WO2023068347A1 - METHOD FOR PRODUCING β-METHYL-δ-VALEROLACTONE POLYMER - Google Patents

METHOD FOR PRODUCING β-METHYL-δ-VALEROLACTONE POLYMER Download PDF

Info

Publication number
WO2023068347A1
WO2023068347A1 PCT/JP2022/039198 JP2022039198W WO2023068347A1 WO 2023068347 A1 WO2023068347 A1 WO 2023068347A1 JP 2022039198 W JP2022039198 W JP 2022039198W WO 2023068347 A1 WO2023068347 A1 WO 2023068347A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
terminal
methyl
Prior art date
Application number
PCT/JP2022/039198
Other languages
French (fr)
Japanese (ja)
Inventor
宗紀 偉士大
友紀 佐野
祐作 穗坂
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023554748A priority Critical patent/JPWO2023068347A1/ja
Publication of WO2023068347A1 publication Critical patent/WO2023068347A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a method for producing a ⁇ -methyl- ⁇ -valerolactone polymer.
  • Patent Document 1 discloses a heat-stable liquid alkyl- ⁇ -valerolactone polymer and a method for producing the same. As the above production method, it is described that a hydroxyl group-containing polymer represented by a specific general formula is reacted with a cyclic ether represented by a specific general formula in the presence of an acidic catalyst.
  • the present invention provides a production method capable of producing a terminal-modified ⁇ -methyl- ⁇ -valerolactone polymer without causing a decrease in molecular weight.
  • the present inventors have conceived the following invention and found that the problems can be solved. That is, the present invention is as follows.
  • a method for producing a ⁇ -valerolactone polymer. [2] The production method according to [1] above, wherein a terminal modification reaction is performed at a reaction temperature of 20 to 80° C. after adding the terminal modifying agent. [3] The production method according to [1] or [2] above, wherein 1.0 to 20.0 molar equivalents of a terminal modifier are added to the hydroxyl groups of the alcohol compound.
  • the terminal modifier includes a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and carbon
  • the method for producing the ⁇ -methyl- ⁇ -valerolactone-based polymer (hereinafter sometimes simply referred to as “polymer”) of the present embodiment comprises mixing ⁇ -methyl- ⁇ -valerolactone with an alcohol compound or water. , a step of adding a terminal modifying agent to the reaction solution reacted with the base catalyst to carry out a terminal modifying reaction (hereinafter also referred to as a “reaction step”).
  • the above production method is characterized by adding a terminal modifying agent directly to a reaction solution obtained by reacting ⁇ -methyl- ⁇ -valerolactone, an alcohol compound or water, and a basic catalyst.
  • a terminal modifier is added to the reactor in which the ring-opening polymerization was performed without removing the ring-opening polymer once, and the terminal of the ring-opening polymer is Denaturation can be performed.
  • the reaction step since the ring-opening polymerization reaction and the terminal modification reaction are performed in one pot, the above production method can be said to be a simplified process, and an improvement in productivity can be expected.
  • Reference Example 1 of Patent Document 1 describes that the molecular weight is reduced by terminal modification.
  • ⁇ -methyl- ⁇ -valerolactone becomes a ring-opening polymer having terminal hydroxyl groups through a ring-opening polymerization reaction. Since the ring-opening polymer has a terminal hydroxyl group in this manner, depolymerization is likely to occur.
  • terminal modification of the ring-opened polymer once taken out is carried out at a relatively high temperature (about 100°C), the rate of thermal decomposition tends to increase, and the ring-opened polymer undergoes depolymerization, resulting in a decrease in molecular weight. Conceivable.
  • the molecular weight does not decrease, it is possible to obtain a high-molecular-weight polymer even though the terminal is modified.
  • Alcohol compound or water The alcohol compound that can be used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained.
  • An alcohol compound may be used individually by 1 type, and may use 2 or more types together.
  • Alcohol compounds include, for example, linear or branched aliphatic hydrocarbon alcohols having 1 to 20 carbon atoms, alcohols of aromatic hydrocarbons having 6 to 12 carbon atoms, and alkyl aromatic hydrocarbons having 7 to 12 carbon atoms. Alcohol etc. are mentioned. These alcohol compounds may have saturated or unsaturated hydrocarbon groups. In the case of the above-mentioned "alcohol of branched aliphatic hydrocarbon", the number of carbon atoms is 3-20.
  • alcohol compounds include alcohols of linear or branched aliphatic hydrocarbons having 1 to 16 carbon atoms, alcohols of aromatic hydrocarbons having 6 to 9 carbon atoms, and alkyl compounds having 7 to 10 carbon atoms.
  • Aromatic hydrocarbon alcohols are preferred, linear or branched aliphatic hydrocarbon alcohols having 1 to 10 carbon atoms are more preferred, and linear or branched aliphatic hydrocarbon alcohols having 1 to 5 carbon atoms are preferred.
  • the alcohol compound may be at least one selected from the group consisting of monoalcohols and polyhydric alcohols.
  • alcohol compounds include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1 -tridecanol, 1-tetradecanol, 1-heptadecanol, 1-hexadecanol (cetanol), 1-heptadecanol, 1-octadecanol, 1-nonadecanol, 1-icosadecanol; Ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octane Diol, 1,9-nonanediol, 1,10-decane
  • the water that can be used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained.
  • tap water, distilled water, ion-exchanged water, industrial water, deionized water, etc. can be used, and from the viewpoint of reaction efficiency, yield, etc., distilled water and ion-exchanged water are preferred.
  • Organic lithium compounds such as methyllithium, ethyllithium, propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, tert-octyllithium, n-decyllithium, phenyllithium, 2-naphthyl Lithium, 2-butylphenyllithium, 4-phenylbutyllithium, cyclohexyllithium, cyclopentyllithium and the like.
  • alkali metal hydroxide compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide and the like.
  • alkali metal hydride compounds include sodium borohydride and the like.
  • organic base compounds include amine compounds having an amidine skeleton or a guanidine skeleton.
  • amine compounds include 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), guanidine, 1,1, 3,3-tetramethylguanidine (TMG), 1,5,7-triazabicyclo[4.4.0]decan-5-ene (TBD), 7-methyl-1,5,7-triazabicyclo[ 4.4.0] decan-5-ene (MTBD) and the like.
  • DBU 1,8-diazabicyclo[5.4.0]undecene-7
  • DBN 1,5-diazabicyclo[4.3.0]nonene-5
  • TMG 1,1, 3,3-tetramethylguanidine
  • TMD 1,5,7-triazabicyclo[4.4.0]decan-5-ene
  • TBD 7-methyl-1,5,7-triazabicyclo[ 4.
  • Metal catalysts such as organomagnesium compounds and organozinc compounds can also be used as basic catalysts.
  • the base catalyst is preferably 0.005 to 1.5 molar equivalents, more preferably 0.007 to 1.2 molar equivalents, still more preferably 0.007, relative to the hydroxyl group of the alcohol compound. It is preferable to add up to 1.0 molar equivalents, more preferably 0.007 to 0.8 molar equivalents, and even more preferably 0.007 to 0.6 molar equivalents.
  • a basic catalyst in an amount of preferably 0.005 to 3.0 molar equivalents, more preferably 0.1 to 1.5 molar equivalents, relative to water.
  • ⁇ -methyl- ⁇ -valerolactone As ⁇ -methyl- ⁇ -valerolactone that can be used in this embodiment, one produced by a known method can be used. For example, it can be produced by a known method using 2-hydroxy-4-methyltetrahydropyran or the like as a raw material (JP-B-6-53691, etc.). In addition, ⁇ -methyl- ⁇ -valerolactone can be used as a commercial product, and can be used regardless of whether it is derived from petrochemicals or bio-derived.
  • Terminal modifiers that can be used in this embodiment include acid anhydrides and acid halides (acid halides are also referred to as “halogenated esters”). Acid anhydrides and acid halides are not particularly limited as long as the effects of the present invention can be obtained.
  • terminal modifiers include, for example, linear or branched alkyl groups having 1 to 20 carbon atoms, linear or branched alkenyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and carbon A terminal modifier having at least one group selected from the group consisting of 7 to 12 arylalkyl groups can be used.
  • the terminal modifier contains at least one group selected from the group consisting of linear or branched alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and arylalkyl groups having 7 to 12 carbon atoms. acid anhydrides and acid halides having The "branched alkyl group” has 3 to 20 carbon atoms, and the "branched alkenyl group” has 3 to 20 carbon atoms. Among them, from the viewpoint of handleability, the terminal modifier is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, or 6 to 9 carbon atoms.
  • an acid anhydride and acid halide having at least one group selected from the group consisting of an aryl group and an arylalkyl group having 7 to 10 carbon atoms, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms They are acid anhydrides and acid halides having at least one group selected from the group consisting of groups.
  • Specific acid anhydrides include acetic anhydride, oxalic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, glutaric anhydride, methacrylic anhydride, butyric anhydride, and isobutyric anhydride. , 1,8-naphthalic anhydride, trifluoroacetic anhydride, cyclohexanecarboxylic anhydride and the like.
  • acid halides include acetyl chloride, propionyl chloride, butyroyl chloride, trifluoroacetyl chloride, benzoyl chloride, 2-furoyl chloride, hexanoyl chloride, phenylacetyl chloride, acetyl bromide, propionyl bromide, and bromide. benzoyl and the like.
  • a terminal modifier is preferably added in an amount of 1.0 to 20.0 molar equivalents, more preferably 1.0 to 10.0 molar equivalents, still more preferably 1 to the hydroxyl group of the alcohol compound. It is preferable to add 0.0 to 8.0 molar equivalents.
  • water it is preferable to add a terminal modifier in an amount of preferably 1.0 to 20.0 molar equivalents, more preferably 1.0 to 10.0 molar equivalents, relative to water.
  • a co-catalyst may be added in the reaction step, if necessary.
  • cocatalysts that can be used include amine compounds such as triethylamine, tributylamine, trioctylamine, imidazole, pyridine, aminopyridine and 4-dimethylaminopyridine.
  • amine compounds such as triethylamine, tributylamine, trioctylamine, imidazole, pyridine, aminopyridine and 4-dimethylaminopyridine.
  • a co-catalyst can be added in an amount of 0.001 to 10 molar equivalents relative to the hydroxyl group of the alcohol compound.
  • water when water is used, the co-catalyst can be added in an amount of 0.001 to 10 molar equivalents relative to water.
  • solvent The reaction step can be performed in the presence of a solvent inert to the ring-opening polymerization reaction.
  • solvents include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene.
  • reaction temperature during the ring-opening polymerization reaction in which ⁇ -methyl- ⁇ -valerolactone, an alcohol compound or water, and a basic catalyst are reacted is usually 20 to 100°C, preferably 20°C. ⁇ 80°C, more preferably 30-80°C.
  • the reaction time is usually 1 minute to 24 hours.
  • the reaction temperature at which the terminal modification reaction is carried out is usually 20 to 80°C, preferably 30 to 80°C, more preferably 50 to 80°C. is.
  • the terminal modification reaction can proceed under relatively mild temperature conditions.
  • the reaction time is usually 1 minute to 24 hours.
  • the polymer of this embodiment can be produced through the reaction steps described above. If desired, a post-treatment step may be performed to isolate the polymer produced.
  • a suitable method can be adopted from known methods.
  • the reaction mixture after the reaction step can be washed with a reaction solvent or water, concentrated, and purified by separation and purification.
  • the separation and purification for example, methods used for separation and purification of ordinary organic compounds, such as distillation, thin film evaporation, degassing under reduced pressure, and reprecipitation, can be employed.
  • the solvent used for the reprecipitation is not particularly limited as long as it is a solvent in which the polymer is insoluble.
  • organic solvents examples include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane, and alcohols such as methanol, ethanol, and propanol.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, and octane
  • alcohols such as methanol, ethanol, and propanol.
  • hexane and methanol are preferred, and hexane is preferred when partial dissolution of a low-molecular-weight polymer is suppressed.
  • R 1 is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or It represents an aryl group of 6 to 12 or an arylalkyl group of 7 to 12 carbon atoms.
  • the "branched alkyl group” has 3 to 20 carbon atoms
  • the "branched alkenyl group” has 3 to 20 carbon atoms.
  • the linear or branched alkyl group having 1 to 20 carbon atoms is preferably a linear or branched alkyl group having 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms, from the viewpoint of handleability.
  • It is a linear or branched alkyl group, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylbutyl group, 3-methylbutyl group, n-pentyl group and 2,2-dimethylpropyl group are preferred.
  • the linear or branched alkenyl group having 2 to 20 carbon atoms is preferably a linear or branched alkenyl group having 2 to 15 carbon atoms, more preferably a linear or branched alkenyl group having 3 to 10 carbon atoms, from the viewpoint of handleability. It is a linear or branched alkenyl group, more preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
  • the aryl group having 6 to 12 carbon atoms includes a phenyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group, 2-naphthyl group and the like.
  • a phenyl group is preferred.
  • Examples of arylalkyl groups having 7 to 12 carbon atoms include phenylmethyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, phenylhexyl, naphthylmethyl and naphthylethyl groups.
  • a phenylmethyl group is preferred.
  • R 1 is, as a preferred embodiment, a linear alkyl group having 1 to 20 carbon atoms in which one hydrogen atom bonded to the terminal carbon atom is represented by the following formula (X).
  • One hydrogen atom bonded to at least one terminal carbon atom of a substituted oxygen atom-containing hydrocarbon group or a branched alkyl group having 3 to 20 carbon atoms is substituted with a group represented by the following formula (X) represents an oxygen atom-containing hydrocarbon group.
  • formula (X) the bond indicated by * bonds to a straight-chain alkyl group having 1 to 20 carbon atoms or a branched alkyl group having 3 to 20 carbon atoms.
  • the branched alkyl group having 3 to 20 carbon atoms that bonds to the above formula (X) is preferably a branched alkyl group having 3 to 15 carbon atoms, more preferably a branched alkyl group having 3 to 10 carbon atoms. , more preferably a branched alkyl group having 3 to 6 carbon atoms, and may be a branched alkyl group having 3 to 5 carbon atoms.
  • one hydrogen atom bonded to all terminal carbon atoms of the branched alkyl group having 3 to 20 carbon atoms is an oxygen atom-containing hydrocarbon group substituted with the group represented by the above formula (X).
  • m represents the average repeating number, preferably an integer of 8 to 1,000, more preferably 8 to 800, still more preferably 10 to 500, still more preferably 10 to 300.
  • the polymer can have a relatively high molecular weight, and the effects of the present invention can be favorably exhibited.
  • m is an integer of 1,000 or less, the polymer is excellent in handleability and productivity.
  • R 1 when there are a plurality of groups represented by the above formula (X), these may be the same or different.
  • a plurality of R 2 and m may be present. When two or more R 2 are present, they may be the same or different from each other. Moreover, when there are a plurality of m, these may be the same or different from each other.
  • R 1 represents an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to a terminal carbon atom in a linear alkyl group having 1 to 20 carbon atoms is substituted with a group represented by the above formula (X);
  • the following structures can be specifically exemplified as the general formula (I).
  • R 1 represents an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to a terminal carbon atom in a linear alkyl group having Q carbon atoms is replaced with a group represented by the above formula (X)
  • the above general formula (I) is represented by the following general formula (Ia).
  • Q is an integer of 1-20.
  • R 1 is an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to at least one terminal carbon atom of a branched alkyl group having 3 to 20 carbon atoms is substituted with a group represented by the above formula (X).
  • the following structures can be specifically exemplified as the general formula (I).
  • R 1 is an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to the above carbon atoms at all terminal carbon atoms of the 2-methylpropyl group is replaced with a group represented by the above formula (X);
  • the above general formula (I) is represented by the following general formula (Ic).
  • R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the above carbon atoms at two terminal carbon atoms of a 2,2-dimethylpropyl group is substituted with a group represented by the above formula (X)
  • the above general formula (I) is represented by the following general formula (Id).
  • R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the carbon atoms at the two terminal carbon atoms of the 2,2-dimethylbutyl group is replaced with a group represented by the above formula (X).
  • the above general formula (I) is represented by the following general formula (Ie).
  • R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the above carbon atoms at all terminal carbon atoms of a 2,2-dimethylpropyl group is substituted with a group represented by the above formula (X)
  • the above general formula (I) is represented by the following general formula (If).
  • R 2 is a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, Alternatively, it represents an arylalkyl group having 7 to 12 carbon atoms.
  • the "branched alkyl group” has 3 to 20 carbon atoms, and the “branched alkenyl group” has 3 to 20 carbon atoms.
  • the linear or branched alkyl group having 1 to 20 carbon atoms represented by R 2 is preferably a linear or branched alkyl group having 1 to 15 carbon atoms, more preferably carbon A linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylbutyl group, n-pentyl group and 2,2-dimethylpropyl group are preferred.
  • the linear or branched alkenyl group having 2 to 20 carbon atoms represented by R 2 is preferably a linear or branched alkenyl group having 2 to 15 carbon atoms, more preferably 3, from the viewpoint of handleability. It is a linear or branched alkenyl group having up to 10 carbon atoms, more preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
  • the aryl group having 6 to 12 carbon atoms represented by R 2 is preferably a phenyl group.
  • the arylalkyl group having 7 to 12 carbon atoms represented by R 2 is preferably a phenylmethyl group.
  • the number average molecular weight of the polymer is preferably 2,000 or more and 80,000 or less. All "number average molecular weights" described herein are standard polystyrene-equivalent number average molecular weights determined by gel permeation chromatography (GPC) measurement. A detailed measurement method can follow the method described in Examples.
  • Examples 2 to 12 A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
  • Example 13 to 16 In Example 1, the procedure was the same as in Example 1, except that the conditions were changed to those shown in Table 1, and the post-treatment steps were extraction with toluene and water, reprecipitation in a large amount of hexane, and purification under reduced pressure at 80°C under vacuum. to obtain a polymer.
  • Example 17-18 A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
  • Examples 19 to 30 A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
  • the resulting reaction solution containing the ring-opened polymer was purified by extraction with toluene and water, reprecipitation in a large amount of hexane, and drying under reduced pressure at 80°C.
  • the above purified ring-opening polymer was placed in a glass four-necked flask having an internal volume of 500 mL, 22.1 g (216 mmol) of acetic anhydride was added, and the mixture was stirred at 100°C for 6 hours to obtain a reaction solution containing the polymer. .
  • the resulting reaction solution containing the polymer was purified by extraction with toluene and water and distillation to obtain 114 g (0.06 mmol) of the polymer.
  • Comparative Example 2 A polymer was obtained in the same manner as in Comparative Example 1, except that the conditions in Comparative Example 1 were changed to those shown in Table 1.
  • the polymers obtained in Examples 1 to 18, 24, 29 and 30 and Comparative Examples 4 and 5 are represented by the above general formula (I), and R 1 , R 2 and n are as shown in Table 2. be.
  • the polymers obtained in Examples 19 to 21, 25, 26 and Comparative Examples 1 and 2 are represented by the above general formula (Ib), and R 1 , R 2 , n and m are shown in Table 2. That's right.
  • the polymers obtained in Examples 22 and 23 are represented by the above general formula (Ia), and R 1 , R 2 , n and m are as shown in Table 2.
  • the polymers obtained in Examples 27 and 28 and Comparative Example 6 are represented by the above general formula (Ie), and R 1 , R 2 , n and m are as shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for producing a β-methyl-δ-valerolactone polymer, including a step of: adding an end modifier in a reaction solution in which a β-methyl-δ-valerolactone, an alcohol compound or water, and a base catalyst have been reacted; and carrying out an end modifying reaction.

Description

β-メチル-δ-バレロラクトン系重合体の製造方法Method for producing β-methyl-δ-valerolactone polymer
 本発明は、β-メチル-δ-バレロラクトン系重合体の製造方法に関する。 The present invention relates to a method for producing a β-methyl-δ-valerolactone polymer.
 地球環境保全の見地から、幅広い分野において、製品に用いられるプラスチック材料に対し環境負荷低減が求められている。環境負荷を低減すべく、生分解性脂肪族ポリエステルをプラスチック材料に用いることが知られている。例えば、特許文献1では、熱安定性を有し液状である、アルキル-δ-バレロラクトン系重合体及びその製造法が開示されている。上記製造法として、特定の一般式で示される水酸基含有重合体を酸性触媒の存在下に、特定の一般式で示される環状エーテルと反応させることが記載されている。 From the perspective of global environmental conservation, there is a demand in a wide range of fields to reduce the environmental impact of plastic materials used in products. It is known to use biodegradable aliphatic polyester as a plastic material in order to reduce environmental load. For example, Patent Document 1 discloses a heat-stable liquid alkyl-δ-valerolactone polymer and a method for producing the same. As the above production method, it is described that a hydroxyl group-containing polymer represented by a specific general formula is reacted with a cyclic ether represented by a specific general formula in the presence of an acidic catalyst.
特開平3-181516号公報JP-A-3-181516
 特許文献1の参考例1には、ポリ(β-メチル-δ-バレロラクトン)ジオール(平均分子量:2,100)に無水酢酸を反応させ、末端が変性された重合体(平均分子量:1,700)が開示されている。しかし、上記重合体は、末端変性の際に解重合が起きて分子量が低下してしまう問題があった。このように、末端が変性されたβ-メチル-δ-バレロラクトン系重合体を製造する方法には、さらに検討する余地がある。 In Reference Example 1 of Patent Document 1, a polymer (average molecular weight: 1, 700) have been disclosed. However, the above polymer has a problem that depolymerization occurs during terminal modification, resulting in a decrease in molecular weight. Thus, there is room for further investigation on the method for producing a terminal-modified β-methyl-δ-valerolactone-based polymer.
 そこで本発明は、分子量の低下が生じず、末端変性されたβ-メチル-δ-バレロラクトン系重合体を製造することができる製造方法を提供する。 Therefore, the present invention provides a production method capable of producing a terminal-modified β-methyl-δ-valerolactone polymer without causing a decrease in molecular weight.
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、当該課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
As a result of intensive studies to solve the above problems, the present inventors have conceived the following invention and found that the problems can be solved.
That is, the present invention is as follows.
[1] β-メチル-δ-バレロラクトンと、アルコール化合物又は水と、塩基触媒とを反応させた反応液に、末端変性剤を添加して末端変性反応を行う工程を含む、β-メチル-δ-バレロラクトン系重合体の製造方法。
[2] 上記末端変性剤を添加した後、反応温度20~80℃で末端変性反応を行う、上記[1]に記載の製造方法。
[3] 上記アルコール化合物の水酸基に対し、末端変性剤を1.0~20.0モル当量添加する、上記[1]又は[2]に記載の製造方法。
[4] 上記アルコール化合物が、モノアルコール及び多価アルコールからなる群より選ばれる少なくとも1種である、上記[1]~[3]のいずれか1つに記載の製造方法。
[5] 上記末端変性剤が、酸無水物及び酸ハロゲン化物からなる群より選ばれる少なくとも1種である、上記[1]~[4]のいずれか1つに記載の製造方法。
[6] 上記末端変性剤が、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状又は分岐状アルケニル基、炭素数6~12のアリール基、及び炭素数7~12のアリールアルキル基からなる群より選ばれる少なくとも1種を有する、上記[1]~[5]のいずれか1つに記載の製造方法。
[7] 上記β-メチル-δ-バレロラクトン系重合体の数平均分子量が、1,000以上100,000以下である、上記[1]~[6]のいずれか1つに記載の製造方法。
[1] β-methyl-δ-valerolactone, an alcohol compound or water, and a base catalyst are reacted with each other, and a terminal modifier is added to the reaction mixture to carry out a terminal modification reaction. A method for producing a δ-valerolactone polymer.
[2] The production method according to [1] above, wherein a terminal modification reaction is performed at a reaction temperature of 20 to 80° C. after adding the terminal modifying agent.
[3] The production method according to [1] or [2] above, wherein 1.0 to 20.0 molar equivalents of a terminal modifier are added to the hydroxyl groups of the alcohol compound.
[4] The production method according to any one of [1] to [3] above, wherein the alcohol compound is at least one selected from the group consisting of monoalcohols and polyhydric alcohols.
[5] The production method according to any one of [1] to [4] above, wherein the terminal modifier is at least one selected from the group consisting of acid anhydrides and acid halides.
[6] The terminal modifier includes a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and carbon The production method according to any one of [1] to [5] above, which has at least one selected from the group consisting of 7 to 12 arylalkyl groups.
[7] The production method according to any one of [1] to [6] above, wherein the β-methyl-δ-valerolactone polymer has a number average molecular weight of 1,000 or more and 100,000 or less. .
 本発明によれば、分子量の低下が生じず、末端変性されたβ-メチル-δ-バレロラクトン系重合体を製造することができる製造方法を提供することができる。 According to the present invention, it is possible to provide a production method capable of producing a terminal-modified β-methyl-δ-valerolactone-based polymer without causing a decrease in molecular weight.
 以下、本発明の実施態様の一例に基づいて説明する。ただし、以下に示す実施態様は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 また本明細書において、実施態様の好ましい形態を示すが、個々の好ましい形態を2つ以上組み合わせたものもまた、好ましい形態である。数値範囲で示した事項について、いくつかの数値範囲がある場合、それらの下限値と上限値とを選択的に組み合わせて好ましい形態とすることができる。
 なお、本明細書において、「XX~YY」との数値範囲の記載がある場合、「XX以上YY以下」を意味する。「分子量」との記載がある場合、特に断りがない限り「数平均分子量」を意味する。
An example of the embodiment of the present invention will be described below. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following description.
Also, preferred forms of embodiments are indicated herein, and combinations of two or more of the individual preferred forms are also preferred forms. When there are several numerical ranges for items indicated by numerical ranges, the lower and upper limits thereof can be selectively combined to form a preferred form.
In this specification, when a numerical range is described as "XX to YY", it means "XX or more and YY or less". References to "molecular weight" mean "number average molecular weight" unless otherwise specified.
<β-メチル-δ-バレロラクトン系重合体の製造方法>
 本実施態様のβ-メチル-δ-バレロラクトン系重合体(以下、単に「重合体」と称すことがある。)の製造方法は、β-メチル-δ-バレロラクトンと、アルコール化合物又は水と、塩基触媒とを反応させた反応液に、末端変性剤を添加して末端変性反応を行う工程(以下、「反応工程」ともいう)を含む。
 上記製造方法は、β-メチル-δ-バレロラクトンと、アルコール化合物又は水と、塩基触媒とを反応させた反応液に、直接、末端変性剤を添加することを特徴とする。すなわち、β-メチル-δ-バレロラクトンを開環重合した後、一旦開環重合体を取り出すことなく、開環重合を行った反応器に末端変性剤を添加して、開環重合体の末端変性を行うことができる。反応工程は、開環重合反応と末端変性反応をワンポットで行うため、上記製造方法は、簡略化されたプロセスであるといえ、生産性向上も期待できる。
<Method for producing β-methyl-δ-valerolactone polymer>
The method for producing the β-methyl-δ-valerolactone-based polymer (hereinafter sometimes simply referred to as “polymer”) of the present embodiment comprises mixing β-methyl-δ-valerolactone with an alcohol compound or water. , a step of adding a terminal modifying agent to the reaction solution reacted with the base catalyst to carry out a terminal modifying reaction (hereinafter also referred to as a “reaction step”).
The above production method is characterized by adding a terminal modifying agent directly to a reaction solution obtained by reacting β-methyl-δ-valerolactone, an alcohol compound or water, and a basic catalyst. That is, after the ring-opening polymerization of β-methyl-δ-valerolactone, a terminal modifier is added to the reactor in which the ring-opening polymerization was performed without removing the ring-opening polymer once, and the terminal of the ring-opening polymer is Denaturation can be performed. In the reaction step, since the ring-opening polymerization reaction and the terminal modification reaction are performed in one pot, the above production method can be said to be a simplified process, and an improvement in productivity can be expected.
 ここで、特許文献1の参考例1には、末端変性により分子量が低下することが記載されている。
 通常、β-メチル-δ-バレロラクトンは開環重合反応により、末端に水酸基を有する開環重合体となる。このように開環重合体が末端に水酸基を有することで、解重合を起こしやすくなる。一旦取り出した開環重合体の末端変性は、比較的高温(100℃程度)で行われるため、熱分解速度も高くなる傾向にあり、開環重合体は解重合を起こして分子量が低下したと考えられる。
 一方、本実施態様の製造方法であれば、分子量の低下が生じないので、末端が変性されているにもかかわらず、高分子量の重合体とすることも可能である。
Here, Reference Example 1 of Patent Document 1 describes that the molecular weight is reduced by terminal modification.
Usually, β-methyl-δ-valerolactone becomes a ring-opening polymer having terminal hydroxyl groups through a ring-opening polymerization reaction. Since the ring-opening polymer has a terminal hydroxyl group in this manner, depolymerization is likely to occur. Since terminal modification of the ring-opened polymer once taken out is carried out at a relatively high temperature (about 100°C), the rate of thermal decomposition tends to increase, and the ring-opened polymer undergoes depolymerization, resulting in a decrease in molecular weight. Conceivable.
On the other hand, according to the production method of the present embodiment, since the molecular weight does not decrease, it is possible to obtain a high-molecular-weight polymer even though the terminal is modified.
〈反応工程〉
[アルコール化合物又は水]
 本実施態様において用いることができるアルコール化合物としては、本発明の効果が得られる限りにおいて、特に限定されない。アルコール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 アルコール化合物は、例えば、炭素数1~20の直鎖状又は分岐状脂肪族炭化水素のアルコール、炭素数6~12の芳香族炭化水素のアルコール、炭素数7~12のアルキル芳香族炭化水素のアルコール等が挙げられる。これらアルコール化合物は、飽和又は不飽和炭化水素基を有してもよい。なお、上記「分岐状脂肪族炭化水素のアルコール」の場合、炭素数は3~20である。
 アルコール化合物は、取り扱い性の観点から、炭素数1~16の直鎖状又は分岐状脂肪族炭化水素のアルコール、炭素数6~9の芳香族炭化水素のアルコール、及び炭素数7~10のアルキル芳香族炭化水素のアルコールが好ましく、炭素数1~10の直鎖状又は分岐状脂肪族炭化水素のアルコールがより好ましく、炭素数1~5の直鎖状又は分岐状脂肪族炭化水素のアルコールであってもよい。
 また、アルコール化合物は、モノアルコール及び多価アルコールからなる群より選ばれる少なくとも1種であってもよい。
<Reaction process>
[Alcohol compound or water]
The alcohol compound that can be used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained. An alcohol compound may be used individually by 1 type, and may use 2 or more types together.
Alcohol compounds include, for example, linear or branched aliphatic hydrocarbon alcohols having 1 to 20 carbon atoms, alcohols of aromatic hydrocarbons having 6 to 12 carbon atoms, and alkyl aromatic hydrocarbons having 7 to 12 carbon atoms. Alcohol etc. are mentioned. These alcohol compounds may have saturated or unsaturated hydrocarbon groups. In the case of the above-mentioned "alcohol of branched aliphatic hydrocarbon", the number of carbon atoms is 3-20.
From the viewpoint of ease of handling, alcohol compounds include alcohols of linear or branched aliphatic hydrocarbons having 1 to 16 carbon atoms, alcohols of aromatic hydrocarbons having 6 to 9 carbon atoms, and alkyl compounds having 7 to 10 carbon atoms. Aromatic hydrocarbon alcohols are preferred, linear or branched aliphatic hydrocarbon alcohols having 1 to 10 carbon atoms are more preferred, and linear or branched aliphatic hydrocarbon alcohols having 1 to 5 carbon atoms are preferred. There may be.
Also, the alcohol compound may be at least one selected from the group consisting of monoalcohols and polyhydric alcohols.
 アルコール化合物として、例えば、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-オクタノール、1-ノナノール、1-デカノール、1-ウンデカノーオール、1-ドデカノール、1-トリデカノール、1-テトラデカノール、1-ヘプタデカノール、1-ヘキサデカノール(セタノール)、1-ヘプタデカノール、1-オクタデカノール、1-ノナデカノール、1-イコサデカノール;
 エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,15-ヘプタデカンジオール、1,16-ヘキサデカンジオール、1,17-ヘプタデカンジオール、1,18-オクタデカンジオール、1,19-ノナデカンジオール、1,20-イコサデカンジオール;
 イソプロパノール、1-メチルプロパノール、2-メチルプロパノール、t-ブタノール、1,1-ジメチルプロパノール、2,2-ジメチルプロパノール、1,2-ジメチルプロパノール、1-エチルプロパノール、2-エチルプロパノール、1,1-ジエチルプロパノール、1-メチルブタノール、2-メチルブタノール、3-メチルブタノール(イソアミルアルコール)、1,1-ジメチルブタノール、2,2-ジメチルブタノール、3,3-ジメチルブタノール、1,3,3-トリメチルブタノール、1-エチルブタノール、2-エチルブタノール、3,3-ジメチルブタノール、1-プロピルブタノール、1-メチルペンタノール、2-メチルペンタノール、3-メチルペンタノール、4-メチルペンタノール、4,4-ジメチルペンタノール、1-エチルペンタノール、2-エチルペンタノール、3-エチルペンタノール、4-エチルペンタノール、1-プロピルペンタノール、2-プロピルペンタノール、1-ブチルペンタノール、1-メチルヘキサノール、2-メチルヘキサノール、3-メチルヘキサノール、4-メチルヘキサノール、5-メチルヘキサノール、5,5-ジメチルヘキサノール、1-エチルヘキサノール、2-エチルヘキサノール、3-エチルヘキサノール、4-エチルヘキサノール、1-プロピルヘキサノール、2-プロピルヘキサノール、3-プロピルヘキサノール、1-ブチルヘキサノール、2-ブチルヘキサノール、1-メチルヘキサノール、2-メチルヘキサノール、3-メチルヘプタノール、4-メチルヘプタノール、5-メチルヘプタノール、6-メチルヘプタノール、6,6-ジメチルヘプタノール、1-エチルヘプタノール、2-エチルヘプタノール、3-エチルヘプタノール、4-エチルヘプタノール、5-エチルヘプタノール、1-プロピルヘプタノール、2-プロピルヘプタノール、3-プロピルヘプタノール、1-メチルオクチノール、2-メチルオクチノール、3-メチルオクチノール、4-メチルオクチノール、5-メチルオクチノール、6-メチルオクチノール、7-メチルオクチノール、7,7-ジメチルオクチノール、1-エチルオクチノール、2-エチルオクチノール、3-エチルオクチノール、4-エチルオクチノール、5-エチルオクチノール、6-エチルオクチノール、1-メチルノナノール、2-メチルノナノール、3-メチルノナノール、4-メチルノナノール、5-メチルノナノール、6-メチルノナノール、7-メチルノナノール、8-メチルノナノール、3,5,5-トリメチルヘキサノール;
 プロピレングリコール、ネオペンチルグリコール、ペンタグリセロール(トリメチロールエタン)、ペンタエリスリトール;等が挙げられる。
Examples of alcohol compounds include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1 -tridecanol, 1-tetradecanol, 1-heptadecanol, 1-hexadecanol (cetanol), 1-heptadecanol, 1-octadecanol, 1-nonadecanol, 1-icosadecanol;
Ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octane Diol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,15-hepta decanediol, 1,16-hexadecanediol, 1,17-heptadecanediol, 1,18-octadecanediol, 1,19-nonadecanediol, 1,20-icosadecanediol;
isopropanol, 1-methylpropanol, 2-methylpropanol, t-butanol, 1,1-dimethylpropanol, 2,2-dimethylpropanol, 1,2-dimethylpropanol, 1-ethylpropanol, 2-ethylpropanol, 1,1 -diethylpropanol, 1-methylbutanol, 2-methylbutanol, 3-methylbutanol (isoamyl alcohol), 1,1-dimethylbutanol, 2,2-dimethylbutanol, 3,3-dimethylbutanol, 1,3,3- trimethylbutanol, 1-ethylbutanol, 2-ethylbutanol, 3,3-dimethylbutanol, 1-propylbutanol, 1-methylpentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol, 4 , 4-dimethylpentanol, 1-ethylpentanol, 2-ethylpentanol, 3-ethylpentanol, 4-ethylpentanol, 1-propylpentanol, 2-propylpentanol, 1-butylpentanol, 1 -methylhexanol, 2-methylhexanol, 3-methylhexanol, 4-methylhexanol, 5-methylhexanol, 5,5-dimethylhexanol, 1-ethylhexanol, 2-ethylhexanol, 3-ethylhexanol, 4-ethylhexanol , 1-propylhexanol, 2-propylhexanol, 3-propylhexanol, 1-butylhexanol, 2-butylhexanol, 1-methylhexanol, 2-methylhexanol, 3-methylheptanol, 4-methylheptanol, 5- methylheptanol, 6-methylheptanol, 6,6-dimethylheptanol, 1-ethylheptanol, 2-ethylheptanol, 3-ethylheptanol, 4-ethylheptanol, 5-ethylheptanol, 1- Propylheptanol, 2-propylheptanol, 3-propylheptanol, 1-methyloctinol, 2-methyloctinol, 3-methyloctinol, 4-methyloctinol, 5-methyloctinol, 6-methyloctinol Nol, 7-methyloctinol, 7,7-dimethyloctinol, 1-ethyloctinol, 2-ethyloctinol, 3-ethyloctinol, 4-ethyloctinol, 5-ethyloctinol, 6-ethyloctinol Nol, 1-methylnonanol, 2-methylnonanol, 3-methylnonanol, 4-methylnonanol, 5-methylnonanol, 6-methylnonanol, 7-methylnonanol, 8-methylnonanol, 3,5,5-trimethylhexanol;
propylene glycol, neopentyl glycol, pentaglycerol (trimethylolethane), pentaerythritol; and the like.
 本実施態様において用いることができる水としては、本発明の効果が得られる限りにおいて特に限定されない。例えば、水道水、蒸留水、イオン交換水、工業用水、脱イオン水等を用いることができ、反応効率及び収率等の観点から、蒸留水、イオン交換水が好ましい。 The water that can be used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained. For example, tap water, distilled water, ion-exchanged water, industrial water, deionized water, etc. can be used, and from the viewpoint of reaction efficiency, yield, etc., distilled water and ion-exchanged water are preferred.
[塩基触媒]
 本実施態様において用いることができる塩基触媒としては、アルカリ金属及びアルカリ金属化合物等の金属触媒、並びに、有機塩基化合物等が挙げられる。塩基触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Base catalyst]
Base catalysts that can be used in the present embodiment include metal catalysts such as alkali metals and alkali metal compounds, organic base compounds, and the like. The basic catalyst may be used alone or in combination of two or more.
 アルカリ金属の中でも、リチウムが好ましい。
 アルカリ金属化合物としては、有機アルカリ金属化合物、水酸化アルカリ金属化合物、水素化アルカリ金属化合物等が挙げられる。
 有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。
 有機リチウム化合物として、例えば、メチルリチウム、エチルリチウム、プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム等が挙げられる。
Among alkali metals, lithium is preferred.
Examples of alkali metal compounds include organic alkali metal compounds, alkali metal hydroxide compounds, alkali metal hydride compounds, and the like.
As the organic alkali metal compound, an organic lithium compound is preferred.
Organic lithium compounds such as methyllithium, ethyllithium, propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, tert-octyllithium, n-decyllithium, phenyllithium, 2-naphthyl Lithium, 2-butylphenyllithium, 4-phenylbutyllithium, cyclohexyllithium, cyclopentyllithium and the like.
 水酸化アルカリ金属化合物として、例えば、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム等が挙げられる。
 水素化アルカリ金属化合物として、例えば、水素化ホウ素ナトリウム等が挙げられる。
Examples of alkali metal hydroxide compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide and the like.
Examples of alkali metal hydride compounds include sodium borohydride and the like.
 有機塩基化合物としては、例えば、アミジン骨格又はグアニジン骨格を有するアミン化合物が挙げられる。アミン化合物として、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、グアニジン、1,1,3,3-テトラメチルグアニジン(TMG)、1,5,7-トリアザビシクロ[4.4.0]デカン-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカン-5-エン(MTBD)等が挙げられる。 Examples of organic base compounds include amine compounds having an amidine skeleton or a guanidine skeleton. Examples of amine compounds include 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), guanidine, 1,1, 3,3-tetramethylguanidine (TMG), 1,5,7-triazabicyclo[4.4.0]decan-5-ene (TBD), 7-methyl-1,5,7-triazabicyclo[ 4.4.0] decan-5-ene (MTBD) and the like.
 また、塩基触媒として、有機マグネシウム化合物及び有機亜鉛化合物等の金属触媒を用いることもできる。 Metal catalysts such as organomagnesium compounds and organozinc compounds can also be used as basic catalysts.
 反応工程において、アルコールを用いる場合、アルコール化合物の水酸基に対し、塩基触媒を好ましくは0.005~1.5モル当量、より好ましくは0.007~1.2モル当量、さらに好ましくは0.007~1.0モル当量、よりさらに好ましくは0.007~0.8モル当量、よりさらに好ましくは0.007~0.6モル当量添加することが好ましい。また、水を用いる場合、水に対し、塩基触媒を好ましくは0.005~3.0モル当量、より好ましくは0.1~1.5モル当量添加することが好ましい。 In the reaction step, when alcohol is used, the base catalyst is preferably 0.005 to 1.5 molar equivalents, more preferably 0.007 to 1.2 molar equivalents, still more preferably 0.007, relative to the hydroxyl group of the alcohol compound. It is preferable to add up to 1.0 molar equivalents, more preferably 0.007 to 0.8 molar equivalents, and even more preferably 0.007 to 0.6 molar equivalents. When water is used, it is preferable to add a basic catalyst in an amount of preferably 0.005 to 3.0 molar equivalents, more preferably 0.1 to 1.5 molar equivalents, relative to water.
[β-メチル-δ-バレロラクトン]
 本実施態様において用いることができるβ-メチル-δ-バレロラクトンとしては、公知の方法により製造したものを用いることができる。例えば、2-ヒドロキシ-4-メチルテトラヒドロピラン等を原料として、公知の方法により製造することができる(特公平6-53691号等)。
 また、β-メチル-δ-バレロラクトンは、市販品を用いることもできるし、石化由来であるか、バイオ由来であるかを問わず用いることができる。
 反応工程において、アルコールを用いる場合、アルコール化合物の水酸基に対し、β-メチル-δ-バレロラクトンを好ましくは5~1,500モル当量、より好ましくは5~1,000モル当量添加することが好ましい。また、水を用いる場合、水に対し、β-メチル-δ-バレロラクトンを好ましくは5~1,500モル当量、より好ましくは5~1,000モル当量添加することが好ましい。
[β-methyl-δ-valerolactone]
As β-methyl-δ-valerolactone that can be used in this embodiment, one produced by a known method can be used. For example, it can be produced by a known method using 2-hydroxy-4-methyltetrahydropyran or the like as a raw material (JP-B-6-53691, etc.).
In addition, β-methyl-δ-valerolactone can be used as a commercial product, and can be used regardless of whether it is derived from petrochemicals or bio-derived.
In the reaction step, when alcohol is used, it is preferable to add β-methyl-δ-valerolactone in an amount of preferably 5 to 1,500 molar equivalents, more preferably 5 to 1,000 molar equivalents, relative to the hydroxyl group of the alcohol compound. . When water is used, it is preferable to add β-methyl-δ-valerolactone in an amount of preferably 5 to 1,500 molar equivalents, more preferably 5 to 1,000 molar equivalents, relative to water.
[末端変性剤]
 本実施態様において用いることができる末端変性剤としては、酸無水物及び酸ハロゲン化物(酸ハロゲン化物は「ハロゲン化エステル」ともいう)等が挙げられる。酸無水物及び酸ハロゲン化物としては、本発明の効果が得られる限りにおいて、特に限定されない。
 また、末端変性剤は、例えば、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状又は分岐状アルケニル基、炭素数6~12のアリール基、及び炭素数7~12のアリールアルキル基からなる群より選ばれる少なくとも1つの基を有する末端変性剤を用いることができる。末端変性剤は、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数6~12のアリール基、及び炭素数7~12のアリールアルキル基からなる群より選ばれる少なくとも1つの基を有する酸無水物及び酸ハロゲン化物であってもよい。なお、上記「分岐状アルキル基」の場合、炭素数は3~20であり、上記「分岐状アルケニル基」の場合、炭素数は3~20である。
 中でも、取り扱い性の観点から、末端変性剤は、好ましくは炭素数1~10の直鎖状又は分岐状アルキル基、炭素数2~10の直鎖状又は分岐状アルケニル基、炭素数6~9のアリール基、及び炭素数7~10のアリールアルキル基からなる群より選ばれる少なくとも1つの基を有する酸無水物及び酸ハロゲン化物、より好ましくは炭素数1~5の直鎖状又は分岐状アルキル基からなる群より選ばれる少なくとも1つの基を有する酸無水物及び酸ハロゲン化物である。
[Terminal modifier]
Terminal modifiers that can be used in this embodiment include acid anhydrides and acid halides (acid halides are also referred to as “halogenated esters”). Acid anhydrides and acid halides are not particularly limited as long as the effects of the present invention can be obtained.
In addition, terminal modifiers include, for example, linear or branched alkyl groups having 1 to 20 carbon atoms, linear or branched alkenyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and carbon A terminal modifier having at least one group selected from the group consisting of 7 to 12 arylalkyl groups can be used. The terminal modifier contains at least one group selected from the group consisting of linear or branched alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 12 carbon atoms, and arylalkyl groups having 7 to 12 carbon atoms. acid anhydrides and acid halides having The "branched alkyl group" has 3 to 20 carbon atoms, and the "branched alkenyl group" has 3 to 20 carbon atoms.
Among them, from the viewpoint of handleability, the terminal modifier is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, or 6 to 9 carbon atoms. and an acid anhydride and acid halide having at least one group selected from the group consisting of an aryl group and an arylalkyl group having 7 to 10 carbon atoms, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms They are acid anhydrides and acid halides having at least one group selected from the group consisting of groups.
 酸無水物として具体的には、無水酢酸、無水シュウ酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水グルタル酸、無水メタクリル酸、無水酪酸、無水イソ酪酸、1,8-ナフタル酸無水物、トリフルオロ酢酸無水物、シクロヘキサンカルボン酸無水物等が挙げられる。
 酸ハロゲン化物として具体的には、塩化アセチル、塩化プロピオニル、塩化ブチロイル、塩化トリフルオロアセチル、塩化ベンゾイル、2-フロイルクロリド、ヘキサノイルクロリド、フェニルアセチルクロリド、臭化アセチル、臭化プロピオニル、臭化ベンゾイル等が挙げられる。
 反応工程において、アルコールを用いる場合、アルコール化合物の水酸基に対し、末端変性剤を好ましくは1.0~20.0モル当量、より好ましくは1.0~10.0モル当量、よりさらに好ましくは1.0~8.0モル当量添加することが好ましい。また、水を用いる場合、水に対し、末端変性剤を好ましくは1.0~20.0モル当量、より好ましくは1.0~10.0モル当量添加することが好ましい。
Specific acid anhydrides include acetic anhydride, oxalic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, glutaric anhydride, methacrylic anhydride, butyric anhydride, and isobutyric anhydride. , 1,8-naphthalic anhydride, trifluoroacetic anhydride, cyclohexanecarboxylic anhydride and the like.
Specific examples of acid halides include acetyl chloride, propionyl chloride, butyroyl chloride, trifluoroacetyl chloride, benzoyl chloride, 2-furoyl chloride, hexanoyl chloride, phenylacetyl chloride, acetyl bromide, propionyl bromide, and bromide. benzoyl and the like.
In the reaction step, when alcohol is used, a terminal modifier is preferably added in an amount of 1.0 to 20.0 molar equivalents, more preferably 1.0 to 10.0 molar equivalents, still more preferably 1 to the hydroxyl group of the alcohol compound. It is preferable to add 0.0 to 8.0 molar equivalents. When water is used, it is preferable to add a terminal modifier in an amount of preferably 1.0 to 20.0 molar equivalents, more preferably 1.0 to 10.0 molar equivalents, relative to water.
[助触媒]
 反応工程において、必要に応じ、助触媒を添加してもよい。
 助触媒としては、例えば、トリエチルアミン、トリブチルアミン、トリオクチルアミン、イミダゾール、ピリジン、アミノピリジン、4-ジメチルアミノピリジン等のアミン化合物等を用いることができる。
 反応工程において、アルコールを用いる場合、アルコール化合物の水酸基に対し、助触媒を0.001~10モル当量添加することができる。また、水を用いる場合、水に対し、助触媒を0.001~10モル当量添加することができる。
[Promoter]
A co-catalyst may be added in the reaction step, if necessary.
Examples of cocatalysts that can be used include amine compounds such as triethylamine, tributylamine, trioctylamine, imidazole, pyridine, aminopyridine and 4-dimethylaminopyridine.
When alcohol is used in the reaction step, a co-catalyst can be added in an amount of 0.001 to 10 molar equivalents relative to the hydroxyl group of the alcohol compound. Also, when water is used, the co-catalyst can be added in an amount of 0.001 to 10 molar equivalents relative to water.
[溶媒]
 反応工程は、開環重合反応に不活性な溶媒の存在下で行うことができる。溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。
[solvent]
The reaction step can be performed in the presence of a solvent inert to the ring-opening polymerization reaction. Examples of solvents include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene.
[反応条件]
 反応工程において、β-メチル-δ-バレロラクトンと、アルコール化合物又は水と、塩基触媒とを反応させる開環重合反応の際の反応温度は、通常20~100℃であればよく、好ましくは20~80℃、より好ましくは30~80℃である。反応時間は通常1分~24時間である。
 また、反応工程において反応液に末端変性剤を添加した後、末端変性反応を行う際の反応温度は通常20~80℃であればよく、好ましくは30~80℃、より好ましくは50~80℃である。比較的温和な温度条件で末端変性反応を進行させることができる。反応時間は通常1分~24時間である。
[Reaction conditions]
In the reaction step, the reaction temperature during the ring-opening polymerization reaction in which β-methyl-δ-valerolactone, an alcohol compound or water, and a basic catalyst are reacted is usually 20 to 100°C, preferably 20°C. ~80°C, more preferably 30-80°C. The reaction time is usually 1 minute to 24 hours.
In the reaction step, after adding the terminal modifying agent to the reaction solution, the reaction temperature at which the terminal modification reaction is carried out is usually 20 to 80°C, preferably 30 to 80°C, more preferably 50 to 80°C. is. The terminal modification reaction can proceed under relatively mild temperature conditions. The reaction time is usually 1 minute to 24 hours.
〈後処理工程〉
 上記反応工程を経ることにより、本実施態様の重合体を製造することができる。必要に応じて、製造した重合体を単離するために後処理工程を行ってもよい。
 後処理工程としては、公知の方法から好適な方法を採用することができる。例えば、反応工程後の反応混合物を、反応溶媒や水を用いて洗浄した後、濃縮し、分離精製により精製することができる。
 分離精製としては、例えば、蒸留、薄膜蒸発、減圧脱気、及び再沈殿等の通常の有機化合物の分離精製に用いられる方法を採用することができる。上記再沈殿に用いる溶媒は、重合体が不溶な溶媒であれば特に制限されず、例えば、有機溶媒、水、及びこれらの混合溶媒を用いることができる。有機溶媒として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、メタノール、エタノール、及びプロパノール等のアルコールが挙げられる。中でもヘキサン及びメタノールが好ましく、低分子量の重合体を部分溶解するのを抑制する場合は、ヘキサンが好ましい。
<Post-treatment process>
The polymer of this embodiment can be produced through the reaction steps described above. If desired, a post-treatment step may be performed to isolate the polymer produced.
As the post-treatment step, a suitable method can be adopted from known methods. For example, the reaction mixture after the reaction step can be washed with a reaction solvent or water, concentrated, and purified by separation and purification.
As the separation and purification, for example, methods used for separation and purification of ordinary organic compounds, such as distillation, thin film evaporation, degassing under reduced pressure, and reprecipitation, can be employed. The solvent used for the reprecipitation is not particularly limited as long as it is a solvent in which the polymer is insoluble. For example, organic solvents, water, and mixed solvents thereof can be used. Examples of organic solvents include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane, and alcohols such as methanol, ethanol, and propanol. Among them, hexane and methanol are preferred, and hexane is preferred when partial dissolution of a low-molecular-weight polymer is suppressed.
<β-メチル-δ-バレロラクトン系重合体>
 上述した本実施態様の製造方法により製造されるβ-メチル-δ-バレロラクトン系重合体は、好ましい実施態様の一つとして、下記一般式(I)で表すことができる。
<β-methyl-δ-valerolactone polymer>
The β-methyl-δ-valerolactone-based polymer produced by the production method of the present embodiment described above can be represented by the following general formula (I) as one of preferred embodiments.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Rは、好ましい態様として、水素原子、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状又は分岐状アルケニル基、炭素数6~12のアリール基、又は、炭素数7~12のアリールアルキル基を示す。なお、上記「分岐状アルキル基」の場合、炭素数は3~20であり、上記「分岐状アルケニル基」の場合、炭素数は3~20である。
 炭素数1~20の直鎖状又は分岐状アルキル基は、取り扱い性の観点から、好ましくは炭素数1~16の直鎖状又は分岐状アルキル基であり、より好ましくは炭素数1~10の直鎖状又は分岐状アルキル基であり、さらに好ましくは炭素数1~5の直鎖状又は分岐状アルキル基である。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルブチル基、3-メチルブチル基、n-ペンチル基、2,2-ジメチルプロピル基が好ましい。
In general formula (I), R 1 is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or It represents an aryl group of 6 to 12 or an arylalkyl group of 7 to 12 carbon atoms. The "branched alkyl group" has 3 to 20 carbon atoms, and the "branched alkenyl group" has 3 to 20 carbon atoms.
The linear or branched alkyl group having 1 to 20 carbon atoms is preferably a linear or branched alkyl group having 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms, from the viewpoint of handleability. It is a linear or branched alkyl group, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylbutyl group, 3-methylbutyl group, n-pentyl group and 2,2-dimethylpropyl group are preferred.
 炭素数2~20の直鎖状又は分岐状アルケニル基は、取り扱い性の観点から、好ましくは炭素数2~15の直鎖状又は分岐状アルケニル基であり、より好ましくは3~10の直鎖状又は分岐状アルケニル基であり、さらに好ましくは炭素数3~6の直鎖状又は分岐状アルケニル基である。 The linear or branched alkenyl group having 2 to 20 carbon atoms is preferably a linear or branched alkenyl group having 2 to 15 carbon atoms, more preferably a linear or branched alkenyl group having 3 to 10 carbon atoms, from the viewpoint of handleability. It is a linear or branched alkenyl group, more preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
 炭素数6~12のアリール基としては、フェニル基、2-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-ナフチル基等が挙げられる。好ましくはフェニル基である。
 炭素数7~12のアリールアルキル基としては、フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。好ましくはフェニルメチル基である。
The aryl group having 6 to 12 carbon atoms includes a phenyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group, 2-naphthyl group and the like. A phenyl group is preferred.
Examples of arylalkyl groups having 7 to 12 carbon atoms include phenylmethyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, phenylhexyl, naphthylmethyl and naphthylethyl groups. A phenylmethyl group is preferred.
 またRは、上記置換基の他に好ましい態様として、炭素数1~20の直鎖状アルキル基における末端の炭素原子に結合する1つの水素原子が下記式(X)で表される基で置換された酸素原子含有炭化水素基、又は、炭素数3~20の分岐状アルキル基の少なくとも1つの末端の炭素原子に結合する1つの水素原子が下記式(X)で表される基で置換された酸素原子含有炭化水素基を示す。式(X)中、*で示される結合手は、炭素数1~20の直鎖状アルキル基又は炭素数3~20の分岐状アルキル基と結合する。 In addition to the above substituents, R 1 is, as a preferred embodiment, a linear alkyl group having 1 to 20 carbon atoms in which one hydrogen atom bonded to the terminal carbon atom is represented by the following formula (X). One hydrogen atom bonded to at least one terminal carbon atom of a substituted oxygen atom-containing hydrocarbon group or a branched alkyl group having 3 to 20 carbon atoms is substituted with a group represented by the following formula (X) represents an oxygen atom-containing hydrocarbon group. In formula (X), the bond indicated by * bonds to a straight-chain alkyl group having 1 to 20 carbon atoms or a branched alkyl group having 3 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(X)中のRは、後述するRと同義である。
 上記式(X)と結合する炭素数1~20の直鎖状アルキル基は、好ましくは炭素数1~15の直鎖状アルキル基であり、より好ましくは炭素数1~10の直鎖状アルキル基であり、さらに好ましくは炭素数2~10の直鎖状アルキル基であり、よりさらに好ましくは炭素数2~5の直鎖状アルキル基である。
 上記式(X)と結合する炭素数3~20の分岐状アルキル基は、好ましくは炭素数3~15の分岐状アルキル基であり、より好ましくは炭素数3~10の分岐状アルキル基であり、さらに好ましくは炭素数3~6の分岐状アルキル基であり、炭素数3~5の分岐状アルキル基であってもよい。
 また、炭素数3~20の分岐状アルキル基の全ての末端の炭素原子に結合する1つの水素原子が、上記式(X)で表される基で置換された酸素原子含有炭化水素基であってもよい。
R 2 in the above formula (X) has the same meaning as R 2 described later.
The linear alkyl group having 1 to 20 carbon atoms that bonds to the above formula (X) is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. group, more preferably a straight-chain alkyl group having 2 to 10 carbon atoms, and even more preferably a straight-chain alkyl group having 2 to 5 carbon atoms.
The branched alkyl group having 3 to 20 carbon atoms that bonds to the above formula (X) is preferably a branched alkyl group having 3 to 15 carbon atoms, more preferably a branched alkyl group having 3 to 10 carbon atoms. , more preferably a branched alkyl group having 3 to 6 carbon atoms, and may be a branched alkyl group having 3 to 5 carbon atoms.
Further, one hydrogen atom bonded to all terminal carbon atoms of the branched alkyl group having 3 to 20 carbon atoms is an oxygen atom-containing hydrocarbon group substituted with the group represented by the above formula (X). may
 mは平均繰り返し数を示し、好ましくは8~1,000の整数であり、より好ましくは8~800、さらに好ましくは10~500、よりさらに好ましくは10~300である。mが8以上の整数であると、比較的分子量の高い重合体になり得、本発明の効果を好適に表すことができる。また、mが1,000以下の整数であれば、重合体の取り扱い性及び生産性に優れる。
 Rにおいて、上記式(X)で表される基が複数存在する場合、これらは同一であってもよく、互いに異なっていてもよい。
 上記式(I)において、R及びmは複数存在することがある。Rが複数存在する場合、これらは同一であってもよく、互いに異なっていてもよい。また、mが複数存在する場合、これらは同一であってもよく、互いに異なっていてもよい。
m represents the average repeating number, preferably an integer of 8 to 1,000, more preferably 8 to 800, still more preferably 10 to 500, still more preferably 10 to 300. When m is an integer of 8 or more, the polymer can have a relatively high molecular weight, and the effects of the present invention can be favorably exhibited. Moreover, when m is an integer of 1,000 or less, the polymer is excellent in handleability and productivity.
In R 1 , when there are a plurality of groups represented by the above formula (X), these may be the same or different.
In formula (I) above, a plurality of R 2 and m may be present. When two or more R 2 are present, they may be the same or different from each other. Moreover, when there are a plurality of m, these may be the same or different from each other.
 Rが、炭素数1~20の直鎖状アルキル基における末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)として具体的に次の構造が例示できる。
〈例1〉
 Rが、炭素数Qの直鎖状アルキル基における末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-a)で表される。ただし、Qは1~20の整数である。
R 1 represents an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to a terminal carbon atom in a linear alkyl group having 1 to 20 carbon atoms is substituted with a group represented by the above formula (X); In this case, the following structures can be specifically exemplified as the general formula (I).
<Example 1>
When R 1 represents an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to a terminal carbon atom in a linear alkyl group having Q carbon atoms is replaced with a group represented by the above formula (X), The above general formula (I) is represented by the following general formula (Ia). However, Q is an integer of 1-20.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
〈例2〉
 Rが、エチル基における末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-b)で表される。
<Example 2>
When R 1 represents an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to the terminal carbon atom in the ethyl group is replaced with a group represented by the above formula (X), the above general formula (I) is It is represented by the following general formula (Ib).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 Rが、炭素数3~20の分岐状アルキル基の少なくとも1つの末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)として具体的に次の構造が例示できる。
〈例3〉
 Rが、2-メチルプロピル基の全ての末端の炭素原子における、上記炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-c)で表される。
R 1 is an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to at least one terminal carbon atom of a branched alkyl group having 3 to 20 carbon atoms is substituted with a group represented by the above formula (X). When showing, the following structures can be specifically exemplified as the general formula (I).
<Example 3>
R 1 is an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to the above carbon atoms at all terminal carbon atoms of the 2-methylpropyl group is replaced with a group represented by the above formula (X); When shown, the above general formula (I) is represented by the following general formula (Ic).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〈例4〉
 Rが、2,2-ジメチルプロピル基の2つの末端の炭素原子における、上記炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-d)で表される。
<Example 4>
R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the above carbon atoms at two terminal carbon atoms of a 2,2-dimethylpropyl group is substituted with a group represented by the above formula (X) When representing a group, the above general formula (I) is represented by the following general formula (Id).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〈例5〉
 Rが、2,2-ジメチルブチル基の2つの末端の炭素原子における、上記炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-e)で表される。
<Example 5>
R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the carbon atoms at the two terminal carbon atoms of the 2,2-dimethylbutyl group is replaced with a group represented by the above formula (X). When representing a group, the above general formula (I) is represented by the following general formula (Ie).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〈例6〉
 Rが、2,2-ジメチルプロピル基の全ての末端の炭素原子における、上記炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基を示す場合、上記一般式(I)は次の一般式(I-f)で表される。
<Example 6>
R 1 is an oxygen atom-containing hydrocarbon in which one hydrogen atom bonded to the above carbon atoms at all terminal carbon atoms of a 2,2-dimethylpropyl group is substituted with a group represented by the above formula (X) When representing a group, the above general formula (I) is represented by the following general formula (If).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 Rは、反応効率の観点から、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状アルケニル基、炭素数6~12のアリール基、炭素数7~12のアリールアルキル基、炭素数1~20の直鎖状アルキル基における末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基、又は、炭素数3~20の分岐状アルキル基の少なくとも1つの末端の炭素原子に結合する1つの水素原子が上記式(X)で表される基で置換された酸素原子含有炭化水素基であることが好ましい。 R 1 is, from the viewpoint of reaction efficiency, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. 12 arylalkyl groups, oxygen atom-containing hydrocarbon groups in which one hydrogen atom bonded to a terminal carbon atom in a straight-chain alkyl group having 1 to 20 carbon atoms is substituted with a group represented by the above formula (X) , or an oxygen atom-containing hydrocarbon group in which one hydrogen atom bonded to at least one terminal carbon atom of a branched alkyl group having 3 to 20 carbon atoms is substituted with a group represented by the above formula (X) Preferably.
 一般式(I)中、Rは、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状又は分岐状アルケニル基、炭素数6~12のアリール基、又は、炭素数7~12のアリールアルキル基を示す。なお、上記「分岐状アルキル基」の場合、炭素数は3~20であり、上記「分岐状アルケニル基」の場合、炭素数は3~20である。
 Rが示す、炭素数1~20の直鎖状又は分岐状アルキル基は、取り扱い性の観点から、好ましくは炭素数1~15の直鎖状又は分岐状アルキル基であり、より好ましくは炭素数1~10の直鎖状又は分岐状アルキル基であり、さらに好ましくは炭素数1~5の直鎖状又は分岐状アルキル基である。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルブチル基、n-ペンチル基、2,2-ジメチルプロピル基が好ましい。
 Rが示す、炭素数2~20の直鎖状又は分岐状アルケニル基は、取り扱い性の観点から、好ましくは炭素数2~15の直鎖状又は分岐状アルケニル基であり、より好ましくは3~10の直鎖状又は分岐状アルケニル基であり、さらに好ましくは炭素数3~6の直鎖状又は分岐状アルケニル基である。
 Rが示す、炭素数6~12のアリール基は、フェニル基が好ましい。
 Rが示す、炭素数7~12のアリールアルキル基は、フェニルメチル基が好ましい。
In general formula (I), R 2 is a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, Alternatively, it represents an arylalkyl group having 7 to 12 carbon atoms. The "branched alkyl group" has 3 to 20 carbon atoms, and the "branched alkenyl group" has 3 to 20 carbon atoms.
The linear or branched alkyl group having 1 to 20 carbon atoms represented by R 2 is preferably a linear or branched alkyl group having 1 to 15 carbon atoms, more preferably carbon A linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylbutyl group, n-pentyl group and 2,2-dimethylpropyl group are preferred.
The linear or branched alkenyl group having 2 to 20 carbon atoms represented by R 2 is preferably a linear or branched alkenyl group having 2 to 15 carbon atoms, more preferably 3, from the viewpoint of handleability. It is a linear or branched alkenyl group having up to 10 carbon atoms, more preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
The aryl group having 6 to 12 carbon atoms represented by R 2 is preferably a phenyl group.
The arylalkyl group having 7 to 12 carbon atoms represented by R 2 is preferably a phenylmethyl group.
 nは平均繰り返し数を示し、好ましくは8~1,000の整数であり、より好ましくは8~800、さらに好ましくは10~500、よりさらに好ましくは10~300である。nが8以上の整数であると、比較的分子量の高い重合体になり得、本発明の効果を好適に表すことができる。また、nが1,000以下の整数であれば、重合体の取り扱い性及び生産性に優れる。 n represents the average repetition number, preferably an integer of 8 to 1,000, more preferably 8 to 800, still more preferably 10 to 500, still more preferably 10 to 300. When n is an integer of 8 or more, the polymer can have a relatively high molecular weight, and the effects of the present invention can be favorably exhibited. Moreover, when n is an integer of 1,000 or less, the polymer is excellent in handleability and productivity.
(数平均分子量)
 重合体の数平均分子量は、本発明の効果を損なわない範囲において特に制限されない。重合体の数平均分子量は、例えば、1,000以上100,000以下にすることができる。一方で、比較的分子量の高い重合体になり得、本発明の効果を好適に表すことができる観点から、重合体の数平均分子量は、好ましくは2,000以上であり、2,500以上であってもよく、3,000以上であってもよい。また、生産性の観点から、重合体の数平均分子量は、好ましくは80,000以下、さらに好ましくは50,000以下である。すなわち、重合体の数平均分子量は、好ましくは2,000以上80,000以下である。
 本明細書に記載の「数平均分子量」は全て、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の数平均分子量である。詳細な測定方法は、実施例に記載の方法に従うことができる。
(Number average molecular weight)
The number average molecular weight of the polymer is not particularly limited as long as it does not impair the effects of the present invention. The number average molecular weight of the polymer can be, for example, 1,000 or more and 100,000 or less. On the other hand, the number average molecular weight of the polymer is preferably 2,000 or more, preferably 2,500 or more, from the viewpoint that the polymer can have a relatively high molecular weight and can suitably exhibit the effects of the present invention. It may be 3,000 or more. Moreover, from the viewpoint of productivity, the number average molecular weight of the polymer is preferably 80,000 or less, more preferably 50,000 or less. That is, the number average molecular weight of the polymer is preferably 2,000 or more and 80,000 or less.
All "number average molecular weights" described herein are standard polystyrene-equivalent number average molecular weights determined by gel permeation chromatography (GPC) measurement. A detailed measurement method can follow the method described in Examples.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.
<測定及び評価方法>
 以下の方法により、各種物性を測定又は評価した。
<Measurement and evaluation method>
Various physical properties were measured or evaluated by the following methods.
[数平均分子量]
 実施例及び比較例で得られた、末端変性反応前の開環重合体(封止前)と末端変性反応後の重合体(封止後)をそれぞれ試料とし、ゲル浸透クロマトグラフィー(GPC)により標準ポリスチレン換算分子量として、数平均分子量(Mn)を求めた。具体的な測定方法は次のとおりである。
[Number average molecular weight]
The ring-opening polymer before terminal modification reaction (before blocking) and the polymer after terminal modification reaction (after blocking) obtained in Examples and Comparative Examples were used as samples, respectively, and were analyzed by gel permeation chromatography (GPC). A number average molecular weight (Mn) was obtained as a standard polystyrene equivalent molecular weight. A specific measuring method is as follows.
〈Mn15,000未満の場合〉
 Mnが15,000未満の試料は、以下に従い測定した。
 テトラヒドロフラン(THF)溶液を溶離液として用いた。試料を樹脂換算で10mg計量し、1mLの上記溶離液に溶解させた。該溶液を0.2μmのメンブランフィルターを通して測定サンプルを作製した。測定条件は以下のとおりとした。
(測定条件)
装置:HLC-EcoSEC8320GPC(東ソー株式会社製)
カラム:KF-803 KF-802.5 KF-802(昭和電工株式会社製)3本を直列に連結した。
溶離液:テトラヒドロフラン
流速:0.9mL/分
サンプル注入量:30μL
カラム温度:40℃
標準ポリスチレン:東ソー株式会社製PSt Oligomer Kit(分子量589~98,900)を用いて3次式で近似した。
検出器:RI検出器
<When Mn is less than 15,000>
Samples with Mn less than 15,000 were measured according to the following.
A tetrahydrofuran (THF) solution was used as the eluent. 10 mg of the sample was weighed in terms of resin and dissolved in 1 mL of the above eluent. The solution was passed through a 0.2 μm membrane filter to prepare a measurement sample. The measurement conditions were as follows.
(Measurement condition)
Apparatus: HLC-EcoSEC8320GPC (manufactured by Tosoh Corporation)
Column: KF-803 KF-802.5 Three KF-802 (manufactured by Showa Denko KK) were connected in series.
Eluent: Tetrahydrofuran Flow rate: 0.9 mL/min Sample injection volume: 30 μL
Column temperature: 40°C
Standard polystyrene: PSt Oligomer Kit manufactured by Tosoh Corporation (molecular weight 589-98,900) was used and approximated by a cubic equation.
Detector: RI detector
〈Mn15,000以上の場合〉
 Mnが15,000の以上の試料は、以下に従い測定した。
 テトラヒドロフラン(THF)溶液を溶離液として用いた。試料を樹脂換算で1.0mg計量し、1mLの上記溶離液に溶解させた。該溶液を0.2μmのメンブランフィルターを通して測定サンプルを作製した。測定条件は以下のとおりとした。
(測定条件)
装置:HLC-8220GPC(東ソー株式会社製)
カラム:TSK-gel SuperMultiporeHZ-M(東ソー株式会社製)2本を直列に連結した。
溶離液:テトラヒドロフラン
流速:0.35mL/分
サンプル注入量:10μL
カラム温度:40℃
標準ポリスチレン:ジーエルサイエンス株式会社製ポリスチレン分子量スタンダード(分子量580~1,214,000)を用いて3次式で近似した。
検出器:RI検出器
<When Mn is 15,000 or more>
Samples with Mn greater than 15,000 were measured according to the following.
A tetrahydrofuran (THF) solution was used as the eluent. 1.0 mg of the sample in terms of resin was weighed and dissolved in 1 mL of the above eluent. The solution was passed through a 0.2 μm membrane filter to prepare a measurement sample. The measurement conditions were as follows.
(Measurement condition)
Apparatus: HLC-8220GPC (manufactured by Tosoh Corporation)
Column: Two TSK-gel Super Multipore HZ-M (manufactured by Tosoh Corporation) were connected in series.
Eluent: Tetrahydrofuran Flow rate: 0.35 mL/min Sample injection volume: 10 μL
Column temperature: 40°C
Standard polystyrene: Polystyrene molecular weight standards (molecular weight 580 to 1,214,000) manufactured by GL Sciences Co., Ltd. were used and approximated by a cubic equation.
Detector: RI detector
[末端水酸基転化率]
 末端変性反応前後のポリβ-メチル-δ-バレロラクトンの水酸基転化率は、実施例及び比較例に記載の開環重合体(水酸基封止前)と末端変性反応後の重合体(水酸基封止後)をそれぞれ試料とし、H-NMRにより求めた。具体的な測定方法は次のとおりである。
 装置: ECX-400(日本電子株式会社製)
 溶媒: 重クロロホルム
 算出方法: ポリβ-メチル-δ-バレロラクトンの主鎖連鎖[-CH-O(C=O)]強度に対する、ポリβ-メチル-δ-バレロラクトンの末端水酸基に隣接するメチレンピーク(-CH-OH)強度比を算出し、反応前後の強度比から転化率を算出した。
[Conversion rate of terminal hydroxyl group]
The hydroxyl group conversion rate of poly β-methyl-δ-valerolactone before and after the terminal modification reaction is the same as the ring-opened polymer (before hydroxyl group capping) described in Examples and Comparative Examples and the polymer after the terminal modification reaction (hydroxyl group capping). After) were used as samples, respectively, and determined by 1 H-NMR. A specific measuring method is as follows.
Device: ECX-400 (manufactured by JEOL Ltd.)
Solvent: deuterated chloroform Calculation method: Adjacent to the terminal hydroxyl group of poly β-methyl-δ-valerolactone relative to the main chain chain [-CH 2 -O(C=O)] strength of poly β-methyl-δ-valerolactone A methylene peak ( --CH.sub.2 --OH) intensity ratio was calculated, and a conversion rate was calculated from the intensity ratio before and after the reaction.
[実施例1]
(1)反応工程
 内容積500mLのガラス製4口フラスコを窒素置換し、イソアミルアルコールを7.9g(90ミリモル)、β-メチル-δ-バレロラクトンを231g(2,025ミリモル)投入して60℃に昇温した。そこへn-ブチルリチウム(1.6Mヘキサン溶液)を0.84mL加え、60℃で60分撹拌した。
 次いで上記ガラス製4口フラスコに無水酢酸11.0g(108ミリモル)と、5.5gのβ-メチル-δ-バレロラクトンに溶解させた4-ジメチルアミノピリジン0.55g(4.5ミリモル)を入れ、60℃で60分撹拌し、重合体を含む反応溶液を得た。
(2)後処理工程
 得られた重合体を含む反応溶液を、トルエンと水による抽出、及び薄膜蒸発器(装置名:分子蒸留装置 MS-300、柴田科学株式会社製)により精製することで、重合体155g(0.04ミリモル)を得た。
 上記反応工程の反応条件、ポリβ-メチル-δ-バレロラクトンの水酸基転化率、数平均分子量を表1に示す。
 また、得られた重合体は、前述の一般式(I)で示され、R、R、nは表2に示すとおりである。
[Example 1]
(1) Reaction step A glass four-necked flask with an internal volume of 500 mL was purged with nitrogen, and 7.9 g (90 mmol) of isoamyl alcohol and 231 g (2,025 mmol) of β-methyl-δ-valerolactone were added to obtain 60 °C. 0.84 mL of n-butyllithium (1.6 M hexane solution) was added thereto, and the mixture was stirred at 60° C. for 60 minutes.
Then, 11.0 g (108 mmol) of acetic anhydride and 0.55 g (4.5 mmol) of 4-dimethylaminopyridine dissolved in 5.5 g of β-methyl-δ-valerolactone were placed in the above glass four-necked flask. and stirred at 60° C. for 60 minutes to obtain a reaction solution containing a polymer.
(2) Post-treatment step The obtained reaction solution containing the polymer is extracted with toluene and water, and purified by a thin film evaporator (device name: molecular distillation apparatus MS-300, manufactured by Shibata Scientific Co., Ltd.), 155 g (0.04 mmol) of polymer were obtained.
Table 1 shows the reaction conditions of the above reaction steps, the hydroxyl group conversion rate of poly-β-methyl-δ-valerolactone, and the number average molecular weight.
Further, the obtained polymer is represented by the general formula (I) described above, and R 1 , R 2 and n are as shown in Table 2.
[実施例2~12]
 実施例1において、表1に示す条件に変更した以外は、実施例1と同様にして、重合体を得た。
[Examples 2 to 12]
A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
[実施例13~16]
 実施例1において、表1に示す条件に変更しかつ後処理工程をトルエンと水による抽出、多量ヘキサンへの再沈殿、及び80℃真空下減圧乾燥により精製した以外は、実施例1と同様にして、重合体を得た。
[Examples 13 to 16]
In Example 1, the procedure was the same as in Example 1, except that the conditions were changed to those shown in Table 1, and the post-treatment steps were extraction with toluene and water, reprecipitation in a large amount of hexane, and purification under reduced pressure at 80°C under vacuum. to obtain a polymer.
[実施例17~18]
 実施例1において、表1に示す条件に変更した以外は、実施例1と同様にして、重合体を得た。
[Examples 17-18]
A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
[実施例19~30]
 実施例1において、表1に示す条件に変更した以外は、実施例1と同様にして、重合体を得た。
[Examples 19 to 30]
A polymer was obtained in the same manner as in Example 1, except that the conditions were changed to those shown in Table 1.
[比較例1]
 内容積500mLのガラス製4口フラスコを窒素置換し、エチレングリコールを5.6g(90ミリモル)、β-メチル-δ-バレロラクトンを231g(2025ミリモル)投入して60℃に昇温した。そこへn-ブチルリチウム(1.6Mヘキサン溶液)を0.78mL加え、60℃で60分撹拌し、開環重合反応を行った。
 得られた開環重合体を含む反応溶液を、トルエンと水による抽出、多量ヘキサンへの再沈殿、及び80℃真空下減圧乾燥により精製した。
 内容積500mLのガラス製4口フラスコに、上記精製した開環重合体を入れ、無水酢酸22.1g(216ミリモル)を入れ、100℃で6時間撹拌し、重合体を含む反応溶液を得た。
 得られた重合体を含む反応溶液を、トルエンと水による抽出、及び蒸留により精製することで、重合体114g(0.06ミリモル)を得た。
[Comparative Example 1]
A four-necked glass flask with an internal volume of 500 mL was purged with nitrogen, 5.6 g (90 mmol) of ethylene glycol and 231 g (2025 mmol) of β-methyl-δ-valerolactone were added, and the temperature was raised to 60°C. 0.78 mL of n-butyllithium (1.6 M hexane solution) was added thereto, and the mixture was stirred at 60° C. for 60 minutes to carry out ring-opening polymerization reaction.
The resulting reaction solution containing the ring-opened polymer was purified by extraction with toluene and water, reprecipitation in a large amount of hexane, and drying under reduced pressure at 80°C.
The above purified ring-opening polymer was placed in a glass four-necked flask having an internal volume of 500 mL, 22.1 g (216 mmol) of acetic anhydride was added, and the mixture was stirred at 100°C for 6 hours to obtain a reaction solution containing the polymer. .
The resulting reaction solution containing the polymer was purified by extraction with toluene and water and distillation to obtain 114 g (0.06 mmol) of the polymer.
[比較例2]
 比較例1において、表1に示す条件に変更した以外は、比較例1と同様にして、重合体を得た。
[Comparative Example 2]
A polymer was obtained in the same manner as in Comparative Example 1, except that the conditions in Comparative Example 1 were changed to those shown in Table 1.
[比較例3]
 内容積500mLのガラス製4口フラスコを窒素置換し、エチレングリコールを5.6g(90ミリモル)、β-メチル-δ-バレロラクトンを231g(2,025ミリモル)投入して60℃に昇温した。そこへn-ブチルリチウム(1.6Mヘキサン溶液)を0.84mL加え、60℃で60分撹拌し、開環重合反応を行った。
 得られた重合体を含む反応溶液を、トルエンと水による抽出、及び薄膜蒸発器により精製することで、重合体135g(0.04ミリモル)を得た。
 得られた重合体は、下記構造式(II)で示され、n、mは表2に示すとおりである。
Figure JPOXMLDOC01-appb-C000009
[Comparative Example 3]
A four-necked glass flask with an internal volume of 500 mL was purged with nitrogen, 5.6 g (90 mmol) of ethylene glycol and 231 g (2,025 mmol) of β-methyl-δ-valerolactone were charged, and the temperature was raised to 60°C. . 0.84 mL of n-butyl lithium (1.6 M hexane solution) was added thereto, and the mixture was stirred at 60° C. for 60 minutes to carry out ring-opening polymerization reaction.
The resulting reaction solution containing the polymer was extracted with toluene and water and purified by a thin film evaporator to obtain 135 g (0.04 mmol) of the polymer.
The obtained polymer is represented by the following structural formula (II), where n and m are as shown in Table 2.
Figure JPOXMLDOC01-appb-C000009
[比較例4~6]
 比較例1において、表1に示す条件に変更した以外は、比較例1と同様にして、重合体を得た。
[Comparative Examples 4 to 6]
A polymer was obtained in the same manner as in Comparative Example 1, except that the conditions in Comparative Example 1 were changed to those shown in Table 1.
 実施例1~18,24,29,30及び比較例4,5で得られた重合体は、前述の一般式(I)で示され、R、R、nは表2に示すとおりである。
 実施例19~21,25,26及び比較例1,2で得られた重合体は、前述の一般式(I-b)で示され、R、R、n、mは表2に示すとおりである。
 実施例22,23で得られた重合体は、前述の一般式(I-a)で示され、R、R、n、mは表2に示すとおりである。
 実施例27,28及び比較例6で得られた重合体は、前述の一般式(I-e)で示され、R、R、n、mは表2に示すとおりである。
The polymers obtained in Examples 1 to 18, 24, 29 and 30 and Comparative Examples 4 and 5 are represented by the above general formula (I), and R 1 , R 2 and n are as shown in Table 2. be.
The polymers obtained in Examples 19 to 21, 25, 26 and Comparative Examples 1 and 2 are represented by the above general formula (Ib), and R 1 , R 2 , n and m are shown in Table 2. That's right.
The polymers obtained in Examples 22 and 23 are represented by the above general formula (Ia), and R 1 , R 2 , n and m are as shown in Table 2.
The polymers obtained in Examples 27 and 28 and Comparative Example 6 are represented by the above general formula (Ie), and R 1 , R 2 , n and m are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2中の表記は次のとおりである。
・Rの欄において、「X」は前述の式(X)を示す。
・Rの欄において、「n-Pr」はn-プロピル基を示す。
・Rの欄において、「Ph」はフェニル基を示す。
The notations in Table 2 are as follows.
- In the column of R 1 , "X" represents the above formula (X).
・In the column of R 2 , “n-Pr” indicates an n-propyl group.
- In the R2 column, "Ph" indicates a phenyl group.
 実施例において、分子量の低下が生じず、比較的高分子量の末端変性されたβ-メチル-δ-バレロラクトン系重合体を製造することができた。また、ワンポットで製造を行うことができ簡便であり、比較的温和な温度条件で反応を進行さることができた。 In the examples, it was possible to produce a terminal-modified β-methyl-δ-valerolactone polymer with a relatively high molecular weight without causing a decrease in molecular weight. In addition, it was easy to carry out the production in one pot, and the reaction was able to proceed under relatively mild temperature conditions.
 本実施態様の製造方法は、特に、比較的高分子量の末端変性されたβ-メチル-δ-バレロラクトン系重合体の製造に好適である。 The production method of this embodiment is particularly suitable for producing a terminal-modified β-methyl-δ-valerolactone polymer with a relatively high molecular weight.

Claims (7)

  1.  β-メチル-δ-バレロラクトンと、アルコール化合物又は水と、塩基触媒とを反応させた反応液に、末端変性剤を添加して末端変性反応を行う工程を含む、β-メチル-δ-バレロラクトン系重合体の製造方法。 β-methyl-δ-valero, comprising a step of adding a terminal modifier to a reaction solution obtained by reacting β-methyl-δ-valerolactone, an alcohol compound or water, and a basic catalyst to carry out a terminal modification reaction. A method for producing a lactone polymer.
  2.  前記末端変性剤を添加した後、反応温度20~80℃で末端変性反応を行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein after adding the terminal modifier, a terminal modification reaction is performed at a reaction temperature of 20 to 80°C.
  3.  前記アルコール化合物の水酸基に対し、末端変性剤を1.0~20.0モル当量添加する、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein 1.0 to 20.0 molar equivalents of a terminal modifier are added to the hydroxyl groups of the alcohol compound.
  4.  前記アルコール化合物が、モノアルコール及び多価アルコールからなる群より選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the alcohol compound is at least one selected from the group consisting of monoalcohols and polyhydric alcohols.
  5.  前記末端変性剤が、酸無水物及び酸ハロゲン化物からなる群より選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the terminal modifier is at least one selected from the group consisting of acid anhydrides and acid halides.
  6.  前記末端変性剤が、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数2~20の直鎖状又は分岐状アルケニル基、炭素数6~12のアリール基、及び炭素数7~12のアリールアルキル基からなる群より選ばれる少なくとも1種を有する、請求項1~5のいずれか1項に記載の製造方法。 The terminal modifying agent includes a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 7 carbon atoms. The production method according to any one of claims 1 to 5, having at least one selected from the group consisting of 12 arylalkyl groups.
  7.  前記β-メチル-δ-バレロラクトン系重合体の数平均分子量が、1,000以上100,000以下である、請求項1~6のいずれか1項に記載の製造方法。

     
    The production method according to any one of claims 1 to 6, wherein the β-methyl-δ-valerolactone polymer has a number average molecular weight of 1,000 or more and 100,000 or less.

PCT/JP2022/039198 2021-10-22 2022-10-20 METHOD FOR PRODUCING β-METHYL-δ-VALEROLACTONE POLYMER WO2023068347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554748A JPWO2023068347A1 (en) 2021-10-22 2022-10-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173309 2021-10-22
JP2021-173309 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023068347A1 true WO2023068347A1 (en) 2023-04-27

Family

ID=86058320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039198 WO2023068347A1 (en) 2021-10-22 2022-10-20 METHOD FOR PRODUCING β-METHYL-δ-VALEROLACTONE POLYMER

Country Status (3)

Country Link
JP (1) JPWO2023068347A1 (en)
TW (1) TW202328272A (en)
WO (1) WO2023068347A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215720A (en) * 1987-03-03 1988-09-08 Kuraray Co Ltd Production of functional group-terminated lactone polymer
JPH0228216A (en) * 1988-07-15 1990-01-30 Kuraray Co Ltd Production of modified polyamide(imide)
JPH03181516A (en) * 1989-12-08 1991-08-07 Kuraray Co Ltd Production of alkyl-delta-valerolactone-based polymer and production thereof
WO1996033233A1 (en) * 1995-04-19 1996-10-24 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
WO2020186126A1 (en) * 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Multi-amine polyester dispersant made via an anhydride intermediate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215720A (en) * 1987-03-03 1988-09-08 Kuraray Co Ltd Production of functional group-terminated lactone polymer
JPH0228216A (en) * 1988-07-15 1990-01-30 Kuraray Co Ltd Production of modified polyamide(imide)
JPH03181516A (en) * 1989-12-08 1991-08-07 Kuraray Co Ltd Production of alkyl-delta-valerolactone-based polymer and production thereof
WO1996033233A1 (en) * 1995-04-19 1996-10-24 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
WO2020186126A1 (en) * 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Multi-amine polyester dispersant made via an anhydride intermediate

Also Published As

Publication number Publication date
TW202328272A (en) 2023-07-16
JPWO2023068347A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
CN111909366B (en) Method for preparing polyester by catalyzing ring-opening alternate copolymerization of cyclic anhydride/epoxide through potassium acetate
JP2559150B2 (en) Vinyl ether end group ester from bis (hydroxyalkyl) cycloalkane
JP5113045B2 (en) Isotactic specific catalysts for the direct production of high isotactic poly (propylene oxide) or high isotactic poly (butylene oxide)
CN104817691B (en) Polyene ether compounds and preparation method thereof
Wang et al. Immortal ring-opening polymerization of ε-caprolactone by a neat magnesium catalyst system: an approach to obtain block and amphiphilic star polymers in situ
CN107417899A (en) Ring-opening polymerization method of cyclic compound
Hall et al. Synthesis of a series of cyclic oligo (alkylidene isophthalate) s by cyclo-depolymerisation
CN108570151B (en) Polymonothiocarbonate-polyester copolymer, preparation method and application
JPH0768336B2 (en) Process for producing polyether copolymer having oligooxyethylene side chain
JP6625990B2 (en) Method for producing polyolefin ionomers and ionomers produced thereby
Kramer et al. Fluorinated β-lactones and poly (β-hydroxyalkanoate) s: synthesis via epoxide carbonylation and ring-opening polymerization
WO2023068347A1 (en) METHOD FOR PRODUCING β-METHYL-δ-VALEROLACTONE POLYMER
JP3871447B2 (en) Polymerization catalyst composition for propylene oxide
KR20140125736A (en) Unsaturated polycarbonate diol, procedure to obtain such polycarbonate diol and its use
JP5868326B2 (en) Novel divinyl ether compound and process for producing the same
CN113583245B (en) Hyperbranched poly (benzoic acid ester) and preparation method and application thereof
JPS6335659B2 (en)
Miao et al. A novel approach for synthesis of poly (norbornene)‐co‐poly (styrene) block copolymers via metathesis polymerization and free‐radical polymerization
JP2010059378A (en) Method for producing fluorine-containing ester
JPS58174419A (en) Novel polyester copolymer
CN115838453B (en) Polymer heteronuclear porphyrin complex and preparation method and application thereof
JPH0449847B2 (en)
US6177539B1 (en) Aliphatic polyester and process for the production thereof
Choi et al. Synthesis of Polyesters from Terephthalaldehyde and Isophthalaldehyde through Tishchenko Reaction Catalyzed by the Ethylmagnesium Bromide-(−)-Sparteine Complex and Aluminum Alkoxides
US11059939B2 (en) Dicyclopentadiene derivatives and polymers thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE