WO2023065903A1 - 清洁设备的控制方法、装置、清洁设备和存储介质 - Google Patents

清洁设备的控制方法、装置、清洁设备和存储介质 Download PDF

Info

Publication number
WO2023065903A1
WO2023065903A1 PCT/CN2022/118836 CN2022118836W WO2023065903A1 WO 2023065903 A1 WO2023065903 A1 WO 2023065903A1 CN 2022118836 W CN2022118836 W CN 2022118836W WO 2023065903 A1 WO2023065903 A1 WO 2023065903A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
cleaning device
detection
cleaning
machine body
Prior art date
Application number
PCT/CN2022/118836
Other languages
English (en)
French (fr)
Inventor
王恺靖
李行
周永飞
Original Assignee
北京石头创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122503365.4U external-priority patent/CN216535128U/zh
Priority claimed from CN202111492870.1A external-priority patent/CN114601399B/zh
Application filed by 北京石头创新科技有限公司 filed Critical 北京石头创新科技有限公司
Priority to AU2022373390A priority Critical patent/AU2022373390A1/en
Publication of WO2023065903A1 publication Critical patent/WO2023065903A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers

Definitions

  • the present disclosure relates to the technical field of intelligent control, and in particular to a cleaning device control method and device, a cleaning device and a storage medium, and a cleaning device for front impact rebound.
  • the behavior of the model must be different from that of the circular machine.
  • the collision sensor Parts need to have corresponding structural components to respond better to their triggering and rebound.
  • the embodiments of the present disclosure provide a cleaning device control method, device, cleaning device and storage medium, which can minimize the number of collisions between the cleaning device and the obstacle again, so that the cleaning device can quickly walk along the obstacle, reducing Such as the missing scanning of the adjacent parts of the ground and walls;
  • the present disclosure also provides a cleaning device capable of optimizing the triggering and rebounding of the collision sensing component to a certain extent, so as to realize sensitive response of the collision sensor and accurate centering after rebounding.
  • An embodiment of the first aspect of the present disclosure provides a method for controlling a cleaning device.
  • the cleaning device includes a machine body, a trigger, a first detection piece, and a second detection piece arranged on the machine body, and the trigger is set to It is triggered when the cleaning equipment collides with an obstacle, the first detection part is used to sense the obstacle around the machine body, and the second detection part is arranged on one side of the machine body to sense the obstacle on the side of the machine body , the control methods include:
  • the first detection information of the first detection part based on the trigger being triggered; determine the first movement distance based at least on the basis of the obtained first detection information; control the cleaning device to move backwards after the first movement distance, and execute according to the first detection information The first obstacle-nearing operation; obtaining the second detection information of the second detection member; controlling the cleaning device to perform the operation of walking along the obstacle according to the second detection information.
  • the first detection information at least includes: the first angle between the machine body and the obstacle, the vertical distance between the machine body and the obstacle, the horizontal distance between the machine body and the target end of the obstacle, and the target end of the obstacle.
  • the part is located in front of the cleaning equipment on the side away from the second detection part; wherein, based on the acquired first detection information, the first moving distance is determined, including: according to the first included angle, the vertical distance between the main body of the machine and the obstacle , the horizontal distance between the main body of the machine and the target end of the obstacle, to determine the first moving distance.
  • performing the first near-obstacle operation includes:
  • controlling the cleaning device to move forward according to the horizontal distance between the machine body and the target end of the obstacle includes: controlling the cleaning device to move forward based on the horizontal distance between the machine body and the target end of the obstacle being greater than or equal to a preset value ; Based on the trigger being triggered again, obtain the second angle between the machine body and the obstacle at the current position; determine the second rotation angle according to the second angle; control the cleaning device to rotate the second rotation to the side away from the second detection piece angle.
  • determining the second rotation angle according to the second included angle specifically includes: determining the second rotation angle according to the second included angle and the setting position of the second detection member relative to the main body of the machine.
  • the cleaning equipment is controlled to move forward according to the horizontal distance between the main body of the machine and the target end of the obstacle, including:
  • the cleaning equipment is controlled to move to the side away from the second detection part at the first linear speed and the first angular speed. is triggered to control the cleaning equipment to perform troubleshooting operations.
  • control method of the cleaning device further includes: based on not obtaining the first detection information, controlling the cleaning device to move backward by a first preset distance, and after rotating to a side away from the second detection part by a second preset angle, execute the search. faulty operation.
  • the fault-finding operation includes: controlling the cleaning device to move and rotate toward the side where the second detection member is provided at a fault-finding linear velocity and a fault-seeking angular velocity until the trigger is triggered.
  • An embodiment of the second aspect of the present disclosure provides a control device for cleaning equipment.
  • the cleaning equipment includes a machine body, a trigger, a first detection piece, and a second detection piece arranged on the machine body.
  • the trigger is set to It is triggered when the cleaning equipment collides with an obstacle, the first detection part is used to sense the obstacle around the machine body, and the second detection part is arranged on one side of the machine body to sense the obstacle on the side of the machine body , the control unit includes:
  • the first acquisition module is used to acquire the first detection information of the first detection part based on the triggered part; the first determination module is used to determine the first moving distance based at least on the acquired first detection information; the first processing The module is used to control the cleaning device to move back and move the first moving distance, and to perform the first near-obstacle operation according to the first detection information; the second acquisition module is used to acquire the second detection information of the second detection part; the second processing module is used to The cleaning device is controlled to perform the operation of walking along the obstacle according to the second detection information.
  • the first detection information at least includes: the first angle between the machine body and the obstacle, the vertical distance between the machine body and the obstacle, the horizontal distance between the machine body and the target end of the obstacle, and the distance between the machine body and the obstacle.
  • the target end of the cleaning device is located on the side away from the second detection part in front of the cleaning device, wherein the first determination module includes: a first determination unit, which is used to determine according to the first angle, the vertical distance between the main body of the machine and the obstacle, The horizontal distance between the main body of the machine and the target end of the obstacle determines the first moving distance.
  • the first processing module includes:
  • the second determination unit is used to determine the first rotation angle according to the first included angle; the first processing unit is used to control the cleaning device to rotate the first rotation angle to the side away from the second detection part; the second processing unit is used to The cleaning device is controlled to move forward according to the horizontal distance between the main body of the machine and the target end of the obstacle.
  • the second processing unit includes: a first processing subunit, configured to control the cleaning device to move forward based on the horizontal distance between the machine body and the target end of the obstacle being greater than or equal to a preset value; Based on the trigger being triggered again, the second included angle between the machine body and the obstacle at the current position is obtained; the first determination subunit is used to determine the second rotation angle according to the second included angle; the second processing subunit is used to The cleaning device is controlled to rotate by a second rotation angle to a side away from the second detection member.
  • the first determining subunit specifically includes: determining the second rotation angle according to the second included angle and the setting position of the second detection member relative to the main body of the machine.
  • the second processing unit includes: a third processing subunit, configured to control the cleaning device to move away from the first linear velocity and the first angular velocity based on the fact that the horizontal distance between the machine body and the target end of the obstacle is less than a preset value.
  • a third processing subunit configured to control the cleaning device to move away from the first linear velocity and the first angular velocity based on the fact that the horizontal distance between the machine body and the target end of the obstacle is less than a preset value.
  • One side of the second detection part moves, and if the trigger part is not triggered when the preset time is reached, the cleaning device is controlled to perform a trouble-finding operation.
  • control device of the cleaning device further includes: a third processing module, configured to control the cleaning device to move backward by a first preset distance based on not obtaining the first detection information, and to rotate the second detection part to the side away from the second detection part. After presetting the angle, execute the obstacle-finding operation.
  • a third processing module configured to control the cleaning device to move backward by a first preset distance based on not obtaining the first detection information, and to rotate the second detection part to the side away from the second detection part. After presetting the angle, execute the obstacle-finding operation.
  • the fault-finding operation includes: controlling the cleaning device to move and rotate toward the side where the second detection member is provided at a fault-finding linear velocity and a fault-seeking angular velocity until the trigger is triggered.
  • the embodiment of the third aspect of the present disclosure provides a cleaning device, which includes a processor and a memory; the memory is used to store operation instructions; and the processor is used to execute any of the above first aspects by calling the operation instructions.
  • a control method for cleaning equipment includes a processor and a memory; the memory is used to store operation instructions; and the processor is used to execute any of the above first aspects by calling the operation instructions.
  • the embodiment of the fourth aspect of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the control of the cleaning device in any one of the above-mentioned first aspects is realized. method.
  • An embodiment of the fifth aspect of the present disclosure provides a cleaning device, including: a frame formed in a rectangular-like configuration at the front and a semi-circular configuration at the rear;
  • the front bumper is connected to the front part of the frame and can move relative to the frame; the crash sensor is arranged on the front end and/or both sides of the rectangular configuration of the front part of the frame, or on the front part of the front bumper
  • the inner wall of the front end and/or the inner side wall further comprising: at least one rebounding member connected to the frame and/or the front bumper, when the front bumper is not triggered, the contact portion of the rebounding member is connected to the A preset gap is formed between the inner walls of the front bumper or between the front parts of the frame.
  • the resilient member includes an elastic arm, and when the force of the forward impact moves relative to the frame, it overcomes the elastic force of the elastic arm, and provides resilience for the reset of the forward impact.
  • the two ends of the elastic arm are respectively provided with a reset arm and a fixed arm, the displacement of the reset arm corresponds to the displacement stroke of the front impact, and the rebound member is connected to the machine through the fixed wall. frame and/or front impact.
  • the elastic arm and the reset arm form an acute angle bend, and the top of the bend forms the contact portion.
  • the other end of the reset arm is provided with a reset hook, which is substantially perpendicular to the reset arm, and the reset hook cooperates with the corresponding position on the frame or the front bumper to limit the elastic arm rebound stroke.
  • one end of the fixed arm is provided with a fixed hook, and the fixed hook cooperates with the fixed arm to fixedly connect the rebound member to a corresponding position on the frame or the front bumper.
  • the collision sensor includes a first front collision sensor and a second front collision sensor symmetrically arranged on the front of the frame or on the inner wall of the front end of the front collision, and symmetrically arranged on the front of the frame respectively.
  • the first side impact sensor and the second side impact sensor on both sides or the inner wall of the front impact.
  • the collision sensors are arranged close to the front of the frame or the corner of the front collision.
  • the two resilient members are farther away from the front of the frame or the corner of the front impact relative to the impact sensor.
  • FIG. 1 is a schematic structural diagram of a cleaning device provided according to an embodiment of the present disclosure
  • Fig. 2 is a structural schematic diagram of a viewing angle of the embodiment shown in Fig. 1;
  • Fig. 3a is a diagram showing that the right side of the buffer of the cleaning device collides with an obstacle according to an embodiment of the present disclosure
  • Fig. 3b is a schematic diagram of the cleaning device retreating a first moving distance based on the posture of Fig. 3a;
  • Fig. 4a is an illustration of collision between the left side of the buffer of the cleaning device and an obstacle according to an embodiment of the present disclosure
  • Fig. 4b is a schematic diagram of the cleaning device retreating a first moving distance based on the posture of Fig. 4a;
  • Fig. 4c is a schematic diagram of the cleaning device after rotating the first rotation angle based on the attitude of Fig. 4b;
  • Fig. 4d is a schematic diagram of the cleaning device moving forward based on the attitude of Fig. 4c until it collides with an obstacle again;
  • Fig. 4e is a schematic diagram of the cleaning device after rotating the second rotation angle based on the attitude of Fig. 4d;
  • Fig. 4f is a schematic diagram of the cleaning device walking along the obstacle based on the attitude of Fig. 4e;
  • Fig. 4g is a schematic diagram of the cleaning device rotating and walking across the target obstacle entry position based on the attitude of Fig. 4c;
  • Fig. 5a is a schematic diagram showing that the left side of the buffer of the cleaning device collides with an obstacle according to another embodiment of the present disclosure
  • Fig. 5b is a schematic diagram of the cleaning device retreating a second moving distance based on the posture of Fig. 5a;
  • Fig. 5c is a schematic diagram of the cleaning device after rotating the second rotation angle based on the attitude of Fig. 5b;
  • Fig. 5d is a schematic diagram of the cleaning device moving forward based on the attitude of Fig. 5c until it collides with an obstacle again;
  • Fig. 5e is a schematic diagram of the cleaning device retreating a third moving distance based on the attitude of Fig. 5d;
  • Fig. 5f is a schematic diagram of the cleaning device after rotating the third rotation angle based on the attitude of Fig. 5e;
  • Fig. 6 is a schematic flowchart of a method for controlling a cleaning device according to an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of the electronic structure of a cleaning device provided according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram of a control device for cleaning equipment provided according to an embodiment of the present disclosure.
  • Fig. 9 is an overall sectional view of a cleaning device provided according to an embodiment of the present disclosure.
  • Fig. 10 is a partial view of part A in the overall cross-sectional view of the cleaning equipment provided according to an embodiment of the present disclosure
  • Fig. 11 is an overall view of a cleaning device provided according to an embodiment of the present disclosure.
  • Fig. 12 is a first perspective view of a resilient member provided according to an embodiment of the present disclosure.
  • Fig. 13 is a second perspective view of a resilient member provided according to an embodiment of the present disclosure.
  • Fig. 14 is a top view of a resilient member provided according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a possible application scenario, where the application scenario includes a cleaning device, where the cleaning device includes an autonomous cleaning robot, such as a sweeping robot, a mopping robot, a vacuum cleaner, a weeder, and the like.
  • the cleaning device includes an autonomous cleaning robot, such as a sweeping robot, a mopping robot, a vacuum cleaner, a weeder, and the like.
  • a household sweeping robot is taken as an example for illustration.
  • the sweeping robot it can clean according to a preset route or an automatically planned route, but it is inevitable will collide with the obstacle 200, for example, the obstacle 200 is a wall, a cabinet, and the like.
  • the sweeping robot moves along the wall with a small distance, it can clean the part adjacent to the ground and the wall, which is beneficial to improve the cleaning ability.
  • the cleaning efficiency of the cleaning equipment can be greatly improved, and the problem of missed cleaning of the part adjacent to the ground and the wall can be effectively reduced. , improve user satisfaction.
  • the cleaning device includes a machine body 110 , a perception system 120 , a control system, a driving system 130 , a cleaning system 140 , an energy system, and a human-computer interaction system.
  • the main body 110 of the machine includes a forward part 111 and a rearward part 112, which have an approximately D-shaped shape with a front and rear circles, that is, the forward part is approximately rectangular, and the rearward part is approximately circular. That is to say, the cleaning device can be a D-shaped floor sweeping robot. .
  • the machine main body 110 may also be in other special shapes, such as triangular, rectangular and so on.
  • the perception system 120 includes a trigger, a first detection component, and a second detection component arranged on the main body of the machine, wherein the trigger is configured to be triggered when the cleaning device collides with an obstacle 200, such as the trigger It may be a collision sensor, a proximity sensor, or other structures that meet requirements, which are arranged on the buffer 122 of the forward portion 111 of the machine body 110 .
  • the first detection part is used to sense the obstacle 200 around the main body of the machine.
  • the first detection part includes a position determination device 121 arranged above the main body of the machine, wherein the position determination device 121 includes but is not limited to a camera, a laser distance measuring device (LDS, full name Laser Distance Sensor), it is understandable that the laser distance measuring device is located at the top of the main body of the machine, which can rotate 360° to emit laser light, and the reflected laser can determine which direction has obstacles 200 and obstacles 200 The distance relation to the main body of the machine.
  • LDS laser distance measuring device
  • the second detection part is disposed on one side of the machine body and is used for sensing the obstacle 200 on the side of the machine body 110 .
  • the second detection part can be a wall sensor (wallsensor) arranged on the left side or right side of the main body 110 of the machine, or a smaller laser distance measuring device.
  • the second detection part can sense a point on the side of the main body 110 of the machine and The distance of the machine main body 110 has high precision.
  • the control system can control the cleaning device to move along the wall with a smaller distance from the wall.
  • the perception system 120 also includes a cliff sensor disposed at the lower part of the machine body 110, and sensing devices such as a magnetometer, an accelerometer, a gyroscope (Gyro), and an odometer (ODO, full name odograph) disposed inside the machine body 110 , used to provide various position information and motion state information of the machine to the control system.
  • sensing devices such as a magnetometer, an accelerometer, a gyroscope (Gyro), and an odometer (ODO, full name odograph) disposed inside the machine body 110 , used to provide various position information and motion state information of the machine to the control system.
  • the forward portion 111 of the machine body 110 can carry a buffer 122 , and when the driving wheel 131 propels the robot to walk on the ground during the cleaning process, the buffer 122 passes through a trigger set thereon, such as The infrared sensor detects one or more events in the driving path of the cleaning device.
  • the cleaning device can pass through the events detected by the buffer 122, such as obstacles 200 and walls, and control the driving wheel 131 module to make the cleaning device respond to the event. Responses are made, such as moving away from the obstacle 200, passing over the obstacle 200, and so on.
  • the control system is arranged on the circuit board in the main body 110 of the machine, and includes a computing processor, such as a central processing unit, an application processor, and a non-transitory memory, such as a hard disk, a flash memory, and a random access memory, which communicate with each other.
  • a computing processor such as a central processing unit, an application processor, and a non-transitory memory, such as a hard disk, a flash memory, and a random access memory, which communicate with each other.
  • SLAM full name Simultaneous Localization And Mapping
  • sensors such as sensors on the buffer 122, cliff sensors, magnetometers, accelerometers, gyroscopes, and odometers, it is comprehensively judged which working state and position the sweeper is currently in, And the current position and posture of the sweeper, such as crossing the threshold 170, being stuck at the cliff, above or below, the dust box is full, being picked up, etc., will also give specific next-step action strategies for different situations, so that the robot The work is more in line with the requirements of the owner and has a better user experience.
  • drive system 130 may steer the robot across the ground based on drive commands having distance and angular information (eg, x, y, and o components).
  • the drive system 130 includes a drive wheel 131 and a drive module.
  • the drive module can simultaneously control the left drive wheel and the right drive wheel.
  • the drive module preferably includes a left drive wheel module and a right drive wheel module.
  • the left and right drive wheel modules are opposed along a transverse axis defined by the main body 110 .
  • the robot may include one or more driven wheels 132, and the driven wheels 132 include but are not limited to universal wheels.
  • the driving module includes a driving motor and a control circuit for controlling the driving motor, and the driving module can also be connected with a circuit for measuring driving current and an odometer.
  • the driving module can be detachably connected to the main body 110, which is convenient for disassembly and maintenance.
  • the drive wheels 131 may have a biased drop suspension system, movably secured, eg rotatably attached, to the robot body 110 and receive a spring bias biased downward and away from the robot body 110 .
  • the spring bias allows the drive wheel 131 to maintain contact and traction with the ground with a certain ground force, while the cleaning elements of the automatic cleaning device also contact the ground with a certain pressure.
  • the cleaning apparatus can travel on the ground through various combinations of movement relative to three mutually perpendicular axes defined by the machine body: the front-rear X axis, the lateral Y axis, and the central vertical axis Z.
  • the forward driving direction along the front-rear axis X is designated “forward” and the rearward driving direction along the front-rear axis X is designated “rearward”.
  • the direction of the transverse axis Y is substantially the direction extending between the right and left wheels of the robot along the axis defined by the center point of the drive wheel 131 module.
  • the cleaning device can rotate around the Y axis. "Up” is when the forward part 111 of the automatic cleaning device is inclined upwards and the rearward part 112 is inclined downwards, and “Down” is when the forward part 111 of the automatic cleaning device is inclined downwards and the rearward part 112 is inclined upwards. bow”.
  • the robot can rotate around the Z axis. In the forward direction of the automatic cleaning device, when the automatic cleaning device tilts to the right of the X-axis, it is a "right turn", and when the automatic cleaning device tilts to the left of the X-axis, it is a "left turn".
  • the X-axis and the Y-axis are shown as arrows in FIG. 1 .
  • the cleaning system 140 includes a dry cleaning system.
  • the main cleaning function comes from the cleaning system composed of the roller brush, the dust box, the blower fan, the air outlet and the connecting parts among them.
  • the roller brush that has a certain interference with the ground sweeps up the garbage on the ground and rolls it to the front of the dust suction port between the roller brush and the dust box, and then is sucked into the dust box by the suction gas generated by the fan and passed through the dust box.
  • the dry cleaning system 141 may also include a side brush 143 having an axis of rotation that is angled relative to the floor for moving debris into the area of the roller brush of the cleaning system 140 .
  • the side brush 143 is located on the side of the machine main body 110 close to the second detection piece, and when the side of the cleaning device 10 that is provided with the second detection piece runs along the wall with a small distance from the wall, the side brush 143 can The debris in the corners and crevices between the floor and the wall are moved to the roller brush area of the cleaning system 140, thereby realizing the cleaning of the adjacent parts of the floor and the wall, ensuring good cleaning efficiency.
  • the cleaning system may also include a wet cleaning system
  • the wet cleaning system 142 may include: a cleaning head, a driving unit, a water delivery mechanism, a liquid storage tank, and the like.
  • the cleaning head can be arranged under the liquid storage tank, and the cleaning liquid inside the liquid storage tank is transmitted to the cleaning head through the water supply mechanism, so that the cleaning head performs wet cleaning on the surface to be cleaned.
  • the cleaning liquid inside the liquid storage tank can also be directly sprayed onto the plane to be cleaned, and the cleaning head can clean the plane by spreading the cleaning liquid evenly.
  • the cleaning head can also be a roller brush with water storage capacity. When the cleaning head stores water from the base station, it leaves the station for wet cleaning.
  • the cleaning head is used to clean the surface to be cleaned
  • the drive unit is used to drive the cleaning head to basically reciprocate along the target surface, and the target surface is a part of the surface to be cleaned.
  • the cleaning head reciprocates along the surface to be cleaned, and the contact surface between the cleaning head and the surface to be cleaned is provided with a cleaning cloth or a cleaning plate, which generates high-frequency friction with the surface to be cleaned through reciprocating motion, thereby removing stains on the surface to be cleaned.
  • the energy system includes rechargeable batteries, such as hydrogen storage batteries and carp batteries.
  • the rechargeable battery can be connected with a charging control circuit, a battery pack charging temperature detection circuit and a battery undervoltage monitoring circuit, and the charging control circuit, a battery pack charging temperature detection circuit, and a battery undervoltage monitoring circuit are connected with the single-chip microcomputer control circuit.
  • the main unit is charged by being connected to the charging pile through the charging electrodes arranged on the side or the bottom of the fuselage. If there is dust on the exposed charging electrodes, due to the cumulative effect of charges during the charging process, the plastic body around the electrodes will be melted and deformed, and even the electrodes themselves will be deformed, making it impossible to continue charging normally.
  • the human-computer interaction system includes buttons on the host panel for users to select functions; it can also include display screens and/or indicator lights and/or speakers, which display the current state or function of the machine to the user Optional; can also include submachine client programs.
  • buttons on the host panel for users to select functions can also include display screens and/or indicator lights and/or speakers, which display the current state or function of the machine to the user Optional; can also include submachine client programs.
  • the map of the environment where the equipment is located and the location of the machine can be displayed to the user on the client side of the slave machine, and more abundant and humanized functions can be provided to the user.
  • the control method of the cleaning equipment provided by the embodiments of the present disclosure enables the cleaning equipment to minimize the number of collisions when it collides with obstacles 200 such as walls and cabinets during travel, and quickly and at a relatively small distance Move along the wall or the cabinet, thereby improving the cleaning efficiency, and effectively reducing the problem of missed cleaning on the part adjacent to the floor and the wall, which improves the user experience. details as follows.
  • an embodiment of the present disclosure provides a method for controlling a cleaning device, including the following method steps.
  • Step S602 Obtain first detection information of the first detection component based on the trigger being triggered.
  • the trigger when the trigger is triggered, it means that the cleaning device 100 collides with the obstacle 200 during the forward process.
  • the collision sensor action is triggered, that is, the trigger is triggered, and then according to the trigger.
  • the information of the parts can know the approximate position of the wall relative to the cleaning device 100 and the collision position of the main body 110 of the cleaning device 100 .
  • the detection range of the second detection part is limited.
  • the control system cannot obtain the second detection information, that is, the cleaning device 100 cannot perform the operation of walking along the obstacle.
  • the buffer 122 includes a front transverse section and two side sections. Generally, two collision sensors are arranged on the front transverse section, that is, two triggers are provided.
  • a collision sensor is respectively arranged on the two side sections, that is, a trigger is respectively arranged on the two side sections, so when the cleaning device 100 collides with the obstacle 200, it can be roughly detected by a combination signal of one collision sensor or several collision sensors.
  • the position of the obstacle 200 relative to the machine body 110 is confirmed. That is, after the trigger is triggered, the relative position of the cleaning device 100 and the obstacle 200 can be known by acquiring the detection information of the first detection part, so as to guide the cleaning device 100 to perform subsequent operations.
  • the trigger can be a collision sensor, such as a light-blocking switch sensor or a Hall-type sensor.
  • the collision position of the cleaning device 100 can send collision position information to the control system through the collision sensor. , so as to determine which position of the cleaning device 100 has collided, so as to further confirm the orientation of the obstacle 200 relative to the cleaning device 100 .
  • the first detection part can be the laser ranging sensor of the cleaning equipment 100.
  • the laser ranging sensor is located on the upper end of the main body 110 of the machine, and can rotate 360° to emit laser light, and determine the distance of the obstacle 200 relative to the cleaning equipment 100 through the reflected laser light. and direction, and then the first detection information can be determined according to the above information.
  • Step S604 Determine a first moving distance based at least on the acquired first detection information
  • Step S606 After controlling the cleaning device to move backward for a first moving distance, perform a first obstacle proximity operation according to the first detection information.
  • the first moving distance is determined, so that the first moving distance can match the relative position of the obstacle 200 and the cleaning device 100, and the cleaning device 100 is controlled to move backward to move the first moving distance, thus , so that the cleaning device 100 is separated from the obstacle 200, and the trigger state of the trigger is released, so that the cleaning device 100 can be moved smoothly.
  • the first moving distance may also be determined in combination with the structural parameters of the cleaning device 100 itself and the acquired first detection information.
  • the structural parameters of the cleaning device 100 may include the positional relationship of the second detection member relative to the geometric center of the machine body 110 of the cleaning device 100 , the distance between the geometric center of the machine body 110 of the cleaning device 100 and the collision position, and the like.
  • controlling the cleaning device 100 to move backward refers to controlling the cleaning device 100 to move backward while keeping the attitude of the cleaning device 100 colliding with the obstacle 200 . That is to say, during the backward movement of the cleaning device 100, the cleaning device 100 moves backward along a straight line without rotation.
  • Figure 3b is a schematic diagram of the cleaning device 100 retreating the first moving distance based on the posture of Figure 3a
  • Figure 4b is a schematic diagram of the cleaning device 100 retreating the first moving distance based on the posture of Figure 4a schematic diagram.
  • the first moving distance is shown as D1 in FIG. 3b and FIG. 4b, wherein, in FIG. 3b and FIG. A geometric center after moving distance D1.
  • Step S608 Acquiring the second detection information of the second detection part
  • Step S610 Control the cleaning device to perform the operation of walking along the obstacle according to the second detection information.
  • the side of the cleaning device 100 provided with the second detection part is close to the obstacle 200, so that the second detection part can sense the obstacle 200. Therefore, by obtaining the second The second detection information of the detection part can accurately understand the positional relationship between the cleaning device 100 and the obstacle 200, such as the positional relationship between the cleaning device 100 and the wall, and then control the cleaning device 100 through the second detection information.
  • the cleaning device 100 may be controlled to move along the wall with a small distance from the wall. It can be understood that at this time, the side brush 143 can move the debris on the adjacent part of the floor and the wall to the roller brush area of the cleaning system, thereby realizing the cleaning of the adjacent part of the floor and the wall.
  • the first obstacle-nearing operation refers to the operation of bringing one side of the cleaning device close to the obstacle
  • the operation of walking along the obstacle refers to the operation of keeping the cleaning device at a certain distance from the obstacle and moving along the obstacle.
  • the second detection part may be a smaller laser ranging sensor arranged on one side of the machine body 110, such as the second detection part is arranged on the right side of the machine body 110, and can sense the obstacle 200 on the right side of the machine body 110
  • the distance between a point of and the machine main body 110 has a high precision.
  • the first detecting element detects the distance between the obstacles 200 around the main body 110 of the machine and the main body 110 of the machine, but the accuracy is lower. That is to say, the first detection part is mainly used to find where the wall is, the length of the wall, and the relative position between the wall and the machine main body 110 , and the first detection part is rotatably arranged on the machine main body 110 .
  • the second detection part transmits and receives reflected signals from the side of the machine main body 110 in a fixed direction; when the machine main body 110 is parallel to the wall, it is still necessary to use a higher-precision distance sensor such as the second detection part to achieve millimeter-level detection. Walk along the wall. That is, when the second detection part can detect the information of the wall, the control system can control the cleaning device 100 to move along the wall with a smaller distance from the wall.
  • the positional relationship of the obstacle 200 relative to the cleaning device 100 can be known. , and then obtain the first detection information of the first detection part to determine the first moving distance, and then control the cleaning equipment 100 to move back and move the first distance, so that the cleaning equipment 100 is separated from the obstacle 200, ensuring that the cleaning equipment 100 can be carried out smoothly. move.
  • the cleaning device 100 can be controlled to perform the operation of walking along the obstacle, so that the cleaning device 100 can quickly walk along the obstacle, reduce the problem of missed cleaning of the adjacent parts of the ground and the wall, greatly improve the cleaning efficiency, and ensure good cleaning efficiency. Cleaning effect.
  • the first detection information at least includes: a first angle between the machine body and the obstacle, a vertical distance between the machine body and the obstacle, and a horizontal distance between the machine body and the target end of the obstacle, wherein the obstacle's The target end is located in front of the cleaning device on the side away from the second detection member, that is, the target end of the obstacle is the end that the cleaning device reaches when it pre-executes the operation of walking along the obstacle.
  • the first detection information can also be other parameters that meet the requirements, and the parameters are used to characterize the positional relationship between the obstacle and the main body of the machine where the trigger is triggered, and the position of the target end of the obstacle and the main body of the machine relation.
  • the first included angle ⁇ 1 between the machine main body 110 and the obstacle 200 may be the included angle between the centerline m1 of the machine main body 110 in the front-back direction and the projection of the surface of the obstacle 200 on the horizontal plane, wherein , the center line of the machine body 110 in the front and rear direction is shown in Fig. 3a and the straight line m1 in Fig. 4a, and the first included angle is shown in ⁇ 1.
  • the vertical distance d between the machine main body 110 and the obstacle 200 may be the vertical distance between the geometric center O of the machine main body 110 projected in the horizontal plane and the surface of the obstacle 200, wherein the geometric center O of the machine main body 110 projected in the horizontal plane O may be an intersection point of the centerline m1 in the front-rear direction of the machine body 110 and the centerline m2 in the left-right direction.
  • the horizontal distance L between the machine body 110 and the target end Q of the obstacle 200 may be the horizontal distance between the horizontal projection of the geometric center O of the machine body 110 on the obstacle 200 and the target end Q of the obstacle 200, wherein, The target end Q of the obstacle 200 is an end for the cleaning device 100 to reach in advance of the obstacle-walking operation.
  • the target end of the obstacle 200 is represented by the letter Q, wherein the target end Q of the obstacle 200 is located on the side of the front of the cleaning device 100 away from the second detection part. It can be understood that the machine body 110 and the obstacle 200
  • the length of the horizontal distance L of the target end Q of the cleaning device 100 can determine whether the first obstacle-nearing operation can be successfully completed.
  • the horizontal distance L between the machine main body 110 and the target end Q of the obstacle 200 is relatively short, as shown in Figure 4g
  • the second detection piece on the side of the machine main body 110 cannot detect the wall surface due to insufficient length of the wall surface, so that the operation of walking along the obstacle cannot be performed smoothly. Or cause the main body 110 of the machine to fail to trigger the trigger again during the obstacle-nearing operation, so that the subsequent obstacle-alonging operation cannot be completed. Therefore, the horizontal distance L between the machine main body 110 and the target end Q of the obstacle 200 plays an important role in how to perform the near-obstacle operation subsequently.
  • the horizontal distance L between the machine main body 110 and the target end Q of the obstacle 200 is shown as L in FIG. 3 a and FIG. 4 a .
  • step S604 includes the following method steps.
  • Step S604-2 Determine the first moving distance according to the first included angle, the vertical distance between the machine body and the obstacle, and the horizontal distance between the machine body and the target end of the obstacle.
  • the cleaning equipment 100 can reflect the cleaning equipment 100 and the obstacle 200, the cleaning equipment 100 The specific positional relationship with the target end Q of the obstacle 200, therefore, according to the first angle ⁇ 1, the vertical distance d between the machine body 110 and the obstacle 200, the target end of the machine body 110 and the obstacle 200
  • the horizontal distance L of Q determines the first moving distance D1, so that after the cleaning device 100 moves back the first moving distance D1, the possibility of re-triggering the action of the trigger can be reduced during the process of performing the first near-obstacle operation according to the first detection information. , that is, the cleaning device 100 can reduce the number of collisions with the obstacle 200 as much as possible, and at the same time reduce the missed scanning area and improve the cleaning efficiency.
  • the data of the odometer of the driving wheel 131 can be used to ensure that the cleaning device 100 moves backwards for an accurate distance in the current posture. That is, during the backward movement of the cleaning device 100, when the change information of the odometer matches the first moving distance D1, the cleaning device 100 is controlled to stop moving backward. At this time, the distance that can ensure that the cleaning device 100 moves backward is the first movement distance D1.
  • step S610: controlling the cleaning device to perform an operation of walking along obstacles according to the second detection information includes the following method steps.
  • Step S610-2 Determine the first rotation angle according to the first included angle
  • Step S610-4 Control the cleaning device to rotate to the side away from the second detection part by a first rotation angle
  • Step S610-6 Control the cleaning device to move forward according to the horizontal distance between the machine body and the target end of the obstacle.
  • the first rotation angle ⁇ 1 is determined according to the first included angle ⁇ 1, so that the first rotation angle is consistent with the cleaning device 100 Relative to the current inclination state of the obstacle 200, then, as shown in FIG. 4c, control the cleaning device 100 to rotate the first rotation angle ⁇ 1 to the side away from the second detection member, so that the cleaning device 100 after rotation The direction and the obstacle 200 are kept within a preferred angle range.
  • FIG. 4c shows a schematic diagram of the cleaning device 100 after the first rotation angle is rotated based on the attitude of FIG. 4b , wherein the first rotation angle is shown as ⁇ 1 in FIG. 4c .
  • the optimal input of the cleaning device 100 can be calculated.
  • Obstacle angle ⁇ where the obstacle entry angle ⁇ refers to the angle between the center line of the machine body 110 of the cleaning device 100 in the front and rear directions and the projection of the surface of the obstacle 200 on the horizontal plane when the cleaning device 100 performs the first obstacle-nearing operation, as shown in the figure ⁇ in 4c.
  • the preferred obstacle entry angle ⁇ is less than 45°.
  • the first rotation angle ⁇ 1 can be determined, that is, the first rotation angle ⁇ 1 can be understood as the first included angle ⁇ 1 and the better entry angle The difference of the obstacle angle ⁇ .
  • the differential rotation of the left and right wheels can be controlled by monitoring the data of the gyroscope, so that the cleaning device 100 can be controlled to rotate in situ by the first rotation angle ⁇ 1 to the side away from the second detection part.
  • step S610-6 includes the following method steps.
  • Step S610-6-11 Based on the fact that the horizontal distance between the machine body and the target end of the obstacle is greater than or equal to a preset value, control the cleaning device to move forward;
  • Step S610-6-12 Obtain the second included angle between the machine body and the obstacle at the current position based on the trigger being triggered again;
  • Step S610-6-13 Determine the second rotation angle according to the second included angle
  • Step S610-6-14 Control the cleaning device to rotate to the side away from the second detection part by a second rotation angle.
  • the preset value refers to that after the cleaning device 100 can successfully complete the first obstacle-nearing operation relative to the obstacle 200, the second detection part can detect the information of the obstacle 200 and can adjust the cleaning device 100 to a stable state along the obstacle.
  • the value of the horizontal distance For example, the target obstacle-entry position of the cleaning device 100 is set on the extension direction of the obstacle 200, and the target obstacle-entrance position is represented by the letter P.
  • the obstacle-entry position P can be the position of the obstacle 200 when the cleaning device 100 switches from the first obstacle-nearing operation to the obstacle-walking operation, that is, after the cleaning device 100 passes the target obstacle-entry position P, it can be detected according to the second detection element.
  • the information to the obstacle controls the cleaning equipment to perform the operation of walking along the obstacle.
  • the preset value is the horizontal distance between the projection of the geometric center of the machine body 110 of the cleaning device 100 on the obstacle and the target obstacle entry position P, as shown by H in FIG. 4d and FIG. 4g .
  • the preset value may be set in the system in advance, or calculated by the system according to the attitude and position of the cleaning device 100 when it collides with the obstacle 200 , and the structural parameters of the cleaning device 100 itself. For example, according to the first angle between the machine body 110 and the obstacle 200 in the first detection information, the vertical distance between the machine body 110 and the obstacle 200, and the level of the target end Q of the machine body 110 and the obstacle 200 distance, as well as the distance between the geometric center of the machine body 110 of the cleaning device 100 and the collision position, the relative position of the geometric center of the machine body 110 and the second detection part and other parameters, calculate a reasonable preset value to ensure that the cleaning device After the 100 can successfully complete the first obstacle approaching operation relative to the obstacle 200, when the second detection part can detect the information of the obstacle 200, the cleaner will perform the obstacle walking operation.
  • the cleaning device 100 is controlled to move forward, that is, the cleaning device 100 advances toward the obstacle 200 at a better obstacle-entry angle ⁇ , and when the trigger is triggered again, it means that the cleaning device 100 Collide with the obstacle 200 again.
  • the buffer 122 is separated from the obstacle 200, and the second detection part can sense the obstacle 200, that is, the second detection part feeds back the second detection information. Therefore, the control system can control the cleaning device 100 to walk along the barrier according to the second detection information, as shown in FIG. 4f.
  • determining the second rotation angle according to the second included angle specifically includes:
  • the second rotation angle is determined according to the second included angle and the setting position of the second detection member relative to the main body of the machine.
  • the second detection part can sense the obstacle 200 as early as possible during the travel of the cleaning device 100, so that the cleaning device 100 Ability to perform walk-along maneuvers as early as possible.
  • the second detection part is arranged at different positions relative to the machine body 110 , so that the second detection part can sense the obstacle 200 only when the cleaning device 100 is rotated to different angles in the same posture.
  • the second rotation angle ⁇ 2 is determined according to the second included angle ⁇ 2 and the setting position of the second detection member relative to the main body 110 of the machine, so that after the cleaning device 100 rotates to the side away from the second detection member by the second rotation angle ⁇ 2 , the trigger is released, and at the same time, the second detection part can sense the obstacle 200, that is, the second detection part feeds back the second detection information, thereby avoiding the need for two rotations or multiple rotations to make the trigger be contacted , and the second detection part can sense the obstacle 200, which greatly improves the efficiency of the cleaning device 100 to perform the operation of walking along the obstacle.
  • the second detection part is arranged on the right side of the machine body 110, and the distance between the second detection part and the front end of the machine body 110 is a fixed value, such as 9 cm to 15 cm, such as the distance between the second detection part and the front end of the machine body 110 is 9cm, 11cm, 13cm, 15cm, or other values that meet the requirements. It can be understood that the distance between the second detection part and the front end of the machine body 110 can also be proportional to the size of the machine body 110 in the front and rear directions, such as the second detection part The distance from the front end of the machine body 110 is 0.3 times, 0.4 times, 0.6 times of the front and rear dimensions of the machine body 110 or other values that meet the requirements, which is not specifically limited in this disclosure.
  • Such a setting makes it possible for the second detection member to sense the obstacle 200 only when the included angle between the cleaning device 100 and the obstacle 200 reaches a certain range.
  • the second detection part can sense the wall only when the angle between the machine body 110 and the wall is within a certain angle range, for example, within 27°. Therefore, It is necessary to rotate the cleaning device 100 within this angle range as soon as possible to realize the operation of walking along obstacles. Therefore, the second rotation angle ⁇ 2 is determined according to the second included angle ⁇ 2 and 27°, so that after the cleaning device 100 rotates to the left by the second rotation angle ⁇ 2, the trigger is released, and the second detection member can sense the wall .
  • step S610-6 includes the following method steps.
  • the trigger is not triggered when the preset time period is reached, and the cleaning device is controlled to perform a trouble-shooting operation.
  • the cleaning device 100 when the horizontal distance L between the machine main body 110 and the target end Q of the obstacle 200 is smaller than the preset value H, that is to say, the obstacle 200 is shorter, so that the cleaning device 100 cannot
  • the successful completion of the first obstacle-nearing operation may also mean that the combination of various sensors of the cleaning device 100 cannot realize the stable walking operation of the cleaning device 100 along obstacles. Therefore, as shown in FIG.
  • control the cleaning device 100 to move to the side away from the second detection part at the first linear velocity and the first angular velocity, that is, control the cleaning device 100 to approach the obstacle 200 obliquely as a whole, to a greater extent Increase the cleaning area, try to achieve comprehensive cleaning, stick to this walking state, if the trigger is not triggered when the preset time is reached, it means that the forward part 111 of the cleaning device 100 has crossed the obstacle 200, and then control the cleaning device 100 An obstacle finding operation is performed to find a new obstacle 200 to realize the operation of walking along the obstacle.
  • the preset duration can be 400ms, 500ms, 600ms, or other durations that meet the requirements, and the preset duration is within a reasonable range, which can ensure that the forward part 112 of the cleaning device 100 can cross the target end Q of the obstacle 200, For example, when the cleaning device 100 goes over a corner, the cleaning device 100 will not collide with the corner to waste time.
  • the first linear velocity and the first angular velocity may be preset values of the control system.
  • the cleaning device is controlled at the first linear velocity and the first angular velocity. 100 rotates the move to the left.
  • the fault-finding operation includes: controlling the cleaning device to move toward the side where the second detection member is provided at a fault-finding linear velocity and a fault-seeking angular velocity until the trigger is triggered.
  • the cleaning device 100 in order to enable the second detection member to sense the obstacle 200 as early as possible, so that the cleaning device 100 can perform the operation of walking along the obstacle to clean the adjacent part of the ground and the wall, the cleaning device 100 should be controlled to The side provided with the second detection part rotates and moves until the trigger part is triggered, indicating that the cleaning device 100 collides with the obstacle 200, that is, the obstacle 200 is found, and the trouble-finding operation is completed.
  • the cleaning device 100 is controlled to rotate and move to the side where the second detection part is provided, so that the probability that the second detection part senses the obstacle 200 can be increased when the cleaning device 100 moves until the trigger part is triggered, Furthermore, it is beneficial to improve the efficiency of the cleaning device 100 finding the obstacle 200 or performing the operation of walking along the obstacle.
  • the cleaning device 100 is controlled to move to the side where the second detection member is provided at the fault-seeking linear velocity and the fault-seeking angular velocity, wherein the fault-seeking linear velocity and the fault-seeking angular velocity can be preset values of the control system.
  • the second detection part set on the right side of the machine body 110 of the cleaning device 100 as an example, as shown in FIG.
  • the linear velocity and the first angular velocity control the cleaning device 100 to rotate and move to the left.
  • the trigger When the preset time is reached, the trigger is not triggered, indicating that after the trigger passes the target obstacle entry position P, the obstacle-seeking linear velocity and the obstacle-seeking angular velocity , to control the cleaning device 100 to move to the right, that is, to move forward along the arrow in FIG.
  • the vertical wall connected to the wall just passed enables the cleaning device 100 to quickly perform the operation of walking along the obstacle, so as to realize the cleaning of the adjacent part of the area between the ground and the new wall.
  • control method further includes:
  • Step S612 Based on the fact that the first detection information is not obtained, control the cleaning device to move backward by a first preset distance, rotate to a side away from the second detection part by a second preset angle, and then perform a trouble-finding operation.
  • the first detection element fails to sense, such as the obstacle 200 The height is too low for the first detecting element to detect, or the obstacle 200 is a light-absorbing material, so that the second detecting element cannot receive a return signal of sufficient intensity, etc.
  • the control system will control the cleaning device 100 to move back by the first preset distance D01, so that the cleaning device 100 is separated from the obstacle 200, and the trigger state of the trigger is released, which can ensure that the cleaning device 100 is carried out smoothly.
  • the trouble-finding operation is to control the cleaning device 100 to rotate and move in the direction of the side where the second detection member is provided until the trigger member is triggered.
  • the cleaning device 100 is controlled to move to the side where the second detection part is provided with the obstacle-seeking linear velocity and the obstacle-seeking angular velocity until it collides with the obstacle 200 to trigger the trigger, indicating that the cleaning device 100 has found the obstacle 200 again.
  • the obstacle 200 can be a reference object for the cleaning device 100 to perform the operation of walking along the obstacle, that is, when the second detection member senses the obstacle 200, the cleaning device 100 can perform the operation of walking along the obstacle.
  • the second preset angle ⁇ 1 may be a preset value of the control system. After the cleaning device 100 is controlled to move back the first preset distance D01, the second preset angle ⁇ 1 is rotated to the side away from the second detection part, which can To avoid the situation where the cleaning device 100 moves forward again with the current posture and the first detection part cannot sense the obstacle 200 after colliding with the obstacle 200, it is beneficial to control the cleaning device 100 to perform an obstacle-finding operation after rotating the second angle ⁇ 1. After the cleaning device 100 collides with the obstacle 200 again, the possibility that the first detection part can sense the obstacle 200 can be increased. As above, the probability that the second detection part can sense the obstacle 200 can be increased, thereby improving the cleaning equipment. 100 Efficiency in performing obstacle walk operations.
  • the cleaning device 100 moves back the first preset distance D01, rotates to the side away from the second detection part by the second preset angle ⁇ 1, and performs the troubleshooting operation to find the obstacle 200, if the control system still cannot Obtain the first detection information, that is, the first detection part still cannot sense the obstacle 200, as shown in Figures 5d and 5e, the cleaning device 100 can be controlled to move back again for a third preset distance D02, to the side away from the detection part After the third preset angle ⁇ 2 is rotated, the obstacle finding operation is performed.
  • an embodiment of the second aspect of the present disclosure provides a control device 800 for cleaning equipment.
  • the cleaning equipment includes a main body of the machine, a trigger, a first detection piece and a second detection piece arranged on the main body of the machine.
  • the detection part, the trigger part is set to be triggered when the cleaning device collides with an obstacle
  • the first detection part is used to sense the obstacle around the machine main body
  • the second detection part is arranged on one side of the machine main body, and is used to sense
  • the control device 800 includes:
  • the first acquisition module 810 is configured to acquire first detection information of the first detection part based on the trigger being triggered; the first determination module 820 is configured to determine a first moving distance based at least on the acquired first detection information; the second A processing module 830, which controls the cleaning device to move backwards for a first moving distance, and then performs a first near-obstacle operation according to the first detection information; a second acquisition module 840, used to acquire second detection information of the second detection part; second processing Module 850, configured to control the cleaning device to perform an operation of walking along obstacles according to the second detection information.
  • the control device 800 of the cleaning equipment provided in the present disclosure can know the positional relationship of the obstacle 200 relative to the cleaning equipment 100 after the cleaning equipment collides with an obstacle to trigger the action of the trigger, and then through the first acquisition module 810 Obtaining the first detection information of the first detection part can determine the first moving distance, and then the first processing module 830 controls the cleaning device to move backward by the first distance, so that the cleaning device is separated from the obstacle and ensures that the cleaning device can be carried out smoothly. move.
  • the first processing module 830 performs different first obstacle-nearing operations according to the difference in the first detection information, which can minimize the number of collisions between the cleaning device and the obstacle again, and at the same time, enable the second detection part to sense the obstacle object
  • the second acquisition module 840 can acquire the second detection information
  • the second processing module 850 can control the cleaning equipment to perform the operation of walking along the obstacle according to the second detection information, so that the cleaning equipment can quickly walk along the obstacle and reduce the distance between the ground and the wall.
  • Part of the problem of missed cleaning greatly improves the cleaning efficiency and can ensure a good cleaning effect.
  • the first detection information at least includes: the first angle between the machine body and the obstacle, the vertical distance between the machine body and the obstacle, the horizontal distance between the machine body and the target end of the obstacle, and the distance between the machine body and the obstacle.
  • the target end is located in front of the cleaning device on the side away from the second detection part, wherein the first determination module 820 includes: a first determination unit, which is used to determine according to the first angle, the vertical distance between the main body of the machine and the obstacle, The horizontal distance between the main body of the machine and the target end of the obstacle determines the first moving distance.
  • the first processing module 830 includes: a second determination unit, configured to determine the first rotation angle according to the first included angle; a first processing unit, configured to control the cleaning device to rotate to a side away from the second detection member The first rotation angle; the second processing unit, used to control the cleaning device to move forward according to the horizontal distance between the machine body and the target end of the obstacle.
  • the second processing unit includes: a first processing subunit, configured to control the cleaning device to move forward based on the horizontal distance between the machine body and the target end of the obstacle being greater than or equal to a preset value; the first acquisition submodule , for obtaining the second included angle between the machine body and the obstacle at the current position based on the trigger being triggered again; the first determination subunit is used for determining the second rotation angle according to the second included angle; the second processing subunit, It is used to control the cleaning device to rotate to the side away from the second detection part by a second rotation angle.
  • the first determining subunit specifically includes: determining the second rotation angle according to the second included angle and the setting position of the second detection member relative to the main body of the machine.
  • the second processing unit includes: a third processing subunit, configured to control the cleaning device to move toward The side away from the second detection part moves, and if the trigger part is not triggered for a preset time period, the cleaning device is controlled to perform a trouble-finding operation.
  • control device 800 of the cleaning device further includes: a third processing module, configured to control the cleaning device to move backward by a first preset distance to the side away from the second detection part based on not obtaining the first detection information After the second preset angle is rotated, the obstacle-finding operation is performed.
  • a third processing module configured to control the cleaning device to move backward by a first preset distance to the side away from the second detection part based on not obtaining the first detection information After the second preset angle is rotated, the obstacle-finding operation is performed.
  • the fault-finding operation includes: controlling the cleaning device to move and rotate toward the side where the second detection member is provided at a fault-finding linear velocity and a fault-seeking angular velocity until the trigger is triggered.
  • An embodiment of the present disclosure provides a cleaning device, including a processor and a memory.
  • the memory stores computer program instructions that can be executed by the processor.
  • the processor executes the computer program instructions, the cleaning device control method of any embodiment is implemented. step.
  • the cleaning device may include a processing device 701 (such as a central processing unit, a graphics processing unit, etc.), which may be loaded into a random access memory (RAM703) to execute various appropriate actions and processes.
  • RAM 703 random access memory
  • various programs and data necessary for the operation of the electronic robot are also stored.
  • the processing device 701 , ROM 702 , and RAM 703 are connected to each other through a bus 704 .
  • An input/output (I/O) interface is also connected to bus 704 .
  • the following devices can be connected to the I/O interface 705: input devices 706 including, for example, a touch screen, touchpad, keyboard, mouse, camera, microphone, sensing devices, etc.; an output device 707; a storage device 708 including, for example, a hard disk; and a communication device 709.
  • the communication means 709 may allow the cleaning robot to perform wireless or wired communication with other base stations to exchange data, for example, the communication means 709 may enable communication between the cleaning robot and a base station or a remote mobile device. While FIG. 7 shows a cleaning apparatus having various means, it should be understood that it is not a requirement to implement or possess all of the means shown. More or fewer means may alternatively be implemented or provided.
  • an embodiment of the present disclosure includes a robot software program product, which includes a computer program carried on a readable medium, where the computer program includes program codes for executing the method shown in flowchart 6 .
  • the computer program may be downloaded and installed from a network via communication means 709 , or from storage means 708 , or from ROM 702 .
  • the processing device 701 the above-mentioned functions defined in the methods of the embodiments of the present disclosure are executed.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • a computer-readable storage medium may be, for example but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM 703), read only memory (ROM 702), erasable Programmable read only memory (EPROM 702 or flash memory), fiber optics, portable compact disk read only memory (CD-ROM 702), optical storage devices, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned robot, or may exist independently without being incorporated into the robot.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages such as Java, Small talk, C++, and conventional A procedural programming language such as the "c" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (such as via the Internet using an Internet service provider). connect).
  • LAN local area network
  • WAN wide area network
  • connect an external computer (such as via the Internet using an Internet service provider).
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the present disclosure also proposes a cleaning device for front impact rebound.
  • Figure 11 shows a top view of the cleaning device for front impact rebound, wherein the cleaning device is generally divided into front and rear parts, wherein the front part is generally rectangular/square configuration, and the cleaning device is square configuration
  • the front bumper 3 is arranged on the outer side of the front bumper.
  • the front bumper 3 is divided into a front straight section and a side straight section.
  • the junction of the front straight section and the side straight sections on both sides forms a roughly rounded corner.
  • the internal shape corresponds to the shape of the front bumper 3. It can be understood that when the cleaning equipment is moving, when the front collides, the front impact 3 will move relative to the rack along the direction perpendicular to the straight line segment in front of the cleaning equipment, and when the side impacts, the front impact 3 will move along the direction of the cleaning equipment.
  • the vertical direction of the side straight segment moves relative to the frame.
  • the rear of the cleaning device is of generally circular configuration.
  • the advantage of this arrangement is that the cleaning part is arranged at the bottom of the frame in the front of the cleaning equipment in a square configuration.
  • the cleaning part can basically span the width of the front part and be closer to the front of the machine in the direction of travel. During the cleaning process of the surface to be cleaned , can more effectively clean the corners.
  • At least one collision sensor is respectively provided on the front and side of the cleaning equipment rack, which can respond to the collision of the cleaning equipment during travel and transmit the corresponding data or signals to the control unit, the control unit Further controlling the driving wheels and the cleaning unit of the cleaning device has achieved the purpose of avoiding obstacles or changing the cleaning characteristics.
  • the obstacle avoidance can be the operation of bypassing the obstacle or moving away from the obstacle, and changing the cleaning characteristics can be changing the working mode of the cleaning unit (side brush, main brush, floor mopping member, vacuum fan power, etc.).
  • the collision sensor can also be arranged on the inner wall and/or side wall of the front end of the front impact, and its working method is the same as that described above on the frame, but in the actual design, the circuit is also involved, and it is beneficial to install the circuit on the frame. Therefore, in this embodiment, setting the collision sensor on the frame is used as an example for description.
  • two front impact sensors can be symmetrically arranged at the front, and one side impact sensor can be arranged at the side respectively, that is, the first front impact sensor as shown in FIG. 9 11.
  • the second front impact sensor 12 , the first side impact sensor 13 , and the second side impact sensor 14 can be arranged at the side respectively, that is, the first front impact sensor as shown in FIG. 9 11.
  • the second front impact sensor 12 , the first side impact sensor 13 , and the second side impact sensor 14 can be arranged at the side respectively, that is, the first front impact sensor as shown in FIG. 9 11.
  • the second front impact sensor 12 , the first side impact sensor 13 , and the second side impact sensor 14 can be arranged at the side respectively, that is, the first front impact sensor as shown in FIG. 9 11.
  • the second front impact sensor 12 , the first side impact sensor 13 , and the second side impact sensor 14 can be arranged at the side respectively, that is, the first front impact sensor as shown in FIG. 9 11.
  • the front bumper 3 moves relative to the frame in a direction perpendicular to the front straight section, and when the movement reaches a certain distance, the two collisions set at the front will be triggered sensor. It is understandable that during the collision process, the front impact 3 does not move strictly in the direction perpendicular to the front straight line segment, and the movement of the front impact 3 in this direction will be distorted to a certain extent depending on the collision position. The generation of distortion is understandable.
  • the corresponding position on the front bumper 3 is directly forced to move relative to the frame, which in turn drives the front bumper 3 to move relative to the frame as a whole. That is, the movement of the front bumper 3 is that the collision point is squeezed by an external collision object, and the point moves, thereby driving other points on the front bumper 3 far away from this point to follow and move.
  • the collision sensor that is closer to the collision point will be triggered before other collision sensors that are far away from the collision point.
  • the specific point where the collision occurs can also be determined from the trigger sequence or time point of multiple sensors.
  • the side straight section is shorter than the front straight section, so only one collision sensor needs to be provided on the side to meet the requirements, and of course the number and position are not limited.
  • the front collision 3 needs to return to its position after being collided and moved relative to the frame, so as to cope with the next collision. For this reason, a plurality of rebound members or reset mechanisms are set on the frame to realize the reset of the front impact 3, and for the special-shaped cleaning equipment as mentioned in this embodiment, especially the cleaning equipment with a square structure at the front, it is also necessary to The reset of the front crash 3 is effectively centered.
  • the setting of the rebounding member can also be on the inner wall of the front impact, but due to space constraints, this embodiment uses the rebounding member on the frame for specific description, but it does not rule out that the rebounding member is arranged on the front impact The way.
  • a resilient member 2 is provided on the frame, and the resilient member 2 includes various parts as shown in Figures 13-15, which are elastic arms 21 and reset arms 23 respectively arranged at both ends of the elastic arm 21. and the fixed arm 25, the elastic arm 21 and the reset arm 23 form an acute angle intersection; the reset hook 24 arranged at the other end of the reset arm 23 and the fixed hook 26 arranged at one end of the fixed arm 25, the junction of the elastic arm 21 and the reset arm 23
  • the contact portion 22 is formed.
  • the frame is provided with a structure corresponding to the fixed arm 25 and the fixed hook 26.
  • the hook 26 hooks the corresponding structure on the frame, thereby restricting the displacement of the resilient member 2 relative to the frame along the moving direction of the elastic arm 21, that is, the corresponding fixed structure on the fixed arm 25 and the fixed hook 26 and the frame.
  • the elastic part is fixedly connected to the frame.
  • the reset hook 24 can limit the rebound stroke of the elastic arm 21 by the corresponding structure on the frame.
  • the reset arm 23 drives the reset hook 24 to move in the extrusion direction.
  • the corresponding structure inside the frame does not limit the movement of the reset arm 23 and the reset hook 24, but the extrusion of the front impact 3 disappears, and when the elastic arm 21 rebounds to the initial position, the corresponding structure on the frame blocks the reset hook 24 So that it cannot move beyond the initial position.
  • the setting of the initial position is to limit the rebound position of the elastic arm 21 .
  • the front bumper 3 In the initial position, the front bumper 3 is in a natural state, that is, the state without any collision, and the contact portion 22 also has a certain preset gap with the inner wall of the front bumper 3, and the value of the preset gap can be set to, for example, 0.3mm Between -2mm. Therefore, at the initial stage of the frontal collision of the front collision 3, the inner wall of the front collision 3 needs to move at least the above preset gap before it comes into contact with the contact portion 22, and then the elastic arm 21 is elastically deformed, and the reset arm 23 drives the reset The hook 24 moves away from the initial position until the frontal collision disappears, and the elastic arm 21 resets the frontal collision 3 .
  • the side impact sensor is triggered, but during the entire side impact process, the front inner wall of the front impact 3 will not touch the contact part 22, that is, It is said that the rebound member 2 will not have any influence on the front collision 3 when a pure side collision occurs; just because there is no influence of the rebound member 2 on the front collision 3, the side collision of the front collision 3 can be more accurately detected feedback.
  • the front impact 3 has two roughly rounded corners.
  • the impact sensors on the front and side of the frame may be triggered. Due to the setting of the preset gap above, the lateral displacement of the front bumper 3 will not be affected by the rebound member 2 at the initial stage until the contact portion 22 contacts the inner wall of the front bumper 3 . Although the subsequent lateral displacement will be more or less affected by the friction force between the contact portion 22 and the inner wall of the front impact 3, the side impact sensor may have been triggered at this time, thus further reducing the influence factors of the friction force.
  • another rebound centering member is also provided on the front side of the frame, and the rebound centering member It can actively reset the lateral movement of the front impact 3, and perform centering on the lateral return of the front impact 3.
  • the specific setting form is described in other patent applications, and will not be repeated here.
  • the present embodiment selects two resilient members 2 symmetrically arranged on the front straight section of the frame, and the two resilient members 2 are relatively
  • the first and second collision sensors at the front are farther away from the two rounded corners, that is, the distance between the two rebounding members 2 is smaller than the distance between the two collision sensors.
  • the two frontal collision sensors and the collision sensors on both sides are close to or located in the rounded corner area.
  • the specific position is not too sensitive, but the collision of the corner area will bring more calculation processing steps due to the complexity of the angle and size of the external collision, so this setting method can simplify the subsequent processing of the control system to some extent process and increase processing speed.
  • the frame of the cleaning equipment provided by the present disclosure is provided with a rebound member that does not contact with the front impact when it is in a natural state, and only the left and right sides of the front impact When the force is applied, there is a certain gap between the rebounding part and the front bumper, so as to ensure that when the front bumper is laterally displaced from the left and right, the rebounding part will not interfere with the lateral displacement of the front bumper and affect the impact sensors on the left and right sides of the frame
  • the trigger sensitivity is also conducive to more accurate rebound centering after the displacement of the front impact.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.

Abstract

一种清洁设备的控制方法、装置、清洁设备和存储介质。其中,清洁设备的控制方法包括:基于触发件被触发,获取第一检测件的第一检测信息(S602);至少基于获取到的第一检测信息,确定第一移动距离(S604);控制清洁设备后退移动第一移动距离后,根据第一检测信息执行第一近障操作(S606);获取第二检测件的第二检测信息(S608);根据第二检测信息控制清洁设备执行沿障行走操作(S610)。由此,能够尽量地减少清洁设备与障碍物(200)再次碰撞的碰撞次数,使得清洁设备能够快速沿障行走,减少地面与墙壁邻近部分漏扫的问题。

Description

清洁设备的控制方法、装置、清洁设备和存储介质
相关申请的交叉引用
本公开分别要求于2021年10月18日递交的中国专利申请号为202122503365.4,以及于2021年12月08日递交的中国专利申请号为202111492870.1的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及智能控制技术领域,尤其涉及一种清洁设备的控制方法、装置、清洁设备和存储介质,以及一种用于前撞回弹的清洁设备。
背景技术
目前的清洁设备,如自移动清洁机器人,通常能够在无使用者操作的情况下,在某一待清洁区域自动行进完成清洁操作。在清洁过程中,清洁设备会遇到障碍物,当清洁设备沿着障碍物移动时,能够对待清洁表面与障碍物邻近的部分进行清洁;
另外,由于清洁设备,特别是一些非圆形的清洁设备,由于其构型的特殊化,在机型行为上必然有不同于圆形机的特定,在避障或者沿墙过程中,碰撞感应部件需要有对应的结构组件对其触发和回弹作出更好的回应。
发明内容
有鉴于此,本公开实施例提供一种清洁设备的控制方法、装置、清洁设备和存储介质,能够尽量地减少清洁设备与障碍物再次碰撞的碰撞次数,使得清洁设备能够快速沿障行走,减少如地面与墙壁邻近部分漏扫等问题;
本公开还提供了一种清洁设备,能够从某种程度上对碰撞感应部件的触发和回弹进行优化,实现碰撞传感器的灵敏响应以及回弹后的准确对中。
本公开第一方面的实施例,提供了一种清洁设备的控制方法,清洁设备包括机器主体,以及设置于机器主体上的触发件、第一检测件和第二检测件,触发件被设置为当清洁设备与障碍物碰撞时被触发,第一检测件用于感测机器主体周侧的障碍物,第二检测件设置于机器主体的一侧,用于感测机器主体侧边的障碍物,控制方法包括:
基于触发件被触发,获取第一检测件的第一检测信息;至少基于获取到的第一检测信息,确定第一移动距离;控制清洁设备后退移动第一移动距离后,根据第一检测信息执行第一近障操作;获取第二检测件的第二检测信息;根据第二检测信息控制清洁设备执行沿障行走操作。
进一步地,第一检测信息至少包括:机器主体与障碍物的第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,障碍物的目标端部位于清 洁设备的前方远离第二检测件的一侧;其中,基于获取到的第一检测信息,确定第一移动距离,包括:根据第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,确定第一移动距离。
进一步地,根据第一检测信息,执行第一近障操作,包括:
根据第一夹角确定第一旋转角度;控制清洁设备向远离第二检测件的一侧旋转第一旋转角度;根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动。
进一步地,根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动,包括:基于机器主体与障碍物的目标端部的水平距离大于等于预设值,控制清洁设备向前移动;基于触发件再次被触发,获取当前位置下机器主体与障碍物的第二夹角;根据第二夹角确定第二旋转角度;控制清洁设备向远离第二检测件的一侧旋转第二旋转角度。
进一步地,根据第二夹角确定第二旋转角度,具体包括:根据第二夹角和第二检测件相对于机器主体的设置位置,确定第二旋转角度。
进一步地,根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动,包括:
基于机器主体与障碍物的目标端部的水平距离小于预设值,控制清洁设备以第一线速度、第一角速度向远离第二检测件的一侧移动,若达到预设时长时触发件未被触发,控制清洁设备执行寻障操作。
进一步地,清洁设备的控制方法还包括:基于未获取到第一检测信息,控制清洁设备后退移动第一预设距离,向远离第二检测件的一侧旋转第二预设角度后,执行寻障操作。
进一步地,寻障操作包括:控制清洁设备以寻障线速度、寻障角速度向设置有第二检测件的一侧的方向移动和旋转,直至触发件被触发。
本公开第二方面的实施例,提供了一种清洁设备的控制装置,清洁设备包括机器主体,以及设置于机器主体上的触发件、第一检测件和第二检测件,触发件被设置为当清洁设备与障碍物碰撞时被触发,第一检测件用于感测机器主体周侧的障碍物,第二检测件设置于机器主体的一侧,用于感测机器主体侧边的障碍物,控制装置包括:
第一获取模块,用于基于触发件被触发,获取第一检测件的第一检测信息;第一确定模块,用于至少基于获取到的第一检测信息,确定第一移动距离;第一处理模块,控制清洁设备后退移动第一移动距离后,根据第一检测信息执行第一近障操作;第二获取模块,用于获取第二检测件的第二检测信息;第二处理模块,用于根据第二检测信息控制清洁设备执行沿障行走操作。
进一步地,第一检测信息至少包括:机器主体与障碍物的第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,机器主体与障碍物的目标端部位于清洁设备的前方远离第二检测件的一侧,其中,第一确定模块包括:第一确定单元,用于根据第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,确定第一移动距离。
进一步地,第一处理模块包括:
第二确定单元,用于根据第一夹角确定第一旋转角度;第一处理单元,用于控制清洁设备向远离第二检测件的一侧旋转第一旋转角度;第二处理单元,用于根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动。
进一步地,第二处理单元包括:第一处理子单元,用于基于机器主体与障碍物的目标端部的水平距离大于等于预设值,控制清洁设备向前移动;第一获取子模块,用于基于触发件再次被触发,获取当前位置下机器主体与障碍物的第二夹角;第一确定子单元,用于根据第二夹角确定第二旋转角度;第二处理子单元,用于控制清洁设备向远离第二检测件的一侧旋转第二旋转角度。
进一步地,第一确定子单元具体包括:根据第二夹角和第二检测件相对于机器主体的设置位置,确定第二旋转角度。
进一步地,第二处理单元包括:第三处理子单元,用于基于机器主体与障碍物的目标端部的水平距离小于预设值,控制清洁设备以第一线速度、第一角速度向远离第二检测件的一侧移动,若达到预设时长时触发件未被触发,控制清洁设备执行寻障操作。
进一步地,清洁设备的控制装置还包括:第三处理模块,用于基于未获取到第一检测信息,控制清洁设备后退移动第一预设距离,向远离第二检测件的一侧旋转第二预设角度后,执行寻障操作。
进一步地,寻障操作包括:控制清洁设备以寻障线速度、寻障角速度向设置有第二检测件的一侧的方向移动和旋转,直至触发件被触发。
本公开的第三个方面的实施例,提供了一种清洁设备,其包括处理器和存储器;存储器,用于存储操作指令;处理器,用于通过调用操作指令,执行上述第一个方面任一项的清洁设备的控制方法。
本公开的第四个方面的实施例,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一个方面中任一项的清洁设备的控制方法。
本公开第五个方面的实施例,提供了一种清洁设备,包括:机架,形成为前部类矩形构型、后部半圆形构型;
前撞,连接至所述机架的前部,并可相对于机架移动;碰撞传感器,设于机架前部类矩形构型的前端和/或两侧,或设于所述前撞的前端内壁和/或内侧壁;还包括:至少一个回弹件连接至所述机架和/或所述前撞,在所述前撞未被触发时,所述回弹件的接触部与所述前撞的内壁之间或机架前部之间形成有预设间隙。
进一步地,所述回弹件包括弹性臂,所述前撞受力相对所述机架移动时克服所述弹性臂的弹力,且为所述前撞的复位提供回弹力。
进一步地,所述弹性臂的两端分别设置有复位臂和固定臂,所述复位臂的位移对应于所述前撞的位移行程,所述回弹件通过所述固定壁连接至所述机架和/或前撞。
进一步地,所述弹性臂与所述复位臂形成锐角弯折,且所述弯折的顶部形成所述接触 部。
进一步地,所述复位臂的另一端设置有复位钩,其与所述复位臂大体上垂直设置,所述复位钩与所述机架或前撞上的对应位置配合,以限制所述弹性臂的回弹行程。
进一步地,所述固定臂的一端设置有固定钩,所述固定钩与所述固定臂配合以将回弹件固定连接至所述机架或前撞上的对应位置。
进一步地,所述回弹件为两个,且对称设置于所述机架前部或所述前撞前端内壁。
进一步地,所述碰撞传感器包括对称设于所述机架前部或所述前撞前端内壁的第一前部碰撞传感器和第二前部碰撞传感器、以及分别对称设于所述机架前部两侧或所述前撞内侧壁的第一侧部碰撞传感器和第二侧部碰撞传感器。
进一步地,所述碰撞传感器均靠近所述机架前部或所述前撞的角设置。
进一步地,两个所述回弹件相对于所述碰撞传感器更远离所述机架前部或所述前撞的角。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的实施例提供的清洁设备的结构示意图;
图2为图1所示实施例的一个视角的结构示意图;
图3a为根据本公开的实施例提供的清洁设备的缓冲器的右侧与障碍物碰撞的意图;
图3b为清洁设备基于图3a的姿态后退第一移动距离的示意图;
图4a为根据本公开的实施例提供的清洁设备的缓冲器的左侧与障碍物碰撞的意图;
图4b为清洁设备基于图4a的姿态后退第一移动距离的示意图;
图4c为清洁设备基于图4b的姿态旋转第一旋转角度后的示意图;
图4d为清洁设备基于图4c的姿态前进移动至再次与障碍物碰撞后的示意图;
图4e为清洁设备基于图4d的姿态旋转第二旋转角度后的示意图;
图4f为清洁设备基于图4e的姿态沿障行走的示意图;
图4g为清洁设备基于图4c的姿态旋转行走越过目标入障位置的示意图;
图5a为根据本公开的另一实施例提供的清洁设备的缓冲器的左侧与障碍物碰撞的示意图;
图5b为清洁设备基于图5a的姿态后退第二移动距离的示意图;
图5c为清洁设备基于图5b的姿态旋转第二旋转角后的示意图;
图5d为清洁设备基于图5c的姿态前进移动至再次与障碍物碰撞后的示意图;
图5e为清洁设备基于图5d的姿态后退第三移动距离的示意图;
图5f为清洁设备基于图5e的姿态旋转第三旋转角后的示意图;
图6为根据本公开的实施例提供的清洁设备的控制方法的流程示意图;
图7为根据本公开的实施例提供的清洁设备的电子结构示意图;
图8为根据本公开的实施例提供的清洁设备的控制装置的示意框图。
图9为根据本公开的实施例提供的清洁设备整体截面图;
图10为根据本公开的实施例提供的清洁设备整体截面图中A部局部图;
图11为根据本公开的实施例提供的清洁设备整体图;
图12为根据本公开的实施例提供的回弹件第一立体图;
图13为根据本公开的实施例提供的回弹件第二立体图;
图14为根据本公开的实施例提供的回弹件俯视图;
11第一前部碰撞传感器,12第二前部碰撞传感器,13第一侧部碰撞传感器,14第二侧部碰撞传感器,2回弹件,21弹性臂,22接触部,23复位臂,24复位钩,25固定臂,26固定钩,3前撞,100清洁设备,110机器主体,111前向部分,112后向部分,120感知系统,121位置确定装置,122缓冲器,130驱动系统,131驱动轮,132从动轮,133第一驱动轮,134第二驱动轮,140清洁系统,141干式清洁系统,142湿式清洁系统,143边刷,200障碍物,701处理装置,702ROM,703RAM,704总线,705I/O接口,706输入装置,707输出装置,708存储装置,709通信装置,800控制装置,810第一获取模块,820第一确定模块,830第一处理模块,840第二获取模块,850第二处理模块。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“相接”到另一元件时,它可以直接连接或相接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“相接”可以包括无线连接或无线稠接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本公开实施例提供一种可能的应用场景,该应用场景包括清洁设备,其中,清洁设备包括自移动清洁机器人,例如扫地机器人、拖地机器人、吸尘器、除草机等等。在某些实施例中,如图l和图2所示,以家用式扫地机器人为例进行说明,在扫地机器人工作过程 中,其可以根据预置路线或自动规划的路线进行清扫,但不可避免的会与障碍物200碰撞,如障碍物200为墙壁、柜子等。同时,当扫地机器人以较小的距离沿着墙壁移动时,能够对地面与墙壁邻近的部分进行清洁,进而有利于提高清洁能力。因此,当清洁设备与障碍物200碰撞后,若能够较快地以较小的距离沿着墙壁移动,能够大大提高清洁设备的清洁效率,并有效地减少地面与墙壁邻近的部分漏扫的问题,提高用户使用的满意度。
在本公开提供的实施例中,如图1和图2所示,清洁设备包括机器主体110、感知系统120、控制系统、驱动系统130、清洁系统140、能源系统和人机交互系统。
机器主体110包括前向部分111和后向部分112,具有前方后圆的近似D形形状,即前向部分近似矩形,后向部分近似圆形,也就是说,清洁设备可以为D形扫地机器人。当然,该机器主体110也可以为其他异型形态,例如三角型、矩形等。
如图2所示,感知系统120包括设置于机器主体上的触发件、第一检测件和第二检测件,其中,触发件被设置为清洁设备与障碍物200接碰撞被触发,如触发件可以为设置于机器主体110的前向部分111的缓冲器122上的碰撞传感器、近距离传感器、或满足要求的其他结构。
第一检测件用于感测机器主体周侧的障碍物200,如第一检测件包括设置于机器主体上方的位置确定装置121,其中,位置确定装置121包括但不限于摄像头、激光测距装置(LDS,全称Laser Distance Sensor),可以理解的是,激光测距装置位于机器主体的最上端,可以360°旋转发出激光,通过反射回来的激光能够确定哪个方向有障碍物200、以及障碍物200与机器主体的距离关系。
第二检测件设置于机器主体的一侧,用于感测机器主体110侧边的障碍物200。如第二检测件可以为设置在机器主体110左侧、或右侧的壁式传感器(wallsensor),或者较小的激光测距装置,第二检测件能够感测机器主体110侧面的一个点与机器主体110的距离,精度较高。具体地,当第二检测件能够检测到墙壁的信息时,通过控制系统能够控制清洁设备以较小的离墙距离沿墙壁移动。
进一步地,感知系统120还包括设置于机器主体110下部的悬崖传感器,以及设置于机器主体110内部的磁力计、加速度计、陀螺仪(Gyro)、里程计(ODO,全称odograph)等传感装置,用于向控制系统提供机器的各种位置信息和运动状态信息。
如图1和图2所示,机器主体110的前向部分111可承载缓冲器122,在清洁过程中驱动轮131推进机器人在地面行走时,缓冲器122经由设置在其上的触发件,例如红外传感器,检测清洁设备的行驶路径中的一或多个事件,清洁设备可通过由缓冲器122检测到的事件,例如障碍物200、墙壁,而控制驱动轮131模块使清洁设备来对该事件做出响应,例如远离障碍物200、越过障碍物200等等。
控制系统设置在机器主体110内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物200信息利用定位算法,例如即时定位与地图构 建(SLAM,全称Simultaneous Localization And Mapping),绘制机器人所在环境中的即时地图。并且结合缓冲器122上所设置传感器、悬崖传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态、位于何位置,以及扫地机当前位姿等,如过门槛170、位于悬崖处、上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得机器人的工作更加符合主人的要求,有更好的用户体验。
如图1和图2所示,驱动系统130可基于具有距离和角度信息(例如x、y及o分量)的驱动命令而操纵机器人跨越地面行驶。驱动系统130包含驱动轮131和驱动模块,驱动模块可以同时控制左驱动轮和右驱动轮,为了更为精确地控制机器的运动,优选驱动模块分别包括左驱动轮模块和右驱动轮模块。左、右驱动轮模块沿着由主体110界定的横向轴对置。为了机器人能够在地面上更为稳定地运动或者更强的运动能力,机器人可以包括一个或者多个从动轮132,从动轮132包括但不限于万向轮。驱动模块包括驱动马达以及控制驱动马达的控制电路,驱动模块还可以连接测量驱动电流的电路和里程计。驱动模块可以可拆卸地连接到主体110上,方便拆装和维修。驱动轮131可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接,到机器人主体110,且接收向下及远离机器人主体110偏置的弹簧偏置。弹簧偏置允许驱动轮131以一定的着地力维持与地面的接触及牵引,同时自动清洁设备的清洁元件也以一定的压力接触地面。
进一步地,清洁设备可通过相对于由机器主体界定的如下三个相互垂直轴的移动的各种组合在地面上行进:前后轴X、横向轴Y及中心垂直轴Z。沿着前后轴X的前向驱动方向标示为“前向”,且沿着前后轴X的向后驱动方向标示为“后向”。横向轴Y的方向实质上是沿着由驱动轮131模块的中心点界定的轴心在机器人的右轮与左轮之间延伸的方向。
其中,清洁设备可以绕Y轴转动。当自动清洁设备的前向部分111向上倾斜,后向部分112向下倾斜时为“上仰”,且当自动清洁设备的前向部分111向下倾斜,后向部分112向上倾斜时为“下俯”。另外,机器人可以绕Z轴转动。在自动清洁设备的前向方向上,当自动清洁设备向X轴的右侧倾斜为“右转”,当自动清洁设备向X轴的左侧倾斜为“左转”。其中,X轴和Y轴如图1中的箭头所示。
如图1和图2所示,清洁系统140包括干式清洁系统。作为干式清洁系统141,主要的清洁功能源于滚刷、尘盒、风机、出风口以及四者之间的连接部件所构成的清扫系统。与地面具有一定干涉的滚刷将地面上的垃圾扫起并卷带到滚刷与尘盒之间的吸尘口前方,然后被风机产生并经过尘盒的有吸力的气体吸入尘盒。干式清洁系统141还可包含具有旋转轴的边刷143,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁系统140的滚刷区域中。进一步地,边刷143位于机器主体110靠近第二检测件的一侧,当清洁设备10已设置有第二检测件的一侧以较小的离墙距离沿墙壁运行时,通过边刷143能够将地面与墙壁之间的角落、缝隙内的碎屑移动到清洁系统140的滚刷区域中,进而实现对地面与墙壁邻近部分的清扫,确保良好的清洁效率。
可以理解的是,清洁系统还可以包括湿式清洁系统,湿式清洁系统142可以包括:清洁头、驱动单元、送水机构、储液箱等。其中,清洁头可以设置于储液箱下方,储液箱内部的清洁液通过送水机构传输至清洁头,以使清洁头对待清洁平面进行湿式清洁。在其他实施例中,储液箱内部的清洁液也可以直接喷洒至待清洁平面,清洁头通过将清洁液涂抹均匀实现对平面的清洁。当然,清洁头也可以是本身具有蓄水能力的滚刷,当清洁头从基站蓄水后出站进行湿清洁。其中,清洁头用于清洁待清洁表面,驱动单元用于驱动清洁头沿着目标面基本上往复运动的,目标面为待清洁表面的一部分。清洁头沿待清洁表面做往复运动,清洁头与待清洁表面的接触面表面设有清洁布或清洁板,通过往复运动与待清洁表面产生高频摩擦,从而去除待清洁表面上的污渍。
其中,能源系统包括充电电池,例如保氢电池和鲤电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者下方的充电电极与充电桩连接进行充电。如果裸露的充电电极上沾附有灰尘,会在充电过程中由于电荷的累积效应,导致电极周边的塑料机体融化变形,甚至导致电极本身发生变形,无法继续正常充电。
人机交互系统包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括子机客户端程序。对于路径导航型自动清洁设备,在子机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
本公开实施例提供的清洁设备的控制方法,使得清洁设备在行进过程中若碰撞到墙壁、柜子等一类的障碍物200后,能够尽量地减少碰撞次数,并较快地以较小的距离沿着墙壁或柜子移动,进而提高清洁效率,并有效地减少地面与墙壁邻近的部分漏扫的问题,提升了用户的使用体验。具体如下。
作为本公开的实施方式之一,如图6所示,本公开实施例提供一种清洁设备的控制方法,包括如下方法步骤。
步骤S602:基于触发件被触发,获取第一检测件的第一检测信息。
其中,当触发件被触发,说明清洁设备100在前进过程中与障碍物200碰撞,如清洁设备100的缓冲器122与墙壁碰撞时,触发了碰撞传感器动作,即触发件被触发,进而根据触发件的信息能够了解墙壁相对于清洁设备100的大致位置以及清洁设备100的机器主体110的碰撞位置。如图4a所示,当清洁设备100的前向部分111的右侧与墙壁碰撞时,通过触发件能够了解到墙壁位于清洁设备100的右前方;如图3a所示,当清洁设备100的前向部分111的左侧与墙壁碰撞时,通过触发件能够了解到墙壁位于清洁设备100的左前方;当清洁设备100的前向部分111的中间位置与墙壁碰撞时,通过触发件能够了解到墙壁位于清洁设备100的正前方。
由于第一检测件用于感测清洁设备100周侧的障碍物200信息,第二检测件用于感测清洁设备100一侧的障碍物200信息,因此,第二检测件的检测范围有限,存在障碍物200不在第二检测件的检测范围内的情况,即控制系统无法获取到第二检测信息,即清洁设备100无法执行沿障行走操作。而通常情况下,以清洁设备100为D型机为例,缓冲器122包括前部横向段和两个侧部段,一般在前部横向段设置两个碰撞传感器,即设置两个触发件,在两边侧部段分别设置一个碰撞传感器,即两边侧部段各设置一个触发件,所以,在清洁设备100与障碍物200碰撞时,可以通过一个碰撞传感器或几个碰撞传感器的组合信号来大致确认障碍物200相对于机器主体110的位置。即触发件被触发后,通过获取第一检测件的检测信息,能够了解清洁设备100与障碍物200的相对位置情况,便于指导清洁设备100进行后续操作。
具体地,触发件可以为碰撞传感器,如光遮断开关型传感器或霍尔型传感器,当清洁设备100的触发件被触发后,清洁设备100的碰撞位置可以通过碰撞传感器向控制系统发送碰撞位置信息,从而确定清洁设备100的哪个位置发生了碰撞,从而进一步确认障碍物200相对于清洁设备100的方位。
第一检测件可以为清洁设备100的激光测距传感器,激光测距传感器位于机器主体110的上端,可以360°旋转发出激光,通过反射回来的激光来确定障碍物200相对于清洁设备100的距离和方向,进而根据上述信息能够确定第一检测信息。
步骤S604:至少基于获取到的第一检测信息,确定第一移动距离;
步骤S606:控制清洁设备后退移动第一移动距离后,根据第一检测信息执行第一近障操作。
其中,至少根据获取到的第一检测信息,确定第一移动距离,使得第一移动距离能够和障碍物200与清洁设备100的相对位置相匹配,控制清洁设备100后退移动第一移动距离,这样,使得清洁设备100与障碍物200相分离,触发件的触发状态解除,能够确保清洁设备100顺利地进行移动。通过根据第一检测信息执行第一近障操作,使得根据第一检测信息的不同,能够执行不同的第一近障操作,进而能够尽量地减少清洁设备100与障碍物200再次碰撞的次数,减少地面与墙壁邻近部分漏扫的问题,有利于提高清洁效率和清洁效果。
可以理解的是,也可以结合清洁设备100的自身结构参数,与获取到的第一检测信息相结合,确定第一移动距离。其中,清洁设备100的自身结构参数可以包括第二检测件相对于清洁设备100的机器主体110的几何中心的位置关系、清洁设备100的机器主体110的几何中心与碰撞位置处的距离等。
其中,控制清洁设备100后退移动是指在保持清洁设备100与障碍物200碰撞的姿态下,控制清洁设备100向后移动。也就是说,在清洁设备100后退移动过程中,清洁设备100是沿直线后退的,并不会发生转动。具体地,如图3b和图4b所示,其中,图3b为清洁设备100基于图3a的姿态后退第一移动距离的示意图,图4b为清洁设备100基于图 4a的姿态后退第一移动距离的示意图。其中,第一移动距离为图3b和图4b中的D1所示,其中,图3b和图4b中,O1为清洁设备100与障碍物200碰撞时的几何中心,O2为清洁设备100后退移动第一移动距离D1后的几何中心。
步骤S608:获取第二检测件的第二检测信息;
步骤S610:根据第二检测信息控制清洁设备执行沿障行走操作。
其中,当清洁设备100执行第一近障操作后,清洁设备100设置有第二检测件的一侧靠近障碍物200,使得第二检测件能够感测到障碍物200,因此,通过获取第二检测件的第二检测信息,能够较为精确地了解到清洁设备100与障碍物200之间的位置关系,如清洁设备100与墙壁之间的位置关系,进而通过第二检测信息能够控制清洁设备100执行沿障行走操作,如可以控制清洁设备100以较小的离墙距离沿墙壁移动。可以理解的是,此时,通过边刷143即可将地面与墙壁邻近部分的碎屑移动到清洁系统的滚刷区域中,进而实现对地面与墙壁邻近部分区域的清扫。
其中,第一近障操作是指使清洁设备的一侧靠近障碍物的操作,沿障行走操作是指使清洁设备与障碍物保持一定距离并沿着障碍物移动的操作。
其中,第二检测件可以为设置于机器主体110一侧的较小的激光测距传感器,如第二检测件设置在机器主体110的右侧,能够感测机器主体110右侧障碍物200上的一个点与机器主体110的距离,精度较高。而第一检测件检测机器主体110周围一圈的障碍物200距离机器主体110的距离,但精度低一点。也就是说,第一检测件主要用来找到墙在哪里,墙的长度,墙和机器主体110的相对位置,且第一检测件是可旋转地设置在机器主体110上。而第二检测件是从机器主体110的侧面以固定的方向收发反射信号;当机器主体110和墙面平行时,还是要用第二检测件这种更高精度的距离传感器来实现毫米级别的沿墙行走。即当第二检测件能够检测到墙壁的信息时,通过控制系统能够控制清洁设备100以较小的离墙距离沿墙壁移动。
也就是说,本公开实施例提供的清洁设备100的控制方法,当清洁设备100在前进过程中与障碍物200碰撞触发触发件动作后,就可以了解障碍物200相对于清洁设备100的位置关系,进而获取第一检测件的第一检测信息能够确定第一移动距离,再控制清洁设备100后退移动第一距离,以使得清洁设备100与障碍物200相分离,确保清洁设备100能够顺利地进行移动。然后,根据第一检测信息的不同,执行不同的第一近障操作,能够尽量地减少清洁设备100与障碍物200再次碰撞的次数,同时,使得第二检测件能够感测到障碍物200,使得根据第二检测信息即可控制清洁设备100执行沿障行走操作,使得清洁设备100能够快速沿障行走,减少地面与墙壁邻近部分漏扫的问题,大大提高了清洁效率,并能够确保良好的清洁效果。
进一步地,第一检测信息至少包括:机器主体与障碍物的第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,其中,障碍物的目标端部位于清洁设备的前方远离第二检测件的一侧,即障碍物的目标端部为清洁设备预执行沿障 行走操作到达的端部。可以理解的是,第一检测信息也可以为满足要求的其他参数,该参数用于表征触发触发件动作处的障碍物与机器主体的位置关系,以及障碍物的目标端部与机器主体的位置关系。
其中,如图3a和图4a所示,机器主体110与障碍物200的第一夹角β1可以为机器主体110前后方向的中心线m1与障碍物200的表面在水平面的投影的夹角,其中,机器主体110前后方向的中心线如图3a和图4a中的直线m1所示,第一夹角如β1所示。
机器主体110与障碍物200之间的垂直距离d可以为机器主体110在水平面内投影的几何中心O与障碍物200的表面之间的垂直距离,其中,机器主体110在水平面内投影的几何中心O可以为机器主体110前后方向的中心线m1和左右方向的中心线m2的交点。
机器主体110与障碍物200的目标端部Q的水平距离L可以为机器主体110的几何中心O在障碍物200上的水平投影与障碍物200的目标端部Q之间的水平距离,其中,障碍物200的目标端部Q是用于清洁设备100预执行沿障行走操作到达的端部。如障碍物200的目标端部由字母Q表示,其中,障碍物200的目标端部Q位于清洁设备100的前方远离第二检测件的一侧,可以理解的是,机器主体110与障碍物200的目标端部Q的水平距离L的长短能够决定清洁设备100的第一近障操作能否顺利完成,如机器主体110与障碍物200的目标端部Q的水平距离L较短,如图4g所示的情形,则存在还没完成第一近障操作,结果由于墙面长度不够,导致机器主体110侧边的第二检测件检测不到墙面而无法顺利执行沿障行走操作的问题,或者导致机器主体110在近障操作中无法再次触发触发件,从而后续的沿障操作不能完成。因此,机器主体110与障碍物200的目标端部Q的水平距离L对后续如何执行近障操作起到了很重要的作用。具体地,机器主体110与障碍物200的目标端部Q的水平距离L,如图3a和图4a中的L所示。
在上述实施例中,步骤S604包括如下方法步骤。
步骤S604-2:根据第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,确定第一移动距离。
由于第一夹角β1、机器主体110与障碍物200之间的垂直距离d、机器主体110与障碍物200的目标端部Q的水平距离L能够体现清洁设备100与障碍物200、清洁设备100与障碍物200的目标端部Q之间的具体位置关系,因此,根据第一夹角β1、机器主体110与障碍物200之间的垂直距离d、机器主体110与障碍物200的目标端部Q的水平距离L确定第一移动距离D1,使得清洁设备100后退移动第一移动距离D1后,根据第一检测信息执行第一近障操作的过程中,能够降低再次触发触发件动作的可能性,即清洁设备100能够尽量减少与障碍物200碰撞的碰撞次数,同时降低漏扫区域,提高清洁效率。
具体地,在清洁设备100后退移动过程中,可以利于驱动轮131的里程计的数据来确保清洁设备100以当前姿态后退移动出准确距离。即清洁设备100在后退移动过程中,当里程计的变化信息与第一移动距离D1相匹配时,控制清洁设备100停止后退,此时,能够确保清洁设备100后退移动的距离即为第一移动距离D1。
在本公开提供的一些可能实现的实施例中,步骤S610:根据第二检测信息控制清洁设备执行沿障行走操作包括如下方法步骤。
步骤S610-2:根据第一夹角确定第一旋转角度;
步骤S610-4:控制清洁设备向远离第二检测件的一侧旋转第一旋转角度;
步骤S610-6:根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动。
在该实施例中,由于第一夹角β1能够表征清洁设备100相对于障碍物200的倾斜位置,因此,根据第一夹角β1确定第一旋转角度α1,使得第一旋转角度与清洁设备100相对于障碍物200的当前倾斜状态相关,然后,如图4c所示,控制清洁设备100向远离第二检测件的一侧旋转第一旋转角度α1,这样,使得旋转后的清洁设备100的前进方向与障碍物200之间保持在较佳的角度范围内,在确保清洁设备100能够在快速移动至障碍物200附近的基础上,使第二检测件能够尽量朝向并靠近障碍物200,以使第二检测件能够尽早获取到第二检测信息以使清洁设备100执行沿障行走操作。其中,图4c示出了清洁设备100基于图4b的姿态旋转第一旋转角后的示意图,其中,第一旋转角如图4c中的α1所示。
具体地,可以基于第一夹角β1、机器主体110与障碍物200之间的垂直距离d、机器主体110与障碍物200的目标端部Q的水平距离L计算出清洁设备100较佳的入障角度θ,其中,入障角度θ指清洁设备100执行第一近障操作时,清洁设备100的机器主体110前后方向的中心线与障碍物200的表面在水平面的投影的夹角,如图4c中的θ所示。通常情况下,较佳的入障角度θ小于45°。然后,根据计算出的较佳的入障角度θ和第一夹角β1,即可确定出第一旋转角度α1,即第一旋转角度α1可以理解的为第一夹角β1与较佳的入障角度θ的差值。其中,可以通过监控陀螺仪数据,控制左右轮差速转动,实现控制清洁设备100向远离第二检测件的一侧原地转动第一旋转角度α1。
在本公开提供的一些可能实现的实施例中,步骤S610-6包括如下方法步骤。
步骤S610-6-11:基于机器主体与障碍物的目标端部的水平距离大于等于预设值,控制清洁设备向前移动;
步骤S610-6-12:基于触发件再次被触发,获取当前位置下机器主体与障碍物的第二夹角;
步骤S610-6-13:根据第二夹角确定第二旋转角度;
步骤S610-6-14:控制清洁设备向远离第二检测件的一侧旋转第二旋转角度。
其中,预设值是指清洁设备100相对于障碍物200能够顺利完成第一近障操作后,第二检测件能够检测到障碍物200的信息并且能够将清洁设备100调整到稳定沿障状态的水平距离的值。如障碍物200的延伸方向上设置有清洁设备100的目标入障位置,目标入障位置由字母P表示,该目标入障位置P位于清洁设备100的前方远离第二检测件的一侧,目标入障位置P可以是清洁设备100由第一近障操作切换为沿障行走操作时相对的障碍物200的位置,即清洁设备100越过目标入障位置P后,即可根据第二检测件检测到障碍物 的信息控制清洁设备执行沿障行走操作。其中,预设值为清洁设备100的机器主体110的几何中心在障碍物上的投影与目标入障位置P之间的水平距离,如图4d和图4g中的H所示。
具体地,预设值可以是提前设置在系统中的,或者是系统根据清洁设备100与障碍物200碰撞时的姿态和位置、清洁设备100自身结构参数计算得到的。如系统可以根据第一检测信息中的机器主体110与障碍物200的第一夹角、机器主体110与障碍物200之间的垂直距离、机器主体110与障碍物200的目标端部Q的水平距离,以及清洁设备100的机器主体110的几何中心与碰撞位置处的距离、机器主体110的几何中心与第二检测件的相对位置等参数,计算得出合理的预设值,以确保清洁设备100相对于障碍物200能够顺利完成第一近障操作后,第二检测件能够检测到障碍物200的信息时清洁实在执行沿障行走操作。
在该实施例中,如图4d和图4e所示,当机器主体110与障碍物200的目标端部Q的水平距离L大于等于预设值H时,说明障碍物200足够长,使得清洁设备100能够顺利完成第一近障操作,即清洁设备100执行第一近障操作后第二检测件能够检测到障碍物的信息,清洁设备100能够基于该障碍物200执行沿障操作。因此,如图4c和4d所示,控制清洁设备100向前移动,即清洁设备100以较佳的入障角度θ向靠近障碍物200的方向前进,当触发件再次被触发,说明清洁设备100与障碍物200再次碰撞,此时,获取当前位置下机器主体110与障碍物200的第二夹角β2,其中,第二夹角β2为当前姿态下的机器主体110前后方向的中心线与障碍物200表面之间的夹角。然后,根据第二夹角β2确定第二旋转角度α2,如图4e所示,控制清洁设备100向远离第二检测件的一侧旋转第二角度α2,使得触发件被解除,即清洁设备100的缓冲器122与障碍物200分离,且第二检测件能够感测到障碍物200,即第二检测件反馈有第二检测信息。因此,控制系统根据第二检测信息即可控制清洁设备100沿障行走,如图4f所示。
在上述实施例中,根据第二夹角确定第二旋转角度,具体包括:
根据第二夹角和第二检测件相对于机器主体的设置位置,确定第二旋转角度。
由于需要根据第二检测件的第二检测信息来控制清洁设备100执行沿障行走操作,因此,在清洁设备100行进过程中,第二检测件能够尽早感测到障碍物200,使得清洁设备100能够尽早执行沿障行走操作。而第二检测件相对于机器主体110的设置位置不同,使得在同一姿态下,清洁设备100旋转至不同角度才能够使第二检测件感测到障碍物200。因此,根据第二夹角β2和第二检测件相对于机器主体110的设置位置来确定第二旋转角度α2,使得清洁设备100在向远离第二检测件的一侧旋转第二旋转角度α2后,触发件被解除,同时,第二检测件能够感测到障碍物200,即第二检测件反馈有第二检测信息,进而避免了需要两次旋转、或多次旋转才能使触发件被接触,且第二检测件能够感测到障碍物200,大大提高了清洁设备100执行沿障行走操作的效率。
具体地,第二检测件设置在机器主体110的右侧,且第二检测件与机器主体110前端 的距离为固定值,如9cm至15cm,如第二检测件与机器主体110前端的距离为9cm、11cm、13cm、15cm,或满足要求的其他数值,可以理解的是,第二检测件与机器主体110前端的距离也可以与机器主体110前后方向的尺寸成比例关系,如第二检测件与机器主体110前端的距离为机器主体110前后方向尺寸的0.3倍、0.4倍、0.6倍或满足要求的其他数值,本公开不做具体限定。这样的设置,使得只有当清洁设备100与障碍物200之间的夹角达到一定范围时,第二检测件才能够感测到障碍物200。如当第二检测件与机器主体110前端的距离为11cm时,只有机器主体110与墙面夹角在一定角度范围,例如27°以内时候,第二检测件才能够感测到墙壁,因此,需要尽快让清洁设备100转动在该角度范围内以实现沿障行走操作。所以,根据第二夹角β2和27°来确定第二旋转角度α2,使得清洁设备100在向左侧旋转第二旋转角度α2后,触发件被解除,且第二检测件能够感测到墙壁。
在本公开提供的一些可能实现的实施例中,步骤S610-6包括如下方法步骤。
S610-6-21:基于机器主体与障碍物的目标端部的水平距离小于预设值,控制清洁设备以第一线速度、第一角速度向远离第二检测件的一侧移动,若
达到预设时长时触发件未被触发,控制清洁设备执行寻障操作。
在该实施例中,如图4g所示,当机器主体110与障碍物200的目标端部Q的水平距离L小于预设值H,也就是说,障碍物200较短,使得清洁设备100不能顺利完成第一近障操作,也可以理解为清洁设备100的各种传感器的组合实现不了清洁设备100稳定的沿障行走操作。因此,如图4g所示,控制清洁设备100以第一线速度、第一角速度向远离第二检测件的一侧移动,即控制清洁设备100整体上倾斜地靠近障碍物200,以较大程度的增大清扫面积,尽量实现全面清扫,坚持这样的行走状态,若达到预设时长时触发件未被触发,说明清洁设备100的前向部分111越过该障碍物200,然后,控制清洁设备100执行寻障操作,以找到新的障碍物200以实现沿障行走操作。
其中,预设时长可以为400ms、500ms、600ms、或满足要求的其他时长,预设时长在合理的范围内,能够确保清洁设备100的前向部分112能够越过障碍物200的目标端部Q,如越过墙角,进而在清洁设备100执行寻障操作过程中,清洁设备并不会与该墙角发生碰撞,以浪费时间。
具体地,第一线速度和第一角速度可以为控制系统的预设值。以第二检测件设置在清洁设备100的机器主体110的右侧为例,当目标入障位置与机器主体110的水平距离小于预设值,以第一线速度、第一角速度,控制清洁设备100向左侧旋转移动。
在上述实施例中,寻障操作包括:控制清洁设备以寻障线速度、寻障角速度向设置有第二检测件的一侧移动,直至触发件被触发。
在该实施例中,为了能够使第二检测件尽早地感测到障碍物200,以使清洁设备100能够执行沿障行走操作实现对地面和墙壁邻近部分区域的清扫,应当控制清洁设备100向设置有第二检测件的一侧旋转移动,直至触发件被触发,说明清洁设备100与障碍物200碰撞,即发现了障碍物200,完成了寻障操作。
其中,控制清洁设备100向设置有第二检测件的一侧旋转移动,这样,能够在清洁设备100移动至触发件被触发的过程中,增加第二检测件感测到障碍物200的概率,进而有利于提高清洁设备100发现障碍物200或者执行沿障行走操作的效率。
具体地,以寻障线速度、寻障角速度,控制清洁设备100向设置有第二检测件的一侧移动,其中,寻障线速度、寻障角速度可以为控制系统的预设值。以第二检测件设置在清洁设备100的机器主体110的右侧为例,如图4g所示,当机器主体110与障碍物200的目标端部Q的水平距离小于预设值,以第一线速度、第一角速度,控制清洁设备100向左侧旋转移动,在达到预设时长时,触发件未被触发,说明触发件越过目标入障位置P后,以寻障线速度、寻障角速度,控制清洁设备100向右侧移动,即沿图4g中箭头向右旋转前进,此时,清洁设备100并不会与障碍物200的目标端部Q发生碰撞,使得第二检测件能够感测与刚刚越过的墙壁相连接的垂直墙壁,进而使得清洁设备100能够快速执行沿障行走操作,实现地面与新的墙壁之间邻近的部分区域的清扫。
在本公开提供的一些可能实现的实施例中,控制方法还包括:
步骤S612:基于未获取到第一检测信息,控制清洁设备后退移动第一预设距离,向远离第二检测件的一侧旋转第二预设角度后,执行寻障操作。
在该实施例中,如图5a所示,当触发件被触发,且未获取到第一检测信息,如清洁设备100与障碍物200碰撞后,第一检测件感测失败,如障碍物200高度太低第一检测件感测不到、或者障碍物200是吸光材料导致第二检测件收不到足够强度的返回信号等。此时,如图5b所示,控制系统会控制清洁设备100后退第一预设距离D01,使得清洁设备100与障碍物200相分离,触发件的触发状态解除,能够确保清洁设备100顺利地进行移动,然后如图5c所示,控制清洁设备100向远离第二检测件的一侧旋转第二预设角度δ1后,执行寻障操作,以寻找新的障碍物200,这样,能够在清洁设备100移动至触发件被再次触发的过程中,增加第二检测件感测到障碍物200的概率,进而有利于提高清洁设备100发现障碍物200或者执行沿障行走操作的效率。
其中,寻障操作为控制清洁设备100向设置有第二检测件的一侧的方向旋转移动,直至触发件被触发。如以寻障线速度、寻障角速度,控制清洁设备100向设置有第二检测件的一侧移动,直至与障碍物200碰撞使触发件被触发,说明清洁设备100再次发现了障碍物200,该障碍物200可以为清洁设备100执行沿障行走操作的参照物,即当第二检测件感测到该障碍物200时,清洁设备100即可执行沿障行走操作。
其中,第二预设角度δ1可以为控制系统的预设值,在控制清洁设备100后退移动第一预设距离D01后,向远离第二检测件的一侧旋转第二预设角度δ1,能够避免清洁设备100再次以当前姿态前进移动而与障碍物200碰撞后第一检测件仍无法感测到障碍物200的情况,通过旋转第二角度δ1后控制清洁设备100执行寻障操作,有利于提高清洁设备100再次与障碍物200碰撞后,第一检测件能够感测到障碍物200的可能性,同上,能够增大第二检测件感测到障碍物200的概率,进而提高了清洁设备100执行沿障行走操作的 效率。
可以理解的是,当清洁设备100后退移动第一预设距离D01,向远离第二检测件的一侧旋转第二预设角度δ1,执行寻障操作找到障碍物200后,若控制系统仍无法获取第一检测信息,即第一检测件仍感测不到障碍物200,如图5d和5e所示,可以控制清洁设备100再次后退移动第三预设距离D02,向远离检测件的一侧旋转第三预设角度δ2后,执行寻障操作。
如图8所示,本公开第二个方面的实施例,提供了一种清洁设备的控制装置800,清洁设备包括机器主体,以及设置于机器主体上的触发件、第一检测件和第二检测件,触发件被设置为当清洁设备与障碍物碰撞时被触发,第一检测件用于感测机器主体周侧的障碍物,第二检测件设置于机器主体的一侧,用于感测机器主体侧边的障碍物,控制装置800包括:
第一获取模块810,用于基于触发件被触发,获取第一检测件的第一检测信息;第一确定模块820,用于至少基于获取到的第一检测信息,确定第一移动距离;第一处理模块830,控制清洁设备后退移动第一移动距离后,根据第一检测信息执行第一近障操作;第二获取模块840,用于获取第二检测件的第二检测信息;第二处理模块850,用于根据第二检测信息控制清洁设备执行沿障行走操作。
本公开提供的清洁设备的控制装置800,当清洁设备在前进过程中与障碍物碰撞触发触发件动作后,就可以了解障碍物200相对于清洁设备100的位置关系,进而通过第一获取模块810获取第一检测件的第一检测信息能够确定第一移动距离,再通过第一处理模块830控制清洁设备后退移动第一距离,以使得清洁设备与障碍物相分离,确保清洁设备能够顺利地进行移动。然后,第一处理模块830根据第一检测信息的不同,执行不同的第一近障操作,能够尽量地减少清洁设备与障碍物再次碰撞的次数,同时,使得第二检测件能够感测到障碍物,第二获取模块840能够获取到第二检测信息,第二处理模块850根据第二检测信息即可控制清洁设备执行沿障行走操作,使得清洁设备能够快速沿障行走,减少地面与墙壁邻近部分漏扫的问题,大大提高了清洁效率,并能够确保良好的清洁效果。
作为一种示例,第一检测信息至少包括:机器主体与障碍物的第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,障碍物的目标端部位于清洁设备的前方远离第二检测件的一侧,其中,第一确定模块820包括:第一确定单元,用于根据第一夹角、机器主体与障碍物之间的垂直距离、机器主体与障碍物的目标端部的水平距离,确定第一移动距离。
作为一种示例,第一处理模块830包括:第二确定单元,用于根据第一夹角确定第一旋转角度;第一处理单元,用于控制清洁设备向远离第二检测件的一侧旋转第一旋转角度;第二处理单元,用于根据机器主体与障碍物的目标端部的水平距离控制清洁设备向前移动。
作为一种示例,第二处理单元包括:第一处理子单元,用于基于机器主体与障碍物的目标端部的水平距离大于等于预设值,控制清洁设备向前移动;第一获取子模块,用于基 于触发件再次被触发,获取当前位置下机器主体与障碍物的第二夹角;第一确定子单元,用于根据第二夹角确定第二旋转角度;第二处理子单元,用于控制清洁设备向远离第二检测件的一侧旋转第二旋转角度。
作为一种示例,第一确定子单元具体包括:根据第二夹角和第二检测件相对于机器主体的设置位置,确定第二旋转角度。
作为一种示例,第二处理单元包括:第三处理子单元,用于基于机器主体与障碍物的目标端部的水平距离小于预设值,控制清洁设备以第一线速度、第一角速度向远离第二检测件的一侧移动,若达到预设时长时触发件未被触发,控制清洁设备执行寻障操作。
作为一种示例,清洁设备的控制装置800还包括:第三处理模块,用于基于未获取到第一检测信息,控制清洁设备后退移动第一预设距离,向远离第二检测件的一侧旋转第二预设角度后,执行寻障操作。
作为一种示例,寻障操作包括:控制清洁设备以寻障线速度、寻障角速度向设置有第二检测件的一侧的方向移动和旋转,直至触发件被触发。
本公开实施例提供了一种清洁设备,包括处理器和存储器,存储器存储有能够被处理器执行的计算机程序指令,处理器执行计算机程序指令时,实现任一实施例的清洁设备的控制方法的步骤。
如图7所示,清洁设备可以包括处理装置701(例如中央处理器、图形处理器等),其可以根据存储在只读存储器(ROM702)中的程序或者从存储装置708加载到随机访问存储器(RAM703)中的程序而执行各种适当的动作和处理。在RAM703中,还存储有电子机器人操作所需的各种程序和数据。处理装置701、ROM702以及RAM703通过总线704彼此相连。输入/输出(I/O)接口也连接至总线704。
通常,以下装置可以连接至I/O接口705:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、感应装置等的输入装置706;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置707;包括例如硬盘等的存储装置708;以及通信装置709。通信装置709可以允许清洁机器人与其他基站进行无线或有线通信以交换数据,例如,通信装置709可以实现清洁机器人与基站或远程移动设备之间的通信。虽然图7示出了具有各种装置的清洁设备,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为机器人软件程序。例如,本公开的实施例包括一种机器人软件程序产品,其包括承载在可读介质上的计算机程序,该计算机程序包含用于执行流程图6所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置709从网络上被下载和安装,或者从存储装置708被安装,或者从ROM702被安装。在该计算机程序被处理装置701执行时,执行本公开实施例的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机 可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM703)、只读存储器(ROM702)、可擦式可编程只读存储器(EPROM702或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM702)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述机器人中所包含的;也可以是单独存在,而未装配入该机器人中。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言诸如Java、Small talk,C++,还包括常规的过程式程序设计语言诸如“c”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。
在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,如包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为苔换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
本公开还提出了一种用于前撞回弹的清洁设备。
图11示出了用于前撞回弹的清洁设备的俯视图,其中该清洁设备整体上分为前后两 个部分,其中前部为大体上呈矩形/方形的构型,且清洁设备方形构型的外侧设置有前撞3,前撞3分为前部直线段和侧部直线段,前部直线段与两侧的侧部直线段汇接处形成大致的圆角,清洁设备机架的前部形状与前撞3的形状相对应。可以理解的是,清洁设备在行进过程中,当前部碰撞时,前撞3会沿清洁设备前部直线段垂直的方向相对机架移动,而当侧部碰撞时,前撞3会沿清洁设备侧部直线段垂直的方向相对机架移动。清洁设备后部为大致上成圆形的构型。这样设置的优点是在清洁设备前部方形构型的机架底部设置清洁部件,该清洁部件可基本横跨前部宽度,且更靠近机器行进方向的前部,在对待清扫表面进行清洁过程中,能够更有效地实现对角落的清洁。
在图9中,清洁设备机架的前部和侧部分别设置有至少一个碰撞传感器,其能够对清洁设备在行进过程中的碰撞作出响应并将响应的数据或信号传输至控制单元,控制单元进一步对清洁设备的驱动轮和清洁单元进行控制已实现避障或改变清扫特性的目的。该避障可以为绕过障碍物或者远离障碍物的操作,改变清扫特性可以为改变清洁单元(边刷、主刷、拖地件、吸尘风机的功率等)的工作方式。当然,碰撞传感器也可以设置在前撞的前端内壁和/或侧壁,其工作方式与以上描述的设置于机架上相同,只是在实际设计中还涉及线路,设置在机架上有利于线路的设置,因此在本实施例中均以将碰撞传感器设置于机架上进行举例描述。
为了达到最优地对障碍物的感测,可以在前部对称设置两个前部碰撞传感器,在侧部分别设置一个侧部碰撞传感器,即如图9中所示的第一前部碰撞传感器11、第二前部碰撞传感器12、第一侧部碰撞传感器13、和第二侧部碰撞传感器14。当然具体的设置方式并不限于该实施方式所描述的位置和数量,本实施例对此不作具体限制。
按照以上设置,当前撞3的前部直线段与障碍物碰撞时,前撞3相对机架沿垂直于前部直线段的方向移动,当移动达到一定距离时会触发前部设置的两个碰撞传感器。可以理解的时,在碰撞过程中,前撞3并非严格按照垂直于前部直线段的方向移动,根据碰撞位置的不同,前撞3在该方向上的移动会有一定程度的扭曲,这种扭曲的产生是可以理解的,例如当碰撞正好正对其中一个碰撞传感器所在的位置,则前撞3上对应的位置直接受力相对机架移动,进而带动前撞3整体上相对机架移动,即该前撞3的运动是由外部碰撞物对碰撞点进行挤压是该点移动进而带动前撞3上远离该点的其他点跟随移动位移。此时与碰撞点更靠近的碰撞传感器会先于其他远离该碰撞点的碰撞传感器被触发,基于这样的原理,也可以从多个传感器的先后触发顺序或时间点来判定碰撞发生的具体点位。而侧部直线段相对于前部直线段较短,因此侧部仅需设置一个碰撞传感器就能满足要求,当然数量和位置也不进行限制。
前撞3在被碰撞相对于机架运动后是需要回位的,这样才能应对下一次的碰撞。为此,在机架上设置多个回弹件或复位机构来实现前撞3的复位,而对于如本实施例所言的异形清洁设备,特别是前部方形结构的清洁设备,还需要对前撞3的复位进行有效地对中。当然,对于回弹件的设置,也可以在前撞内壁上,但由于空间限制,本实施例以将回弹件设 于机架上进行具体说明,但是不排除回弹件设于前撞上的方式。如图10所示,在机架上设置有回弹件2,回弹件2包括如图13-15所示的各部分,分别为弹性臂21,分别设置在弹性臂21两端的复位臂23和固定臂25,弹性臂21与复位臂23形成为锐角交汇;设置于复位臂23另一端的复位钩24以及设置于固定臂25一端的固定钩26,弹性臂21与复位臂23的交接处形成接触部22。
在机架上设置有与固定臂25和固定钩26对应的结构,为了更稳定地将回弹件1固定连接至机架,固定臂25为两个,相对于弹性臂21对称平行设置,固定钩26钩住机架上对应的结构,从而限制回弹件2相对于机架沿弹性臂21的移动方向发生位移,即通过固定臂25和固定钩26以及机架上的对应固定结构将回弹件固连至机架上。
复位钩24通过机架上对应设置的结构可以限制弹性臂21的回弹行程,当弹性臂21被前撞3挤压发生弹性变形时,复位臂23带动复位钩24向挤压方向移动,此时机架内部的对应结构并不限制复位臂23及复位钩24的移动,但是当前撞3的挤压消失,弹性臂21回弹到初始位置时,机架上的对应结构卡住复位钩24从而使其不能移动超过初始位置。该初始位置的设定是为了限制弹性臂21的回弹位置。在初始位置,前撞3为自然状态,即未受到任何碰撞时的状态,接触部22也与前撞3的内壁有一定的预设间隙,该预设间隙的值可以设定为例如0.3mm-2mm之间。因此在前撞3发生正面碰撞的开始阶段,前撞3的内壁需要至少移动以上预设间隙之后才会与接触部22接触,再进一步使得弹性臂21发生弹性变形,进一步地复位臂23带动复位钩24远离初始位置,直到该正面碰撞消失,弹性臂21复位前撞3。而由于以上预设间隙的设置,当前撞3发生侧面碰撞时,侧部碰撞传感器被触发,但是在整个侧部碰撞过程中,前撞3前部内壁都不会接触到接触部22,也就是说回弹件2在单纯的侧部碰撞发生时不会对前撞3产生任何影响;正是因为没有回弹件2对前撞3的影响,前撞3的侧向碰撞能够更精确地被反馈。
如前述,前撞3具有两个大致圆角,当碰撞发生在圆角区域时,例如利用前撞来进行沿墙动作时,机架前部和侧部的碰撞传感器均可能会被触发,此时由于以上预设间隙的设置,前撞3的横向位移在初始阶段也不会受到回弹件2的影响,直到接触部22与前撞3的内壁相接触。虽然后续的横向位移或多或少会收到接触部22与前撞3内壁的摩擦力的影响,但是此时侧部碰撞传感器可能已经被触发,这样就进一步减小了摩擦力的影响因素。
除了以上所描述的回弹件2对前撞3在前部直线段垂直方向的回弹之外,在机架前部侧边还设置有另外的回弹对中件,该回弹对中件能够对前撞3的横向移动进行主动复位,并且对于前撞3的横向回位进行对中,具体的设置形式记载于其他专利申请中,在此不再赘述。
为了使前撞3和碰撞传感器、回弹件2的相互作用最优化,本实施例选择在机架前部直线段上对称设置两个回弹件2,并且该两个回弹件2相对于前部的第一和第二碰撞传感器更加远离两个圆角,即两个回弹件2之间的距离小于两个碰撞传感器之间的距离。而两个前部的碰撞传感器以及两侧边的碰撞传感器都靠近或者位于圆角区域,这样的好处是为 了更准确地反馈角部区域的碰撞,因为前部或侧部的正面碰撞对于传感器的具体位置并不是太敏感,但是角部区域的碰撞由于外部碰撞的角度和大小的复杂性会带来更多的计算处理步骤,因此这样的设置方式能够从某种程度上简化控制系统后续的处理流程及提高处理速度。
与现有技术相比,本公开实施例具有如下的技术效果:本公开提供的清洁设备的机架上设置有与前撞处于自然状态时不与其接触的回弹件,在只有前撞左右侧受力时,回弹件与前撞之间保有一定的间隙,从而确保前撞在左右横向位移时,回弹件不会对前撞的横向位移产生干涉,影响机架左右两侧的碰撞传感器的触发灵敏度,也有利于前撞在位移之后的回弹对中更精确。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制:尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换:而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制:尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换:而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种清洁设备的控制方法,其特征在于,所述清洁设备包括机器主体,以及设置于所述机器主体上的触发件、第一检测件和第二检测件,所述触发件被设置为当所述清洁设备与障碍物碰撞时被触发,所述第一检测件用于感测所述机器主体周侧的障碍物,所述第二检测件设置于所述机器主体的一侧,用于感测所述机器主体侧边的障碍物,所述控制方法包括:
    响应于所述触发件被触发,获取所述第一检测件的第一检测信息;
    至少响应于获取到的所述第一检测信息,确定第一移动距离;
    控制所述清洁设备后退移动所述第一移动距离后,根据所述第一检测信息执行第一近障操作;
    获取所述第二检测件的第二检测信息;
    根据所述第二检测信息控制所述清洁设备执行沿障行走操作。
  2. 根据权利要求1所述的清洁设备的控制方法,其中,
    所述第一检测信息至少包括:所述机器主体与所述障碍物的第一夹角、所述机器主体与所述障碍物之间的垂直距离、所述机器主体与所述障碍物的目标端部的水平距离,所述障碍物的目标端部位于所述清洁设备的前方远离所述第二检测件的一侧。
  3. 根据权利要求2所述的清洁设备的控制方法,其中,根据所述第二检测信息控制所述清洁设备执行沿障行走操作,包括:
    根据所述第一夹角确定第一旋转角度;
    控制所述清洁设备向远离所述第二检测件的一侧旋转所述第一旋转角度;
    根据所述机器主体与所述障碍物的目标端部的所述水平距离控制所述清洁设备向前移动。
  4. 根据权利要求3所述的清洁设备的控制方法,其中,所述根据所述机器主体与所述障碍物的目标端部的水平距离控制所述清洁设备向前移动,包括:
    响应于所述机器主体与所述障碍物的目标端部的所述水平距离大于等于预设值,控制所述清洁设备向前移动;
    响应于所述触发件再次被触发,获取当前位置下所述机器主体与所述障碍物的第二夹角;
    根据所述第二夹角确定第二旋转角度;
    控制所述清洁设备向远离所述第二检测件的一侧旋转所述第二旋转角度。
  5. 根据权利要求4所述的清洁设备的控制方法,其中,所述根据所述第二夹角确定所述第二旋转角度,具体包括:
    根据所述第二夹角和所述第二检测件相对于所述机器主体的设置位置,确定所述第二旋转角度。
  6. 根据权利要求3所述的清洁设备的控制方法,其中,所述根据所述目标入障位置 与所述机器主体的水平距离控制所述清洁设备向前移动,包括:
    响应于所述机器主体与所述障碍物的目标端部的水平距离小于预设值,控制所述清洁设备以第一线速度、第一角速度向远离所述第二检测件的一侧移动,若达到预设时长时所述触发件未被触发,控制所述清洁设备执行寻障操作。
  7. 根据权利要求1至6中任一项所述的清洁设备的控制方法,其中,还包括:
    响应于未获取到所述第一检测信息,控制所述清洁设备后退移动第一预设距离,向远离所述第二检测件的一侧旋转第二预设角度后,执行寻障操作。
  8. 根据权利要求7所述的清洁设备的控制方法,其中,所述寻障操作包括:
    控制所述清洁设备以寻障线速度、寻障角速度向设置有所述第二检测件的一侧的方向移动和旋转,直至所述触发件被触发。
  9. 一种清洁设备的控制装置,其特征在于,所述清洁设备包括机器主体,以及设置于所述机器主体上的触发件、第一检测件和第二检测件,所述触发件被设置为当所述清洁设备与障碍物碰撞时被触发,所述第一检测件用于感测所述机器主体周侧的障碍物,所述第二检测件设置于所述机器主体的一侧,用于感测所述机器主体侧边的障碍物,所述控制装置包括:
    第一获取模块,用于响应于所述触发件被触发,获取所述第一检测件的第一检测信息;
    第一确定模块,用于至少响应于获取到的所述第一检测信息,确定第一移动距离;
    第一处理模块,控制所述清洁设备后退移动所述第一移动距离后,根据所述第一检测信息执行第一近障操作;
    第二获取模块,用于获取所述第二检测件的第二检测信息;
    第二处理模块,用于根据所述第二检测信息控制所述清洁设备执行沿障行走操作。
  10. 根据权利要求9所述的清洁设备的控制装置,其中,
    所述第一检测信息至少包括:所述机器主体与所述障碍物的第一夹角、所述机器主体与所述障碍物之间的垂直距离、所述机器主体与所述障碍物的目标端部的水平距离,所述障碍物的目标端部位于所述清洁设备的前方远离所述第二检测件的一侧,其中,所述第一确定模块包括:
    第一确定单元,用于根据所述第一夹角、所述机器主体与所述障碍物之间的垂直距离、所述机器主体与所述障碍物的目标端部的水平距离,确定所述第一移动距离。
  11. 根据权利要求10所述的清洁设备的控制装置,其中,第一处理模块,包括:
    第二确定单元,用于根据所述第一夹角确定第一旋转角度;
    第一处理单元,用于控制所述清洁设备向远离所述第二检测件的一侧旋转所述第一旋转角度;
    第二处理单元,用于根据所述机器主体与所述障碍物的目标端部的水平距离控制所述清洁设备向前移动。
  12. 根据权利要求11所述的清洁设备的控制装置,其中,所述第二处理单元包括:
    第一处理子单元,用于响应于所述机器主体与所述障碍物的目标端部的水平距离大于等于预设值,控制所述清洁设备向前移动;
    第一获取子模块,用于响应于所述触发件再次被触发,获取当前位置下所述机器主体与所述障碍物的第二夹角;
    第一确定子单元,用于根据所述第二夹角确定第二旋转角度;
    第二处理子单元,用于控制所述清洁设备向远离所述第二检测件的一侧旋转所述第二旋转角度。
  13. 根据权利要求12所述的清洁设备的控制装置,其中,所述第一确定子单元具体包括:
    根据所述第二夹角和所述第二检测件相对于所述机器主体的设置位置,确定所述第二旋转角度。
  14. 根据权利要求11所述的清洁设备的控制装置,其中,所述第二处理单元包括:
    第三处理子单元,用于响应于所述机器主体与所述障碍物的目标端部的水平距离小于预设值,控制所述清洁设备以第一线速度、第一角速度向远离所述第二检测件的一侧移动,若达到预设时长时所述触发件未被触发,控制所述清洁设备执行寻障操作。
  15. 根据权利要求9至14中任一项所述的清洁设备的控制装置,其中,还包括:
    第三处理模块,用于响应于未获取到所述第一检测信息,控制所述清洁设备后退移动第一预设距离,向远离所述第二检测件的一侧旋转第二预设角度后,执行寻障操作。
  16. 根据权利要求15所述的清洁设备的控制装置,其中,所述寻障操作包括:
    控制所述清洁设备以寻障线速度、寻障角速度向设置有所述第二检测件的一侧的方向移动和旋转,直至所述触发件被触发。
  17. 一种清洁机器人,包括处理器和存储器;
    所述存储器,用于存储操作指令;
    所述处理器,用于通过调用所述操作指令,执行上述权利要求1至8中任一项所述的清洁设备的控制方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现上述权利要求1至8中任一项所述的清洁设备的控制方法。
PCT/CN2022/118836 2021-10-18 2022-09-14 清洁设备的控制方法、装置、清洁设备和存储介质 WO2023065903A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022373390A AU2022373390A1 (en) 2021-10-18 2022-09-14 Method and apparatus for controlling cleaning device, and cleaning device and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122503365.4U CN216535128U (zh) 2021-10-18 2021-10-18 一种清洁设备
CN202122503365.4 2021-10-18
CN202111492870.1 2021-12-08
CN202111492870.1A CN114601399B (zh) 2021-12-08 2021-12-08 清洁设备的控制方法、装置、清洁设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023065903A1 true WO2023065903A1 (zh) 2023-04-27

Family

ID=86058791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118836 WO2023065903A1 (zh) 2021-10-18 2022-09-14 清洁设备的控制方法、装置、清洁设备和存储介质

Country Status (2)

Country Link
AU (1) AU2022373390A1 (zh)
WO (1) WO2023065903A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108567380A (zh) * 2017-03-14 2018-09-25 联润科技股份有限公司 自走式清洁装置及其建立室内地图的方法
WO2019139273A1 (ko) * 2018-01-09 2019-07-18 엘지전자 주식회사 로봇 청소기 및 그의 제어방법
US20190246857A1 (en) * 2018-02-09 2019-08-15 Lg Electronics Inc. Robot cleaner and method for controlling the same
CN110477820A (zh) * 2019-08-16 2019-11-22 云鲸智能科技(东莞)有限公司 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CN111557618A (zh) * 2019-02-13 2020-08-21 三星电子株式会社 机器人清洁器及其控制方法
CN114601399A (zh) * 2021-12-08 2022-06-10 北京石头创新科技有限公司 清洁设备的控制方法、装置、清洁设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108567380A (zh) * 2017-03-14 2018-09-25 联润科技股份有限公司 自走式清洁装置及其建立室内地图的方法
WO2019139273A1 (ko) * 2018-01-09 2019-07-18 엘지전자 주식회사 로봇 청소기 및 그의 제어방법
US20190246857A1 (en) * 2018-02-09 2019-08-15 Lg Electronics Inc. Robot cleaner and method for controlling the same
CN111557618A (zh) * 2019-02-13 2020-08-21 三星电子株式会社 机器人清洁器及其控制方法
CN110477820A (zh) * 2019-08-16 2019-11-22 云鲸智能科技(东莞)有限公司 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CN114601399A (zh) * 2021-12-08 2022-06-10 北京石头创新科技有限公司 清洁设备的控制方法、装置、清洁设备和存储介质

Also Published As

Publication number Publication date
AU2022373390A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2020207390A1 (zh) 探测方法、装置、移动机器人及存储介质
US11612295B2 (en) Autonomous cleaning device
EP4026473A1 (en) Cleaning robot and control method therefor
EP3690591B1 (en) Autonomous mobile robot and charging station seeking method therefor, control apparatus and smart cleaning system
US11054836B2 (en) Autonomous mobile robot, method for docking an autonomous mobile robot, control device and smart cleaning system
US20240053762A1 (en) Regional map drawing method and apparatus, medium, and electronic device
US20230009863A1 (en) Autonomous cleaning device, method for travel control for autonomous cleaning device, and storage medium
WO2022041737A1 (zh) 一种测距方法、装置、机器人和存储介质
CN114601399B (zh) 清洁设备的控制方法、装置、清洁设备和存储介质
WO2022171144A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
US20230350060A1 (en) Distance measuring device and sweeping robot
WO2023065903A1 (zh) 清洁设备的控制方法、装置、清洁设备和存储介质
WO2022218177A1 (zh) 机器人避障方法及装置、机器人、存储介质、电子设备
CN217792839U (zh) 自动清洁设备
CN216167276U (zh) 一种自移动机器人
EP4332501A1 (en) Distance measurement method and apparatus, and robot and storage medium
CN113854900B (zh) 一种自移动机器人
WO2022171090A1 (zh) 地图显示方法及装置、介质及电子设备
CN114610013A (zh) 自行走机器人的遇障处理方法、装置、机器人和存储介质
CN117426709A (zh) 一种自移动设备及其测距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022373390

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022373390

Country of ref document: AU

Date of ref document: 20220914

Kind code of ref document: A