으로 인한 pH에 따른 효소 활성이 영향을 받았는지 확인하기 위해, ADC_WT을 control로 하여 효소 활성을 확인하였다. 0.1 mg/mL의 ADC_WT 및 ADC_AzF 변이체를 각각, 0.2 M sodium acetate (pH 5.2) 완충액에서, 1 mM arginine 및 200μM PLP와 1시간동안 37 ℃에서 반응시켰다. 이 후, 각 샘플에서 생성된 agmatine (ADC에 의한 arginine 분해 산물)을 비교하였다. In order to confirm whether the enzyme activity according to pH was affected by the introduction of AzF, the enzyme activity was confirmed using ADC_WT as a control. ADC_WT and ADC_AzF variants at 0.1 mg/mL were reacted with 1 mM arginine and 200 μM PLP in 0.2 M sodium acetate (pH 5.2) buffer, respectively, at 37 °C for 1 hour. Thereafter, agmatine (an arginine degradation product by ADC) produced in each sample was compared.
도 10은 ADC_AzF의 효소 활성 확인 결과이다. ADC_AzF 변이체 (ADC_Q488AzF 및 ADC_K522AzF)는 ADC_WT보다 효소 활성이 떨어지지 않는 것을 확인할 수 있다.10 shows the result of confirming the enzyme activity of ADC_AzF. It can be seen that the ADC_AzF variants (ADC_Q488AzF and ADC_K522AzF) do not have lower enzymatic activity than ADC_WT.
5. 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 (ADC-HSA 컨쥬게이트) 제조 및 확인 5. Preparation and confirmation of arginine decarboxylase variant-albumin conjugate (ADC-HSA conjugate)
아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조에 사용된 링커인 DBCO-PEG4-Maleimide는 future chem 회사에서 구매하여 10 mM 농도로 DMSO에 녹여, 사용 전까지 -80°C에서 보관하였다.DBCO-PEG4-Maleimide, a linker used to prepare the arginine decarboxylase variant-albumin conjugate, was purchased from Future Chem, dissolved in DMSO at a concentration of 10 mM, and stored at -80 °C until use.
DBCO-PEG4-Maleimide 링커의 구조는 다음과 같다:The structure of the DBCO-PEG4-Maleimide linker is as follows:
Figure PCTKR2022015832-appb-img-000047
.
Figure PCTKR2022015832-appb-img-000047
.
알부민 50μM 와 링커(DBCO-PEG4-Mal) 200μM를 PBS (pH 7.0) 내에서 2시간동안 23°C에서 반응시켜 알부민-링커 컨쥬게이트인 HSA-PEG4-DBCO를 제조하였다. PD-10 desalting column을 이용하여 미반응 링커를 제거하였다. 미반응 링커를 제거하기 위해 1.7mL가 용출되었다. An albumin-linker conjugate, HSA-PEG4-DBCO, was prepared by reacting 50 μM of albumin with 200 μM of a linker (DBCO-PEG4-Mal) in PBS (pH 7.0) for 2 hours at 23°C. Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
AzF으로 치환된 아르기닌 디카르복실레이즈 변이체 (ADC_Q488AzF 또는 ADC_K522AzF) 25μM을 HSA-PEG4-DBCO 100μM와 PBS (pH 7.4) 내에서 5시간동안 23°C에서 반응시켰다. 25 μM of an AzF-substituted arginine decarboxylase variant (ADC_Q488AzF or ADC_K522AzF) was reacted with 100 μM of HSA-PEG4-DBCO in PBS (pH 7.4) for 5 hours at 23°C.
이후 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트가 생성되었음을 확인하기 위해 SDS-PAGE 분석을 진행하였다. 분석 결과 ADC(Q488AzF)-HSA 컨쥬게이트 (ADC_Q488AzF를 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트)와 ADC(K522AzF)-HSA 컨쥬게이트(ADC_K522AzF를 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트)에 해당하는 단백질 밴드가 각각 확인되었다 (도 11 내지 도 12). HSA-PEG4-DBCO는 약 66.5kDa의 분자량을 갖고, ADC (아르기닌 디카르복실레이즈 서브유닛 변이체)는 약 82kDa의 분자량을 갖고, 아르기닌 디카르복실레이즈 서브유닛 변이체-알부민 컨쥬게이트는 약 148.5kDa의 분자량을 갖는다.Afterwards, SDS-PAGE analysis was performed to confirm that the arginine decarboxylase variant-albumin conjugate was produced. Analysis results ADC(Q488AzF)-HSA conjugate (arginine decarboxylase variant prepared using ADC_Q488AzF-albumin conjugate) and ADC(K522AzF)-HSA conjugate (arginine decarboxylase variant prepared using ADC_K522AzF) -Albumin conjugate) were identified respectively (Fig. 11 to Fig. 12). HSA-PEG4-DBCO has a molecular weight of about 66.5 kDa, ADC (arginine decarboxylase subunit variant) has a molecular weight of about 82 kDa, and arginine decarboxylase subunit variant-albumin conjugate has a molecular weight of about 148.5 kDa. has a molecular weight
실험예 III. 비천연아미노산 frTet을 포함하는 아르기닌 디카르복실레이즈 (Arginine decarboxylase; ADC) 변이체 및 이를 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 제조 및 효과 확인Experimental Example III. Arginine decarboxylase (ADC) variant containing non-natural amino acid frTet and preparation and effect confirmation of arginine decarboxylase variant-albumin conjugate prepared using the same
1. 비천연아미노산 (frTet) 치환 위치 선정 1. Selection of substitution sites for non-natural amino acids (frTet)
frTet 치환 위치의 스크리닝은 E. coli 유래 ADC 구조를 기반으로 점 돌연변이 및 에너지 스코어링 기능을 수행하는 분자 모듈링 소프트웨어 PyRosetta (Python 기반 Rosetta 분자 모델링 패키지)를 사용하여 수행되었다. 야생형(WT) ADC에서 치환을 원하는 위치의 아미노산 잔기를 Y(티로신) 또는 W(트립토판) 으로 대체한 다음, 단백질의 전체 원자 에너지를 계산함을 통해 frTet의 치환 위치에 대한 후보군을 찾았다. PyRosetta의 에너지 기능은 천연 단백질 형태가 고유하고 저에너지 열역학적으로 안정적인 형태를 나타낸다는 Anfinsen의 가설을 기반으로 한다. 점수 값은 반데르발스 힘, 인력, 반발 에너지, 가우스 배제 암시적 용매화 및 거리로 구분된 서로 다른 잔기에 있는 원자 사이의 수소 결합 (단, 장거리, 백본 측사슬 및 측쇄)의 합을 나타낸다.Screening of frTet substitution sites was performed using the molecular modularization software PyRosetta (Python-based Rosetta molecular modeling package), which performs point mutagenesis and energy scoring functions based on E. coli-derived ADC structures. In the wild-type (WT) ADC, the amino acid residue at the desired position to be substituted was replaced with Y (tyrosine) or W (tryptophan), and then the total atomic energy of the protein was calculated to find candidates for the frTet substitution site. The energetic function of PyRosetta is based on Anfinsen's hypothesis that native protein conformations represent unique, low-energy thermodynamically stable conformations. The score value represents the sum of van der Waals forces, attractive forces, repulsive energies, Gaussian exclusion implicit solvation, and hydrogen bonds between atoms in different moieties (but long-range, backbone side chains and side chains) separated by distances.
나아가, frTet으로의 치환 위치는 용매 접근성이 높고, 랜덤 코일을 이루는 아미노산 중 선택되었다. 이때, dimer/decamer를 형성하는 자리에 위치한 아미노산은 frTet으로의 치환 위치에서 제외하려고 하였다. 총 30개의 위치가 스크리닝 되었다. Furthermore, the substitution site for frTet was selected from amino acids that have high solvent accessibility and form a random coil. At this time, an amino acid located at a site forming a dimer/decamer was tried to be excluded from the substitution site with frTet. A total of 30 loci were screened.
Rosetta design (point mutation, energy score function) 사용하여, 비천연 아미노산과 구조적/용해도 면에서 가장 유사한 천연 아미노산인 Tyrosin, Tryptophan으로 치환하였을때, wild-type 단백질의 점수와 차이가 없는 변이체 상위 6개 (N85, N245, K312, Q488, K522, G657)를 선정하였다. T39의 경우, dimer 및/또는 decamer assembly가 일어나는 인접면에 위치하나, ADC_WT와의 점수 차이가 적어 후보군으로 선택되었다. Using Rosetta design (point mutation, energy score function), when substituted with Tyrosin and Tryptophan, which are natural amino acids most similar in structure/solubility to non-natural amino acids, the top 6 variants that did not differ from the wild-type protein score ( N85, N245, K312, Q488, K522, G657) were selected. In the case of T39, it is located on the proximal surface where dimer and/or decamer assembly occurs, but it was selected as a candidate group because the score difference with ADC_WT was small.
2. 아르기닌 디카르복실레이즈 변이체(ADC_frTet) 제조 2. Preparation of arginine decarboxylase variant (ADC_frTet)
E. coli 유래 아르기닌 디카르복실레이즈 변이체(ADC_frTet) 발현을 위한 플라스미드 제조Construction of plasmid for expression of E. coli-derived arginine decarboxylase variant (ADC_frTet)
ADC_frTet를 제조하기 위해, pQE80_ADC-WT을 주형으로 이용하여 PCR을 진행하였다. 우선 pBAD_sfGFP plasmid에 존재하는 sfGFP coding region에 SpeI을 PCR을 통해 도입하였다. 이 후, 앞서 선정된 자리에 frTet 도입을 위해 amber stop codon (TAG)을 quick change PCR을 통해 진행하여 변이 플라스미드(pBAD_ADC variant)를 제조하였다. 이에 이용된 프라이머는 아래와 같다. 하기의 프라이머는 5'에서 3' 방향으로 개시된다. To prepare ADC_frTet, PCR was performed using pQE80_ADC-WT as a template. First, SpeI was introduced into the sfGFP coding region of the pBAD_sfGFP plasmid through PCR. Thereafter, a mutant plasmid (pBAD_ADC variant) was prepared by performing quick change PCR with an amber stop codon (TAG) to introduce frTet into the previously selected site. The primers used for this are as follows. The primers below start in the 5' to 3' direction.
1) pBAD_sfGFP_spel_F: TAAACAGTTCTTCACCTTTGCTAAACTAGTTTAATTCCTCCTGTTAGCCCAAAAAACGG (서열번호 28)1) pBAD_sfGFP_spel_F: TAAACAGTTCTTCACCTTTGCTAAACTAGTTTAATTCCTCCTGTTAGCCCAAAAAACGG (SEQ ID NO: 28)
2) pBAD_sfGFP_spel_R: CCGTTTTTTGGGCTAACAGGAGGAATTAAACTAGTTTAGCAAAGGTGAAGAACTGTTTA (서열번호 29)2) pBAD_sfGFP_spel_R: CCGTTTTTTGGGCTAACAGGAGGAATTAAACTAGTTTAGCAAAGGTGAAGAACTGTTTA (SEQ ID NO: 29)
3) pBAD_ADC_F: AACTACTAGTATGAAAGTATTAATTGTTGAAAGCGAG (서열번호 30)3) pBAD_ADC_F: AACTACTAGTATGAAAGTATTAATTGTTGAAAGCGAG (SEQ ID NO: 30)
4) pBAD_ADC_R: AGATCTCGAGTTAATGGTGATGGTGATGGTG (서열번호 31)4) pBAD_ADC_R: AGATCTCGAGTTAATGGTGATGGTGATGGTG (SEQ ID NO: 31)
5) pBAD_ADC_T39Amb_F: GAATGGCAAAACCATCATCAAAGGACTAGGATTTAATCACGGTAACATTTTGC (서열번호 32)5) pBAD_ADC_T39Amb_F: GAATGGCAAAACCATCATCAAAGGACTAGGATTTAATCACGGTAACATTTTGC (SEQ ID NO: 32)
6) pBAD_ADC_T39Amb_R: GCAAAATGTTACCGTGATTAAATCCTAGTCCTTTGATGATGGTTTTGCCATTC (서열번호 33)6) pBAD_ADC_T39Amb_R: GCAAAATGTTACCGTGATTAAATCCTAGTCCTTTGATGATGGTTTTGCCATTC (SEQ ID NO: 33)
7) pBAD_ADC_N85Amb_F: GAAGACCGGCACCTATTGTTGGCGCTCATGAAGCTTA (서열번호 34)7) pBAD_ADC_N85Amb_F: GAAGACCGGCACCTATTGTTGGCGCTCATGAAGCTTA (SEQ ID NO: 34)
8) pBAD_ADC_N85Amb_R: TAAGCTTCATGAGCGCCAACAATAGGTGCCGGTCTTC (서열번호 35)8) pBAD_ADC_N85Amb_R: TAAGCTTCATGAGCGCCAACAATAGGTGCCGGTCTTC (SEQ ID NO: 35)
9) pBAD_ADC_N245Amb_F: CAACGACCACGACATCCTAATCGGTCATGCAAGCC (서열번호 36)9) pBAD_ADC_N245Amb_F: CAACGACCACGACATCCTAATCGGTCATGCAAGCC (SEQ ID NO: 36)
10) pBAD_ADC_N245Amb_R: GGCTTGCATGACCGATTAGGATGTCGTGGTCGTTG (서열번호 37)10) pBAD_ADC_N245Amb_R: GGCTTGCATGACCGATTAGGATGTCGTGGTCGTTG (SEQ ID NO: 37)
11) pBAD_ADC_K312Amb_F: CCACGCAGTAAGACGGCTATTGCCCGGCTTTGTCTTTG (서열번호 38)11) pBAD_ADC_K312Amb_F: CCACGCAGTAAGACGGCTATTGCCCGGCTTTGTCTTTG (SEQ ID NO: 38)
12) pBAD_ADC_K312Amb_R: CAAAGACAAAGCCGGGCAATAGCCGTCTTACTGCGTGG (서열번호 39)12) pBAD_ADC_K312Amb_R: CAAAGACAAAGCCGGGCAATAGCCGTCTTACTGCGTGG (SEQ ID NO: 39)
13) pBAD_ADC_Q488Amb_F: GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (서열번호 40)13) pBAD_ADC_Q488Amb_F: GGTTTTGCCGGTCTATGGGTCGGTGACGACTTCTTTGT (SEQ ID NO: 40)
14) pBAD_ADC_Q488Amb_R: ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (서열번호 41)14) pBAD_ADC_Q488Amb_R: ACAAAGAAGTCGTCACCGACCCATAGACCGGCAAAACC (SEQ ID NO: 41)
15) pBAD_ADC_K522Amb_F: CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (서열번호 42)15) pBAD_ADC_K522Amb_F: CCAGTTATCCGGAATATCCTAGAAGCCGTGCCAGCTTTC (SEQ ID NO: 42)
16) pBAD_ADC_K522Amb_R: GAAAGCTGGCACGGCTTCTAGGATATTCCGGATAACTGG (서열번호 43)16) pBAD_ADC_K522Amb_R: GAAAGCTGGCACGGCTTCTAGGATATTCCGGATAACTGG (SEQ ID NO: 43)
17) pBAD_ADC_G657Amb_F: CTTCCGCCACCGGCAGCTAGGAATAGGCTTCGTTC (서열번호 44)17) pBAD_ADC_G657Amb_F: CTTCCGCCACCGGCAGCTAGGAATAGGCTTCGTTC (SEQ ID NO: 44)
18) pBAD_ADC_G657Amb_R: GAACGAAGCCTATTCCTAGCTGCCGGTGGCGGAAG (서열번호 45)18) pBAD_ADC_G657Amb_R: GAACGAAGCCTATTCCTAGCTGCCGGTGGCGGAAG (SEQ ID NO: 45)
ADC_frTet 발현 및 정제ADC_frTet expression and purification
ADC_frTet을 발현시키기 위해, Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464에 개시된 방법을 참조할 수 있다.To express ADC_frTet, reference may be made to the method disclosed in Yang et.al, Temporal Control of Efficient In Vivo Bioconjugation Using a Genetically Encoded Tetrazine-Mediated Inverse-Electron-Demand Diels-Alder Reaction, Bioconjugate Chemistry, 2020, 2456-2464. there is.
frTet을 ADC에 영역 특이적으로 삽입하기 위해, 각 변이 플라스미드를 C321△A.exp [pDule C11RS] 컴피턴트 세포로 형질 전환하여, C321△Aexp [pDule C11RS] [pBAD_ADC variant] E.coli 세포를 생성했다. 여기서, 사용된 각각의 pBAD_ADC variant는 pBAD_ADC_N85amb (85번째 아스파라진 아미노산을 코딩하는 코돈이 엠버 코돈으로 치환된 것),pBAD_ADC_N245amb, pBAD_ADC_K312amb, pBAD_ADC_Q488amb, pBAD_ADC_K522amb, 또는 pBAD_ADC_G657amb이다. For region-specific insertion of frTet into the ADC, each mutant plasmid was transformed into C321ΔA.exp [pDule C11RS] competent cells, generating C321ΔAexp [pDule C11RS] [pBAD_ADC variant] E.coli cells. did. Here, each pBAD_ADC variant used is pBAD_ADC_N85amb (codon encoding the 85th asparagine amino acid is substituted with an amber codon), pBAD_ADC_N245amb, pBAD_ADC_K312amb, pBAD_ADC_Q488amb, pBAD_ADC_K522amb, or pBAD_ADC_G657amb.
형질 전환체를 암피실린 (100μg/mL) 및 테트라사이클린 (10μg/mL)을 포함하는 Luria 브로스 배지에서 밤새 37 ℃ 조건으로 배양했다. 전 배양된 대장균 세포를 동일한 신선한 배지에 접종하였다. 단백질 발현을 유도하기 위해 최종 농도 1mM와 frTet 및 아라비노스 0.4 %를 각각 배지에 첨가하여 0.5 % (600nm)의 광학 밀도에 도달하도록 하였다. 배양 배지를 흔들면서 18 ℃에서 18 시간 동안 인큐베이션 한 후, 4 ℃에서 10 분 동안 5,000rpm에서 원심 분리를 통해 생성물을 얻었다. frTet를 포함하는 ADC 변이체(ADC_frTet)는 제조업제의 프로토콜(Qiagen)에 따라 니켈-니트릴로트리아세트산(nickel-nitrilotriacetic acid, Ni-NTA) 아가로스 레진과 함께 패킹된 폴리프로필렌 컬럼을 사용하여 4℃에서 고정 금속 친화성 크로마토그래피(immobilized-metal affinity chromatography)를 통해 정제했다. 상기 정제된 ADC_frTet은 PD-10 컬럼을 사용하여 PBS(pH 7.4)로 탈염했다. ADC_WT의 발현 및 정제 과정은 ADC_frTet과 유사한 방법을 따르되, 발현 단계 동안 배양 배지에 테트라사이클린 및 frTet을 첨가하지 않았다. 배양된 세포 및 정제된 ADC 변이체에 대하여, tris-glycine gels(5% acrylamide stacking and 12% acrylamide resolving gels)를 사용하여 SDS-PAGE (run at 120V) (running buffer: 25mM Tris, 192mM glycine, 및 0.1% SDS at pH8.3)를 수행하였다. 이때 분자량 표준 마커 (Bio-Rad Laboratories Inc., Berkeley, CA, USA)가 사용되었다. Transformants were cultured overnight at 37°C in Luria broth medium containing ampicillin (100 μg/mL) and tetracycline (10 μg/mL). The pre-cultured E. coli cells were inoculated into the same fresh medium. To induce protein expression, a final concentration of 1 mM and 0.4% of frTet and arabinose were added to the medium to reach an optical density of 0.5% (600 nm). After incubation at 18 °C for 18 h while shaking the culture medium, the product was obtained through centrifugation at 4 °C for 10 min at 5,000 rpm. ADC variants containing frTet (ADC_frTet) were prepared at 4 °C using a polypropylene column packed with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin according to the manufacturer's protocol (Qiagen). It was purified through immobilized-metal affinity chromatography. The purified ADC_frTet was desalted with PBS (pH 7.4) using a PD-10 column. The expression and purification process of ADC_WT followed a similar method to that of ADC_frTet, but tetracycline and frTet were not added to the culture medium during the expression step. For cultured cells and purified ADC variants, SDS-PAGE (run at 120V) using tris-glycine gels (5% acrylamide stacking and 12% acrylamide resolving gels) (running buffer: 25 mM Tris, 192 mM glycine, and 0.1 % SDS at pH8.3) was performed. At this time, a molecular weight standard marker (Bio-Rad Laboratories Inc., Berkeley, CA, USA) was used.
ADC_WT 및 ADC 변이체 (ADC_frTet)의 SDS-PAGE 분석 결과는 도 13 내지 도 14에 개시된다. 보다 구체적으로 도 13 내지 도 14의 샘플에서 확인된 밴드는 약 80kDa의 분자량을 가진 서브유닛에 대응하는 밴드이다. 도 13 내지 도 14에서 BI는 before induction을 의미하고, AI는 after induction을 의미한다. ADC WT는 야생형의 ADC를 발현시키고 정제한 샘플에 대한 결과를 의미한다. ADC T39, ADC N85, ADC N245, ADC K312, ADC Q488, ADC K522, 및 ADC G657은 각각 ADC_T39frTet, ADC_N85frTet, ADC_N245frTet, ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, 및 ADCG_657frTet을 발현시키고 정제한 샘플에 대한 결과를 의미한다. frTet 변이체 중, ADC_N245frTet과 ADC_G657feTet은 발현 정제 과정 중, ADC 변이체에 해당되지 않은 분자량이 분석되어 후보군에서 제외하였다.SDS-PAGE analysis results of ADC_WT and ADC variant (ADC_frTet) are shown in FIGS. 13 and 14 . More specifically, the band identified in the samples of FIGS. 13 and 14 corresponds to a subunit having a molecular weight of about 80 kDa. 13 and 14, BI means before induction, and AI means after induction. ADC WT refers to the result of a sample expressing and purifying wild-type ADC. ADC T39, ADC N85, ADC N245, ADC K312, ADC Q488, ADC K522, and ADC G657 refer to the results of samples in which ADC_T39frTet, ADC_N85frTet, ADC_N245frTet, ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet, and ADCG_657frTet were expressed and refined, respectively. Among the frTet variants, ADC_N245frTet and ADC_G657feTet were excluded from the candidate group due to molecular weight analysis that did not correspond to ADC variants during the expression purification process.
3. 아르기닌 디카르복실레이즈 변이체에의 위치 특이적 형광 다이 라벨링3. Site-Specific Fluorescent Dye Labeling of Arginine Decarboxylase Variants
정제된 ADC_WT 및 아르기닌 디카르복실레이즈 변이체인 ADC_frTet (ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, 및 ADC_K522frTet 각각)을 PBS(pH 7.4)에서 실온에서 1:2 몰비로 TCO-Cy3 형광 염료와 반응시켰다. 2시간 후, 반응 혼합물을 SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)에 적용하였다. 단백질 겔의 형광 이미지는 ChemiDoc XRS+ 시스템(302 nm에서 일루미네이션, 510-610 nm 필터, Bio-Rad Laboratories, Hercules, CA, USA)을 사용하여 수득하였다. 형광분석 후 단백질 겔을 Coomassie Brilliant Blue R-250 염료로 염색하였다. 백색광 조명을 사용하는 ChemiDoc XRS+ 시스템을 사용하여 단백질 겔 이미지를 수득하였다. Purified ADC_WT and its arginine decarboxylase variants, ADC_frTet (ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively) were reacted with TCO-Cy3 fluorescent dye at a 1:2 molar ratio in PBS (pH 7.4) at room temperature. After 2 hours, the reaction mixture was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Fluorescence images of protein gels were obtained using a ChemiDoc XRS+ system (illumination at 302 nm, 510-610 nm filters, Bio-Rad Laboratories, Hercules, CA, USA). After fluorescence analysis, the protein gel was stained with Coomassie Brilliant Blue R-250 dye. Protein gel images were obtained using a ChemiDoc XRS+ system using white light illumination.
ADC_WT 및 ADC_frTet에 대한 형광 다이 라벨링 결과를 도 15에 나타내었다. 구체적으로, 도 15의 샘플에서 나타난 밴드는 서브유닛 및 형광 다이가 라벨링된 서브유닛에 대응되는 밴드이다. 도 15의 (b)는 형광에서의 결과 데이터이다. 도 15에서 ADC_T39, ADC_N85, ADC_K312, ADC_Q488, 및 ADC_K522은 각각 ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, 및 ADC_K522frTet을 나타낸 것이다. 도 15에서, TCO-Cy3 (-)는 TCO-Cy3를 첨가하지 않은 샘플에 대한 분석 결과를 나타낸다. TCO-Cy3 (+)는 TCO-Cy3를 첨가한 반응샘플에 대한 분석 결과를 나타낸다. The fluorescence die labeling results for ADC_WT and ADC_frTet are shown in FIG. 15 . Specifically, the bands shown in the sample of FIG. 15 correspond to subunits and subunits labeled with fluorescent dyes. Figure 15 (b) is the resulting data in fluorescence. In FIG. 15, ADC_T39, ADC_N85, ADC_K312, ADC_Q488, and ADC_K522 represent ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively. In FIG. 15, TCO-Cy3 (-) represents the analysis result for the sample to which TCO-Cy3 was not added. TCO-Cy3 (+) represents the analysis result of the reaction sample to which TCO-Cy3 was added.
4. 아르기닌 디카르복실레이즈 변이체의 효소 활성 확인4. Confirmation of enzyme activity of arginine decarboxylase variants
frTet 도입으로 인한 pH에 따른 효소 활성이 영향을 받았는지 확인하기 위해, ADC_WT을 대조군(control)으로 하여 효소 활성을 확인하였다. 0.1 mg/mL의 ADC_WT 혹은 ADC_frTet 변이체를, 0.2 M sodium acetate (pH 5.2) 완충액에서, 1 mM arginine 및 200μM PLP와 1시간동안 37 ℃에서 반응시켰다. 이 후, 생성된 agmatine (ADC에 의한 arginine 분해 산물)을 비교하였다. In order to confirm whether the enzyme activity according to pH was affected by the introduction of frTet, the enzyme activity was confirmed using ADC_WT as a control. ADC_WT or ADC_frTet variant at 0.1 mg/mL was reacted with 1 mM arginine and 200 μM PLP in 0.2 M sodium acetate (pH 5.2) buffer for 1 hour at 37°C. Thereafter, the produced agmatine (an arginine degradation product by ADC) was compared.
도 16는 야생형 ADC 및 ADC 변이체의 효소 활성 분석 결과를 나타낸다. 도 16에서 ADC_T39, ADC_N85, ADC_K312, ADC_Q488, 및 ADC_K522은 각각 ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, 및 ADC_K522frTet을 나타낸 것이다. 16 shows the results of enzyme activity analysis of wild-type ADC and ADC variants. In FIG. 16, ADC_T39, ADC_N85, ADC_K312, ADC_Q488, and ADC_K522 represent ADC_T39frTet, ADC_N85frTet, ADC_K312frTet, ADC_Q488frTet, and ADC_K522frTet, respectively.
5. 아르기닌 디카르복실레이즈 변이체의 IEDDA rate 평가5. IEDDA rate evaluation of arginine decarboxylase variants
ADC_frTet 변이체의 inverse-electron-demand Diels-Alder (IEDDA) 반응 속도 (reaction rate)를 평가했다. 실험을 위해 25 μM의 ADC_WT 혹은 ADC_frTet(ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet)을 100 μM의 HSA-PEG4-TCO와 0.2 M sodium acetate (pH 5.2) 완충액에서 23 ℃, 5 시간동안 incubation을 진행하였다. 이 후, 각 샘플에 대해 SDS-PAGE 분석을 진행하였다. 분석 결과, ADC에 해당되는 band의 세기가 ADC_K312frTet에서 가장 많이 사라지는 것을 확인할 수 있었다. 또한 ADC-HSA 컨쥬게이트에 해당하는 band에서 ADC_K312frTet이 가장 세기가 큰 것을 확인할 수 있었다 (도 17). ADC_WT에서 ADC-HSA 컨쥬게이트에 해당하는 band가 관찰되지 않은 것으로 미루어보아, 새롭게 생긴 가장 상단의 band는 frTet과 HSA-PEG4-TCO의 반응을 통해 이루어지는 것을 짐작할 수 있다. 결과를 통해 ADC_K312frTet에서 IEDDA (Inverse electron-demand Diels-Alder) reaction rate가 가장 높은 것을 확인할 수 있다. The inverse-electron-demand Diels-Alder (IEDDA) reaction rate of ADC_frTet variants was evaluated. For the experiment, 25 µM ADC_WT or ADC_frTet (ADC_K312frTet, ADC_Q488frTet, ADC_K522frTet) was incubated in 100 µM HSA-PEG4-TCO and 0.2 M sodium acetate (pH 5.2) buffer at 23 °C for 5 hours. Thereafter, SDS-PAGE analysis was performed on each sample. As a result of the analysis, it was confirmed that the strength of the band corresponding to ADC disappeared the most in ADC_K312frTet. In addition, it was confirmed that ADC_K312frTet had the highest intensity in the band corresponding to the ADC-HSA conjugate (FIG. 17). Judging from the fact that the band corresponding to the ADC-HSA conjugate was not observed in ADC_WT, it can be assumed that the newly formed uppermost band is formed through the reaction between frTet and HSA-PEG4-TCO. Through the results, it can be seen that ADC_K312frTet has the highest IEDDA (Inverse electron-demand Diels-Alder) reaction rate.
6. ADC_K312frTet을 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조 및 확인6. Preparation and confirmation of arginine decarboxylase variant-albumin conjugate prepared using ADC_K312frTet
TCO-PEG4-Maleimide 링커는 future chem 회사에서 구매하여 20 mM 농도로 DMSO에 녹여, 사용 전까지 -80℃에서 보관하였다. TCO-PEG4-Maleimide의 화학식은 다음과 같다:TCO-PEG4-Maleimide linker was purchased from Future Chem, dissolved in DMSO at a concentration of 20 mM, and stored at -80°C until use. The chemical formula of TCO-PEG4-Maleimide is:
Figure PCTKR2022015832-appb-img-000048
.
Figure PCTKR2022015832-appb-img-000048
.
알부민 50μM 와 링커(TCO-PEG4-Mal) 200μM를 PBS (pH 7.0) 내에서 2시간동안 23°C에서 반응시켜 알부민-링커 컨쥬게이트인 HSA-PEG4-TCO를 제조하였다. PD-10 desalting column을 이용하여 미반응 링커를 제거하였다. 미반응 링커를 제거하기 위해 1.7mL가 용출되었다. Albumin-linker conjugate, HSA-PEG4-TCO, was prepared by reacting 50 μM albumin and 200 μM linker (TCO-PEG4-Mal) in PBS (pH 7.0) for 2 hours at 23°C. Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
K312가 frTet으로 치환된 아르기닌 디카르복실레이즈 변이체 (ADC_K312frTet) 25μM을 HSA-PEG4-TCO 100μM와 sodium acetate buffer (0.2M, pH 5.2) 내에서 5시간동안 23°C에서 반응시켰다. 반응 혼합물을 vivaspin (MWCO 10kDa) 및 SuperdexTM 200 Increase 10/300GL 컬럼을 사용한 크기 배제 크로마토그래피 (Size exclusion chromatography)를 이용하여 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트인 ADC(K312frTet)-HSA 컨쥬게이트를 정제하였다 (Flow rate: 0.1mL/min; buffer: 0.2M sodium acetate (pH 5.2)). 25 μM of an arginine decarboxylase variant in which K312 is substituted with frTet (ADC_K312frTet) was reacted with 100 μM of HSA-PEG4-TCO in sodium acetate buffer (0.2M, pH 5.2) at 23°C for 5 hours. The reaction mixture was subjected to vivaspin (MWCO 10 kDa) and size exclusion chromatography using a Superdex TM 200 Increase 10/300GL column to obtain an arginine decarboxylase variant-albumin conjugate, ADC(K312frTet)-HSA conjugate. was purified (Flow rate: 0.1mL/min; buffer: 0.2M sodium acetate (pH 5.2)).
크기 배제 크로마토그래피 결과는 도 18에 개시된다. 95.3% 및 92.5%의 수율로 ADC(K312frTet)-HSA 컨쥬게이트가 제조되었음이 확인된다.Size exclusion chromatography results are shown in FIG. 18 . It is confirmed that ADC(K312frTet)-HSA conjugates were prepared in yields of 95.3% and 92.5%.
PAGE를 통한 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조 확인Confirmation of arginine decarboxylase variant-albumin conjugate production through PAGE
크기 배제 크로마토그래피를 통해 3개의 fraction (F1~F3)을 확인할 수 있었으며, 각각의 샘플을 회수하여 SDS-PAGE 분석을 진행하였다. 분석 결과 F1에서 ADC(K312frTet)-HSA 컨쥬게이트 및 ADC_K312frTet에 해당하는 단백질 band 확인하였다 (도 19). Band의 세기를 단백질의 분자량으로 나누어 상대적 비율을 확인해 본 결과, ADC(K312frTet)-HSA 컨쥬게이트는 전제 ADC 대비 80% 이상이 존재하는 것으로 분석되었다. 이는 ADC_K312frTet 변이체의 IEDDA reaction rate이 빠르기에 HSA-TCO conjugation이 빠르게 일어난 것으로 추정된다.Three fractions (F1 to F3) could be identified through size exclusion chromatography, and each sample was collected and analyzed by SDS-PAGE. As a result of the analysis, ADC(K312frTet)-HSA conjugate and protein bands corresponding to ADC_K312frTet were identified in F1 (FIG. 19). As a result of checking the relative ratio by dividing the intensity of the band by the molecular weight of the protein, it was analyzed that the ADC (K312frTet)-HSA conjugate was present at more than 80% compared to the total ADC. It is assumed that the HSA-TCO conjugation occurred quickly because the IEDDA reaction rate of the ADC_K312frTet mutant was fast.
7. ADC_K312frTet을 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 효소 활성 7. Enzyme activity of arginine decarboxylase variant-albumin conjugate prepared using ADC_K312frTet
7.1. ADCv(K312frTet)-HSA 컨쥬게이트의 효소 활성 확인7.1. Enzymatic activity confirmation of ADCv(K312frTet)-HSA conjugate
크기 배제 크로마토그래피를 통해 얻어낸 ADC_K312HSA를 ADC_WT과 ADC_K312frTet의 pH에 따른 효소 활성을 비교하였다. 효소 활성은 실험예 I의 목차 "2. 야생형의 E. coli 유래 ADC (ADC_WT)의 안정성 확인"에 개시된 방법의 조건과 같은 조건에서 확인되었다. Enzymatic activities of ADC_K312HSA obtained through size exclusion chromatography, ADC_WT and ADC_K312frTet according to pH were compared. Enzyme activity was confirmed under the same conditions as those of the method described in "2. Confirmation of stability of wild-type E. coli-derived ADC (ADC_WT)" of Experimental Example I.
효소 활성에 대한 실험 결과는 도 20에 개시된다. 실험 결과, ADC_K312frTet과 ADC(K312frTet)-HSA 컨쥬게이트는 ADC_WT과 유사한 효소 활성을 보였다. 구체적으로 ADC_K312frTet과 ADC(K312frTet)-HSA 컨쥬게이트는 ADC_WT 대비 각각 95.3%와 90.8%의 상대적 효소 활성을 보였다. 이를 통해 HSA conjugation 이 후에도 효소 활성을 유지함을 확인하였다.Experimental results for enzyme activity are shown in FIG. 20 . As a result of the experiment, ADC_K312frTet and ADC(K312frTet)-HSA conjugate showed similar enzymatic activity to ADC_WT. Specifically, ADC_K312frTet and ADC(K312frTet)-HSA conjugates showed 95.3% and 90.8% relative enzymatic activity compared to ADC_WT, respectively. Through this, it was confirmed that the enzyme activity was maintained even after HSA conjugation.
8. ADC_K312frTet을 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 약동학(pharmacokinetics) 분석 8. Analysis of pharmacokinetics of arginine decarboxylase variant-albumin conjugate prepared using ADC_K312frTet
ADC_WT과 ADC_K312HSA의 PK 분석을 위해,8주령 Balb/c (female) 쥐를 준비하였다 (각 그룹 당 n=5로 준비). 이 후, monomer ADC (ADC 서브유닛) 기준 4 nmol 만큼의 ADC_WT과 ADC(K312frTet)-HSA 컨쥬게이트를 정맥주사를 통해 주입하였다. 이 후, 정해진 시간포인트마다 혈액을 채취하여, 2,500 rpm에서 5min간 원심분리하여 혈청을 확보하였다. 확보된 혈청은 분석 전까지 -20℃에서 보관하였다. 혈청 내 ADC의 효소 활성을 비교하기 위해, 10 μL의 혈청을 290 μL의 용액(0.2 M sodium acetate buffer (pH 5.2) 내 1 mM arginine 및 200μM PLP) 과 섞어 ADC의 효소 활성 확인을 위한 반응을 진행하였다. 37 ℃에서 30 min간 반응 진행하였다. 이 후, 생성된 agmatine (ADC에 의한 arginine 분해 산물)을 실험예 I의 목차 "2. 야생형의 E. coli 유래 ADC (ADC_WT)의 안정성 확인"에서 기술된 방법으로 정량하였다. 이 후, 각 시간에 따른 효소 활성을 상대적으로 비교하였다. 반감기는 약물이 혈액에서 사라지는 양상을 분석하기 위한 대표적인 모델인 two compartment model을 통해 분석하였다. 분석 결과, ADC_WT은 4.1 시간의 반감기를 가지는 것으로 확인되었고, ADC(K312frTet)-HSA 컨쥬게이트는 23.1 시간의 반감기 갖는 것으로 확인되었다 (도 21). 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트가 야생형의 ADC에 비해 약 5.6배의 향상된 반감기를 갖는 것으로 확인되었다. For the PK analysis of ADC_WT and ADC_K312HSA, 8-week-old Balb/c (female) mice were prepared (n=5 for each group). Thereafter, 4 nmol of ADC_WT and ADC(K312frTet)-HSA conjugate based on monomeric ADC (ADC subunit) were injected intravenously. Thereafter, blood was collected at predetermined time points and centrifuged at 2,500 rpm for 5 minutes to obtain serum. The obtained serum was stored at -20 ° C until analysis. To compare the enzyme activity of ADC in serum, 10 μL of serum was mixed with 290 μL of a solution (1 mM arginine and 200 μM PLP in 0.2 M sodium acetate buffer (pH 5.2)) and the reaction was performed to confirm the enzyme activity of ADC. did The reaction proceeded at 37 °C for 30 min. Thereafter, the resulting agmatine (arginine degradation product by ADC) was quantified by the method described in "2. Confirmation of stability of wild-type E. coli-derived ADC (ADC_WT)" in the table of contents of Experimental Example I. After that, the enzyme activity according to each time was relatively compared. The half-life was analyzed through a two compartment model, a representative model for analyzing the disappearance of drugs from the blood. As a result of the analysis, it was confirmed that ADC_WT had a half-life of 4.1 hours, and the ADC(K312frTet)-HSA conjugate had a half-life of 23.1 hours (FIG. 21). It was confirmed that the arginine decarboxylase variant-albumin conjugate had an improved half-life of about 5.6-fold compared to the wild-type ADC.
9. ADC_T39frTet을 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조 및 확인9. Preparation and confirmation of arginine decarboxylase variant-albumin conjugate prepared using ADC_T39frTet
TCO-PEG4-Maleimide 링커는 future chem 회사에서 구매하여 20 mM 농도로 DMSO에 녹여, 사용 전까지 -80℃에서 보관하였다.TCO-PEG4-Maleimide linker was purchased from Future Chem, dissolved in DMSO at a concentration of 20 mM, and stored at -80°C until use.
알부민 50μM 와 링커(TCO-PEG4-Mal) 200μM를 PBS (pH 7.0) 내에서 2시간동안 23°C에서 반응시켜 HSA-PEG4-TCO를 제조하였다. PD-10 desalting column을 이용하여 미반응 링커를 제거하였다. 미반응 링커를 제거하기 위해 1.7mL가 용출되었다. HSA-PEG4-TCO was prepared by reacting 50 μM albumin and 200 μM linker (TCO-PEG4-Mal) in PBS (pH 7.0) for 2 hours at 23°C. Unreacted linkers were removed using a PD-10 desalting column. 1.7 mL was eluted to remove unreacted linker.
T39가 frTet으로 치환된 아르기닌 디카르복실레이즈 변이체 (ADC_T39frTet) 25μM을 6.2. 에서 제조한 HSA-PEG4-TCO 100μM와 sodium acetate buffer (0.2M, pH 5.2) 내에서 5시간동안 23°C에서 반응시켰다. 반응 혼합물을 vivaspin (MWCO 10kDa) 및 SuperdexTM 200 Increase 10/300GL 컬럼을 사용한 크기 배제 크로마토그래피 (Size exclusion chromatography)를 통해 ADC(T39frTet)-HSA 컨쥬게이트를 정제하였다 (Flow rate: 0.1mL/min; buffer : 0.2M sodium acetate (pH 5.2)). 크로마토그래피의 결과는 도 22에 개시된다. 25 μM of an arginine decarboxylase variant in which T39 is substituted with frTet (ADC_T39frTet) was prepared in 6.2. It was reacted at 23°C for 5 hours in sodium acetate buffer (0.2M, pH 5.2) with HSA-PEG4-TCO 100μM prepared by ADC(T39frTet)-HSA conjugate was purified from the reaction mixture by size exclusion chromatography using vivaspin (MWCO 10 kDa) and a Superdex TM 200 Increase 10/300GL column (Flow rate: 0.1 mL/min; buffer: 0.2M sodium acetate (pH 5.2)). Chromatography results are shown in FIG. 22 .
PAGE를 통한 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트 제조 확인 Confirmation of arginine decarboxylase variant-albumin conjugate production through PAGE
크기 배제 크로마토그래피를 통해 3개의 fraction (F1~F3)을 확인할 수 있었으며, 각각의 샘플을 회수하여 SDS-PAGE 분석을 진행하였다. 분석 결과 F1에서 ADC(T39frTet)-HSA 컨쥬게이트 및 ADC_T39frTet에 해당하는 단백질 band를 확인하였다 (도 23). Band의 세기를 단백질의 분자량으로 나누어 상대적 비율을 확인해 본 결과, ADC(T39frTet)-HSA 컨쥬게이트는 전제 ADC 대비 17.3% 가량 존재하는 것으로 분석되었다. Three fractions (F1 to F3) could be identified through size exclusion chromatography, and each sample was collected and analyzed by SDS-PAGE. As a result of the analysis, ADC(T39frTet)-HSA conjugate and protein bands corresponding to ADC_T39frTet were confirmed in F1 (FIG. 23). As a result of checking the relative ratio by dividing the intensity of the band by the molecular weight of the protein, it was analyzed that the ADC(T39frTet)-HSA conjugate was present at about 17.3% compared to the total ADC.
10. ADC_T39frTet을 이용하여 제조된 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트의 효소 활성 10. Enzyme activity of arginine decarboxylase variant-albumin conjugate prepared using ADC_T39frTet
크기 배제 크로마토그래피를 통해 얻어낸 아르기닌 디카르복실레이즈 변이체-알부민 컨쥬게이트인 ADC(T39frTet)-HSA 컨쥬게이트, ADC_WT, 및 ADC_T39frTet의 효소 활성을 비교하였다. 효소 활성 확인은 실험예 I의 목차 " 2. 야생형의 E. coli 유래 ADC (ADC_WT)의 안정성 확인"에서 기술된 방법의 조건과 같은 조건에서 진행되었다. Enzymatic activities of ADC(T39frTet)-HSA conjugate, ADC_WT, and ADC_T39frTet, which are arginine decarboxylase variant-albumin conjugates obtained through size exclusion chromatography, were compared. Enzyme activity was confirmed under the same conditions as those described in "2. Stability confirmation of wild-type E. coli-derived ADC (ADC_WT)" of Experimental Example I.
효소 활성 확인 결과를 도 24에 개시한다. Enzyme activity confirmation results are shown in FIG. 24 .

Claims (25)

  1. 하기의 화학식 1의 구조를 갖는 화합물:A compound having the structure of Formula 1 below:
    [화학식 1][Formula 1]
    FPV-[J1-A2-J2-P1]a,FPV-[J 1 -A 2 -J 2 -P 1 ] a ,
    이때:At this time:
    FPV는 기능성 폴리펩티드 변이체 유닛이고, 상기 기능성 폴리펩티드 변이체 유닛은 아르기닌 디카르복실레이즈 변이체 유닛이고, 상기 아르기닌 디카르복실레이즈 변이체 유닛은 아르기닌 디카르복실레이즈 변이체로부터 유래되며, 상기 아르기닌 디카르복실레이즈 변이체는 하나 이상의 비천연 아미노산을 포함하며, FPV is a functional polypeptide variant unit, said functional polypeptide variant unit is an arginine decarboxylase variant unit, said arginine decarboxylase variant unit is derived from an arginine decarboxylase variant, said arginine decarboxylase variant contains one or more unnatural amino acids;
    이때 상기 비천연아미노산은 제1 클릭화학작용기를 포함하고, 이때 상기 제1 클릭화학작용기는 제2 클릭화학작용기와 클릭화학반응을 할 수 있으며, 이때 상기 제1 클릭화학작용기는 말단 알킨 (terminal alkyne) 그룹, 아자이드 (azide) 그룹, 스트레인된 알킨(strained alkyne) 그룹, 다이엔 (diene) 그룹, 친다이엔체 (dienophile) 그룹, 트랜스 시클로옥틴(trans-cyclooctene) 그룹, 알켄 (alkene) 그룹, 티올 (thiol) 그룹, 테트라진 (tetrazine) 그룹, 트리아진(triazine) 그룹, DBCO(dibenzocyclooctyne) 및 비시클로노닌(bicyclononyne) 그룹 중에서 선택된 어느 하나의 그룹을 포함하고, In this case, the non-natural amino acid includes a first click chemical functional group, wherein the first click chemical functional group can undergo a click chemical reaction with a second click chemical functional group, wherein the first click chemical functional group is a terminal alkyne ) group, azide group, strained alkyne group, diene group, dienophile group, trans-cyclooctene group, alkene group, Including any one group selected from a thiol group, a tetrazine group, a triazine group, a dibenzocyclooctyne (DBCO) and a bicyclononyne group,
    J1은 제1 접합 유닛이고, 상기 제1 접합 유닛은 상기 제1 클릭화학작용기와 상기 제2 클릭화학작용기의 클릭화학반응에 의해 형성된 구조를 갖고, J 1 is a first bonding unit, and the first bonding unit has a structure formed by a click chemical reaction between the first click chemical functional group and the second click chemical functional group;
    A2는 제2 앵커 모이어티이고, 상기 제2 앵커 유닛은 하나 이상의 헤테로 원자를 포함하는 치환된 탄화수소 사슬이고, A 2 is a second anchor moiety, said second anchor unit being a substituted hydrocarbon chain containing one or more heteroatoms;
    이때 상기 헤테로 원자는, 각각 독립적으로, N, O, 및 S 중에서 선택되고, 이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는, 각각 독립적으로, 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이며,In this case, the heteroatoms are each independently selected from N, O, and S, wherein the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are, each independently, halogen, C 1-3 Any one selected from the group consisting of alkyl, -NH 2 , =O, and =S,
    J2는 제2 접합 유닛이고, 이때 상기 제2 접합 유닛은 티올 반응성 그룹과 티올기의 반응에 의해 형성된 구조를 갖고, 이때 상기 티올 반응성 그룹은 말레이미드 그룹 또는 APN 그룹이고,J 2 is a second junction unit, wherein the second junction unit has a structure formed by a reaction between a thiol-reactive group and a thiol group, wherein the thiol-reactive group is a maleimide group or an APN group;
    P1은 알부민 유닛이고, 상기 알부민 유닛은 알부민으로부터 유래되며, P 1 is an albumin unit, said albumin unit being derived from albumin;
    a는 1 이상 10 이하의 정수임. a is an integer greater than or equal to 1 and less than or equal to 10;
  2. 제1항에 있어서,According to claim 1,
    상기 아르기닌 디카르복실레이즈 변이체는 10개의 아르기닌 디카르복실레이즈 서브유닛 변이체의 데카머(decamer)이고, 이때 상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 하나 이상의 비천연아미노산을 포함하는, The arginine decarboxylase variant is a decamer of 10 arginine decarboxylase subunit variants, wherein the arginine decarboxylase subunit variant comprises one or more non-natural amino acids,
    화합물. compound.
  3. 제2항에 있어서,According to claim 2,
    상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 서열과 90% 이상의 서열 동일성(identity)을 가지는 아미노산 서열을 갖는, 화합물. The arginine decarboxylase subunit variant is 39th threonine, 85th asparagine, 245th asparagine, 312th lysine, 488th glutamine of the amino acid sequence of SEQ ID NO: 01 A compound having an amino acid sequence having at least 90% sequence identity with a sequence in which any one or more residues selected from (Glutamine), lysine at position 522, and glycine at position 657 are substituted with non-natural amino acids. .
  4. 제2항에 있어서, According to claim 2,
    상기 아르기닌 디카르복실레이즈 서브유닛 변이체는 서열번호 02 내지 서열번호 08의 아미노산 서열, 및 이와 90% 이상의 서열 동일성(identity)을 갖는 아미노산 서열 중 어느 하나의 아미노산 서열을 갖는, 화합물. The arginine decarboxylase subunit variant has an amino acid sequence of any one of the amino acid sequences of SEQ ID NO: 02 to SEQ ID NO: 08, and amino acid sequences having 90% or more sequence identity therewith.
  5. 제1항에 있어서,According to claim 1,
    상기 제1 클릭화학작용기는 테트라진 그룹 또는 아자이드 그룹을 포함하는, 화합물. Wherein the first click chemical functional group comprises a tetrazine group or an azide group.
  6. 제1항에 있어서,According to claim 1,
    상기 비천연아미노산은 frTet 또는 AzF인, 화합물. Wherein the non-natural amino acid is frTet or AzF.
  7. 제1항에 있어서,According to claim 1,
    상기 제2 클릭화학작용기는 트랜스 시클로옥틴(TCO) 그룹, DBCO 그룹, 및 비시클로노닌 그룹 중 선택된 어느 하나의 그룹을 포함하는, 화합물.Wherein the second click chemical functional group comprises any one group selected from a trans cyclooctyne (TCO) group, a DBCO group, and a bicyclononine group.
  8. 제1항에 있어서, According to claim 1,
    상기 제2 클릭화학작용기는 트랜스 시클로옥틴(TCO) 그룹을 포함하는, 화합물. Wherein the second click chemofunctional group comprises a trans cyclooctyne (TCO) group.
  9. 제1항에 있어서,According to claim 1,
    상기 제2 접합 유닛은 하기의 구조를 갖는, 화합물:A compound wherein the second junction unit has the following structure:
    Figure PCTKR2022015832-appb-img-000049
    , 또는
    Figure PCTKR2022015832-appb-img-000050
    ,
    Figure PCTKR2022015832-appb-img-000049
    , or
    Figure PCTKR2022015832-appb-img-000050
    ,
    이때 상기 구조에서, S 원자는 알부민으로부터 유래됨. wherein in the above structure, the S atom is derived from albumin.
  10. 제1항에 있어서, According to claim 1,
    상기 제2 접합 유닛은 하기의 구조를 갖는, 화합물:A compound wherein the second junction unit has the following structure:
    Figure PCTKR2022015832-appb-img-000051
    ,
    Figure PCTKR2022015832-appb-img-000051
    ,
    이때 상기 구조에서, S 원자는 알부민으로부터 유래됨. wherein in the above structure, the S atom is derived from albumin.
  11. 제1항에 있어서, According to claim 1,
    상기 제2 앵커 유닛은 -A21-A22-A23- 이고, The second anchor unit is -A 21 -A 22 -A 23 -,
    이때:At this time:
    A21은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 이고, A 21 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC (=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-,
    A22는 결합(bond), 치환 또는 비치환된 C1-12 알킬렌, 치환 또는 비치환된 C1-12 헤테로알킬렌, -치환 또는 비치환된 C1-12알킬렌-[EG]n-, -치환 또는 비치환된 C1-12-헤테로알킬렌-[EG]n-, -치환 또는 비치환된 C1-12알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12알킬렌-, 및 -치환 또는 비치환된 C1-12헤테로알킬렌-[EG]n-치환 또는 비치환된 C1-12헤테로알킬렌- 중에서 선택되는 어느 하나이고, A 22 is a bond, substituted or unsubstituted C 1-12 alkylene, substituted or unsubstituted C 1-12 heteroalkylene, -substituted or unsubstituted C 1-12 alkylene-[EG] n -, -Substituted or unsubstituted C 1-12- Heteroalkylene-[EG] n -, -Substituted or unsubstituted C 1-12 Alkylene-[EG] n -Substituted or unsubstituted C 1-12 Alkylene-, -substituted or unsubstituted C 1-12 heteroalkylene-[EG] n -substituted or unsubstituted C 1-12 alkylene-, and -substituted or unsubstituted C 1-12 heteroalkylene -[EG] any one selected from n -substituted or unsubstituted C 1-12 heteroalkylene-;
    이때 EG는 에틸렌글리콜 단위체이고, 상기 에틸렌글리콜 단위체는 -CH2CH2O- 또는 -CH2OCH2-의 구조를 가지며, 이때 n은 2 이상 6 이하의 정수이고, In this case, EG is an ethylene glycol unit, and the ethylene glycol unit has a structure of -CH 2 CH 2 O- or -CH 2 OCH 2 -, where n is an integer of 2 or more and 6 or less,
    이때 상기 헤테로알킬렌은 각각 독립적으로 N, O, 및 S 중에서 선택되고,In this case, the heteroalkylene is each independently selected from N, O, and S,
    이때 상기 치환은 하나 이상의 비수소 치환기로 치환된 것으로, 상기 비수소 치환기는 각각 독립적으로 할로겐, C1-3알킬, -NH2, =O, 및 =S 로 이루어진 군에서 선택된 어느 하나이고, In this case, the substitution is substituted with one or more non-hydrogen substituents, and the non-hydrogen substituents are each independently any one selected from the group consisting of halogen, C 1-3 alkyl, -NH 2 , =O, and =S,
    A23은 결합(bond), -CH2CH2OC(=O)NH-, -CH2CH2C(=O)NH-, -CH2CH2C(=O)-, -CH2OC(=O)NH-, -CH2C(=O)NH-, -CH2C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- 또는 -C(=O)- 이고, A 23 is a bond, -CH 2 CH 2 OC(=O)NH-, -CH 2 CH 2 C(=O)NH-, -CH 2 CH 2 C(=O)-, -CH 2 OC (=O)NH-, -CH 2 C(=O)NH-, -CH 2 C(=O)-, -OC(=O)NH-, -C(=O)NH-, -NH- or -C(=O)-,
    이때, A21, A22, 및 A23 모두가 동시에 결합(bond)인 경우는 존재하지 않는, At this time, A 21 , A 22 , and A 23 When both bond (bond) at the same time does not exist,
    화합물. compound.
  12. 제1항에 있어서,According to claim 1,
    상기 제2 앵커 유닛은 하기의 구조 중 어느 하나의 구조를 갖는, 화합물:A compound wherein the second anchor unit has any one of the following structures:
    Figure PCTKR2022015832-appb-img-000052
    Figure PCTKR2022015832-appb-img-000052
    Figure PCTKR2022015832-appb-img-000053
    ;
    Figure PCTKR2022015832-appb-img-000053
    ;
    Figure PCTKR2022015832-appb-img-000054
    ; 및
    Figure PCTKR2022015832-appb-img-000054
    ; and
    Figure PCTKR2022015832-appb-img-000055
    ,
    Figure PCTKR2022015832-appb-img-000055
    ,
    이때 n은 2 이상 8 이하의 정수이고, In this case, n is an integer of 2 or more and 8 or less,
    이때 3'은 제1 접합 유닛과의 부착부(attachment site)이며, 4'은 제2 접합 유닛과의 부착부(attachment site)임. In this case, 3' is an attachment site with the first bonding unit, and 4' is an attachment site with the second bonding unit.
  13. 제1항에 있어서,According to claim 1,
    상기 알부민은 서열번호 09 내지 서열번호 20의 아미노산 서열 중 어느 하나의 아미노산 서열을 갖는, 화합물. The albumin has an amino acid sequence of any one of the amino acid sequences of SEQ ID NO: 09 to SEQ ID NO: 20, a compound.
  14. 제1항의 화합물을 포함하는, 아르기닌 영양요구성 종양을 치료하기 위한 약학적 조성물. A pharmaceutical composition for treating arginine auxotrophic tumors, comprising the compound of claim 1 .
  15. 제14항에 있어서,According to claim 14,
    상기 아르기닌 영양요구성 종양은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나인, 약학적 조성물. The arginine auxotrophic tumor is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), mammary gland ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (acute myeloid leukemia; AML), and primary and relapsed lymphoma (primary and relapsed lymphomas) any one selected from, the pharmaceutical composition.
  16. 서열번호 01의 아미노산 서열의 39번째 트레오닌(Threonine), 85번째 아스파라진(Asparagine), 245번째 아스파라진(Asparagine), 312번째 라이신(Lysine), 488번째 글루타민(Glutamine), 522번째 라이신(Lysine), 및 657번째 글리신(Glycine) 중에서 선택되는 어느 하나 이상의 잔기가 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 아르기닌 디카르복실레이즈 서브유닛 변이체.Threonine at position 39, asparagine at position 85, asparagine at position 245, lysine at position 312, glutamine at position 488, and lysine at position 522 of the amino acid sequence of SEQ ID NO: 01 , And an arginine decarboxylase subunit variant having a sequence in which any one or more residues selected from glycine at position 657 are substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith.
  17. 제16항에 있어서, According to claim 16,
    서열번호 01의 아미노산 서열의 39번째 트레오닌이 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 아르기닌 디카르복실레이즈 서브유닛 변이체. An arginine decarboxylase subunit mutant having a sequence in which threonine at position 39 of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity therewith.
  18. 제16항에 있어서, According to claim 16,
    서열번호 01의 아미노산 서열의 312번째 라이신이 비천연아미노산으로 치환된 서열, 또는 이와 90% 이상의 서열 동일성을 갖는 서열을 갖는 아르기닌 디카르복실레이즈 서브유닛 변이체. An arginine decarboxylase subunit variant having a sequence in which the 312th lysine of the amino acid sequence of SEQ ID NO: 01 is substituted with a non-natural amino acid, or a sequence having 90% or more sequence identity thereto.
  19. 제16항에 있어서,According to claim 16,
    상기 비천연아미노산은 frTet인, 아르기닌 디카르복실레이즈 서브유닛 변이체. The unnatural amino acid is frTet, an arginine decarboxylase subunit variant.
  20. 제16항에 있어서,According to claim 16,
    상기 비천연아미노산은 AzF인, 아르기닌 디카르복실레이즈 서브유닛 변이체. The arginine decarboxylase subunit variant, wherein the unnatural amino acid is AzF.
  21. 제16항에 있어서,According to claim 16,
    서열번호 02 내지 서열번호 08 중 어느 하나의 아미노산 서열 및 이와 90% 이상의 서열 동일성(identity)을 갖는 아미노산 서열 중 어느 하나의 서열을 갖는, 아르기닌 디카르복실레이즈 서브유닛 변이체. An arginine decarboxylase subunit variant having any one of the amino acid sequence of any one of SEQ ID NOs: 02 to SEQ ID NO: 08 and an amino acid sequence having 90% or more sequence identity therewith.
  22. 제16항의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하는, 아르기닌 영양요구성 종양을 치료하기 위한 약학적 조성물.A pharmaceutical composition for treating arginine auxotrophic tumors, comprising the arginine decarboxylase subunit variant of claim 16.
  23. 제22항에 있어서,The method of claim 22,
    상기 아르기닌 영양요구성 종양은 흑색종(malignant melanoma), 간암 (liver cancer), 간세포 암종(hepatocellular carcinoma; HCC), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 유방암(breast cancer), 유선종 (mammary gland cancer), 폐암 (lung cancer), 소세포 폐암(small cell lung cancer), 악성 흉막 중피종(malignant pleural mesothelioma), 두경부 편평 세포 암종(head and neck squamous cell carcinoma), 다형성 교모세포종(Glioblastoma multiforme; GBM), 급성 골수성 백혈병(acute myeloid leukemia; AML), 및 원발성 및 재발성 림프종(primary and relapsed lymphomas) 중에 선택되는 어느 하나인, 약학적 조성물. The arginine auxotrophic tumor is melanoma (malignant melanoma), liver cancer (liver cancer), hepatocellular carcinoma (HCC), prostate cancer (prostate cancer), pancreatic cancer (pancreatic cancer), breast cancer (breast cancer), mammary gland ( mammary gland cancer, lung cancer, small cell lung cancer, malignant pleural mesothelioma, head and neck squamous cell carcinoma, glioblastoma multiforme (GBM) ), acute myeloid leukemia (acute myeloid leukemia; AML), and primary and relapsed lymphoma (primary and relapsed lymphomas) any one selected from, the pharmaceutical composition.
  24. 다음을 포함하는 대상의 아르기닌 영양요구성 종양을 치료하는 방법: Methods of treating arginine auxotrophic tumors in a subject comprising:
    제1항의 화합물 또는 제16항의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하는 조성물을 대상에게 투여함. Administering a composition comprising the compound of claim 1 or the arginine decarboxylase subunit variant of claim 16 to a subject.
  25. 제1항의 화합물 또는 제16항의 아르기닌 디카르복실레이즈 서브유닛 변이체를 포함하는 조성물의 대상의 아르기닌 영양요구성 종양을 치료하기 위한 용도.Use of a composition comprising the compound of claim 1 or the arginine decarboxylase subunit variant of claim 16 for the treatment of an arginine auxotrophic tumor in a subject.
PCT/KR2022/015832 2021-10-18 2022-10-18 Arginine decarboxylase variant and functional polypeptide variant-albumin conjugate prepared using same WO2023068736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0138028 2021-10-18
KR20210138028 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068736A1 true WO2023068736A1 (en) 2023-04-27

Family

ID=86059387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015832 WO2023068736A1 (en) 2021-10-18 2022-10-18 Arginine decarboxylase variant and functional polypeptide variant-albumin conjugate prepared using same

Country Status (1)

Country Link
WO (1) WO2023068736A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061688A (en) * 2018-11-26 2020-06-03 광주과학기술원 Glucagon-like peptide-1 derivative conjugated with albumin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061688A (en) * 2018-11-26 2020-06-03 광주과학기술원 Glucagon-like peptide-1 derivative conjugated with albumin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDRÉLL JUNI, HICKS MATTHEW G., PALMER TRACY, CARPENTER ELISABETH P., IWATA SO, MAHER MEGAN J.: "Crystal Structure of the Acid-Induced Arginine Decarboxylase from Escherichia coli : Reversible Decamer Assembly Controls Enzyme Activity", BIOCHEMISTRY, vol. 48, no. 18, 12 May 2009 (2009-05-12), pages 3915 - 3927, XP093059503, ISSN: 0006-2960, DOI: 10.1021/bi900075d *
DATABASE Protein 16 December 2020 (2020-12-16), ANONYMOUS : "MULTISPECIES: arginine decarboxylase [Enterobacteriaceae] Identical Proteins FASTA Graphics", XP093059511, retrieved from ncbi Database accession no. WP_001381593 *
YANG BYUNGSEOP, KWON INCHAN: "Chemical Modification of Cysteine with 3-Arylpropriolonitrile Improves the In Vivo Stability of Albumin-Conjugated Urate Oxidase Therapeutic Protein", BIOMEDICINES, vol. 9, no. 10, 27 September 2021 (2021-09-27), pages 1334, XP093059502, DOI: 10.3390/biomedicines9101334 *
YANG BYUNGSEOP, KWON INCHAN: "Multivalent Albumin–Neonatal Fc Receptor Interactions Mediate a Prominent Extension of the Serum Half-Life of a Therapeutic Protein", MOLECULAR PHARMACEUTICS, AMERICAN CHEMICAL SOCIETY, US, vol. 18, no. 6, 7 June 2021 (2021-06-07), US , pages 2397 - 2405, XP093021165, ISSN: 1543-8384, DOI: 10.1021/acs.molpharmaceut.1c00231 *

Similar Documents

Publication Publication Date Title
WO2017116205A1 (en) Persistent conjugate of triple activator activating glucagon, glp-1 and gip receptor
AU2016287209B2 (en) Glucagon derivative and a composition comprising a long acting conjugate of the same
WO2018147641A1 (en) Non-peptidic polymeric linker compound, conjugate comprising same linker compound, and methods for preparing same linker compound and conjugate
WO2010123290A2 (en) In vivo half life increased fusion protein or peptide maintained by sustained in vivo release, and method for increasing in vivo half-life using same
WO2017155288A1 (en) Polyethylene glycol derivative and use thereof
WO2019066586A1 (en) Long-acting conjugate of glucagon-like peptide-2 (glp-2) derivative
WO2017116207A1 (en) Fgf21 analog, fgf21 conjugate, and use thereof
WO2022065913A1 (en) Uricase-albumin conjugate, preparation method therefor, and use thereof
WO2019190293A1 (en) Brain-targeting, long-acting protein conjugate, preparation method therefor, and composition comprising same
WO2019066570A1 (en) Long-acting single-chain insulin analog and conjugate thereof
WO2020153774A1 (en) Compound for preparation of antibody-payload conjugate and use thereof
WO2018174668A2 (en) Insulin analog complex with reduced affinity for insulin receptor and use thereof
WO2017030323A1 (en) Cell-permeable (cp)-δsocs3 recombinant protein and uses thereof
WO2020130749A1 (en) Pharmaceutical composition comprising insulin and triple agonist having activity with respect to all of glucagon and glp-1 and gip receptor
WO2023068736A1 (en) Arginine decarboxylase variant and functional polypeptide variant-albumin conjugate prepared using same
WO2020141923A2 (en) Pyrrolobenzodiazepine dimer compound with improved safety and use thereof
WO2023106845A1 (en) Novel adiponectin analog and conjugate
WO2023048505A1 (en) Apn group-bearing linker and functional polypeptide variant-albumin conjugate prepared using same
WO2023277574A1 (en) Method for producing urate oxidase-albumin conjugate using bcn linker and use thereof
WO2023282556A1 (en) Uricase-albumin conjugate derived from arthrobacter globiformis, method for producing same, and use thereof
WO2022164291A2 (en) Multimeric protein-albumin conjugate, preparation method therefor, and use thereof
WO2021246557A1 (en) Urate oxidase-albumin conjugate having certain number of conjugated albumins, and method for producing same
WO2020085767A1 (en) Cancer cell death composition and use thereof
WO2021194228A1 (en) Pharmaceutical composition for prevention or treatment of cancer
WO2022211537A1 (en) Novel immunoactive interleukin 2 analog conjugate and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883959

Country of ref document: EP

Kind code of ref document: A1