WO2023068205A1 - Production method of indigestible rice, and indigestible rice - Google Patents

Production method of indigestible rice, and indigestible rice Download PDF

Info

Publication number
WO2023068205A1
WO2023068205A1 PCT/JP2022/038435 JP2022038435W WO2023068205A1 WO 2023068205 A1 WO2023068205 A1 WO 2023068205A1 JP 2022038435 W JP2022038435 W JP 2022038435W WO 2023068205 A1 WO2023068205 A1 WO 2023068205A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
hours
indigestible
heat treatment
resistant
Prior art date
Application number
PCT/JP2022/038435
Other languages
French (fr)
Japanese (ja)
Inventor
幸春 小川
スカニア ツェンタン
一鏑 蔡
亦辰 丁
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Publication of WO2023068205A1 publication Critical patent/WO2023068205A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products

Definitions

  • the present invention relates to a method for producing resistant rice, and resistant rice.
  • cooked rice maintains its structure as a seed, so the increase in blood sugar level is mild compared to bread and noodles.
  • cooked rice is a staple food in many Asian countries, and rice as a staple food is consumed in a large amount per meal (1 slice of bread: about 60 g (sugar 27 g), 1 bowl of rice: about 140 g (sugar Quality 55g)), the absolute amount of absorbed carbohydrates tends to increase.
  • the number of patients with lifestyle-related diseases such as diabetes is increasing as the standard of living improves. Therefore, there is a demand for cooked rice foods in which the digestion and absorption of carbohydrates are slow.
  • Patent Document 2 describes rice cooked by immersing mutant rice in a suspension of unsalted miso and then high-pressure treatment at 1000 atmospheres or more
  • Patent Document 3 describes amylose synthase I and amylopectin branching enzymes.
  • Mutant rice has been proposed that is deficient indigestible. The use of mutant rice is based on changes in the biological characteristics of the plant species rice. There are a certain number of people who feel aversion to foods that use genetically modified ingredients, and development of mutant rice as a food depends on social tolerance.
  • Patent Document 1 since this mutant rice is inevitably inferior in taste, in Patent Document 1, the amount of water added when cooking rice is doubled or more than usual, and in Patent Document 2, the amino acids of miso give flavor, and furthermore, the pressure is 1000 atmospheres or more. The taste is improved by breaking the cell walls of the rice by adding pressure. In addition, the mutated rice of Patent Document 3 becomes cooked rice that feels sticky like glutinous rice after cooking.
  • Patent Documents 4 to 8 propose cooked rice with reduced digestibility by adding indigestible polysaccharides such as indigestible dextrin, polysaccharides, and konnyaku grains during cooking. These are products in which a portion of rice is replaced with indigestible polysaccharides, and since indigestible polysaccharides are more expensive than rice, it is a heavy financial burden to continuously consume them.
  • Patent document 9 proposes a method for producing slow-digesting starch recombinant instant rice by combining protease hydrolysis, acetic anhydride esterification, and extruder extrusion compression molding technology using rice flour after solid amorphization treatment as a raw material. There is This method is a method of producing grain-like starch by extrusion compression molding with an extruder, and the product produced is different from rice.
  • Patent Document 10 uncooked rice is immersed in a preparation liquid containing lactic acid bacteria having a high ability to produce polysaccharide thickeners, polysaccharide thickeners are produced in the rice tissue structure, and then edible rice is sealed.
  • a method for producing diet rice by moist heat heating has been proposed.
  • Patent Documents 11 to 13 describe a method for producing low-calorie cooked rice in which uncooked rice treated by the same method as in Patent Document 10 is filled in a packaging pack and heated with moist heat to convert part of the starch into resistant starch. is proposed.
  • the methods described in Patent Documents 10 to 13 may spoil if bacteria are mixed (contamination) during fermentation with lactic acid bacteria, so sterilization of the equipment used for fermentation and contamination with bacteria floating in the air.
  • An object of the present invention is to provide a novel method for producing resistant rice and resistant rice.
  • Means for solving the problems of the present invention are as follows.
  • a method for producing indigestible rice comprising a heat treatment step of subjecting uncooked rice to heat treatment under any one or more of the following conditions (1) to (3).
  • 2. Characterized in that the heat treatment step (1) or (2) is performed at 68° C. or lower.
  • the heat treatment step (2) is performed in hot water for 12 hours or less. or 2. 3.
  • the heat treatment step (3) is performed at a temperature elevation rate of 0.5° C./second or more.
  • the method for producing indigestible rice according to . 5. An indigestible rice produced through a heat treatment step in which uncooked rice is subjected to a heat treatment under any one or more of the following conditions (1) to (3).
  • An indigestible rice characterized by having a digestion rate constant that is reduced by 10% or more as evaluated in a simulated digestion test as compared with untreated rice that has not been heat-treated.
  • a resistant rice characterized by having an amount of resistant starch increased by 50% or more compared to untreated rice that has not been heat-treated.
  • resistant rice can be produced regardless of the rice variety.
  • the production method of the present invention is the same as the conventional preparation method except that it includes a heat treatment step, and no special equipment is required for the heat treatment step. Therefore, the added value of resistance to digestion can be imparted to raw rice harvested from rice of any variety without making a large capital investment.
  • the production method of the present invention is different from biological modification such as mutation and genetic recombination, and addition of other indigestible substances, and the indigestible rice obtained is rice itself, so it is socially acceptable. high and easily accepted by consumers. By utilizing the production method of the present invention, it becomes possible to take indigestible rice on a daily basis. qualitative improvement is achieved. By setting the heat treatment temperature to 68° C.
  • indigestible rice of the present invention has a slow digestion rate of starch and suppresses a rapid increase in postprandial blood sugar level, it can be suitably eaten by patients with diabetes and the like.
  • FIG. 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 1.
  • FIG. Appearance of resistant rice after polishing obtained in Experiment 1. is a graph showing hardness of resistant rice obtained in Experiment 1.
  • FIG. 4 is a graph showing the adhesion of resistant rice obtained in Experiment 1.
  • FIG. 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 2.
  • FIG. 4 is a graph showing hardness of resistant rice obtained in Experiment 2.
  • FIG. 4 is a graph showing the adhesion of resistant rice obtained in Experiment 2.
  • FIG. Appearance of resistant rice after polishing obtained in Experiment 3. 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 3.
  • FIG. 4 is a graph showing hardness of resistant rice obtained in Experiment 3.
  • FIG. 4 is a graph showing the adhesion of resistant rice obtained in Experiment 3.
  • FIG. 4 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 4 and the amount of resistant starch.
  • 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment at 65° C. in Experiment 4.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment at 65° C. in Experiment 4.
  • FIG. 5 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 5 and the amount of resistant starch.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment at 65° C. in Experiment 5.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment at 65° C. in Experiment 5.
  • FIG. 10 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 6 and the amount of resistant starch.
  • 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment in Experiment 6.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment in Experiment 6.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 7.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test when the indigestible rice obtained in Experiment 7 was slurried.
  • 4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 8.
  • FIG. 10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 9.
  • FIG. 10 is a graph showing changes in blood sugar level after eating in Experiment 10.
  • raw rice refers to rice before drying
  • rice refers to rice after drying
  • rice (including indigestible rice) refers to brown rice from which the husks have been removed from rice and polished rice. means white rice.
  • the conventional preparation process of post-harvest rice is as follows.
  • Raw unhulled rice harvested and before drying has a moisture content of about 20 to 25%.
  • Raw unhulled rice is usually dried in the air at 30-35° C. until the moisture content reaches about 14.5-15% to obtain unhulled rice.
  • Raw unhulled rice can be stored while maintaining its quality by drying it into unhulled rice.
  • Unhulled rice is stored as it is, and is hulled, polished, etc. just before shipment, and shipped as brown rice, white rice, or the like.
  • raw rice is subjected to a heat treatment under any one or more of the following conditions (1) to (3), and dried after the heat treatment. It differs from the later preparation steps.
  • the uncooked rice to be used is not particularly limited as long as it is an edible rice (Oryza sativa L.) seed, and any of japonica, indica, Javanica, etc. can be used. Among these, it is preferable to use the japonica variety, which contains a large amount of amylopectin and tends to increase the blood sugar level after eating.
  • the uncooked rice used in the present invention is, of course, not limited in terms of its variety, place of production, and the like.
  • the raw rice is subjected to heat treatment under any one or more of the following conditions (1) to (3).
  • the treatment by (1) is also called wet heat treatment
  • the treatment by (2) is called hot water treatment
  • the treatment by (3) is called microwave treatment.
  • one or more of wet heat treatment, hot water treatment, and microwave treatment can be performed. When performing two or more treatments, it is preferable to perform either wet heat treatment or warm water treatment, or both, after performing microwave treatment.
  • the time required for heat treatment can be shortened by raising the heat treatment temperature.
  • the treatment temperature is preferably 68° C. or lower, more preferably 65° C. or lower.
  • the treatment temperature is high, for example, 68° C. °C.
  • the treatment time is preferably 4 hours or longer, more preferably 6 hours or longer.
  • the humidity at this time is preferably 92% RH or higher, more preferably 94% RH or higher, and even more preferably 96% RH or higher.
  • indigestible rice that has been subjected to moist heat treatment is eaten as cooked rice, it is preferable to treat it at 60°C to 67°C, 92% RH or more, 4 hours to 24 hours, 60°C to 65°C, 94°C. % RH or more and more preferably 6 hours or more and 12 hours or less.
  • indigestible rice that has been subjected to moist heat treatment is eaten as flavored cooked rice, it is preferably treated at 70°C to 80°C, 92% RH or more, and 2 hours to 12 hours, and 75°C to 80°C. , more preferably 94% RH or more and 2 hours or more and 8 hours or less.
  • the treatment time is preferably 12 hours or less, more preferably 8 hours or less, and even more preferably 4 hours or less.
  • indigestible rice treated with hot water is eaten as boiled rice or seasoned cooked rice, it is preferably treated at 60° C. or higher and 67° C. or lower for 8 hours or less, and 60° C. or higher and 65° C. or lower for 6 hours or less. is more preferable.
  • Microwave treatment is heating by a so-called microwave oven, in which water molecules are heated by oscillating them by irradiating them with microwaves.
  • Microwave treatment can directly heat the moisture in raw rice by irradiating it with microwaves (moisture content of about 20 to 25%). , the time required for heat treatment can be greatly reduced.
  • Microwave-treated indigestible rice is less likely to change in taste and color compared to wet-heat-treated or warm-water-treated indigestible rice. It is presumed that this is because the enzyme activity can be rapidly deactivated.
  • the treatment temperature of the microwave treatment is not particularly limited, the treatment temperature is preferably 95° C. or lower, more preferably 90° C. or lower, and even more preferably 85° C.
  • the lower limit of the treatment temperature is preferably 65° C. or higher.
  • the microwave treatment it is preferable to raise the temperature quickly from the viewpoint of improving the resistance to digestion. is more preferably 1.5° C./second or more.
  • the microwave treatment tends to cause temperature unevenness, it is preferable to use an apparatus equipped with a stirring function.
  • the preparation process such as drying after the heat treatment process can be carried out in the same way as before.
  • the moisture content of raw rice after wet heat treatment or hot water treatment is higher than before treatment, it is slowly dried until the moisture content reaches about 14.5 to 15% to prevent cracking during drying.
  • drying at 20 to 35° C. for 8 hours or more is preferable, drying is more preferably drying for 16 hours or more, and drying for 20 hours or more is even more preferable.
  • drying can be performed under the same drying conditions as in the past.
  • the indigestible rice of the present invention can be obtained by subjecting uncooked rice to heat treatment under any one or more of the following conditions (1) to (3).
  • the ratio and molecular weight of amylose/amylopectin in the starch, the ratio and thickness of cellulose/hemicellulose/pectin in the cell wall, the moisture content, and the content of trace components such as proteins, vitamins, and inorganic components. etc. have variations. It is speculated that the heat treatment process causes at least the crystallization of starch and denaturation of the cell wall, resulting in a change to resistant rice. Have difficulty.
  • the indigestible rice of the present invention is digested more slowly and less easily than untreated rice that has not undergone a heat treatment step.
  • the starch digestion rate constant (min ⁇ 1 ) evaluated in a simulated digestion test system is preferably 10% or more, and preferably 15% or more, lower than that of the untreated rice. more preferred.
  • the resistant rice of the present invention preferably has an amount of resistant starch that is increased by 50% or more, more preferably by 100% or more, compared to the untreated rice.
  • the starch digestion rate constant of the resistant rice of the present invention is preferably 0.008 (min -1 ) or less, more preferably 0.007 (min -1 ) or less, and more preferably 0.0065 (min -1 ) or less. min ⁇ 1 ) or less.
  • the moisture content of the polished rice grain sample was measured using a heat drying moisture meter (MX-50, manufactured by A&D Co., Ltd.).
  • ⁇ Crude protein determination method The crude protein amount of the polished rice grain sample was obtained by coarsely pulverizing with a mixer and then further pulverizing with an electric stone mill to a particle size of 50 ⁇ m or less. manufactured by Yanako). Using hippuric acid as a standard nitrogen substance, the resulting nitrogen content was multiplied by the nitrogen-to-protein conversion factor of 5.95 to quantify the crude protein content.
  • CM-600d CIELAB color system measurement mode of a spectrophotometer
  • a petri dish having a diameter of 8 cm and a height of 1 cm was filled with a sufficient amount of the polished rice grain sample, and three points were randomly selected to measure the L * , a * , and b * values, and the average value was obtained.
  • the hardness and adhesiveness of the cooked rice grain sample were measured using a creep meter (RE2, manufactured by Yamaden Co., Ltd.) and attached analysis software (texture analysis, TAS-3305 (W), manufactured by Yamaden Co., Ltd.). .
  • the cooked rice grains after being cooked and allowed to stand were placed on a measurement stage one by one and compressed in the short axis direction of the grains.
  • the distance from the measurement stage to the rice grain surface is the thickness of the rice grain, the maximum load when the compression ratio reaches 90% is the hardness, and the area value obtained from the negative load and the return distance when the return operation is performed from there is attached.
  • the plunger is made of fluororesin and is disk-shaped ( ⁇ 30mm), which is sufficiently larger than the grain of cooked rice. bottom.
  • kit pepsin P7000, porcine gastric mucosa, ⁇ 250 U / mg, solid: manufactured by Sigma-Aldrich
  • Pancreatin hog pancreas, 4 x USP: manufactured by Sigma-Aldrich
  • Invertase from baker/s yeast, grade VII, ⁇ 300 U/mg, solid: manufactured by Sigma-Aldrich
  • Amyloglucosidase (3260 U/mL: manufactured by Megazyme International)
  • ⁇ -amylase 3000 U/mL, No.
  • E-BSTAA manufactured by Megazyme International
  • Total starch assay kit K-TSTA-50A/K-TSTA-100A 08/19: manufactured by Megazyme International
  • Resistant Starch Assay Kit K-RSTAR, manufactured by Megazyme International
  • D-glucose assay kit D-glucose assay kit, GOPOD format, K-GLUC 03/2010: manufactured by Megazyme International
  • simulated gastric fluid SGF
  • pepsin a simulated gastric fluid obtained by dissolving 0.12 g of pepsin in 25 mL of a 0.2% (w/v) sodium chloride aqueous solution.
  • Simulated pancreatic juice SIF: A simulated intestinal fluid was obtained.
  • Invertase and amyloglucosidase were added to 20 ml of potassium acetate buffer and stirred to obtain an invertase/amyloglucosidase solution.
  • 0.05 g of pancreatin and 0.00375 g of invertase were mixed with 50 ml of 100 mM sodium acetate buffer of pH 5.0 and stirred for 5 minutes, then 1 ml of amyloglucosidase was added and stirred for another 15 minutes while warming to 37°C.
  • a digestive enzyme solution for quantifying resistant starch was obtained.
  • polished grains of white rice were coarsely pulverized with a mixer, and then pulverized to a particle size of 50 ⁇ m or less using an electric stone mill.
  • the total starch content of the obtained powder was quantified according to the procedure described in the manual of the total starch assay kit. 50 mg of powder was weighed into a test tube, mixed with 10 ml of 100 ml sodium acetate buffer adjusted to pH 5.0, stirred with a vortex mixer for 5 seconds, then 0.1 ml of ⁇ -amylase was dispensed, stirred again for 3 seconds, Heated in boiling water for 15 minutes.
  • the mixture was temporarily removed from the boiling water and stirred with a vortex mixer. After 15 minutes, the mixture was taken out, stirred with a vortex mixer, and incubated in a water bath set at 50°C for 5 minutes. After that, 0.1 ml of amyloglucosidase was added, stirred with a vortex mixer for 3 seconds, and incubated again in a water bath at 50°C for 30 minutes.
  • the test tube was taken out, heat was removed at room temperature for 10 minutes, and then centrifuged at 13000 rpm for 5 minutes in a centrifuge set at 10°C to obtain a supernatant. After diluting the supernatant with 10-fold volume of sodium acetate buffer, 0.1 ml was collected, 3 ml of GOPOD was added, and the mixture was incubated in a water bath at 50° C. for 20 minutes. The absorbance of the sample solution after incubation was measured at a wavelength of 510 nm using a spectrophotometer. The total starch content was calculated by comparing the obtained absorbance with the absorbance of a standard solution in which 0.1 ml of D-glucose at a concentration of 1.0 mg/ml was added with 3 ml of GOPOD.
  • the sample was placed in a water bath set at 37°C and allowed to stand until the temperature of the sample liquid reached 37°C.
  • 1 ml of the digestive enzyme solution used for quantification of resistant starch was added, stirred for 5 seconds with a vortex mixer, and shaken in a shaking water bath at 37°C for 4 hours.
  • 3 ml of 95% (v/v) ethanol was added to the test tube to stop the digestion treatment, and the tube was stirred again with the vortex mixer.
  • the resulting sample was centrifuged at 4000 rpm for 10 minutes in a centrifuge set at 10°C.
  • the solid content from which the non-resistant starch was separated was mixed with 1 ml of 1.7 M sodium hydroxide, and stirred at 750 rpm for 20 minutes in a vessel covered with ice using a stirrer. After 20 minutes, 4 ml of 1 M sodium acetate buffer adjusted to pH 3.8 was added, 50 ⁇ l of amyloglucosidase was added, and the mixture was further stirred for 2 minutes. Immediately thereafter, it was incubated in a water bath set at 50°C for 30 minutes. After 30 minutes, the test tube was taken out, stirred with a vortex mixer for 5 seconds, and centrifuged at 13000 rpm for 5 minutes in a centrifuge set at 10°C to obtain a supernatant.
  • the absorbance of the resulting sample solution was measured using a spectrophotometer at a wavelength of 510 nm, and calibrated with a standard solution of 0.1 ml of D-glucose to which 3 ml of GOPOD was added to determine the glucose concentration in the sample solution.
  • % SH is the starch hydrolysis rate (digestibility, %)
  • Sh is the amount of hydrolyzed starch (g)
  • Si is the initial amount of starch (g)
  • G is the amount of glucose produced ( g)
  • 0.9 indicates the conversion factor of molecular weight of glucose units in starch/molecular weight of glucose (162/180).
  • FIG. 2 The evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG . .
  • FIG. 2 The evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG. 2.
  • FIGS. 3 and 4 The evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG. 2.
  • Example 2 Post-harvest uncooked rice (Toyomeki produced in Chiba Prefecture, crude protein content 6.9% (d.b.), initial moisture content 19.7% (w.b.)) was heated at 60°C or 65°C, 98% Heat treatment was performed by exposure to RH for 12 hours or 18 hours under high-humidity circulating aeration conditions. After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
  • Table 2 shows the water content, total starch content, and resistant starch content of the resistant rice after milling
  • Table 3 shows the surface color of the polished rice grains.
  • the evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG. 5, and the calculated equilibrium digestibility and digestion rate constant are shown in Table 4.
  • Firmness and adhesiveness of the indigestible boiled rice are shown in FIGS. 6 and 7, respectively.
  • the hardness of the cooked rice grains did not change even after heat treatment at 60° C. or 65° C., 98% RH for 12 hours or 18 hours.
  • the adhesiveness increased to about three times that of the control (FIGS. 6 and 7).
  • the adhesion of the control Even after heat treatment at 65°C, there was no difference in the adhesion of the control.
  • Example 3 Raw unhulled rice after harvest (Toyomeki produced in Chiba Prefecture, crude protein content 6.9% (d.b.), initial moisture content 19.7% (w.b.)) is soaked in warm water at 65°C for 2 hours. , immersed for 4 hours or 6 hours, and heat-treated. After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
  • Table 5 shows the water content, total starch content, and resistant starch content of the milled resistant rice
  • Table 6 shows the surface color of the polished rice grains
  • FIG. 9 The results of simulated digestion of the obtained boiled rice are shown in FIG. 9, and the calculated equilibrium digestibility and digestion rate constant are shown in Table 7.
  • Firmness and adhesiveness of the indigestible boiled rice are shown in FIGS. 10 and 11, respectively.
  • the equilibrium digestibility showed a decrease of about 10% regardless of the treatment time of the immersion treatment.
  • the digestion rate constant, although no statistical difference was confirmed, an average value of about 20% decrease was confirmed for the indigestible boiled rice soaked for 4 hours. Therefore, the immersion-treated indigestible cooked rice can be used as cooked rice with reduced carbohydrate digestibility while having substantially the same physical properties as ordinary white rice.
  • Fig. 12 shows changes in the amount of resistant starch in the resulting resistant cooked rice for each treatment time.
  • Fig. 13 shows the evaluation results of carbohydrate digestibility by simulated digestion of indigestible boiled rice obtained by heat treatment by high-humidity circulating aeration at 65°C and 98% RH and heat treatment by immersion in hot water at 65°C.
  • 14 and Table 8 shows the equilibrium digestibility and digestion rate constants.
  • Fig. 15 shows changes in the amount of resistant starch in the milled rice obtained by heat treatment at 65°C for each treatment time.
  • Figures 16 and 17 show the sex evaluation results, and Table 9 shows the equilibrium digestibility and digestion rate constant.
  • Fig. 18 shows changes in the amount of resistant starch in the resulting resistant cooked rice for each treatment time.
  • 19 and 20 show the evaluation results of carbohydrate digestibility by simulated digestion of indigestible boiled rice obtained by wet heat treatment and hot water treatment, and Table 10 shows the equilibrium digestibility and digestion rate constant.
  • Example 7 Raw unhulled rice after harvest (Hinohikari from Hiroshima Prefecture, protein content 5.4% (d.b.), initial moisture content 25.8% (w.b.)) was soaked in hot water at a temperature of 65 ° C. for 2 hours or 4 hours, followed by heat treatment. After the treatment, the rice was dried under ventilation at 35°C and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
  • Fig. 21 shows the evaluation results of carbohydrate digestibility by a simulated digestion test of the obtained indigestible cooked rice.
  • a simulated digestion test was similarly performed on the rice grains of this indigestible cooked rice that were made into a slurry with a mixer. The results are shown in FIG. Table 11 shows the amount of resistant starch, equilibrium digestibility and digestion rate constant.
  • the temperature was adjusted so that the probe tip of a fiber type thermometer (Fiberoptic Thermometer (Anritsu Meter, AMOTH FL-2000), probe (Anritsu Meter, FS100-2M)) was positioned in the center of the raw rice put in the beaker. It was measured. After heat treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
  • a fiber type thermometer Fiberoptic Thermometer (Anritsu Meter, AMOTH FL-2000), probe (Anritsu Meter, FS100-2M)
  • Table 12 shows the time required for heating, the rate of temperature increase, and the amount of resistant starch after milling.
  • FIG. 23 shows the evaluation results of carbohydrate digestibility of the obtained boiled rice by simulated digestion test, and Table 13 shows the equilibrium digestibility and the digestion rate constant.
  • the digestibility of the microwave heat-treated sample was reduced compared to the control. It was confirmed that the microwave treatment can greatly shorten the treatment time compared to the wet heat treatment and the heat treatment. Moreover, the obtained cooked rice did not differ from the control in terms of color, stickiness, appearance, etc. during the experiment.
  • Example 9 Raw unhulled rice after harvesting (Chiba-produced beetle, protein content 6.5% (d.b.), initial moisture content 21.2% (w.b.)) was subjected to electrolysis in the same manner as Experiment 8 above. The samples were heat-treated with a mass of 100 g, 500 g, and 1000 g depending on the range, and then immersed in hot water at 65° C. for 6 hours to obtain resistant rice. In addition, the time required for heating with a microwave oven differs depending on the processing mass. It was 0.25°C/sec.
  • the 100 g sample was processed in 5 groups to make a total of 500 g, in order to secure the necessary amount for subsequent rice cooking, etc., and was uniformly mixed and used for rice polishing and rice cooking.
  • the rice was dried at 35° C. and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
  • FIG. 24 shows the evaluation results of carbohydrate digestibility of the obtained boiled rice by the simulated digestion test
  • Table 14 shows the rate of temperature increase, the equilibrium digestibility, and the digestion rate constant.
  • Control 2 was heat treated more strongly than the invention.
  • Control 3 was a commercially available instant udon noodle (Toyo Suisan Co., Ltd., gotsumori kitsune udon, noodles 86 g).
  • Control 1 is common boiled rice.
  • the blood sugar level rose to 218 mg/dL 90 minutes after eating, which was significantly higher than the blood sugar level (70 mg/dL) immediately after eating.
  • the postprandial blood sugar level remained close to about 150 mg/dL from 60 minutes to 180 minutes, and then continued to drop, showing no sharp peak (blood sugar level spike) after meal.
  • its appearance and taste were almost the same as those of Control 1.
  • the increase in blood sugar level was suppressed more than in the indigestible rice of the present invention, and was 130 mg/dL after 30 minutes and about 115 mg/dL over 150 minutes thereafter.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Cereal-Derived Products (AREA)

Abstract

The present invention addresses the problem of providing a novel production method of indigestible rice and indigestible rice. As a means for solving the problem, provided are: a production method of indigestible rice characterized by comprising a heat treatment step for subjecting raw unhulled rice to a heat treatment under one or more of the following conditions (1) to (3); indigestible rice produced through this heat treatment step; indigestible rice showing a digestion rate constant, which is evaluated by a simulated digestion test, decreased by 10% or more compared with untreated rice with no heat treatment; and indigestible rice showing a indigestible starch content increased by 50% or more compared with untreated rice with no heat treatment. (1) Exposing to a high humidity atmosphere of at least 90% RH at 60-80°C inclusive for 2-24 hours inclusive. (2) Exposing in warm water at 60-80°C inclusive for 2-24 hours inclusive. (3) Heating by microwave to 60-100°C inclusive.

Description

難消化性米の製造方法、および難消化性米Method for producing resistant rice, and resistant rice
 本発明は難消化性米の製造方法、および難消化性米に関する。 The present invention relates to a method for producing resistant rice, and resistant rice.
 パンや麺、米飯など糖質を含む食品は、摂取後に小腸において消化吸収されて急激な血糖値の上昇を引き起こす。この反応は、2型糖尿病、高脂血症などの生活習慣病の発症に深く関係することが指摘されている。全世界で、糖尿病罹患数は、2000年の1.71億人から2030年には3.66億人に、高脂血症疾患数は2000年の9.72億人から2025年には15.6億人に増加することが予測されている。そのため、糖質の消化吸収が緩やかな食品が望まれている。 Foods containing carbohydrates, such as bread, noodles, and rice, are digested and absorbed in the small intestine after ingestion, causing a rapid rise in blood sugar levels. It has been pointed out that this reaction is deeply related to the development of lifestyle-related diseases such as type 2 diabetes and hyperlipidemia. Worldwide, the number of people with diabetes will increase from 171 million in 2000 to 366 million in 2030, and the number of people with hyperlipidemia will increase from 972 million in 2000 to 15 in 2025. It is projected to increase to 600 million. Therefore, there is a demand for foods in which the digestion and absorption of carbohydrates are slow.
 種子構造が失われた小麦粉を原料とするパンや麺類などと異なり、米飯は種子としての構造が維持されているため、パンや麺類と比較して血糖値の上昇が穏やかである。しかし、米飯は、アジア地域の多くの国の主食であり、主食としての米は1食あたり摂取量が多くなるため(パン1枚:約60g(糖質27g)、ご飯1膳:約140g(糖質55g))、吸収される糖質の絶対量が多くなりやすい。また、アジア地域では、生活レベルの向上に伴い、糖尿病等の生活習慣病の患者が増加している。そのため、糖質の消化吸収が緩やかな米飯食品が望まれている。 Unlike bread and noodles that are made from wheat flour that has lost its seed structure, cooked rice maintains its structure as a seed, so the increase in blood sugar level is mild compared to bread and noodles. However, cooked rice is a staple food in many Asian countries, and rice as a staple food is consumed in a large amount per meal (1 slice of bread: about 60 g (sugar 27 g), 1 bowl of rice: about 140 g (sugar Quality 55g)), the absolute amount of absorbed carbohydrates tends to increase. In addition, in the Asian region, the number of patients with lifestyle-related diseases such as diabetes is increasing as the standard of living improves. Therefore, there is a demand for cooked rice foods in which the digestion and absorption of carbohydrates are slow.
 米飯の糖質消化性を抑える方法として、難消化性デンプン含有量の高い突然変異米を利用する方法が提案されており、特許文献1には突然変異米の粒食形態または粉食形態の加工品が、特許文献2には突然変異米を無塩味噌懸濁液に浸漬してから1000気圧以上で高圧処理した後に炊飯した米飯が、特許文献3にはアミロース合成酵素Iとアミロペクチンの枝作り酵素を欠損させた難消化性である突然変異米が提案されている。
 突然変異米の利用は、植物種であるイネの生物学的特性変化を基盤としている。遺伝子組み換え原料を使用した食品に忌避感を感じる者は一定数存在しており、突然変異米の食品としての展開は社会の許容度に依存する。また、この突然変異米はどうしても味に劣るため、特許文献1では炊飯時の加水量を通常の2倍以上とすることにより、特許文献2では味噌のアミノ酸により風味を付与し、さらに1000気圧以上の圧力を加えて米の細胞壁を破壊することにより、食味を改善している。また、特許文献3の突然変異米は、炊飯後にはモチ米のような粘りを感じる米飯となる。
As a method for suppressing the digestibility of carbohydrates in cooked rice, a method using mutant rice with a high content of indigestible starch has been proposed. , Patent Document 2 describes rice cooked by immersing mutant rice in a suspension of unsalted miso and then high-pressure treatment at 1000 atmospheres or more, and Patent Document 3 describes amylose synthase I and amylopectin branching enzymes. Mutant rice has been proposed that is deficient indigestible.
The use of mutant rice is based on changes in the biological characteristics of the plant species rice. There are a certain number of people who feel aversion to foods that use genetically modified ingredients, and development of mutant rice as a food depends on social tolerance. In addition, since this mutant rice is inevitably inferior in taste, in Patent Document 1, the amount of water added when cooking rice is doubled or more than usual, and in Patent Document 2, the amino acids of miso give flavor, and furthermore, the pressure is 1000 atmospheres or more. The taste is improved by breaking the cell walls of the rice by adding pressure. In addition, the mutated rice of Patent Document 3 becomes cooked rice that feels sticky like glutinous rice after cooking.
 特許文献4~8には、難消化性デキストリン、多糖類、こんにゃく粒といった難消化性多糖類を炊飯時に添加して、消化性を抑えた米飯が提案されている。これらは、米の一部を難消化性多糖類で置き換えたものであり、米と比較すると難消化性多糖類は高価であるため、継続的に摂食するには金銭的負担が大きい。
 特許文献9には、固体非晶質化処理後の米粉を原料としてプロテアーゼ加水分解、無水酢酸エステル化およびエクストルーダ押出圧縮成形技術を組み合わせた遅消化性デンプン組換え即席米飯の製造方法が提案されている。この方法は、エクストルーダによる押出圧縮成形により穀粒状デンプンを製造する方法であり、製造されるモノは米とは異なる。
Patent Documents 4 to 8 propose cooked rice with reduced digestibility by adding indigestible polysaccharides such as indigestible dextrin, polysaccharides, and konnyaku grains during cooking. These are products in which a portion of rice is replaced with indigestible polysaccharides, and since indigestible polysaccharides are more expensive than rice, it is a heavy financial burden to continuously consume them.
Patent document 9 proposes a method for producing slow-digesting starch recombinant instant rice by combining protease hydrolysis, acetic anhydride esterification, and extruder extrusion compression molding technology using rice flour after solid amorphization treatment as a raw material. there is This method is a method of producing grain-like starch by extrusion compression molding with an extruder, and the product produced is different from rice.
 特許文献10には、増粘多糖類生成能の高い乳酸菌を含有する仕込み液に生米を浸漬し米組織構造中に増粘多糖類を生成させた後に可食状態とした米を密封状態で湿熱加熱するダイエット米の製造方法が提案されている。また、特許文献11~13には、特許文献10と同様な手法で処理した生米を、包装パックに充填・湿熱加熱し、デンプンの一部をレジスタントスターチに変換した低カロリー米飯の製造方法が提案されている。
 特許文献10~13に記載された方法は、乳酸菌による発酵処理時に雑菌が混入(コンタミ)すると腐敗してしまう場合があるため、発酵処理に利用する装置の滅菌や空気中に浮遊する雑菌の混入を防ぐ必要があり、製造工程の環境管理が煩雑となる。また、乳酸菌溶液に浸漬した後は乳酸菌が付着した水分を多く含む米を取り扱うため、その後の製造工程でも雑菌の繁殖が起こりやすく、保蔵上の問題点がある。
In Patent Document 10, uncooked rice is immersed in a preparation liquid containing lactic acid bacteria having a high ability to produce polysaccharide thickeners, polysaccharide thickeners are produced in the rice tissue structure, and then edible rice is sealed. A method for producing diet rice by moist heat heating has been proposed. Moreover, Patent Documents 11 to 13 describe a method for producing low-calorie cooked rice in which uncooked rice treated by the same method as in Patent Document 10 is filled in a packaging pack and heated with moist heat to convert part of the starch into resistant starch. is proposed.
The methods described in Patent Documents 10 to 13 may spoil if bacteria are mixed (contamination) during fermentation with lactic acid bacteria, so sterilization of the equipment used for fermentation and contamination with bacteria floating in the air. Therefore, the environmental management of the manufacturing process becomes complicated. In addition, after being immersed in the lactic acid bacteria solution, rice containing a large amount of moisture with lactic acid bacteria attached is handled, so that bacteria are likely to propagate in the subsequent manufacturing process, which poses a storage problem.
特開2006-217813号公報JP 2006-217813 A 特開2017-042089号公報JP 2017-042089 A 特開2009-254265号公報JP 2009-254265 A 特表2016-516443号公報Japanese Patent Publication No. 2016-516443 特開2017-066064号公報JP 2017-066064 A 特開2017-143771号公報JP 2017-143771 A 特開2008-206527号公報JP 2008-206527 A 特開平9-154507号公報JP-A-9-154507 特表2020-530758号公報Japanese Patent Publication No. 2020-530758 特開2004-154091号公報Japanese Patent Application Laid-Open No. 2004-154091 特開2003-210121号公報Japanese Patent Application Laid-Open No. 2003-210121 特開2004-298079号公報Japanese Patent Application Laid-Open No. 2004-298079 特開2003-102408号公報Japanese Patent Application Laid-Open No. 2003-102408
 本発明は、新規な難消化性米の製造方法と難消化性米を提供することを課題とする。 An object of the present invention is to provide a novel method for producing resistant rice and resistant rice.
 本発明の課題を解決するための手段は以下のとおりである。
1.生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施す加熱処理工程、を有することを特徴とする難消化性米の製造方法。
(1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
(2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
(3)マイクロ波により、60℃以上100℃以下に加熱する。
2.前記加熱処理工程を、(1)または(2)を68℃以下で行うことを特徴とする1.に記載の難消化性米の製造方法。
3.前記加熱処理工程を、(2)を温水中12時間以下で行うことを特徴とする1.または2.に記載の難消化性米の製造方法。
4.前記加熱処理工程を、(3)を0.5℃/秒以上の昇温速度で行うことを特徴とする1.に記載の難消化性米の製造方法。
5.生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施す加熱処理工程を経て製造されることを特徴とする難消化性米。
(1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
(2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
(3)マイクロ波により、60℃以上100℃以下に加熱する。
6.加熱処理を施していない未処理のものと比較して、模擬消化試験で評価した消化速度定数が10%以上低減していることを特徴とする難消化性米。
7.加熱処理を施していない未処理のものと比較して、難消化性デンプン量が50%以上増加していることを特徴とする難消化性米。
Means for solving the problems of the present invention are as follows.
1. A method for producing indigestible rice, comprising a heat treatment step of subjecting uncooked rice to heat treatment under any one or more of the following conditions (1) to (3).
(1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(3) Heat to 60° C. or more and 100° C. or less with microwaves.
2. 1. Characterized in that the heat treatment step (1) or (2) is performed at 68° C. or lower. 3. The method for producing indigestible rice according to .
3. 1. The heat treatment step (2) is performed in hot water for 12 hours or less. or 2. 3. The method for producing indigestible rice according to .
4. 1. The heat treatment step (3) is performed at a temperature elevation rate of 0.5° C./second or more. 3. The method for producing indigestible rice according to .
5. An indigestible rice produced through a heat treatment step in which uncooked rice is subjected to a heat treatment under any one or more of the following conditions (1) to (3).
(1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(3) Heat to 60° C. or more and 100° C. or less with microwaves.
6. An indigestible rice characterized by having a digestion rate constant that is reduced by 10% or more as evaluated in a simulated digestion test as compared with untreated rice that has not been heat-treated.
7. A resistant rice characterized by having an amount of resistant starch increased by 50% or more compared to untreated rice that has not been heat-treated.
 本発明の製造方法により、稲の品種等に依らず、難消化性米を製造することができる。本発明の製造方法は、加熱処理工程を有する以外は従来の調製方法と同じであり、また、加熱処理工程に特別な装置は不要である。そのため、大きな設備投資をすることなく、任意の品種の稲から収穫された生籾米に対しても、難消化性という付加価値を付与することができる。本発明の製造方法は、突然変異や遺伝子組換等の生物学的な改変、別の難消化性物質の添加と異なり、得られる難消化性米は米そのものであるため、社会的な許容度が高く、消費者に受け入れられやすい。本発明の製造方法が活用されることにより、難消化性米の日常的な摂取が可能となり、難消化性米の摂取により米の消費量増大と、国民の健康が増進することにより、国民生活の質的向上が達成される。加熱処理温度を68℃以下とすることにより、そのまま炊いた米飯として美味しさを維持した難消化性米を製造することができる。温水中で加熱処理することにより、加熱処理にかかる時間、エネルギーコスト等を抑えることができる。
 本発明の難消化性米は、デンプンの消化速度が遅く、食後の血糖値の急激な上昇が抑えられるため、糖尿病等の患者も好適に食することができる。
According to the production method of the present invention, resistant rice can be produced regardless of the rice variety. The production method of the present invention is the same as the conventional preparation method except that it includes a heat treatment step, and no special equipment is required for the heat treatment step. Therefore, the added value of resistance to digestion can be imparted to raw rice harvested from rice of any variety without making a large capital investment. The production method of the present invention is different from biological modification such as mutation and genetic recombination, and addition of other indigestible substances, and the indigestible rice obtained is rice itself, so it is socially acceptable. high and easily accepted by consumers. By utilizing the production method of the present invention, it becomes possible to take indigestible rice on a daily basis. qualitative improvement is achieved. By setting the heat treatment temperature to 68° C. or less, it is possible to produce indigestible rice that maintains its deliciousness as cooked rice. By heat-treating in hot water, it is possible to reduce the time required for heat-treating, energy costs, and the like.
Since the indigestible rice of the present invention has a slow digestion rate of starch and suppresses a rapid increase in postprandial blood sugar level, it can be suitably eaten by patients with diabetes and the like.
実験1で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 1. FIG. 実験1で得られた精米後の難消化性米の外観。Appearance of resistant rice after polishing obtained in Experiment 1. 実験1で得られた難消化性米のかたさを示すグラフ。4 is a graph showing hardness of resistant rice obtained in Experiment 1. FIG. 実験1で得られた難消化性米の付着性を示すグラフ。4 is a graph showing the adhesion of resistant rice obtained in Experiment 1. FIG. 実験2で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 2. FIG. 実験2で得られた難消化性米のかたさを示すグラフ。4 is a graph showing hardness of resistant rice obtained in Experiment 2. FIG. 実験2で得られた難消化性米の付着性を示すグラフ。4 is a graph showing the adhesion of resistant rice obtained in Experiment 2. FIG. 実験3で得られた精米後の難消化性米の外観。Appearance of resistant rice after polishing obtained in Experiment 3. 実験3で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 3. FIG. 実験3で得られた難消化性米のかたさを示すグラフ。4 is a graph showing hardness of resistant rice obtained in Experiment 3. FIG. 実験3で得られた難消化性米の付着性を示すグラフ。4 is a graph showing the adhesion of resistant rice obtained in Experiment 3. FIG. 実験4における65℃の加熱処理により得られた難消化性米の処理時間と難消化性デンプン量との関係を示すグラフ。4 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 4 and the amount of resistant starch. 実験4における65℃の湿熱処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment at 65° C. in Experiment 4. FIG. 実験4における65℃の温湯処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment at 65° C. in Experiment 4. FIG. 実験5における65℃の加熱処理により得られた難消化性米の処理時間と難消化性デンプン量との関係を示すグラフ。5 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 5 and the amount of resistant starch. 実験5における65℃の湿熱処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment at 65° C. in Experiment 5. FIG. 実験5における65℃の温湯処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment at 65° C. in Experiment 5. FIG. 実験6における65℃の加熱処理により得られた難消化性米の処理時間と難消化性デンプン量との関係を示すグラフ。10 is a graph showing the relationship between the treatment time of resistant rice obtained by heat treatment at 65° C. in Experiment 6 and the amount of resistant starch. 実験6における湿熱処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained by wet heat treatment in Experiment 6. FIG. 実験6における温湯処理により得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of indigestible rice obtained by hot water treatment in Experiment 6. FIG. 実験7で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 7. FIG. 実験7で得られた難消化性米をスラリー状とした際の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test when the indigestible rice obtained in Experiment 7 was slurried. 実験8で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。4 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 8. FIG. 実験9で得られた難消化性米の模擬消化試験の評価結果を示すグラフ。10 is a graph showing evaluation results of a simulated digestion test of resistant rice obtained in Experiment 9. FIG. 実験10における、喫食後の血糖値の推移を示すグラフ。10 is a graph showing changes in blood sugar level after eating in Experiment 10. FIG.
 本明細書において、「生籾米」とは乾燥前の籾米、「籾米」とは乾燥後の籾米、「米(難消化性米も含む)」とは籾米から籾殻が除去された玄米及び精米した白米を意味する。 In the present specification, “raw rice” refers to rice before drying, “rice” refers to rice after drying, and “rice (including indigestible rice)” refers to brown rice from which the husks have been removed from rice and polished rice. means white rice.
 収穫後の稲の従来の調製工程は、以下のとおりである。
 収穫して乾燥前の生籾米は、水分率が20~25%程度である。
 生籾米は、通常、水分率が14.5~15%程度になるまで30~35℃の空気で乾燥されて籾米とされる。生籾米は、乾燥して籾米とすることにより、品質を保持したまま貯蔵が可能となる。
 籾米は、そのままの状態で保管され、出荷直前に籾摺り、精米等されて、玄米・白米等として出荷される。
The conventional preparation process of post-harvest rice is as follows.
Raw unhulled rice harvested and before drying has a moisture content of about 20 to 25%.
Raw unhulled rice is usually dried in the air at 30-35° C. until the moisture content reaches about 14.5-15% to obtain unhulled rice. Raw unhulled rice can be stored while maintaining its quality by drying it into unhulled rice.
Unhulled rice is stored as it is, and is hulled, polished, etc. just before shipment, and shipped as brown rice, white rice, or the like.
 本発明の難消化性米の製造方法は、生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施し、加熱処理後に乾燥する点で、従来の収穫後の調製工程と相違する。
(1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
(2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
(3)マイクロ波により、60℃以上100℃以下に加熱する。
 すなわち、本発明の難消化性米の製造方法は、生籾米に対して、(1)~(3)のいずれか1以上の条件による加熱処理を施す加熱処理工程、を有することを特徴とする。
In the method for producing resistant rice of the present invention, raw rice is subjected to a heat treatment under any one or more of the following conditions (1) to (3), and dried after the heat treatment. It differs from the later preparation steps.
(1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(3) Heat to 60° C. or more and 100° C. or less with microwaves.
That is, the method for producing indigestible rice of the present invention is characterized by comprising a heat treatment step of subjecting uncooked rice to heat treatment under any one or more conditions of (1) to (3). .
 本発明において、使用する生籾米は、食用となるイネ(Oryza sativa L.)の種子であれば特に限定されず、ジャポニカ種、インディカ種、ジャワニカ種等のいずれも用いることができる。これらの中で、アミロペクチンを多く含み食後に血糖値が上がりやすいジャポニカ種を使用することが好ましい。なお、本発明で使用する生籾米は、当然にその品種、産地等について何ら限定されない。 In the present invention, the uncooked rice to be used is not particularly limited as long as it is an edible rice (Oryza sativa L.) seed, and any of japonica, indica, Javanica, etc. can be used. Among these, it is preferable to use the japonica variety, which contains a large amount of amylopectin and tends to increase the blood sugar level after eating. Incidentally, the uncooked rice used in the present invention is, of course, not limited in terms of its variety, place of production, and the like.
・加熱処理工程
 加熱処理工程では、生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施す。
(1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
(2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
(3)マイクロ波により、60℃以上100℃以下に加熱する。
 以下、(1)による処理を湿熱処理、(2)による処理を温湯処理、(3)による処理をマイクロ波処理ともいう。加熱処理工程は、湿熱処理、温湯処理、マイクロ波処理のいずれか1つ、または2以上を行うことができる。2以上の処理を行う場合、マイクロ波処理を行ったのち、湿熱処理、温湯処理のいずれか、または両方を行うことが好ましい。
- Heat treatment step In the heat treatment step, the raw rice is subjected to heat treatment under any one or more of the following conditions (1) to (3).
(1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(3) Heat to 60° C. or more and 100° C. or less with microwaves.
Hereinafter, the treatment by (1) is also called wet heat treatment, the treatment by (2) is called hot water treatment, and the treatment by (3) is called microwave treatment. In the heat treatment step, one or more of wet heat treatment, hot water treatment, and microwave treatment can be performed. When performing two or more treatments, it is preferable to perform either wet heat treatment or warm water treatment, or both, after performing microwave treatment.
 湿熱処理、または温湯処理の場合は、加熱処理の温度を高くすることにより、加熱処理にかかる時間を短縮することができる。一方、処理温度が高いと、食味が低下したり、色味が変化したりする場合がある。そのため、本発明で製造される難消化性米を、そのまま炊いた米飯として食する場合は、処理温度は68℃以下であることが好ましく、65℃以下であることがより好ましい。ただし、本発明で製造される難消化性米を、炒飯やピラフ等の味付米飯として食する場合は、調味料等により味や色を整えることができるため、処理温度を高く、例えば、68℃より高くすることができる。 In the case of wet heat treatment or warm water treatment, the time required for heat treatment can be shortened by raising the heat treatment temperature. On the other hand, if the treatment temperature is high, the taste may deteriorate or the color may change. Therefore, when the indigestible rice produced by the present invention is eaten as it is as cooked rice, the treatment temperature is preferably 68° C. or lower, more preferably 65° C. or lower. However, when the indigestible rice produced by the present invention is eaten as flavored cooked rice such as fried rice or pilaf, the treatment temperature is high, for example, 68° C. °C.
 湿熱処理の場合は、処理時間は4時間以上であることが好ましく、6時間以上であることがより好ましい。また、この際の湿度は、92%RH以上であることが好ましく、94%RH以上であることがより好ましく、96%RH以上であることが更に好ましい。
 湿熱処理を施した難消化性米を米飯として食する場合は、60℃以上67℃以下、92%RH以上、4時間以上24時間以下で処理することが好ましく、60℃以上65℃以下、94%RH以上、6時間以上12時間以下で処理することがより好ましい。
 湿熱処理を施した難消化性米を味付米飯として食する場合は、70℃以上80℃以下、92%RH以上、2時間以上12時間以下で処理することが好ましく、75℃以上80℃以下、94%RH以上、2時間以上8時間以下で処理することがより好ましい。
In the case of wet heat treatment, the treatment time is preferably 4 hours or longer, more preferably 6 hours or longer. The humidity at this time is preferably 92% RH or higher, more preferably 94% RH or higher, and even more preferably 96% RH or higher.
When indigestible rice that has been subjected to moist heat treatment is eaten as cooked rice, it is preferable to treat it at 60°C to 67°C, 92% RH or more, 4 hours to 24 hours, 60°C to 65°C, 94°C. % RH or more and more preferably 6 hours or more and 12 hours or less.
When indigestible rice that has been subjected to moist heat treatment is eaten as flavored cooked rice, it is preferably treated at 70°C to 80°C, 92% RH or more, and 2 hours to 12 hours, and 75°C to 80°C. , more preferably 94% RH or more and 2 hours or more and 8 hours or less.
 液体は、気体と比較して熱伝導率が高いため、同一時間では液体の方が気体より多くの熱を与えることができる。また、温湯処理は、その原因は不明であるが、湿熱処理と比較して食味、色味の変化が起こりにくい。そのため、温湯処理の場合は、処理時間は12時間以下であることが好ましく、8時間以下であることがより好ましく、4時間以下であることがさらに好ましい。
 温湯処理を施した難消化性米を米飯または味付米飯として食する場合は、60℃以上67℃以下、8時間以下で処理することが好ましく、60℃以上65℃以下、6時間以下で処理することがより好ましい。
Since a liquid has a higher thermal conductivity than a gas, a liquid can give more heat than a gas at the same time. Also, although the cause is unknown, hot water treatment causes less change in taste and color compared to wet heat treatment. Therefore, in the case of hot water treatment, the treatment time is preferably 12 hours or less, more preferably 8 hours or less, and even more preferably 4 hours or less.
When indigestible rice treated with hot water is eaten as boiled rice or seasoned cooked rice, it is preferably treated at 60° C. or higher and 67° C. or lower for 8 hours or less, and 60° C. or higher and 65° C. or lower for 6 hours or less. is more preferable.
 マイクロ波処理は、マイクロ波を照射することにより水分子を振動させて加熱する、いわゆる電子レンジによる加熱である。マイクロ波処理は、生籾米(水分率20~25%程度)に対してマイクロ波を照射することにより、生籾米中の水分を直接加熱することができるため、湿熱処理、温湯処理と比較して、加熱処理にかかる時間を大幅に削減することができる。マイクロ波処理を施した難消化性米は、湿熱処理、温湯処理を施した難消化性米と比較して、食味、色味の変化が起こりにくいが、これは、昇温が極めて速くコメの酵素活性を迅速に失活できるためであると推測される。マイクロ波処理の処理温度は特に制限されないが、エネルギーコストの点から、処理温度は95℃以下が好ましく、90℃以下がより好ましく、85℃以下がさらに好ましい。また、処理温度の下限は65℃以上が好ましい。
 マイクロ波処理は、素早く昇温することが難消化性向上の点から好ましく、具体的には、その昇温速度が0.5℃/秒以上であることが好ましく、1.0℃/秒以上であることがより好ましく、1.5℃/秒以上であることがさらに好ましい。また、マイクロ波処理は、温度ムラが発生しやすいため、撹拌機能を備えた装置を用いることが好ましい。
Microwave treatment is heating by a so-called microwave oven, in which water molecules are heated by oscillating them by irradiating them with microwaves. Microwave treatment can directly heat the moisture in raw rice by irradiating it with microwaves (moisture content of about 20 to 25%). , the time required for heat treatment can be greatly reduced. Microwave-treated indigestible rice is less likely to change in taste and color compared to wet-heat-treated or warm-water-treated indigestible rice. It is presumed that this is because the enzyme activity can be rapidly deactivated. Although the treatment temperature of the microwave treatment is not particularly limited, the treatment temperature is preferably 95° C. or lower, more preferably 90° C. or lower, and even more preferably 85° C. or lower from the viewpoint of energy cost. Moreover, the lower limit of the treatment temperature is preferably 65° C. or higher.
In the microwave treatment, it is preferable to raise the temperature quickly from the viewpoint of improving the resistance to digestion. is more preferably 1.5° C./second or more. In addition, since the microwave treatment tends to cause temperature unevenness, it is preferable to use an apparatus equipped with a stirring function.
 本発明の難消化性米の製造方法は、この加熱処理工程後の乾燥等の調製工程は、従来と同様の方法で行うことができる。ただし、湿熱処理または温湯処理後の生籾米は、処理前よりも水分率が高くなっているため、乾燥時の割れを防ぐためにゆっくりと水分率が14.5~15%程度となるまで乾燥することが好ましく、20~35℃で8時間以上かけて乾燥することが好ましく、16時間以上かけて乾燥することがより好ましく、20時間以上かけて乾燥することがさらに好ましい。また、マイクロ波処理の場合は、従来と同様の乾燥条件で乾燥することができる。 In the method for producing indigestible rice of the present invention, the preparation process such as drying after the heat treatment process can be carried out in the same way as before. However, since the moisture content of raw rice after wet heat treatment or hot water treatment is higher than before treatment, it is slowly dried until the moisture content reaches about 14.5 to 15% to prevent cracking during drying. drying at 20 to 35° C. for 8 hours or more is preferable, drying is more preferably drying for 16 hours or more, and drying for 20 hours or more is even more preferable. Moreover, in the case of microwave treatment, drying can be performed under the same drying conditions as in the past.
・難消化性米
 生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施すことにより本発明の難消化性米が得られる。
(1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
(2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
(3)マイクロ波により、60℃以上100℃以下に加熱する。
 なお、米は農産物であるため、そのデンプン中のアミロース/アミロペクチンの比率や分子量、細胞壁のセルロース/ヘミセルロース/ペクチンの比率や厚さ、水分量、タンパク質・ビタミン・無機成分等の微量成分の含有量等にはばらつきがある。加熱処理工程により、少なくとも、デンプンの結晶化と細胞壁の変性が起こることにより難消化性米へと変化すると推測されるが、そのメカニズムは不明であり、このメカニズムを正確に解明することは非常に困難である。
- Indigestible rice The indigestible rice of the present invention can be obtained by subjecting uncooked rice to heat treatment under any one or more of the following conditions (1) to (3).
(1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
(3) Heat to 60° C. or more and 100° C. or less with microwaves.
Since rice is an agricultural product, the ratio and molecular weight of amylose/amylopectin in the starch, the ratio and thickness of cellulose/hemicellulose/pectin in the cell wall, the moisture content, and the content of trace components such as proteins, vitamins, and inorganic components. etc. have variations. It is speculated that the heat treatment process causes at least the crystallization of starch and denaturation of the cell wall, resulting in a change to resistant rice. Have difficulty.
 本発明の難消化性米は、加熱処理工程を施していない未処理の場合と比較して、消化が遅く、また、消化がされにくい。本発明の難消化性米は、未処理の場合と比較して、模擬消化試験系で評価したデンプンの消化速度定数(min-1)が10%以上低いことが好ましく、15%以上低いことがより好ましい。また、本発明の難消化性米は、未処理の場合と比較して、難消化性デンプン量が50%以上増加していることが好ましく、100%以上増加していることがより好ましい。
 本発明の難消化性米は、デンプンの消化速度定数が0.008(min-1)以下であることが好ましく、0.007(min-1)以下であることがより好ましく、0.0065(min-1)以下であることがさらに好ましい。
The indigestible rice of the present invention is digested more slowly and less easily than untreated rice that has not undergone a heat treatment step. In the resistant rice of the present invention, the starch digestion rate constant (min −1 ) evaluated in a simulated digestion test system is preferably 10% or more, and preferably 15% or more, lower than that of the untreated rice. more preferred. In addition, the resistant rice of the present invention preferably has an amount of resistant starch that is increased by 50% or more, more preferably by 100% or more, compared to the untreated rice.
The starch digestion rate constant of the resistant rice of the present invention is preferably 0.008 (min -1 ) or less, more preferably 0.007 (min -1 ) or less, and more preferably 0.0065 (min -1 ) or less. min −1 ) or less.
・含水率測定法
 精米した白米粒試料の含水率は、加熱乾燥式水分計(MX-50、エー・アンド・デイ社製)を使って測定した。
- Moisture content measurement method The moisture content of the polished rice grain sample was measured using a heat drying moisture meter (MX-50, manufactured by A&D Co., Ltd.).
・粗タンパク質定量法
 精米した白米粒試料の粗タンパク質量は、ミキサーで粗粉砕したのち、さらに電動石うすで粒径50μm以下まで粉砕して得られた白米粉末0.15gを、CNコーダー(MT700、ヤナコ社製)で測定した。馬尿酸を標準窒素物質とし、得られた窒素含有量に窒素-タンパク質変換係数である5.95を乗じて粗タンパク質量を定量した。
・白米粒表面色測定法
 白米粒表面の色彩値は、分光測色計(CM-600d、コニカミノルタ社製)のCIELAB表色系測定モードにより評価した。白米粒サンプルは、直径8cm、高さ1cmのシャーレに十分な量を充填し、ランダムに3点選択してL*、a*、b*値を測定し、その平均値を求めた。また得られた測定値から、次の式を使って白度(WI)を算出した。
  WI=100-((100-L*2+(a*2)+(b*2))1/2
・Crude protein determination method The crude protein amount of the polished rice grain sample was obtained by coarsely pulverizing with a mixer and then further pulverizing with an electric stone mill to a particle size of 50 µm or less. manufactured by Yanako). Using hippuric acid as a standard nitrogen substance, the resulting nitrogen content was multiplied by the nitrogen-to-protein conversion factor of 5.95 to quantify the crude protein content.
· Polished rice grain surface color measurement method The color value of the polished rice grain surface was evaluated by the CIELAB color system measurement mode of a spectrophotometer (CM-600d, manufactured by Konica Minolta). A petri dish having a diameter of 8 cm and a height of 1 cm was filled with a sufficient amount of the polished rice grain sample, and three points were randomly selected to measure the L * , a * , and b * values, and the average value was obtained. The whiteness (WI) was calculated using the following formula from the measured values obtained.
WI = 100 - ((100 - L * ) 2 + (a *2 ) + (b *2 )) 1/2
・炊飯法
 精米した米粒サンプル50gに対し、米:蒸留水が1:1.5(w/v)の割合となるように蒸留水を加え、単純加熱タイプの小型電気炊飯器(ミニクッカーSR-MC03、パナソニック社製)を用いて炊飯した。炊飯完了後の米飯はすぐにシャーレに移し、ラップで密封して30℃に設定したインキュベータ内で30分間静置した。その後続けて物性、消化性を測定した。
・ Rice cooking method Distilled water was added to 50 g of a sample of polished rice grains so that the ratio of rice: distilled water was 1:1.5 (w / v), and a simple heating type small electric rice cooker (mini cooker SR- MC03, manufactured by Panasonic Corporation) was used to cook rice. After the completion of rice cooking, the cooked rice was immediately transferred to a petri dish, sealed with plastic wrap, and allowed to stand in an incubator set at 30°C for 30 minutes. Subsequently, physical properties and digestibility were measured.
・テクスチャー測定法
 米飯粒試料のかたさおよび付着性は、クリープメーター(RE2、山電社製)および付属の解析ソフトウェア(テクスチャー解析、TAS-3305(W)、山電社製)を使って測定した。
 上記炊飯して静置後の米飯粒を1粒ずつ測定ステージに設置し、粒の短軸方向に圧縮した。測定ステージから米飯粒表面までの距離を粒の厚さとし、圧縮率が90%になったときの最大荷重をかたさ、そこから戻し操作したときの負の荷重と戻し距離から求めた面積値を付着性とした。プランジャはフッ素樹脂製で米飯粒より十分に大きな円盤型(Φ30mm)を用い、ステージの移動速度は1mm/s、プランジャが米飯粒の表面を検知するトリガポイントでの感知圧は0.02Nに設定した。
・Texture measurement method The hardness and adhesiveness of the cooked rice grain sample were measured using a creep meter (RE2, manufactured by Yamaden Co., Ltd.) and attached analysis software (texture analysis, TAS-3305 (W), manufactured by Yamaden Co., Ltd.). .
The cooked rice grains after being cooked and allowed to stand were placed on a measurement stage one by one and compressed in the short axis direction of the grains. The distance from the measurement stage to the rice grain surface is the thickness of the rice grain, the maximum load when the compression ratio reaches 90% is the hardness, and the area value obtained from the negative load and the return distance when the return operation is performed from there is attached. sex. The plunger is made of fluororesin and is disk-shaped (Φ30mm), which is sufficiently larger than the grain of cooked rice. bottom.
・試薬、キット
 ペプシン(P7000、porcine gastric mucosa、≧250U/mg、solid:Sigma-Aldrich社製)
 パンクレアチン(hog pancreas、4×USP:Sigma-Aldrich社製)
 インベルターゼ(from baker/s yeast、gradeVII、≧300U/mg、solid:Sigma-Aldrich社製)
 アミログルコシダーゼ(3260U/mL:Megazyme International社製)
 α-アミラーゼ(3000U/mL、No.E-BSTAA:Megazyme International社製)
 トータルスターチアッセイキット(Total starch assay kit、K-TSTA-50A/K-TSTA-100A 08/19:Megazyme International社製)
 レジスタントスターチアッセイキット(Resistant Starch Assay kit、K-RSTAR、Megazyme International社製)
 D-グルコースアッセイキット(D-glucose assay kit、GOPOD format、K-GLUC 03/2010:Megazyme International社製)
・ Reagent, kit pepsin (P7000, porcine gastric mucosa, ≧250 U / mg, solid: manufactured by Sigma-Aldrich)
Pancreatin (hog pancreas, 4 x USP: manufactured by Sigma-Aldrich)
Invertase (from baker/s yeast, grade VII, ≧300 U/mg, solid: manufactured by Sigma-Aldrich)
Amyloglucosidase (3260 U/mL: manufactured by Megazyme International)
α-amylase (3000 U/mL, No. E-BSTAA: manufactured by Megazyme International)
Total starch assay kit (K-TSTA-50A/K-TSTA-100A 08/19: manufactured by Megazyme International)
Resistant Starch Assay Kit (K-RSTAR, manufactured by Megazyme International)
D-glucose assay kit (D-glucose assay kit, GOPOD format, K-GLUC 03/2010: manufactured by Megazyme International)
・試薬調整
 ペプシン0.12gを0.2%(w/v)塩化ナトリウム水溶液25mLに溶解して模擬胃液(SGF:simulated gastric fluid)を得た。
 パンクレアチン、インベルターゼ、アミログルコシダーゼを、pH6.8に調整した0.6%(w/v)リン酸二水素カリウム水溶液23mLに、それぞれ100mg、7.5mg、2mLを溶解して模擬膵液(SIF:simulated intestinal fluid)を得た。
- Reagent preparation A simulated gastric fluid (SGF) was obtained by dissolving 0.12 g of pepsin in 25 mL of a 0.2% (w/v) sodium chloride aqueous solution.
Simulated pancreatic juice (SIF: A simulated intestinal fluid) was obtained.
 インベルターゼ、アミログルコシダーゼを酢酸カリウムバッファー20mlに加えて撹拌し、インベルターゼ/アミログルコシダーゼ溶液を得た。
 パンクレアチン0.05gおよびインベルターゼ0.00375gを、pH5.0の100mM酢酸ナトリウムバッファー50mlと混合し、5分間撹拌したのち、アミログルコシダーゼ1mlを加えて37℃に加温しながらさらに15分間撹拌し、レジスタントスターチ定量に用いる消化酵素液を得た。
Invertase and amyloglucosidase were added to 20 ml of potassium acetate buffer and stirred to obtain an invertase/amyloglucosidase solution.
0.05 g of pancreatin and 0.00375 g of invertase were mixed with 50 ml of 100 mM sodium acetate buffer of pH 5.0 and stirred for 5 minutes, then 1 ml of amyloglucosidase was added and stirred for another 15 minutes while warming to 37°C. A digestive enzyme solution for quantifying resistant starch was obtained.
・総デンプン量測定
 精米した白米粒を、ミキサーで粗粉砕したあと、電動石うすを使って粒径50μm以下まで粉砕した。得られた粉末に対して、トータルスターチアッセイキットのマニュアルに記載された処理手順に従い、総デンプン量を定量した。
 粉末50mgを試験管に秤量し、pH5.0に調整した100ml酢酸ナトリウムバッファー10mlと混合し、5秒間ボルテックスミキサーで撹拌してから、α-アミラーゼ0.1mlを分注、3秒間再度撹拌し、沸騰水中で15分間加熱した。加熱開始から、2、5、10分後に、いったん沸騰水から取り出してボルテックスミキサーで撹拌した。15分後に取り出してボルテックスミキサーで撹拌の後、50℃に設定したウォーターバス内で5分間インキュベートした。その後、アミログルコシダーゼ0.1mlを加えて3秒間ボルテックスミキサーで撹拌し、50℃のウォーターバス内で再度30分間インキュベートした。
- Measurement of total starch content Polished grains of white rice were coarsely pulverized with a mixer, and then pulverized to a particle size of 50 µm or less using an electric stone mill. The total starch content of the obtained powder was quantified according to the procedure described in the manual of the total starch assay kit.
50 mg of powder was weighed into a test tube, mixed with 10 ml of 100 ml sodium acetate buffer adjusted to pH 5.0, stirred with a vortex mixer for 5 seconds, then 0.1 ml of α-amylase was dispensed, stirred again for 3 seconds, Heated in boiling water for 15 minutes. After 2, 5, and 10 minutes from the start of heating, the mixture was temporarily removed from the boiling water and stirred with a vortex mixer. After 15 minutes, the mixture was taken out, stirred with a vortex mixer, and incubated in a water bath set at 50°C for 5 minutes. After that, 0.1 ml of amyloglucosidase was added, stirred with a vortex mixer for 3 seconds, and incubated again in a water bath at 50°C for 30 minutes.
 インキュベート終了後、試験管を取り出して室温で10分間放熱してから、10℃に設定した遠心分離機で13000rpm、5分間遠心分離して上澄み液を得た。上澄み液は、10倍量の酢酸ナトリウムバッファーで希釈したのち、0.1ml採取してGOPOD3mlを加えて50℃のウォーターバス内で20分間インキュベートした。
 インキュベート後のサンプル溶液は、分光光度計を使って510nmの波長で吸光度を測定した。得られた吸光度を、1.0mg/ml濃度のD-グルコース0.1mlにGOPOD3mlを加えた標準液の吸光度と比較することで、総デンプン量を算出した。
After completion of the incubation, the test tube was taken out, heat was removed at room temperature for 10 minutes, and then centrifuged at 13000 rpm for 5 minutes in a centrifuge set at 10°C to obtain a supernatant. After diluting the supernatant with 10-fold volume of sodium acetate buffer, 0.1 ml was collected, 3 ml of GOPOD was added, and the mixture was incubated in a water bath at 50° C. for 20 minutes.
The absorbance of the sample solution after incubation was measured at a wavelength of 510 nm using a spectrophotometer. The total starch content was calculated by comparing the obtained absorbance with the absorbance of a standard solution in which 0.1 ml of D-glucose at a concentration of 1.0 mg/ml was added with 3 ml of GOPOD.
・難消化性デンプン量測定
 精米した白米粒を、ミキサーで粗粉砕したあと、電動石うすを使って粒径50μm以下まで粉砕した。得られた粉末に対して、レジスタントスターチアッセイキットのマニュアルに記載された処理手順に従い、難消化性デンプン量を測定した。
 試験管内にサンプルの粉末を200mg秤量し、100ml酢酸ナトリウムバッファー4mlを加えて5秒間ボルテックスミキサーで撹拌してから10分間静置した。その後、再度ボルテックスミキサーで撹拌して沸騰水中で20分間加熱した。加熱後は37℃に設定したウォーターバス内に移してサンプル液温が37℃になるまで静置した。
 37℃になったサンプルにレジスタントスターチ定量に用いる消化酵素液1mlを加えて5秒間ボルテックスミキサーで撹拌し、37℃の振とう式ウォーターバスで4時間振とうした。その後、消化処理を停止するため試験管に95%(v/v)エタノール3mlを加えて再度ボルテックスミキサーで撹拌した。
 得られたサンプルは10℃に設定した遠心分離機で4000rpm、10分間遠心分離した。その後、上澄み液を採取してから固形分に50%(v/v)エタノール3mlを加えてボルテックスミキサーで撹拌、再度遠心分離した。同じ方法で3回繰り返し、サンプル中の非レジスタントスターチをすべて分離した。
- Determination of amount of indigestible starch Polished white rice grains were coarsely pulverized with a mixer, and then pulverized to a particle size of 50 µm or less using an electric stone mill. The resulting powder was measured for the amount of resistant starch according to the procedure described in the manual of the resistant starch assay kit.
200 mg of sample powder was weighed into a test tube, 4 ml of 100 ml of sodium acetate buffer was added, and the mixture was stirred for 5 seconds with a vortex mixer and allowed to stand for 10 minutes. Then, it was stirred again with a vortex mixer and heated in boiling water for 20 minutes. After heating, the sample was placed in a water bath set at 37°C and allowed to stand until the temperature of the sample liquid reached 37°C.
To the sample cooled to 37°C, 1 ml of the digestive enzyme solution used for quantification of resistant starch was added, stirred for 5 seconds with a vortex mixer, and shaken in a shaking water bath at 37°C for 4 hours. After that, 3 ml of 95% (v/v) ethanol was added to the test tube to stop the digestion treatment, and the tube was stirred again with the vortex mixer.
The resulting sample was centrifuged at 4000 rpm for 10 minutes in a centrifuge set at 10°C. Thereafter, after collecting the supernatant, 3 ml of 50% (v/v) ethanol was added to the solid content, stirred with a vortex mixer, and centrifuged again. The same procedure was repeated three times to separate all non-resistant starch in the sample.
 非レジスタントスターチを分離した固形分に1.7M水酸化ナトリウム1mlを混合し、氷を敷き詰めた容器中でスターラーを用いて750rpmで20分間撹拌した。20分経過後、pH3.8に調整した1M酢酸ナトリウムバッファー4mlを加えてからアミログルコシダーゼ50μlを分注し、さらに2分間撹拌した。その後すぐに50℃に設定したウォーターバス内で30分間インキュベートした。30分後に試験管を取り出し、5秒間ボルテックスミキサーで撹拌して、10℃に設定した遠心分離機で13000rpm、5分間遠心分離して上澄み液を得た。10μlの上澄み液を採取し、マイクロプレートに分注してからGOPOD300μlを加えて50℃に設定した恒温器内で20分間インキュベートした。
 その後、マイクロプレートリーダーを使って510nmの波長で吸光度を測定した。得られた吸光度を、1.0mg/ml濃度のD-グルコース10μlにGOPOD300μlを加えた標準液の吸光度と比較することで、難消化性デンプン(レジスタントスターチ)量を算出した。
The solid content from which the non-resistant starch was separated was mixed with 1 ml of 1.7 M sodium hydroxide, and stirred at 750 rpm for 20 minutes in a vessel covered with ice using a stirrer. After 20 minutes, 4 ml of 1 M sodium acetate buffer adjusted to pH 3.8 was added, 50 μl of amyloglucosidase was added, and the mixture was further stirred for 2 minutes. Immediately thereafter, it was incubated in a water bath set at 50°C for 30 minutes. After 30 minutes, the test tube was taken out, stirred with a vortex mixer for 5 seconds, and centrifuged at 13000 rpm for 5 minutes in a centrifuge set at 10°C to obtain a supernatant. 10 µl of the supernatant was collected, dispensed into microplates, added with 300 µl of GOPOD, and incubated in a thermostat set at 50°C for 20 minutes.
Absorbance was then measured at a wavelength of 510 nm using a microplate reader. The amount of resistant starch (resistant starch) was calculated by comparing the obtained absorbance with the absorbance of a standard solution in which 300 μl of GOPOD was added to 10 μl of D-glucose at a concentration of 1.0 mg/ml.
・in vitro模擬消化試験(炊飯条件、消化性試験実施手順、条件)
 米飯試料の総デンプン量が6.80g相当となるように秤量してポリエチレン製の水切りネットに入れて、37℃に設定した500ml容の二重管式反応容器(三商、82-3625、以下、反応容器ともいう)の内側に吊り下げるとともに蒸留水を加えて合計170gに調製した。
 反応容器内には撹拌子とpH電極を設置し、撹拌子が試料に接触しないよう液部のみを、350rpmで撹拌した。
 pHを1.2とし、SGFを加えて胃での消化条件を再現した。30分後、水酸化ナトリウム水溶液を適量加えてペプシンを不活性化した。続けてpHを6.8±0.02とし、SIFを加えて小腸での消化条件を再現した。
・ In vitro simulated digestion test (rice cooking conditions, digestibility test procedure, conditions)
Weighed so that the total starch content of the cooked rice sample was equivalent to 6.80 g, put it in a polyethylene draining net, and placed it in a 500 ml double-tube reaction vessel set at 37 ° C. (Sansho, 82-3625, hereinafter , also referred to as a reaction vessel), and distilled water was added to prepare a total of 170 g.
A stirrer and a pH electrode were installed in the reaction vessel, and only the liquid portion was stirred at 350 rpm so that the stirrer did not come into contact with the sample.
The pH was adjusted to 1.2 and SGF was added to reproduce digestion conditions in the stomach. After 30 minutes, the pepsin was inactivated by adding an appropriate amount of aqueous sodium hydroxide. The pH was then brought to 6.8±0.02 and SIF was added to mimic digestion conditions in the small intestine.
・in vitro模擬消化試験(消化性評価方法)
 胃での消化条件を再現して5、30分後と、小腸での消化条件を再現して5、10、15、30、60、90、120、150、180、210分後に、適量のサンプルを取り出し、3600×gで5分間遠心分離し、得られた上澄み液中のグルコース濃度を以下に示す方法で定量した。
 0.1mlの上澄み液に、0.5mlのインベルターゼ/アミログルコシダーゼ溶液を加えて、37℃に設定したウォーターバス内で10分間静置した。その後、0.1mlを採取してGOPOD3mlと混合し、50℃に設定したウォーターバス内で20分間静置した。
 得られたサンプル溶液は、分光光度計を使って510nmの波長で吸光度を測定し、D-グルコース0.1mlにGOPOD3mlを加えた標準液で校正し、サンプル溶液中のグルコース濃度を求めた。
・In vitro simulated digestion test (digestibility evaluation method)
After 5 and 30 minutes reproducing digestion conditions in the stomach and after 5, 10, 15, 30, 60, 90, 120, 150, 180 and 210 minutes reproducing digestion conditions in the small intestine, an appropriate amount of sample was taken out and centrifuged at 3600×g for 5 minutes, and the glucose concentration in the obtained supernatant was quantified by the method shown below.
0.5 ml of the invertase/amyloglucosidase solution was added to 0.1 ml of the supernatant and allowed to stand in a water bath set at 37° C. for 10 minutes. After that, 0.1 ml was collected, mixed with 3 ml of GOPOD, and allowed to stand in a water bath set at 50° C. for 20 minutes.
The absorbance of the resulting sample solution was measured using a spectrophotometer at a wavelength of 510 nm, and calibrated with a standard solution of 0.1 ml of D-glucose to which 3 ml of GOPOD was added to determine the glucose concentration in the sample solution.
 米飯中に含まれるデンプンの加水分解率(消化率)は、次の式を使って算出した。
  %SH=Sh/Si=0.9Gp/Si
 ここで、%SHはデンプンの加水分解率(消化率、%)、Shは加水分解されたデンプン量(g)、Siは初期デンプン量(g)、Gpは生成したグルコース量(g)、0.9はデンプン中のグルコースユニットの分子量/グルコースの分子量(162/180)の変換係数を示す。
The hydrolysis rate (digestibility) of starch contained in cooked rice was calculated using the following formula.
%S H =S h /S i =0.9G p /S i
Here, % SH is the starch hydrolysis rate (digestibility, %), Sh is the amount of hydrolyzed starch (g), Si is the initial amount of starch (g), G is the amount of glucose produced ( g), 0.9 indicates the conversion factor of molecular weight of glucose units in starch/molecular weight of glucose (162/180).
 小腸での模擬消化過程における消化率の推移を次の一次反応式を使って近似し、算出された定数項のうちkを消化速度定数(min-1)、C∞を平衡消化率(%)とした。
  C=C∞(1-exp(-kt))
 ここで、Cは時間tでのデンプンの加水分解率(%)、tは小腸での模擬消化過程でサンプルを採取した時の時間(min)を示す。
The transition of the digestibility in the simulated digestion process in the small intestine is approximated using the following first-order reaction equation, and among the calculated constant terms, k is the digestion rate constant (min -1 ) and C∞ is the equilibrium digestibility (%). and
C=C∞(1-exp(-kt))
Here, C is the starch hydrolysis rate (%) at time t, and t is the time (min) when the sample was taken during the simulated digestion process in the small intestine.
(実験1)
 収穫後の生籾米(広島県産ヒノヒカリ、粗タンパク質含有量5.4%(d.b.)、初期含水率25.8%(w.b.))を、60℃または80℃、98%RHの高湿度循環通気条件下に、4時間または24時間晒し、加熱処理を行った。
 処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)して難消化性米を得た。また、これを炊飯して難消化性米飯を得た。
(Experiment 1)
Post-harvest raw rice (Hinohikari from Hiroshima Prefecture, crude protein content 5.4% (d.b.), initial moisture content 25.8% (w.b.)) Heat treatment was performed by exposing to RH high humidity circulating aeration conditions for 4 hours or 24 hours.
After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
 得られた米飯の模擬消化試験の評価結果を図1に、算出した平衡消化率(C∞(%))、消化速度定数(k(×10-3・min-1))を表1に示す。また、精米後の難消化性米の外観を図2に、難消化性米飯のかたさ(Firmness)および付着性(Adhesiveness)をそれぞれ図3、4に、それぞれ示す。 The evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG . . In addition, the appearance of the indigestible rice after polishing is shown in FIG. 2, and the firmness and adhesiveness of the indigestible cooked rice are shown in FIGS. 3 and 4, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 加熱処理の温度が高いほど、また、処理時間が長いほど、糖質消化性が低下した難消化性米が得られることが確かめられた(図1、表1)。
 80℃、98%RH、24時間の湿熱処理を施すと、処理後の難消化性米は褐変していた(図2)。この難消化性米は、褐変したものの、最も難消化性に優れていた。同時に、かたさは増加し、付着性は減少したことから、炒飯やピラフ等の味付米飯に好適に用いることができる(図3、4)。
It was confirmed that the higher the heat treatment temperature and the longer the treatment time, the more resistant rice with reduced carbohydrate digestibility was obtained (Fig. 1, Table 1).
When wet heat treatment was performed at 80°C, 98% RH for 24 hours, the treated resistant rice turned brown (Fig. 2). Although this resistant rice turned brown, it was the most resistant to digestion. At the same time, since the hardness increased and the adhesiveness decreased, it can be suitably used for seasoned boiled rice such as fried rice and pilaf (Figs. 3 and 4).
(実験2)
 収穫後の生籾米(千葉県産トヨメキ、粗タンパク質含有量6.9%(d.b.)、初期含水率19.7%(w.b.))を、60℃または65℃、98%RHの高湿度循環通気条件下に、12時間または18時間晒し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)して難消化性米を得た。また、これを炊飯して難消化性米飯を得た。
(Experiment 2)
Post-harvest uncooked rice (Toyomeki produced in Chiba Prefecture, crude protein content 6.9% (d.b.), initial moisture content 19.7% (w.b.)) was heated at 60°C or 65°C, 98% Heat treatment was performed by exposure to RH for 12 hours or 18 hours under high-humidity circulating aeration conditions. After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
 精米後の難消化性米の含水率、総デンプン量、難消化性デンプン量、それぞれの値を表2に、白米粒の表面色を表3に示す。
 得られた米飯の模擬消化試験の評価結果を図5に、算出した平衡消化率、消化速度定数を表4に示す。また、難消化性米飯のかたさ(Firmness)および付着性(Adhesiveness)を、それぞれ図6、7に示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the water content, total starch content, and resistant starch content of the resistant rice after milling, and Table 3 shows the surface color of the polished rice grains.
The evaluation results of the simulated digestion test of the obtained boiled rice are shown in FIG. 5, and the calculated equilibrium digestibility and digestion rate constant are shown in Table 4. Firmness and adhesiveness of the indigestible boiled rice are shown in FIGS. 6 and 7, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 加熱処理の温度が高いほど、難消化性デンプン量は増加した(表2)。一方、処理時間が長いほど白度(WI)(表3)および平衡消化率(表4)は低下した。しかし、高湿度循環通気による加熱処理では、60℃または65℃の処理温度、12時間または18時間の処理時間で、消化速度定数の統計的な差異は確認されなかった。ただし、60℃の処理で消化速度定数の平均値は10%程度小さくなった。
 以上、実験1の傾向と同様、加熱温度が60℃あるいは65℃、処理時間が12時間あるいは18時間であっても、糖質消化性の低下した難消化性米を得られることが確かめられた(図5)。
 60℃または65℃、98%RH、12時間または18時間の加熱処理を施しても、米飯粒のかたさは変化しなかった。一方、60℃の加熱処理を施すと、コントロールの3倍程度に付着性が増加した(図6、7)。しかし、65℃の加熱処理を施しても、コントロールの付着性と差異はなかった。
The higher the heat treatment temperature, the higher the amount of resistant starch (Table 2). On the other hand, whiteness (WI) (Table 3) and equilibrium digestibility (Table 4) decreased with longer treatment times. However, in the heat treatment by high-humidity circulating aeration, no statistical difference in the digestion rate constant was observed at the treatment temperature of 60° C. or 65° C. and the treatment time of 12 hours or 18 hours. However, the treatment at 60° C. reduced the average digestion rate constant by about 10%.
As described above, it was confirmed that even if the heating temperature is 60° C. or 65° C. and the treatment time is 12 hours or 18 hours, as in the case of Experiment 1, resistant rice with reduced carbohydrate digestibility can be obtained. (Fig. 5).
The hardness of the cooked rice grains did not change even after heat treatment at 60° C. or 65° C., 98% RH for 12 hours or 18 hours. On the other hand, when heat treatment at 60° C. was performed, the adhesiveness increased to about three times that of the control (FIGS. 6 and 7). However, even after heat treatment at 65°C, there was no difference in the adhesion of the control.
(実験3)
 収穫後の生籾米(千葉県産トヨメキ、粗タンパク質含有量6.9%(d.b.)、初期含水率19.7%(w.b.))を、65℃の温湯に、2時間、4時間または6時間浸漬し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)して難消化性米を得た。また、これを炊飯して難消化性米飯を得た。
(Experiment 3)
Raw unhulled rice after harvest (Toyomeki produced in Chiba Prefecture, crude protein content 6.9% (d.b.), initial moisture content 19.7% (w.b.)) is soaked in warm water at 65°C for 2 hours. , immersed for 4 hours or 6 hours, and heat-treated. After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
 精米後の難消化性米の含水率、総デンプン量、難消化性デンプン量、それぞれの値を表5に、白米粒の表面色を表6に、その外観写真を図8に示す。
 得られた米飯を模擬消化した結果を図9に、算出された平衡消化率、消化速度定数を表7に示す。また、難消化性米飯のかたさ(Firmness)および付着性(Adhesiveness)をそれぞれ図10、11に示す。
Table 5 shows the water content, total starch content, and resistant starch content of the milled resistant rice, Table 6 shows the surface color of the polished rice grains, and FIG.
The results of simulated digestion of the obtained boiled rice are shown in FIG. 9, and the calculated equilibrium digestibility and digestion rate constant are shown in Table 7. Firmness and adhesiveness of the indigestible boiled rice are shown in FIGS. 10 and 11, respectively.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 65℃の浸漬加熱処理条件では、処理によって白度がわずかに低下したものの(表6、図8)、処理時間に関わらず浸漬処理を施すことで糖質消化性の低下した難消化性米を得られることが確かめられた(図9)。温水で加熱処理することにより、空気と比較して効率的に熱量を与えることができるため、短い時間で難消化性米が得られた(図9、表5)。
 65℃で浸漬処理を施すと、2時間または4時間浸漬処理した後に炊飯して得られた難消化性米飯のかたさは、コントロールと差異はなかった。しかし6時間浸漬処理した後の難消化性米飯はコントロールよりも平均値で約1.5倍、付着性は約3倍の増加を示した(図10、11)。一方、平衡消化率は浸漬処理の処理時間に関わらず10%程度の低下を示した。消化速度定数は、統計的な差異は確認されなかったものの、4時間の浸漬処理を施した難消化性米飯は平均値で20%程度の低下が確認された。このため、浸漬処理を施した難消化性米飯は通常の白米とほぼ同等の物性を有しながら糖質消化性が低下した米飯として用いることができる。
Under the immersion heat treatment conditions of 65°C, the whiteness was slightly decreased by the treatment (Table 6, Fig. 8), but the immersion treatment resulted in resistant rice with reduced carbohydrate digestibility regardless of the treatment time. (Fig. 9). By heat-treating with hot water, heat can be given more efficiently than with air, and thus resistant rice was obtained in a short period of time (Fig. 9, Table 5).
When the immersion treatment was performed at 65°C, the hardness of the indigestible cooked rice obtained by cooking the rice after the immersion treatment for 2 hours or 4 hours did not differ from that of the control. However, after soaking for 6 hours, the indigestible boiled rice showed an average increase of about 1.5 times and an increase in adhesion of about 3 times compared to the control (Figs. 10 and 11). On the other hand, the equilibrium digestibility showed a decrease of about 10% regardless of the treatment time of the immersion treatment. As for the digestion rate constant, although no statistical difference was confirmed, an average value of about 20% decrease was confirmed for the indigestible boiled rice soaked for 4 hours. Therefore, the immersion-treated indigestible cooked rice can be used as cooked rice with reduced carbohydrate digestibility while having substantially the same physical properties as ordinary white rice.
(実験4)
 収穫後の生籾米(千葉県産コシヒカリ、タンパク質含有量6.0%(d.b.)、初期含水率21.9%(w.b.))を、65℃の温度環境下で、98%RHの高湿度循環通気に、6、12、18、24、48時間晒し、または65℃の温湯に、2、4、6、12時間浸漬し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)して難消化性米を得た。また、これを炊飯して難消化性米飯を得た。
(Experiment 4)
Raw unhulled rice after harvest (Koshihikari from Chiba Prefecture, protein content 6.0% (d.b.), initial moisture content 21.9% (w.b.)) was heated to 98°C in a temperature environment of 65°C. The heat treatment was performed by exposing to high-humidity circulating aeration at % RH for 6, 12, 18, 24, and 48 hours, or immersing in hot water at 65° C. for 2, 4, 6, and 12 hours. After the treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, and polished (90% of the weight of unpolished rice) to obtain resistant rice. In addition, this was cooked to obtain indigestible cooked rice.
 得られた難消化性米飯の、処理時間ごとの難消化性デンプン量の変化を図12に示す。また、65℃、98%RHの高湿度循環通気による加熱処理、および65℃の温湯への浸漬による加熱処理によって得られた難消化性米飯の模擬消化による糖質消化性評価結果をそれぞれ図13、14に、平衡消化率、消化速度定数を表8に示す。 Fig. 12 shows changes in the amount of resistant starch in the resulting resistant cooked rice for each treatment time. Fig. 13 shows the evaluation results of carbohydrate digestibility by simulated digestion of indigestible boiled rice obtained by heat treatment by high-humidity circulating aeration at 65°C and 98% RH and heat treatment by immersion in hot water at 65°C. , 14 and Table 8 shows the equilibrium digestibility and digestion rate constants.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 高湿度循環通気による加熱処理では、加熱時間が長くなるほど難消化性デンプン量の増加が確認された(図12)。一方、温水浸漬による加熱処理では、加熱時間に伴う難消化性デンプン量の増加は確認されなかった(図12)。
 糖質消化性の評価結果では、平衡消化率に大きな違いは確認されなかった(図13、14)。しかし、消化速度定数は、加熱処理によって低下する傾向を示した(表8)。ただしその傾向は、加熱時間と相関するような結果ではなかった。
In the heat treatment by high-humidity circulating aeration, it was confirmed that the amount of resistant starch increased as the heating time increased (Fig. 12). On the other hand, in the heat treatment by immersion in warm water, no increase in the amount of resistant starch with heating time was confirmed (Fig. 12).
As a result of evaluating carbohydrate digestibility, no significant difference in equilibrium digestibility was confirmed (Figs. 13 and 14). However, the digestion rate constants tended to decrease with heat treatment (Table 8). However, the tendency was not a result that correlated with the heating time.
(実験5)
 収穫後の生籾米(千葉県産フサコガネ、タンパク質含有量6.5%(d.b.)、初期含水率21.2%(w.b.))を、65℃の温度環境下で、98%RHの高湿度循環通気に、6、12、18、24、48時間晒し、または65℃の温湯に、2、4、6、12時間浸漬し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
(Experiment 5)
Raw unhulled rice after harvesting (Chiba-produced Scutellariae, protein content 6.5% (d.b.), initial moisture content 21.2% (w.b.)) was treated at 65°C in a temperature environment of 98°C. The heat treatment was performed by exposing to high-humidity circulating aeration at % RH for 6, 12, 18, 24, and 48 hours, or immersing in hot water at 65° C. for 2, 4, 6, and 12 hours. After the treatment, the rice was dried under ventilation at 35°C and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
 65℃の加熱処理によって得られた精白米の、処理時間ごとの難消化性デンプン量の変化をそれぞれ図15に示す。65℃、98%RHの高湿度循環通気による加熱処理、および65℃の温湯への浸漬による加熱処理によって得られた精白米を炊飯して得られた難消化性米飯の模擬消化による糖質消化性評価結果をそれぞれ図16、17に、平衡消化率、消化速度定数を表9に示す。 Fig. 15 shows changes in the amount of resistant starch in the milled rice obtained by heat treatment at 65°C for each treatment time. Carbohydrate digestion by simulated digestion of indigestible cooked rice obtained by cooking polished rice obtained by heat treatment by high-humidity circulation aeration at 65°C and 98% RH and heat treatment by immersion in hot water at 65°C. Figures 16 and 17 show the sex evaluation results, and Table 9 shows the equilibrium digestibility and digestion rate constant.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実験4と同様、高湿度循環通気による加熱処理では、加熱時間が長くなるほど難消化性デンプン量の増加が確認された(図15)。一方、温水浸漬による加熱処理では、加熱時間に伴う難消化性デンプン量の増加は確認されなかった(図15)。
 糖質消化性の評価結果では、平衡消化率に大きな違いは確認されなかった(図16、17)。しかし、温水浸漬された難消化性米飯の消化速度定数は、2時間浸漬した場合を除き、浸漬処理時間とともに低下する傾向を示した(表9)。
As in Experiment 4, in the heat treatment by high-humidity circulating aeration, it was confirmed that the amount of resistant starch increased as the heating time increased (Fig. 15). On the other hand, in the heat treatment by immersion in warm water, no increase in the amount of resistant starch with heating time was confirmed (Fig. 15).
As a result of evaluating carbohydrate digestibility, no significant difference in equilibrium digestibility was confirmed (Figs. 16 and 17). However, the digestion rate constant of the indigestible boiled rice immersed in hot water tended to decrease with the immersion treatment time, except when immersed for 2 hours (Table 9).
(実験6)
 収穫後の生籾米(千葉県産コシヒカリ、タンパク質含有量7.6%(d.b.)、初期含水率26.9%(w.b.))を、65℃の温度環境下で、98%RHの高湿度循環通気に、6、12、18、24、48時間晒し、または温湯に、2、4、6、12時間浸漬し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
(Experiment 6)
Raw unhulled rice after harvest (Koshihikari from Chiba Prefecture, protein content 7.6% (d.b.), initial moisture content 26.9% (w.b.)) was heated to 98°C in a temperature environment of 65°C. The heat treatment was performed by exposing to high-humidity circulating aeration at % RH for 6, 12, 18, 24, and 48 hours, or immersing in hot water for 2, 4, 6, and 12 hours. After the treatment, the rice was dried under ventilation at 35°C and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
 得られた難消化性米飯の、処理時間ごとの難消化性デンプン量の変化を図18に示す。また、湿熱処理と温湯処理により得られた難消化性米飯の模擬消化による糖質消化性評価結果をそれぞれ図19、20に、平衡消化率、消化速度定数を表10に示す。 Fig. 18 shows changes in the amount of resistant starch in the resulting resistant cooked rice for each treatment time. 19 and 20 show the evaluation results of carbohydrate digestibility by simulated digestion of indigestible boiled rice obtained by wet heat treatment and hot water treatment, and Table 10 shows the equilibrium digestibility and digestion rate constant.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実験4と同様、品種はコシヒカリであるが、収穫されたときの初期含水率は比較的高い生モミに対する加熱処理である。難消化性デンプン量は、実験4および実験5と同様、高湿度循環通気による加熱処理の加熱時間が長くなるほど増加することが確認された(図18)。一方、温水浸漬による加熱処理では、加熱時間に伴う難消化性デンプン量の増加は確認されなかった(図18)。
 糖質消化性の評価結果では、実験4および実験5と同様、平衡消化率に大きな違いは確認されなかった(図19、20)。しかし、温水浸漬された難消化性米飯の消化速度定数は、6時間浸漬した場合にControlの約1/2倍程度に低下する傾向を示した(表10)。
As in Experiment 4, the cultivar is Koshihikari, but the heat treatment is applied to fresh firs that have a relatively high initial moisture content when harvested. As in Experiments 4 and 5, it was confirmed that the amount of resistant starch increased as the heating time of the heat treatment by high-humidity circulating ventilation increased (Fig. 18). On the other hand, in the heat treatment by immersion in hot water, no increase in the amount of resistant starch with heating time was confirmed (Fig. 18).
Similar to Experiments 4 and 5, no significant difference in equilibrium digestibility was confirmed in the carbohydrate digestibility evaluation results (Figs. 19 and 20). However, the digestion rate constant of the indigestible boiled rice immersed in hot water tended to decrease to about 1/2 times that of the control when immersed for 6 hours (Table 10).
(実験7)
 収穫後の生籾米(広島県産ヒノヒカリ、タンパク質含有量5.4%(d.b.)、初期含水率25.8%(w.b.))を、65℃の温度環境下で、温湯に、2時間あるいは4時間浸漬し、加熱処理を行った。処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
(Experiment 7)
Raw unhulled rice after harvest (Hinohikari from Hiroshima Prefecture, protein content 5.4% (d.b.), initial moisture content 25.8% (w.b.)) was soaked in hot water at a temperature of 65 ° C. for 2 hours or 4 hours, followed by heat treatment. After the treatment, the rice was dried under ventilation at 35°C and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
 得られた難消化性米飯の模擬消化試験による糖質消化性評価結果を図21に示す。また、この難消化性米飯の米飯粒を、ミキサーでスラリー状としたものについて同様に模擬消化試験を行った。結果を図22に示す。難消化性デンプン量、平衡消化率、消化速度定数を表11に示す。 Fig. 21 shows the evaluation results of carbohydrate digestibility by a simulated digestion test of the obtained indigestible cooked rice. In addition, a simulated digestion test was similarly performed on the rice grains of this indigestible cooked rice that were made into a slurry with a mixer. The results are shown in FIG. Table 11 shows the amount of resistant starch, equilibrium digestibility and digestion rate constant.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 温水で加熱処理することにより、空気と比較して効率的に熱量を与えることができるため、短い時間で難消化性米が得られた(図21)。温水も、湿熱空気と同じく、処理時間が長いほど、難消化性が向上することが確かめられた。
 スラリー状にしても、コントロールと比較して難消化性米の方が難消化性に優れていた(図22)。このことから、温水に晒す加熱処理では、デンプンの結晶構造、もしくは細胞構造が変化して消化液の浸透を妨げた可能性が示唆された。ただし、スラリーの場合、2時間加熱処理した難消化性米の方が、4時間加熱処理した難消化性米よりも、難消化性に優れており、デンプンの結晶化以外にも、何らかの変化が起きていることも示唆された。
By heat-treating with hot water, the amount of heat can be given more efficiently than with air, and thus indigestible rice was obtained in a short period of time (Fig. 21). It was confirmed that the longer the treatment time of warm water, the more the indigestibility improved, as with the hot and moist air.
Even in the form of slurry, the indigestible rice was superior to the control in digestibility (Fig. 22). From this, it was suggested that the heat treatment in which the starch was exposed to warm water changed the crystal structure or cell structure of the starch, which hindered the penetration of the digestive fluid. However, in the case of slurry, the resistant rice heat-treated for 2 hours is superior in digestibility to the resistant rice heat-treated for 4 hours, and there are some changes other than starch crystallization. It is also suggested that this is happening.
(実験8)
 収穫後の生籾米(千葉県産フサコガネ、タンパク質含有量6.5%(d.b.)、初期含水率21.2%(w.b.))を、1L容量のビーカーに入れ、電子レンジ(日立製作所、MRO-DF6)によって加熱処理して難消化性米を得た。加熱は、100Wに設定した電子レンジ内に、サンプルの質量が1000gとなるように設置し、穀粒温が100℃に上昇するまで加熱を継続した。なお、温度は、ビーカーに入れた生籾米の中央にファイバー型温度計(Fiberoptic Thermometer(Anritsu Meter、AMOTH FL-2000)、プローブ(安立計器、FS100-2M))のプローブ先端が位置するようにして測定した。
 加熱処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
(Experiment 8)
Raw unhulled rice after harvesting (Chiba-produced husakogane, protein content 6.5% (d.b.), initial moisture content 21.2% (w.b.)) is placed in a 1 L capacity beaker and microwaved. (Hitachi Ltd., MRO-DF6) to obtain indigestible rice. Heating was performed by placing the sample in a microwave oven set to 100 W so that the mass of the sample was 1000 g, and heating was continued until the grain temperature rose to 100°C. The temperature was adjusted so that the probe tip of a fiber type thermometer (Fiberoptic Thermometer (Anritsu Meter, AMOTH FL-2000), probe (Anritsu Meter, FS100-2M)) was positioned in the center of the raw rice put in the beaker. It was measured.
After heat treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
 加熱に要した時間と昇温速度と、精米後の難消化性デンプン量を表12に示す。
Figure JPOXMLDOC01-appb-T000012
Table 12 shows the time required for heating, the rate of temperature increase, and the amount of resistant starch after milling.
Figure JPOXMLDOC01-appb-T000012
 得られた米飯の模擬消化試験による糖質消化性評価結果を図23に、平衡消化率、消化速度定数を表13に示す。
Figure JPOXMLDOC01-appb-T000013
FIG. 23 shows the evaluation results of carbohydrate digestibility of the obtained boiled rice by simulated digestion test, and Table 13 shows the equilibrium digestibility and the digestion rate constant.
Figure JPOXMLDOC01-appb-T000013
 コントロールと比較して、電子レンジで加熱処理したサンプルの消化性が低下することが確かめられた。マイクロ波処理により、湿熱処理、温熱処理と比較して、処理時間を大幅に短縮することができることが確認できた。
 また、得られた米飯は、色、実験時の粘り気や見た目等もコントロールと変わらなかった。
It was confirmed that the digestibility of the microwave heat-treated sample was reduced compared to the control. It was confirmed that the microwave treatment can greatly shorten the treatment time compared to the wet heat treatment and the heat treatment.
Moreover, the obtained cooked rice did not differ from the control in terms of color, stickiness, appearance, etc. during the experiment.
(実験9)
 収穫後の生籾米(千葉県産フサコガネ、タンパク質含有量6.5%(d.b.)、初期含水率21.2%(w.b.))を、上記実験8と同様の方法で電子レンジにより、サンプルの質量が100g、500g、1000gとして加熱処理したのち、65℃の温湯に6時間浸漬処理して難消化性米を得た。
 なお、電子レンジによる加熱は、処理質量が異なることにより、昇温に必要な時間が異なり、100g、500g、1000gの昇温速度は、それぞれ1.74℃/秒、0.55℃/秒、0.25℃/秒であった。また、100gのサンプルは、その後の炊飯等に必要な量を確保するために、5群で処理して計500gとし、それを均一に混合して精米、炊飯に用いた。
 加熱処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
(Experiment 9)
Raw unhulled rice after harvesting (Chiba-produced beetle, protein content 6.5% (d.b.), initial moisture content 21.2% (w.b.)) was subjected to electrolysis in the same manner as Experiment 8 above. The samples were heat-treated with a mass of 100 g, 500 g, and 1000 g depending on the range, and then immersed in hot water at 65° C. for 6 hours to obtain resistant rice.
In addition, the time required for heating with a microwave oven differs depending on the processing mass. It was 0.25°C/sec. In addition, the 100 g sample was processed in 5 groups to make a total of 500 g, in order to secure the necessary amount for subsequent rice cooking, etc., and was uniformly mixed and used for rice polishing and rice cooking.
After heat treatment, the rice was dried at 35° C. and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
 得られた米飯の模擬消化試験による糖質消化性評価結果を図24に、昇温速度と、平衡消化率、消化速度定数を表14に示す。
Figure JPOXMLDOC01-appb-T000014
FIG. 24 shows the evaluation results of carbohydrate digestibility of the obtained boiled rice by the simulated digestion test, and Table 14 shows the rate of temperature increase, the equilibrium digestibility, and the digestion rate constant.
Figure JPOXMLDOC01-appb-T000014
 コントロールと比較して、電子レンジ+温湯浸漬で加熱処理したサンプルの消化性は低下することが確かめられた。その低下程度は、電子レンジによる処理条件によって異なり、昇温速度が速いサンプルの方が、より消化性が低下する傾向が確認できた。
 算出された消化速度定数も、コントロールと比較して低い値を示し、昇温速度が速いサンプルほどより低下する傾向が確認できた。
 また、電子レンジ加熱+温湯浸漬処理のサンプルも、得られた米飯は、色、実験時の粘り気や見た目等もコントロールと変わらなかった。
Compared to the control, it was confirmed that the digestibility of the sample heat-treated by microwave + hot water immersion was reduced. The extent of the decrease varies depending on the processing conditions in the microwave oven, and it was confirmed that the digestibility of the sample with a faster heating rate decreased more.
The calculated digestion rate constant also showed a lower value than the control, and it was confirmed that the faster the heating rate of the sample, the lower the rate.
Also, the cooked rice obtained from the sample that was heated in the microwave and immersed in hot water did not differ from the control in terms of color, stickiness, appearance, etc. during the experiment.
(実験10)
 収穫後の生籾米(千葉県産コシヒカリ、タンパク質含有量7.6%(d.b.)、初期含水率26.9%(w.b.))を、65℃の温度の温湯に、6時間浸漬し、加熱処理を行い、難消化性米1を得た。
 処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、難消化性米飯を得た。
 成人男性1名による簡易ヒト試験として、難消化性米飯を喫食直後と、それから30分ごとに血糖値を市販のストリップ型測定器(On Call Express, ACON Laboratories, Inc.)を用いて測定した。
(Experiment 10)
Raw unhulled rice after harvest (Koshihikari from Chiba Prefecture, protein content 7.6% (d.b.), initial moisture content 26.9% (w.b.)) was soaked in hot water at a temperature of 65 ° C. The rice was immersed for a period of time and heat-treated to obtain resistant rice 1.
After the treatment, the rice was dried under ventilation at 35°C and 75% RH for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain indigestible cooked rice.
As a simple human test by one adult male, the blood glucose level was measured immediately after eating the indigestible cooked rice and every 30 minutes thereafter using a commercially available strip-type meter (On Call Express, ACON Laboratories, Inc.).
 コントロール1として、収穫後の生籾米(千葉県産コシヒカリ、タンパク質含有量7.6%(d.b.)、初期含水率26.9%(w.b.))を、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯して、米飯を得た。コントロール1は、一般的な米飯である。
 コントロール2として、収穫後の生籾米(千葉県産コシヒカリ、タンパク質含有量7.6%(d.b.)、初期含水率26.9%(w.b.))をオートクレーブで、121℃が600秒継続するように加熱処理を行い、処理後は、35℃、75%RHの通気下で24時間乾燥し、籾摺り、精米(玄米重量に対して90%)、炊飯ののち、米飯を得た。コントロール2は、本発明よりも強く加熱処理を施したものである。
 また、市販のインスタントうどん(東洋水産社、ごつ盛りきつねうどん、めん86g)をコントロール3とした。
As control 1, raw rice after harvest (Koshihikari from Chiba Prefecture, protein content 7.6% (d.b.), initial moisture content 26.9% (w.b.)) was treated at 35 ° C., 75% The rice was dried under RH ventilation for 24 hours, hulled, polished (90% of brown rice weight), and cooked to obtain cooked rice. Control 1 is common boiled rice.
As control 2, raw rice after harvest (Koshihikari from Chiba Prefecture, protein content 7.6% (d.b.), initial moisture content 26.9% (w.b.)) was autoclaved at 121 ° C. Heat treatment is performed so as to continue for 600 seconds, and after the treatment, the rice is dried under ventilation at 35 ° C. and 75% RH for 24 hours, hulled, polished (90% based on the weight of brown rice), and cooked. rice field. Control 2 was heat treated more strongly than the invention.
Control 3 was a commercially available instant udon noodle (Toyo Suisan Co., Ltd., gotsumori kitsune udon, noodles 86 g).
 試験は、前日の夜10時以降は水分のみを摂取し、午前10時に難消化性米または米100gを150mlの水で炊飯して得られた米飯、またはコントロール3(市販のインスタントうどん)は麺のみを摂取して行った。
 結果を図25に示す。
In the test, only water was taken after 10:00 p.m. on the previous day, and 100 g of indigestible rice or rice was cooked with 150 ml of water at 10:00 a.m., or control 3 (commercially available instant udon) was noodles. I took only
The results are shown in FIG.
 コントロール1は一般的な米飯である。コントロール1は食後90分後に血糖値が218mg/dLまで上がり、摂食直後の血糖値(70mg/dL)と比較して、大幅に上昇した。
 本発明である難消化性米は、食後血糖値が60分以降180分にかけて約150mg/dL近くをキープした後にそのまま下降し、食後血糖値の鋭いピーク(血糖値スパイク)を示さなかった。また、その外観と食味は、コントロール1とほぼ同じであった。
 コントロール2は、本発明である難消化性米よりも血糖値の上昇が抑えられ、30分後に130mg/dL、その後150分にかけて約115mg/dLであった。しかし、得られた米と米飯は褐色であり、また本発明の難消化性米と比較して固い米飯であった。
 コントロール3(うどん)は、食後速やかに血糖値が上昇し、30分後の血糖値は178mg/dLでとなり、その後速やかに下降して、120分後には摂食直後の血糖値とほぼ同等となった。これは、麺類(やパン)は、粒の形態が破壊されているため、デンプンが吸収されやすいためである。
Control 1 is common boiled rice. In Control 1, the blood sugar level rose to 218 mg/dL 90 minutes after eating, which was significantly higher than the blood sugar level (70 mg/dL) immediately after eating.
In the indigestible rice of the present invention, the postprandial blood sugar level remained close to about 150 mg/dL from 60 minutes to 180 minutes, and then continued to drop, showing no sharp peak (blood sugar level spike) after meal. Moreover, its appearance and taste were almost the same as those of Control 1.
In Control 2, the increase in blood sugar level was suppressed more than in the indigestible rice of the present invention, and was 130 mg/dL after 30 minutes and about 115 mg/dL over 150 minutes thereafter. However, the resulting rice and cooked rice were brown and hard compared to the resistant rice of the present invention.
In control 3 (udon), the blood sugar level rose rapidly after eating, and after 30 minutes the blood sugar level reached 178 mg/dL. became. This is because noodles (or bread) have broken grain morphology, which facilitates the absorption of starch.

Claims (7)

  1.  生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施す加熱処理工程、
    を有することを特徴とする難消化性米の製造方法。
    (1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
    (2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
    (3)マイクロ波により、60℃以上100℃以下に加熱する。
    A heat treatment step of subjecting uncooked rice to heat treatment under any one or more of the following conditions (1) to (3),
    A method for producing resistant rice, comprising:
    (1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
    (2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
    (3) Heat to 60° C. or more and 100° C. or less with microwaves.
  2.  前記加熱処理工程を、(1)または(2)を68℃以下で行うことを特徴とする請求項1に記載の難消化性米の製造方法。 The method for producing resistant rice according to claim 1, wherein the heat treatment step (1) or (2) is performed at 68°C or lower.
  3.  前記加熱処理工程を、(2)を温水中12時間以下で行うことを特徴とする請求項1または2に記載の難消化性米の製造方法。 The method for producing resistant rice according to claim 1 or 2, wherein the heat treatment step (2) is performed in hot water for 12 hours or less.
  4.  前記加熱処理工程を、(3)を0.5℃/秒以上の昇温速度で行うことを特徴とする請求項1に記載の難消化性米の製造方法。 The method for producing resistant rice according to claim 1, wherein the heat treatment step (3) is performed at a temperature elevation rate of 0.5°C/second or more.
  5.  生籾米に対して、下記(1)~(3)のいずれか1以上の条件による加熱処理を施す加熱処理工程を経て製造されることを特徴とする難消化性米。
    (1)60℃以上80℃以下である90%RH以上の高湿度雰囲気下に、2時間以上24時間以下晒す。
    (2)60℃以上80℃以下である温水中に、2時間以上24時間以下晒す。
    (3)マイクロ波により、60℃以上100℃以下に加熱する。
    An indigestible rice produced through a heat treatment step in which uncooked rice is subjected to a heat treatment under any one or more of the following conditions (1) to (3).
    (1) Exposure to a high humidity atmosphere of 90% RH or higher at 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
    (2) It is exposed to warm water of 60° C. or higher and 80° C. or lower for 2 hours or longer and 24 hours or shorter.
    (3) Heat to 60° C. or more and 100° C. or less with microwaves.
  6.  加熱処理を施していない未処理のものと比較して、模擬消化試験で評価した消化速度定数が10%以上低減していることを特徴とする難消化性米。 A resistant rice characterized by a digestion rate constant evaluated in a simulated digestion test that is reduced by 10% or more compared to untreated rice that has not been heat-treated.
  7.  加熱処理を施していない未処理のものと比較して、難消化性デンプン量が50%以上増加していることを特徴とする難消化性米。 A resistant rice characterized by a 50% or more increase in the amount of resistant starch compared to untreated rice that has not been heat-treated.
PCT/JP2022/038435 2021-10-19 2022-10-14 Production method of indigestible rice, and indigestible rice WO2023068205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-170635 2021-10-19
JP2021170635 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023068205A1 true WO2023068205A1 (en) 2023-04-27

Family

ID=86059294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038435 WO2023068205A1 (en) 2021-10-19 2022-10-14 Production method of indigestible rice, and indigestible rice

Country Status (1)

Country Link
WO (1) WO2023068205A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102408A (en) * 2001-09-27 2003-04-08 Bio Tec Japan:Kk Diet rice and method for producing the same
JP2004298079A (en) * 2003-03-31 2004-10-28 Bio Tec Japan:Kk Low-calorie cooked rice and low-calorie rice, and methods for producing them
WO2020135757A1 (en) * 2018-12-29 2020-07-02 丰益(上海)生物技术研发中心有限公司 Rice and preparation method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102408A (en) * 2001-09-27 2003-04-08 Bio Tec Japan:Kk Diet rice and method for producing the same
JP2004298079A (en) * 2003-03-31 2004-10-28 Bio Tec Japan:Kk Low-calorie cooked rice and low-calorie rice, and methods for producing them
WO2020135757A1 (en) * 2018-12-29 2020-07-02 丰益(上海)生物技术研发中心有限公司 Rice and preparation method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGAWARA, MASAYOSHI: "Functional improvement by heat-moisture treatment of high-amylose rice", A TECHNICAL JOURNAL ON FOOD CHEMISTRY & CHEMICALS, vol. 1, 2015, pages 33 - 36, XP009545548 *

Similar Documents

Publication Publication Date Title
Giuberti et al. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten‐free cereal‐based foods: A review
Kim et al. Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake
Sopade Cereal processing and glycaemic response
Vaidya et al. Processing and storage of Indian cereal and cereal products alters its resistant starch content
JP2014138613A (en) Flour composition with increased total dietary fiber, and production process and uses thereof
US20060134295A1 (en) High-fiber, high-protein pasta and noodle products
Arns et al. The effects of heat–moisture treatment of rice grains before parboiling on viscosity profile and physicochemical properties
WO2019163965A1 (en) Starch with high dietary fiber content suitably usable in foods and beverages
Giuberti et al. Influence of high‐amylose maize starch addition on in vitro starch digestibility and sensory characteristics of cookies
CA2378907A1 (en) Cereal grains with high total dietary fiber and/or resistant starch content and their preparation thereof
Tamura et al. Effect of post‐cooking storage on texture and in vitro starch digestion of Japonica rice
Beta et al. Cereal Grain-Based Functional Foods: Carbohydrate and Phytochemical Components
Chin et al. Effect of microwave cooking on quality of riceberry rice (Oryza sativa L.)
Donlao et al. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non‐waxy long‐grain rice (Oryza sativa L.)
KR20180136737A (en) Method for production of Sunsik with dodam rice including resistant starch
KR101945827B1 (en) Manufacturing process and characteristics for parboiled brown rice with high contents of resistant starch and enhanced eating quality and shelf life
CN109805055A (en) Black fungus rice bran composite fermentation slag crisp chip and preparation method thereof
Thuy et al. Effect of different cooking conditions on resistant starch and estimated glycemic index of macaroni
WO2023068205A1 (en) Production method of indigestible rice, and indigestible rice
CN112089008A (en) Preparation method of high-taste whole-grain instant rice
Deepa et al. Effect of micronization of maize on quality characteristics of pasta
KR100836666B1 (en) Method for inhibition of digestion rate of cereals by annealing
CN114698778B (en) Low-sugar-rise instant cereal noodles and preparation method thereof
Boue et al. Changes in fried rice batter with increased resistant starch and effects on sensory quality of battered fried onions
JP2004147647A (en) Glycemic index decreased food

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554657

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE