WO2023067793A1 - Driving assistance method and driving assistance device - Google Patents

Driving assistance method and driving assistance device Download PDF

Info

Publication number
WO2023067793A1
WO2023067793A1 PCT/JP2021/039086 JP2021039086W WO2023067793A1 WO 2023067793 A1 WO2023067793 A1 WO 2023067793A1 JP 2021039086 W JP2021039086 W JP 2021039086W WO 2023067793 A1 WO2023067793 A1 WO 2023067793A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parking
travel
driving support
detected
Prior art date
Application number
PCT/JP2021/039086
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 早川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2021/039086 priority Critical patent/WO2023067793A1/en
Publication of WO2023067793A1 publication Critical patent/WO2023067793A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking

Definitions

  • the present invention relates to a vehicle driving support method and a driving support device.
  • Information on obstacles existing in the parking lot, information on the vehicle, and map information including information on the travel route on which the vehicle can move in the parking lot are used to include a moving route for driving the vehicle to the target point.
  • a control system is known that generates an instruction, transmits the instruction and map information to a vehicle, and controls the running of the vehicle (Patent Document 1).
  • the problem to be solved by the present invention is that, when a second vehicle approaches a first vehicle that is running in order to park or depart, the second vehicle is forced to travel for the first vehicle to park or depart. It is an object of the present invention to provide a driving support method and a driving support device capable of suppressing the occurrence of an impeding situation.
  • the present invention detects a first display informing the surroundings that the vehicle will be parked or that the vehicle will depart from a parked state, from a first vehicle traveling in front of a second vehicle in the direction of travel, or that there is a parking space available for parking.
  • the second display for informing the outside is detected from the front in the traveling direction of the second vehicle, the path of the second vehicle will pass when the first vehicle is parked or the first vehicle will depart from the parked state.
  • autonomous control is performed so that the second vehicle does not enter the passage area.
  • the present invention solves the above problem by causing the direction indicators on both sides of the vehicle to start blinking when a parking space for parking the vehicle (first vehicle) is detected.
  • the second vehicle when the second vehicle approaches the first vehicle in motion to park or depart, the second vehicle may prevent the first vehicle from traveling for parking or departure. can be suppressed.
  • FIG. 1 is a block diagram showing an example of an embodiment of a driving assistance system according to the present invention
  • FIG. FIG. 4 is a block diagram showing another example of an embodiment of the driving assistance system according to the present invention
  • FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1);
  • FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2);
  • FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 3);
  • FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 3);
  • FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS
  • FIG. 3 is a plan view showing another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1);
  • FIG. 3 is a plan view showing another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2);
  • FIG. 4 is a plan view showing still another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1);
  • FIG. 9 is a plan view showing still another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2);
  • 2 is a flow chart showing an example of an information processing procedure in the driving support system of FIG. 1;
  • 3 is a flowchart showing an example of an information processing procedure in the driving support system of FIG. 2;
  • FIG. 1 is a block diagram showing a first driving assistance system 1 according to the present invention.
  • the first driving support system 1 is an in-vehicle system for a first vehicle, and is mainly used in a parking lot. It is a device group for starting with. In addition, in this embodiment, being parked in the parking space is also called "parking state.”
  • the parking lot can be an indoor parking lot or an outdoor parking lot.
  • the parking lot may be equipped with automatic valet parking facilities, or may be partially compatible with automatic valet parking.
  • Automatic valet parking refers to driving a vehicle from a parking lot to a target parking space and parking the vehicle in the target parking space by autonomous driving control.
  • the user of the vehicle may or may not be in the vehicle (ie unmanned).
  • not all vehicles traveling in the parking lot need to travel under autonomous travel control, and some vehicles may travel under manual operation.
  • autonomous driving control refers to the autonomous control of the vehicle's driving behavior, and the driving behavior includes acceleration, deceleration, starting, stopping, steering to the right or left, changing lanes, It includes all running motions, such as squeezing.
  • autonomously controlling the running and autonomously controlling the running motion means controlling the running motion of the vehicle using a device provided in the vehicle to be controlled.
  • the first driving assistance device and the second driving assistance device which will be described later, intervene and control these running actions within a predetermined range.
  • the uninterrupted driving behavior is controlled manually by the driver.
  • the first driving support system 1 includes an imaging device 11, a distance measuring device 12, map information 13, a vehicle position detecting device 14, a navigation device 15, a vehicle control device 16, a display device 17, and an input device. 18 and a first driving support device 19 .
  • Devices included in the first driving support system 1 are connected by a CAN (Controller Area Network) or other in-vehicle LAN, and can exchange information with each other.
  • CAN Controller Area Network
  • the imaging device 11 is a device that recognizes objects around the vehicle from images, and is a camera such as a camera equipped with an imaging device such as a CCD, an ultrasonic camera, or an infrared camera.
  • a plurality of imaging devices 11 can be provided in one vehicle. For example, they can be arranged in the front grille, under the left and right door mirrors, and in the vicinity of the rear bumper of the vehicle. This can reduce blind spots when recognizing objects around the vehicle.
  • the ranging device 12 is a device for calculating the relative distance and relative speed between the vehicle and the object, and includes laser radar, millimeter wave radar (LRF, etc.), LiDAR (Light Detection And Ranging) unit, ultrasonic radar radar equipment or sonar, such as
  • a plurality of distance measuring devices 12 can be provided in one vehicle, and can be arranged, for example, in the front, right side, left side, and rear of the vehicle. Accordingly, it is possible to accurately calculate the relative distance and relative speed of the vehicle to surrounding objects.
  • Objects detected by the imaging device 11 and the distance measuring device 12 include road lane boundaries, center lines, road markings, median strips, guardrails, curbs, side walls of highways, road markings, traffic lights, pedestrian crossings, and construction work. Installed at the site, accident site, traffic restriction, parking lot boundary, parking lot side wall and ceiling, parking space, drop-off area, boarding area, parking lot entrance and exit, lane boundary and parking lot such as signs. Objects also include obstacles that may affect the travel of the own vehicle, such as automobiles other than the own vehicle (other vehicles), motorcycles, bicycles, pedestrians, and pillars in parking lots.
  • the detection results of the imaging device 11 and the distance measuring device 12 are acquired by the first driving support device 19 at predetermined time intervals.
  • the detection results of the imaging device 11 and the distance measuring device 12 can be integrated or synthesized by the first driving support device 19, thereby complementing the missing information of the detected object.
  • the first driving support device 19 can detect a can calculate the position information of the object.
  • the calculated positional information of the object is integrated with the detection results of the imaging device 11 and the distance measuring device 12 and a plurality of pieces of information such as the map information 13 in the first driving support device 19, and the environment around the own vehicle is integrated. become information.
  • the map information 13 is information used for generating a travel route and/or for travel control, and includes road information, facility information, and attribute information thereof.
  • Road information and road attribute information include road width, road curvature radius, road shoulder structures, road traffic regulations (speed limit, lane change availability), road junctions and junctions, increase/decrease in number of lanes, Information such as the location of the fall is included.
  • the map information 13 is high-definition map information that can grasp the movement trajectory for each lane, and includes two-dimensional position information and/or three-dimensional position information at each map coordinate, road/lane boundary information at each map coordinate, and road attribute information. , lane uplink/downlink information, lane identification information, connection destination lane information, and the like.
  • the road/lane boundary information in the high-definition map information is information that indicates the boundary between the road on which the vehicle is traveling and other areas.
  • the road on which the vehicle travels is a road on which the vehicle travels, and the shape of the road is not particularly limited.
  • the boundaries exist on the left and right with respect to the traveling direction of the host vehicle, and the form is not particularly limited. Boundaries include road markings, road structures, etc. Road markings include lane boundaries, center lines, etc. Road structures include medians, guardrails, curbs, tunnels, highway sidewalls, etc. be At a point such as an intersection where the road boundary cannot be clearly specified, the road boundary is set in advance. This boundary is fictitious and is not an actual pavement marking or road structure.
  • the map information 13 includes, as map information of the parking lot, the position of the parking space, the position of the get-off place, the position of the boarding place, the entrance and exit positions of the parking lot, the width and curvature radius of the road, Information such as directions, signs installed in parking lots, positions of obstacles such as pillars, and drivable areas are included.
  • the map information 13 is stored in a readable state in a recording medium provided in the first driving support device 19, an in-vehicle device, or a server on a network.
  • the first driving assistance device 19 acquires the map information 13 as necessary.
  • the own vehicle position detection device 14 is a positioning system for detecting the current position of the own vehicle, and is not particularly limited, and a known system can be used.
  • the vehicle position detection device 14 calculates the current position of the vehicle from radio waves received from GPS (Global Positioning System) satellites, for example. Further, the vehicle position detection device 14 estimates the current position of the vehicle from the vehicle speed information obtained from the vehicle speed sensor and the acceleration information obtained from the acceleration sensor and the gyro sensor.
  • the current position of the own vehicle may be calculated by collating it with the map information of the car park.
  • the navigation device 15 is a device that refers to the map information 13 and calculates a travel route from the current position of the vehicle detected by the vehicle position detection device 14 to the destination set by the driver.
  • the navigation device 15 uses the road information and facility information of the map information 23 to search for a travel route for the vehicle to reach the destination from the current position.
  • the travel route includes at least information about the road on which the vehicle travels, the travel lane, and the travel direction of the vehicle, and is displayed linearly, for example. A plurality of travel routes may exist depending on the search conditions.
  • the travel route calculated by the navigation device 15 is output to the first driving assistance device 19 .
  • the vehicle control device 16 is an in-vehicle computer such as an electronic control unit (ECU: Electronic Control Unit), and electronically controls in-vehicle equipment that regulates the running of the vehicle.
  • the vehicle control device 16 includes a vehicle speed control device 161 that controls the running speed of the vehicle and a steering control device 162 that controls the steering operation of the vehicle.
  • the vehicle speed control device 161 and the steering control device 162 autonomously control the operations of these drive device and steering device according to control signals input from the first driving support device 19 .
  • the own vehicle can autonomously travel along the set travel route.
  • the drive devices controlled by the vehicle speed control device 161 include an electric motor and/or an internal combustion engine as a travel drive source, a power transmission device including a drive shaft and an automatic transmission that transmit the output from these travel drive sources to the drive wheels, A driving device for controlling a power transmission device is included.
  • a braking device controlled by vehicle speed control device 161 is, for example, a braking device for braking wheels.
  • a control signal corresponding to the set running speed is input from the first driving support device 19 to the vehicle speed control device 161 .
  • the vehicle speed control device 161 generates a signal for controlling these drive devices based on the control signal input from the first driving support device 19, and transmits the signal to the drive device, thereby increasing the running speed of the vehicle. control autonomously.
  • the steering device controlled by the steering control device 162 includes a steering device that controls all the steering wheels according to the steering angle of the steering wheel (so-called steering wheel), for example, a steering actuator such as a motor attached to the steering column shaft.
  • the steering control device 162 obtains the detection results of the imaging device 11 and the distance measuring device 12, the map information 13, and the current position information obtained by the vehicle position detection device 14. autonomously control the operation of the steering system so that the vehicle travels while maintaining a predetermined lateral position (position in the left-right direction of the vehicle) with respect to the set travel route using at least one of do.
  • Various sensors include a vehicle speed sensor, an acceleration sensor, a gyro sensor, a steering angle sensor, an inertial measurement unit (IMU), and the like.
  • the vehicle control device 26 outputs the detection results of these sensors to the first driving assistance device 19 .
  • the display device 17 is a device for providing necessary information to the occupants of the vehicle, and is, for example, a projector such as a liquid crystal display provided on the instrument panel or a head-up display (HUD).
  • a projector such as a liquid crystal display provided on the instrument panel or a head-up display (HUD).
  • HUD head-up display
  • the input device 18 is a device for a vehicle occupant to input instructions to the first driving support device 19.
  • the input device 18 includes a touch panel input by a user's finger touch or a stylus pen, a microphone for acquiring a user's voice instruction, Examples include a switch attached to the steering wheel of a vehicle.
  • the first driving support device 19 controls the running of the first vehicle by controlling and cooperating with the devices included in the first driving support system 1, and controls the running of the first vehicle, in particular, parking and stopping from the parking state. It is a device for controlling departure.
  • the first driving support device 19 is, for example, a computer, and includes a CPU (Central Processing Unit) 191 that is a processor, a ROM (Read Only Memory) 192 that stores a program, and a RAM (Random Access Memory) 193.
  • the CPU 191 is an operating circuit for functioning as the first driving support device 19 by executing a program stored in the ROM 192 .
  • the program stored in the ROM 192 includes the first control unit 3, which is a functional block for realizing functions required for autonomous driving control by the first driving support device 19.
  • the first control unit 3 has a function of processing information necessary for autonomous travel control of the first vehicle and causing the first vehicle to travel under autonomous travel control.
  • the 1st control part 3 is provided with the 1st detection part 31, the 1st determination part 32, the 1st production
  • FIG. 2 is a block diagram showing the second driving support system 2 according to the present invention.
  • the second driving support system 2 is an in-vehicle system for a second vehicle, and is mainly used in a parking lot. It is a device group for starting with.
  • FIG. 2 is a block diagram showing devices included in the second driving support system 2.
  • the second driving support system 2 includes an imaging device 21, a distance measuring device 22, map information 23, a vehicle position detecting device 24, a navigation device 25, a vehicle control device 26, a display device 27, and an input device. 28 and a second driving assistance device 29 .
  • the vehicle control device 26 also includes a vehicle speed control device 261 and a steering control device 262 . These devices are connected by a CAN (Controller Area Network) or other in-vehicle LAN, and can exchange information with each other.
  • CAN Controller Area Network
  • the device 26, the vehicle speed control device 261, the steering control device 262, the display device 27, and the input device 28 are the imaging device 11, the distance measuring device 12, the map information 13, and the vehicle position detection device 14 of the first driving support system 1, respectively.
  • the second driving support device 29 controls the running of the second vehicle by controlling and cooperating with the devices included in the second driving support system 2, and controls the running of the second vehicle, particularly parking and from the parking state. It is a device for controlling departure.
  • the second driving support device 29 is a computer, for example, and includes a CPU 291 that is a processor, a ROM 292 in which programs are stored, and a RAM 293 that functions as an accessible storage device.
  • the CPU 291 is an operation circuit for functioning as the second driving support device 29 by executing a program stored in the ROM 292 .
  • the program stored in the ROM 292 includes the second control unit 4, which is a functional block for realizing functions required for autonomous driving control by the second driving support device 29.
  • the second control unit 4 has a function of processing information necessary for autonomous travel control of the second vehicle and causing the second vehicle to travel under autonomous travel control.
  • the 2nd control part 4 is provided with the 2nd detection part 41, the 2nd determination part 42, the 2nd production
  • first driving support system 1 and the second driving support system 2 can be applied not only to driving by autonomous driving control but also to navigation systems that support manual driving by the driver.
  • first driving support system 1 and the second driving support system 2 autonomously control both speed control and steering control. Applicable.
  • the first control unit 3 and the second control unit 4 of the present embodiment control, for example, the driving scenes shown in FIGS. and autonomously control.
  • the driving scene shown in FIG. 3A is a scene in which the first vehicle V1 is driving in an indoor parking lot inside a building such as a building.
  • the current position of the first vehicle V1 is the position P1, and the walls W of the parking lot exist on both left and right sides of the first vehicle V1.
  • Four parking spaces S1 to S4 are defined on the right side of the first vehicle V1.
  • Each parking space is separated by a white line, and indicator lights I1 to I4 indicating the state of the parking space are installed for each parking space.
  • the indicator lights I1 to I4 are assumed to indicate blue indicating an empty state when there is no parked vehicle in the parking space, and indicate red indicating a parked state when there is a parked vehicle in the parking space.
  • In front of the parking spaces S1 to S4 is the road of the parking lot, and two-way traffic is possible on the road.
  • the first detection section 31 of the first control section 3 has a function of detecting a parking space for parking the first vehicle V1. Further, when a parking space is detected, it has a function of detecting an obstacle existing in the parking space. Detection results of the imaging device 11 and the distance measuring device 12 are used to detect parking spaces and obstacles. When detecting a parking space, for example, edge extraction processing is performed on image data acquired by the imaging device 11 to recognize the position of a boundary line such as a white line. If a space for parking the first vehicle V1 exists in the area surrounded by the recognized boundary line, the area is detected as a parking space.
  • the current position of the first vehicle V1 obtained from the own vehicle position detection device 14 is collated with the position information of the parking space obtained from the map information 13 to detect the parking space.
  • pattern matching processing is performed on the image data acquired by the imaging device 11 to recognize the photographed object. Then, from the detection result of the distance measuring device 12, the distance between the recognized object and the first vehicle V1 is calculated.
  • edge extraction processing is performed on the image data acquired from the imaging device 11 by the function of the first detection unit 31 .
  • areas S1 to S4 are detected on the right side of the first vehicle V1. Since each of the areas S1 to S4 has a space for parking the first vehicle V1, the areas S1 to S4 are detected as parking spaces.
  • the first determination unit 32 has a function of determining whether or not the first vehicle V1 can be parked in the parking space.
  • the determination for example, obstacle information obtained from the detection results of the imaging device 11 and the distance measuring device 12 is used. Specifically, pattern matching processing is performed on the image data acquired by the imaging device 11 to recognize the photographed object, and from the detection result of the distance measuring device 12, the recognized object and the first vehicle are detected. Calculate the distance to V1. Then, the detected position of the parking space and the detected position of the obstacle are compared to determine whether or not there is an obstacle in the parking space. If there is an obstacle in the parking space, it is determined that the parking space cannot be parked, and if there is no obstacle in the parking space, it is determined that the parking space is available for parking.
  • the states of the indicator lights I1 to I4 installed in the parking spaces S1 to S4 are detected, and the parking spaces are detected from the detection results.
  • the indicator lights I1 and I2 show an empty blue color.
  • the indicator lights I3 and I4 indicate the parking state in red. Therefore, the colors indicated by the indicator lights I1 to I4 are detected, and when the color of the indicator lights is blue, it is determined that the parking space is available for parking, and when the color of the indicator lights is red, the parking space is available for parking. It can be determined that it is not
  • the function of the first determination unit 32 performs pattern matching processing on the image data acquired by the imaging device 11, and recognizes the parked vehicles V3 and V4 as objects. Further, from the detection result of the distance measuring device 12, the separation distance between the first vehicle V1 and the parked vehicles V3 and V4 is calculated, and the accurate positions of the parked vehicles V3 and V4 are calculated. Further, the imaging device 11 detects the colors indicated by the indicator lights I1 to I4, and recognizes that the indicator lights I1 and I2 indicate blue and the indicator lights I3 and I4 indicate red.
  • the parking spaces S1 and S2 can be parked, and the parking space S3 can be parked. and S4 determine that parking is not possible.
  • the first generator 33 has a function of generating a travel route for the first vehicle V1 to travel. Specifically, when the function of the first determination unit 32 determines that the detected parking space is available for parking, the first generation unit 33 sets a target parking space for parking the first vehicle V1, Set the parking position in the target parking space. Then, a travel route is generated on which the first vehicle V1 travels from the current position to the parking position by autonomous travel control.
  • the travel route includes map information including the full width, length and minimum turning radius of the first vehicle V1, the width of the travel path or road on which the first vehicle V1 travels, the travelable area of the road or parking lot, and the surroundings of the first vehicle V1. Generated using the position of obstacles that exist in
  • the first generator 33 sets the position P4 of the parking space S1 as the stop position. Further, using the detection results of the distance measuring device 12, the distance from the current position P1 to the wall W, the distance from the current position P1 to the parked vehicle V3, and the distance from the current position P1 to the parked vehicle V4 are calculated. . Then, the travel routes R1 and R2 are generated in consideration of the calculated distance to the obstacle, the minimum turning radius of the first vehicle V1, and the like.
  • a travel route R1 shown in FIG. 3A is a route that travels straight along the travel path of the parking lot from the current position P1 to the position P2 toward the parking space S1, which is the target parking space.
  • the first generator 33 When the first vehicle V1 reaches the position P2, the first generator 33 generates a travel route R2 for traveling from the position P2 on the travel path to the parking position P4 in the parking space S1.
  • the first vehicle V1 makes a turnaround at the position P3.
  • the autonomous control of the travel of the first vehicle V1 shifts from the autonomous control of traveling on the travel road toward the target parking space to the autonomous control of parking at the parking position P4 of the target parking space.
  • This is also referred to as transition position P2 where autonomous control transitions.
  • parking the vehicle means traveling from the transition position P2 where the autonomous control transitions to the parking position P4 set as the target parking space.
  • obstacles existing in the target parking space are detected, deceleration to a predetermined speed set when traveling along the travel route R2, and steering for traveling along the travel route R2 are started.
  • the first traveling unit 34 has a function of causing the first vehicle V1 to travel by autonomous travel control so that the first vehicle V1 is parked in the target parking space.
  • the first vehicle V1 travels along the set travel route by autonomous control, and completes parking by autonomous control.
  • a vehicle control device 16 is used for autonomous travel control of the first vehicle V1.
  • the vehicle speed control device 161 and the steering control device 162 are used to cooperatively control the driving device, the braking device, and the steering device so that the first vehicle V1 travels along the traveling routes R1 and R2. .
  • the first traveling unit 34 also has a function of blinking the direction indicator of the first vehicle V1 when it is determined that the target parking space is available for parking.
  • a control signal for blinking the direction indicator is input from the first driving support device 19 to the vehicle control device 16 by the function of the first traveling unit 34 .
  • the direction indicator may blink on one side or both sides.
  • the interval between lighting and extinguishing in blinking is a predetermined time interval (for example, 0.1 to 1 second).
  • the first traveling unit 34 detects the parking space for parking the first vehicle V1 before the first vehicle V1 starts traveling for parking. flash the device.
  • Driving motions for parking include, for example, lane change, narrowing, deceleration, stopping, and steering. to start.
  • the autonomous control of traveling of the first vehicle V1 is shifted from the autonomous control of traveling toward the target parking space to the autonomous control of parking at the parking position P4. before. Specifically, before reaching the vicinity of the destination set by the occupant, while driving on the road toward the destination set by the occupant, and toward the target parking space, the vehicle is driven straight along the road in the parking lot. while
  • the first traveling unit 34 blinks the left and right direction indicators when the first vehicle V1 reaches the position P5 on the traveling route R1.
  • the second vehicle V2 traveling at the position Q1 behind the first vehicle V1 can be notified that the first vehicle V1 will be parked.
  • a vehicle traveling around the first vehicle V1 is referred to as a second vehicle V2.
  • the second detection section 41 of the second control section 4 has a function of detecting objects existing around the second vehicle V2, including parking spaces and obstacles.
  • the second detection unit 41 uses the image data acquired by the imaging device 21 and the detection result of the distance measuring device 22 in the same manner as the first detection unit 31 of the first control unit 3 to detect the second vehicle V2. Detects obstacles around the
  • the second detection unit 41 of the present embodiment detects the first display that informs the surroundings that the vehicle will be parked or that the vehicle will depart from the parked state. Notifying the surroundings that the vehicle will be parked or that it will depart from the parked state means that the first vehicle V1 will steer and decelerate as it parks, or that the first vehicle V1 will steer and accelerate as it departs. It refers to informing vehicles traveling around V1.
  • the first display includes, for example, blinking of the direction indicator of the first vehicle V1, and also includes changes in roll angle and vehicle speed of the first vehicle V1.
  • the second detection unit 41 of the present embodiment detects a second display that informs the outside that there is a parking space available for parking. Informing the outside means detecting parked vehicles in the parking space, determining whether or not the parking space can be parked, and displaying the determination result to vehicles traveling around the parking space. This means that the detection is performed using a device other than the on-vehicle equipment of the vehicle (for example, a detection device provided in a parking lot, etc.).
  • the second display is, for example, the status of the indicator lights I1-I4 installed in the parking spaces S1-S4.
  • the indicator lights I1 to I4 detect vehicles parked in the parking space using a sonar and a vehicle weight sensor provided in the parking space, acquire detection results, and indicate blue when the parking space is empty. If it is in a parking state, it shows red.
  • the second detection unit 41 changes the state indicated by the indicator lamps I1 to I4 from blue to red (that is, changes from an empty state to a parked state), and changes from red to blue. A change (that is, a change from a parked state to an empty state) can be detected.
  • the second vehicle V2 is driving at the position Q1, and the imaging device 21 can be used to detect blinking of the direction indicator of the first vehicle V1.
  • the imaging device 21 can be used to detect the states displayed by the indicator lamps I1 to I4.
  • the indicator lights I1 and I2 indicate that the parking spaces S1 and S2 are empty, respectively, and this indication can be detected from the position P5 of the first vehicle V1. Therefore, it can be said that the indicator lights I1 and I2 indicate to the first vehicle V1 traveling around that the parking spaces S1 and S2 can be parked.
  • the second display is detected based on the positional relationship between the first vehicle V1 and the display means such as the indicator lamp.
  • the second determination unit 42 determines that the route of the second vehicle V2 is the same as when the first vehicle V1 is parked. It has a function of determining whether or not it intersects with a passage area through which the first vehicle V1 passes or when it departs from a parked state. The second determination unit 42 also has a function of determining whether or not the paths of the two vehicles V2 intersect with the passage area even when the second display present in front of the second vehicle V2 in the traveling direction is detected. have The second vehicle V2 includes all vehicles traveling around the first vehicle V1, and the traveling position of the second vehicle V2 may be in front of or behind the first vehicle V1.
  • the second vehicle V2 may be moving forward or backward.
  • the front in the traveling direction indicates the front of the second vehicle V2 when the second vehicle V2 is moving forward, and indicates the rear of the second vehicle V2 when the second vehicle V2 is moving backward. shall be
  • the passage area is, for example, an area through which the body of the first vehicle V1 passes when traveling along a travel route R2 that travels from the transition position P2 to the parking position P4, like the area X shown in FIG. 3B. .
  • the change in vehicle speed, the blinking start position of the direction indicator, and the The parking space where the first vehicle V1 is going to park is estimated from the steering start position and the like.
  • a parking route for parking in the estimated target parking space is calculated from the current position of the first vehicle V1, and the passage area X is set using the parking route.
  • the passage area X is set as, for example, a rectangular area when the first vehicle V1 is viewed from above.
  • the second vehicle V2 traveling along the set route is Set the area through which the vehicle body of the Then, it is determined whether part or all of the area through which the vehicle body of the second vehicle V2 passes is included in the passage area of the first vehicle V1.
  • the second vehicle V2 travels straight from the lower side of the drawing to the upper side along the set route.
  • part of the area Y through which the body of the second vehicle V2 passes is included in the passage area X, so the course of the second vehicle V2 intersects with the passage area X.
  • the travel of the second vehicle V2 is autonomously controlled so that the second vehicle V2 does not enter the passage area X.
  • the function of the second determination unit 42 determines whether or not the second vehicle V2 can avoid the first vehicle V1.
  • the total length and width of the first vehicle V1 and the second vehicle V2, the position of the obstacle, the minimum turning radius of the second vehicle V2, and the like are used.
  • the second vehicle V2 is stopped before the passage area X by autonomous control.
  • the second vehicle V2 is driven to avoid the first vehicle V1 by autonomous control.
  • the second vehicle V2 when it is determined that the route of the second vehicle V2 does not intersect with the passage area X, the second vehicle V2 does not impede the running of the first vehicle V1, so the second vehicle V2 follows the set route. continue running along
  • the function of the second generation unit 43 is used to generate a travel route
  • the function of the second travel unit 44 is used to autonomously control the travel operation of the second vehicle V2.
  • the method of generating the travel route by the second generation unit 43 is the same as that of the first generation unit 33, and based on the determination result of the second determination unit 42, the overall width, the overall length, the minimum turning radius, the width of the travel path or road , the positions of obstacles existing in the surroundings, and the like are used to generate a travel route for traveling to the target position. Further, like the first traveling unit 34, the second traveling unit 44 uses the vehicle speed control device 261 and the steering control device 262 of the vehicle control device 26 so as to perform autonomous control along the set travel route. Coordinated control of the drive, brake and steering systems.
  • the function of the 2 generation unit 43 when it is determined that the second vehicle V2 cannot avoid the first vehicle V1, for example, as shown in FIG.
  • the function of the 2 generation unit 43 generates a travel route T1 that travels from the position Q1, which is the current position, to the stop position Q2.
  • the function of the second traveling section 44 causes the second vehicle V2 to travel along the travel route T1 and stop at the position Q2.
  • the distance between the first vehicle V1 and the second vehicle V2 or the distance between the passage area X and the second vehicle V2 is set without setting the stop position, and the set distance is maintained.
  • the second vehicle V2 may be driven.
  • FIG. 3B In the driving scene of FIG.
  • the first vehicle V1 is traveling to position P6 while the second vehicle V2 is traveling to position Q2, and the separation distance between the first vehicle V1 and second vehicle V2 is the second vehicle V2.
  • the distance is such that the vehicle V2 does not interfere with the parking of the first vehicle V1.
  • the direction indicator of the first vehicle V1 may continue to flash until it is parked at the parking position P4, or may be extinguished at a predetermined timing such as when the second vehicle V2 stops or reaches the turning position P3. good too.
  • avoiding the first vehicle V1 specifically means avoiding the first vehicle V1 by changing the traveling direction and the vehicle speed without stopping the second vehicle V2.
  • Avoidance of the first vehicle V1 includes overtaking and overtaking the first vehicle V1 if the second vehicle V2 is a following vehicle of the first vehicle V1. Avoiding the first vehicle V1 also includes changing the traveling direction to enter a different traveling path from the traveling path on which the second vehicle V2 is currently traveling.
  • the second determination unit 42 can determine whether or not the second vehicle V2 is entering the passage area X.
  • the second vehicle V2 is entering the passage area X
  • part or all of the vehicle body of the second vehicle V2 is included in the passage area X when the second vehicle V2 is viewed from above. It is determined by whether or not That is, if at least a portion of the vehicle body of the second vehicle V2 is included in the passage area X when the second vehicle V2 is viewed from above, it is determined that the second vehicle V2 is entering the passage area. If the entire vehicle body of the second vehicle V2 is not included in the passage area X, it is determined that the second vehicle V2 has not entered the passage area.
  • the second vehicle V2 is controlled so that the second vehicle V2 exits the passage area X.
  • the first vehicle V1 is controlled by autonomous control.
  • the second vehicle V2 is driven so as to avoid
  • the second vehicle V2 is stopped by autonomous control, and after the second vehicle V2 has stopped, the vehicle passes through the passage area X. The second vehicle V2 is reversed and stopped.
  • the stopped second vehicle V2 departs after the first vehicle V1 passes through the area Y through which the body of the second vehicle V2 passes, and continues running along the continuation. At this time, the second vehicle V2 may continue to stop until the parking of the first vehicle V1 is completed. , may depart. This is the same when the second vehicle V2 stops at the position Q2 shown in FIG. 3C.
  • the inter-vehicle distance between the first vehicle V1 and the second vehicle V2 was short, so the start of deceleration of the second vehicle V2 was delayed.
  • vehicle V2 is traveling at position Q4.
  • the position Q3 is set as the target position, and the function of the second generation unit 43 generates A travel route T3 that travels from a certain position Q4 to a target position Q3 is generated. Then, the function of the second traveling section 44 causes the second vehicle V2 to travel along the travel route T3 and overtake the first vehicle V1.
  • the second vehicle V2 is stopped at the position Q5.
  • the stop position is set to the position Q5
  • the function of the second generator 43 generates the travel route T4a
  • the function of the second travel unit 44 causes the second vehicle V2 to travel along the travel route T4.
  • the function of the second travel unit 44 is used to set the deceleration of the second vehicle V2 and autonomously stop the second vehicle V2 without steering. Control.
  • the second vehicle V2 stops at the position Q5
  • the second vehicle V2 is reversed to the position Q2, which is a position before the passing area X, and stopped as shown in FIG. 4B.
  • the function of the second generator 43 generates a travel route T4b traveling from the position Q5 to the position Q2.
  • the stopped second vehicle V2 comes into contact with the first vehicle V1 and the second vehicle V2, for example, after the first vehicle V1 reaches the parking position P4 or when the entire vehicle body of the first vehicle V1 is not included in the region Y. After the fear has passed, the vehicle departs from position Q2.
  • the driving scene shown in FIG. 5A is the same parking lot as the parking lot shown in FIG. 3A, and the first vehicle V1 is about to depart from the parking position P7 in the parking space S3.
  • the parked vehicle V5 is parked in the parking space S1
  • the parked vehicle V4 is parked in the parking space S4.
  • the second vehicle V2a runs at position Q6 toward the upper side of the drawing
  • the second vehicle V2b runs at position Q7 toward the lower side of the drawing.
  • parked vehicles V4 and V5 and second vehicles V2a and V2b are detected as obstacles around the first vehicle V1.
  • the function of the first generator 33 generates a travel route for starting from the parking position P7 using the obstacle detection result.
  • a travel route R3 shown in FIG. 5A is generated.
  • a travel route R3 shown in FIG. 5A travels from a parking position P7 to a position P10, and turns at positions P8 and P9.
  • the first generation unit 33 generates a travel route R4 that travels straight on the travel path of the parking lot from the position P10 to the position P11.
  • the autonomous control of the travel of the first vehicle V1 shifts from the autonomous control in which the vehicle departs from the parking space to the autonomous control in which it travels along the travel road toward the exit of the parking lot. It is also referred to as a transition position P10 where control transitions.
  • the vehicle starts from the parked state means that the vehicle travels from the parking position P7 set in the target parking space to the transition position P10 to which the autonomous control transitions.
  • the function of the first travel unit 34 autonomously controls travel of the first vehicle V1 so that the first vehicle V1 travels along the travel routes R3 and R4.
  • the first traveling unit 34 flashes the direction indicator before the first vehicle V1 starts traveling for departure.
  • the turn indicator on the right side of the first vehicle V1 is blinking.
  • Running motions for parking are, for example, acceleration, deceleration, steering, and stopping for turning back. For example, before starting these running motions, blink the direction indicator in the direction to which the vehicle is headed after departure.
  • the traveling operation for parking is, for example, the state in which the vehicle is parked at the parking position P7.
  • the second detection unit 41 detects a first display in front of the second vehicles V2a and V2b in the direction of travel that informs the surroundings that the vehicle will depart from the parked state. In the driving scene shown in FIG. 5A, blinking of the turn indicator on the right side of the first vehicle V1 is the first display. At this time, the second detection unit 41 can detect a change in the state indicated by the indicator lamp I3 from red (parking state) to blue (empty state) in addition to blinking of the direction indicator.
  • a passing area Xa through which the first vehicle V1 passes when starting from the parked state is set, and whether the paths of the second vehicles V2a and V2b intersect with the passing area Xa is determined. determine whether or not Specifically, a passage area Xa shown in FIG. 5A is set, and in addition, an area Ya through which the vehicle body passes when the second vehicle V2a travels along the set route, and a second vehicle V2b. However, an area Yb through which the vehicle body passes when traveling along the set route is set. In the driving scene shown in FIG.
  • the second determination unit 42 determines whether or not the second vehicles V2a and V2b can avoid the first vehicle V1.
  • the travel routes T5 and T6 shown in FIG. 5B are generated by the second generator 43 . Due to the function of the second travel section 44, the second vehicle V2a travels along the travel route T5 and stops at a position Q8 in front of the passage area Xa. On the other hand, the second vehicle V2b travels along the travel route T6 to avoid the first vehicle V1 and travels to the position Q9.
  • the first vehicle V1 is traveling at the position P12, and can travel to the position P11 without being hindered by the second vehicles V2a and V2b to complete the departure.
  • the stopped second vehicle V2a departs, for example, after the first vehicle V1 reaches the transition position P10 or the position P11.
  • the stopped second vehicle V2a starts when the separation distance between the first vehicle V1 and the second vehicle V2 exceeds a predetermined distance.
  • the predetermined distance can be set to an appropriate value (for example, 0.5 to 20 m) within a range in which contact between the first vehicle V1 and the second vehicle V2 can be avoided.
  • the stopped second vehicle V2a starts when the state indicated by the indicator lamp I3 changes from red to blue (that is, from the parked state to the empty state).
  • the passage area Xa extends to the near side (that is, to the bottom of the drawing) in the running direction of the second vehicle V2. I understand. Therefore, when the first vehicle V1 turns back from the parked state and departs, the position Q8 at which the second vehicle V2 is to be stopped when the first vehicle V1 departs is set higher than when the first vehicle V1 turns back and parks. It may be set on the front side. As a result, it is possible to anticipate in advance the difference in behavior between the turning back when parking and the turning back when departing.
  • FIG. 6 is an example of a flowchart showing an information processing procedure in the first driving support system 1 of FIG. The processing described below is executed at predetermined time intervals by the CPU (processor) 191 of the first driving assistance device 19 when the first vehicle V1 is parked near the destination.
  • step S1 the function of the first detection unit 31 detects a parking space using the imaging device 11, and in subsequent step S2, it is determined whether or not the parking space has been detected.
  • the process proceeds to step S1, and the parking space is detected again.
  • the detection of the parking space is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 191 ends.
  • the process proceeds to step S3.
  • step S3 the function of the first detection unit 31 detects the parking space and obstacles around the parking space. determines whether or not parking is possible. When it is determined that the first vehicle V1 cannot be parked, the process proceeds to step S1, and the parking space is detected again. When the detection of the parking space is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 191 ends. On the other hand, if it is determined that the parking space has been detected, the process proceeds to step S5.
  • step S5 the function of the first generator 33 sets a target parking space from among the detected parking spaces, sets a parking position in the target parking space, and then the first vehicle V1 moves to the current position P1. to the parking position P4.
  • step S6 the direction indicator of the first vehicle V1 is flashed by the function of the first traveling unit 34, and in subsequent step S7, the vehicle controller 16 is used to cause the vehicle to travel along the travel route. , autonomously control the running of the first vehicle V1. After the parking of the first vehicle V1 is completed, the execution of the routine is stopped, and the processing by the CPU 191 ends.
  • FIG. 7 is an example of a flowchart showing an information processing procedure in the second driving support system 2 of FIG.
  • the second vehicle is a following vehicle of the first vehicle.
  • the processing described below is executed at predetermined time intervals by the CPU (processor) 291 of the second driving support device 29 .
  • step S11 by the function of the second detection unit 41, the imaging device 21 is used to detect blinking of the direction indicator of the first vehicle. Detect space status.
  • step S13 it is determined whether or not the flickering of the direction indicator of the first vehicle, which is the preceding vehicle of the second vehicle V2, or the vacant state of the indicator lamp ahead of the second vehicle V2 in the traveling direction has been detected. If it is determined that neither the blinking of the direction indicator of the first vehicle nor the vacant state of the indicator lamp can be detected, the process proceeds to step S11, and the blinking of the direction indicator of the first vehicle is detected again.
  • step S14 When the detection of blinking of the direction indicator is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 291 is terminated. On the other hand, if it is determined that the blinking of the direction indicator of the first vehicle or the vacant state of the indicator lamp in front of the second vehicle V2 in the traveling direction has been detected, the process proceeds to step S14.
  • step S14 the travel route on which the first vehicle V1 is parked is estimated by the function of the second determination unit 42, and in subsequent step S15, the passing area X of the first vehicle V1 is determined based on the estimated parking route. set.
  • step S16 a region Y through which the body of the second vehicle V2 passes when the second vehicle V2 travels along the set route is set.
  • step S17 using the set passage areas X and Y, it is determined whether or not the route of the second vehicle V2 intersects with the passage area X of the first vehicle V1.
  • step S22 autonomously control the travel of the second vehicle V2 so as to travel along the travel route.
  • step S18 the process proceeds to step S18, and using the detection results of the imaging device 21 and the distance measuring device 22, the second vehicle V2 It is determined whether or not the vehicle has entered the passage area X of the vehicle V1.
  • step S19 determines whether the second vehicle V2 can overtake the first vehicle V1. .
  • step S20 the function of the second generation unit 43 generates a travel route along which the second vehicle V2 overtakes the first vehicle V1.
  • step S21 the travel route that stops the second vehicle V2 before the passing area X.
  • step S22 autonomously control travel of the second vehicle V2 so as to travel along the travel route.
  • step S18 determines whether or not the second vehicle V2 can overtake the first vehicle V1. do. If it is determined that the first vehicle V1 can be overtaken, the process proceeds to step S20, and if it is determined that the first vehicle V1 cannot be overtaken, the process proceeds to step S24. In step S24, a travel route for stopping the second vehicle V2 is generated, and in subsequent step S25, a travel route for reversing the second vehicle V2 to the front of the passing area X and stopping is generated. Then, the process proceeds to step S22. When the autonomous driving control in step S22 is completed, execution of the routine is stopped, and normal autonomous driving control for heading to the set destination is started.
  • the processor in the driving assistance method executed by the processor of the second vehicle, the processor provides the first display or the parking available information to inform the surroundings that the vehicle will be parked or that the vehicle will depart from the parking state.
  • a second display that informs the outside that a parking space exists is detected, and the first display is detected from a first vehicle V1 traveling in front of the second vehicle in the direction of travel, or the second vehicle travels.
  • the path of the second vehicle V2 passes when the first vehicle V1 is parked or when the first vehicle V1 departs from the parked state.
  • a driving support method is provided for autonomously controlling driving of V2. As a result, even when the second vehicle V2 approaches the running first vehicle V1 for parking or departure, the separation distance between the first vehicle V1 and the second vehicle V2 is maintained. It is possible to suppress the occurrence of a situation in which V2 hinders the first vehicle V1 from traveling for parking or departure.
  • the second vehicle V2 moves over the first vehicle V1.
  • the second vehicle V2 is controlled to avoid the first vehicle V1 by the autonomous control.
  • the second vehicle V2 is stopped in front of the passage area by the autonomous control.
  • the processor determines whether or not the second vehicle V2 is entering the passage area X, and the second vehicle V2 is in the passage area X If it is determined that the second vehicle V2 can avoid the first vehicle V1, and if it is determined that the second vehicle V2 can avoid the first vehicle V1 causes the second vehicle V2 to travel so as to avoid the first vehicle V1 by the autonomous control, and when it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the autonomous control , the second vehicle V2 is stopped, and after the second vehicle V2 is stopped, the second vehicle V2 is reversed to the front of the passage area and stopped. As a result, it is possible to suppress an increase in the change in behavior of the second vehicle V2.
  • the first display includes blinking of the direction indicator of the first vehicle V1, and the second display indicates that the parking space is empty. It includes the status of the indicator light I1 installed in the car park. Thereby, the first display and the second display can be detected more accurately.
  • the processor controls the second vehicle V2 when the first vehicle V1 departs.
  • the position where the vehicle is stopped is set closer to the front side than when the first vehicle V1 is turned back and parked. As a result, the first vehicle V1 can more reliably complete the running for parking or the running for starting from the parked state.
  • the processor provides the first display to inform the surroundings that the vehicle will be parked or that the vehicle will depart from the parked state. Or when the second display V2 that informs the outside that there is a parking space available for parking is detected, and the first display is detected from the first vehicle V1 traveling ahead in the direction of travel of the second vehicle V2, or When the second display present in front of the traveling direction of the second vehicle V2 is detected, the course of the second vehicle V2 passes when the first vehicle V1 is parked or the first vehicle V1 is parked.
  • a driving support device that autonomously controls the running of the second vehicle V2 so as not to cause the vehicle to move.
  • the processor when detecting a parking space for parking the vehicle, blinks the direction indicators on both sides of the vehicle.
  • a driving assistance method is provided for initiating the As a result, even when the second vehicle V2 approaches the vehicle (the first vehicle V1) that is traveling to park or depart, the second vehicle V1 can be notified that the first vehicle V1 is traveling to park or depart. The vehicle V2 can be notified, and the separation distance between the vehicle (the first vehicle V1) and the second vehicle V2 is maintained. Therefore, it is possible to prevent the second vehicle V2 from hindering the first vehicle V1 from traveling for parking or departure.
  • the processor detects the parking space for parking the vehicle, and A driving assistance device is provided that initiates blinking of both turn signals.
  • the second vehicle V2 can be notified that the first vehicle V1 is traveling to park or depart.
  • the vehicle V2 can be notified, and the separation distance between the vehicle (the first vehicle V1) and the second vehicle V2 is maintained. Therefore, it is possible to prevent the second vehicle V2 from hindering the first vehicle V1 from traveling for parking or departure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided are a driving assistance method and a driving assistance device which involve: in the case when a first indication that notifies the surroundings of intention of parking or intention of moving from a parked state is detected from a first vehicle (V1) traveling ahead in the travel direction of a second vehicle (V2), or in the case when a second indication that notifies the outside of the existence of an available parking space is detected from an area ahead in the travel direction of the second vehicle (V2), determining whether or not the route of the second vehicle (V2) is to cross a passing area (X) which the first vehicle (V1) will pass through when the first vehicle (V1) is to be parked or is to move from the parked state; and when the route of the second vehicle (V2) has been determined to cross the passing area (X), performing autonomous control on the traveling of the second vehicle (V2) so as not to enter the passing area (X). Also provided are a driving assistance method and a driving assistance device which involve, in the case when a parking space for parking of the first vehicle (V1) is detected, causing direction indicators on both sides of the first vehicle (V1) to blink.

Description

運転支援方法及び運転支援装置Driving support method and driving support device
 本発明は、車両の運転支援方法及び運転支援装置に関するものである。 The present invention relates to a vehicle driving support method and a driving support device.
 駐車場に存在する障害物の情報と、車両に関する情報と、駐車場において車両が移動可能な走行路の情報を含む地図情報とを用いて、目標地点まで車両を走行させるための移動経路を含む指示を生成し、当該指示と地図情報とを車両に送信して車両の走行を制御する管制システムが知られている(特許文献1)。 Information on obstacles existing in the parking lot, information on the vehicle, and map information including information on the travel route on which the vehicle can move in the parking lot are used to include a moving route for driving the vehicle to the target point. A control system is known that generates an instruction, transmits the instruction and map information to a vehicle, and controls the running of the vehicle (Patent Document 1).
特開2020-131787号公報JP 2020-131787 A
 上記従来技術では、駐車場に設置されたカメラにより、駐車している又は駐車状態から発車している第1車両が検出されると、第1車両の近くを走行する第2車両を、第1車両から所定距離だけ離れた位置に停車させる。しかしながら、上記従来技術では、第2車両の減速開始が、駐車場のカメラで、第1車両の駐車又は発車を検出した後であるため、第2車両の停車が遅れ、第1車両と第2車両とが接近する場合がある。この場合、車両同士の接触を回避するために第1車両が停車してしまい、駐車又は発車が完了できないという問題がある。 In the conventional technology described above, when a camera installed in a parking lot detects a first vehicle that is parked or is starting from a parked state, a second vehicle running near the first vehicle is detected as the first vehicle. The vehicle is stopped at a predetermined distance from the vehicle. However, in the above-described conventional technology, the deceleration of the second vehicle starts after the camera in the parking lot detects the parking or departure of the first vehicle. Vehicles may approach each other. In this case, there is a problem that the first vehicle stops in order to avoid contact between the vehicles, and parking or departure cannot be completed.
 本発明が解決しようとする課題は、第2車両が、駐車又は発車するために走行中の第1車両に接近する場合に、第2車両が、第1車両が駐車又は発車するための走行を妨げる事態の発生を抑制できる運転支援方法及び運転支援装置を提供することである。 The problem to be solved by the present invention is that, when a second vehicle approaches a first vehicle that is running in order to park or depart, the second vehicle is forced to travel for the first vehicle to park or depart. It is an object of the present invention to provide a driving support method and a driving support device capable of suppressing the occurrence of an impeding situation.
 本発明は、駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示を、第2車両の進行方向の前方を走行する第1車両から検出した場合又は駐車可能な駐車スペースが存在することを外部に知らせる第2表示を、第2車両の進行方向の前方から検出した場合に、第2車両の進路が、第1車両が駐車するときに通過する又は第1車両が駐車状態から発車するときに通過する通過領域と交錯するか否かを判定し、第2車両の進路が、通過領域と交錯すると判定したときは、通過領域に進入しないように第2車両の走行を自律制御することによって上記課題を解決する。 The present invention detects a first display informing the surroundings that the vehicle will be parked or that the vehicle will depart from a parked state, from a first vehicle traveling in front of a second vehicle in the direction of travel, or that there is a parking space available for parking. When the second display for informing the outside is detected from the front in the traveling direction of the second vehicle, the path of the second vehicle will pass when the first vehicle is parked or the first vehicle will depart from the parked state. When it is determined that the course of the second vehicle intersects with the passage area when the second vehicle is to pass, autonomous control is performed so that the second vehicle does not enter the passage area. This solves the above problems.
 また、本発明は、車両(第1車両)を駐車するための駐車スペースを検出した場合に、当該車両の両側の方向指示器の点滅を開始させることによって上記課題を解決する。 Also, the present invention solves the above problem by causing the direction indicators on both sides of the vehicle to start blinking when a parking space for parking the vehicle (first vehicle) is detected.
 本発明によれば、第2車両が、駐車又は発車するために走行中の第1車両に接近する場合に、第2車両が、第1車両が駐車又は発車するための走行を妨げる事態の発生を抑制することができる。 According to the present invention, when the second vehicle approaches the first vehicle in motion to park or depart, the second vehicle may prevent the first vehicle from traveling for parking or departure. can be suppressed.
本発明に係る運転支援システムの実施形態の一例を示すブロック図である。1 is a block diagram showing an example of an embodiment of a driving assistance system according to the present invention; FIG. 本発明に係る運転支援システムの実施形態の別の例を示すブロック図である。FIG. 4 is a block diagram showing another example of an embodiment of the driving assistance system according to the present invention; 図1及び2に示す運転支援システムで自律制御を実行する走行シーンの一例を示す平面図である(その1)。FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンの一例を示す平面図である(その2)。FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンの一例を示す平面図である(その3)。FIG. 3 is a plan view showing an example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 3); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンの別の例を示す平面図である(その1)。FIG. 3 is a plan view showing another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンの別の例を示す平面図である(その2)。FIG. 3 is a plan view showing another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンのさらに別の例を示す平面図である(その1)。FIG. 4 is a plan view showing still another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 1); 図1及び2に示す運転支援システムで自律制御を実行する走行シーンのさらに別の例を示す平面図である(その2)。FIG. 9 is a plan view showing still another example of a driving scene in which autonomous control is executed by the driving support system shown in FIGS. 1 and 2 (No. 2); 図1の運転支援システムにおける情報処理手順の一例を示すフローチャートである。2 is a flow chart showing an example of an information processing procedure in the driving support system of FIG. 1; 図2の運転支援システムにおける情報処理手順の一例を示すフローチャートである。3 is a flowchart showing an example of an information processing procedure in the driving support system of FIG. 2;
 以下、本発明に係る運転支援方法及び運転支援装置の実施形態を図面に基づいて説明する。なお、以下の説明は、左側通行の法規を有する国にて、車両が左側通行で走行することを前提としている。右側通行の法規を有する国では、車両が右側通行で走行するため、以下の説明の右と左を対称にして読み替えるものとする。 An embodiment of a driving assistance method and a driving assistance device according to the present invention will be described below based on the drawings. It should be noted that the following description is based on the premise that the vehicle travels on the left side of the road in a country that has left-hand traffic laws. In countries that have right-hand traffic laws, vehicles drive on the right-hand side, so the following descriptions should be read symmetrically between right and left.
[運転支援システムの構成]
 図1は、本発明に係る第1運転支援システム1を示すブロック図である。第1運転支援システム1は、第1車両の車載システムであり、主に駐車場で、第1車両を自律走行制御で駐車スペースに駐車させ、駐車スペースに駐車させた第1車両を自律走行制御で発車させるための装置群である。なお、本実施形態では、駐車スペースに駐車していることを「駐車状態」とも言う。
[Configuration of driving support system]
FIG. 1 is a block diagram showing a first driving assistance system 1 according to the present invention. The first driving support system 1 is an in-vehicle system for a first vehicle, and is mainly used in a parking lot. It is a device group for starting with. In addition, in this embodiment, being parked in the parking space is also called "parking state."
 駐車場は、屋内駐車場でも屋外駐車場でもよい。また、駐車場は、自動バレー駐車の設備を備えていてもよく、その一部が自動バレー駐車に対応しているものでもよい。自動バレー駐車とは、自律走行制御により、車両を、駐車場の降車場から目標駐車スペースまで走行させ、目標駐車スペースに駐車させることを言う。自動バレー駐車による走行では、車両のユーザは、車両に乗車していても、乗車していなくとも(つまり無人でも)よい。また、駐車場を走行する全車両が自律走行制御で走行する必要はなく、一部の車両は手動運転で走行していてもよい。 The parking lot can be an indoor parking lot or an outdoor parking lot. In addition, the parking lot may be equipped with automatic valet parking facilities, or may be partially compatible with automatic valet parking. Automatic valet parking refers to driving a vehicle from a parking lot to a target parking space and parking the vehicle in the target parking space by autonomous driving control. In automated valet parking, the user of the vehicle may or may not be in the vehicle (ie unmanned). Moreover, not all vehicles traveling in the parking lot need to travel under autonomous travel control, and some vehicles may travel under manual operation.
 ここで、自律走行制御とは、車両の走行動作を自律的に制御することを言い、当該走行動作には、加速、減速、発進、停車、右方向又は左方向への転舵、車線変更、幅寄せなど、あらゆる走行動作が含まれる。また、走行を自律制御する及び自律的に走行動作を制御するとは、制御対象の車両が備える装置を用いて、当該車両の走行動作を制御することを言う。つまり、後述する第1運転支援装置及び第2運転支援装置は、予め定められた範囲内でこれらの走行動作に介入し、制御する。介入されない走行動作については、ドライバーによる手動の操作が行われる。 Here, the term "autonomous driving control" refers to the autonomous control of the vehicle's driving behavior, and the driving behavior includes acceleration, deceleration, starting, stopping, steering to the right or left, changing lanes, It includes all running motions, such as squeezing. Further, autonomously controlling the running and autonomously controlling the running motion means controlling the running motion of the vehicle using a device provided in the vehicle to be controlled. In other words, the first driving assistance device and the second driving assistance device, which will be described later, intervene and control these running actions within a predetermined range. The uninterrupted driving behavior is controlled manually by the driver.
 図1に示すように、第1運転支援システム1は、撮像装置11、測距装置12、地図情報13、自車位置検出装置14、ナビゲーション装置15、車両制御装置16、表示装置17、入力装置18及び第1運転支援装置19を備える。第1運転支援システム1に含まれる装置は、CAN(Controller Area Network)その他の車載LANによって接続され、互いに情報を授受することができる。 As shown in FIG. 1, the first driving support system 1 includes an imaging device 11, a distance measuring device 12, map information 13, a vehicle position detecting device 14, a navigation device 15, a vehicle control device 16, a display device 17, and an input device. 18 and a first driving support device 19 . Devices included in the first driving support system 1 are connected by a CAN (Controller Area Network) or other in-vehicle LAN, and can exchange information with each other.
 撮像装置11は、画像により自車両の周囲の対象物を認識する装置であり、CCDなどの撮像素子を備えるカメラ、超音波カメラ、赤外線カメラなどのカメラである。撮像装置11は、一台の車両に複数を設けることができ、たとえば、車両のフロントグリル部、左右ドアミラーの下部及びリアバンパ近傍に配置できる。これにより、車両の周囲の対象物を認識する場合の死角を減らすことができる。 The imaging device 11 is a device that recognizes objects around the vehicle from images, and is a camera such as a camera equipped with an imaging device such as a CCD, an ultrasonic camera, or an infrared camera. A plurality of imaging devices 11 can be provided in one vehicle. For example, they can be arranged in the front grille, under the left and right door mirrors, and in the vicinity of the rear bumper of the vehicle. This can reduce blind spots when recognizing objects around the vehicle.
 測距装置12は、車両と対象物との相対距離および相対速度を演算するための装置であり、レーザーレーダー、ミリ波レーダーなど(LRFなど)、LiDAR(Light Detection And Ranging)ユニット、超音波レーダーなどのレーダー装置又はソナーである。測距装置12は、一台の車両に複数設けることができ、たとえば、車両の前方、右側方、左側方及び後方に配置できる。これにより、車両の周囲の対象物との相対距離及び相対速度を正確に演算することができる。 The ranging device 12 is a device for calculating the relative distance and relative speed between the vehicle and the object, and includes laser radar, millimeter wave radar (LRF, etc.), LiDAR (Light Detection And Ranging) unit, ultrasonic radar radar equipment or sonar, such as A plurality of distance measuring devices 12 can be provided in one vehicle, and can be arranged, for example, in the front, right side, left side, and rear of the vehicle. Accordingly, it is possible to accurately calculate the relative distance and relative speed of the vehicle to surrounding objects.
 撮像装置11及び測距装置12にて検出する対象物は、道路の車線境界線、センターライン、路面標識、中央分離帯、ガードレール、縁石、高速道路の側壁、道路標識、信号機、横断歩道、工事現場、事故現場、交通制限、駐車場の境界線、駐車場の側壁と天井、駐車スペース、降車場、乗車場、駐車場の入口と出口、走行路の境界線並びに駐車場に設置されたの標識などである。また、対象物には、自車両以外の自動車(他車両)、オートバイ、自転車、歩行者、駐車場の柱など、自車両の走行に影響を与える可能性がある障害物も含まれる。撮像装置11及び測距装置12の検出結果は、所定の時間間隔で、第1運転支援装置19により取得される。 Objects detected by the imaging device 11 and the distance measuring device 12 include road lane boundaries, center lines, road markings, median strips, guardrails, curbs, side walls of highways, road markings, traffic lights, pedestrian crossings, and construction work. Installed at the site, accident site, traffic restriction, parking lot boundary, parking lot side wall and ceiling, parking space, drop-off area, boarding area, parking lot entrance and exit, lane boundary and parking lot such as signs. Objects also include obstacles that may affect the travel of the own vehicle, such as automobiles other than the own vehicle (other vehicles), motorcycles, bicycles, pedestrians, and pillars in parking lots. The detection results of the imaging device 11 and the distance measuring device 12 are acquired by the first driving support device 19 at predetermined time intervals.
 また、撮像装置11と測距装置12の検出結果は、第1運転支援装置19にて統合又は合成することができ、これにより、検出した対象物の不足する情報が補完できる。たとえば、後述する自車位置検出装置14により取得した、自車両が走行する位置である自己位置情報と、自車両と対象物の相対位置(距離と方向)とにより、第1運転支援装置19にて対象物の位置情報を算出できる。算出された対象物の位置情報は、第1運転支援装置19にて、撮像装置11及び測距装置12の検出結果、並びに地図情報13などの複数の情報と統合され、自車両の周囲の環境情報となる。また、撮像装置11及び測距装置12の検出結果と、地図情報13とを用いて、自車両の周囲の対象物を認識し、その動きを予測することもできる。 In addition, the detection results of the imaging device 11 and the distance measuring device 12 can be integrated or synthesized by the first driving support device 19, thereby complementing the missing information of the detected object. For example, the first driving support device 19 can detect a can calculate the position information of the object. The calculated positional information of the object is integrated with the detection results of the imaging device 11 and the distance measuring device 12 and a plurality of pieces of information such as the map information 13 in the first driving support device 19, and the environment around the own vehicle is integrated. become information. Also, using the detection results of the imaging device 11 and the distance measuring device 12 and the map information 13, it is possible to recognize objects around the own vehicle and predict their movements.
 地図情報13は、走行経路の生成及び/又は走行制御に用いられる情報であり、道路情報、施設情報、それらの属性情報が含まれる。道路情報及び道路の属性情報には、道路の幅、道路の曲率半径、路肩の構造物、道路交通法規(制限速度、車線変更の可否)、道路の合流地点と分岐地点、車線数の増加・減少位置などの情報が含まれている。地図情報13は、レーンごとの移動軌跡を把握できる高精細地図情報であり、各地図座標における二次元位置情報及び/又は三次元位置情報、各地図座標における道路・レーンの境界情報、道路属性情報、レーンの上り・下り情報、レーン識別情報、接続先レーン情報などが含まれる。 The map information 13 is information used for generating a travel route and/or for travel control, and includes road information, facility information, and attribute information thereof. Road information and road attribute information include road width, road curvature radius, road shoulder structures, road traffic regulations (speed limit, lane change availability), road junctions and junctions, increase/decrease in number of lanes, Information such as the location of the fall is included. The map information 13 is high-definition map information that can grasp the movement trajectory for each lane, and includes two-dimensional position information and/or three-dimensional position information at each map coordinate, road/lane boundary information at each map coordinate, and road attribute information. , lane uplink/downlink information, lane identification information, connection destination lane information, and the like.
 高精細地図情報の道路・レーンの境界情報は、自車両が走行する走路とそれ以外との境界を示す情報である。自車両が走行する走路とは、自車両が走行するための道であり、走路の形態は特に限定されない。境界は、自車両の進行方向に対して左右それぞれに存在し、形態は特に限定されない。境界には路面標示、道路構造物などが含まれ、路面標示には車線境界線、センターラインなどが、道路構造物には中央分離帯、ガードレール、縁石、トンネル、高速道路の側壁などがそれぞれ含まれる。なお、交差点内のような走路境界が明確に特定できない地点では、予め、走路に境界が設定されている。この境界は架空のものであって、実際に存在する路面標示または道路構造物ではない。 The road/lane boundary information in the high-definition map information is information that indicates the boundary between the road on which the vehicle is traveling and other areas. The road on which the vehicle travels is a road on which the vehicle travels, and the shape of the road is not particularly limited. The boundaries exist on the left and right with respect to the traveling direction of the host vehicle, and the form is not particularly limited. Boundaries include road markings, road structures, etc. Road markings include lane boundaries, center lines, etc. Road structures include medians, guardrails, curbs, tunnels, highway sidewalls, etc. be At a point such as an intersection where the road boundary cannot be clearly specified, the road boundary is set in advance. This boundary is fictitious and is not an actual pavement marking or road structure.
 また、地図情報13には、駐車場の地図情報として、駐車スペースの位置、降車場の位置、乗車場の位置、駐車場の入口と出口の位置、走行路の幅と曲率半径、車両の走行方向、駐車場に設置されたの標識、柱など障害物となる物体の位置及び走行可能な領域などの情報が含まれる。地図情報13は、第1運転支援装置19、車載装置又はネットワーク上のサーバに設けられた記録媒体に読み込み可能な状態で記憶されている。第1運転支援装置19は、必要に応じて地図情報13を取得する。 In addition, the map information 13 includes, as map information of the parking lot, the position of the parking space, the position of the get-off place, the position of the boarding place, the entrance and exit positions of the parking lot, the width and curvature radius of the road, Information such as directions, signs installed in parking lots, positions of obstacles such as pillars, and drivable areas are included. The map information 13 is stored in a readable state in a recording medium provided in the first driving support device 19, an in-vehicle device, or a server on a network. The first driving assistance device 19 acquires the map information 13 as necessary.
 自車位置検出装置14は、自車両の現在位置を検出するための測位システムであり、特に限定されず、公知のものを用いることができる。自車位置検出装置14は、たとえば、GPS(Global Positioning System)用の衛星から受信した電波などから自車両の現在位置を算出する。また、自車位置検出装置14は、車速センサから取得した車速情報、並びに加速度センサ及びジャイロセンサから取得した加速度情報から自車両の現在位置を推定し、推定した現在位置を地図情報13(特に駐車場の地図情報)と照合することで自車両の現在位置を算出してもよい。 The own vehicle position detection device 14 is a positioning system for detecting the current position of the own vehicle, and is not particularly limited, and a known system can be used. The vehicle position detection device 14 calculates the current position of the vehicle from radio waves received from GPS (Global Positioning System) satellites, for example. Further, the vehicle position detection device 14 estimates the current position of the vehicle from the vehicle speed information obtained from the vehicle speed sensor and the acceleration information obtained from the acceleration sensor and the gyro sensor. The current position of the own vehicle may be calculated by collating it with the map information of the car park.
 ナビゲーション装置15は、地図情報13を参照して、自車位置検出装置14により検出された自車両の現在位置から、ドライバーにより設定された目的地までの走行経路を算出する装置である。ナビゲーション装置15は、地図情報23の道路情報及び施設情報などを用いて、自車両が現在位置から目的地まで到達するための走行経路を検索する。走行経路は、自車両が走行する道路、走行車線及び自車両の走行方向の情報を少なくとも含み、たとえば線形で表示される。検索条件に応じて、走行経路は複数存在し得る。ナビゲーション装置15にて算出された走行経路は、第1運転支援装置19に出力される。 The navigation device 15 is a device that refers to the map information 13 and calculates a travel route from the current position of the vehicle detected by the vehicle position detection device 14 to the destination set by the driver. The navigation device 15 uses the road information and facility information of the map information 23 to search for a travel route for the vehicle to reach the destination from the current position. The travel route includes at least information about the road on which the vehicle travels, the travel lane, and the travel direction of the vehicle, and is displayed linearly, for example. A plurality of travel routes may exist depending on the search conditions. The travel route calculated by the navigation device 15 is output to the first driving assistance device 19 .
 車両制御装置16は、電子制御ユニット(ECU:Electronic Control Unit)などの車載コンピュータであり、車両の走行を律する車載機器を電子的に制御する。車両制御装置16は、自車両の走行速度を制御する車速制御装置161と、自車両の操舵操作を制御する操舵制御装置162を備える。車速制御装置161及び操舵制御装置162は、第1運転支援装置19から入力された制御信号に応じて、これらの駆動装置及び操舵装置の動作を自律的に制御する。これにより、自車両は、設定した走行経路に従って自律的に走行できる。 The vehicle control device 16 is an in-vehicle computer such as an electronic control unit (ECU: Electronic Control Unit), and electronically controls in-vehicle equipment that regulates the running of the vehicle. The vehicle control device 16 includes a vehicle speed control device 161 that controls the running speed of the vehicle and a steering control device 162 that controls the steering operation of the vehicle. The vehicle speed control device 161 and the steering control device 162 autonomously control the operations of these drive device and steering device according to control signals input from the first driving support device 19 . As a result, the own vehicle can autonomously travel along the set travel route.
 車速制御装置161が制御する駆動装置には、走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、動力伝達装置を制御する駆動装置などが含まれる。また、車速制御装置161が制御する制動装置は、たとえば、車輪を制動する制動装置である。車速制御装置161には、第1運転支援装置19から、設定した走行速度に応じた制御信号が入力される。車速制御装置161は、第1運転支援装置19から入力された制御信号に基づいて、これらの駆動装置を制御する信号を生成し、駆動装置に当該信号を送信することで、車両の走行速度を自律的に制御する。 The drive devices controlled by the vehicle speed control device 161 include an electric motor and/or an internal combustion engine as a travel drive source, a power transmission device including a drive shaft and an automatic transmission that transmit the output from these travel drive sources to the drive wheels, A driving device for controlling a power transmission device is included. A braking device controlled by vehicle speed control device 161 is, for example, a braking device for braking wheels. A control signal corresponding to the set running speed is input from the first driving support device 19 to the vehicle speed control device 161 . The vehicle speed control device 161 generates a signal for controlling these drive devices based on the control signal input from the first driving support device 19, and transmits the signal to the drive device, thereby increasing the running speed of the vehicle. control autonomously.
 一方、操舵制御装置162が制御する操舵装置には、ステアリングホイール(いわゆるハンドル)の操舵角度に応じて総舵輪を制御する操舵装置、たとえば、ステアリングのコラムシャフトに取り付けられるモータなどのステアリングアクチュエータが含まれる。操舵制御装置162は、第1運転支援装置19から入力された制御信号に基づき、撮像装置11及び測距装置12の検出結果、地図情報13及び自車位置検出装置14で取得した現在位置の情報のうちの少なくとも一つを用いて、設定した走行経路に対して所定の横位置(車両の左右方向の位置)を維持しながら自車両が走行するように、操舵装置の動作を自律的に制御する。 On the other hand, the steering device controlled by the steering control device 162 includes a steering device that controls all the steering wheels according to the steering angle of the steering wheel (so-called steering wheel), for example, a steering actuator such as a motor attached to the steering column shaft. be Based on the control signal input from the first driving support device 19, the steering control device 162 obtains the detection results of the imaging device 11 and the distance measuring device 12, the map information 13, and the current position information obtained by the vehicle position detection device 14. autonomously control the operation of the steering system so that the vehicle travels while maintaining a predetermined lateral position (position in the left-right direction of the vehicle) with respect to the set travel route using at least one of do.
 車速制御装置161及び操舵制御装置162における自律的な制御に必要な情報、たとえば自車両の走行速度、加速度、操舵角度、姿勢は、車両制御装置16が備える各種センサを用いて検出する。各種センサとして、車速センサ、加速度センサ、ジャイロセンサ、舵角センサ、慣性計測ユニット(IMU:Inertial Measurement Unit)などが挙げられる。車両制御装置26は、これらのセンサの検出結果を第1運転支援装置19に出力する。 Information necessary for autonomous control in the vehicle speed control device 161 and the steering control device 162, such as the running speed, acceleration, steering angle, and attitude of the own vehicle, is detected using various sensors provided in the vehicle control device 16. Various sensors include a vehicle speed sensor, an acceleration sensor, a gyro sensor, a steering angle sensor, an inertial measurement unit (IMU), and the like. The vehicle control device 26 outputs the detection results of these sensors to the first driving assistance device 19 .
 表示装置17は、車両の乗員に必要な情報を提供するための装置であり、たとえば、インストルメントパネルに設けられた液晶ディスプレイ、ヘッドアップディスプレイ(HUD)などのプロジェクターである。 The display device 17 is a device for providing necessary information to the occupants of the vehicle, and is, for example, a projector such as a liquid crystal display provided on the instrument panel or a head-up display (HUD).
 入力装置18は、車両の乗員が、第1運転支援装置19に指示を入力するための装置であり、ユーザの指触又はスタイラスペンによって入力されるタッチパネル、ユーザの音声による指示を取得するマイクロフォン、車両のステアリングホイールに取付けられたスイッチなどが挙げられる。 The input device 18 is a device for a vehicle occupant to input instructions to the first driving support device 19. The input device 18 includes a touch panel input by a user's finger touch or a stylus pen, a microphone for acquiring a user's voice instruction, Examples include a switch attached to the steering wheel of a vehicle.
 第1運転支援装置19は、第1運転支援システム1に含まれる装置を制御して協働させることで第1車両の走行を制御し、第1車両の走行、特に、駐車と駐車状態からの発車を制御するための装置である。第1運転支援装置19は、たとえばコンピュータであり、プロセッサであるCPU(Central Processing Unit)191と、プログラムが格納されたROM(Read Only Memory)192と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)193とを備える。CPU191は、ROM192に格納されたプログラムを実行することで、第1運転支援装置19として機能するための動作回路である。 The first driving support device 19 controls the running of the first vehicle by controlling and cooperating with the devices included in the first driving support system 1, and controls the running of the first vehicle, in particular, parking and stopping from the parking state. It is a device for controlling departure. The first driving support device 19 is, for example, a computer, and includes a CPU (Central Processing Unit) 191 that is a processor, a ROM (Read Only Memory) 192 that stores a program, and a RAM (Random Access Memory) 193. The CPU 191 is an operating circuit for functioning as the first driving support device 19 by executing a program stored in the ROM 192 .
 ROM192に格納されたプログラムは、第1運転支援装置19により自律走行制御に必要な機能を実現するための機能ブロックである、第1制御部3を備える。第1制御部3は、第1車両の自律走行制御に必要な情報を処理し、第1車両を自律走行制御で走行させる機能を有する。第1制御部3は、図1に示すように、第1検出部31、第1判定部32、第1生成部33及び第1走行部34を備える。図1には、各部を便宜的に抽出して示す。これらの機能ブロックの役割は、後述する。 The program stored in the ROM 192 includes the first control unit 3, which is a functional block for realizing functions required for autonomous driving control by the first driving support device 19. The first control unit 3 has a function of processing information necessary for autonomous travel control of the first vehicle and causing the first vehicle to travel under autonomous travel control. The 1st control part 3 is provided with the 1st detection part 31, the 1st determination part 32, the 1st production|generation part 33, and the 1st travel part 34, as shown in FIG. In FIG. 1, each part is extracted and shown for convenience. The roles of these functional blocks will be described later.
 次に、図2は、本発明に係る第2運転支援システム2を示すブロック図である。第2運転支援システム2は、第2車両の車載システムであり、主に駐車場で、第2車両を自律走行制御で駐車スペースに駐車させ、駐車スペースに駐車させた第2車両を自律走行制御で発車させるための装置群である。 Next, FIG. 2 is a block diagram showing the second driving support system 2 according to the present invention. The second driving support system 2 is an in-vehicle system for a second vehicle, and is mainly used in a parking lot. It is a device group for starting with.
 図2は、第2運転支援システム2に含まれる装置を示すブロック図である。図2に示すように、第2運転支援システム2は、撮像装置21、測距装置22、地図情報23、自車位置検出装置24、ナビゲーション装置25、車両制御装置26、表示装置27、入力装置28及び第2運転支援装置29を備える。また、車両制御装置26は、車速制御装置261及び操舵制御装置262を備える。これら装置は、CAN(Controller Area Network)その他の車載LANによって接続され、互いに情報を授受することができる。 FIG. 2 is a block diagram showing devices included in the second driving support system 2. As shown in FIG. As shown in FIG. 2, the second driving support system 2 includes an imaging device 21, a distance measuring device 22, map information 23, a vehicle position detecting device 24, a navigation device 25, a vehicle control device 26, a display device 27, and an input device. 28 and a second driving assistance device 29 . The vehicle control device 26 also includes a vehicle speed control device 261 and a steering control device 262 . These devices are connected by a CAN (Controller Area Network) or other in-vehicle LAN, and can exchange information with each other.
 なお、第2運転支援システム2が備える装置のうち第2運転支援装置29以外のもの、つまり撮像装置21、測距装置22、地図情報23、自車位置検出装置24、ナビゲーション装置25、車両制御装置26、車速制御装置261、操舵制御装置262、表示装置27及び入力装置28は、それぞれ、第1運転支援システム1の撮像装置11、測距装置12、地図情報13、自車位置検出装置14、ナビゲーション装置15、車両制御装置16、車速制御装置161、操舵制御装置162、表示装置17及び入力装置18に相当するものであるため、その説明を省略する。 Among the devices provided in the second driving support system 2, those other than the second driving support device 29, that is, the imaging device 21, the distance measuring device 22, the map information 23, the own vehicle position detection device 24, the navigation device 25, and the vehicle control The device 26, the vehicle speed control device 261, the steering control device 262, the display device 27, and the input device 28 are the imaging device 11, the distance measuring device 12, the map information 13, and the vehicle position detection device 14 of the first driving support system 1, respectively. , the navigation device 15, the vehicle control device 16, the vehicle speed control device 161, the steering control device 162, the display device 17, and the input device 18, so the description thereof will be omitted.
 第2運転支援装置29は、第2運転支援システム2に含まれる装置を制御して協働させることで第2車両の走行を制御し、第2車両の走行、特に、駐車と駐車状態からの発車を制御するための装置である。第2運転支援装置29は、たとえばコンピュータであり、プロセッサであるCPU291と、プログラムが格納されたROM292と、アクセス可能な記憶装置として機能するRAM293とを備える。CPU291は、ROM292に格納されたプログラムを実行することで、第2運転支援装置29として機能するための動作回路である。 The second driving support device 29 controls the running of the second vehicle by controlling and cooperating with the devices included in the second driving support system 2, and controls the running of the second vehicle, particularly parking and from the parking state. It is a device for controlling departure. The second driving support device 29 is a computer, for example, and includes a CPU 291 that is a processor, a ROM 292 in which programs are stored, and a RAM 293 that functions as an accessible storage device. The CPU 291 is an operation circuit for functioning as the second driving support device 29 by executing a program stored in the ROM 292 .
 ROM292に格納されたプログラムは、第2運転支援装置29により自律走行制御に必要な機能を実現するための機能ブロックである、第2制御部4を備える。第2制御部4は、第2車両の自律走行制御に必要な情報を処理し、第2車両を自律走行制御で走行させる機能を有する。第2制御部4は、図1に示すように、第2検出部41、第2判定部42、第2生成部43及び第2走行部44を備える。図2には、各部を便宜的に抽出して示す。これらの機能ブロックの役割は、後述する。 The program stored in the ROM 292 includes the second control unit 4, which is a functional block for realizing functions required for autonomous driving control by the second driving support device 29. The second control unit 4 has a function of processing information necessary for autonomous travel control of the second vehicle and causing the second vehicle to travel under autonomous travel control. The 2nd control part 4 is provided with the 2nd detection part 41, the 2nd determination part 42, the 2nd production|generation part 43, and the 2nd travel part 44, as shown in FIG. In FIG. 2, each part is extracted and shown for convenience. The roles of these functional blocks will be described later.
 なお、本発明に係る第1運転支援システム1及び第2運転支援システム2は、自律走行制御による走行のみならず、ドライバーの手動運転を支援するナビゲーションシステムにも適用できる。また、第1運転支援システム1及び第2運転支援システム2は、速度制御と操舵制御の両方を自律制御するほか、速度制御と操舵制御の一方を自律制御し、他方を手動制御する場合にも適用できる。 It should be noted that the first driving support system 1 and the second driving support system 2 according to the present invention can be applied not only to driving by autonomous driving control but also to navigation systems that support manual driving by the driver. In addition, the first driving support system 1 and the second driving support system 2 autonomously control both speed control and steering control. Applicable.
[第1制御部及び第2制御部の機能]
 本実施形態の第1制御部3と第2制御部4は、たとえば図3A~3Cに示す走行シーンにおいて、それぞれ、第1車両が目標駐車スペースに駐車するための走行と、第2車両の走行とを自律制御する。図3Aに示す走行シーンは、第1車両V1が、ビルなどの建物の中にある屋内駐車場を走行しているシーンである。第1車両V1の現在位置は位置P1であり、第1車両V1の左右両側には、駐車場の壁Wが存在する。第1車両V1の右側には、4つの駐車スペースS1~S4が区画されている。各駐車スペースは白線で区切られており、駐車スペースごとに、駐車スペースの状態を示す表示灯I1~I4が設置されている。表示灯I1~I4は、駐車スペースに駐車車両が存在しない場合は、空車状態を示す青色を示し、駐車スペースに駐車車両が存在する場合は、駐車状態を示す赤色を示すものとする。駐車スペースS1~S4の正面は駐車場の走行路であり、当該走行路では対面通行が可能であるとする。
[Functions of First Control Unit and Second Control Unit]
The first control unit 3 and the second control unit 4 of the present embodiment control, for example, the driving scenes shown in FIGS. and autonomously control. The driving scene shown in FIG. 3A is a scene in which the first vehicle V1 is driving in an indoor parking lot inside a building such as a building. The current position of the first vehicle V1 is the position P1, and the walls W of the parking lot exist on both left and right sides of the first vehicle V1. Four parking spaces S1 to S4 are defined on the right side of the first vehicle V1. Each parking space is separated by a white line, and indicator lights I1 to I4 indicating the state of the parking space are installed for each parking space. The indicator lights I1 to I4 are assumed to indicate blue indicating an empty state when there is no parked vehicle in the parking space, and indicate red indicating a parked state when there is a parked vehicle in the parking space. In front of the parking spaces S1 to S4 is the road of the parking lot, and two-way traffic is possible on the road.
 図3Aに示す走行シーンでは、第1車両V1が、自律走行制御で駐車スペースに駐車しようとしているものし、駐車スペースS3及びS4には、それぞれ、駐車車両V3及びV4が存在するものとする。この場合に、図1に示す第1制御部3の各機能ブロックと、図2に示す第2制御部4の各機能ブロックとが果たす機能について説明する。 In the driving scene shown in FIG. 3A, it is assumed that the first vehicle V1 is about to park in the parking space under autonomous driving control, and that the parking spaces S3 and S4 have parked vehicles V3 and V4, respectively. In this case, functions performed by each functional block of the first control unit 3 shown in FIG. 1 and each functional block of the second control unit 4 shown in FIG. 2 will be described.
 まず、第1制御部3の第1検出部31は、第1車両V1を駐車するための駐車スペースを検出する機能を有する。また、駐車スペースが検出された場合には、当該駐車スペースに存在する障害物を検出する機能を有する。駐車スペース及び障害物の検出には、撮像装置11及び測距装置12の検出結果を用いる。駐車スペースの検出であれば、たとえば、撮像装置11で取得した画像データに対してエッジ抽出の処理を行い、白線などの境界線の位置を認識する。そして、認識した境界線で囲まれた領域に、第1車両V1が駐車するためのスペースが存在する場合は、当該領域を駐車スペースとして検出する。これに代えて又はこれに加えて、自車位置検出装置14から取得した第1車両V1の現在位置と、地図情報13から取得した、駐車スペースの位置情報とを照合して駐車スペースを検出する。また、障害物の検出であれば、撮像装置11で取得した画像データに対してパターンマッチングの処理を行い、撮影された対象物を認識する。そして、測距装置12の検出結果から、認識された対象物と第1車両V1との距離を算出する。 First, the first detection section 31 of the first control section 3 has a function of detecting a parking space for parking the first vehicle V1. Further, when a parking space is detected, it has a function of detecting an obstacle existing in the parking space. Detection results of the imaging device 11 and the distance measuring device 12 are used to detect parking spaces and obstacles. When detecting a parking space, for example, edge extraction processing is performed on image data acquired by the imaging device 11 to recognize the position of a boundary line such as a white line. If a space for parking the first vehicle V1 exists in the area surrounded by the recognized boundary line, the area is detected as a parking space. Instead of or in addition to this, the current position of the first vehicle V1 obtained from the own vehicle position detection device 14 is collated with the position information of the parking space obtained from the map information 13 to detect the parking space. . In the case of obstacle detection, pattern matching processing is performed on the image data acquired by the imaging device 11 to recognize the photographed object. Then, from the detection result of the distance measuring device 12, the distance between the recognized object and the first vehicle V1 is calculated.
 図3Aに示す走行シーンでは、第1検出部31の機能により、撮像装置11から取得した画像データに対してエッジ抽出の処理を行う。エッジ抽出処理の結果、第1車両V1の右側にS1~S4の領域が検出される。S1~S4の各領域は、第1車両V1が駐車するスペースを有するため、S1~S4を駐車スペースとして検出する。 In the driving scene shown in FIG. 3A, edge extraction processing is performed on the image data acquired from the imaging device 11 by the function of the first detection unit 31 . As a result of the edge extraction process, areas S1 to S4 are detected on the right side of the first vehicle V1. Since each of the areas S1 to S4 has a space for parking the first vehicle V1, the areas S1 to S4 are detected as parking spaces.
 第1判定部32は、第1車両V1が、駐車スペースに駐車できるか否かを判定する機能を有する。当該判定には、たとえば、撮像装置11及び測距装置12の検出結果から得られた障害物の情報を用いる。具体的には、撮像装置11で取得した画像データに対してパターンマッチングの処理を行い、撮影された対象物を認識し、測距装置12の検出結果から、認識された対象物と第1車両V1との距離を算出する。そして、検出された駐車スペースの位置と、検出された障害物の位置とを比較し、駐車スペースに障害物が存在するか否かを判定する。駐車スペースに障害物が存在する場合は、当該駐車スペースには駐車できないと判定し、駐車スペースに障害物が存在しない場合は、当該駐車スペースは駐車可能であると判定する。 The first determination unit 32 has a function of determining whether or not the first vehicle V1 can be parked in the parking space. For the determination, for example, obstacle information obtained from the detection results of the imaging device 11 and the distance measuring device 12 is used. Specifically, pattern matching processing is performed on the image data acquired by the imaging device 11 to recognize the photographed object, and from the detection result of the distance measuring device 12, the recognized object and the first vehicle are detected. Calculate the distance to V1. Then, the detected position of the parking space and the detected position of the obstacle are compared to determine whether or not there is an obstacle in the parking space. If there is an obstacle in the parking space, it is determined that the parking space cannot be parked, and if there is no obstacle in the parking space, it is determined that the parking space is available for parking.
 また、これに代えて又はこれに加えて、駐車スペースS1~S4に設置された表示灯I1~I4の状態を検出し、当該検出結果から駐車スペースを検出する。たとえば、図3Aに示す走行シーンでは、駐車車両が駐車スペースS1及びS2に存在しないため、表示灯I1及びI2は、空車状態の青色を示す。これに対して、駐車スペースS3及びS4には、駐車車両V3及びV4が存在するため、表示灯I3及びI4は、駐車状態の赤色を示す。したがって、表示灯I1~I4の示す色を検出し、表示灯の色が青色の場合は、駐車スペースが駐車可能であると判定し、表示灯の色が赤色の場合は、駐車スペースが駐車可能でないと判定することができる。 Alternatively or in addition to this, the states of the indicator lights I1 to I4 installed in the parking spaces S1 to S4 are detected, and the parking spaces are detected from the detection results. For example, in the driving scene shown in FIG. 3A, since there are no parked vehicles in the parking spaces S1 and S2, the indicator lights I1 and I2 show an empty blue color. On the other hand, since the parked vehicles V3 and V4 are present in the parking spaces S3 and S4, the indicator lights I3 and I4 indicate the parking state in red. Therefore, the colors indicated by the indicator lights I1 to I4 are detected, and when the color of the indicator lights is blue, it is determined that the parking space is available for parking, and when the color of the indicator lights is red, the parking space is available for parking. It can be determined that it is not
 図3Aに示す走行シーンでは、第1判定部32の機能により、撮像装置11で取得した画像データに対してパターンマッチングの処理を行い、対象物として駐車車両V3及びV4を認識する。また、測距装置12の検出結果から、第1車両V1と、駐車車両V3及びV4との離間距離を算出し、駐車車両V3及びV4の正確な位置を算出する。さらに、撮像装置11で、表示灯I1~I4の示す色を検出し、表示灯I1及びI2が青色を示し、表示灯I3及びI4が赤色を示していることを認識する。そして、第1車両V1、駐車車両V3及びV4並びに駐車スペースS1~S4の位置関係と、表示灯I1~I4の示す状態とに基づいて、駐車スペースS1及びS2は駐車可能であり、駐車スペースS3及びS4は駐車可能ではないと判定する。 In the driving scene shown in FIG. 3A, the function of the first determination unit 32 performs pattern matching processing on the image data acquired by the imaging device 11, and recognizes the parked vehicles V3 and V4 as objects. Further, from the detection result of the distance measuring device 12, the separation distance between the first vehicle V1 and the parked vehicles V3 and V4 is calculated, and the accurate positions of the parked vehicles V3 and V4 are calculated. Further, the imaging device 11 detects the colors indicated by the indicator lights I1 to I4, and recognizes that the indicator lights I1 and I2 indicate blue and the indicator lights I3 and I4 indicate red. Based on the positional relationship between the first vehicle V1, the parked vehicles V3 and V4, and the parking spaces S1 to S4 and the states indicated by the indicator lights I1 to I4, the parking spaces S1 and S2 can be parked, and the parking space S3 can be parked. and S4 determine that parking is not possible.
 第1生成部33は、第1車両V1が走行するための走行経路を生成する機能を有する。具体的には、第1生成部33は、第1判定部32の機能により、検出した駐車スペースが駐車可能であると判定されると、第1車両V1を駐車させる目標駐車スペースを設定し、目標駐車スペースに駐車位置を設定する。そして、第1車両V1を、現在位置から駐車位置まで自律走行制御により走行させる走行経路を生成する。走行経路は、第1車両V1の全幅、全長及び最小回転半径、第1車両V1が走行する走行路又は道路の幅員、道路又は駐車場の走行可能領域を含む地図情報並びに第1車両V1の周囲に存在する障害物の位置などを用いて生成する。 The first generator 33 has a function of generating a travel route for the first vehicle V1 to travel. Specifically, when the function of the first determination unit 32 determines that the detected parking space is available for parking, the first generation unit 33 sets a target parking space for parking the first vehicle V1, Set the parking position in the target parking space. Then, a travel route is generated on which the first vehicle V1 travels from the current position to the parking position by autonomous travel control. The travel route includes map information including the full width, length and minimum turning radius of the first vehicle V1, the width of the travel path or road on which the first vehicle V1 travels, the travelable area of the road or parking lot, and the surroundings of the first vehicle V1. Generated using the position of obstacles that exist in
 図3Aに示す走行シーンでは、第1車両V1の乗員が、駐車スペースS1を目標駐車スペースに設定したものとする。この場合、第1生成部33は、駐車スペースS1の位置P4を停車位置に設定する。また、測距装置12の検出結果を用いて、現在位置P1から壁Wまでの距離と、現在位置P1から駐車車両V3までの距離と、現在位置P1から駐車車両V4までの距離とを算出する。そして、算出した障害物までの距離及び第1車両V1の最小回転半径などを考慮し、走行経路R1及びR2を生成する。 In the driving scene shown in FIG. 3A, it is assumed that the occupant of the first vehicle V1 has set the parking space S1 as the target parking space. In this case, the first generator 33 sets the position P4 of the parking space S1 as the stop position. Further, using the detection results of the distance measuring device 12, the distance from the current position P1 to the wall W, the distance from the current position P1 to the parked vehicle V3, and the distance from the current position P1 to the parked vehicle V4 are calculated. . Then, the travel routes R1 and R2 are generated in consideration of the calculated distance to the obstacle, the minimum turning radius of the first vehicle V1, and the like.
 図3Aに示す走行経路R1は、目標駐車スペースである駐車スペースS1に向かって、現在位置P1から位置P2まで、駐車場の走行路を直進する経路である。第1車両V1が位置P2に到達すると、第1生成部33は、走行路の位置P2から、駐車スペースS1の駐車位置P4まで走行するための走行経路R2を生成する。走行経路R2では、第1車両V1が位置P3で切り返しを行う。 A travel route R1 shown in FIG. 3A is a route that travels straight along the travel path of the parking lot from the current position P1 to the position P2 toward the parking space S1, which is the target parking space. When the first vehicle V1 reaches the position P2, the first generator 33 generates a travel route R2 for traveling from the position P2 on the travel path to the parking position P4 in the parking space S1. On the travel route R2, the first vehicle V1 makes a turnaround at the position P3.
 位置P2では、第1車両V1の走行の自律制御が、目標駐車スペースに向けて走行路を走行する自律制御から、目標駐車スペースの駐車位置P4に駐車する自律制御に移行するため、位置P2のことを、自律制御が移行する移行位置P2とも言う。本実施形態では、車両が駐車するとは、自律制御が移行する移行位置P2から、目標駐車スペースに設定された駐車位置P4まで走行することを言うものとする。移行位置P2では、目標駐車スペースに存在する障害物の検出のほか、走行経路R2を走行するときに設定される所定速度への減速、走行経路R2を走行するための転舵などが開始する。 At the position P2, the autonomous control of the travel of the first vehicle V1 shifts from the autonomous control of traveling on the travel road toward the target parking space to the autonomous control of parking at the parking position P4 of the target parking space. This is also referred to as transition position P2 where autonomous control transitions. In the present embodiment, parking the vehicle means traveling from the transition position P2 where the autonomous control transitions to the parking position P4 set as the target parking space. At the transition position P2, obstacles existing in the target parking space are detected, deceleration to a predetermined speed set when traveling along the travel route R2, and steering for traveling along the travel route R2 are started.
 第1走行部34は、第1車両V1が目標駐車スペースに駐車するように、第1車両V1を、自律走行制御により走行させる機能を有する。第1車両V1は、設定された走行経路に沿って自律制御により走行し、自律制御による駐車を完了させる。第1車両V1の自律走行制御には、車両制御装置16を用いる。図3Aの走行シーンでは、車速制御装置161及び操舵制御装置162を用いて、第1車両V1が走行経路R1及びR2に沿って走行するように、駆動装置、制動装置及び操舵装置を協調制御する。 The first traveling unit 34 has a function of causing the first vehicle V1 to travel by autonomous travel control so that the first vehicle V1 is parked in the target parking space. The first vehicle V1 travels along the set travel route by autonomous control, and completes parking by autonomous control. A vehicle control device 16 is used for autonomous travel control of the first vehicle V1. In the driving scene of FIG. 3A, the vehicle speed control device 161 and the steering control device 162 are used to cooperatively control the driving device, the braking device, and the steering device so that the first vehicle V1 travels along the traveling routes R1 and R2. .
 また、第1走行部34は、目標駐車スペースが駐車可能であると判定された場合に、第1車両V1の方向指示器を点滅させる機能を有する。方向指示器に点滅させる制御信号は、第1走行部34の機能により、第1運転支援装置19から車両制御装置16に入力される。方向指示器は、左右の片側を点滅させても、両側を点滅させてもよい。点滅における灯火と消灯の間隔は、所定の時間間隔(たとえば0.1~1秒)である。 The first traveling unit 34 also has a function of blinking the direction indicator of the first vehicle V1 when it is determined that the target parking space is available for parking. A control signal for blinking the direction indicator is input from the first driving support device 19 to the vehicle control device 16 by the function of the first traveling unit 34 . The direction indicator may blink on one side or both sides. The interval between lighting and extinguishing in blinking is a predetermined time interval (for example, 0.1 to 1 second).
 第1走行部34は、特に、第1車両V1が駐車のための走行動作を開始する前であって、第1車両V1を駐車するための駐車スペースを検出した場合に、左右両側の方向指示器を点滅させる。駐車のための走行動作とは、たとえば、車線変更、幅寄せ、減速、停車及び転舵であり、たとえば、これらの走行動作を開始する前に、第1車両V1の両側の方向指示器の点滅を開始させる。また、駐車のための走行動作を開始する前とは、たとえば、第1車両V1の走行の自律制御が、目標駐車スペースに向かって走行する自律制御から、駐車位置P4に駐車する自律制御に移行する前である。具体的には、乗員が設定した目的地の周辺に到達する前、乗員が設定した目的地に向かって道路を走行している間及び目標駐車スペースに向けて、駐車場の走行路を直進している間などである。 In particular, the first traveling unit 34 detects the parking space for parking the first vehicle V1 before the first vehicle V1 starts traveling for parking. flash the device. Driving motions for parking include, for example, lane change, narrowing, deceleration, stopping, and steering. to start. Further, before starting the traveling operation for parking, for example, the autonomous control of traveling of the first vehicle V1 is shifted from the autonomous control of traveling toward the target parking space to the autonomous control of parking at the parking position P4. before. Specifically, before reaching the vicinity of the destination set by the occupant, while driving on the road toward the destination set by the occupant, and toward the target parking space, the vehicle is driven straight along the road in the parking lot. while
 図3Aに示す走行シーンでは、走行経路R1及びR2を生成する前に、駐車スペースS1及びS2は、第1車両V1が駐車可能であると判定されている。そこで、第1走行部34は、図3Bに示すように、第1車両V1が走行経路R1の位置P5に到達した時に、左右両側の方向指示器を点滅させる。これにより、第1車両V1の後方の位置Q1を走行している第2車両V2に、第1車両V1が駐車を行うことを知らせることができる。なお、本実施形態では、図3Aに示すように、第1車両V1の周囲を走行する車両を第2車両V2と言うこととする。 In the driving scene shown in FIG. 3A, it is determined that the first vehicle V1 can be parked in the parking spaces S1 and S2 before the driving routes R1 and R2 are generated. Therefore, as shown in FIG. 3B, the first traveling unit 34 blinks the left and right direction indicators when the first vehicle V1 reaches the position P5 on the traveling route R1. As a result, the second vehicle V2 traveling at the position Q1 behind the first vehicle V1 can be notified that the first vehicle V1 will be parked. In this embodiment, as shown in FIG. 3A, a vehicle traveling around the first vehicle V1 is referred to as a second vehicle V2.
 次に、第2制御部4の第2検出部41は、駐車スペース及び障害物を含む、第2車両V2の周囲に存在する対象物を検出する機能を有する。第2検出部41は、第1制御部3の第1検出部31と同様の方法で、撮像装置21で取得した画像データと、測距装置22の検出結果とを用いて、第2車両V2の周囲の障害物などを検出する。 Next, the second detection section 41 of the second control section 4 has a function of detecting objects existing around the second vehicle V2, including parking spaces and obstacles. The second detection unit 41 uses the image data acquired by the imaging device 21 and the detection result of the distance measuring device 22 in the same manner as the first detection unit 31 of the first control unit 3 to detect the second vehicle V2. Detects obstacles around the
 本実施形態の第2検出部41は、駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示を検出する。駐車する若しくは駐車状態から発車することを周囲に知らせるとは、特に、第1車両V1が、駐車に伴い転舵及び減速をすること又は発車に伴い転舵及び加速をすることを、第1車両V1の周囲を走行する車両に知らせることを言う。第2車両V2は、第1車両V1の周囲を走行する場合に、第1車両V1から第1表示を検出すると、第1車両V1の加速、減速、転舵及び切り返しなどを考慮して走行する。第1表示には、たとえば、第1車両V1の方向指示器の点滅が含まれ、第1車両V1のロール角の変化及び車速の変化も含まれる。 The second detection unit 41 of the present embodiment detects the first display that informs the surroundings that the vehicle will be parked or that the vehicle will depart from the parked state. Notifying the surroundings that the vehicle will be parked or that it will depart from the parked state means that the first vehicle V1 will steer and decelerate as it parks, or that the first vehicle V1 will steer and accelerate as it departs. It refers to informing vehicles traveling around V1. When the second vehicle V2 detects the first display from the first vehicle V1 while traveling around the first vehicle V1, the second vehicle V2 travels while considering the acceleration, deceleration, steering and turning of the first vehicle V1. . The first display includes, for example, blinking of the direction indicator of the first vehicle V1, and also includes changes in roll angle and vehicle speed of the first vehicle V1.
 また、本実施形態の第2検出部41は、駐車可能な駐車スペースが存在することを外部に知らせる第2表示を検出する。外部に知らせるとは、駐車スペースに存在する駐車車両を検出し、駐車スペースが駐車可能であるか否かを判定し、当該判定結果を、当該駐車スペースの周囲を走行する車両に対して表示することを、車両の車載機器以外の装置(たとえば駐車場が備える検出装置など)を用いて行うことを言う。第2表示は、たとえば、駐車スペースS1~S4に設置された表示灯I1~I4の状態である。表示灯I1~I4は、駐車スペースに設けられたソナー及び車重センサなどに、駐車スペースに駐車する駐車車両を検出させ、検出結果を取得し、駐車スペースが空車状態であれば青色を示し、駐車状態であれば赤色を示す。また、第2検出部41は、第2表示として、表示灯I1~I4の示す状態が、青色から赤色に変化すること(つまり、空車状態から駐車状態に変化すること)と、赤色から青色に変化すること(つまり、駐車状態から空車状態に変化すること)とを検出することができる。 Also, the second detection unit 41 of the present embodiment detects a second display that informs the outside that there is a parking space available for parking. Informing the outside means detecting parked vehicles in the parking space, determining whether or not the parking space can be parked, and displaying the determination result to vehicles traveling around the parking space. This means that the detection is performed using a device other than the on-vehicle equipment of the vehicle (for example, a detection device provided in a parking lot, etc.). The second display is, for example, the status of the indicator lights I1-I4 installed in the parking spaces S1-S4. The indicator lights I1 to I4 detect vehicles parked in the parking space using a sonar and a vehicle weight sensor provided in the parking space, acquire detection results, and indicate blue when the parking space is empty. If it is in a parking state, it shows red. In addition, the second detection unit 41, as a second indication, changes the state indicated by the indicator lamps I1 to I4 from blue to red (that is, changes from an empty state to a parked state), and changes from red to blue. A change (that is, a change from a parked state to an empty state) can be detected.
 図3Bに示す走行シーンでは、第2車両V2はQ1の位置を走行しており、撮像装置21を用いて、第1車両V1の方向指示器の点滅を検出することができる。また、撮像装置21を用いて、表示灯I1~I4の表示する状態を検出することができる。表示灯I1及びI2は、それぞれ、駐車スペースS1及びS2が空車状態であることを表示しており、当該表示は、第1車両V1の位置P5から検出することが可能である。したがって、表示灯I1及びI2は、周囲を走行する第1車両V1に対して、駐車スペースS1及びS2が駐車可能であることを表示しているといえる。このように、第1車両V1と、表示灯などの表示手段との位置関係などに基づいて、第2表示を検出する。 In the driving scene shown in FIG. 3B, the second vehicle V2 is driving at the position Q1, and the imaging device 21 can be used to detect blinking of the direction indicator of the first vehicle V1. In addition, the imaging device 21 can be used to detect the states displayed by the indicator lamps I1 to I4. The indicator lights I1 and I2 indicate that the parking spaces S1 and S2 are empty, respectively, and this indication can be detected from the position P5 of the first vehicle V1. Therefore, it can be said that the indicator lights I1 and I2 indicate to the first vehicle V1 traveling around that the parking spaces S1 and S2 can be parked. Thus, the second display is detected based on the positional relationship between the first vehicle V1 and the display means such as the indicator lamp.
 第2判定部42は、第1表示を、第2車両の進行方向の前方を走行する第1車両V1から検出した場合に、第2車両V2の進路が、第1車両V1が駐車するときに通過する又は第1車両V1が駐車状態から発車するときに通過する通過領域と交錯するか否かを判定する機能を有する。また、第2判定部42は、第2車両V2の進行方向の前方に存在する第2表示を検出した場合にも、2車両V2の進路が、通過領域と交錯するか否かを判定する機能を有する。第2車両V2には、第1車両V1の周囲を走行しているあらゆる車両が含まれ、第2車両V2の走行位置は、第1車両V1の前方であっても後方であってもよい。また、第2車両V2は、前進していても後退していてもよい。なお、進行方向の前方とは、第2車両V2が前進している場合は、第2車両V2の前方を示し、第2車両V2が後退している場合は、第2車両V2の後方を示すものとする。 When the first display is detected from the first vehicle V1 traveling in front of the second vehicle in the direction of travel, the second determination unit 42 determines that the route of the second vehicle V2 is the same as when the first vehicle V1 is parked. It has a function of determining whether or not it intersects with a passage area through which the first vehicle V1 passes or when it departs from a parked state. The second determination unit 42 also has a function of determining whether or not the paths of the two vehicles V2 intersect with the passage area even when the second display present in front of the second vehicle V2 in the traveling direction is detected. have The second vehicle V2 includes all vehicles traveling around the first vehicle V1, and the traveling position of the second vehicle V2 may be in front of or behind the first vehicle V1. Also, the second vehicle V2 may be moving forward or backward. Note that the front in the traveling direction indicates the front of the second vehicle V2 when the second vehicle V2 is moving forward, and indicates the rear of the second vehicle V2 when the second vehicle V2 is moving backward. shall be
 通過領域とは、たとえば、図3Bに示す領域Xのように、移行位置P2から駐車位置P4まで走行する走行経路R2に沿って走行した場合に、第1車両V1の車体が通過する領域である。具体的には、撮像装置21で取得した第1車両V1の画像データと、測距装置22で検出した第1車両V1の位置情報に基づいて、車速の変化、方向指示器の点滅開始位置及び転舵の開始位置などから、第1車両V1が駐車しようとしている駐車スペースを推定する。そして、第1車両V1の現在位置から、推定された目標駐車スペースに駐車するための駐車経路を算出し、当該駐車経路を用いて通過領域Xを設定する。 The passage area is, for example, an area through which the body of the first vehicle V1 passes when traveling along a travel route R2 that travels from the transition position P2 to the parking position P4, like the area X shown in FIG. 3B. . Specifically, based on the image data of the first vehicle V1 acquired by the imaging device 21 and the position information of the first vehicle V1 detected by the distance measuring device 22, the change in vehicle speed, the blinking start position of the direction indicator, and the The parking space where the first vehicle V1 is going to park is estimated from the steering start position and the like. Then, a parking route for parking in the estimated target parking space is calculated from the current position of the first vehicle V1, and the passage area X is set using the parking route.
 通過領域Xは、第1車両V1を平面視した場合に、たとえば矩形の領域として設定する。また、第2車両V2の進路が、通過領域と交錯するか否かを判定する場合は、まず、第2車両V2を平面視した場合に、設定された経路に沿って走行する第2車両V2の車体が通過する領域を設定する。そして、第2車両V2の車体が通過する領域の一部又は全部が、第1車両V1の通過領域に含まれているか否かを判定する。すなわち、第2車両V2を平面視した場合に、第2車両V2の車体が通過する領域の少なくとも一部が通過領域に含まれている場合は、第2車両V2の進路が通過領域と交錯すると判定し、第2車両V2の車体が通過する領域の全体が通過領域に含まれていない場合は、第2車両V2の進路が通過領域と交錯しないと判定する。 The passage area X is set as, for example, a rectangular area when the first vehicle V1 is viewed from above. When determining whether or not the route of the second vehicle V2 intersects with the passage area, first, when the second vehicle V2 is viewed from above, the second vehicle V2 traveling along the set route is Set the area through which the vehicle body of the Then, it is determined whether part or all of the area through which the vehicle body of the second vehicle V2 passes is included in the passage area of the first vehicle V1. That is, in a plan view of the second vehicle V2, if at least part of the area through which the vehicle body of the second vehicle V2 passes is included in the passage area, if the course of the second vehicle V2 intersects the passage area, If it is determined that the entire area through which the vehicle body of the second vehicle V2 passes is not included in the passage area, it is determined that the course of the second vehicle V2 does not cross the passage area.
 図3Bに示す走行シーンでは、第2車両V2は、設定された経路に沿って、走行路を図面の下側から上側に向けて直進するものとする。この場合に、第2車両V2を平面視すると、第2車両V2の車体が通過する領域Yの一部が通過領域Xに含まれているため、第2車両V2の進路は通過領域Xと交錯すると判定する。そして、第2車両V2の進路が、通過領域Xと交錯すると判定されたときは、第2車両V2が通過領域Xに進入しないように、第2車両V2の走行を自律制御する。具体的には、第2判定部42の機能により、第2車両V2が第1車両V1を回避できるか否かを判定する。当該判定には、第1車両V1及び第2車両V2の全長及び全幅、障害物の位置並びに第2車両V2最小回転半径などを用いる。第2車両V2が第1車両V1を回避できないと判定された場合は、自律制御により、通過領域Xの手前に第2車両V2を停車させる。これに対して、第2車両V2が第1車両V1を回避できると判定された場合は、自律制御により、第1車両V1を回避するように第2車両V2を走行させる。 In the driving scene shown in FIG. 3B, it is assumed that the second vehicle V2 travels straight from the lower side of the drawing to the upper side along the set route. In this case, when the second vehicle V2 is viewed from above, part of the area Y through which the body of the second vehicle V2 passes is included in the passage area X, so the course of the second vehicle V2 intersects with the passage area X. Then judge. Then, when it is determined that the course of the second vehicle V2 intersects with the passage area X, the travel of the second vehicle V2 is autonomously controlled so that the second vehicle V2 does not enter the passage area X. Specifically, the function of the second determination unit 42 determines whether or not the second vehicle V2 can avoid the first vehicle V1. For this determination, the total length and width of the first vehicle V1 and the second vehicle V2, the position of the obstacle, the minimum turning radius of the second vehicle V2, and the like are used. When it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the second vehicle V2 is stopped before the passage area X by autonomous control. On the other hand, when it is determined that the second vehicle V2 can avoid the first vehicle V1, the second vehicle V2 is driven to avoid the first vehicle V1 by autonomous control.
 一方、第2車両V2の進路が通過領域Xと交錯しないと判定された場合は、第2車両V2が第1車両V1の走行を妨げるおそれがないため、第2車両V2は、設定された経路に沿った走行を継続する。第2車両V2を自律走行させる場合は、第2生成部43の機能により走行経路を生成し、第2走行部44の機能により、第2車両V2の走行動作を自律制御する。第2生成部43で走行経路を生成する方法は、第1生成部33と同様であり、第2判定部42の判定結果を踏まえて、全幅、全長及び最小回転半径、走行路又は道路の幅員、周囲に存在する障害物の位置などを用いて、目標位置まで走行する走行経路を生成する。また、第2走行部44は、第1走行部34と同様に、設定された走行経路に沿って自律制御するように、車両制御装置26の車速制御装置261及び操舵制御装置262を用いて、駆動装置、制動装置及び操舵装置を協調制御する。 On the other hand, when it is determined that the route of the second vehicle V2 does not intersect with the passage area X, the second vehicle V2 does not impede the running of the first vehicle V1, so the second vehicle V2 follows the set route. continue running along When the second vehicle V2 is caused to travel autonomously, the function of the second generation unit 43 is used to generate a travel route, and the function of the second travel unit 44 is used to autonomously control the travel operation of the second vehicle V2. The method of generating the travel route by the second generation unit 43 is the same as that of the first generation unit 33, and based on the determination result of the second determination unit 42, the overall width, the overall length, the minimum turning radius, the width of the travel path or road , the positions of obstacles existing in the surroundings, and the like are used to generate a travel route for traveling to the target position. Further, like the first traveling unit 34, the second traveling unit 44 uses the vehicle speed control device 261 and the steering control device 262 of the vehicle control device 26 so as to perform autonomous control along the set travel route. Coordinated control of the drive, brake and steering systems.
 図3Bの走行シーンで、第2車両V2が第1車両V1を回避できないと判定された場合は、たとえば図3Cに示すように、通過領域Xの手前の位置Q2を停車位置に設定し、第2生成部43の機能により、現在位置である位置Q1から停車位置Q2まで走行する走行経路T1を生成する。そして、第2走行部44の機能により、第2車両V2を走行経路T1に沿って走行させ、位置Q2に停車させる。この場合に、停車位置を設定せずに、第1車両V1と第2車両V2との離間距離又は通過領域Xと第2車両V2との離間距離を設定し、設定した離間距離を維持するように第2車両V2を走行させてもよい。図3Cの走行シーンでは、第2車両V2が位置Q2まで走行する間に、第1車両V1は位置P6まで走行しており、第1車両V1と第2車両V2との離間距離は、第2車両V2が、第1車両V1の駐車を妨げない距離となっている。なお、第1車両V1の方向指示器は、駐車位置P4に駐車するまで点滅し続けても良いし、第2車両V2が停車する又は切り返し位置P3に到達するなどの所定のタイミングで消灯してもよい。 In the driving scene of FIG. 3B, when it is determined that the second vehicle V2 cannot avoid the first vehicle V1, for example, as shown in FIG. The function of the 2 generation unit 43 generates a travel route T1 that travels from the position Q1, which is the current position, to the stop position Q2. Then, the function of the second traveling section 44 causes the second vehicle V2 to travel along the travel route T1 and stop at the position Q2. In this case, the distance between the first vehicle V1 and the second vehicle V2 or the distance between the passage area X and the second vehicle V2 is set without setting the stop position, and the set distance is maintained. , the second vehicle V2 may be driven. In the driving scene of FIG. 3C, the first vehicle V1 is traveling to position P6 while the second vehicle V2 is traveling to position Q2, and the separation distance between the first vehicle V1 and second vehicle V2 is the second vehicle V2. The distance is such that the vehicle V2 does not interfere with the parking of the first vehicle V1. The direction indicator of the first vehicle V1 may continue to flash until it is parked at the parking position P4, or may be extinguished at a predetermined timing such as when the second vehicle V2 stops or reaches the turning position P3. good too.
 これに対して、図3Bの走行シーンで、第2車両V2が第1車両V1を回避できると判定された場合は、たとえば図3Cに示すように、位置Q3を目標位置に設定し、第2生成部43の機能により、現在位置である位置Q1から目標位置Q3まで走行する走行経路T2を生成する。そして、第2走行部44の機能により、第2車両V2を走行経路T2に沿って走行させ、第1車両V1を追い越す。図3Cに示すように、第2車両V2は、通過領域Xに進入することなく、第1車両V1を追い越すことができる。ここで、第1車両V1を回避するとは、特に、第2車両V2を停車させずに、走行方向と車速を変化させて第1車両V1を回避することを言う。第2車両V2が第1車両V1の後続車両である場合には、第1車両V1の回避は、第1車両V1を追い越すこと及び追い抜くことを含む。また、走行方向を変化させて、第2車両V2が現在走行している走行路から、異なる走行路に進入することも、第1車両V1の回避に含まれる。 On the other hand, in the driving scene of FIG. 3B, when it is determined that the second vehicle V2 can avoid the first vehicle V1, for example, as shown in FIG. The function of the generator 43 generates a travel route T2 that travels from the current position Q1 to the target position Q3. Then, the function of the second traveling section 44 causes the second vehicle V2 to travel along the travel route T2 and overtake the first vehicle V1. As shown in FIG. 3C, the second vehicle V2 can overtake the first vehicle V1 without entering the passage area X. As shown in FIG. Here, avoiding the first vehicle V1 specifically means avoiding the first vehicle V1 by changing the traveling direction and the vehicle speed without stopping the second vehicle V2. Avoidance of the first vehicle V1 includes overtaking and overtaking the first vehicle V1 if the second vehicle V2 is a following vehicle of the first vehicle V1. Avoiding the first vehicle V1 also includes changing the traveling direction to enter a different traveling path from the traveling path on which the second vehicle V2 is currently traveling.
 また、第2判定部42は、第2車両V2が通過領域Xに進入しているか否かを判定することができる。第2車両V2が通過領域Xに進入しているか否かを判定する場合は、第2車両V2を平面視した場合に、第2車両V2の車体の一部又は全部が通過領域Xに含まれているか否かで判定する。すなわち、第2車両V2を平面視した場合に、第2車両V2の車体の少なくとも一部が通過領域Xに含まれている場合は、第2車両V2が通過領域に進入していると判定し、第2車両V2の車体の全体が通過領域Xに含まれていない場合は、第2車両V2が通過領域に進入していないと判定する。 In addition, the second determination unit 42 can determine whether or not the second vehicle V2 is entering the passage area X. When determining whether or not the second vehicle V2 is entering the passage area X, part or all of the vehicle body of the second vehicle V2 is included in the passage area X when the second vehicle V2 is viewed from above. It is determined by whether or not That is, if at least a portion of the vehicle body of the second vehicle V2 is included in the passage area X when the second vehicle V2 is viewed from above, it is determined that the second vehicle V2 is entering the passage area. If the entire vehicle body of the second vehicle V2 is not included in the passage area X, it is determined that the second vehicle V2 has not entered the passage area.
 そして、第2判定部42の機能により、第2車両V2が、通過領域Xに進入していると判定された場合は、第2車両V2が通過領域Xから退出するように、第2車両V2の走行を自律制御する。具体的には、第2車両V2が第1車両V1を回避できるか否かを判定し、第2車両V2が第1車両V1を回避できると判定した場合は、自律制御により、第1車両V1を回避するように第2車両V2を走行させる。これに対して、第2車両V2が第1車両V1を回避できないと判定された場合は、自律制御により、第2車両V2を停車させ、第2車両V2の停車後に、通過領域Xの手前まで第2車両V2を後退させて停車させる。停車した第2車両V2は、第1車両V1が、第2車両V2の車体が通過する領域Yを通り過ぎた後に発車し、継続に沿った走行を続ける。この際、第2車両V2は、第1車両V1の駐車が完了するまで停車し続けてもよいが、平面視した場合に、第1車両V1の車体全体が領域Yに含まれなくなった時点で、発車してもよい。これは、第2車両V2が、図3Cに示す位置Q2に停車した場合も同様である。 Then, when it is determined by the function of the second determination unit 42 that the second vehicle V2 is entering the passage area X, the second vehicle V2 is controlled so that the second vehicle V2 exits the passage area X. autonomously control the running of the Specifically, it is determined whether or not the second vehicle V2 can avoid the first vehicle V1. When it is determined that the second vehicle V2 can avoid the first vehicle V1, the first vehicle V1 is controlled by autonomous control. The second vehicle V2 is driven so as to avoid On the other hand, if it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the second vehicle V2 is stopped by autonomous control, and after the second vehicle V2 has stopped, the vehicle passes through the passage area X. The second vehicle V2 is reversed and stopped. The stopped second vehicle V2 departs after the first vehicle V1 passes through the area Y through which the body of the second vehicle V2 passes, and continues running along the continuation. At this time, the second vehicle V2 may continue to stop until the parking of the first vehicle V1 is completed. , may depart. This is the same when the second vehicle V2 stops at the position Q2 shown in FIG. 3C.
 図4Aの走行シーンでは、第1車両V1と第2車両V2との車間距離が短かったため、第2車両V2の減速開始が遅れ、第1車両V1が位置P6を走行している時に、第2車両V2が位置Q4を走行しているものとする。この場合、第2車両V2を平面視したときに、第2車両V2の車体の一部が通過領域Xに含まれているため、第2車両V2は、通過領域Xに進入していると判定される。次に、第2車両V2が第1車両V1を回避できるか否かを判定する。第2車両V2が第1車両V1を回避できると判定された場合は、図3Cに示す走行シーンと同様に、位置Q3を目標位置に設定し、第2生成部43の機能により、現在位置である位置Q4から目標位置Q3まで走行する走行経路T3を生成する。そして、第2走行部44の機能により、第2車両V2を走行経路T3に沿って走行させ、第1車両V1を追い越す。 In the driving scene of FIG. 4A, the inter-vehicle distance between the first vehicle V1 and the second vehicle V2 was short, so the start of deceleration of the second vehicle V2 was delayed. Assume that vehicle V2 is traveling at position Q4. In this case, since part of the body of the second vehicle V2 is included in the passage area X when the second vehicle V2 is viewed from above, it is determined that the second vehicle V2 is entering the passage area X. be done. Next, it is determined whether or not the second vehicle V2 can avoid the first vehicle V1. When it is determined that the second vehicle V2 can avoid the first vehicle V1, the position Q3 is set as the target position, and the function of the second generation unit 43 generates A travel route T3 that travels from a certain position Q4 to a target position Q3 is generated. Then, the function of the second traveling section 44 causes the second vehicle V2 to travel along the travel route T3 and overtake the first vehicle V1.
 これに対して、第2車両V2が第1車両V1を回避できないと判定された場合は、第2車両V2を位置Q5に停車させる。この際、停車位置を位置Q5に設定し、第2生成部43の機能により走行経路T4aを生成し、第2走行部44の機能により、第2車両V2を走行経路T4に沿って走行させる。又はこれに代えて、走行経路T4aを生成することなく、第2走行部44の機能により、第2車両V2の減速度を設定し、転舵せずに第2車両V2を停車させるように自律制御する。そして、第2車両V2が位置Q5に停車した後、図4Bに示すように、第2車両V2を、通過領域Xの手前まで位置である位置Q2まで後退させて停車させる。この際、第2生成部43の機能により、位置Q5から位置Q2まで走行する走行経路T4bを生成する。停車した第2車両V2は、たとえば、第1車両V1が駐車位置P4に到達した後に又は第1車両V1の車体全体が領域Yに含まれず、第1車両V1と第2車両V2とが接触するおそれがなくなった後に、位置Q2から発車する。 On the other hand, if it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the second vehicle V2 is stopped at the position Q5. At this time, the stop position is set to the position Q5, the function of the second generator 43 generates the travel route T4a, and the function of the second travel unit 44 causes the second vehicle V2 to travel along the travel route T4. Alternatively, instead of generating the travel route T4a, the function of the second travel unit 44 is used to set the deceleration of the second vehicle V2 and autonomously stop the second vehicle V2 without steering. Control. After the second vehicle V2 stops at the position Q5, the second vehicle V2 is reversed to the position Q2, which is a position before the passing area X, and stopped as shown in FIG. 4B. At this time, the function of the second generator 43 generates a travel route T4b traveling from the position Q5 to the position Q2. The stopped second vehicle V2 comes into contact with the first vehicle V1 and the second vehicle V2, for example, after the first vehicle V1 reaches the parking position P4 or when the entire vehicle body of the first vehicle V1 is not included in the region Y. After the fear has passed, the vehicle departs from position Q2.
 次に、第1車両V1が駐車状態から発車する場合について説明する。図5Aに示す走行シーンは、図3Aに示す駐車場と同じ駐車場で、第1車両V1が、駐車スペースS3の駐車位置P7から発車しようとしているシーンである。図5Aに示す走行シーンでは、駐車スペースS1に駐車車両V5が駐車しており、駐車スペースS4に駐車車両V4が駐車している。また、第2車両V2aが、図面上側に向かってQ6の位置を走行し、第2車両V2bが、図面下側に向かってQ7の位置を走行している。 Next, the case where the first vehicle V1 departs from the parked state will be described. The driving scene shown in FIG. 5A is the same parking lot as the parking lot shown in FIG. 3A, and the first vehicle V1 is about to depart from the parking position P7 in the parking space S3. In the driving scene shown in FIG. 5A, the parked vehicle V5 is parked in the parking space S1, and the parked vehicle V4 is parked in the parking space S4. In addition, the second vehicle V2a runs at position Q6 toward the upper side of the drawing, and the second vehicle V2b runs at position Q7 toward the lower side of the drawing.
 図5Aに示す走行シーンでは、まず、第1制御部3の第1検出部31の機能により、第1車両V1の周囲の障害物として、駐車車両V4及びV5と、第2車両V2a及びV2bとを検出する。次に、第1生成部33の機能により、障害物の検出結果を用いて、駐車位置P7から発車するための走行経路を生成する。第1車両V1が右折して発車する場合には、たとえば図5Aに示す走行経路R3を生成する。図5Aに示す走行経路R3は、駐車位置P7から位置P10まで走行するものであり、位置P8と位置P9で切り返しを行う。第1車両V1が位置P10に到達すると、第1生成部33は、位置P10から位置P11まで、駐車場の走行路を直進する走行経路R4を生成する。 In the driving scene shown in FIG. 5A, first, by the function of the first detection unit 31 of the first control unit 3, parked vehicles V4 and V5 and second vehicles V2a and V2b are detected as obstacles around the first vehicle V1. to detect Next, the function of the first generator 33 generates a travel route for starting from the parking position P7 using the obstacle detection result. When the first vehicle V1 turns right and departs, for example, a travel route R3 shown in FIG. 5A is generated. A travel route R3 shown in FIG. 5A travels from a parking position P7 to a position P10, and turns at positions P8 and P9. When the first vehicle V1 reaches the position P10, the first generation unit 33 generates a travel route R4 that travels straight on the travel path of the parking lot from the position P10 to the position P11.
 位置P10では、第1車両V1の走行の自律制御が、駐車スペースから発車する自律制御から、駐車場の出口に向かって走行路を走行する自律制御に移行するため、位置P10のことを、自律制御が移行する移行位置P10とも言う。本実施形態では、車両が駐車状態から発車するとは、目標駐車スペースに設定された駐車位置P7から、自律制御が移行する移行位置P10まで走行することを言うものとする。 At the position P10, the autonomous control of the travel of the first vehicle V1 shifts from the autonomous control in which the vehicle departs from the parking space to the autonomous control in which it travels along the travel road toward the exit of the parking lot. It is also referred to as a transition position P10 where control transitions. In this embodiment, the vehicle starts from the parked state means that the vehicle travels from the parking position P7 set in the target parking space to the transition position P10 to which the autonomous control transitions.
 走行経路R3及びR4が生成されると、第1走行部34の機能により、第1車両V1が走行経路R3及びR4に沿って走行するように、第1車両V1の走行を自律制御する。また、第1走行部34は、第1車両V1が発車のための走行動作を開始する前に、方向指示器を点滅させる。図5Aに示す走行シーンでは、第1車両V1の右側の方向指示器を点滅させている。駐車のための走行動作とは、たとえば、加速、減速、転舵及び切り返しのための停車であり、たとえば、これらの走行動作を開始する前に、発車後に向かう方向の方向指示器を点滅させる。また、駐車のための走行動作を開始する前とは、たとえば、駐車位置P7に駐車している状態である。 When the travel routes R3 and R4 are generated, the function of the first travel unit 34 autonomously controls travel of the first vehicle V1 so that the first vehicle V1 travels along the travel routes R3 and R4. In addition, the first traveling unit 34 flashes the direction indicator before the first vehicle V1 starts traveling for departure. In the driving scene shown in FIG. 5A, the turn indicator on the right side of the first vehicle V1 is blinking. Running motions for parking are, for example, acceleration, deceleration, steering, and stopping for turning back. For example, before starting these running motions, blink the direction indicator in the direction to which the vehicle is headed after departure. Moreover, before starting the traveling operation for parking is, for example, the state in which the vehicle is parked at the parking position P7.
 第1車両V1が方向指示器を点滅させると、第2検出部41は、駐車状態から発車することを周囲に知らせる第1表示を、第2車両V2a及びV2bの進行方向の前方において検出する。図5Aに示す走行シーンでは、第1車両V1の右側の方向指示器の点滅が、第1表示である。この際、第2検出部41は、方向指示器の点滅に加えて、表示灯I3の示す状態が赤色(駐車状態)から青色(空車状態)に変化することを検出することができる。次に、第2判定部42の機能により、第1車両V1が駐車状態から発車するときに通過する通過領域Xaを設定し、第2車両V2a及びV2bの進路が、通過領域Xaと交錯するか否かを判定する。具体的には、図5Aに示す通過領域Xaが設定され、これに加えて、第2車両V2aが、設定された経路に沿って走行するときに車体が通過する領域Yaと、第2車両V2bが、設定された経路に沿って走行するときに車体が通過する領域Ybとが設定される。図5Aに示す走行シーンでは、第2車両V2を平面視した場合に、領域Ya及びYbのどちらも、その一部が通過領域Xaに含まれているため、第2車両V2a及びV2bの進路は通過領域Xaと交錯すると判定する。 When the first vehicle V1 flashes its direction indicator, the second detection unit 41 detects a first display in front of the second vehicles V2a and V2b in the direction of travel that informs the surroundings that the vehicle will depart from the parked state. In the driving scene shown in FIG. 5A, blinking of the turn indicator on the right side of the first vehicle V1 is the first display. At this time, the second detection unit 41 can detect a change in the state indicated by the indicator lamp I3 from red (parking state) to blue (empty state) in addition to blinking of the direction indicator. Next, by the function of the second determination unit 42, a passing area Xa through which the first vehicle V1 passes when starting from the parked state is set, and whether the paths of the second vehicles V2a and V2b intersect with the passing area Xa is determined. determine whether or not Specifically, a passage area Xa shown in FIG. 5A is set, and in addition, an area Ya through which the vehicle body passes when the second vehicle V2a travels along the set route, and a second vehicle V2b. However, an area Yb through which the vehicle body passes when traveling along the set route is set. In the driving scene shown in FIG. 5A, when the second vehicle V2 is viewed from above, both the areas Ya and Yb are partly included in the passing area Xa, so the paths of the second vehicles V2a and V2b are It is determined that it intersects with the passing area Xa.
 次に、第2判定部42は、第2車両V2a及びV2bが第1車両V1を回避できるか否かを判定する。図5Aに示す走行シーンでは、第2車両V2aは第1車両V1を回避できず、第2車両V2bは第1車両V1を回避できると判定されたものとする。この場合、第2生成部43により、図5Bに示す走行経路T5及びT6が生成される。第2走行部44の機能により、第2車両V2aは、走行経路T5に沿って走行し、通過領域Xaの手前の位置Q8に停車される。これに対して、第2車両V2bは、走行経路T6に沿って走行し、第1車両V1を回避するとともに、位置Q9まで走行する。このとき、第1車両V1は位置P12を走行しており、第2車両V2a及びV2bに走行を妨げられることなく、位置P11まで走行し、発車を完了することができる。停車した第2車両V2aは、たとえば、第1車両V1が移行位置P10又は位置P11に到達した後に、発車する。又はこれに代えて、停車した第2車両V2aは、第1車両V1と第2車両V2との離間距離が、所定距離を超えた場合に発車する。当該所定距離は、第1車両V1と第2車両V2との接触が回避できる範囲内で、適宜の値(たとえば0.5~20m)を設定できる。又はこれに代えて、停車した第2車両V2aは、表示灯I3の示す状態が、赤色から青色に(つまり駐車状態から空車状態に)変化したときに発車する。 Next, the second determination unit 42 determines whether or not the second vehicles V2a and V2b can avoid the first vehicle V1. In the driving scene shown in FIG. 5A, it is determined that the second vehicle V2a cannot avoid the first vehicle V1 and the second vehicle V2b can avoid the first vehicle V1. In this case, the travel routes T5 and T6 shown in FIG. 5B are generated by the second generator 43 . Due to the function of the second travel section 44, the second vehicle V2a travels along the travel route T5 and stops at a position Q8 in front of the passage area Xa. On the other hand, the second vehicle V2b travels along the travel route T6 to avoid the first vehicle V1 and travels to the position Q9. At this time, the first vehicle V1 is traveling at the position P12, and can travel to the position P11 without being hindered by the second vehicles V2a and V2b to complete the departure. The stopped second vehicle V2a departs, for example, after the first vehicle V1 reaches the transition position P10 or the position P11. Alternatively, the stopped second vehicle V2a starts when the separation distance between the first vehicle V1 and the second vehicle V2 exceeds a predetermined distance. The predetermined distance can be set to an appropriate value (for example, 0.5 to 20 m) within a range in which contact between the first vehicle V1 and the second vehicle V2 can be avoided. Alternatively, the stopped second vehicle V2a starts when the state indicated by the indicator lamp I3 changes from red to blue (that is, from the parked state to the empty state).
 なお、図3Cに示す通過領域Xと、図5Bに示す通過領域Xaとを比較すると、通過領域Xaの方が、第2車両V2の走行方向で手前側(つまり図面下側)まで延びていることがわかる。そこで、第1車両V1が、駐車状態から切り返して発車する場合は、第1車両V1が発車するときに第2車両V2を停車させる位置Q8を、第1車両V1が切り返して駐車するときよりも手前側に設定してもよい。これにより、駐車する場合の切り返しと、発車する場合の切り返しとの挙動の違いを、あらかじめ見込むことができる。 3C and the passage area Xa shown in FIG. 5B, the passage area Xa extends to the near side (that is, to the bottom of the drawing) in the running direction of the second vehicle V2. I understand. Therefore, when the first vehicle V1 turns back from the parked state and departs, the position Q8 at which the second vehicle V2 is to be stopped when the first vehicle V1 departs is set higher than when the first vehicle V1 turns back and parks. It may be set on the front side. As a result, it is possible to anticipate in advance the difference in behavior between the turning back when parking and the turning back when departing.
 ここまで、第1運転支援システム及び第2運転支援システムを用いて、駐車場における第1車両V1及び第2車両V2の走行を自律制御することについて説明したが、本発明は、駐車場に駐車するシーンのほか、道路の路肩に駐車するシーン、高速道路などで前方車両が方向指示器を点滅させて停車するシーンなどにも適用することができる。 So far, autonomous control of the first vehicle V1 and the second vehicle V2 in the parking lot has been described using the first driving assistance system and the second driving assistance system. It can also be applied to scenes where the vehicle is parked on the shoulder of the road, and scenes where the vehicle in front stops on a highway with its turn signal blinking.
[第1運転支援システム及び第2運転支援システムの処理]
 図6及び7を参照して、第1運転支援装置19及び第2運転支援装置29が、それぞれ、第1車両V1及び第2車両V2の自律走行制御を実行する際の処理を説明する。図6は、図1の第1運転支援システム1における情報の処理手順を示すフローチャートの一例である。以下に説明する処理は、第1車両V1が目的地の周辺で駐車する場合に、第1運転支援装置19のCPU(プロセッサ)191により、所定の時間間隔で実行される。
[Processing of First Driving Support System and Second Driving Support System]
With reference to FIGS. 6 and 7, the processing when the first driving assistance device 19 and the second driving assistance device 29 respectively execute the autonomous travel control of the first vehicle V1 and the second vehicle V2 will be described. FIG. 6 is an example of a flowchart showing an information processing procedure in the first driving support system 1 of FIG. The processing described below is executed at predetermined time intervals by the CPU (processor) 191 of the first driving assistance device 19 when the first vehicle V1 is parked near the destination.
 まず、ステップS1にて、第1検出部31の機能により、撮像装置11を用いて駐車スペースを検出し、続くステップS2にて、駐車スペースが検出できたか否かを判定する。駐車スペースが検出できなかったと判定した場合は、ステップS1に進み、再度駐車スペースを検出する。駐車スペースの検出を所定回数(たとえば5回)以上繰り返した場合は、ルーチンの実行を停止し、CPU191による処理を終了する。これに対して、駐車スペースが検出できたと判定した場合は、ステップS3に進む。 First, in step S1, the function of the first detection unit 31 detects a parking space using the imaging device 11, and in subsequent step S2, it is determined whether or not the parking space has been detected. When it is determined that the parking space could not be detected, the process proceeds to step S1, and the parking space is detected again. When the detection of the parking space is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 191 ends. On the other hand, if it is determined that the parking space has been detected, the process proceeds to step S3.
 ステップS3にて、第1検出部31の機能により、駐車スペース及び駐車スペースの周囲の障害物を検出し、続くステップS4にて、第1判定部32の機能により、第1車両V1が駐車スペースに駐車できるか否かを判定する。第1車両V1が駐車できないと判定した場合は、ステップS1に進み、再度駐車スペースを検出する。駐車スペースの検出を所定回数(たとえば5回)以上繰り返した場合は、ルーチンの実行を停止し、CPU191による処理を終了する。これに対して、駐車スペースが検出できたと判定した場合は、ステップS5に進む。 In step S3, the function of the first detection unit 31 detects the parking space and obstacles around the parking space. determines whether or not parking is possible. When it is determined that the first vehicle V1 cannot be parked, the process proceeds to step S1, and the parking space is detected again. When the detection of the parking space is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 191 ends. On the other hand, if it is determined that the parking space has been detected, the process proceeds to step S5.
 ステップS5にて、第1生成部33の機能により、検出された駐車スペースの中から目標駐車スペースを設定し、目標駐車スペースに駐車位置を設定したうえで、第1車両V1が、現在位置P1から駐車位置P4まで走行する走行経路を生成する。続くステップS6にて、第1走行部34の機能により、第1車両V1の方向指示器を点滅させ、続くステップS7にて、車両制御装置16を用いて、走行経路に沿って走行するように、第1車両V1の走行を自律制御する。第1車両V1の駐車完了後、ルーチンの実行を停止し、CPU191による処理を終了する。 In step S5, the function of the first generator 33 sets a target parking space from among the detected parking spaces, sets a parking position in the target parking space, and then the first vehicle V1 moves to the current position P1. to the parking position P4. In subsequent step S6, the direction indicator of the first vehicle V1 is flashed by the function of the first traveling unit 34, and in subsequent step S7, the vehicle controller 16 is used to cause the vehicle to travel along the travel route. , autonomously control the running of the first vehicle V1. After the parking of the first vehicle V1 is completed, the execution of the routine is stopped, and the processing by the CPU 191 ends.
 次に、図7は、図2の第2運転支援システム2における情報の処理手順を示すフローチャートの一例である。図8に示す例では、第2車両は、第1車両の後続車両であるものととする。以下に説明する処理は、第2運転支援装置29のCPU(プロセッサ)291により、所定の時間間隔で実行される。 Next, FIG. 7 is an example of a flowchart showing an information processing procedure in the second driving support system 2 of FIG. In the example shown in FIG. 8, it is assumed that the second vehicle is a following vehicle of the first vehicle. The processing described below is executed at predetermined time intervals by the CPU (processor) 291 of the second driving support device 29 .
 まず、ステップS11にて、第2検出部41の機能により、撮像装置21を用いて第1車両の方向指示器の点滅を検出し、続くステップS12にて、駐車場の表示灯が示す、駐車スペースの状態を検出する。続くステップS13にて、第2車両V2の先行車両である第1車両の方向指示器の点滅又は第2車両V2の進行方向の前方における表示灯の空車状態を検出できたか否かを判定する。第1車両の方向指示器の点滅も、表示灯の空車状態も検出できなかったと判定した場合は、ステップS11に進み、再度第1車両の方向指示器の点滅を検出する。方向指示器の点滅の検出を所定回数(たとえば5回)以上繰り返した場合は、ルーチンの実行を停止し、CPU291による処理を終了する。これに対して、第1車両の方向指示器の点滅又は第2車両V2の進行方向の前方における表示灯の空車状態が検出できたと判定した場合は、ステップS14に進む。 First, in step S11, by the function of the second detection unit 41, the imaging device 21 is used to detect blinking of the direction indicator of the first vehicle. Detect space status. In the subsequent step S13, it is determined whether or not the flickering of the direction indicator of the first vehicle, which is the preceding vehicle of the second vehicle V2, or the vacant state of the indicator lamp ahead of the second vehicle V2 in the traveling direction has been detected. If it is determined that neither the blinking of the direction indicator of the first vehicle nor the vacant state of the indicator lamp can be detected, the process proceeds to step S11, and the blinking of the direction indicator of the first vehicle is detected again. When the detection of blinking of the direction indicator is repeated a predetermined number of times (for example, 5 times) or more, the execution of the routine is stopped and the processing by the CPU 291 is terminated. On the other hand, if it is determined that the blinking of the direction indicator of the first vehicle or the vacant state of the indicator lamp in front of the second vehicle V2 in the traveling direction has been detected, the process proceeds to step S14.
 ステップS14にて、第2判定部42の機能により、第1車両V1が駐車する走行経路を推定し、続くステップS15にて、推定した駐車経路を基に、第1車両V1の通過領域Xを設定する。続くステップS16にて、第2車両V2が設定された経路に沿って走行した場合に、第2車両V2の車体が通過する領域Yを設定する。そして、ステップS17にて、設定した通過領域X及び領域Yを用いて、第2車両V2の進路が、第1車両V1の通過領域Xと交錯するか否かを判定する。第2車両V2の進路が通過領域Xと交錯しないと判定した場合は、ステップS22に進み、走行経路に沿って走行するように、第2車両V2の走行を自律制御する。これに対して、第2車両V2の進路が通過領域Xと交錯すると判定した場合は、ステップS18に進み、撮像装置21及び測距装置22の検出結果を用いて、第2車両V2が、第1車両V1の通過領域Xに進入しているか否かを判定する。 In step S14, the travel route on which the first vehicle V1 is parked is estimated by the function of the second determination unit 42, and in subsequent step S15, the passing area X of the first vehicle V1 is determined based on the estimated parking route. set. In subsequent step S16, a region Y through which the body of the second vehicle V2 passes when the second vehicle V2 travels along the set route is set. Then, in step S17, using the set passage areas X and Y, it is determined whether or not the route of the second vehicle V2 intersects with the passage area X of the first vehicle V1. If it is determined that the route of the second vehicle V2 does not intersect with the passage area X, the process advances to step S22 to autonomously control the travel of the second vehicle V2 so as to travel along the travel route. On the other hand, if it is determined that the route of the second vehicle V2 intersects with the passage area X, the process proceeds to step S18, and using the detection results of the imaging device 21 and the distance measuring device 22, the second vehicle V2 It is determined whether or not the vehicle has entered the passage area X of the vehicle V1.
 第2車両V2が、第1車両V1の通過領域Xに進入していないと判定した場合は、ステップS19に進み、第2車両V2が第1車両V1を追い越すことができるか否かを判定する。第1車両V1を追い越すことができると判定した場合は、ステップS20に進み、第2生成部43の機能により、第2車両V2が第1車両V1を追い越す走行経路を生成する。これに対して、第1車両V1を追い越すことができないと判定した場合は、ステップS21に進み、第2車両V2を通過領域Xの手前に停車させる走行経路を生成する。走行経路が生成された後は、ステップS22に進み、走行経路に沿って走行するように、第2車両V2の走行を自律制御する。 When it is determined that the second vehicle V2 has not entered the passage area X of the first vehicle V1, the process proceeds to step S19 to determine whether the second vehicle V2 can overtake the first vehicle V1. . When it is determined that the first vehicle V1 can be overtaken, the process proceeds to step S20, and the function of the second generation unit 43 generates a travel route along which the second vehicle V2 overtakes the first vehicle V1. On the other hand, if it is determined that the first vehicle V1 cannot be overtaken, the process advances to step S21 to generate a travel route that stops the second vehicle V2 before the passing area X. FIG. After the travel route is generated, the process proceeds to step S22 to autonomously control travel of the second vehicle V2 so as to travel along the travel route.
 一方、ステップS18にて、第2車両V2が通過領域Xに進入していると判定した場合は、ステップS23に進み、第2車両V2が第1車両V1を追い越すことができるか否かを判定する。第1車両V1を追い越すことができると判定した場合は、ステップS20に進み、第1車両V1を追い越すことができないと判定した場合は、ステップS24に進む。ステップS24にて、第2車両V2を停車させる走行経路を生成し、続くステップS25にて、第2車両V2を通過領域Xの手前まで後退させて停車させる走行経路を生成する。そして、ステップS22に進む。ステップS22による自律走行制御が完了すると、ルーチンの実行を停止し、設定された目的地にむかう通常の自律走行制御に移行する。 On the other hand, if it is determined in step S18 that the second vehicle V2 has entered the passage area X, the process proceeds to step S23 to determine whether or not the second vehicle V2 can overtake the first vehicle V1. do. If it is determined that the first vehicle V1 can be overtaken, the process proceeds to step S20, and if it is determined that the first vehicle V1 cannot be overtaken, the process proceeds to step S24. In step S24, a travel route for stopping the second vehicle V2 is generated, and in subsequent step S25, a travel route for reversing the second vehicle V2 to the front of the passing area X and stopping is generated. Then, the process proceeds to step S22. When the autonomous driving control in step S22 is completed, execution of the routine is stopped, and normal autonomous driving control for heading to the set destination is started.
[本発明の実施態様]
 以上のとおり、本実施形態によれば、第2車両のプロセッサにより実行される運転支援方法において、前記プロセッサは、駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示又は駐車可能な駐車スペースが存在することを外部に知らせる第2表示を検出し、前記第1表示を、前記第2車両の進行方向の前方を走行する第1車両V1から検出した場合又は前記第2車両の進行方向の前方に存在する前記第2表示を検出した場合に、前記第2車両V2の進路が、前記第1車両V1が駐車するときに通過する又は前記第1車両V1が駐車状態から発車するときに通過する通過領域Xと交錯するか否かを判定し、前記第2車両V2の進路が、前記通過領域Xと交錯すると判定したときは、前記通過領域Xに進入しないように前記第2車両V2の走行を自律制御する、運転支援方法が提供される。これにより、第2車両V2が、駐車又は発車するために走行中の第1車両V1に接近する場合でも、第1車両V1と第2車両V2との離間距離が保たれるため、第2車両V2が、第1車両V1が駐車又は発車するための走行を妨げる事態の発生を抑制することができる。
[Embodiment of the present invention]
As described above, according to the present embodiment, in the driving assistance method executed by the processor of the second vehicle, the processor provides the first display or the parking available information to inform the surroundings that the vehicle will be parked or that the vehicle will depart from the parking state. A second display that informs the outside that a parking space exists is detected, and the first display is detected from a first vehicle V1 traveling in front of the second vehicle in the direction of travel, or the second vehicle travels. When the second indication present in front of the direction is detected, the path of the second vehicle V2 passes when the first vehicle V1 is parked or when the first vehicle V1 departs from the parked state. When it is determined that the course of the second vehicle V2 intersects with the passage area X through which the second vehicle V2 passes, the second vehicle V2 is instructed not to enter the passage area X. A driving support method is provided for autonomously controlling driving of V2. As a result, even when the second vehicle V2 approaches the running first vehicle V1 for parking or departure, the separation distance between the first vehicle V1 and the second vehicle V2 is maintained. It is possible to suppress the occurrence of a situation in which V2 hinders the first vehicle V1 from traveling for parking or departure.
 また、本実施形態の運転支援方法によれば、前記プロセッサは、前記第2車両V2の進路が、前記通過領域Xと交錯すると判定した場合に、前記第2車両V2が前記第1車両V1を回避できるか否かを判定し、前記第2車両V2が前記第1車両V1を回避できると判定した場合は、前記自律制御により、前記第1車両V1を回避するように前記第2車両V2を走行させ、前記第2車両V2が前記第1車両V1を回避できないと判定した場合は、前記自律制御により、前記通過領域の手前に前記第2車両V2を停車させる。これにより、第2車両V2が第1車両V1を回避できる場合に、第2車両V2を停車させる事態の発生を抑制することができる。 Further, according to the driving assistance method of the present embodiment, when the processor determines that the route of the second vehicle V2 intersects with the passage area X, the second vehicle V2 moves over the first vehicle V1. When it is determined that the second vehicle V2 can avoid the first vehicle V1, the second vehicle V2 is controlled to avoid the first vehicle V1 by the autonomous control. When it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the second vehicle V2 is stopped in front of the passage area by the autonomous control. As a result, when the second vehicle V2 can avoid the first vehicle V1, it is possible to prevent the second vehicle V2 from stopping.
 また、本実施形態の運転支援方法によれば、前記プロセッサは、前記第2車両V2が、前記通過領域Xに進入しているか否かを判定し、前記第2車両V2が、前記通過領域Xに進入していると判定した場合は、前記第2車両V2が前記第1車両V1を回避できるか否かを判定し、前記第2車両V2が前記第1車両V1を回避できると判定した場合は、前記自律制御により、前記第1車両V1を回避するように前記第2車両V2を走行させ、前記第2車両V2が前記第1車両V1を回避できないと判定した場合は、前記自律制御により、前記第2車両V2を停車させ、前記第2車両V2の停車後に、前記通過領域の手前まで前記第2車両V2を後退させて停車させる。これにより、第2車両V2の挙動の変化が大きくなることを抑制することができる。 Further, according to the driving support method of the present embodiment, the processor determines whether or not the second vehicle V2 is entering the passage area X, and the second vehicle V2 is in the passage area X If it is determined that the second vehicle V2 can avoid the first vehicle V1, and if it is determined that the second vehicle V2 can avoid the first vehicle V1 causes the second vehicle V2 to travel so as to avoid the first vehicle V1 by the autonomous control, and when it is determined that the second vehicle V2 cannot avoid the first vehicle V1, the autonomous control , the second vehicle V2 is stopped, and after the second vehicle V2 is stopped, the second vehicle V2 is reversed to the front of the passage area and stopped. As a result, it is possible to suppress an increase in the change in behavior of the second vehicle V2.
 また、本実施形態の運転支援方法によれば、前記第1表示は、前記第1車両V1の方向指示器の点滅を含み、前記第2表示は、駐車スペースが空車であることを示す、駐車場に設置された表示灯I1の状態を含む。これにより、第1表示及び第2表示をより正確に検出することができる。 Further, according to the driving assistance method of the present embodiment, the first display includes blinking of the direction indicator of the first vehicle V1, and the second display indicates that the parking space is empty. It includes the status of the indicator light I1 installed in the car park. Thereby, the first display and the second display can be detected more accurately.
 また、本実施形態の運転支援方法によれば、前記プロセッサは、前記第1車両V1が、駐車状態から切り返して発車する場合は、前記第1車両V1が発車するときに前記第2車両V2を停車させる位置を、前記第1車両V1が切り返して駐車するときよりも手前側に設定する。これにより、第1車両V1が、より確実に、駐車するための走行又は駐車状態からの発車するための走行を完了することができる。 Further, according to the driving assistance method of the present embodiment, when the first vehicle V1 turns back from the parked state and departs, the processor controls the second vehicle V2 when the first vehicle V1 departs. The position where the vehicle is stopped is set closer to the front side than when the first vehicle V1 is turned back and parked. As a result, the first vehicle V1 can more reliably complete the running for parking or the running for starting from the parked state.
 また、本実施形態によれば、第2車両V2を自律走行制御により走行させるプロセッサを備えた運転支援装置において、前記プロセッサは、駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示又は駐車可能な駐車スペースが存在することを外部に知らせる第2表示V2を検出し、前記第1表示を、前記第2車両V2の進行方向の前方を走行する第1車両V1から検出した場合又は前記第2車両V2の進行方向の前方に存在する前記第2表示を検出した場合に、前記第2車両V2の進路が、前記第1車両V1が駐車するときに通過する又は前記第1車両V1が駐車状態から発車するときに通過する通過領域Xと交錯するか否かを判定し、前記第2車両V2の進路が、前記通過領域Xと交錯すると判定したときは、前記通過領域Xに進入しないように前記第2車両V2の走行を自律制御する、運転支援装置が提供される。これにより、第2車両V2が、駐車又は発車するために走行中の第1車両V1に接近する場合でも、第1車両V1と第2車両V2との離間距離が保たれるため、第2車両V2が、第1車両V1が駐車又は発車するための走行を妨げる事態の発生を抑制することができる。 Further, according to the present embodiment, in the driving assistance device including the processor that causes the second vehicle V2 to travel by autonomous travel control, the processor provides the first display to inform the surroundings that the vehicle will be parked or that the vehicle will depart from the parked state. Or when the second display V2 that informs the outside that there is a parking space available for parking is detected, and the first display is detected from the first vehicle V1 traveling ahead in the direction of travel of the second vehicle V2, or When the second display present in front of the traveling direction of the second vehicle V2 is detected, the course of the second vehicle V2 passes when the first vehicle V1 is parked or the first vehicle V1 is parked. intersects with the passage area X through which the vehicle departs from the parking state, and when it is determined that the route of the second vehicle V2 intersects with the passage area X, the second vehicle V2 enters the passage area X. A driving support device is provided that autonomously controls the running of the second vehicle V2 so as not to cause the vehicle to move. As a result, even when the second vehicle V2 approaches the running first vehicle V1 for parking or departure, the separation distance between the first vehicle V1 and the second vehicle V2 is maintained. It is possible to suppress the occurrence of a situation in which V2 hinders the first vehicle V1 from traveling for parking or departure.
 また、本実施形態によれば、車両のプロセッサにより実行される運転支援方法において、前記プロセッサは、前記車両を駐車するための駐車スペースを検出した場合に、前記車両の両側の方向指示器の点滅を開始させる、運転支援方法が提供される。これにより、第2車両V2が、駐車又は発車するために走行中の車両(第1車両V1)に接近する場合でも、第1車両V1が駐車又は発車するために走行中であることを第2車両V2に知らせることができ、車両(第1車両V1)と第2車両V2との離間距離が保たれる。そのため、第2車両V2が、第1車両V1が駐車又は発車するための走行を妨げる事態の発生を抑制することができる。 Further, according to the present embodiment, in the driving assistance method executed by the processor of the vehicle, the processor, when detecting a parking space for parking the vehicle, blinks the direction indicators on both sides of the vehicle. A driving assistance method is provided for initiating the As a result, even when the second vehicle V2 approaches the vehicle (the first vehicle V1) that is traveling to park or depart, the second vehicle V1 can be notified that the first vehicle V1 is traveling to park or depart. The vehicle V2 can be notified, and the separation distance between the vehicle (the first vehicle V1) and the second vehicle V2 is maintained. Therefore, it is possible to prevent the second vehicle V2 from hindering the first vehicle V1 from traveling for parking or departure.
 また、本実施形態によれば、車両の方向指示器の点滅を制御するプロセッサを備えた運転支援装置において、前記プロセッサは、前記車両を駐車するための駐車スペースを検出した場合に、前記車両の両側の方向指示器の点滅を開始させる、運転支援装置が提供される。これにより、第2車両V2が、駐車又は発車するために走行中の車両(第1車両V1)に接近する場合でも、第1車両V1が駐車又は発車するために走行中であることを第2車両V2に知らせることができ、車両(第1車両V1)と第2車両V2との離間距離が保たれる。そのため、第2車両V2が、第1車両V1が駐車又は発車するための走行を妨げる事態の発生を抑制することができる。 Further, according to the present embodiment, in the driving support device including the processor that controls blinking of the direction indicator of the vehicle, the processor detects the parking space for parking the vehicle, and A driving assistance device is provided that initiates blinking of both turn signals. As a result, even when the second vehicle V2 approaches the vehicle (the first vehicle V1) that is traveling to park or depart, the second vehicle V1 can be notified that the first vehicle V1 is traveling to park or depart. The vehicle V2 can be notified, and the separation distance between the vehicle (the first vehicle V1) and the second vehicle V2 is maintained. Therefore, it is possible to prevent the second vehicle V2 from hindering the first vehicle V1 from traveling for parking or departure.
1…第1運転支援システム
 11…撮像装置
 12…測距装置
 13…地図情報
 14…自車位置検出装置
 15…ナビゲーション装置
 16…車両制御装置
  161…車速制御装置
  162…操舵制御装置
 17…表示装置
 18…入力装置
 19…第1運転支援装置
  191…CPU(プロセッサ)
  192…ROM
  193…RAM
2…第2運転支援システム
 21…撮像装置
 22…測距装置
 23…地図情報
 24…自車位置検出装置
 25…ナビゲーション装置
 26…車両制御装置
  261…車速制御装置
  262…操舵制御装置
 27…表示装置
 28…入力装置
 29…第2運転支援装置
  291…CPU(プロセッサ)
  292…ROM
  293…RAM
3…第1制御部
 31…第1検出部
 32…第1判定部
 33…第1生成部
 34…第1走行部
4…第2制御部
 41…第2検出部
 42…第2判定部
 43…第2生成部
 44…第2走行部
I1、I2、I3、I4…表示灯
P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11…位置(第1車両)
Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9…位置(第2車両)
R1、R2、R3、R4…走行経路(第1車両)
S1、S2、S3、S4…駐車スペース
T1、T2、T3、T4、T5、T6…走行経路(第2車両)
V1…第1車両
V2…第2車両
V3、V4、V5…駐車車両
W…壁
X、Xa…通過領域
Y、Ya、Yb…領域
DESCRIPTION OF SYMBOLS 1... 1st driving assistance system 11... Imaging device 12... Ranging device 13... Map information 14... Own vehicle position detection device 15... Navigation device 16... Vehicle control device 161... Vehicle speed control device 162... Steering control device 17... Display device 18... Input device 19... First driving support device 191... CPU (processor)
192 ROM
193 RAM
2 Second driving support system 21 Imaging device 22 Ranging device 23 Map information 24 Own vehicle position detection device 25 Navigation device 26 Vehicle control device 261 Vehicle speed control device 262 Steering control device 27 Display device 28... Input device 29... Second driving support device 291... CPU (processor)
292 ROM
293 RAM
3... First control unit 31... First detection unit 32... First determination unit 33... First generation unit 34... First travel unit 4... Second control unit 41... Second detection unit 42... Second determination unit 43... Second generating unit 44 Second traveling units I1, I2, I3, I4 Indicator lights P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11 Position (first vehicle)
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9... Position (Second vehicle)
R1, R2, R3, R4... Travel route (first vehicle)
S1, S2, S3, S4... Parking spaces T1, T2, T3, T4, T5, T6... Driving route (second vehicle)
V1 First vehicle V2 Second vehicle V3, V4, V5 Parked vehicle W Wall X, Xa Passing area Y, Ya, Yb Area

Claims (8)

  1.  第2車両のプロセッサにより実行される運転支援方法において、
     前記プロセッサは、
      駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示又は駐車可能な駐車スペースが存在することを外部に知らせる第2表示を検出し、
      前記第1表示を、前記第2車両の進行方向の前方を走行する第1車両から検出した場合又は前記第2車両の進行方向の前方に存在する前記第2表示を検出した場合に、前記第2車両の進路が、前記第1車両が駐車するときに通過する又は前記第1車両が駐車状態から発車するときに通過する通過領域と交錯するか否かを判定し、
      前記第2車両の進路が、前記通過領域と交錯すると判定したときは、前記通過領域に進入しないように前記第2車両の走行を自律制御する、運転支援方法。
    In the driving assistance method executed by the processor of the second vehicle,
    The processor
    Detecting a first display that informs the surroundings that the vehicle will be parked or that the vehicle will depart from the parking state, or a second display that informs the outside that there is a parking space available for parking;
    When the first display is detected from the first vehicle traveling in front of the second vehicle in the direction of travel, or when the second display present in front of the second vehicle in the direction of travel is detected, the first display is detected. Determining whether the route of the second vehicle intersects with a passage area through which the first vehicle passes when parking or when the first vehicle departs from the parked state;
    A driving support method, wherein when it is determined that the course of the second vehicle intersects with the passage area, the second vehicle is autonomously controlled so as not to enter the passage area.
  2.  前記プロセッサは、
      前記第2車両の進路が、前記通過領域と交錯すると判定した場合に、前記第2車両が前記第1車両を回避できるか否かを判定し、
      前記第2車両が前記第1車両を回避できると判定した場合は、前記自律制御により、前記第1車両を回避するように前記第2車両を走行させ、
      前記第2車両が前記第1車両を回避できないと判定した場合は、前記自律制御により、前記通過領域の手前に前記第2車両を停車させる、請求項1に記載の運転支援方法。
    The processor
    Determining whether the second vehicle can avoid the first vehicle when it is determined that the course of the second vehicle intersects the passage area,
    when it is determined that the second vehicle can avoid the first vehicle, causing the second vehicle to travel so as to avoid the first vehicle by the autonomous control;
    2. The driving support method according to claim 1, wherein, when it is determined that said second vehicle cannot avoid said first vehicle, said autonomous control causes said second vehicle to stop before said passing area.
  3.  前記プロセッサは、
      前記第2車両が、前記通過領域に進入しているか否かを判定し、
      前記第2車両が、前記通過領域に進入していると判定した場合は、前記第2車両が前記第1車両を回避できるか否かを判定し、
      前記第2車両が前記第1車両を回避できると判定した場合は、前記自律制御により、前記第1車両を回避するように前記第2車両を走行させ、
      前記第2車両が前記第1車両を回避できないと判定した場合は、前記自律制御により、前記第2車両を停車させ、前記第2車両の停車後に、前記通過領域の手前まで前記第2車両を後退させて停車させる、請求項1又は2に記載の運転支援方法。
    The processor
    determining whether the second vehicle is entering the passage area;
    when it is determined that the second vehicle has entered the passage area, determining whether the second vehicle can avoid the first vehicle;
    when it is determined that the second vehicle can avoid the first vehicle, causing the second vehicle to travel so as to avoid the first vehicle by the autonomous control;
    When it is determined that the second vehicle cannot avoid the first vehicle, the second vehicle is stopped by the autonomous control, and after the second vehicle is stopped, the second vehicle is moved to the front of the passing area. 3. The driving support method according to claim 1, wherein the vehicle is stopped by reversing.
  4.  前記第1表示は、前記第1車両の方向指示器の点滅を含み、前記第2表示は、駐車スペースが空車であることを示す、駐車場に設置された表示灯の状態を含む、請求項1~3のいずれか一項に記載の運転支援方法。 3. The first indication includes blinking of a direction indicator of the first vehicle, and the second indication includes the state of an indicator light installed in the parking lot indicating that the parking space is empty. 4. The driving support method according to any one of 1 to 3.
  5.  前記プロセッサは、
      前記第1車両が、駐車状態から切り返して発車する場合は、前記第1車両が発車するときに前記第2車両を停車させる位置を、前記第1車両が切り返して駐車するときよりも手前側に設定する、請求項2~4のいずれか一項に記載の運転支援方法。
    The processor
    When the first vehicle turns back from a parked state and departs, the position at which the second vehicle is stopped when the first vehicle departs is set to the nearer side than when the first vehicle turns back and parks. The driving support method according to any one of claims 2 to 4, wherein the driving support method is set.
  6.  第2車両を自律走行制御により走行させるプロセッサを備えた運転支援装置において、
     前記プロセッサは、
      駐車すること若しくは駐車状態から発車することを周囲に知らせる第1表示又は駐車可能な駐車スペースが存在することを外部に知らせる第2表示を検出し、
      前記第1表示を、前記第2車両の進行方向の前方を走行する第1車両から検出した場合又は前記第2車両の進行方向の前方に存在する前記第2表示を検出した場合に、前記第2車両の進路が、前記第1車両が駐車するときに通過する又は前記第1車両が駐車状態から発車するときに通過する通過領域と交錯するか否かを判定し、
      前記第2車両の進路が、前記通過領域と交錯すると判定したときは、前記通過領域に進入しないように前記第2車両の走行を自律制御する、運転支援装置。
    In a driving support device equipped with a processor that causes a second vehicle to travel by autonomous travel control,
    The processor
    Detecting a first display that informs the surroundings that the vehicle will be parked or that the vehicle will depart from the parking state, or a second display that informs the outside that there is a parking space available for parking;
    When the first display is detected from the first vehicle traveling in front of the second vehicle in the direction of travel, or when the second display present in front of the second vehicle in the direction of travel is detected, the first display is detected. Determining whether the route of the second vehicle intersects with a passage area through which the first vehicle passes when parking or when the first vehicle departs from the parked state;
    A driving support device that autonomously controls travel of the second vehicle so as not to enter the passage area when it is determined that the course of the second vehicle intersects with the passage area.
  7.  車両のプロセッサにより実行される運転支援方法において、
     前記プロセッサは、
      前記車両を駐車するための駐車スペースを検出した場合に、前記車両の両側の方向指示器の点滅を開始させる、運転支援方法。
    In a driving assistance method executed by a processor of a vehicle,
    The processor
    A method of assisting driving, wherein, when a parking space for parking the vehicle is detected, blinking of direction indicators on both sides of the vehicle is started.
  8.  車両の方向指示器の点滅を制御するプロセッサを備えた運転支援装置において、
     前記プロセッサは、
      前記車両を駐車するための駐車スペースを検出した場合に、前記車両の両側の方向指示器の点滅を開始させる、運転支援装置。
    In a driving support device equipped with a processor that controls blinking of a vehicle direction indicator,
    The processor
    A driving assistance device that causes direction indicators on both sides of the vehicle to start blinking when a parking space for parking the vehicle is detected.
PCT/JP2021/039086 2021-10-22 2021-10-22 Driving assistance method and driving assistance device WO2023067793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039086 WO2023067793A1 (en) 2021-10-22 2021-10-22 Driving assistance method and driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039086 WO2023067793A1 (en) 2021-10-22 2021-10-22 Driving assistance method and driving assistance device

Publications (1)

Publication Number Publication Date
WO2023067793A1 true WO2023067793A1 (en) 2023-04-27

Family

ID=86058048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039086 WO2023067793A1 (en) 2021-10-22 2021-10-22 Driving assistance method and driving assistance device

Country Status (1)

Country Link
WO (1) WO2023067793A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190225211A1 (en) * 2018-01-22 2019-07-25 Ford Global Technologies, Llc Cross traffic alert with flashing indicator recognition
JP2019172208A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Driving support device, automatic driving vehicle, driving support method, and driving support program
CN111391824A (en) * 2020-03-27 2020-07-10 北京百度网讯科技有限公司 Control method and device for automatic passenger-replacing parking, electronic equipment and storage medium
JP2020147215A (en) * 2019-03-14 2020-09-17 本田技研工業株式会社 Vehicle control device, vehicle control method and program
WO2021005392A1 (en) * 2019-07-05 2021-01-14 日産自動車株式会社 Driving control method and driving control device
US20210122363A1 (en) * 2019-10-24 2021-04-29 Robert Bosch Gmbh Method for Providing a Signal for Actuating an at Least Partially Automated Vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190225211A1 (en) * 2018-01-22 2019-07-25 Ford Global Technologies, Llc Cross traffic alert with flashing indicator recognition
JP2019172208A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Driving support device, automatic driving vehicle, driving support method, and driving support program
JP2020147215A (en) * 2019-03-14 2020-09-17 本田技研工業株式会社 Vehicle control device, vehicle control method and program
WO2021005392A1 (en) * 2019-07-05 2021-01-14 日産自動車株式会社 Driving control method and driving control device
US20210122363A1 (en) * 2019-10-24 2021-04-29 Robert Bosch Gmbh Method for Providing a Signal for Actuating an at Least Partially Automated Vehicle
CN111391824A (en) * 2020-03-27 2020-07-10 北京百度网讯科技有限公司 Control method and device for automatic passenger-replacing parking, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP7043450B2 (en) Vehicle control devices, vehicle control methods, and programs
JP6650904B2 (en) Vehicle control device
US20170313321A1 (en) Vehicle control system, vehicle control method, and vehicle control program
US20190071075A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2018154215A (en) Driving assist control device
JP7035408B2 (en) Vehicle driving control method and equipment
US11541892B2 (en) Vehicle control method and vehicle control device
JP7331450B2 (en) VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE
JP2019159611A (en) Vehicle control device, vehicle control method, and program
WO2021005392A1 (en) Driving control method and driving control device
JP2021172265A (en) Travel support method and travel support device of vehicle
WO2022162909A1 (en) Display control device and display control method
WO2023067793A1 (en) Driving assistance method and driving assistance device
JP2023135487A (en) Travel control apparatus for vehicle
JP7176651B2 (en) Parking assistance method and parking assistance device
JP7162464B2 (en) Driving support method and driving support device
JP7003512B2 (en) Vehicle driving control method and equipment
JP7428294B2 (en) Driving support method and driving support device
WO2023047148A1 (en) Travel assistance method and travel assistance device
WO2024069690A1 (en) Driving assistance method and driving assistance device
JP2020147215A (en) Vehicle control device, vehicle control method and program
WO2023194794A1 (en) Information providing device and information providing method
WO2023194793A1 (en) Information providing device and information providing method
WO2024069689A1 (en) Driving assistance method and driving assistance device
WO2024013996A1 (en) Driving assistance method and driving assistance device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE