WO2023068056A1 - Layered body, method for producing same, and molded article - Google Patents

Layered body, method for producing same, and molded article Download PDF

Info

Publication number
WO2023068056A1
WO2023068056A1 PCT/JP2022/037317 JP2022037317W WO2023068056A1 WO 2023068056 A1 WO2023068056 A1 WO 2023068056A1 JP 2022037317 W JP2022037317 W JP 2022037317W WO 2023068056 A1 WO2023068056 A1 WO 2023068056A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
layer
phbh
laminate
resin
Prior art date
Application number
PCT/JP2022/037317
Other languages
French (fr)
Japanese (ja)
Inventor
健介 村島
雅幸 藤田
康則 岡田
徹雄 大倉
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023068056A1 publication Critical patent/WO2023068056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a laminate obtained by laminating a resin layer on at least one side of a substrate layer such as paper, a method for producing the laminate, and a molded article.
  • PHBH 3-hydroxybutyrate
  • 3HB 3-hydroxyhexanoate
  • PHBH/paper composite materials in which PHBH is integrated with a base material such as paper, are of particular social interest because they can be applied to food-contact containers and the like with low environmental load.
  • Examples of means for integrating PHBH and paper include an extrusion lamination method and a water-based slurry coating method.
  • PHBH generally has a high melt viscosity and does not easily bite into paper, it was not easy to bond extruded PHBH and paper with sufficient strength.
  • the laminate layer is peeled off from the paper in the manufacturing process of a molded cup such as a drinking cup, and the content leaks out when filled.
  • PHBH is not disclosed in Patent Document 1
  • 10 g of a polycaprolactone dispersion or emulsion is placed on the paper for the purpose of improving the penetration of the biodegradable resin into the paper and improving the laminate strength.
  • a method is disclosed in which a 3-hydroxybutyric acid/3-hydroxyvaleric acid copolymer (PHBV) is laminated by extrusion lamination after coating with a basis weight (dry weight of layer) of /m 2 (dry weight of layer) and drying.
  • the adhesion between the paper and the resin layer tends to be improved. Drying takes a long time and productivity is not high, and there are problems such as deterioration of the paper base material due to the drying, and warping of the laminate due to excessive drying of the paper.
  • the present invention provides a laminate comprising a substrate layer, an adhesive layer, and a resin layer containing a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order
  • Another object of the present invention is to provide a laminate having good drying property when forming an adhesive layer and having high adhesive strength between a substrate layer and a resin layer.
  • the present inventors have found that a copolymer of a substrate layer (A), an adhesive resin layer (B), 3-hydroxybutyrate and 3-hydroxyhexanoate In a laminate including a resin layer (D) including coalescence in this order, the thickness of the resin layer (D) is set within a specific range while the basis weight of the adhesive resin layer (B) is sufficiently reduced.
  • the present inventors have found that the above problems can be solved by the method, and have completed the present invention.
  • the present invention comprises a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate. in this order, wherein the basis weight of the adhesive resin layer (B) is 0.1 g/m 2 or more and less than 3.0 g/m 2 , and The laminate has an average content ratio of 3-hydroxyhexanoate of 6 mol % or more, and a thickness of the resin layer (D) of 20 ⁇ m or more and less than 100 ⁇ m.
  • the present invention also provides a method for manufacturing the laminate, A first step of forming the adhesive resin layer (B) on at least one side of the base material layer by a coating method, and extrusion laminating the resin layer (D) on the surface of the adhesive resin layer (B) It also relates to a manufacturing method, including a second step of forming by a method or a thermal lamination method.
  • a laminate comprising a substrate layer, an adhesive layer, and a resin layer containing a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order, the adhesive layer It is possible to provide a laminate having good drying property when forming and having high adhesive strength between the base material layer and the resin layer. Use of the laminate can improve production efficiency and quality of molded articles.
  • a laminate according to one embodiment of the present invention comprises an adhesive resin layer (B) and a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate ( and a resin layer (D) containing C).
  • the substrate layer (A) indicated by reference numeral 2 the adhesive resin layer (B) indicated by reference numeral 3, and the resin layer (D) indicated by reference numeral 4 are They are stacked in this order.
  • the adhesive resin layer (B) may be directly laminated on the base material layer (A), and the adhesive resin layer (B) and the base material layer (B) may be laminated as long as the adhesiveness is not impaired.
  • A) may further include another resin layer as an intermediate layer.
  • Only one side of the substrate layer (A) may have the adhesive resin layer (B) and the resin layer (D), or both sides of the substrate layer (A) may have the adhesive resin layer (B) and a resin layer (D).
  • the base material layer (A) has the adhesive resin layer (B) and the resin layer (D) only on one side, another layer is not formed on the other side, and the base layer (A) is laminated. It may be the outermost layer exposed on the surface of the body, or another layer may be laminated for the purpose of imparting water resistance, gloss, or adhesiveness.
  • both surfaces of the substrate layer (A) have an adhesive resin layer (B) and a resin layer (D), respectively, the adhesive resin layer (B) on the front side and the adhesive resin layer (B) on the back side are formed.
  • the materials to be used, the basis weight, and the thickness may be the same or different. The same applies to the resin layer (D) on the front side and the resin layer (D) on the back side.
  • the basis weight (g/m 2 ) in the present application refers to the dry weight (solid content) of the layer.
  • the material constituting the base layer (A) is not particularly limited, but is preferably biodegradable.
  • Examples include paper (mainly cellulose), cellophane, cellulose ester; polyvinyl alcohol, polyamino acid, polyglycol. acid, pullulan, or those obtained by vapor-depositing inorganic substances such as aluminum and silica on these base materials; Among them, paper is preferable because it has excellent heat resistance and is inexpensive.
  • the type of paper is not particularly limited, and can be appropriately selected according to the application of the laminate. If necessary, the paper may be added with water-resistant agents, water-repellent agents, inorganic substances, etc., and may be subjected to surface treatments such as oxygen barrier layer coating and water vapor barrier coating.
  • the base material layer (A) may be subjected to surface treatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, anchor coat treatment, oxygen barrier layer coating, and water vapor barrier coating. These surface treatments may be performed singly or in combination with a plurality of surface treatments.
  • the adhesive resin layer (B) is a layer composed mainly of a resin.
  • the main resin contained in the adhesive resin layer (B) is not particularly limited, but resins commonly used in the coated paper field or the resin film field can be preferably used. It is desirable that at least one or more resins having a high affinity for substrates such as paper and PHBH are contained.
  • resins styrene-butadiene-based resins, styrene-isoprene-based resins, polycarbonate-based resins, urea resins, melamine-based resins, epoxy-based resins, phenol-based resins, urethane-based resins, diallyl phthalate-based resins, imine-based resins, etc. .
  • These resins can be used singly, or two or more resins can be mixed in an arbitrary ratio and used.
  • the resin contained in the adhesive resin layer (B) may be either water-soluble or soluble in an organic solvent.
  • water insoluble resins other additives may be added to improve dispersibility in water and coatability.
  • the solid content concentration of the resin is not particularly limited. is more preferable, and 50% by weight or more is even more preferable.
  • the solid content concentration is preferably 60% by weight or less.
  • the basis weight of the adhesive resin layer (B) is adjusted to a range of 0.1 g/m 2 or more and less than 3.0 g/m 2 . If the basis weight is less than 0.1 g/m 2 , the adhesiveness to the resin layer (D) may deteriorate. Conversely, if it exceeds 3.0 g/m 2 , a large amount of heat is required for drying, which increases the load on the equipment, and, for example, blocking during winding of the raw fabric may become a problem due to poor drying.
  • the basis weight is more preferably 0.5 g/m 2 or more and 2.5 g/m 2 or less, and further preferably 1.0 g/m 2 or more and 2.0 g/m 2 or less.
  • the resin layer (D) contains a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate (hereinafter sometimes referred to as "PHBH") (C).
  • the resin layer (D) may be the outermost layer in the laminate according to the present embodiment, and in that case, the resin layer (D) can be used for heat sealing (described later). .
  • PHBH changes the melting point and crystallinity.
  • physical properties such as Young's modulus and heat resistance can be easily adjusted. Since it is possible to impart physical properties, it is an industrially particularly useful plastic.
  • PHBH A specific method for producing PHBH is described, for example, in International Publication No. 2010/013483.
  • Commercially available products of PHBH include Kaneka Corporation "Kaneka Biodegradable Polymer Green Planet” (registered trademark).
  • the average content ratio of 3HH in PHBH (C) is 6 mol% or more, the adhesiveness with the adhesive resin layer (B) formed on a substrate such as paper can be improved. Further, when the average content ratio of 3HH is 20 mol % or less, the crystallization speed of PHBH does not become too slow, and production is relatively easy.
  • the average content ratio of each constituent monomer in PHBH(C) means the molar ratio of 3HB and 3HH contained in PHBH(C).
  • PHBH (C) is a mixture of at least two types of PHBH with different content ratios of constituent monomers, or a mixture containing at least one type of PHBH and PHB, each component contained in the entire mixture It refers to the molar ratio of monomers.
  • the average content ratio of the constituent monomers can be determined by a method known to those skilled in the art, for example, the method described in paragraph [0047] of WO 2013/147139, or by NMR measurement.
  • the PHBH (C) contained in the resin layer (D) may contain at least two types of PHBH having different content ratios of constituent monomers, and in addition to at least one type of PHBH, PHB ( 3-Hydroxybutyrate homopolymer) may be further included.
  • a highly crystalline and high melting point PHBH having a 3HH content of less than 6 mol% and a low crystalline and low melting PHBH having a 3HH content of 15 mol% or more is preferably included.
  • the PHBH (C) contained in the resin layer (D) includes a first melting point component (low crystallinity component) having a melting point of 60° C. or more and less than 90° C. and a melting point of 140° C. or more and less than 170° C. It is preferred to include at least two PHBH components, some second melting point components (highly crystalline components).
  • the melting point of the first melting point component is preferably 65° C. or higher and 85° C. or lower, more preferably 70° C. or higher and 80° C. or lower, and the melting point of the second melting point component is preferably 145° C. or higher and 165° C. or lower, and 150° C. or higher. , 160° C. or lower.
  • the crystals of the second melting point component are not completely dissolved and crystal nuclei are left during melt processing, compared to the case where the resin layer (D) contains only PHBH alone.
  • the crystallization of PHBH (C) can be accelerated, and not only the formation of the resin layer (D) by the extrusion lamination method or the heat lamination method is facilitated, but also the first melting point component is sufficiently melted. By doing so, the adhesive strength with the adhesive resin layer (B) formed on the substrate such as paper can be increased.
  • PHB can be used in place of highly crystalline PHBH with a 3HH content of less than 6 mol%, and even in that case, the PHB acts as a crystal nucleus, so that similar effects can be obtained.
  • PHBH and PHB having a 3HH content of less than 6 mol % may be used together.
  • the ratio of 3HH to the total of 3HB and 3HH in the highly crystalline PHBH is preferably 5 mol% or less, more preferably 4 mol% or less, and even more preferably 3 mol% or less.
  • the ratio of 3HH to the sum of 3HB and 3HH in the low-crystalline PHBH is preferably 15 to 40 mol%, more preferably 15 to 30 mol% or less.
  • the amount of the highly crystalline PHBH or PHB is not particularly limited, but it is preferably 1 to 60% by weight, and 2 to 50% by weight, of the PHBH (C) contained in the resin layer (D). is more preferred, and 4 to 15% by weight is even more preferred.
  • the weight average molecular weight (hereinafter sometimes referred to as Mw) of PHBH (C) contained in the resin layer (D) is preferably 250,000 to 650,000 from the viewpoint of achieving both mechanical properties and workability. 350,000 to 550,000 is more preferable, and 400,000 to 500,000 is even more preferable.
  • Mw weight average molecular weight
  • the mechanical properties of the resin layer (D) are good, and when it is 650,000 or less, the melt viscosity suitable for molding can be exhibited, and the base material such as paper can be used. Adhesion with the adhesive resin layer (B) formed thereon can be improved.
  • the weight-average molecular weight of PHBH was determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko KK) using polystyrene gel (“Shodex K-804” manufactured by Showa Denko KK) as a column. It can be obtained as a molecular weight when converted to polystyrene using chloroform as a mobile phase.
  • GPC gel permeation chromatography
  • a plurality of types of PHBH having different weight average molecular weights can be mixed and used for the resin layer (D).
  • the resin layer (D) is preferably a resin layer containing PHBH (C) as a main component.
  • the content of PHBH (C) in the resin layer (D) is preferably 50 to 100% by weight, more preferably 70 to 100% by weight, even more preferably 80 to 100% by weight.
  • the lower limit may be 90% by weight or more, or may be 95% by weight or more.
  • the resin layer (D) may contain only PHBH or only PHBH and PHB as resin components, or may further contain resins other than PHBH and PHB.
  • Resins other than PHBH and PHB are preferably biodegradable resins.
  • the resin layer (D) may contain additives normally added to resin materials within a range that does not impair the effects of the invention.
  • additives include, for example, inorganic fillers, pigments, colorants such as dyes, odor absorbers such as activated carbon and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistant A property improver, an ultraviolet absorber, a crystal nucleating agent, a lubricant, a release agent, a water repellent, an antibacterial agent, a slidability improver, and the like.
  • additives only one type may be used, or two or more types may be used in combination.
  • the additive is an optional component, and the resin layer (D) may not contain these additives.
  • the additive it is preferable to use a lubricant and/or an inorganic filler from the viewpoint of improving the releasability from a pressing surface such as a cooling roll when laminating the resin layer (D).
  • the lubricant examples include saturated or unsaturated fatty acid amides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, and erucic acid amide;
  • saturated or unsaturated fatty acid amides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, and erucic acid amide
  • Examples include aliphatic amide compounds such as alkylene fatty acid amides such as bis-stearic acid amide, and pentaerythritol.
  • the amount of the lubricant in the resin layer (D) is preferably 0.1 to 2 parts by weight, preferably 0.2 to 2 parts by weight, per 100 parts by weight of the total amount of the resin components contained in the resin layer (D). 1 part by weight is more preferred.
  • the blending amount is 2 parts by weight or less, it is possible to suppress the problem that the lubricant bleeds and adheres to the pressing surface such as the cooling roll during pressing, and it is possible to carry out continuous processing for a long time.
  • examples of the inorganic filler include talc, calcium carbonate, mica, silica, clay, kaolin, titanium oxide, alumina, and zeolite.
  • the average particle size of these inorganic fillers is preferably 0.5 ⁇ m or more.
  • the amount of the inorganic filler compounded in the resin layer (D) is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the total amount of the resin components contained in the resin layer (D), and 1 to 5 parts by weight. 3 parts by weight is more preferred.
  • the blending amount is 0.5 parts by weight or more, it is possible to obtain the effect of improving the peelability due to the blending of the inorganic filler.
  • the blending amount is 5 parts by weight or less, cracking in the resin layer (D) can be suppressed.
  • the thickness of the resin layer (D) is set within the range of 20 ⁇ m or more and less than 100 ⁇ m. If the thickness is less than 20 ⁇ m, the resin is cooled too quickly during lamination of the resin layer (D), and the adhesiveness to the substrate layer (A) on which the adhesive resin layer (B) is formed may decrease. be. In addition, cracks are likely to occur in the resin layer (D) when processing the laminate into a molded body.
  • the lower limit of the thickness is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more.
  • the thickness of the resin layer (D) exceeds 100 ⁇ m, the unevenness of the resin temperature increases during the formation of the resin layer (D), which may cause thickness unevenness and poor appearance due to melt fracture. In addition, the laminate may become too hard, resulting in poor molding.
  • the upper limit of the thickness is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the adhesive resin layer (B) is formed on at least one side of the substrate layer (A) by a coating method (first step), and the formed adhesive resin layer (B) is It can be produced by forming a resin layer (D) on the surface (second step).
  • one or both sides of the substrate layer (A) contain components constituting the adhesive resin layer (B). It is preferable to apply an aqueous dispersion such as a solution or an aqueous slurry and heat to dry and form a film.
  • the method of applying the solution or aqueous dispersion to the substrate is not particularly limited, and any known method capable of forming a resin layer on the substrate can be used as appropriate. Specifically, a spraying method, a spraying method, a slit coater method, an air knife coater method, a roll coater method, a bar coater method, a comma coater method, a blade coater method, a screen printing method, a gravure printing method, or the like can be used. . Before applying the solution or aqueous dispersion, the substrate may be subjected to a surface treatment such as the corona treatment described above.
  • the drying treatment after application can be performed using a known heating method.
  • a known heating method examples thereof include hot air heating, infrared heating, microwave heating, roll heating, and hot plate heating, and these can be used alone or in combination of two or more.
  • the method of forming the resin layer (D) comprises applying a solution or aqueous dispersion containing components constituting the resin layer (D) to the surface of the adhesive resin layer (B), heating to dry and form a film.
  • a solution or aqueous dispersion containing components constituting the resin layer (D) to the surface of the adhesive resin layer (B), heating to dry and form a film.
  • productivity productivity, or the quality of suppressing thermal deterioration
  • the surface of the adhesive resin layer (B) is subjected to an extrusion lamination method or a heat lamination method. It is preferable to form the resin layer (D) on
  • a general extrusion lamination method can be used as the extrusion lamination method. Specifically, the molten resin material is extruded into a film form from a T-shaped die, cooled using a cooling roll and pressed against the surface of the adhesive resin layer (B), and immediately after that, the resin is removed from the cooling roll. By peeling off the material, a resin layer (D) can be formed and a laminate can be produced.
  • a general heat lamination method can be used as the heat lamination method. Specifically, first, a melted resin material is extruded through, for example, a T-shaped die, and cooled using a cooling roll to form a film containing the resin material. Then, the obtained film is pressure-bonded to the surface of the adhesive resin layer (B) using a hot roll or the like to produce a molded article.
  • a corona is applied to the surface of the adhesive resin layer (B). Treatment, flame treatment, ozone treatment, etc. may be performed.
  • a molded article according to one aspect of the present embodiment includes the laminate described above and has a desired size and shape. Since the molded article is formed from a laminate containing the resin layer (D) containing PHBH, it is advantageous in various applications.
  • the molded article is not particularly limited as long as it contains the laminate, and examples thereof include paper, film, sheet, tube, plate, rod, container (eg, bottle container), bag, and parts.
  • the molded article is preferably a bag or a bottle container from the viewpoint of marine pollution countermeasures.
  • the molded body may be the laminate itself, or may be the laminate obtained by secondary processing.
  • the molded article can be used as various packaging container materials such as shopping bags, various bag making, food and confectionery packaging materials, cups, trays, cartons (in other words, food, (in various fields such as cosmetics, electronics, medicine, pharmaceuticals, etc.).
  • the laminate includes a resin layer (D) having high adhesiveness to a substrate and good heat resistance, it can be used as a container for holding a liquid, especially a food cup such as instant noodles, instant soup, coffee, or a side dish. , boxed lunches, trays for microwave foods, and the like, which are more preferable as containers for containing warm contents.
  • the secondary processing can be performed in the same manner as conventional resin-laminated paper or coated paper, that is, using various bag-making machines, filling and packaging machines, and the like. Moreover, it can also be processed using devices such as a paper cup molding machine, a punching machine, and a box machine. In these processing machines, known techniques can be used for bonding the laminate, such as heat sealing, impulse sealing, ultrasonic sealing, high frequency sealing, hot air sealing, frame sealing, and the like. can be used.
  • the heat-sealing temperature of the laminate varies depending on the adhesion method. °C or less. Within the above range, it is possible to avoid leaching out of the resin in the vicinity of the sealing portion, and to secure an appropriate film thickness of the resin layer and secure the sealing strength.
  • the lower limit of the resin temperature when using a heat seal tester having a seal bar is usually 100° C. or higher, preferably 110° C. or higher, and more preferably 120° C. or higher. Within the above range, it is possible to ensure proper adhesion at the seal portion.
  • the heat-sealing pressure of the laminate varies depending on the bonding method, but is usually 0.1 MPa or more, preferably 0.5 MPa or more when using a heat-type heat-sealing tester having a seal bar, for example. Within the above range, it is possible to ensure proper adhesion at the seal portion. Moreover, the upper limit of the heat seal pressure when using a heat-type heat seal tester having a seal bar is usually 1.0 MPa or less, preferably 0.75 MPa or less. When it is within the above range, it is possible to avoid thinning of the film thickness at the end of the seal and secure the seal strength.
  • the molded article is made of a material different from that of the molded article (e.g., fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric, paper, film, sheet, tube, board, etc.). , rods, containers, bags, parts, foams, etc.). These materials are also preferably biodegradable.
  • [Item 1] Including a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order.
  • the basis weight of the adhesive resin layer (B) is 0.1 g/m 2 or more and less than 3.0 g/m 2
  • 3-hydroxyhexano in the copolymer (C) A laminate in which the average content ratio of ate is 6 mol % or more, and the thickness of the resin layer (D) is 20 ⁇ m or more and less than 100 ⁇ m.
  • the adhesive resin layer (B) includes acrylic resin, methacrylic resin, vinyl chloride resin, styrene-acrylic resin, styrene-butadiene resin, styrene-isoprene resin, polycarbonate resin, urea resin, melamine resin.
  • the copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate has a weight average molecular weight of 250,000 to 650,000 and an average content ratio of 3-hydroxyhexanoate of 6 to 20 mol. %, the laminate according to item 1 or 2.
  • the copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate comprises a first melting point component having a melting point of 60° C. or more and less than 90° C. and a melting point of 140° C. or more and less than 170° C.
  • the laminate according to any one of items 1 to 4 wherein the base material layer is paper.
  • [Item 6] A method for producing a laminate according to any one of items 1 to 5, A first step of forming the adhesive resin layer (B) on at least one side of the base material layer by a coating method, and extrusion laminating the resin layer (D) on the surface of the adhesive resin layer (B) A manufacturing method including a second step of forming by a method or a thermal lamination method. [Item 7] 7. The manufacturing method according to item 6, wherein the first step and the second step are sequentially and continuously performed. [Item 8] A molded article comprising the laminate according to any one of Items 1 to 5.
  • Coating liquid 1 A water-based emulsion containing an acrylic resin having an average particle diameter of 50 nm and a solid content concentration of 30 wt % and Zemurak (registered trademark, manufactured by Kaneka Corporation) was prepared.
  • Coating liquid 2 an aqueous emulsion (100 parts by weight) containing an acrylic resin with an average particle diameter of 50 nm and a solid content concentration of 30 wt%, Zemlac (registered trademark, manufactured by Kaneka Corporation), polyethyleneimine resin (Fuji Film Wako Pure Chemical A 30% aqueous solution (10 parts by weight) containing (manufactured by Co., Ltd.) was mixed.
  • Zemlac registered trademark, manufactured by Kaneka Corporation
  • polyethyleneimine resin Fluji Film Wako Pure Chemical A 30% aqueous solution (10 parts by weight) containing (manufactured by Co., Ltd.) was mixed.
  • PHBH powder As the PHBH powder, one manufactured according to the method described in International Publication No. 2019-142845 was used. A specific formulation is shown below.
  • PHBH powder 1 Low crystalline PHBH powder having a weight average molecular weight of 590,000 and a ratio of 3HH to the total of 3HB and 3HH in PHBH being 15 mol% Highly crystalline PHBH powder in which the ratio of 3HH to the total is 5.0 mol%
  • PHBH powder 3 Weight average molecular weight 310,000, highly crystalline in which the ratio of 3HH to the total of 3HB and 3HH in PHBH is 1.5 mol% PHBH Powder
  • PHBH pellets dried at 60° C. and thinly sliced (4-10 mg) are filled in an aluminum pan and heated from 20° C. to 180° C. at a rate of 10° C./min using a differential scanning calorimeter under a nitrogen stream. to obtain a crystalline melting curve.
  • the top temperature of the melting peak at 60°C or higher and lower than 90°C was taken as the first melting point
  • the top temperature of the melting peak at 140°C or higher and lower than 170°C was taken as the second melting point.
  • PHBH pellet 1 PHBH powder 1 (80 parts by weight), PHBH powder 2 (20 parts by weight), behenic acid amide (0.5 parts by weight), and pentaerythritol (1.0 parts by weight) were dry blended. Using a twin-screw extruder, the mixture was melt-kneaded at a set temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 460,000, a first melting point of 72°C and a second melting point of 155°C.
  • PHBH Pellets 2 With respect to the PHBH powder 2 (100 parts by weight), behenic acid amide (0.5 parts by weight) and pentaerythritol (1.0 parts by weight) are dry blended, and set using a twin-screw extruder. The mixture was melt-kneaded at a temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 420,000 and a second melting point of 153°C.
  • PHBH pellet 3 The PHBH powder 3 (100 parts by weight), behenic acid amide (0.5 parts by weight) and pentaerythritol (1.0 parts by weight) are dry blended, and set using a twin-screw extruder. The mixture was melt-kneaded at a temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 250,000 and a second melting point of 169°C.
  • Example 1 ⁇ Production of laminate by extrusion lamination method> (Example 1) Coating liquid 1 was applied to a base paper of A4 size having a basis weight of 210 g/m 2 with a bar coater No. 1. 7, and immediately thereafter placed in a hot air oven heated to 100° C. for 30 seconds to dry to form an adhesive resin layer (B) on the paper substrate.
  • the basis weight of the obtained adhesive resin layer (B) was 2.9 g/m 2 .
  • the PHBH pellets 1 were put into a single-screw extruder equipped with a T-shaped die, taken up by a cooling roll set at 60° C., and formed into a film having a thickness of 40 ⁇ m.
  • the paper substrate with the adhesive resin layer (B) obtained above and the PHBH film were sandwiched so that the heating roll was in contact with the paper surface side and the cooling roll was in contact with the PHBH film side, and the surface temperature of the PHBH film was 170 ° C.
  • the conditions were adjusted so as to obtain a laminate containing the paper substrate, the adhesive resin layer (B), and the resin layer (D) in this order.
  • Example 2 Bar coater No. 1 was applied to coating liquid 1. A laminate was obtained in the same manner as described in Example 1, except for coating with No. 4. The basis weight of the adhesive resin layer (B) was 1.2 g/m 2 .
  • Example 3 Bar coater No. 1 was applied to coating liquid 1. A laminate was obtained in the same manner as described in Example 1, except for coating with No. 1. The basis weight of the adhesive resin layer (B) was 0.1 g/m 2 .
  • Example 4 A laminate was obtained in the same manner as in Example 1, except that the thickness of the PHBH film was changed to 25 ⁇ m.
  • Example 5 A laminate was obtained in the same manner as in Example 2, except that coating liquid 2 was used to form the adhesive resin layer (B).
  • Example 1 A paper substrate without the adhesive resin layer (B) was prepared in the same manner as in Example 1 except that the PHBH film was extrusion-laminated on the base paper without the adhesive resin layer (B). and a laminate containing the resin layer (D).
  • Example 2 A laminate was obtained in the same manner as in Example 1, except that the thickness of the PHBH film was changed to 10 ⁇ m.
  • Example 5 A laminate was obtained in the same manner as in Example 1, except that PHBH pellet 3 was used instead of PHBH pellet 1.
  • the lamination strength test was performed on the day after extrusion lamination was performed. Specifically, the surface of the resin layer (D) of the obtained laminate was thinly cross-cut with a cutter blade, and Nichiban No. 2 was applied to the cut portion. After the CT-17 tape was firmly attached, it was lightly peeled off by hand to provide a trigger. After that, the sheet was cut to a width of 15 mm, and the peeled laminate layer and the paper were each held at an angle of 180° with a jig, and a peel strength test was performed. The tensile speed was 200 mm/min. As a peel tester, Shimadzu Autograph EZ-LX (manufactured by Shimadzu Corporation) was used.
  • A4 size base paper with a basis weight of 210 g/m 2 is coated under the conditions described in Examples and Comparative Examples to form an adhesive resin layer (B), and then heated in a hot air oven at 100 ° C. for 30 seconds. After that, it was taken out, and the state of the surface of the adhesive resin layer (B) was observed.

Abstract

This layered body comprises, in order, a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate. The basis weight of the adhesive resin layer (B) is 0.1 g/m2 or greater but less than 3.0 g/m2; the average content ratio of 3-hydroxyhexanoate in the copolymer (C) is 6 mol% or greater; and the thickness of the resin layer (D) is 20 μm or greater but less than 100 μm.

Description

積層体、その製造方法、および成形体LAMINATED PRODUCT, MANUFACTURING METHOD THEREOF, AND MOLDED PRODUCT
 本発明は、紙等の基材層の少なくとも片面に、樹脂層が積層してなる積層体、その製造方法、および成形体に関する。 The present invention relates to a laminate obtained by laminating a resin layer on at least one side of a substrate layer such as paper, a method for producing the laminate, and a molded article.
 近年、廃棄プラスチックによる環境問題がクローズアップされている。中でも、廃棄プラスチックによる海洋汚染は深刻であり、自然環境下で分解する生分解性プラスチックの普及が期待されている。 In recent years, the environmental problem caused by waste plastic has been highlighted. Among them, marine pollution by waste plastics is serious, and biodegradable plastics that decompose in the natural environment are expected to spread.
 そのような生分解性プラスチックとしては、種々のものが知られているが、中でも、3-ヒドロキシブチレート(以下、「3HB」と称することがある。)と3-ヒドロキシヘキサノエート(以下、「3HH」と称することがある。)との共重合体(以下、「PHBH」と称することがある。)は、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルであり、土中だけでなく、海水中でも生分解が進行しうる材料であるため、上記の問題を解決する素材として注目されている。
 中でも、PHBHを紙等の基材と一体化させたPHBH/紙複合材は、環境負荷の小さい食品接触容器等に応用できることから、社会的な関心が特に高い。
Various biodegradable plastics are known, among which 3-hydroxybutyrate (hereinafter sometimes referred to as "3HB") and 3-hydroxyhexanoate (hereinafter sometimes referred to as "3HB") are known. (hereinafter sometimes referred to as "PHBH") is a thermoplastic polyester that is produced and accumulated as an energy storage substance in the cells of many microbial species. Since it is a material that can be biodegraded not only in soil but also in seawater, it is attracting attention as a material that solves the above problems.
Among them, PHBH/paper composite materials, in which PHBH is integrated with a base material such as paper, are of particular social interest because they can be applied to food-contact containers and the like with low environmental load.
 PHBHと紙とを一体化させる手段としては押出ラミネート法や水系スラリーのコーティング法などが挙げられるが、コーティング法では樹脂層の機械強度が十分には得られにくいことなどから、押出ラミネート法が好まれる。しかし、PHBHは一般的に溶融粘度が高く紙への食い込みが悪いため、押出加工したPHBHと紙とを十分な強度で接着することは容易ではなかった。その結果、飲料用コップなどのカップ成形体の製造工程においてラミネート層が紙から剥離してしまい、内容物を充填した際に漏れ出してしまう問題が生じていた。 Examples of means for integrating PHBH and paper include an extrusion lamination method and a water-based slurry coating method. be However, since PHBH generally has a high melt viscosity and does not easily bite into paper, it was not easy to bond extruded PHBH and paper with sufficient strength. As a result, there has been a problem that the laminate layer is peeled off from the paper in the manufacturing process of a molded cup such as a drinking cup, and the content leaks out when filled.
 特許文献1では、PHBHは開示されていないが、生分解性樹脂の紙への食い込みを改善してラミネート強度を向上させることを目的に、ポリカプロラクトンのディスパージョンまたはエマルジョンを、紙の上に10g/mの目付量(層の乾燥重量)で塗布、乾燥した後に、押出ラミネートにて、3-ヒドロキシ酪酸・3-ヒトロキシ吉草酸共重合体(PHBV)を積層する方法が開示されている。 Although PHBH is not disclosed in Patent Document 1, 10 g of a polycaprolactone dispersion or emulsion is placed on the paper for the purpose of improving the penetration of the biodegradable resin into the paper and improving the laminate strength. A method is disclosed in which a 3-hydroxybutyric acid/3-hydroxyvaleric acid copolymer (PHBV) is laminated by extrusion lamination after coating with a basis weight (dry weight of layer) of /m 2 (dry weight of layer) and drying.
特開平6-293113号公報JP-A-6-293113
 特許文献1の方法によれば紙と樹脂層の接着性は改善される傾向にあるものの、ポリカプロラクトンのディスパージョンまたはエマルジョンを10g/mという大きな目付量で塗布した後、乾燥させるため、当該乾燥に長時間を要し生産性が高くない、また、当該乾燥によって紙基材が劣化したり、紙が乾燥しすぎてしまい積層体に反りを生じてしまう等といった課題があった。 According to the method of Patent Document 1, the adhesion between the paper and the resin layer tends to be improved. Drying takes a long time and productivity is not high, and there are problems such as deterioration of the paper base material due to the drying, and warping of the laminate due to excessive drying of the paper.
 乾燥を容易にするため接着層の目付量を10g/mより少なくする方法があるが、その場合には紙基材と樹脂層との間の接着性が不十分になるといった課題があった。 In order to facilitate drying, there is a method of reducing the basis weight of the adhesive layer to less than 10 g/m 2 , but in that case there is a problem that the adhesiveness between the paper substrate and the resin layer becomes insufficient. .
 本発明は、上記現状に鑑み、基材層と、接着層と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体を含む樹脂層とをこの順で含む積層体であって、接着層を形成する際の乾燥性が良好であり、かつ基材層と樹脂層との接着強度が高い積層体を提供することを目的とする。 In view of the above situation, the present invention provides a laminate comprising a substrate layer, an adhesive layer, and a resin layer containing a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order, Another object of the present invention is to provide a laminate having good drying property when forming an adhesive layer and having high adhesive strength between a substrate layer and a resin layer.
 本発明者らは、前記課題を解決すべく鋭意検討した結果、基材層(A)と、接着性樹脂層(B)と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体を含む樹脂層(D)とをこの順で含む積層体において、接着性樹脂層(B)の目付量を十分に小さくしつつも、樹脂層(D)の厚みを特定範囲に設定することで上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a copolymer of a substrate layer (A), an adhesive resin layer (B), 3-hydroxybutyrate and 3-hydroxyhexanoate In a laminate including a resin layer (D) including coalescence in this order, the thickness of the resin layer (D) is set within a specific range while the basis weight of the adhesive resin layer (B) is sufficiently reduced. The present inventors have found that the above problems can be solved by the method, and have completed the present invention.
 即ち本発明は、基材層(A)と、接着性樹脂層(B)と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)を含む樹脂層(D)とをこの順で含む積層体であって、前記接着性樹脂層(B)の目付量が0.1g/m以上、3.0g/m未満であり、前記共重合体(C)中の3-ヒドロキシヘキサノエートの平均含有比率が6モル%以上であり、前記樹脂層(D)の厚みが20μm以上、100μm未満である、積層体に関する。
 また本発明は、前記積層体を製造する方法であって、
 前記基材層の少なくとも片面に、前記接着性樹脂層(B)をコーティング法によって形成する第1工程、及び、前記接着性樹脂層(B)の表面に、前記樹脂層(D)を押出ラミネート法または熱ラミネート法によって形成する第2工程を含む、製造方法にも関する。
That is, the present invention comprises a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate. in this order, wherein the basis weight of the adhesive resin layer (B) is 0.1 g/m 2 or more and less than 3.0 g/m 2 , and The laminate has an average content ratio of 3-hydroxyhexanoate of 6 mol % or more, and a thickness of the resin layer (D) of 20 μm or more and less than 100 μm.
The present invention also provides a method for manufacturing the laminate,
A first step of forming the adhesive resin layer (B) on at least one side of the base material layer by a coating method, and extrusion laminating the resin layer (D) on the surface of the adhesive resin layer (B) It also relates to a manufacturing method, including a second step of forming by a method or a thermal lamination method.
 本発明によれば、基材層と、接着層と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体を含む樹脂層とをこの順で含む積層体であって、接着層を形成する際の乾燥性が良好であり、かつ基材層と樹脂層との接着強度が高い積層体を提供することができる。当該積層体を使用すると、成形体の生産効率や品質を改善することが可能である。 According to the present invention, a laminate comprising a substrate layer, an adhesive layer, and a resin layer containing a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order, the adhesive layer It is possible to provide a laminate having good drying property when forming and having high adhesive strength between the base material layer and the resin layer. Use of the laminate can improve production efficiency and quality of molded articles.
本実施形態に係る積層体の積層構造を示す模式図である。It is a schematic diagram which shows the laminated structure of the laminated body which concerns on this embodiment.
 以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
 [積層体]
 本発明の一実施形態に係る積層体は、基材層(A)の少なくとも片面に、接着性樹脂層(B)と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)を含む樹脂層(D)とを有する。図1に示すように、積層体1において、符号2で示される基材層(A)と、符号3で示される接着性樹脂層(B)と、符号4で示される樹脂層(D)はこの順で積層している。
[Laminate]
A laminate according to one embodiment of the present invention comprises an adhesive resin layer (B) and a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate ( and a resin layer (D) containing C). As shown in FIG. 1, in the laminate 1, the substrate layer (A) indicated by reference numeral 2, the adhesive resin layer (B) indicated by reference numeral 3, and the resin layer (D) indicated by reference numeral 4 are They are stacked in this order.
 接着性樹脂層(B)は基材層(A)の上に直接的に積層されていても良いし、接着性を阻害しない範囲であれば、接着性樹脂層(B)と基材層(A)との間に、中間層としてさらに別の樹脂層を含んでいてもよい。 The adhesive resin layer (B) may be directly laminated on the base material layer (A), and the adhesive resin layer (B) and the base material layer (B) may be laminated as long as the adhesiveness is not impaired. A) may further include another resin layer as an intermediate layer.
 基材層(A)の片面のみに、接着性樹脂層(B)と樹脂層(D)を有してもよいし、基材層(A)の両面それぞれに、接着性樹脂層(B)と樹脂層(D)を有しても良い。 Only one side of the substrate layer (A) may have the adhesive resin layer (B) and the resin layer (D), or both sides of the substrate layer (A) may have the adhesive resin layer (B) and a resin layer (D).
 基材層(A)の片面のみに接着性樹脂層(B)と樹脂層(D)を有する場合、他方の面には別の層が形成されておらず、基材層(A)が積層体の表面に露出している最表面の層であってもよいし、耐水性や光沢性、または接着性を付与するなどの目的で、別の層が積層されていても良い。 When the base material layer (A) has the adhesive resin layer (B) and the resin layer (D) only on one side, another layer is not formed on the other side, and the base layer (A) is laminated. It may be the outermost layer exposed on the surface of the body, or another layer may be laminated for the purpose of imparting water resistance, gloss, or adhesiveness.
 基材層(A)の両面それぞれに接着性樹脂層(B)と樹脂層(D)を有する場合、表面側の接着性樹脂層(B)と裏面側の接着性樹脂層(B)を構成する材料や、目付量、厚みは、互いに同じであっても良いし、異なっていても良い。表面側の樹脂層(D)と裏面側の樹脂層(D)についても同様である。尚、本願における目付量(g/m)とは、層の乾燥重量(固形分量)を指す。 When both surfaces of the substrate layer (A) have an adhesive resin layer (B) and a resin layer (D), respectively, the adhesive resin layer (B) on the front side and the adhesive resin layer (B) on the back side are formed. The materials to be used, the basis weight, and the thickness may be the same or different. The same applies to the resin layer (D) on the front side and the resin layer (D) on the back side. The basis weight (g/m 2 ) in the present application refers to the dry weight (solid content) of the layer.
 [基材層(A)]
 前記基材層(A)を構成する材料としては特に限定されないが、生分解性であることが望ましく、例えば、紙(主成分がセルロース)、セロハン、セルロースエステル;ポリビニルアルコール、ポリアミノ酸、ポリグリコール酸、プルラン、またはこれらの基材にアルミ、シリカ等の無機物を蒸着したもの等が挙げられる。中でも耐熱性に優れ、安価である点から、紙が好ましい。
[Base layer (A)]
The material constituting the base layer (A) is not particularly limited, but is preferably biodegradable. Examples include paper (mainly cellulose), cellophane, cellulose ester; polyvinyl alcohol, polyamino acid, polyglycol. acid, pullulan, or those obtained by vapor-depositing inorganic substances such as aluminum and silica on these base materials; Among them, paper is preferable because it has excellent heat resistance and is inexpensive.
 紙の種類は、特に限定されず、積層体の用途に応じて適宜選択することができるが、例えば、カップ原紙、クラフト紙、上質紙、コート紙、薄葉紙、グラシン紙、板紙等が挙げられる。紙には、必要に応じて、耐水剤、撥水剤、無機物等が添加されていてもよく、酸素バリア層コーティング、水蒸気バリアコーティング等の表面処理が施されたものであってもよい。 The type of paper is not particularly limited, and can be appropriately selected according to the application of the laminate. If necessary, the paper may be added with water-resistant agents, water-repellent agents, inorganic substances, etc., and may be subjected to surface treatments such as oxygen barrier layer coating and water vapor barrier coating.
 また、基材層(A)は、コロナ処理、オゾン処理、プラズマ処理、フレーム処理、アンカーコート処理、酸素バリア層コーティング、水蒸気バリアコーティング等の表面処理が施されたものであってもよい。これらの表面処理は、単独で行ってもよいし、複数の表面処理を併用してもよい。 Further, the base material layer (A) may be subjected to surface treatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, anchor coat treatment, oxygen barrier layer coating, and water vapor barrier coating. These surface treatments may be performed singly or in combination with a plurality of surface treatments.
 [接着性樹脂層(B)]
 前記接着性樹脂層(B)は樹脂を主成分として構成される層である。接着性樹脂層(B)に含まれる主要樹脂としては特に限定されないが、塗工紙分野または樹脂フィルム分野で一般的に使用されている樹脂を好適に使用できる。紙等の基材およびPHBHとの親和性が高い樹脂が少なくとも1種類以上含まれていることが望ましく、そのような樹脂としては、アクリル系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、スチレン-アクリル系樹脂、スチレン-ブタジエン系樹脂、スチレン-イソプレン系樹脂、ポリカーボネート系樹脂、尿素樹脂、メラミン系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ジアリルフタレート系樹脂、イミン系樹脂等が挙げられる。これらは1種類のみを用いることもできるし、2種類以上の樹脂を任意の割合で混合して用いることもできる。
[Adhesive resin layer (B)]
The adhesive resin layer (B) is a layer composed mainly of a resin. The main resin contained in the adhesive resin layer (B) is not particularly limited, but resins commonly used in the coated paper field or the resin film field can be preferably used. It is desirable that at least one or more resins having a high affinity for substrates such as paper and PHBH are contained. resins, styrene-butadiene-based resins, styrene-isoprene-based resins, polycarbonate-based resins, urea resins, melamine-based resins, epoxy-based resins, phenol-based resins, urethane-based resins, diallyl phthalate-based resins, imine-based resins, etc. . These resins can be used singly, or two or more resins can be mixed in an arbitrary ratio and used.
 接着性樹脂層(B)に含まれる樹脂は、水溶性のものであってもよいし、有機溶媒に溶けるものであってもよい。水に不溶の樹脂を使用する場合、水中での分散性と塗工性を改良するために他の添加剤を加えることもできる。水系エマルジョン、水系スラリー、または水溶性樹脂をコーティングする場合、樹脂の固形分濃度は特に限定されないが、乾燥に必要な熱量を低く抑えるために30重量%以上であることが好ましく、40重量%以上がより好ましく、50重量%以上がさらに好ましい。また、分散した樹脂の沈降を回避して良好な塗工性を達成する観点から、前記固形分濃度は60重量%以下であることが好ましい。 The resin contained in the adhesive resin layer (B) may be either water-soluble or soluble in an organic solvent. When using water insoluble resins, other additives may be added to improve dispersibility in water and coatability. When coating an aqueous emulsion, aqueous slurry, or water-soluble resin, the solid content concentration of the resin is not particularly limited. is more preferable, and 50% by weight or more is even more preferable. Moreover, from the viewpoint of avoiding sedimentation of the dispersed resin and achieving good coatability, the solid content concentration is preferably 60% by weight or less.
 本実施形態に係る積層体において、接着性樹脂層(B)の目付量は0.1g/m以上、3.0g/m未満の範囲に調節される。目付量が0.1g/m未満であると、樹脂層(D)との接着性が低下する場合がある。逆に3.0g/mを超えると、乾燥時に熱量が多く必要となるため設備への負荷が大きくなったり、例えば乾燥不良によって原反巻取り時のブロッキングが問題になる場合がある。
 前記目付量は、0.5g/m以上、2.5g/m以下であることがより好ましく、1.0g/m以上、2.0g/m以下であることがさらに好ましい。
In the laminate according to this embodiment, the basis weight of the adhesive resin layer (B) is adjusted to a range of 0.1 g/m 2 or more and less than 3.0 g/m 2 . If the basis weight is less than 0.1 g/m 2 , the adhesiveness to the resin layer (D) may deteriorate. Conversely, if it exceeds 3.0 g/m 2 , a large amount of heat is required for drying, which increases the load on the equipment, and, for example, blocking during winding of the raw fabric may become a problem due to poor drying.
The basis weight is more preferably 0.5 g/m 2 or more and 2.5 g/m 2 or less, and further preferably 1.0 g/m 2 or more and 2.0 g/m 2 or less.
 [樹脂層(D)]
 前記樹脂層(D)は、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(以下、「PHBH」と称することがある。)(C)を含む。当該樹脂層(D)は、本実施形態に係る積層体における最表面の層であってもよく、その場合、当該樹脂層(D)はヒートシール(後述する)のために使用することができる。
[Resin layer (D)]
The resin layer (D) contains a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate (hereinafter sometimes referred to as "PHBH") (C). The resin layer (D) may be the outermost layer in the laminate according to the present embodiment, and in that case, the resin layer (D) can be used for heat sealing (described later). .
 PHBHは繰り返し単位の含有比率を変えることで、融点、結晶化度を変化させ、結果として、ヤング率、耐熱性等の物性を容易に調整することができ、かつ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であることから、工業的に特に有用なプラスチックである。 By changing the content ratio of repeating units, PHBH changes the melting point and crystallinity. As a result, physical properties such as Young's modulus and heat resistance can be easily adjusted. Since it is possible to impart physical properties, it is an industrially particularly useful plastic.
 PHBHの具体的な製造方法は、例えば、国際公開第2010/013483号に記載されている。また、PHBHの市販品としては、株式会社カネカ「カネカ生分解性ポリマーGreen Planet」(登録商標)などが挙げられる。 A specific method for producing PHBH is described, for example, in International Publication No. 2010/013483. Commercially available products of PHBH include Kaneka Corporation "Kaneka Biodegradable Polymer Green Planet" (registered trademark).
 PHBH(C)中の各構成モノマーの平均含有比率は、3HB/3HH=94~80/6~20(モル%/モル%)であることが好ましく、3HB/3HH=90~82/10~18(モル%/モル%)であることがより好ましい。PHBH(C)中の3HHの平均含有比率が6モル%以上であると、紙等の基材の上に形成された接着性樹脂層(B)との接着性が良好となり得る。また、3HHの平均含有比率が20モル%以下であると、PHBHの結晶化速度が遅くなりすぎず、製造が比較的容易である。 The average content ratio of each constituent monomer in PHBH (C) is preferably 3HB/3HH = 94 to 80/6 to 20 (mol%/mol%), and 3HB/3HH = 90 to 82/10 to 18. (mol%/mol%) is more preferred. When the average content ratio of 3HH in PHBH (C) is 6 mol% or more, the adhesiveness with the adhesive resin layer (B) formed on a substrate such as paper can be improved. Further, when the average content ratio of 3HH is 20 mol % or less, the crystallization speed of PHBH does not become too slow, and production is relatively easy.
 PHBH(C)中の各構成モノマーの平均含有比率とは、PHBH(C)中に含まれる3HBと3HHのモル比を意味する。PHBH(C)が、構成モノマーの含有比率が互いに異なる少なくとも2種類のPHBHの混合物である場合、又は、少なくとも1種類のPHBHと、PHBとを含む混合物である場合、混合物全体に含まれる各構成モノマーのモル比を意味する。尚、構成モノマーの平均含有比率は、当業者に公知の方法、例えば国際公開2013/147139号の段落[0047]に記載の方法や、NMR測定により求めることができる。 The average content ratio of each constituent monomer in PHBH(C) means the molar ratio of 3HB and 3HH contained in PHBH(C). When the PHBH (C) is a mixture of at least two types of PHBH with different content ratios of constituent monomers, or a mixture containing at least one type of PHBH and PHB, each component contained in the entire mixture It refers to the molar ratio of monomers. The average content ratio of the constituent monomers can be determined by a method known to those skilled in the art, for example, the method described in paragraph [0047] of WO 2013/147139, or by NMR measurement.
 上述した通り、前記樹脂層(D)に含まれるPHBH(C)は、構成モノマーの含有比率が互いに異なる少なくとも2種類のPHBHを含んでもよく、また、少なくとも1種類のPHBHに加えて、PHB(3-ヒドロキシブチレートの単独重合体)をさらに含んでもよい。 As described above, the PHBH (C) contained in the resin layer (D) may contain at least two types of PHBH having different content ratios of constituent monomers, and in addition to at least one type of PHBH, PHB ( 3-Hydroxybutyrate homopolymer) may be further included.
 少なくとも2種類のPHBHを含む場合、3HHの含有比率が6モル%未満である高結晶性かつ高融点のPHBHと、3HHの含有比率が15モル%以上である低結晶性かつ低融点のPHBHとを含むことが好ましい。 When at least two types of PHBH are included, a highly crystalline and high melting point PHBH having a 3HH content of less than 6 mol% and a low crystalline and low melting PHBH having a 3HH content of 15 mol% or more is preferably included.
 特に、前記樹脂層(D)に含まれるPHBH(C)は、融点が60℃以上、90℃未満である第1融点成分(低結晶性成分)と、融点が140℃以上、170℃未満である第2融点成分(高結晶性成分)という、少なくとも2種類のPHBH成分を含むことが好ましい。特に、第1融点成分の融点は65℃以上、85℃以下が好ましく、70℃以上、80℃以下がより好ましく、第2融点成分の融点は145℃以上、165℃以下が好ましく、150℃以上、160℃以下がより好ましい。このような構成とすることで、樹脂層(D)が単独のPHBHのみを含む場合と比較して、溶融加工の際に、第2融点成分の結晶を完全には溶解させずに残し結晶核として作用させることで、PHBH(C)の結晶化を速めることができ、押出ラミネート法または熱ラミネート法による樹脂層(D)の形成が容易となるだけでなく、第1融点成分が十分に融解することによって、紙等の基材の上に形成された接着性樹脂層(B)との接着強度を上げることができる。 In particular, the PHBH (C) contained in the resin layer (D) includes a first melting point component (low crystallinity component) having a melting point of 60° C. or more and less than 90° C. and a melting point of 140° C. or more and less than 170° C. It is preferred to include at least two PHBH components, some second melting point components (highly crystalline components). In particular, the melting point of the first melting point component is preferably 65° C. or higher and 85° C. or lower, more preferably 70° C. or higher and 80° C. or lower, and the melting point of the second melting point component is preferably 145° C. or higher and 165° C. or lower, and 150° C. or higher. , 160° C. or lower. With such a configuration, the crystals of the second melting point component are not completely dissolved and crystal nuclei are left during melt processing, compared to the case where the resin layer (D) contains only PHBH alone. By acting as, the crystallization of PHBH (C) can be accelerated, and not only the formation of the resin layer (D) by the extrusion lamination method or the heat lamination method is facilitated, but also the first melting point component is sufficiently melted. By doing so, the adhesive strength with the adhesive resin layer (B) formed on the substrate such as paper can be increased.
 3HHの含有比率が6モル%未満である高結晶性PHBHに代えてPHBを用いることができ、その場合でも当該PHBが結晶核として作用するため、同様の効果を得ることができる。なお、3HHの含有比率が6モル%未満であるPHBHとPHBを併用しても良い。 PHB can be used in place of highly crystalline PHBH with a 3HH content of less than 6 mol%, and even in that case, the PHB acts as a crystal nucleus, so that similar effects can be obtained. PHBH and PHB having a 3HH content of less than 6 mol % may be used together.
 前記高結晶性PHBH中の3HBと3HHの合計に対する3HHの割合は、5モル%以下であることが好ましく、4モル%以下がより好ましく、3モル%以下がさらに好ましい。また、前記低結晶性PHBH中の3HBと3HHの合計に対する3HHの割合は、15~40モル%であることが好ましく、15~30モル%以下がより好ましい。 The ratio of 3HH to the total of 3HB and 3HH in the highly crystalline PHBH is preferably 5 mol% or less, more preferably 4 mol% or less, and even more preferably 3 mol% or less. The ratio of 3HH to the sum of 3HB and 3HH in the low-crystalline PHBH is preferably 15 to 40 mol%, more preferably 15 to 30 mol% or less.
 前記高結晶性PHBH又はPHBの配合量は、特に限定されないが、樹脂層(D)に含まれるPHBH(C)のうち1~60重量%であることが好ましく、2~50重量%であることがより好ましく、4~15重量%であることがさらに好ましい。 The amount of the highly crystalline PHBH or PHB is not particularly limited, but it is preferably 1 to 60% by weight, and 2 to 50% by weight, of the PHBH (C) contained in the resin layer (D). is more preferred, and 4 to 15% by weight is even more preferred.
 前記樹脂層(D)に含まれるPHBH(C)の重量平均分子量(以下、Mwと称することがある)は、機械物性と加工性を両立させる観点から25万~65万であることが好ましく、35万~55万がより好ましく、40万~50万がさらに好ましい。重量平均分子量が25万以上であると、樹脂層(D)の機械物性が良好であり、65万以下であると、成形加工に適した溶融粘度を示すことができ、紙等の基材の上に形成された接着性樹脂層(B)との接着性がより良好となり得る。 The weight average molecular weight (hereinafter sometimes referred to as Mw) of PHBH (C) contained in the resin layer (D) is preferably 250,000 to 650,000 from the viewpoint of achieving both mechanical properties and workability. 350,000 to 550,000 is more preferable, and 400,000 to 500,000 is even more preferable. When the weight average molecular weight is 250,000 or more, the mechanical properties of the resin layer (D) are good, and when it is 650,000 or less, the melt viscosity suitable for molding can be exhibited, and the base material such as paper can be used. Adhesion with the adhesive resin layer (B) formed thereon can be improved.
 本願において、PHBHの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)によって、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。 In the present application, the weight-average molecular weight of PHBH was determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko KK) using polystyrene gel (“Shodex K-804” manufactured by Showa Denko KK) as a column. It can be obtained as a molecular weight when converted to polystyrene using chloroform as a mobile phase.
 本発明の一実施形態において、樹脂層(D)には、重量平均分子量の異なる複数種のPHBHを混合して用いることができる。 In one embodiment of the present invention, a plurality of types of PHBH having different weight average molecular weights can be mixed and used for the resin layer (D).
 樹脂層(D)は、PHBH(C)を主成分とする樹脂層であることが好ましい。具体的には、樹脂層(D)中のPHBH(C)の含有量は50~100重量%であることが好ましく、70~100重量%がより好ましく、80~100重量%がさらに好ましい。下限は90重量%以上であってもよいし、95重量%以上であってもよい。 The resin layer (D) is preferably a resin layer containing PHBH (C) as a main component. Specifically, the content of PHBH (C) in the resin layer (D) is preferably 50 to 100% by weight, more preferably 70 to 100% by weight, even more preferably 80 to 100% by weight. The lower limit may be 90% by weight or more, or may be 95% by weight or more.
 樹脂層(D)は、樹脂成分としてPHBHのみ、または、PHBHとPHBのみを含有するものであってもよいし、これらに加えて、PHBH及びPHB以外の樹脂をさらに含有してもよい。PHBH及びPHB以外の樹脂としては、生分解性樹脂であることが好ましく、具体的には、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHB3HV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(PHB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)(PHB3HO)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)(PHB3HOD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)(PHB3HD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート-コ-3-ヒドロキシヘキサノエート)(PHB3HV3HH)等のポリ(3-ヒドロキシアルカノエート)類;ポリカプロラクトン、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリ乳酸などの脂肪族ポリエステル系樹脂;ポリブチレンアジペートテレフタレート、ポリブチレンアゼレートテレフタレート等の脂肪族芳香族ポリエステル系樹脂等が挙げられる。これらPHBH及びPHB以外の樹脂は1種類のみを使用してもよいし、2種類以上を併用してもよい。 The resin layer (D) may contain only PHBH or only PHBH and PHB as resin components, or may further contain resins other than PHBH and PHB. Resins other than PHBH and PHB are preferably biodegradable resins. Specifically, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB3HV), poly(3-hydroxybutyrate), late-co-4-hydroxybutyrate) (PHB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (PHB3HO), poly(3-hydroxybutyrate-co-3-hydroxyoctadeca noate) (PHB3HOD), poly(3-hydroxybutyrate-co-3-hydroxydecanoate) (PHB3HD), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexa Noate) (PHB3HV3HH) and other poly(3-hydroxyalkanoates); polycaprolactone, polybutylene succinate adipate, polybutylene succinate, polylactic acid and other aliphatic polyester resins; Aliphatic-aromatic polyester-based resins such as late terephthalate and the like are included. These resins other than PHBH and PHB may be used alone or in combination of two or more.
 前記樹脂層(D)は、発明の効果を阻害しない範囲で、樹脂材料に通常添加される添加剤を含有してもよい。そのような添加剤としては、例えば、無機充填剤、顔料、染料などの着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、可塑剤、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、結晶核剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤等が挙げられる。これら添加剤としては1種類のみを使用してもよいし、2種類以上を併用してもよい。但し、添加剤は任意の成分であり、前記樹脂層(D)はこれら添加剤を含有しないものであってもよい。添加剤としては、前記樹脂層(D)のラミネートの際に冷却ロールなどの圧着面からの剥離性を改善できるという観点から、滑剤、及び/又は、無機充填剤を使用することが好ましい。 The resin layer (D) may contain additives normally added to resin materials within a range that does not impair the effects of the invention. Such additives include, for example, inorganic fillers, pigments, colorants such as dyes, odor absorbers such as activated carbon and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistant A property improver, an ultraviolet absorber, a crystal nucleating agent, a lubricant, a release agent, a water repellent, an antibacterial agent, a slidability improver, and the like. As these additives, only one type may be used, or two or more types may be used in combination. However, the additive is an optional component, and the resin layer (D) may not contain these additives. As the additive, it is preferable to use a lubricant and/or an inorganic filler from the viewpoint of improving the releasability from a pressing surface such as a cooling roll when laminating the resin layer (D).
 前記滑剤としては、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド等の飽和または不飽和の脂肪酸アミドや、メチレンビスステアリン酸アミド、メチレンビスステアリン酸アミド等のアルキレン脂肪酸アミド等の脂肪族アミド化合物や、ペンタエリスリトールなどが挙げられる。 Examples of the lubricant include saturated or unsaturated fatty acid amides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, and erucic acid amide; Examples include aliphatic amide compounds such as alkylene fatty acid amides such as bis-stearic acid amide, and pentaerythritol.
 前記樹脂層(D)中の滑剤の配合量は、前記樹脂層(D)に含まれる樹脂成分の総量100重量部に対して0.1~2重量部であることが好ましく、0.2~1重量部がより好ましい。配合量を0.1重量部以上とすることにより、滑剤配合による剥離性改善効果を得ることができる。配合量が2重量部以下であると、圧着時に滑剤がブリードして冷却ロール等の圧着面に付着する問題を抑制して、長時間の連続加工を実施することができる。 The amount of the lubricant in the resin layer (D) is preferably 0.1 to 2 parts by weight, preferably 0.2 to 2 parts by weight, per 100 parts by weight of the total amount of the resin components contained in the resin layer (D). 1 part by weight is more preferred. By setting the blending amount to 0.1 part by weight or more, it is possible to obtain the effect of improving the peelability by blending the lubricant. When the blending amount is 2 parts by weight or less, it is possible to suppress the problem that the lubricant bleeds and adheres to the pressing surface such as the cooling roll during pressing, and it is possible to carry out continuous processing for a long time.
 前記無機充填材としては、例えば、タルク、炭酸カルシウム、マイカ、シリカ、クレイ、カオリン、酸化チタン、アルミナ、ゼオライト等が挙げられる。これら無機充填材の平均粒子径は0.5μm以上であることが好ましい。 Examples of the inorganic filler include talc, calcium carbonate, mica, silica, clay, kaolin, titanium oxide, alumina, and zeolite. The average particle size of these inorganic fillers is preferably 0.5 μm or more.
 前記樹脂層(D)中の無機充填剤の配合量は、前記樹脂層(D)に含まれる樹脂成分の総量100重量部に対して0.5~5重量部であることが好ましく、1~3重量部がより好ましい。配合量を0.5重量部以上とすることにより、無機充填剤配合による剥離性改善効果を得ることができる。配合量が5重量部以下であると、前記樹脂層(D)における割れの発生を抑制することができる。 The amount of the inorganic filler compounded in the resin layer (D) is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the total amount of the resin components contained in the resin layer (D), and 1 to 5 parts by weight. 3 parts by weight is more preferred. By setting the blending amount to 0.5 parts by weight or more, it is possible to obtain the effect of improving the peelability due to the blending of the inorganic filler. When the blending amount is 5 parts by weight or less, cracking in the resin layer (D) can be suppressed.
 本実施形態に係る積層体において、樹脂層(D)の厚みは、20μm以上、100μm未満の範囲に設定される。厚みが20μm未満であると、樹脂層(D)のラミネート時に樹脂の冷却が速すぎるため、接着性樹脂層(B)が形成された基材層(A)との接着性が低下する場合がある。また、積層体を成形体に加工する際に樹脂層(D)にクラックが発生しやすくなる。厚みの下限は20μm以上であることが好ましく、30μm以上がより好ましく、40μm以上が特に好ましい。 In the laminate according to this embodiment, the thickness of the resin layer (D) is set within the range of 20 µm or more and less than 100 µm. If the thickness is less than 20 µm, the resin is cooled too quickly during lamination of the resin layer (D), and the adhesiveness to the substrate layer (A) on which the adhesive resin layer (B) is formed may decrease. be. In addition, cracks are likely to occur in the resin layer (D) when processing the laminate into a molded body. The lower limit of the thickness is preferably 20 µm or more, more preferably 30 µm or more, and particularly preferably 40 µm or more.
 また、樹脂層(D)の厚みが100μmを超えると、樹脂層(D)の形成時に樹脂温度のむらが大きくなることで、メルトフラクチャによる厚みのむらや外観不良が発生する場合がある。また、積層体が硬くなり過ぎるために、成形不良を起こす場合もある。厚みの上限は80μm以下であることが好ましく、60μm以下がより好ましい。 Further, if the thickness of the resin layer (D) exceeds 100 μm, the unevenness of the resin temperature increases during the formation of the resin layer (D), which may cause thickness unevenness and poor appearance due to melt fracture. In addition, the laminate may become too hard, resulting in poor molding. The upper limit of the thickness is preferably 80 µm or less, more preferably 60 µm or less.
 〔積層体の製造方法〕
 本実施形態に係る積層体を製造する方法の一例を以下に説明する。
 本実施形態に係る積層体は、基材層(A)の少なくとも片面に、接着性樹脂層(B)をコーティング法によって形成し(第1工程)、形成された接着性樹脂層(B)の表面に、樹脂層(D)を形成する(第2工程)ことにより製造できる。
[Method for manufacturing laminate]
An example of a method for manufacturing the laminate according to this embodiment will be described below.
In the laminate according to the present embodiment, the adhesive resin layer (B) is formed on at least one side of the substrate layer (A) by a coating method (first step), and the formed adhesive resin layer (B) is It can be produced by forming a resin layer (D) on the surface (second step).
 基材層(A)の少なくとも片面に接着性樹脂層(B)を形成する第1工程では、基材層(A)の片面または両面に、接着性樹脂層(B)を構成する成分を含む溶液または水性スラリー等の水性分散液を塗布し、加熱して乾燥及び製膜することが好ましい。 In the first step of forming the adhesive resin layer (B) on at least one side of the substrate layer (A), one or both sides of the substrate layer (A) contain components constituting the adhesive resin layer (B). It is preferable to apply an aqueous dispersion such as a solution or an aqueous slurry and heat to dry and form a film.
 前記溶液または水性分散液を基材に塗布する手法としては特に限定されず、基材上に樹脂層を形成できる公知の方法を適宜使用することができる。具体的には、吹付法、散布法、スリットコーター法、エアーナイフコーター法、ロールコーター法、バーコーター法、コンマコーター法、ブレードコーター法、スクリーン印刷法、グラビア印刷法等を使用することができる。溶液または水性分散液を塗布する前に、基材に対し、上述したコロナ処理等の表面処理を施す工程を実施してもよい。 The method of applying the solution or aqueous dispersion to the substrate is not particularly limited, and any known method capable of forming a resin layer on the substrate can be used as appropriate. Specifically, a spraying method, a spraying method, a slit coater method, an air knife coater method, a roll coater method, a bar coater method, a comma coater method, a blade coater method, a screen printing method, a gravure printing method, or the like can be used. . Before applying the solution or aqueous dispersion, the substrate may be subjected to a surface treatment such as the corona treatment described above.
 塗布後の乾燥処理は、公知の加熱方式を用いて実施することができる。例えば、熱風加熱、赤外線加熱、マイクロウェーブ加熱、ロール加熱、熱板加熱などが挙げられ、これらは単独または2種類以上を組み合わせて使用することができる。 The drying treatment after application can be performed using a known heating method. Examples thereof include hot air heating, infrared heating, microwave heating, roll heating, and hot plate heating, and these can be used alone or in combination of two or more.
 次いで、形成された接着性樹脂層(B)の表面に、樹脂層(D)を形成する第2工程を行う。樹脂層(D)を形成する方法は、樹脂層(D)を構成する成分を含む溶液または水性分散液を接着性樹脂層(B)の表面に塗布し、加熱して乾燥及び製膜する方法であってもよい。しかし、接着性樹脂層(B)との接着性の観点や、生産性、あるいは、熱劣化を抑制する品質の観点から、押出ラミネート法または熱ラミネート法によって、接着性樹脂層(B)の表面に樹脂層(D)を形成することが好ましい。 Next, the second step of forming the resin layer (D) on the surface of the formed adhesive resin layer (B) is performed. The method of forming the resin layer (D) comprises applying a solution or aqueous dispersion containing components constituting the resin layer (D) to the surface of the adhesive resin layer (B), heating to dry and form a film. may be However, from the viewpoint of adhesion with the adhesive resin layer (B), productivity, or the quality of suppressing thermal deterioration, the surface of the adhesive resin layer (B) is subjected to an extrusion lamination method or a heat lamination method. It is preferable to form the resin layer (D) on
 前記押出ラミネート法としては、一般的な押出ラミネート方法を使用することができる。具体的には、溶融した樹脂材料を、T型ダイスからフィルム状に押し出して、冷却ロールを用いて冷却させつつ接着性樹脂層(B)の表面に圧着し、その直後に冷却ロールから該樹脂材料を剥離することにより、樹脂層(D)を形成して積層体を製造することができる。 A general extrusion lamination method can be used as the extrusion lamination method. Specifically, the molten resin material is extruded into a film form from a T-shaped die, cooled using a cooling roll and pressed against the surface of the adhesive resin layer (B), and immediately after that, the resin is removed from the cooling roll. By peeling off the material, a resin layer (D) can be formed and a laminate can be produced.
 前記熱ラミネート法としては、一般的な熱ラミネート方法を使用することができる。具体的には、まず、溶融した樹脂材料を、例えばT型ダイスから押し出して、冷却ロールを用いて冷却させつつ当該樹脂材料を含むフィルムを形成する。次いで、得られたフィルムを、熱ロールなどを用いて接着性樹脂層(B)の表面に圧着することにより、成形体を製造することができる。 A general heat lamination method can be used as the heat lamination method. Specifically, first, a melted resin material is extruded through, for example, a T-shaped die, and cooled using a cooling roll to form a film containing the resin material. Then, the obtained film is pressure-bonded to the surface of the adhesive resin layer (B) using a hot roll or the like to produce a molded article.
 樹脂層(D)と、接着性樹脂層(B)が形成された基材層(A)との接着性を改善するなどの目的で、接着性樹脂層(B)の表面に対して、コロナ処理、フレーム処理、オゾン処理等を行ってもよい。 For the purpose of improving the adhesion between the resin layer (D) and the substrate layer (A) on which the adhesive resin layer (B) is formed, a corona is applied to the surface of the adhesive resin layer (B). Treatment, flame treatment, ozone treatment, etc. may be performed.
 前記の第1工程および第2工程は、接着性や加工性(溶融と結晶化のバランス)の観点で、順次連続的に行うことが好ましい。 From the viewpoint of adhesiveness and processability (balance between melting and crystallization), it is preferable to perform the first step and the second step in succession.
 〔成形体〕
 本実施形態の一態様に係る成形体は、上述した積層体を含むものであって、所望の大きさ及び形状を有するものである。前記成形体は、PHBHを含む樹脂層(D)を含む積層体から形成されているため、種々の用途において有利である。
[Molded body]
A molded article according to one aspect of the present embodiment includes the laminate described above and has a desired size and shape. Since the molded article is formed from a laminate containing the resin layer (D) containing PHBH, it is advantageous in various applications.
 前記成形体は、前記積層体を含むものであれば特に限定されないが、例えば、紙、フィルム、シート、チューブ、板、棒、容器(例えば、ボトル容器)、袋、部品等が挙げられる。前記成形体は、海洋汚染の対策の観点から、好ましくは、袋またはボトル容器である。 The molded article is not particularly limited as long as it contains the laminate, and examples thereof include paper, film, sheet, tube, plate, rod, container (eg, bottle container), bag, and parts. The molded article is preferably a bag or a bottle container from the viewpoint of marine pollution countermeasures.
 前記成形体は、前記積層体それ自体であってもよいし、前記積層体が2次加工されたものであってもよい。 The molded body may be the laminate itself, or may be the laminate obtained by secondary processing.
 前記積層体が2次加工されていることにより、前記成形体は、ショッピングバッグ、各種製袋、食品・菓子包装材、カップ、トレー、カートン等の各種包装容器資材として(換言すれば、食品、化粧品、電子、医療、薬品等の各種分野で)、好適に利用することができる。前記積層体は、基材への高い接着性および良好な耐熱性を有する樹脂層(D)を含むために、液体を入れる容器、特に、即席麺、即席スープ、コーヒー等の飲食品カップ、総菜、弁当、電子レンジ食品等に用いるトレー等、温かい内容物を入れる容器として、より好ましい。 By secondary processing of the laminate, the molded article can be used as various packaging container materials such as shopping bags, various bag making, food and confectionery packaging materials, cups, trays, cartons (in other words, food, (in various fields such as cosmetics, electronics, medicine, pharmaceuticals, etc.). Since the laminate includes a resin layer (D) having high adhesiveness to a substrate and good heat resistance, it can be used as a container for holding a liquid, especially a food cup such as instant noodles, instant soup, coffee, or a side dish. , boxed lunches, trays for microwave foods, and the like, which are more preferable as containers for containing warm contents.
 前記2次加工は、従来の樹脂ラミネート紙またはコート紙と同じ方法、すなわち、各種製袋機、充填包装機等を用いて実施することができる。また、紙カップ成型機、打抜き機、函機等の装置を用いて加工することもできる。これらの加工機において、前記積層体の接着方法は公知の技術を使用することができ、例えば、ヒートシール法、インパルスシール法、超音波シール法、高周波シール法、ホットエアシール法、フレームシール法等が使用できる。 The secondary processing can be performed in the same manner as conventional resin-laminated paper or coated paper, that is, using various bag-making machines, filling and packaging machines, and the like. Moreover, it can also be processed using devices such as a paper cup molding machine, a punching machine, and a box machine. In these processing machines, known techniques can be used for bonding the laminate, such as heat sealing, impulse sealing, ultrasonic sealing, high frequency sealing, hot air sealing, frame sealing, and the like. can be used.
 前記積層体のヒートシール温度は接着法により異なるが、例えば、シールバーを有する加熱式ヒートシール試験機を使用した場合、通常は樹脂温度が180℃以下、好ましくは170℃以下、より好ましくは160℃以下となるように設定する。上記範囲内であると、シール部近傍の樹脂の溶け出しを回避し、適当な樹脂層の膜厚の確保およびシール強度の確保を行うことができる。また、シールバーを有する加熱式ヒートシール試験機を使用した場合の樹脂温度の下限は、通常は100℃以上、好ましくは110℃以上、より好ましくは120℃以上である。上記範囲内であると、シール部における適当な接着を確保することができる。 The heat-sealing temperature of the laminate varies depending on the adhesion method. ℃ or less. Within the above range, it is possible to avoid leaching out of the resin in the vicinity of the sealing portion, and to secure an appropriate film thickness of the resin layer and secure the sealing strength. The lower limit of the resin temperature when using a heat seal tester having a seal bar is usually 100° C. or higher, preferably 110° C. or higher, and more preferably 120° C. or higher. Within the above range, it is possible to ensure proper adhesion at the seal portion.
 前記積層体のヒートシール圧力は接着法により異なるが、例えば、シールバーを有する加熱式ヒートシール試験機を使用した場合、通常は0.1MPa以上、好ましくは0.5MPa以上である。上記範囲内であると、シール部における適当な接着を確保することができる。また、シールバーを有する加熱式ヒートシール試験機を使用した場合のヒートシール圧力の上限は、通常は1.0MPa以下、好ましくは0.75MPa以下である。上記範囲内であると、シール端部の膜厚の薄肉化を回避し、シール強度を確保することができる。 The heat-sealing pressure of the laminate varies depending on the bonding method, but is usually 0.1 MPa or more, preferably 0.5 MPa or more when using a heat-type heat-sealing tester having a seal bar, for example. Within the above range, it is possible to ensure proper adhesion at the seal portion. Moreover, the upper limit of the heat seal pressure when using a heat-type heat seal tester having a seal bar is usually 1.0 MPa or less, preferably 0.75 MPa or less. When it is within the above range, it is possible to avoid thinning of the film thickness at the end of the seal and secure the seal strength.
 前記成形体は、その物性を改善するために、前記成形体とは異なる材料から構成される成形体(例えば、繊維、糸、ロープ、織物、編物、不織布、紙、フィルム、シート、チューブ、板、棒、容器、袋、部品、発泡体等)と複合化することもできる。これらの材料も、生分解性であることが好ましい。 In order to improve the physical properties of the molded article, the molded article is made of a material different from that of the molded article (e.g., fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric, paper, film, sheet, tube, board, etc.). , rods, containers, bags, parts, foams, etc.). These materials are also preferably biodegradable.
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
 基材層(A)と、接着性樹脂層(B)と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)を含む樹脂層(D)とをこの順で含む積層体であって、前記接着性樹脂層(B)の目付量が0.1g/m以上、3.0g/m未満であり、前記共重合体(C)中の3-ヒドロキシヘキサノエートの平均含有比率が6モル%以上であり、前記樹脂層(D)の厚みが20μm以上、100μm未満である、積層体。
[項目2]
 前記接着性樹脂層(B)は、アクリル系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、スチレン-アクリル系樹脂、スチレン-ブタジエン系樹脂、スチレン-イソプレン系樹脂、ポリカーボネート系樹脂、尿素樹脂、メラミン系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ジアリルフタレート系樹脂、及び、イミン系樹脂からなる群より選ばれる少なくとも1種類以上の樹脂を含む、項目1に記載の積層体。
[項目3]
 前記3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)は、重量平均分子量が25万~65万であり、3-ヒドロキシヘキサノエートの平均含有比率が6~20モル%である、項目1又は2に記載の積層体。
[項目4]
 前記3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)は、融点が60℃以上、90℃未満である第1融点成分と、融点が140℃以上、170℃未満である第2融点成分を含む、項目1~3のいずれかに記載の積層体。
[項目5]
 前記基材層が紙である、項目1~4のいずれかに記載の積層体。
[項目6]
 項目1~5のいずれかに記載の積層体を製造する方法であって、
 前記基材層の少なくとも片面に、前記接着性樹脂層(B)をコーティング法によって形成する第1工程、及び、前記接着性樹脂層(B)の表面に、前記樹脂層(D)を押出ラミネート法または熱ラミネート法によって形成する第2工程を含む、製造方法。
[項目7]
 前記第1工程と前記第2工程が順次連続的に行われる、項目6に記載の製造方法。
[項目8]
 項目1~5のいずれかに記載の積層体を含む、成形体。
The following items list preferred embodiments in the present disclosure, but the present invention is not limited to the following items.
[Item 1]
Including a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order. In the laminate, the basis weight of the adhesive resin layer (B) is 0.1 g/m 2 or more and less than 3.0 g/m 2 , and 3-hydroxyhexano in the copolymer (C) A laminate in which the average content ratio of ate is 6 mol % or more, and the thickness of the resin layer (D) is 20 μm or more and less than 100 μm.
[Item 2]
The adhesive resin layer (B) includes acrylic resin, methacrylic resin, vinyl chloride resin, styrene-acrylic resin, styrene-butadiene resin, styrene-isoprene resin, polycarbonate resin, urea resin, melamine resin. The laminate according to item 1, containing at least one resin selected from the group consisting of resins, epoxy resins, phenol resins, urethane resins, diallyl phthalate resins, and imine resins.
[Item 3]
The copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate has a weight average molecular weight of 250,000 to 650,000 and an average content ratio of 3-hydroxyhexanoate of 6 to 20 mol. %, the laminate according to item 1 or 2.
[Item 4]
The copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate comprises a first melting point component having a melting point of 60° C. or more and less than 90° C. and a melting point of 140° C. or more and less than 170° C. A laminate according to any one of items 1 to 3, comprising a certain second melting point component.
[Item 5]
The laminate according to any one of items 1 to 4, wherein the base material layer is paper.
[Item 6]
A method for producing a laminate according to any one of items 1 to 5,
A first step of forming the adhesive resin layer (B) on at least one side of the base material layer by a coating method, and extrusion laminating the resin layer (D) on the surface of the adhesive resin layer (B) A manufacturing method including a second step of forming by a method or a thermal lamination method.
[Item 7]
7. The manufacturing method according to item 6, wherein the first step and the second step are sequentially and continuously performed.
[Item 8]
A molded article comprising the laminate according to any one of Items 1 to 5.
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲を限定されるものではない。 The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited by these examples.
 〔製造例〕
 (コーティング液の調製方法)
 コーティング液1:平均粒径50nm、固形分濃度30wt%のアクリル系樹脂、ゼムラック(登録商標、株式会社カネカ製)を含む水系エマルジョンを調製した。
[Manufacturing example]
(Method for preparing coating liquid)
Coating liquid 1: A water-based emulsion containing an acrylic resin having an average particle diameter of 50 nm and a solid content concentration of 30 wt % and Zemurak (registered trademark, manufactured by Kaneka Corporation) was prepared.
 コーティング液2:平均粒径50nm、固形分濃度30wt%のアクリル系樹脂、ゼムラック(登録商標、株式会社カネカ製)を含む水系エマルジョン(100重量部)に対し、ポリエチレンイミン樹脂(富士フィルム和光純薬株式会社製)を含む30%水溶液(10重量部)を混合した。 Coating liquid 2: an aqueous emulsion (100 parts by weight) containing an acrylic resin with an average particle diameter of 50 nm and a solid content concentration of 30 wt%, Zemlac (registered trademark, manufactured by Kaneka Corporation), polyethyleneimine resin (Fuji Film Wako Pure Chemical A 30% aqueous solution (10 parts by weight) containing (manufactured by Co., Ltd.) was mixed.
 (PHBHパウダー)
 PHBHパウダーとしては、国際公開公報第2019-142845号に記載の方法に準拠して製造したものを使用した。具体的な処方を以下に示す。
 PHBHパウダー1:重量平均分子量59万、PHBH中の3HBと3HHの合計に対する3HHの割合が15モル%である低結晶性PHBHパウダー
 PHBHパウダー2:重量平均分子量60万、PHBH中の3HBと3HHの合計に対する3HHの割合が5.0モル%である高結晶性PHBHパウダー
 PHBHパウダー3:重量平均分子量31万、PHBH中の3HBと3HHの合計に対する3HHの割合が1.5モル%である高結晶性PHBHパウダー
(PHBH powder)
As the PHBH powder, one manufactured according to the method described in International Publication No. 2019-142845 was used. A specific formulation is shown below.
PHBH powder 1: Low crystalline PHBH powder having a weight average molecular weight of 590,000 and a ratio of 3HH to the total of 3HB and 3HH in PHBH being 15 mol% Highly crystalline PHBH powder in which the ratio of 3HH to the total is 5.0 mol% PHBH powder 3: Weight average molecular weight 310,000, highly crystalline in which the ratio of 3HH to the total of 3HB and 3HH in PHBH is 1.5 mol% PHBH Powder
 (PHBHペレットの融点の測定方法)
 60℃で乾燥したPHBHペレットを薄くスライスした試料4~10mgをアルミパンに充填し、示差走査熱量分析器を用いて、窒素気流下、20℃から180℃まで10℃/分の速度で昇温して前記試料を融解して結晶融解曲線を得た。得られた結晶融解曲線において、60℃以上90℃未満の融解ピークのトップ温度を第1融点、140℃以上170℃未満の融解ピークのトップ温度を第2融点とした。
(Method for measuring the melting point of PHBH pellets)
PHBH pellets dried at 60° C. and thinly sliced (4-10 mg) are filled in an aluminum pan and heated from 20° C. to 180° C. at a rate of 10° C./min using a differential scanning calorimeter under a nitrogen stream. to obtain a crystalline melting curve. In the obtained crystalline melting curve, the top temperature of the melting peak at 60°C or higher and lower than 90°C was taken as the first melting point, and the top temperature of the melting peak at 140°C or higher and lower than 170°C was taken as the second melting point.
 (PHBHペレットの製造方法)
 PHBHペレット1:前記PHBHパウダー1(80重量部)に対し、前記PHBHパウダー2(20重量部)、ベヘン酸アミド(0.5重量部)、ペンタエリスリトール(1.0重量部)をドライブレンドし、2軸押出機を用いて、設定温度150℃、スクリュー回転数100rpmで溶融混練してストランド状に押出し、40℃の温水に通して固化させてペレット状にカットした。得られたPHBHペレットについて測定した重量平均分子量は46万、第1融点は72℃、第2融点は155℃であった。
(Method for producing PHBH pellets)
PHBH pellet 1: PHBH powder 1 (80 parts by weight), PHBH powder 2 (20 parts by weight), behenic acid amide (0.5 parts by weight), and pentaerythritol (1.0 parts by weight) were dry blended. Using a twin-screw extruder, the mixture was melt-kneaded at a set temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 460,000, a first melting point of 72°C and a second melting point of 155°C.
 PHBHペレット2:前記PHBHパウダー2(100重量部)に対し、ベヘン酸アミド(0.5重量部)、ペンタエリスリトール(1.0重量部)をドライブレンドし、2軸押出機を用いて、設定温度150℃、スクリュー回転数100rpmで溶融混練してストランド状に押出し、40℃の温水に通して固化させてペレット状にカットした。得られたPHBHペレットについて測定した重量平均分子量は42万、第2融点は153℃であった。 PHBH Pellets 2: With respect to the PHBH powder 2 (100 parts by weight), behenic acid amide (0.5 parts by weight) and pentaerythritol (1.0 parts by weight) are dry blended, and set using a twin-screw extruder. The mixture was melt-kneaded at a temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 420,000 and a second melting point of 153°C.
 PHBHペレット3:前記PHBHパウダー3(100重量部)に対し、ベヘン酸アミド(0.5重量部)、ペンタエリスリトール(1.0重量部)をドライブレンドし、2軸押出機を用いて、設定温度150℃、スクリュー回転数100rpmで溶融混練してストランド状に押出し、40℃の温水に通して固化させてペレット状にカットした。得られたPHBHペレットについて測定した重量平均分子量は25万、第2融点は169℃であった。 PHBH pellet 3: The PHBH powder 3 (100 parts by weight), behenic acid amide (0.5 parts by weight) and pentaerythritol (1.0 parts by weight) are dry blended, and set using a twin-screw extruder. The mixture was melt-kneaded at a temperature of 150° C. and a screw rotation speed of 100 rpm, extruded into strands, passed through hot water at 40° C. to solidify, and cut into pellets. The PHBH pellets thus obtained had a weight average molecular weight of 250,000 and a second melting point of 169°C.
 <押出ラミネート法による積層体の製造>
 (実施例1)
 目付210g/mのA4サイズの原紙に対し、コーティング液1をバーコーターNo.7でコーティングし、その直後に、100℃に加熱した熱風オーブンに30秒間入れて乾燥させ、紙基材上に接着性樹脂層(B)を形成した。得られた接着性樹脂層(B)の目付量は2.9g/mであった。
 続いて、前記PHBHペレット1を、T型ダイスを装着した単軸押出機に投入し、60℃に設定した冷却ロールで引き取り、厚み40μmのフィルム状に成形した。前記で得られた接着性樹脂層(B)付きの紙基材と、該PHBHフィルムを、紙面側に加熱ロール、PHBHフィルム側に冷却ロールが接するように挟み込み、PHBHフィルムの表面温度が170℃となるように条件を調整し、紙基材と、接着性樹脂層(B)と、樹脂層(D)とをこの順で含む積層体を得た。
<Production of laminate by extrusion lamination method>
(Example 1)
Coating liquid 1 was applied to a base paper of A4 size having a basis weight of 210 g/m 2 with a bar coater No. 1. 7, and immediately thereafter placed in a hot air oven heated to 100° C. for 30 seconds to dry to form an adhesive resin layer (B) on the paper substrate. The basis weight of the obtained adhesive resin layer (B) was 2.9 g/m 2 .
Subsequently, the PHBH pellets 1 were put into a single-screw extruder equipped with a T-shaped die, taken up by a cooling roll set at 60° C., and formed into a film having a thickness of 40 μm. The paper substrate with the adhesive resin layer (B) obtained above and the PHBH film were sandwiched so that the heating roll was in contact with the paper surface side and the cooling roll was in contact with the PHBH film side, and the surface temperature of the PHBH film was 170 ° C. The conditions were adjusted so as to obtain a laminate containing the paper substrate, the adhesive resin layer (B), and the resin layer (D) in this order.
 (実施例2)
 コーティング液1をバーコーターNo.4でコーティングした以外は実施例1に記載の方法と同様にして、積層体を得た。接着性樹脂層(B)の目付量は1.2g/mであった。
(Example 2)
Bar coater No. 1 was applied to coating liquid 1. A laminate was obtained in the same manner as described in Example 1, except for coating with No. 4. The basis weight of the adhesive resin layer (B) was 1.2 g/m 2 .
 (実施例3)
 コーティング液1をバーコーターNo.1でコーティングした以外は実施例1に記載の方法と同様にして、積層体を得た。接着性樹脂層(B)の目付量は0.1g/mであった。
(Example 3)
Bar coater No. 1 was applied to coating liquid 1. A laminate was obtained in the same manner as described in Example 1, except for coating with No. 1. The basis weight of the adhesive resin layer (B) was 0.1 g/m 2 .
 (実施例4)
 PHBHフィルムの厚みを25μmに変更した以外は実施例1に記載の方法と同様にして、積層体を得た。
(Example 4)
A laminate was obtained in the same manner as in Example 1, except that the thickness of the PHBH film was changed to 25 μm.
 (実施例5)
 コーティング液2を用いて接着性樹脂層(B)を形成した以外は、実施例2に記載の方法と同様にして、積層体を得た。
(Example 5)
A laminate was obtained in the same manner as in Example 2, except that coating liquid 2 was used to form the adhesive resin layer (B).
 (比較例1)
 接着性樹脂層(B)がついていない原紙に対して、PHBHフィルムを押出ラミネートした以外は、実施例1に記載の方法と同様にして、接着性樹脂層(B)を含まず、紙基材と樹脂層(D)を含む積層体を得た。
(Comparative example 1)
A paper substrate without the adhesive resin layer (B) was prepared in the same manner as in Example 1 except that the PHBH film was extrusion-laminated on the base paper without the adhesive resin layer (B). and a laminate containing the resin layer (D).
 (比較例2)
 PHBHフィルムの厚みを10μmに変更した以外は実施例1に記載の方法と同様にして、積層体を得た。
(Comparative example 2)
A laminate was obtained in the same manner as in Example 1, except that the thickness of the PHBH film was changed to 10 μm.
 (比較例3)
 コーティング液1をバーコーターNo.14でコーティングした以外は実施例1に記載の方法と同様にして、積層体を得た。接着性樹脂層(B)の目付量は6.0g/mであった。
(Comparative Example 3)
Bar coater No. 1 was applied to coating liquid 1. A laminate was obtained in the same manner as described in Example 1, except for coating with No. 14. The basis weight of the adhesive resin layer (B) was 6.0 g/m 2 .
 (比較例4)
 PHBHペレット1に代えてPHBHペレット2を用いた以外は実施例1に記載の方法と同様にして、積層体を得た。
(Comparative Example 4)
A laminate was obtained in the same manner as in Example 1, except that PHBH pellet 2 was used instead of PHBH pellet 1.
 (比較例5)
 PHBHペレット1に代えてPHBHペレット3を用いた以外は実施例1に記載の方法と同様にして、積層体を得た。
(Comparative Example 5)
A laminate was obtained in the same manner as in Example 1, except that PHBH pellet 3 was used instead of PHBH pellet 1.
 〔評価方法〕
 実施例および比較例における評価は、以下の方法で行った。
〔Evaluation methods〕
Evaluations in Examples and Comparative Examples were performed by the following methods.
 (ラミネート強度の評価)
 押出ラミネートを行った翌日以降にラミネート強度試験を行った。具体的には、得られた積層体の樹脂層(D)面にカッターの刃で薄くクロスカットをいれ、切込みの部分にニチバンNo.CT-17のテープをしっかりと貼り合わせた後、軽く手で剥がしてきっかけを入れた。その後、幅15mmになるように調整して切り出し、剥がれたラミネート層と紙とをそれぞれ180°の角度となるように冶具で掴み、ピール強度試験を行った。引張速度は200mm/分で行った。ピール試験機は、島津オートグラフ EZ-LX(株式会社島津製作所製)を用いた。
(Evaluation of lamination strength)
The lamination strength test was performed on the day after extrusion lamination was performed. Specifically, the surface of the resin layer (D) of the obtained laminate was thinly cross-cut with a cutter blade, and Nichiban No. 2 was applied to the cut portion. After the CT-17 tape was firmly attached, it was lightly peeled off by hand to provide a trigger. After that, the sheet was cut to a width of 15 mm, and the peeled laminate layer and the paper were each held at an angle of 180° with a jig, and a peel strength test was performed. The tensile speed was 200 mm/min. As a peel tester, Shimadzu Autograph EZ-LX (manufactured by Shimadzu Corporation) was used.
 <評価>
 〇:3.0N/15mm以上
 △:2.5N/15mm以上3.0N/15mm未満
 ×:2.0N/15mm未満
 上記評価結果が○または△であれば、十分なラミネート強度があると言える。
<Evaluation>
◯: 3.0 N/15 mm or more Δ: 2.5 N/15 mm or more and less than 3.0 N/15 mm ×: Less than 2.0 N/15 mm If the above evaluation result is ◯ or Δ, it can be said that there is sufficient lamination strength.
 (乾燥性の評価)
 目付210g/mのA4サイズの原紙に対して、実施例および比較例に記載の条件にてコーティングを行って接着性樹脂層(B)を形成した後、100℃の熱風オーブンで30秒間加熱した後取り出し、接着性樹脂層(B)の表面の様子を観察した。
(Evaluation of dryness)
A4 size base paper with a basis weight of 210 g/m 2 is coated under the conditions described in Examples and Comparative Examples to form an adhesive resin layer (B), and then heated in a hot air oven at 100 ° C. for 30 seconds. After that, it was taken out, and the state of the surface of the adhesive resin layer (B) was observed.
 <評価>
 ○:表面が湿っておらず、十分に塗膜が形成されている
 △:表面は若干湿っているが、十分に塗膜が形成されている
 ×:表面に水たまりができており、塗膜が十分には形成されていない
 上記評価結果が○または△であれば、一般的な抄紙工程における乾燥および塗膜形成が可能である。
<Evaluation>
○: The surface is not wet and the coating film is sufficiently formed △: The surface is slightly damp, but the coating film is sufficiently formed ×: A puddle is formed on the surface, and the coating film is formed Insufficient formation If the above evaluation result is ◯ or Δ, drying and coating film formation in a general papermaking process are possible.
 (接着性樹脂層(B)の目付量の測定)
 実施例および比較例で得られた接着性樹脂層(B)付きの紙を100℃に加熱した熱風オーブンで10分間十分に乾燥させた後、1週間25℃、湿度60%の条件で養生した。その後10cm×10cmに切り出して重量を測定し、その重量値から原紙の重量を差し引いて100倍した値を、接着性樹脂層(B)の目付値とした。
(Measurement of basis weight of adhesive resin layer (B))
The paper with the adhesive resin layer (B) obtained in Examples and Comparative Examples was sufficiently dried for 10 minutes in a hot air oven heated to 100°C, and then aged for 1 week at 25°C and 60% humidity. . After that, a piece of 10 cm×10 cm was cut out to measure the weight, and the value obtained by subtracting the weight of the base paper from the weight value and multiplying by 100 was used as the basis weight of the adhesive resin layer (B).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <結果>
 表1より、各実施例では基材層(A)と3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)を含む樹脂層(D)とが接着性樹脂層(B)を介して十分な強度で接着されており、また、接着性樹脂層(B)のコーティング後の乾燥性も良好であることがわかる。
 一方、比較例1、2、4及び5では接着性が不十分であり、比較例3では乾燥性が不良であったことから、各比較例では接着性と乾燥性を両立できていないことが分かる。
<Results>
From Table 1, in each example, the substrate layer (A) and the resin layer (D) containing the copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate are combined into an adhesive resin layer (B ), and the adhesive resin layer (B) is dried well after coating.
On the other hand, in Comparative Examples 1, 2, 4 and 5, the adhesiveness was insufficient, and in Comparative Example 3, the drying property was poor. I understand.
1 積層体
2 基材層
3 接着性樹脂層(B)
4 樹脂層(D)
 
1 Laminate 2 Base Material Layer 3 Adhesive Resin Layer (B)
4 resin layer (D)

Claims (8)

  1.  基材層(A)と、接着性樹脂層(B)と、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)を含む樹脂層(D)とをこの順で含む積層体であって、前記接着性樹脂層(B)の目付量が0.1g/m以上、3.0g/m未満であり、前記共重合体(C)中の3-ヒドロキシヘキサノエートの平均含有比率が6モル%以上であり、前記樹脂層(D)の厚みが20μm以上、100μm未満である、積層体。 Including a substrate layer (A), an adhesive resin layer (B), and a resin layer (D) containing a copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate in this order. In the laminate, the basis weight of the adhesive resin layer (B) is 0.1 g/m 2 or more and less than 3.0 g/m 2 , and 3-hydroxyhexano in the copolymer (C) A laminate in which the average content ratio of ate is 6 mol % or more, and the thickness of the resin layer (D) is 20 μm or more and less than 100 μm.
  2.  前記接着性樹脂層(B)は、アクリル系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、スチレン-アクリル系樹脂、スチレン-ブタジエン系樹脂、スチレン-イソプレン系樹脂、ポリカーボネート系樹脂、尿素樹脂、メラミン系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ジアリルフタレート系樹脂、及び、イミン系樹脂からなる群より選ばれる少なくとも1種類以上の樹脂を含む、請求項1に記載の積層体。 The adhesive resin layer (B) includes acrylic resin, methacrylic resin, vinyl chloride resin, styrene-acrylic resin, styrene-butadiene resin, styrene-isoprene resin, polycarbonate resin, urea resin, melamine resin. The laminate according to claim 1, comprising at least one resin selected from the group consisting of resins, epoxy resins, phenol resins, urethane resins, diallyl phthalate resins, and imine resins.
  3.  前記3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)は、重量平均分子量が25万~65万であり、3-ヒドロキシヘキサノエートの平均含有比率が6~20モル%である、請求項1又は2に記載の積層体。 The copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate has a weight average molecular weight of 250,000 to 650,000 and an average content ratio of 3-hydroxyhexanoate of 6 to 20 mol. %, the laminate according to claim 1 or 2.
  4.  前記3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートとの共重合体(C)は、融点が60℃以上、90℃未満である第1融点成分と、融点が140℃以上、170℃未満である第2融点成分を含む、請求項1又は2に記載の積層体。 The copolymer (C) of 3-hydroxybutyrate and 3-hydroxyhexanoate comprises a first melting point component having a melting point of 60° C. or more and less than 90° C. and a melting point of 140° C. or more and less than 170° C. 3. Laminate according to claim 1 or 2, comprising a certain second melting point component.
  5.  前記基材層が紙である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the base material layer is paper.
  6.  請求項1又は2に記載の積層体を製造する方法であって、
     前記基材層の少なくとも片面に、前記接着性樹脂層(B)をコーティング法によって形成する第1工程、及び、前記接着性樹脂層(B)の表面に、前記樹脂層(D)を押出ラミネート法または熱ラミネート法によって形成する第2工程を含む、製造方法。
    A method for manufacturing the laminate according to claim 1 or 2,
    A first step of forming the adhesive resin layer (B) on at least one side of the base material layer by a coating method, and extrusion laminating the resin layer (D) on the surface of the adhesive resin layer (B) A manufacturing method including a second step of forming by a method or a thermal lamination method.
  7.  前記第1工程と前記第2工程が順次連続的に行われる、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the first step and the second step are sequentially and continuously performed.
  8.  請求項1又は2に記載の積層体を含む、成形体。
     
    A molded article comprising the laminate according to claim 1 or 2.
PCT/JP2022/037317 2021-10-20 2022-10-05 Layered body, method for producing same, and molded article WO2023068056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171551 2021-10-20
JP2021-171551 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023068056A1 true WO2023068056A1 (en) 2023-04-27

Family

ID=86058142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037317 WO2023068056A1 (en) 2021-10-20 2022-10-05 Layered body, method for producing same, and molded article

Country Status (1)

Country Link
WO (1) WO2023068056A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228736A1 (en) * 2022-05-23 2023-11-30 株式会社カネカ Layered body, method for producing same, and molded article
WO2024038797A1 (en) * 2022-08-17 2024-02-22 株式会社カネカ Method for manufacturing laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664111A (en) * 1992-08-24 1994-03-08 Toppan Printing Co Ltd Paper vessel
JPH06316042A (en) * 1993-05-06 1994-11-15 Toppan Printing Co Ltd Laminate
US5679421A (en) * 1995-10-30 1997-10-21 Brinton, Jr.; William F. Biodegradable bags and processes for making such biodegradable bags
JPH10128920A (en) * 1996-10-29 1998-05-19 Kanegafuchi Chem Ind Co Ltd Biodegradable laminate
JPH11504271A (en) * 1995-04-24 1999-04-20 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Package laminates and packages made therefrom
JP2007210638A (en) * 2006-02-09 2007-08-23 Dainippon Printing Co Ltd Paper cup
WO2021100733A1 (en) * 2019-11-21 2021-05-27 株式会社カネカ Laminate and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664111A (en) * 1992-08-24 1994-03-08 Toppan Printing Co Ltd Paper vessel
JPH06316042A (en) * 1993-05-06 1994-11-15 Toppan Printing Co Ltd Laminate
JPH11504271A (en) * 1995-04-24 1999-04-20 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Package laminates and packages made therefrom
US5679421A (en) * 1995-10-30 1997-10-21 Brinton, Jr.; William F. Biodegradable bags and processes for making such biodegradable bags
JPH10128920A (en) * 1996-10-29 1998-05-19 Kanegafuchi Chem Ind Co Ltd Biodegradable laminate
JP2007210638A (en) * 2006-02-09 2007-08-23 Dainippon Printing Co Ltd Paper cup
WO2021100733A1 (en) * 2019-11-21 2021-05-27 株式会社カネカ Laminate and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228736A1 (en) * 2022-05-23 2023-11-30 株式会社カネカ Layered body, method for producing same, and molded article
WO2024038797A1 (en) * 2022-08-17 2024-02-22 株式会社カネカ Method for manufacturing laminate

Similar Documents

Publication Publication Date Title
WO2023068056A1 (en) Layered body, method for producing same, and molded article
CN110167754B (en) Extrudable antifog copolyester heat sealing resins
JP5437801B2 (en) Multilayer sealant film
JP5833534B2 (en) Heat-sealable composite polyester film
EP1242497B1 (en) Use of biodegradable plastic food service items
TW200930572A (en) Dual ovenable food package having a thermoformable polyester film lid
US20160108171A1 (en) Polyester film for sealant use, laminate, and packaging bag
JP7230237B2 (en) Laminate and its use
WO2022059592A1 (en) Laminate and molded body
US11186072B2 (en) Peelable polyester film, use thereof and process for production thereof
WO2023085375A1 (en) Multilayer body and use of same
JP2022182524A (en) Method for manufacturing laminate, and laminate
EP4342669A1 (en) Laminate, packaging material, and container
WO2023228736A1 (en) Layered body, method for producing same, and molded article
WO2023153277A1 (en) Biodegradable laminated body, method for producing same, and molded body
US20030217648A1 (en) Biodergradable plastic food service items
JP2024005053A (en) Biodegradable laminate, method for manufacturing the same, and molding
WO2022264944A1 (en) Biodegradable laminate and method for manufacturing same
WO2024038797A1 (en) Method for manufacturing laminate
WO2023063217A1 (en) Method for producing multilayer body
JP2022185708A (en) Manufacturing method of roll state laminate sheet
JP2024000453A (en) Method for manufacturing molded article, and molded article
WO2024074561A1 (en) Biodegradable polymer blend and use thereof
JP2023107291A (en) Biodegradable film and biodegradable laminate
JP2023107433A (en) Method for manufacturing film and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883361

Country of ref document: EP

Kind code of ref document: A1