WO2023065813A1 - 一种建立slb连接的方法、电子设备和通信系统 - Google Patents

一种建立slb连接的方法、电子设备和通信系统 Download PDF

Info

Publication number
WO2023065813A1
WO2023065813A1 PCT/CN2022/114541 CN2022114541W WO2023065813A1 WO 2023065813 A1 WO2023065813 A1 WO 2023065813A1 CN 2022114541 W CN2022114541 W CN 2022114541W WO 2023065813 A1 WO2023065813 A1 WO 2023065813A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
slb
connection
sle
broadcast
Prior art date
Application number
PCT/CN2022/114541
Other languages
English (en)
French (fr)
Inventor
李余民
陈岩
赵曜
朱旭东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065813A1 publication Critical patent/WO2023065813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, relate to a method for establishing an SLB connection, electronic equipment, and a communication system.
  • the sparklink alliance provides a wireless short-distance communication protocol framework.
  • the wireless short-distance access technologies that the protocol architecture can provide include sparklink-basic (SLB) access technology and sparklink low- Power consumption (sparklink-low energy, SLE) access technology.
  • SLB sparklink-basic
  • SLE sparklink low- Power consumption
  • the SLB access technology supports large-bandwidth data transmission capabilities.
  • the electronic device When an electronic device has a large-bandwidth service requirement (such as high-definition video projection requirements), the electronic device usually establishes an SLB connection with the peer device through the SLB access technology to handle the corresponding Business.
  • the establishment process of the SLB connection is relatively complicated, resulting in long time consumption and poor user experience.
  • the present application provides a method for establishing an SLB connection, an electronic device and a communication system, which are used to solve the problems in the prior art that the establishment process of the SLB connection is relatively complicated, resulting in long time consumption and poor user experience.
  • the embodiment of the present application provides a method for establishing an SLB connection, which is applied to a first device and a second device.
  • the first device is a management node device
  • the second device is a terminal node device.
  • the first device and the second device Both support communication through SLB access technology and SLE access technology.
  • the method includes: the first device sends the first information to the second device through the SLE access technology; the first device sends the second information to the second device through the SLB access technology; the second device according to the first information and the second information, An SLB connection is established with the first device through the SLB access technology.
  • the first information is related parameters or information used to speed up the establishment of the SLB connection between the first device and the second device.
  • the second The device can quickly establish an SLB connection with the first device through the SLB access technology according to the first information and the second information, which can simplify the establishment process of the SLB connection and shorten the time required for establishing the SLB connection.
  • the first device sends the first information to the second device through the SLE access technology, including: when the first device and the second device have established an SLE connection, the first device sends the second information to the second device through the SLE connection.
  • the device sends first information.
  • the first device sends the first information to the second device through SLE broadcast.
  • the second device can quickly receive the first information sent by the first device, shorten the time taken for the information receiving process, and improve the SLB connection efficiency.
  • the first information includes at least one of the following: the broadcast frequency and bandwidth of the first device; the root index of the synchronization signal of the first device; the physical layer identifier of the first device; the authentication of the first device Credentials; all or part of the content of the broadcast information of the first device; all or part of the content of the communication domain system information of the first device.
  • the first information does not include the physical layer identifier and the authentication credential.
  • the second information includes: a synchronization signal; and, a part of the broadcast information not included in the first information; and a part of the communication domain system information not included in the first information.
  • the second information does not need to include the broadcast information and the communication domain system information.
  • the second device does not need to receive broadcast information and/or communication domain system information through the SLB access technology during the process of establishing the SLB connection, which can reduce the time for the second device to receive the information and improve the efficiency of the SLB connection.
  • the second device when the first information includes broadcast frequency and bandwidth, the second device establishes an SLB connection with the first device through the SLB access technology according to the first information and the second information, including: the second device according to the broadcast The frequency point and bandwidth receive the synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the second information not included in the first information according to the broadcast frequency point and bandwidth, and the communication domain system The part of the information that is not included in the first information; the second device establishes an SLB connection with the first device through the SLB access technology according to the broadcast information and the communication domain system information.
  • the second device can receive information according to a specific broadcast frequency point and bandwidth, avoiding the process of the second device searching for broadcast frequency points and determining a suitable receiving bandwidth, and improving SLB connection efficiency.
  • the second device when the first information includes the root index of the synchronization signal, the second device establishes an SLB connection with the first device through the SLB access technology according to the first information and the second information, including: the second device according to the synchronization The root index of the signal, receiving the synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the broadcast information that is not included in the first information, and the part of the communication domain system information that is not included in the first information A part of the information; the second device establishes an SLB connection with the first device through the SLB access technology according to the broadcast information and the communication domain system information.
  • the synchronization signal includes a first training signal FTS and a second training signal STS
  • the root index of the synchronization signal includes an FTS root index and an STS root index
  • the second device receives the synchronization signal according to the root index of the synchronization signal, including : The second device receives the FTS according to the FTS root index, and receives the STS according to the STS root index.
  • the second device when the second device receives the synchronization signal, it avoids using the root index of the synchronization signal to perform blind detection on the received signal, so as to determine the lengthy process of the synchronization signal, which can improve the reception efficiency of the synchronization signal, and further improve SLB connection efficiency.
  • the second device when the first information includes the physical layer identifier of the first device, the second device establishes an SLB connection with the first device through an SLB access technology according to the first information and the second information, including: the second device Receive a synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives a part of the broadcast information that is not included in the first information, and a part of the communication domain system information that is not included in the first information ; The second device establishes an SLB connection with the first device in a non-competitive random access manner according to the physical layer identifier, broadcast information, and communication domain system information.
  • the second device can determine the non-contention access resource information of the first device according to the physical layer identifier, so as to perform a synchronous connection with the first device in a non-competition random access manner.
  • the method can reduce the time consumption of the synchronous connection process, thereby improving the efficiency of the SLB connection.
  • the second device when the first information includes an authentication credential, the second device establishes an SLB connection with the first device through an SLB access technology according to the first information and the second information, including: the second device receives a synchronization signal; The second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the broadcast information that is not included in the first information, and the part of the communication domain system information that is not included in the first information; the second device receives the part of the broadcast information that is not included in the first information; The authentication credential, the broadcast information and the system information of the communication domain establish an SLB connection with the first device through the SLB access technology.
  • the process of pairing and authentication can be simplified or avoided according to the authentication certificate, thereby improving the efficiency of the SLB connection.
  • the embodiment of the present application provides a method for establishing an SLB connection, which is applied to a first device, and the first device supports communication through an SLB access technology and an SLE access technology.
  • the method includes: the first device sends the first information to the second device through the SLE access technology; the first device sends the second information to the second device through the SLB access technology; the first device communicates with the second device according to the request of the second device The device establishes the SLB connection, and the request is sent by the second device according to the first information and the second information.
  • the first device is a management node device
  • the second device is a terminal node device.
  • the first device sends the first information to the second device through the SLE access technology, including: when the first device and the second device have established an SLE connection, the first device sends the second information to the second device through the SLE connection.
  • the device sends first information.
  • the first device sends the first information to the second device through the SLE access technology, including: when the first device and the second device have not established an SLE connection, the first device broadcasts the first information to the second device through SLE The second device sends the first message.
  • the first information includes at least one of the following: the broadcast frequency and bandwidth of the first device; the root index of the synchronization signal of the first device; the physical layer identifier of the first device; the authentication of the first device Credentials; all or part of the content of the broadcast information of the first device; all or part of the content of the communication domain system information of the first device.
  • the first information does not include the physical layer identifier and the authentication credential.
  • the second information includes: a synchronization signal; and, a part of the broadcast information not included in the first information; and a part of the communication domain system information not included in the first information.
  • the embodiment of the present application provides a method for establishing an SLB connection, which is applied to a second device, and the second device supports communication through an SLB access technology and an SLE access technology.
  • the method includes: the second device receives the first information sent by the first device through the SLE access technology; the second device receives the second information sent by the first device through the SLB access technology; the second device receives the first information according to the first information and the second information, and establish an SLB connection with the first device through the SLB access technology.
  • the first device is a management node device
  • the second device is a terminal node device.
  • the second device receives the first information sent by the first device through the SLE access technology, including: when the first device and the second device have established an SLE connection, the second device receives the first information through the SLE connection A first message sent by a device.
  • the second device receives the first information sent by the first device through the SLE access technology, including: when the first device and the second device have not established an SLE connection, the second device receives the first information through SLE broadcast A first message sent by a device.
  • the first information includes at least one of the following: the broadcast frequency and bandwidth of the first device; the root index of the synchronization signal of the first device; the physical layer identifier of the first device; the authentication of the first device Credentials; all or part of the content of the broadcast information of the first device; all or part of the content of the communication domain system information of the first device.
  • the first information does not include the physical layer identifier and the authentication credential.
  • the second information includes: a synchronization signal; and, a part of the broadcast information not included in the first information; and a part of the communication domain system information not included in the first information.
  • the second device when the first information includes broadcast frequency and bandwidth, the second device establishes an SLB connection with the first device through the SLB access technology according to the first information and the second information, including: the second device according to the broadcast The frequency point and bandwidth receive the synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the second information not included in the first information according to the broadcast frequency point and bandwidth, and the communication domain system The part of the information that is not included in the first information; the second device establishes an SLB connection with the first device through the SLB access technology according to the broadcast information and the communication domain system information.
  • the second device when the first information includes the root index of the synchronization signal, the second device establishes an SLB connection with the first device through the SLB access technology according to the first information and the second information, including: the second device according to the synchronization The root index of the signal, receiving the synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the broadcast information that is not included in the first information, and the part of the communication domain system information that is not included in the first information A part of the information; the second device establishes an SLB connection with the first device through the SLB access technology according to the broadcast information and the communication domain system information.
  • the synchronization signal includes a first training signal FTS and a second training signal STS
  • the root index of the synchronization signal includes an FTS root index and an STS root index
  • the second device receives the synchronization signal according to the root index of the synchronization signal, including : The second device receives the FTS according to the FTS root index, and receives the STS according to the STS root index.
  • the second device when the first information includes the physical layer identifier of the first device, the second device establishes an SLB connection with the first device through an SLB access technology according to the first information and the second information, including: the second device Receive a synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives a part of the broadcast information that is not included in the first information, and a part of the communication domain system information that is not included in the first information ; The second device establishes an SLB connection with the first device in a non-competitive random access manner according to the physical layer identifier, broadcast information, and communication domain system information.
  • the second device when the first information includes an authentication credential, the second device establishes an SLB connection with the first device through an SLB access technology according to the first information and the second information, including: the second device receives a synchronization signal; The second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the broadcast information that is not included in the first information, and the part of the communication domain system information that is not included in the first information; the second device receives the part of the broadcast information that is not included in the first information; The authentication credential, the broadcast information and the system information of the communication domain establish an SLB connection with the first device through the SLB access technology.
  • the embodiment of the present application provides a communication system, including a first device and a second device, the first device is a management node device, the second device is a terminal node device, and both the first device and the second device support SLB
  • the access technology communicates with the SLE access technology.
  • the first device is configured to send the first information to the second device through the SLE access technology; and send the second information to the second device through the SLB access technology.
  • the second device is configured to establish an SLB connection with the first device through the SLB access technology according to the first information and the second information.
  • the embodiment of the present application provides an electronic device, the electronic device supports communication through the SLB access technology and the SLE access technology, and the electronic device is a management node device, and the electronic device is configured to perform the above-mentioned second A method for establishing an SLB connection is shown in the aspect.
  • the embodiment of the present application provides an electronic device, the electronic device supports communication through the SLB access technology and the SLE access technology, and the electronic device is a terminal node device, and the electronic device is configured to perform the above-mentioned third A method for establishing an SLB connection is shown in the aspect.
  • an embodiment of the present application provides a chip, the chip includes a processor, and the processor executes a computer program stored in a memory to implement the method for establishing an SLB connection as shown in the second aspect or the third aspect.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the establishment of the above-mentioned second or third aspect is realized. SLB connection method.
  • the embodiment of the present application provides a computer program product, the program product includes a computer program, and when the computer program is run by the electronic device, the electronic device realizes the establishment of SLB as shown in the second or third aspect above method of connection.
  • FIG. 1 is a first schematic diagram of a wireless short-distance communication protocol architecture provided by an embodiment of the present application
  • FIG. 2 is a second schematic diagram of the wireless short-distance communication protocol architecture involved in the embodiment of the present application
  • FIG. 3 is a schematic architecture diagram of a wireless short-distance communication system to which methods for establishing an SLB connection provided by various embodiments of the present application are applicable;
  • FIG. 4 is a flow chart of establishing an SLB connection between a first device and a second device according to an embodiment of the present application
  • FIG. 5 is a first schematic diagram of device control provided by an embodiment of the present application.
  • Fig. 6 is a second schematic diagram of device control provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram 3 of device control provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a superframe provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of positions of wireless frames carrying time-frequency resources provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of blind detection of broadcast information by an electronic device provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the interactive content between the first device and the second device in the process of establishing an SLB connection provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of an application scenario for establishing an SLB connection based on an SLE connection provided by an embodiment of the present application;
  • FIG. 13 is a flowchart of establishing an SLB connection between a first device and a second device according to another embodiment of the present application.
  • Fig. 14 is a first schematic diagram of device control provided by another embodiment of the present application.
  • Fig. 15 is a second schematic diagram of device control provided by another embodiment of the present application.
  • FIG. 16 is a schematic diagram of interaction content between the first device and the second device during the process of establishing an SLB connection according to another embodiment of the present application;
  • FIG. 17 is a flow chart of establishing an SLB connection between a first device and a second device according to another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an SLE broadcast provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an application scenario for establishing an SLB connection based on SLE broadcast provided by an embodiment of the present application.
  • Fig. 20 is a schematic diagram of device control provided by another embodiment of the present application.
  • Fig. 21 is a schematic diagram of interaction content between the first device and the second device during the process of establishing an SLB connection according to another embodiment of the present application;
  • Fig. 22 is a flow chart of pairing and authentication between the first device and the second device provided by the embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • association relationship of objects means that there may be three kinds of relationships.
  • a and/or B may mean that A exists alone, A and B exist simultaneously, and B exists independently.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more.
  • Various application programs are usually stored in the electronic device, such as a setting application, a multi-screen collaborative application, a screen projection application, an audio application, a video application, a gallery application, a camera application, a navigation application, a map application, an email client, a game application, and the like.
  • the wireless short-distance communication protocol framework provided by this embodiment can perform wireless short-distance communication with the peer device.
  • FIG. 1 and FIG. 2 are schematic diagrams of the wireless short-distance communication protocol framework involved in the embodiment of the present application.
  • the architecture includes a basic application layer, a basic service layer, and a starlight access layer (also referred to as an access layer).
  • the basic application layer and basic service layer can be collectively referred to as the upper layer of Starlight.
  • the Starlight access layer includes SLB modules and SLE modules.
  • the upper layer of Starlight can uniformly schedule SLB modules and SLE modules.
  • the basic application layer includes various common frameworks.
  • the basic application layer has developed a framework for various possible and general application scenarios.
  • these frameworks may include general frameworks such as a basic communication framework, a general perception framework, a general video framework, a general audio framework, a general data framework, and a vehicle control framework.
  • the basic application layer receives the business requirements issued by the application program, it selects the corresponding general framework to process the corresponding business.
  • the basic communication framework is used to set the mode of device discovery and discovery (such as broadcast mode, polling mode, etc.), set the filtering policy (for example, in the audio business scenario, only for electronic devices that support audio devices), set Levels can be found, etc.
  • the basic communication framework is also used to select SLB and/or SLE modules for communication according to the business requirements of the application.
  • service requirements include application identification (application identification, AID) and service quality (quality of service, QoS).
  • QoS quality of service
  • QoS includes code rate, time delay, sampling rate and bit width, etc.
  • the general perception framework is used to detect user operations, device power information, signal strength, etc.
  • User operations may include screen touch operations, air control gestures, voice control instructions, and the like.
  • the signal strength may include SLB signal strength, SLE signal strength, and the like.
  • the general video framework is used to process data related to video services, such as encoding and decoding video data.
  • the general audio framework is used to process data related to audio services, such as encoding and decoding audio data.
  • the general data framework is used to encrypt and decrypt data, etc.
  • the in-vehicle control framework is used to process data related to in-vehicle control services.
  • the basic service layer includes control plane and data plane.
  • the control plane includes functional modules such as device discovery module, service management module, channel management module, QoS management module, security management module, multi-domain coordination module, measurement management module, and 5G fusion module.
  • the data plane includes channel control data, broadcast data, service management data, real-time data and reliable data, etc., and also includes transmission control adaptation protocol, transmission control protocol/internet protocol (transmission control protocol/internet protocol, TCP/IP), transparent protocol etc. It should be noted that some data on the data plane (such as the channel control data in the dotted line box in Figure 2) is usually not included in the initial protocol architecture, but is gradually generated during the process of using the protocol architecture by the electronic device. stored.
  • the device discovery module is mainly used for discovering peripheral devices and announcing the information of the device itself, and discovering and discovering devices, determining device information, etc. by invoking access layer capabilities.
  • the device information includes information such as a domain name of the device, a media access control (media access control, MAC) address, a role, a device model, and device capabilities (such as supported wireless connection types and supported communication protocols).
  • the device discovery module can specifically be used to broadcast the device information of the electronic device itself, and scan for electronic devices that meet business requirements. It should be understood that for wireless short-distance communication services, different service requirements generally correspond to different types of target electronic devices. For example, when a mobile phone is performing screen projection, the device discovery module of the mobile phone needs to scan large-screen devices that have the function of screen projection, such as TVs, projectors, etc., instead of scanning other electronic devices that do not support projection, such as mobile phones or wireless earphones. .
  • the device discovery module also supports SLB/SLE mutual discovery, that is, in the process of using the SLB access technology to communicate with the peer device, it can be found that the peer device has enabled the SLE communication function, or, when using SLE During the communication process between the access technology and the peer device, it can be found that the peer device has enabled the SLB communication function.
  • the service management module is used to provide an abstract data structure model for the control instruction and small data transmission of the basic application layer, and provide methods for operating the data structure such as reading, writing, notification, and indication.
  • the channel management module is used to manage the transmission channel of the basic service layer, including the establishment, maintenance and release of the transmission channel, and supports the transmission of data through the default transmission channel, or dynamically allocates the transmission channel to transmit data.
  • the channel management module is also used to manage the establishment and maintenance of the cross-layer mapping relationship, including managing the mapping relationship between the Port of the basic application layer and the transmission channel identification (transmission channel identification, TCID) of the basic service layer, and the basic The mapping relationship between the TCID of the service layer and the logical channel identifier (LCID) of the access layer.
  • TCID transmission channel identification
  • LCID logical channel identifier
  • the QoS management module is used to manage the QoS request static table of the service, and negotiate QoS with the peer device. Different services usually have different QoS request static tables.
  • the QoS request static table includes parameters such as transmission delay, code rate, retransmission rate, transmission bandwidth requirements, service type, and bit width.
  • the security management module is used to manage the secure connection of the basic service layer, including identity authentication, air interface communication security protection, secret key update, privacy protection, application layer transmission security, password requirements, secure storage of device information, secure execution, security protection and security management, etc.
  • the multi-domain coordination module is used to control and implement information interaction between communication domains in the scenario where electronic devices are in multiple communication domains, to avoid mutual interference between multiple domains, and to protect the load balance between domains.
  • the electronic equipment includes a management node device (Grant, G node device for short) and a terminal node device (Terminal, T node device for short).
  • Grant G node device for short
  • Terminal T node device for short
  • a communication system composed of a G node device and all T node devices connected to it is called a communication domain.
  • the multi-domain coordination module needs to manage the establishment of interactive channels between multiple G-node devices corresponding to multiple communication domains, maintain the list of neighbor G-node devices and basic information; coordinate multiple domains Resources among them, joint positioning, mobility management, and load balancing.
  • the measurement management module is used to measure the distance between the machine and other electronic devices, the orientation of the machine relative to other electronic devices, etc. according to the received signal strength (received signal strenSLBh indication, RSSI) and a preset algorithm. In addition, the measurement management module is also used to configure the measurement period, report measurement events and measurement results to the basic application layer, schedule measurement resources, control measurement power, etc.
  • the 5G fusion module is used to establish a channel for 5G remote management capabilities, and obtain devices with cellular 5G remote control functions through authentication and authentication mechanisms.
  • the 5G fusion module enables each node to have the ability to allow the 5G edge core network to perceive and control. For example, when the G-node device has the ability to connect to the core network, but the T-node device does not have the ability to connect to the core network, the 5G core network can issue control commands to the T-node device through the G-node device, so that the T-node device also It can be controlled by the 5G core network.
  • the Starlight access layer includes an SLB module and an SLE module.
  • the SLB module can also be called the SLB access layer, and the SLE module can also be called the SLE access layer.
  • the SLB module communicates through the SLB access technology.
  • SLB access technology has large-bandwidth communication capabilities and can carry large-bandwidth services, such as wireless projection services, video call services, etc.
  • the data throughput is relatively high, and the data transmission speed is relatively fast.
  • the power consumption of the SLB access technology is relatively high, and the access process takes a long time.
  • electronic devices include G-node devices and T-node devices, and it is stipulated that G-node devices can send broadcasts, and T-node devices can scan information. Moreover, in the process of establishing the SLB connection between the G-node device and the T-node device, only the T-node device is allowed to scan and discover the G-node device, and send a connection request to the G-node device to connect to the G-node device. However, the G-node device is not allowed to send a connection request to the T-node device.
  • the large-screen device (such as a TV) is a G-node device and the mobile phone is a T-node device
  • the large-screen device will automatically broadcast basic SLB connection information after enabling the SLB communication function.
  • the mobile phone has a business requirement for screen projection, it starts to scan the surrounding G-node devices, receives the basic SLB connection information broadcast by it, and displays the device scanning results (such as device model, device name, etc.) according to the basic SLB connection information.
  • the mobile phone sends a connection request to the large-screen device, thereby establishing an SLB connection with the large-screen device.
  • large-screen devices are not allowed to send connection requests to mobile phones.
  • the SLE module communicates through the SLE access technology.
  • SLE access technology communication has low-power communication capabilities.
  • the SLE module can broadcast device information and data on three fixed broadcast channels, which can be quickly discovered and connected to help save power on your device.
  • the bandwidth supported by the SLE access technology is small, and the data transmission speed is relatively slow. Therefore, the SLE access technology is usually used to handle services with small bandwidth requirements, such as audio playback services based on wireless earphones, and mobile phone control services for smart home devices.
  • Both the SLB module and the SLE module include the data link layer and the physical layer.
  • the data link layer includes a link control layer and a media access layer, and the link control layer provides services for the basic service layer.
  • the link control layer is used to perform necessary numbering (such as adding serial number SN), segmenting, encryption, integrity protection and other operations on the upper layer business data (that is, the data of the basic service layer), and convert the generated chain
  • the channel control layer protocol data unit (logical channel profile data unit, LC PDU) is sent to the media access layer.
  • the media access layer multiplexes and encapsulates different LC PDUs mainly based on the amount of scheduled resources to generate a media access profile data unit (MAC PDU).
  • the media access layer is responsible for decapsulating the data and delivering it to different logical channels.
  • the link control layer can perform necessary decryption, reorganization, sorting and other operations on the data, and deliver the business data to the basic service layer in sequence.
  • the physical layer is used to provide data transmission services to the data link layer, specifically including the following functions: correctness check of transmission information and indication to the data link layer, forward error correction (FEC) encoding/ Decoding, hybrid automatic repeat request (HARQ) soft combining, rate matching of transmission information to corresponding physical resources, mapping of encoded transmission information to corresponding physical resources, physical layer control information and physical layer data Modulation and reception of information, synchronization of frequency and time, radio characteristic measurement and indication to the data link layer, multiple-input multiple-output antenna processing, beamforming, radio frequency processing, etc.
  • FEC forward error correction
  • HARQ hybrid automatic repeat request
  • the electronic device can flexibly use different access technologies (SLB access technology and/or SLE access technology) to communicate with the peer device according to different service requirements of the application program.
  • SLB access technology and/or SLE access technology
  • Fig. 3 is a schematic architecture diagram of a wireless short-distance communication system to which the methods for establishing an SLB connection provided by various embodiments of the present application are applicable.
  • the system includes a first electronic device (referred to as the first device) and a second electronic device (referred to as the second device), and the first device and the second device are equipped with the devices shown in Fig. 1 and Fig. 2
  • a wireless short-distance communication protocol architecture and based on the protocol architecture, the SLB access technology and/or the SLE access technology can be used to communicate with each other.
  • the electronic equipment may be electronic equipment in various fields.
  • large-screen devices in the smart home field artificial intelligence (AI) speakers, high fidelity (HiFi) speakers, temperature sensors, humidity sensors, etc.
  • mobile phones tablet computers, wearable devices, augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, notebook computers, ultra-mobile personal computers (ultra-mobile personal computer, UMPC) in the field of smart terminals , netbook, personal digital assistant (personal digital assistant, PDA), etc.
  • the embodiment of the present application does not limit the specific type of the electronic device.
  • Fig. 4 is a flow chart of establishing an SLB connection between a first device and a second device provided by an embodiment of the present application. Specifically, the following steps S401 to S404 are included.
  • the first device becomes a G node device, and broadcasts basic SLB connection information.
  • the SLB access technology can set different default roles for different electronic devices.
  • the default role of some electronic devices is the management role (G role for short), and acts as a G node device by default during the SLB connection process;
  • the default role of some electronic devices is the terminal role (T role for short), and during the SLB connection process Acts as a T-node device by default.
  • the default role may be determined according to input and output conditions of the electronic device.
  • the input and output conditions include whether the electronic device supports information input through a device such as a mouse, a keyboard, or a screen, and whether it supports information output through a device such as a screen or a speaker.
  • a device such as a mouse, a keyboard, or a screen
  • the default role are usually T roles, and they act as T node devices by default during the SLB connection process.
  • the default role is usually the G role, which acts as a G node device by default during the SLB connection process.
  • the electronic device may also determine or reset the role of the electronic device according to a user instruction. For example, reset the default role of the electronic device in the control center or setting interface of the electronic device.
  • the first device may wake up the SLB module in a management role (G role) after detecting the first trigger event.
  • the first trigger event may be that the first device starts up, or the SLB communication function of the first device is turned on according to a user instruction (see FIG. 5).
  • the application program of the first device detects the first trigger event, it sends the first SLB start command to the SLB module via the basic application layer and the basic service layer in sequence, and the first SLB start command is used to instruct the SLB module to use G The character starts.
  • the SLB module of the first device starts with the G role, the first device becomes a G node device.
  • the basic connection information of the SLB includes the following (1)-(4):
  • the first training signal (first training signal, FTS)
  • the second training signal (secondary training signal, STS)
  • Both FTS and STS are signals used for time synchronization in the SLB access technology.
  • FTS is a coarse synchronization signal
  • STS is a fine synchronization signal.
  • An FTS and an STS form a group. In each group of signals, the signal that appears first in the time domain is the FTS, and the signal that appears later in the time domain is the STS.
  • FTS is a ZC (Zadoff-Chu) sequence with a root index of 1 or 40 and a length of 39.
  • STS is a ZC sequence with a root index between 1 and 20 and a length of 39.
  • the broadcast information has a total of 63 bits (bit), and is transmitted on a broadcast channel (broadcast channel, BCH).
  • BCH broadcast channel
  • the broadcast information carries SLB physical layer configuration parameters, as shown in Table 1.
  • the second device T node device must use these parameters to receive other system information, such as communication domain system information.
  • Table 1 broadcast information structure
  • Communication domain system information is an information element in the SLB protocol.
  • the second device needs to obtain the communication domain system information of the first device to obtain information such as access resources in order to establish an SLB connection with the first device.
  • the structure of the communication domain system information may be as follows:
  • the second device becomes a T-node device.
  • the second device (such as a mobile phone) can wake up the SLB module in a terminal role (T role) after detecting the second trigger event.
  • the second trigger event may be the start of the second device, or the user enables the SLB communication function of the second device (see FIG. 5 ).
  • the application program of the second device sends a second SLB start instruction to the SLB module via the basic application layer and the basic service layer in sequence, and the second SLB start instruction is used to instruct the SLB module to The T character starts.
  • the second device becomes a T node device.
  • the second device scans for G-node devices.
  • the application program of the second device After the application program of the second device detects the third trigger event, it controls the SLB module of the second device to start scanning the surrounding G-node devices.
  • the third trigger event is that the second device detects that the user controls the operation of scanning G-node devices. For example, as shown in FIG. 6 , when the second device is playing a video, the third trigger event is the user's operation on the screen projection control in the video playback interface.
  • the second device after the second device becomes a T-node device, it automatically scans the surrounding G-node devices every preset time period, based on this, the third trigger condition is that the preset time period has elapsed.
  • the third trigger event is that the second device displays an SLB setting interface and the like.
  • the second device starts to scan the G-node device, and sends the device information (such as device name, device model, etc.) of the scanned G-node device to displayed in the list of available devices.
  • the application program of the second device sends a scanning instruction to the SLB module through the basic application layer and the basic service layer in sequence, and the scanning instruction is used to control the SLB module to scan and discover G-node devices.
  • the SLB module starts to scan the surrounding G-node devices, and receives the basic SLB connection information broadcast by the surrounding G-node devices.
  • the SLB module passes through the basic service layer and the basic application layer in turn, and reports the device information (such as device name, device model, etc.) carried in the received SLB basic connection information to the application program as a scan result.
  • the application program displays the scanned device information of the G-node device on the display interface of the second device according to the scanning result.
  • the basic SLB connection information received by the second device includes the following contents (1)-(3) in sequence.
  • the second device receives the FTS and the STS, and implements downlink synchronization with the first device according to the FTS and the STS.
  • the SLB module of the second device not only needs to receive the broadcast signal, but also needs to find the FTS and STS from the received broadcast signal (referred to as the received signal), and further detect the FTS and STS specific type.
  • the SLB module of the second device can detect specific types of the FTS and the STS through related processing. That is, the second device pre-stores or generates all types of FTS and STS locally, and after acquiring the received signal, correlates the received signal with all types of local FTS and STS respectively. If the height of a correlation peak between a certain part of the received signal and a preset FTS or STS exceeds the threshold, it is determined that the type of the part of the received signal is the same as the preset signal.
  • the SLB module of the second device needs to perform correlation processing on the received signal and the local FTS with root indices of 1 and 40 respectively. If the height of the correlation peak between a certain part of the received signal and the FTS whose root index is 1 exceeds the threshold, it is determined that this part of the received signal is an FTS whose root index is 1. If the height of the correlation peak between a certain part of the received signal and the FTS whose root index is 40 exceeds the threshold, it is determined that this part of the received signal is an FTS whose root index is 40. It can be understood that the second device needs to perform 1-2 times of correlation processing to detect the type of the FTS.
  • the SLB module of the second device first finds the STS from the received signal according to the position of the FTS correlation peak, and then further detects the type of the STS.
  • the SLB module of the second device needs to perform correlation processing on the found STS and the local STS whose root index is 1-20. If the height of the correlation peak between the STS and the STS whose root index is k exceeds the threshold, it is determined that this part of the received signal is an STS whose root index is k.
  • k is any numerical value from 1 to 20, and k is an integer. It can be understood that the second device needs to perform 1 to 20 times of correlation processing to detect the type of the STS.
  • the SLB module of the second device can implement downlink synchronization between the SLB module of the second device and the SLB module of the first device according to the FTS and the STS.
  • the downlink synchronization means that the T-node device synchronizes with the G-node device according to the signal (including FTS and/or STS) sent by the G-node device.
  • the second device After the second device (T-node device) completes downlink synchronization with the first device (G-node device), it can receive the broadcast information and communication domain system information sent by the first device at the corresponding time-frequency domain position.
  • the second device receives broadcast information.
  • FIG. 8 in the time domain, 1 ms is a superframe, and a superframe includes 48 wireless frames (Frames), the length of each wireless frame is 20.833 us, and each wireless frame includes 8 symbols ( symbol, sym for short).
  • FIG. 8 only exemplarily shows two frame structures of radio frames, including a first frame structure and a second frame structure.
  • the first four symbols such as sym#0 ⁇ sym#3) are G-link (G link)
  • the last four symbols such as sym#4 ⁇ sym#7 are T-link ( T link).
  • the first four symbols (such as sym#0-sym#3) are T-link
  • the last four symbols such as sym#4-sym#7) are G-link.
  • the G link refers to: a G node device in the communication domain sends information and a T node device receives information.
  • the T-link refers to: a resource where the T-node device sends information and the G-node device receives information.
  • the information includes physical layer signals, physical layer control information, physical layer data information, and the like.
  • the SLB module of the first device uses 8 symbols (specifically system overhead symbols) of 4 consecutive superframes to transmit broadcast information, and occupies 2 symbols in each superframe. These two symbols are: in a superframe, the last system overhead symbol of the first radio frame before the radio frame where the FTS is located, and the last system overhead of the second superframe before the radio frame where the FTS is located symbol. In an example, as shown in FIG. 9 , the two symbols are respectively the last system overhead symbol of the radio frame where the broadcast information 2 is located, and the last system overhead symbol of the radio frame where the broadcast information 1 is located.
  • the SLB module of the second device needs to receive at least 4 complete superframes to blindly detect a complete broadcast information. Considering the scenario where the blind detection operation crosses information boundaries, the SLB module of the second device needs to receive at most 7 complete superframes to blindly detect complete broadcast information.
  • the second device receives the communication domain system information.
  • the communication domain system information is broadcast by the first device (that is, the G node device), and after successfully receiving the broadcast information, the second device can continue to receive the communication domain system information according to the parameters carried in the broadcast information.
  • the second device receives the communication domain system information according to the broadcast period of the communication domain system information and the time-frequency domain resource location that carries the communication domain system information.
  • the broadcast period of the communication domain system information is 64, 128, 256 or 512 superframes, and the period parameter is carried in the communication domain system information.
  • the second device does not know the specific value of the broadcast period of the communication system information during the process of receiving the communication domain system information. Therefore, the second device needs to blindly detect the system information in the communication domain according to the minimum broadcast period (that is, at least every 64 superframes), and the blind detection process takes a long time.
  • the position of the time-frequency domain resource bearing the system information in the communication domain is indicated by the system control information, and the system control information is carried in the common resource among the control information transmission resources of the G link in the radio frame.
  • the system control information is carried in the common resource among the control information transmission resources of the G link in the radio frame.
  • the common resource uses the last system overhead symbol of each radio frame. Since the length of the system control information is 60 bits and occupies 4 or 8 symbols, the system control information needs to occupy 4 or 8 radio frames.
  • the second device After the second device (that is, the T-node device) detects the STS and receives the broadcast information correctly, it can calculate the position of the public resource in the superframe. Since any of the 69-bit second type of data dynamic scheduling resource indication information, 60-bit system control information, and 60-bit random access response control information may be carried in the public resource, the second device needs to be in the public resource. Blind detection is performed according to the lengths of 60bit and 69bit respectively to determine the type of information carried in the public resource. Since the system control information uses 4 or 8 symbols, and every two symbols is a resource block, the electronic device blindly detects the system control information in units of resource blocks (that is, the system control information occupies 2 or 4 resource blocks).
  • the electronic device needs to succeed in blind detection at most 4 times according to the lengths of 60bit and 69bit, respectively, and a total of at most 8 successful blind detection times, in order to detect system control information from public resources.
  • the second device After the second device obtains the system control information carried in the public resource, it can obtain the time-frequency domain resource position carrying the communication domain system information from the system control information, and at the time-frequency domain resource position, according to the communication domain
  • the broadcast period of system information detects system information in the communication domain.
  • the second device may succeed in the blind detection or fail in the blind detection.
  • the blind detection success means that the second device has detected the required information (such as system control information); the blind detection failure means that the second device has not detected the required information (such as system control information).
  • the second device After successfully receiving the communication domain system information, the second device can initiate a synchronous connection to the first device according to the broadcast information and the communication domain system information, thereby establishing an SLB connection between the first device and the second device, see S404 for details.
  • the second device establishes an SLB connection with the first device.
  • the T-node device can initiate a connection to the G-node device. Therefore, in this embodiment, during the process of establishing the SLB connection between the first device and the second device, the second device (T Node device) initiates contention random access.
  • the second device T Node device initiates contention random access.
  • the application program detects that the user selects the first device from the scanned G-node devices, it sends the first device connection request to the basic application layer.
  • the basic application layer sends a first device connection instruction to the SLB module through the basic service layer, instructing it to establish an SLB connection with the first device.
  • the SLB module of the second device After receiving the connection instruction from the first device, the SLB module of the second device initiates contention random access to the SLB module of the first device.
  • the four-way handshake process of contention random access includes the following contents (1)-(4).
  • the SLB module of the second device sends a first message (Msg1) to the SLB module of the second device, and the content of the first message is mainly a random access request (random access request).
  • the SLB module of the second device randomly selects a physical layer identifier from the range [contentionPhysID-starting, contentionPhysID-ending] indicated by the information element ContentionAccessResource (in the obtained communication domain system information), and selects a physical layer identifier from the An access resource is randomly selected from the contention access resources indicated by the element ContentionAccessResource, and the SLB module of the second device sends a physical layer identifier to the SLB module of the first device on the contention access resource, indicating that there is a random access request.
  • the SLB module of the first device sends a second message (Msg2) to the SLB module of the second device.
  • the second message is a random access response (RAR), which is mainly used for the SLB module of the first device Configure resources for sending more information for the SLB module of the second device through the G link control information, and send scheduling signaling through the G link control signaling.
  • RAR random access response
  • the cyclic redundancy check code (cyclic redundancy check, CRC) of the scheduling signaling is scrambled according to the identifier of the access physical layer resource to be contended for and the identifier of the physical layer of the SLB module of the second device (T node device).
  • the SLB module of the second device sends an XRC setup request message (XRCSetupRequest) on the resource configured in Msg2, and the request includes an identifier for conflict resolution, which is a globally unique media access control (media access control, MAC) layer identifier, which can uniquely identify the T-node device that initiates the access request.
  • MAC media access control
  • the SLB module of the second device can report its capability information to the SLB module of the first device through XRC signaling on the resource configured in Msg2, and report the chain link information in the form of a MAC control element (control element, CE).
  • CE MAC control element
  • the SLB module of the first device sends a fourth message (Msg4) to the SLB module of the second device, where the fourth message is an XRC setup message (XRCSetup).
  • the XRC setting message carries the identifier for conflict resolution reported by the SLB module of the second device, and the SLB module of the second device receives the response message, and determines whether the access is successful according to the identifier for conflict resolution.
  • the SLB module of the first device and the SLB module of the second device After the SLB module of the first device and the SLB module of the second device complete the random access competition, they need to perform pairing and authentication. After the pairing and authentication are completed, the first device and the second device successfully establish an SLB connection, and can perform service data transmission.
  • the SLB modules of the first device and the second device report the SLB connection results to the respective application layers through the basic service layer and the basic application layer to notify the application layer of the SLB connection completed.
  • an SLB connection can be established between the first device and the second device to process the large-bandwidth service initiated by the second device to the first device.
  • the speaker becomes a G-node device after being started, and broadcasts basic SLB connection information to the outside.
  • the mobile phone After the mobile phone is started, it becomes a T-node device.
  • the setting application of the mobile phone sends scanning instructions to the SLB module through the basic application layer and the basic service layer in turn.
  • the SLB module performs the scanning operation, receives the basic connection information of the SLB, and reports the device information (such as device name and model) in the scanning result to the Setting application for display through the basic service layer and the basic application layer in order, so that the user can check the SLB support around the phone Technological electronic devices.
  • the mobile phone After the user selects the speaker from the scanned electronic devices, the mobile phone actively connects to the speaker and establishes an SLB connection with it. After the SLB connection is successfully established, the mobile phone can control the speaker to play high-definition audio.
  • the process of establishing the SLB connection between the first device and the second device takes a long time, mainly because the process of interaction between the first device and the second device takes a long time. It will be described in detail below.
  • the main interaction process includes the contents (a) to (c) shown in Figure 11, and the specific time consumption of each content can be found in Table 2 shown.
  • the second device receives basic SLB connection information, that is, FTS, STS, broadcast information and communication domain system information.
  • the first device and the second device perform contention random access.
  • the first device and the second device perform pairing and authentication.
  • the SLB module of the second device correlates the received signal with the local sequence whose root index is 1 or 40. If the height of the correlation peak exceeds the threshold, it is considered that the FTS has been found and detected. type. Subsequently, the position of the STS can be calculated according to the position of the FTS, and the type of the STS can be detected. Detecting the type of FTS may require at most 2 correlation processes, and detecting the type of STS may require at most 20 correlation processes, and the detection process takes a long time.
  • the FTS detection needs to be performed again, which takes a long time.
  • the second device (T-node device) needs to use 4 superframes to send broadcast information. Therefore, in the process of receiving broadcast information, the T-node device needs to blindly check 4 to 7 superframes to obtain a complete broadcast information. See previous description.
  • the T-node device needs to infer the location of the public resource carrying the system control information according to the broadcast information indication, and blindly detect the system control information with a length of 60 bits on the location of the public resource. Subsequently, the T-node device acquires the location of the time-frequency domain resource carrying the system information in the communication domain according to the indication of the system control information. Finally, the T-node device receives the communication domain system information in the time-frequency domain resource position according to the broadcast period of the communication domain system information, and the receiving process is complicated and takes a long time.
  • the G-node device broadcasts the communication domain system information at a period of 64, 128, 256 or 512 superframes
  • the period information is carried in the communication domain system information
  • the T-node device does not know the specific value of the broadcast period.
  • the system information of the communication domain needs to be parsed every 64 superframes, and the operation is cumbersome and time-consuming. For details, please refer to the previous description.
  • the T-node device can complete the synchronous connection with the G-node device by initiating a contention random access process.
  • the T-node device may need to go through multiple random access processes to successfully connect.
  • the process of establishing an SLB connection between the first device (G node device) and the second device (T node device) because the second device needs to blindly detect and receive the FTS, STS, broadcast information and communication broadcast by the first device domain system information, and perform contention random access, identity authentication, and conflict resolution. Therefore, the process of establishing an SLB connection between the first device and the second device takes a long time, and the user experience is not good.
  • the embodiment of the present application provides a method for establishing an SLB connection, which involves the process in which the first device and the second device use the SLE access technology to assist in establishing the SLB connection. to improve the efficiency of SLB connections.
  • the process in which the first device and the second device use the SLE access technology to assist in establishing the SLB connection will be described in detail below. It should be understood that when there is a service requirement for establishing an SLB connection between the first device and the second device, the SLE connection between the first device and the second device may or may not be established successfully. The process of establishing the SLB connection between the first device and the second device in the two scenarios will be described below respectively.
  • the SLE connection may be maintained between the first device and the second device, and the SLB module is controlled to be in a sleep state.
  • the application program of the first device sends the large-bandwidth service requirement to the first device
  • the first device and the second device wake up their respective SLB modules, and use the SLE connection to transfer the relevant parameter information required to establish the SLB connection, assisting the first device
  • the device and the second device quickly establish the SLB connection.
  • the mobile phone and the wireless headset when there is no high-definition audio playback, the mobile phone and the wireless headset only maintain the connection of the SLE module.
  • the mobile phone and the wireless headset can quickly establish an SLB connection with the assistance of the existing SLE connection.
  • Fig. 13 is a schematic flowchart of establishing an SLB connection between the first device and the second device provided by another embodiment of the present application, involving the use of SLE when the SLE connection has been established between the first device and the second device Connection assists the process of establishing an SLB connection. Specifically, the following steps S1301 to S1305 are included.
  • the first device determines to establish an SLB connection with the second device.
  • the first device uses the SLE connection to query the SLB capability of the second device.
  • the first device and the second device perform GT role negotiation to determine a G node device and a T node device.
  • the G node device sends the first information to the T node device.
  • the first information includes at least one of the SLB auxiliary connection information, and/or at least one of the first part of the SLB basic connection information (such as broadcast information and communication domain system information).
  • the T node device receives the second information.
  • the second information includes the part of the SLB basic connection information that has not been sent to the second device through the SLE connection in the previous period.
  • the T-node device connects to the G-node device according to the first information and the second information, and establishes an SLB connection.
  • the first device and the second device can quickly establish the SLB connection based on the SLE connection, which has better user experience.
  • the first device determines to establish an SLB connection with the second device. This step specifically includes the following contents 1-1 to 1-3.
  • the application program of the first device delivers service requirements to the basic application layer of the first device.
  • the first device is a mobile phone and the second device is a wireless headset, as shown in FIG.
  • the layer sends the service requirements corresponding to the high-definition audio playback service.
  • the basic application layer of the first device determines that an SLB connection needs to be established with the second device.
  • the high-bandwidth service requirements include high-definition video playback requirements, high-definition audio playback requirements, etc., which have relatively high bandwidth requirements for the data transmission process.
  • SLB connections can meet the requirements of large-bandwidth services, but SLE connections cannot meet the requirements of large-bandwidth services. Therefore, when the service demand exceeds the bearing capacity of the SLE link, the first device determines to establish an SLB connection with the second device.
  • high-definition audio refers to audio whose quality or quality is higher than a preset quality or quality.
  • high-definition audio may be high-definition quality audio, or lossless quality audio.
  • a high-definition video is a video with a definition higher than a preset definition, for example, a high-definition video may be a 480P, 720P or 1080P video.
  • the first device when the first device is a mobile phone and the second device is a wireless headset, as shown in FIG. 15 , when the first device controls the During the audio playback process of the wireless headset, the first device may also determine to establish an SLB connection with the second device according to the user's instruction, such as the user's operation on the SLB switch control, so as to play the audio currently played by the first device through the SLB connection.
  • the user's instruction such as the user's operation on the SLB switch control
  • the basic application layer of the first device sends an SLB connection instruction to the basic service layer of the first device.
  • the SLB connection instruction is used to instruct the basic service layer of the first device to control the establishment of an SLB connection between the first device and the second device, so as to transmit service data corresponding to large bandwidth service requirements.
  • the first device uses the SLE connection to query the SLB capability of the second device.
  • S1302 is an optional step.
  • the basic service layer of the first device knows the SLB capability of the second device, the first device may directly execute S1303 after executing S1301. .
  • the first device may learn the SLB capability of the second device in advance in the following stages. For example, in the device discovery phase before the first device establishes an SLE connection with the second device, the first device may obtain the SLB capability of the second device through a broadcast sent by the second device. Or, after the first device establishes the SLE connection with the second device, during the service discovery process, the first device may learn the SLB capability of the second device.
  • S1302 specifically includes the following content 2-1 to 2-6.
  • the basic service layer of the first device sends an SLB capability query message to the SLE module of the first device, and the SLB capability query message is used to query whether the second device has the SLB communication capability.
  • the SLE module of the first device sends an SLB capability query message to the SLE module of the second device based on the SLE connection.
  • the SLE module of the second device reports an SLB capability query message to the basic service layer of the second device.
  • the basic service layer of the second device responds to the SLB capability query message, and sends the SLB capability query result to the SLE module of the second device.
  • the SLB capability query result is used to indicate whether the second device has the SLB capability.
  • the SLE module of the second device sends the SLB capability query result to the SLE module of the first device based on the SLE connection.
  • the SLE module of the first device sends the SLB capability query result to the basic service layer of the first device.
  • the first device and the second device perform GT role negotiation to determine a G node device and a T node device.
  • the electronic device whose SLB module is G role is a G node device
  • the electronic device whose SLB module is T role is a T node device.
  • only T-node devices are allowed to connect to G-node devices (that is, only T-node devices are allowed to send connection requests to G-node devices). Therefore, when establishing an SLB connection between the first device and the second device, roles of the first device and the second device need to be clarified first. It can also be understood that, when an SLB connection is established between the first device and the second device, roles of the SLB module of the first device and the SLB module of the second device need to be clarified first.
  • GT role negotiation between the SLB module of the first device and the SLB module of the second device may include the following three scenarios: (1) The SLB module of the first device is not awakened; (2) The SLB module of the first device is awakened and is G (3) The SLB module of the first device has been awakened and is in the T role. The following describes the GT role negotiation process between the first device and the second device in these three scenarios respectively.
  • Scenario (1) The SLB module of the first device does not wake up.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device wakes up and assumes the G role, and the SLB module of the second device wakes up and assumes the T role, that is, One device is a G-node device, and the second device is a T-node device.
  • the first device takes on the role of T after waking up
  • the second device takes on the role of G after waking up, that is, the first device is a T-node device
  • the second device is a G-node device.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device is in the G role after waking up, and the SLB module of the second device continues to be in the T role. That is, the first device is a G-node device, and the second device is a T-node device.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device is in the T role after waking up, and the SLB module of the second device continues to be in the G role. That is, the first device is a T-node device, and the second device is a G-node device.
  • the basic service layer of the first device after determining the arbitration result, sends the arbitration result to the basic service layer of the second device based on the SLE connection.
  • the first device and the second device maintain the role of the local SLB module according to the ruling result.
  • Scenario (2) The SLB module of the first device has woken up and is in the G role.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device continues to be a G role, and the SLB module of the second device wakes up to be a T node, that is, the first The device is a G node device, and the second device is a T node device.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device continues to be in the G role, and the SLB module of the second device continues to be in the T role, that is The first device is a G node device, and the second device is a T node device.
  • the basic service layer of the first device after determining the arbitration result, sends the arbitration result to the basic service layer of the second device based on the SLE connection.
  • the first device and the second device maintain the role of the local SLB module according to the ruling result.
  • the basic service layer of the first device decides to restart the SLB module locally, and switches the role of the local SLB module to the T role. If the role switching of the SLB module of the first device is successful, then the GT role negotiation is successful, and the negotiation result is: the SLB module of the first device is in the T role, and the SLB module of the second device is in the G role, that is, the first device is a T node device , the second device is a G node device. If the role switching of the SLB module of the first device fails (for example, the restart fails, the role cannot be switched), the role negotiation fails, and the first device and the second device cannot establish an SLB connection due to role conflicts, and the basic service layer reports to the basic application layer Connection failure result.
  • the role switching of the SLB module of the first device fails (for example, the restart fails, the role cannot be switched)
  • the role negotiation fails, and the first device and the second device cannot establish an SLB connection due to role conflicts, and the basic service layer reports to the basic application layer Connection failure result
  • the basic service layer of the first device rules that the second device restarts the SLB module, and sends the SLB module restart request to the second device, and the request carries the role that the first device expects the second device to become after restarting (i.e. the T role).
  • the second device receives the SLB module restart request, there are two processing situations as follows:
  • Case 2 The second device does not agree to restart the SLB module, and sends a notification to the second device indicating that it does not agree to restart the SLB module, role negotiation fails, SLB connection establishment fails, and the basic service layer reports the connection failure result to the basic application layer.
  • Scenario (3) The SLB module of the first device has woken up and is in the T role.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device continues to be in the T role, and the SLB module of the second device is in the G role after waking up, that is, the first device is a T-node device, and the second device is a G-node device.
  • the basic service layer of the first device makes the following ruling: the SLB module of the first device continues to be in the T role, and the SLB module of the second device continues to be in the G role, that is
  • the first device is a T-node device, and the second device is a G-node device.
  • the basic service layer of the first device after determining the ruling result, sends the ruling result to the basic service layer of the second device through the SLB connection.
  • the first device and the second device maintain the role of the local SLB module according to the ruling result.
  • the first device decides to restart the SLB module locally, and switches the SLB module to the G role. If the role switching of the SLB module of the first device succeeds, the GT role negotiation result is as follows: the SLB module of the first device is in the G role, and the SLB module of the second device continues to be in the T role, that is, the first device is a G node device, The second device is a T-node device. If the role switching of the SLB module of the first device fails, the role negotiation fails, and the establishment of the SLB connection fails.
  • the first device judges that the second device restarts the SLB module, and sends the SLB module restart request to the second device, and the request carries the role that the first device expects the second device to become after restarting (that is, the G role). .
  • the second device receives the SLB module restart request, there are two processing situations as follows:
  • the role negotiation is successful.
  • the GT role negotiation result is: the SLB module of the first device continues to be a T role, and the SLB module of the second device is a G role, that is, the first device is a T-node device, and the second device is a G-node device. If the SLB module of the second device fails to restart, the role negotiation fails, the SLB connection establishment fails, and the basic service layer reports the connection failure result to the basic application layer.
  • Case 2 The second device does not agree to restart the SLB module, and sends a notification to the second device indicating that it does not agree to restart the SLB module, the SLB connection fails to be established, and the basic service layer reports the connection failure result to the basic application layer.
  • the SLB module of the first device has been awakened and is in the G role, and the SLB module of the second device has been awakened in the T role.
  • the first The process of the GT role negotiation between the device and the second device includes the following steps 3-1 to 3-7.
  • the basic service layer of the first device sends a GT role query message to the SLE module of the first device, and the GT role query message is used to query the working status and role information of the SLB module of the second device.
  • the working state of the SLB module includes a sleep state and a wake-up state.
  • the role query message also carries role information of the first device, and the role information indicates that the first device is a G role.
  • the second device can combine its own role information to determine whether there is a role conflict between the first device and the second device.
  • the SLE module of the first device sends a GT role query message to the SLE module of the second device based on the SLE connection.
  • the SLE module of the second device reports a GT role query message to the basic service layer of the second device.
  • the basic service layer of the second device sends the GT role query result to the SLE module of the second device.
  • the GT role query result includes the working status and role of the SLB module of the second device.
  • the result of the role query is: the SLB module of the second device has been awakened and is in the T role.
  • the role query result may also carry conflict indication information, and the conflict indication information is used to indicate that the first There is a role conflict between the SLB module of the device and the second device.
  • the role query result also includes restart indication information, which is used to indicate whether the SLB module of the second device supports restart to switch roles.
  • the SLE module of the second device sends the GT role query result to the SLE module of the first device based on the SLE connection.
  • the SLE module of the first device reports the GT role query result to the basic service layer of the first device.
  • the basic service layer of the first device determines that its own role remains the G role after learning that the SLB module of the second device has been woken up and is in the T role.
  • the first device and the second device perform GT role negotiation.
  • the ruling result of the GT role by the basic service layer of the first device is: the SLB module of the first device takes the G role, and the SLB module of the second device takes the T role.
  • the basic service layer of the first device sends the ruling result to the second device.
  • the SLB module of the first device keeps the G role unchanged according to the ruling result, and the SLB module of the second device keeps the T role unchanged according to the ruling result.
  • the first device Determine whether to restart the SLB module according to its own service status. If the restart condition is met, the first device restarts its own SLB module to switch roles. If the restart condition is not met, the SLB connection fails. If the SLB module of the second device supports restarting to switch roles, the first device decides whether to restart its own SLB module according to its own service status. If the first device meets the restart condition, the first device restarts its own SLB module to switch roles. If the first device does not meet the restart condition, the second device is required to restart the SLB module to switch roles.
  • the G node device sends the first information to the T node device.
  • the first device is a G-node device
  • the second device is a T-node device as an example
  • S1304 specifically includes the following contents 4-1 to 4-9.
  • the basic service layer of the first device sends a first wake-up instruction to the SLB module of the first device, where the first wake-up instruction is used to wake up the SLB module and determine the role of the SLB module as a G role.
  • the SLB module of the first device wakes up as a G role.
  • 4-1 and 4-2 are optional steps. After the first device and the second device complete the GT role negotiation, if the SLB module of the first device is not awakened, the first device performs step 4-1 and step 4-2 to wake up the SLB module of the first device and determine that it is G role, making the first device a G node device. In addition, if the SLB module of the first device has been awakened and is in the G role, the first device does not need to perform steps 4-1 and 4-2.
  • the basic service layer of the second device sends a second wakeup instruction to the SLB module of the second device, where the second wakeup instruction is used to wake up the SLB module and determine the role of the SLB module as a T role.
  • the SLB module of the second device wakes up as a T role.
  • step 4-3 and step 4-4 are optional steps. After the first device and the second device complete the role negotiation, if the SLB module of the second device is not awakened, the second device performs step 4-3 and step 4-4 to wake up the SLB module of the first device and determine that it is T role, making the second device a T-node device. In addition, if the SLB module of the second device has been awakened and is in the T role, the second device does not need to perform step 4-3 and step 4-4.
  • the basic service layer of the first device sends a first information query message to the SLB module of the first device, where the first information query message is used to query the first information of the first device.
  • the SLB module of the first device replies the first information to the basic service layer of the first device.
  • the information involved in establishing the SLB connection between the first device and the second device includes: SLB auxiliary connection information and SLB basic connection information.
  • the SLB auxiliary connection information includes at least one of the following contents (1)-(5):
  • the FTS root index is used to indicate the root index of the FTS sent by the first device.
  • the FTS root index is 1 or 40, which is used for electronic equipment to generate or determine the local sequence signal during the process of receiving FTS, and perform correlation processing with the received signal to receive FTS.
  • the STS root index is used to indicate the root index of the STS sent by the first device.
  • the STS root index is an integer from 1 to 20, and is used for electronic equipment to generate or determine a local sequence signal during the process of receiving the STS, and perform correlation processing with the received signal to receive the STS.
  • T-PhysID:: INTEGER(0...4095)
  • the physical layer identifier is used to uniquely identify the T-node device in the communication domain, and the length is 12 bits.
  • the physical layer identifier is used to select non-competitive random access resource selection, for details, refer to the foregoing description.
  • non-contention random access there is a mapping relationship between access resources and physical layer identifiers, and the access layer resources can be obtained by confirming the physical layer identifiers.
  • Authentication certificate authentication password, 256bit shared key (PSK).
  • the basic connection information package of SLB is as follows (1) ⁇ (4):
  • the communication domain system information may be simplified communication domain system information.
  • the simplified communication domain system information includes the following contents a ⁇ g:
  • Domain name: DomainID:: BIT STRING(SIZE(48)).
  • the domain name is the media access control (medium access control, MAC) address.
  • the nonContentionAccessDuration information element indicates the period of the non-competition access resource pool, where ms512 indicates a 512 superframe, ms1024 indicates a 1024 superframe, ms2048 indicates a 2048 superframe, and ms4096 indicates a 4096 superframe.
  • the noncontentionAccessResource information element indicates the resource for sending non-contention access information in a superframe, including N symbols.
  • N symbols are composed of contentionAccessSymNum overhead symbols according to the symbol time order, and are divided into group, shared during the configuration cycle Group. In each group, 5 non-contention access resources are included in order of subcarriers from lowest to highest.
  • the access resource numbers are #0 to #(Y-1).
  • the T-node device selects a resource numbered mod(T-PhysID, Y) among these resources, and sends access information composed of T-PhysID on this resource, where T-PhysID is the physical layer configured and saved by the G-node device ID, or T-PhysID is the pre-configured physical layer ID of the T-node device.
  • waitingWindow is the size of the waiting time window for random access, and the unit is superframe.
  • Random access target power receiving configuration
  • DedicatedACK-ResourceSetConf indicates a specific ACK resource pool in the ACK resource pool set.
  • the T-node device needs to reply ACK information to the G-node device on the designated ACK resource.
  • the SLB auxiliary connection information also includes the following content:
  • broadcast information and communication domain system information can be sent by the first device (ie, the G node device) to the second device through the SLE connection, which is referred to as the first part of the basic SLB connection information in this embodiment.
  • FTS and STS are synchronization signals in the process of establishing an SLB connection, they can only be sent by the first device to the second device through SLB broadcast.
  • the first information includes SLB auxiliary connection information, and/or at least one of the first part of the SLB basic connection information (that is, broadcast information and communication domain system information). Therefore, it can be seen from the above description that the first information includes but is not limited to the following forms:
  • the first information includes: the broadcast frequency and bandwidth of the first device.
  • the first information includes: FTS root index.
  • the first information includes: FTS root index, STS root index.
  • the first information includes: communication domain system information.
  • the first information includes: broadcast information and communication domain system information.
  • the first information includes: FTS root index, STS root index, broadcast information, and communication domain system information.
  • the first information includes: a physical layer identifier of the first device, an authentication credential of the first device, and broadcast information.
  • the first information includes: broadcast frequency and bandwidth of the first device, FTS root index, STS root index, physical layer identifier of the first device and authentication credential of the first device, and broadcast information and communication domain system information.
  • the first device when the first device sends the broadcast information or the communication domain system information to the second device through the SLE connection, it may also only send part of the broadcast information or the communication domain system information.
  • the communication domain system information sent by the first device to the second device through the SLE connection may be the simplified communication domain system information shown above.
  • the basic service layer of the first device sends the first information to the SLE module of the first device, and instruction information for requesting the second device to initiate an SLB connection to the first device.
  • the SLB module of the first device sends the first information and the indication information to the SLE module of the second device based on the SLE connection.
  • the SLE module of the second device reports the first information and the indication information to the basic service layer.
  • the first device is the triggerer of the SLB connection service and is a T-node device, then the first device does not perform 4-5 to 4-9, but sends a first information acquisition request to the second device, The first information is sent by the second device to the first device based on the SLE connection.
  • the first device does not need to send the indication information to the second device.
  • the second device defaults as the initiator of the connection and sends
  • the device initiates a synchronous connection (that is, connects in a state where the time-frequency domains of the first device and the second device are synchronized).
  • the G node device sends the second information to the T node device.
  • the second information includes the part of the basic SLB connection information that has not been sent to the second device through the SLE connection in the previous period.
  • the second information includes FTS, STS, and communication domain system information.
  • the second information includes FTS, STS, and broadcast information.
  • the second information includes FTS and STS.
  • the second information includes FTS, STS, broadcast information, and communication domain system information.
  • the SLB module of the first device After the first device sends the first information and indication information to the second device (see step 5-1 in Figure 13), the SLB module of the first device starts to send the SLB broadcast, which includes the second information (see Figure 13 Step 5-2 in 13). After the second device receives the indication information, it controls the SLB module of the second device to start scanning the second information. Alternatively, after receiving the first information, the second device defaults to be the initiator of the connection, and starts to control the SLB module of the second device to start scanning the second information.
  • the first information includes the broadcast frequency and bandwidth of the first device, that is, the second device already knows the broadcast frequency and bandwidth of the first device sending the second information when receiving the second information, then the second The device can receive the second information at the broadcast frequency and bandwidth, thereby improving the receiving efficiency of the second information.
  • the first device When sending the second information, the first device first sends the FTS and the STS. After receiving the FTS and/or STS, the SLB module of the second device implements downlink synchronization with the first device according to the FTS and/or STS.
  • the T-node device needs to receive the STS sent by the G-node device during the process of synchronously connecting the G-node device. Accurate synchronization of T-node devices and G-node devices is completed with the corresponding STS. After the synchronization is completed, the T-node device can initiate non-contention random access to the G-node device.
  • the T-node device needs to receive the FTS and STS during the synchronous connection process of the T-node device to the G-node device, and communicate with the G-node device successively according to the FTS and STS. Coarse synchronization and fine synchronization.
  • the second device when the first information includes the FTS root index and/or the STS root index, the second device can quickly receive the FTS and/or STS in the second information according to the first information.
  • the first information includes the FTS root index and the STS root index, that is, for the T-node device, the root index of the local signal generated to receive the FTS and the STS is known. Therefore, during the synchronization process, the T-node device directly uses the FTS root index and the STS root index to generate or determine the local sequence, and then receives the FTS and STS according to the local sequence, which can improve the clock synchronization efficiency of the T-node device.
  • the STS sequence whose root index is 1-4 and 6-20 to perform blind detection on the received signal to receive the STS, which can improve the receiving efficiency of the STS.
  • the first device After the synchronization is completed, in some embodiments, if the first information does not include the entire content of the broadcast information, the first device needs to send the unsent information in the broadcast information to the second device after synchronizing with the second device. section for the second device.
  • the second device needs to receive the part of the broadcast information through the SLB access technology, so as to ensure that the second device receives the complete broadcast information before making a synchronous connection with the first device.
  • the first device if the first information does not include all content of the communication domain system information, the first device also needs to send the part of the communication domain system information not sent to the second device to the second device.
  • the second device needs to receive the part of the communication domain system information through the SLB access technology, so as to ensure that the second device receives the complete communication domain system information before synchronously connecting with the first device. After the second device receives the complete broadcast information and communication domain system information, it can establish a connection with the second device according to the broadcast information and communication domain system information.
  • the G node device and the T node device establish an SLB connection according to the first information and the second information.
  • a T-node device can initiate a connection request to a G-node device, and in this embodiment, the first device is a G-node device, and the second device is a T-node device. Therefore, in S1306, the second device actively connects to the first device. Based on this, S1306 specifically includes the following content 6-1 to 6-6.
  • the SLB module of the second device performs a synchronous connection with the SLB module of the first device according to the broadcast information and communication domain system information in the first information and the second information.
  • the second device initiates a non-contention random access to the first device.
  • the non-contention random access process specifically includes the following two handshake processes:
  • the SLB module of the second device sends a first message (Msg1) to the SLB module of the first device.
  • the content of the first message is mainly a random access request (random access request), and the random access request includes the second device Preconfigured or stored physical layer identifier.
  • the SLB module of the first device sends a fourth message (Msg4) to the SLB module of the second device, the fourth message is an XRC setup message (xrcsetup), and the setup message includes the physical layer of the SLB module of the second device
  • the identifier is used to respond to the access request of the T-node device.
  • the SLB module of the first device performs pairing and authentication with the SLB module of the second device.
  • the first device and the second device may not perform pairing when establishing the SLB connection based on the SLE connection and authentication.
  • the SLB module of the first device sends the SLB connection result to the basic service layer of the first device.
  • the basic service layer of the first device sends the SLB connection result to the basic application layer of the first device.
  • the SLB module of the second device sends the SLB connection result to the basic service layer of the second device.
  • the basic service layer of the second device sends the SLB connection result to the basic application layer of the second device.
  • the SLB connection (specifically referring to the SLB physical link) between the first device and the second device is established successfully.
  • the first device and the second device may establish a logical link and a service link based on the physical link, and then transmit service data.
  • the first device and the second device can transfer SLB auxiliary connection information based on the SLE connection, so as to quickly establish an SLB connection according to the SLB auxiliary connection information; and/or, quickly establish an SLB connection through the SLE connection Part of the basic SLB connection information is transmitted to avoid receiving the part of the basic SLB connection information blindly during the establishment of the SLB connection, so as to quickly establish the SLB connection.
  • the SLB connection method provided in this embodiment takes less time and has better user experience.
  • the first device queries the SLB capability of the second device.
  • the first device performs role negotiation with the second device.
  • the first device sends the first information to the second device, that is, the FTS root index, the STS root index, broadcast information, and communication domain system information.
  • the second device receives the second information sent by the first device, that is, FTS and STS.
  • the first device and the second device perform non-contention random access.
  • the interaction between the first device and the second device takes only about 22 ms.
  • the SLB connection establishment process is reduced by about 120ms. The main reason is that the time consumption of the synchronous connection process is significantly reduced.
  • the interaction process between the first device and the second device takes a short time, specifically including the following factors (1)-(5):
  • the detection time of FTS and STS types is shortened. This is because the second device knows the FTS root index and STS root index when receiving FTS and STS, the second device can directly use the corresponding root index to determine the corresponding local sequence, and then use the local sequence to match the received FTS and STS Perform related processing to determine the types of FTS and STS.
  • the random access process time is shortened. This is because the first device has sent the physical layer identifier and non-contention access resource parameters to the second device based on the SLE connection in the early stage. Therefore, during the process of synchronously connecting to the first device, the second device may use a non-contention random access manner to connect to the second device.
  • the first device and the first device can exchange the authentication password in the two-way authentication certificate of the SLB through the SLE link, thereby reducing the SLB authentication process.
  • the SLB authentication or authentication process may not be performed any more.
  • the first device and the second device can transmit SLB auxiliary connection information (such as FTS root index, STS root index, physical Layer identification and non-competition access resource parameters, etc.) and some basic SLB connection information (such as communication domain system information, broadcast information, etc.), which significantly reduces the interaction time between the first device and the second device, thereby improving the reliability of the SLB connection. Build efficiency while improving the user experience.
  • SLB auxiliary connection information such as FTS root index, STS root index, physical Layer identification and non-competition access resource parameters, etc.
  • some basic SLB connection information such as communication domain system information, broadcast information, etc.
  • the first device when the first device and the second device have not established an SLE connection, when the first device has a large bandwidth service requirement, the first device may first establish an SLE connection with the second device, and then based on S1301 The method shown in ⁇ S1306 quickly establishes the SLB connection. This embodiment will not be described in detail here.
  • the SLB module of the second device based on the fact that the SLB module of the first device has been awakened and is in the G role, the SLB module of the second device has been awakened and is in the T role (that is, the first device is a G node device, and the second device is a T node device ), when the first device and the second device have not established an SLE connection, the first device can be discovered by the second device through SLE broadcast. When the second device has a large bandwidth service requirement, it can connect to the first device synchronously and establish an SLB connection with the first device. See Figure 17 for details.
  • Fig. 17 is a schematic flowchart of establishing an SLB connection between a first device and a second device according to another embodiment of the present application.
  • the method involves a process in which the first device and the second device assist in establishing the SLB connection based on the SLE broadcast when the SLE connection is not established.
  • the method includes the following steps S1701-S1704.
  • the first device sends an SLE broadcast, where the SLE broadcast carries first information of the first device.
  • the SLB module of the first device is in the G role and is in the awake state
  • the SLB module of the second device is in the T role and is in the awake state, that is, the first device is a G node device
  • the second device is a T node device .
  • the SLE module of the first device can periodically send an SLE broadcast to the outside according to the configuration of the upper layer (for example, after startup, or according to a user instruction), and carry the first information etc.
  • the first information includes SLB auxiliary connection information, and/or at least one of the first part of the SLB basic connection information (that is, broadcast information and communication domain system information).
  • the SLB auxiliary connection information includes at least one of the following contents (1)-(3): (1) broadcast frequency and bandwidth of G node equipment; (2) FTS root index; (3) STS root index.
  • contents (1)-(3) (1) broadcast frequency and bandwidth of G node equipment; (2) FTS root index; (3) STS root index.
  • the SLB auxiliary connection information does not include the device identification and authentication of the first device certificate.
  • the basic SLB connection information includes: FTS, STS, broadcast information and basic communication domain system information, wherein the broadcast information and basic communication domain system information are the first part of the SLB basic connection information.
  • the communication domain system information may include the following contents a to g.
  • CarrierChannelConf:: SEQUENCE(SIZE(1...32))OF ChannelNumber
  • Random access target receiving power d. Random access target receiving power:
  • the first information includes but is not limited to the following forms:
  • the first information includes: the broadcast frequency and bandwidth of the first device.
  • the first information includes: FTS root index.
  • the first information includes: FTS root index, STS root index.
  • the first information includes: communication domain system information.
  • the first information includes: broadcast information and communication domain system information.
  • the first information includes: FTS root index, STS root index, broadcast information, and communication domain system information.
  • the first information includes: the broadcast frequency and bandwidth of the first device, the FTS root index and the STS root index, and broadcast information and communication domain system information.
  • the first device when the first device sends broadcast information or communication domain system information to the second device through SLE broadcast, it may also only send part of the broadcast information or communication domain system information.
  • the specific process of the first device broadcasting the first information includes the following contents 1-1 to 1-7:
  • the application layer of the first device determines to use the SLE broadcast to assist in establishing the SLB connection.
  • the application layer of the first device determines to use the SLE broadcast to assist in establishing the SLB connection according to the default configuration.
  • the second device determines to use the SLE broadcast to assist in establishing the SLB connection after the SLE function is enabled, or after a specific application (such as a video playback application, an instant messaging application, etc.) is started.
  • the application layer determines to use the SLE broadcast to assist in establishing the SLB connection.
  • the application layer of the first device sends an auxiliary connection instruction to the basic application layer of the first device.
  • the auxiliary connection instruction is used to instruct to use the SLE broadcast to assist the first device to establish an SLB connection with other devices.
  • the basic application layer of the first device sends an auxiliary connection instruction to the basic service layer of the first device.
  • the basic service layer of the first device sends a first information query message to the SLB module of the first device, where the first information query message is used to query first information of the first device.
  • the SLB module of the first device replies the first information to the basic service layer of the first device.
  • the basic service layer of the first device sends a broadcast instruction to the SLE module of the first device, the broadcast instruction carries the first information, and is used to control the SLE module to send an SLE broadcast carrying the first information.
  • the SLE module of the first device broadcasts the first information.
  • the SLE module of the first device simultaneously broadcasts the first information on three channels.
  • the payload (Payload) of the SLE broadcast includes a header (Header) and a data part (Data).
  • the data part includes N data structures (Data stru).
  • the data type indicates that the data is the first information, and the data content is the specific first information.
  • connection information (such as broadcast information and communication domain system information), or some auxiliary connection information (such as FTS root index, STS root index, etc.) to speed up the establishment of the SLB connection is broadcast to surrounding devices with SLE functions.
  • the second device scans the SLE broadcast to acquire the first information carried in the SLE broadcast.
  • the second device When the second device (T-node device) has no large-bandwidth service requirements, in order to save power consumption, the second device can control its SLB module to sleep, and only keep the SLE module to periodically scan and receive SLE broadcasts.
  • the T-node device wakes up its SLB module, and uses the first information in the previously received SLE broadcast to quickly establish an SLB connection with .
  • the T-node device needs to process large-bandwidth services, it first scans and receives the SLE broadcast to obtain the first information, and then performs the SLB connection.
  • the TV can send an SLE broadcast after it is started, and the SLE broadcast carries the first information .
  • the mobile phone can control its SLB module to sleep, and only keep the SLE periodic scanning to receive SLE broadcasts.
  • the mobile phone After the mobile phone detects the user's operation on the screen projection control, the mobile phone can use the first information in the received SLE broadcast to perform SLB connection.
  • the second device may determine that the first device is capable of SLB communication, that is, the second device has discovered the first device capable of SLB communication.
  • the second device may receive the first information sent by multiple G-node devices, that is, the second device may discover multiple electronic devices with the SLB communication function.
  • the process of scanning and receiving the SLE broadcast by the second device specifically includes the following contents 2-1 to 2-4.
  • the application layer of the second device sends an SLE device discovery request to the basic service layer.
  • the mobile phone can trigger the application to send a SLE device discovery request to the basic service layer based on the default periodic scanning configuration or other application requirements for discovering SLE devices.
  • the basic application layer of the second device sends an SLE device discovery request to the basic service layer of the second device.
  • the basic service layer of the second device sends a scanning instruction to the SLE module of the second device.
  • the SLE module of the second device sends the scanned SLE broadcast including the first information to the basic service layer of the second device.
  • the second device receives second information sent by the first device.
  • the second device when the second device uses the video playback application to play high-definition video, if the second device detects that the user operates the screen projection control on the video playback interface, it means that the second device has screen projection. high-bandwidth business needs. Therefore, the second device displays a list of available G-node devices according to the first information of each G-node device received earlier. In response to the user's operation of selecting the first device (such as the TV in the living room) in the G-node device list, the second device starts to receive the second information sent by the first device.
  • the first device such as the TV in the living room
  • the first device is a commonly used screen projection device for the second device
  • the second device detects the user's operation on the screen projection control on the video playback interface, it directly uses the first device as the default screen projection device, and receives The second information sent by the first device.
  • the second information includes the part of the basic SLB connection information that has not been sent to the second device through the SLE broadcast in the previous period.
  • the second information includes FTS, STS, and communication domain system information.
  • the second information includes FTS, STS, and broadcast information.
  • the second information includes FTS and STS.
  • the second information includes FTS, STS, broadcast information, and communication domain system information.
  • S1703 specifically includes the following content 3-1 to 3-4.
  • the application program of the second device sends a service requirement to the basic application layer of the second device.
  • the mobile phone can send service requirements to the basic application layer after detecting that the user chooses to connect to the TV in the search results of the screen-casting device.
  • the basic application layer of the second device determines to establish an SLB connection with the first device, and sends an SLB connection instruction to the basic service layer of the second device.
  • the basic service layer of the second device sends the first information and the indication information indicating that the second device connects to the first device to the SLB module of the second device.
  • the second device receives the second information sent by the first device.
  • the first information includes the broadcast frequency and bandwidth of the first device, that is, the second device already knows the broadcast frequency and bandwidth of the first device sending the second information when receiving the second information, then the second The device can receive the second information at the broadcast frequency and bandwidth, thereby improving the receiving efficiency of the second information.
  • the first device When sending the second information, the first device first sends the FTS and the STS.
  • the SLB module of the second device is receiving the FTS and/or STS, and implements downlink synchronization with the first device according to the FTS and/or STS.
  • the second device can receive the broadcast information, and/or receive the communication domain system information according to the broadcast information, and/or subsequently establish a connection with the second device according to the communication domain system information.
  • the first information does not include all the content of the broadcast information
  • the first device after the first device synchronizes with the second device, it also needs to send to the second device the content of the broadcast information that is not sent to the second device. part.
  • the second device needs to receive the part of the broadcast information through the SLB access technology, so as to ensure that the second device receives the complete broadcast information before making a synchronous connection with the first device.
  • the first device if the first information does not include all content of the communication domain system information, the first device also needs to send the part of the communication domain system information not sent to the second device to the second device.
  • the second device needs to receive the part of the communication domain system information through the SLB access technology, so as to ensure that the second device receives the complete communication domain system information before synchronously connecting with the first device.
  • the second device and the first device establish an SLB connection according to the first information and the second information. Specifically, it includes the following contents 4-1 to 4-6.
  • the SLB module of the second device is synchronously connected to the SLB module of the first device according to the broadcast information and communication domain system information in the first information and the second information.
  • the SLB auxiliary connection information does not include the physical layer identifier of the first device, that is, the first device does not assign the physical layer identifier of the first device to the second device, and the first device
  • the communication domain system information sent to the second device includes the contention access resource information of the first device, therefore, the second device cannot select the non-competition random access resource of the first device during the process of connecting to the first device , only contention random access can be performed.
  • the process of contention for random access please refer to the related description in S404, which will not be repeated here in this embodiment.
  • the SLB module of the second device performs pairing and authentication with the SLB module of the first device.
  • the SLB module of the first device sends the SLB connection result to the basic service layer of the first device.
  • the basic service layer of the first device sends the SLB connection result to the basic application layer of the first device.
  • the SLB module of the second device sends the SLB connection result to the basic service layer of the second device.
  • the basic service layer of the second device sends the SLB connection result to the basic application layer of the second device.
  • the SLE broadcast can be assisted to quickly establish the SLB connection between the first device and the second device, which has a better user experience.
  • the first device broadcasts the first information to the second device in advance, that is, the FTS root index, the STS root index, broadcast information, and communication domain system information.
  • the second device receives the second information sent by the first device, that is, FTS and STS.
  • the SLB connection process provided by this embodiment takes only about 30 ms in a relatively short time. Compared with the SLB connection establishment process without SLE assistance, with the assistance of the SLE connection, the SLB connection establishment process is reduced by about 110ms. The main reason is that the time consumption of the synchronous connection process is significantly reduced.
  • the interaction process between the first device and the second device takes a relatively short time, specifically including the following factors (1) to (3):
  • the detection time of FTS and STS types is shortened. This is because the second device knows the FTS root index and the STS root index when receiving FTS and STS, the second device can directly use the corresponding root index to generate the corresponding local sequence, and then use the local sequence pair to receive the FTS and STS
  • the STS performs related processing to determine the types of FTS and STS.
  • the first device when the first device and the second device have not established an SLE connection, the first device carries the SLB auxiliary connection information and/or part of the SLB basic connection information in the SLE broadcast, and the second device is in the SLE During the scanning process, the SLB auxiliary connection information in the broadcast can be obtained in advance for use.
  • the second device subsequently needs to establish an SLB connection due to business requirements, it can use the acquired SLB auxiliary connection information and/or part of the SLB basic connection information to quickly establish an SLB connection with the first device.
  • the method significantly reduces the time-consuming process of synchronizing the connection between the first device and the second device, thereby improving the efficiency of establishing the SLB connection and improving user experience.
  • Fig. 22 is a flow chart of pairing and authentication between the first device and the second device provided by the embodiment of the present application. The process specifically includes the following steps S2201 to S2203.
  • the first device and the second device negotiate a pairing manner.
  • the pairing methods of the first device (G node device) and the second device (T node device) include: numerical comparison, communication code input, direct connection, PIN code input, and out of band (OOB) (such as based on SLE connection) transmission) etc.
  • the first device and the second device negotiate and determine a pairing mode according to input/output (input/output, IO) capabilities.
  • the IO capability includes whether there is keyboard input, whether there is screen output, and so on.
  • the specific negotiation process of the pairing mode includes the following contents:
  • the SLB module of the second device sends a security request to the SLB module of the first device, where the security request is used for the second device to actively initiate a pairing process. It should be noted that, when the first device actively initiates the pairing process, the second device may not send a security request to the first device.
  • the SLB module of the first device sends a pairing request to the SLB module of the second device, including information such as the IO capability of the SLB module of the first device, so as to initiate a pairing process to the first device.
  • the SLB module of the second device sends a pairing response message to the SLB module of the first device, including information such as the IO capability of the SLB module of the second device.
  • the SLB module of the first device sends a pairing confirmation message to the SLB module of the second device for exchanging public keys and random parameters with the second device.
  • the SLB module of the second device sends initial pairing information to the SLB module of the first device, where the initial pairing information includes the public key and random parameters of the second device.
  • the first device and the second device authenticate each other.
  • the first device and the second device are paired according to the pairing method negotiated in S2201 (such as PIN code input), that is, the interaction of identity verification information is completed, and a verification Diffie-Hellman (diffie-hellman) is generated according to the identity verification information.
  • DH Diffie-Hellman secret key (that is, DH key), and verify the DH key to complete mutual authentication.
  • the first device and the second device may transmit identity verification information based on the SLE connection.
  • the first device and the second device execute an encryption control process.
  • the first device and the second device use the DH key to encrypt the transmitted data or the SLB link.
  • the DH key is verified between the first device and the second device, the DH key is directly used to encrypt the transmitted data or the SLB link.
  • the secret key can be refreshed.
  • the process of refreshing the secret key includes two processes of suspending encryption and starting encryption, that is, you need to suspend encryption first, then update the secret key, and then use the new secret key to start encryption.
  • the embodiments of the present application further provide the following technical solutions.
  • An embodiment of the present application provides an apparatus for establishing an SLB connection, the apparatus is applied to a first device, and the apparatus includes:
  • the first SLE module is configured to send the first information to the second device through the SLE access technology.
  • the first SLB module is configured to send the second information to the second device through the SLB access technology; and establish an SLB connection with the second device according to the request of the second device, and the request is obtained by the second device according to the first information and the second information sent.
  • the first device is a management node device
  • the second device is a terminal node device. Both the first device and the second device support communication through the SLB access technology and the SLE access technology.
  • the first SLE module is configured to send the first information to the second device through the SLE access technology, including: the first SLE module is configured to establish an SLE connection between the first device and the second device, The first device sends the first information to the second device through the SLE connection; or, when the first device and the second device have not established the SLE connection, the first device sends the first information to the second device through the SLE broadcast.
  • the first information includes at least one of the following: the broadcast frequency and bandwidth of the first device; the root index of the synchronization signal of the first device; the physical layer identifier of the first device; the authentication credential of the first device; All or part of the content of the broadcast information of the first device; all or part of the content of the communication domain system information of the first device.
  • the first information does not include the physical layer identifier and the authentication credential.
  • the second information includes: a synchronization signal; and, a part of the broadcast information not included in the first information; and a part of the communication domain system information not included in the first information.
  • Another embodiment of the present application further provides an apparatus for establishing an SLB connection, and the apparatus is applied to a second device.
  • the unit includes:
  • the second SLE module is configured to receive the first information sent by the first device through the SLE access technology.
  • the second SLB module is configured to receive the second information sent by the first device through the SLB access technology. And, according to the first information and the second information, establish an SLB connection with the first device through the SLB access technology.
  • the first device is a management node device
  • the second device is a terminal node device. Both the first device and the second device support communication through the SLB access technology and the SLE access technology.
  • the second SLE module is configured to receive the first information sent by the first device through the SLE access technology, including: when the first device and the second device have established an SLE connection, the second device connects through the SLE Receive first information sent by the first device. Or, in the case that the first device and the second device have not established an SLE connection, the second device receives the first information sent by the first device through SLE broadcast.
  • the first information includes at least one of the following: the broadcast frequency and bandwidth of the first device; the root index of the synchronization signal of the first device; the physical layer identifier of the first device; the authentication credential of the first device; All or part of the content of the broadcast information of the first device; all or part of the content of the communication domain system information of the first device.
  • the first information does not include the physical layer identifier and the authentication credential.
  • the second information includes: a synchronization signal; and, a part of the broadcast information not included in the first information; and a part of the communication domain system information not included in the first information.
  • the second SLB module is configured to establish an SLB connection with the first device through the SLB access technology according to the first information and the second information, including:
  • the second SLB module is configured to receive a synchronization signal according to the broadcast frequency and bandwidth; synchronize with the first device according to the synchronization signal; receive a part of the second information not included in the first information according to the broadcast frequency and bandwidth, and , the part of the communication domain system information that is not included in the first information; according to the broadcast information and the communication domain system information, establish an SLB connection with the first device through the SLB access technology.
  • the second SLB module is configured to establish an SLB connection with the first device through the SLB access technology according to the first information and the second information, including:
  • the second SLB module is configured to receive the synchronization signal according to the root index of the synchronization signal; synchronize with the first device according to the synchronization signal; receive the part of the broadcast information that is not included in the first information, and the communication domain system information does not include The part included in the first information: establish an SLB connection with the first device through the SLB access technology according to the broadcast information and the communication domain system information.
  • the second SLB module configured to receive the synchronization signal according to the root index of the synchronization signal, includes: a second SLB A module, configured to receive the FTS according to the FTS root index, and receive the STS according to the STS root index.
  • the second SLB module is configured to establish an SLB connection with the first device through the SLB access technology according to the first information and the second information, including: The second device receives the synchronization signal; the second device synchronizes with the first device according to the synchronization signal; the second device receives the part of the broadcast information that is not included in the first information, and the communication domain system information is not included in the first information part; the second device establishes an SLB connection with the first device in a non-competitive random access manner according to the physical layer identifier, broadcast information, and communication domain system information.
  • the second SLB module is configured to establish an SLB connection with the first device through the SLB access technology according to the first information and the second information, including:
  • the second SLB module is configured to receive a synchronization signal; synchronize with the first device according to the synchronization signal; receive the part of the broadcast information that is not included in the first information, and the part of the communication domain system information that is not included in the first information Part: establishing an SLB connection with the first device through the SLB access technology according to the authentication credential, broadcast information, and communication domain system information.
  • This embodiment provides an electronic device, which includes the starlight wireless short-distance communication protocol framework shown in the above-mentioned embodiments, and is configured to implement the first device or the second device shown in the above-mentioned embodiments.
  • the method to execute to establish the SLB connection includes the starlight wireless short-distance communication protocol framework shown in the above-mentioned embodiments, and is configured to implement the first device or the second device shown in the above-mentioned embodiments.
  • This embodiment provides a chip, as shown in FIG. 23 , the chip includes a processor and a memory, and a computer program is stored in the memory.
  • the computer program is executed by the processor, the first device or the first device or the first device in the above embodiments can be implemented.
  • This embodiment provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the SLE-based A technology-assisted method of establishing an SLB connection.
  • This embodiment provides a computer program product.
  • the program product includes a computer program.
  • the computer program When the computer program is run by an electronic device, the electronic device implements the SLE-based technology executed by the first device or the second device in the above embodiments.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • each framework or module is only a logical function division, and there may be other division methods in actual implementation, for example, multiple frameworks or modules can be combined or integrated into another system , or some features can be ignored, or not implemented.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.

Abstract

本申请实施例提供一种建立SLB连接的方法、电子设备和通信系统,涉及通信技术领域。该方法涉及第一设备和第二设备,其中,第一设备为管理节点设备,第二设备为终端节点设备,第一设备和第二设备均支持通过星闪基础SLB接入技术和星闪低功耗SLE接入技术通信。该方法包括:第一设备通过SLE接入技术向第二设备发送第一信息,通过SLB接入技术向第二设备发送第二信息。第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接。通过本申请实施例提供的技术方案,第一设备和第二设备能够快速建立SLB连接,具有较好的用户体验。

Description

一种建立SLB连接的方法、电子设备和通信系统
本申请要求于2021年10月22日提交国家知识产权局、申请号为202111234162.8、申请名称为“一种建立SLB连接的方法、电子设备和通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种建立SLB连接的方法、电子设备和通信系统。
背景技术
目前,星闪联盟(sparklink alliance)提供了一种无线短距通信协议架构,该协议架构能够提供的无线短距接入技术包括星闪基础(sparklink-basic,SLB)接入技术和星闪低功耗(sparklink-low energy,SLE)接入技术。其中,SLB接入技术支持大带宽的数据传输能力,当电子设备有大带宽业务需求(例如高清视频投屏需求)时,电子设备通常通过SLB接入技术与对端设备建立SLB连接以处理对应的业务。但是,SLB连接的建立过程较为复杂,导致耗时较长,用户体验不佳。
发明内容
本申请提供一种建立SLB连接的方法、电子设备和通信系统,用于解决现有技术中SLB连接的建立过程较为复杂,导致耗时较长,用户体验不佳的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种建立SLB连接的方法,应用于第一设备和第二设备,第一设备为管理节点设备,第二设备为终端节点设备,第一设备和第二设备均支持通过SLB接入技术和SLE接入技术通信。该方法包括:第一设备通过SLE接入技术向第二设备发送第一信息;第一设备通过SLB接入技术向第二设备发送第二信息;第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接。
在本实施例中,第一信息是用于加快第一设备和第二设备建立SLB连接的相关参数或信息,第一设备将第一信息通过SLE接入技术发送给第二设备之后,第二设备可以快速根据第一信息和第二信息通过SLB接入技术与第一设备建立SLB连接,能够简化SLB连接的建立过程,缩短建立SLB连接所需的时长。
在一些实施例中,第一设备通过SLE接入技术向第二设备发送第一信息,包括:在第一设备和第二设备已建立SLE连接的情况下,第一设备通过SLE连接向第二设备发送第一信息。或者,在第一设备和第二设备未建立SLE连接的情况下,第一设备通过SLE广播向第二设备发送第一信息。
通过本实施例提供的方法,第二设备可以快速接收第一设备发送的第一信息,缩短信息接收过程占用的时长,提高SLB连接效率。
在一些实施例中,第一信息包括以下内容中的至少一个:第一设备的广播频点和带宽;第一设备的同步信号的根指数;第一设备的物理层标识;第一设备的认证凭证;第一设备 的广播信息的全部或部分内容;第一设备的通信域系统信息的全部或部分内容。其中,在第一信息经由SLE广播发送的情况下,第一信息中不包括物理层标识和认证凭证。
在一些实施例中,第二信息包括:同步信号;以及,广播信息中未包括在第一信息中的部分;以及,通信域系统信息中未包括在第一信息中的部分。
需要说明的是,当第一信息中包括广播信息的全部内容和/或通信域系统信息的全部内容时,第二信息中则无需包括广播信息和通信域系统信息。或者说,第二设备在建立SLB连接的过程中无需再通过SLB接入技术接收广播信息和/或通信域系统信息,可以减少第二设备接收该信息的用时,提高SLB连接效率。
在一些实施例中,当第一信息包括广播频点和带宽时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备根据广播频点和带宽接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备根据广播频点和带宽接收第二信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
通过本实施例提供的方法,第二设备可以根据特定的广播频点和带宽接收信息,避免了第二设备搜索广播频点,以及确定合适的接收带宽的过程,能够提高SLB连接效率。
在一些实施例中,当第一信息包括同步信号的根指数时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备根据同步信号的根指数,接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
在一些实施例中,同步信号包括第一训练信号FTS和第二训练信号STS,同步信号的根指数包括FTS根指数和STS根指数,第二设备根据同步信号的根指数,接收同步信号,包括:第二设备根据FTS根指数接收FTS,根据STS根指数接收STS。
通过本申请实施例提供的方法,第二设备在接收同步信号时,避免了使用同步信号根指数对接收信号进行盲检,从而确定同步信号的冗长过程,能够提高同步信号的接收效率,进而提高SLB连接效率。
在一些实施例中,当第一信息包括第一设备的物理层标识时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据物理层标识、广播信息和通信域系统信息,与第一设备通过非竞争随机接入的方式建立SLB连接。
通过本申请实施例提供的方法,第二设备能够根据物理层标识确定第一设备的非竞争接入资源信息,从而以非竞争随机接入的方式与第一设备进行同步连接。该方法能够减少同步连接过程的耗时,进而提高SLB连接效率。
在一些实施例中,当第一信息包括认证凭证时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分, 以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据认证凭证、广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
通过本申请实施例提供的方法,第二设备和第一设备在建立同步连接之后,可以根据认证凭证简化或者避免配对与鉴权的流程,从而提高SLB连接效率。
第二方面,本申请实施例提供一种建立SLB连接的方法,应用于第一设备,第一设备支持通过SLB接入技术和SLE接入技术通信。该方法包括:第一设备通过SLE接入技术向第二设备发送第一信息;第一设备通过SLB接入技术向第二设备发送第二信息;第一设备根据第二设备的请求与第二设备建立SLB连接,该请求是第二设备根据第一信息和第二信息发送的。其中,第一设备为管理节点设备,第二设备为终端节点设备。
在一些实施例中,第一设备通过SLE接入技术向第二设备发送第一信息,包括:在第一设备和第二设备已建立SLE连接的情况下,第一设备通过SLE连接向第二设备发送第一信息。
在另一些实施例中,第一设备通过SLE接入技术向第二设备发送第一信息,包括:在第一设备和第二设备未建立SLE连接的情况下,第一设备通过SLE广播向第二设备发送第一信息。
在一些实施例中,第一信息包括以下内容中的至少一个:第一设备的广播频点和带宽;第一设备的同步信号的根指数;第一设备的物理层标识;第一设备的认证凭证;第一设备的广播信息的全部或部分内容;第一设备的通信域系统信息的全部或部分内容。其中,在第一信息经由SLE广播发送的情况下,第一信息中不包括物理层标识和认证凭证。
在一些实施例中,第二信息包括:同步信号;以及,广播信息中未包括在第一信息中的部分;以及,通信域系统信息中未包括在第一信息中的部分。
第三方面,本申请实施例提供一种建立SLB连接的方法,应用于第二设备,第二设备支持通过SLB接入技术和SLE接入技术通信。
该方法包括:第二设备通过SLE接入技术接收第一设备发送的第一信息;第二设备通过SLB接入技术接收第一设备发送的第二信息;第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接。其中,第一设备为管理节点设备,第二设备为终端节点设备。
在一些实施例中,第二设备通过SLE接入技术接收第一设备发送的第一信息,包括:在第一设备和第二设备已建立SLE连接的情况下,第二设备通过SLE连接接收第一设备发送的第一信息。
在一些实施例中,第二设备通过SLE接入技术接收第一设备发送的第一信息,包括:在第一设备和第二设备未建立SLE连接的情况下,第二设备通过SLE广播接收第一设备发送的第一信息。
在一些实施例中,第一信息包括以下内容中的至少一个:第一设备的广播频点和带宽;第一设备的同步信号的根指数;第一设备的物理层标识;第一设备的认证凭证;第一设备的广播信息的全部或者部分内容;第一设备的通信域系统信息的全部或者部分内容。其中,在第一信息通过SLE广播接收的情况下,第一信息中不包括物理层标识和认证凭证。
在一些实施例中,第二信息包括:同步信号;以及,广播信息中未包括在第一信息中的部分;以及,通信域系统信息中未包括在第一信息中的部分。
在一些实施例中,当第一信息包括广播频点和带宽时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备根据广播频点和带宽接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备根据广播频点和带宽接收第二信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
在一些实施例中,当第一信息包括同步信号的根指数时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备根据同步信号的根指数,接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
在一些实施例中,同步信号包括第一训练信号FTS和第二训练信号STS,同步信号的根指数包括FTS根指数和STS根指数,第二设备根据同步信号的根指数,接收同步信号,包括:第二设备根据FTS根指数接收FTS,根据STS根指数接收STS。
在一些实施例中,当第一信息包括第一设备的物理层标识时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据物理层标识、广播信息和通信域系统信息,与第一设备通过非竞争随机接入的方式建立SLB连接。
在一些实施例中,当第一信息包括认证凭证时,第二设备根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据认证凭证、广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
第四方面,本申请实施例提供一种通信系统,包括第一设备和第二设备,第一设备为管理节点设备,第二设备为终端节点设备,第一设备和第二设备均支持通过SLB接入技术和SLE接入技术通信。
第一设备被配置为,通过SLE接入技术向第二设备发送第一信息;以及,通过SLB接入技术向第二设备发送第二信息。
第二设备被配置为,根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接。
第五方面,本申请实施例提供一种电子设备,该电子设备支持通过SLB接入技术和SLE接入技术通信,且该电子设备为管理节点设备,该电子设备被配置为执行如上述第二方面示出的建立SLB连接的方法。
第六方面,本申请实施例提供一种电子设备,该电子设备支持通过SLB接入技术和SLE接入技术通信,且该电子设备为终端节点设备,该电子设备被配置为执行如上述第三方面示出的建立SLB连接的方法。
第七方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器执行存储器中 存储的计算机程序,以实现如上述第二方面或者第三方面示出的建立SLB连接的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第二方面或者第三方面示出的建立SLB连接的方法。
第九方面,本申请实施例提供一种计算机程序产品,该程序产品包括计算机程序,当该计算机程序被电子设备运行时,使得电子设备实现如上述第二方面或者第三方面示出的建立SLB连接的方法。
可以理解的是,上述第二方面至第九方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1是本申请实施例提供的无线短距通信协议架构的示意图一;
图2是本申请实施例涉及的无线短距通信协议架构的示意图二;
图3是本申请各个实施例提供的建立SLB连接的方法所适用的无线短距通信系统的示意性架构图;
图4是本申请的一个实施例提供的第一设备和第二设备之间建立SLB连接的流程图;
图5是本申请的一个实施例提供的设备控制示意图一;
图6是本申请的一个实施例提供的设备控制示意图二;
图7是本申请的一个实施例提供的设备控制示意图三;
图8是本申请实施例提供的超帧的结构示意图;
图9是本申请实施例提供的携带时频资源的无线帧的位置示意图;
图10是本申请实施例提供的电子设备盲检广播信息的情况示意图;
图11是本申请的一个实施例提供的第一设备与第二设备在建立SLB连接过程中的交互内容的示意图;
图12是本申请实施例提供的基于SLE连接建立SLB连接的应用场景示意图;
图13是本申请另一个实施例提供的第一设备和第二设备之间建立SLB连接的流程图;
图14是本申请另一个实施例提供的设备控制示意图一;
图15是本申请另一个实施例提供的设备控制示意图二;
图16是本申请另一个实施例提供的第一设备与第二设备在建立SLB连接过程中的交互内容的示意图;
图17是本申请又一个实施例提供的第一设备和第二设备之间建立SLB连接的流程图;
图18是本申请实施例提供的SLE广播的结构示意图;
图19是本申请实施例提供的基于SLE广播建立SLB连接的应用场景示意图;
图20是本申请又一个实施例提供的设备控制示意图;
图21是本申请又一个实施例提供的第一设备与第二设备在建立SLB连接过程中的交互内容的示意图;
图22是本申请实施例提供的第一设备和第二设备进行配对与鉴权的流程图;
图23是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面结合附图对本申请实施例提供的技术方案进行说明。
应理解,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
电子设备中通常存储有各种应用程序,例如设置应用、多屏协同应用、投屏应用、音频应用、视频应用、图库应用、相机应用、导航应用、地图应用、email客户端、游戏应用等。各个应用程序在运行过程中,通过本实施例提供无线短距通信协议架构即可与对端设备进行无线短距通信。
图1和图2是本申请实施例涉及的无线短距通信协议架构的示意图。参见图1所示,该架构包括基础应用层、基础服务层和星闪接入层(也可称作接入层)。基础应用层和基础服务层可以统称为星闪上层。星闪接入层包括SLB模块和SLE模块。星闪上层可以统一调度SLB模块和SLE模块。
(一)基础应用层
基础应用层包括各种通用框架。为了实现不同平台下不同设备的通信,基础应用层为各种可能的、有通用意义的应用场景都制定了框架。例如,参见图2所示,这些框架可以包括基础通信框架、通用感知框架、通用视频框架、通用音频框架、通用数据框架和车载控制框架等通用框架。基础应用层在接收到应用程序下发的业务需求之后,选择对应的通用框架处理对应的业务。
基础通信框架用于,设置设备发现与被发现的模式(例如广播模式、轮询模式等),设置过滤策略(如在音频业务场景下,仅对支持音频设备的电子设备进行设备发现),设置可发现等级等。此外,基础通信框架还用于根据应用程序的业务需求选择SLB和/或SLE模块进行通信。
应理解,不同的应用程序通常有不同的业务需求,该业务需求包括应用标识(application identification,AID)和服务质量(quality of service,QoS)。其中,QoS包括码率、时延、采样率和位宽等。基础应用层在检测到应用程序的业务需求之后,能够根据该业务需求选择对应的功能模块处理该业务,控制基础服务层建立业务通道等。
通用感知框架用于,检测用户操作、设备电量信息、信号强度等。用户操作可以包括屏幕触摸操作、隔空控制手势、语音控制指令等。信号强度可以包括SLB信号强度以及SLE信号强度等。
通用视频框架用于,处理视频业务相关的数据,例如对视频数据进行编解码等。
通用音频框架用于,处理音频业务相关的数据,例如对音频数据进行编解码等。
通用数据框架用于,对数据进行加密解密等。
车载控制框架用于,处理车载控制业务相关的数据。
(二)基础服务层
基础服务层包括控制面和数据面。其中,控制面包括设备发现模块、服务管理模块、通道管理模块、QoS管理模块、安全管理模块、多域协调模块、测量管理模块、5G融合模块等功能模块。数据面包括信道控制数据、广播数据、服务管理数据、实时数据和可靠数据等,还包括传输控制适配协议、传输控制协议/网际互联协议(transmission control protocol/internet protocol,TCP/IP)、透传协议等。需要说明的是,数据面的一些数据(如图2中虚线框内的信道控制数据等)通常不会包括在初始的协议架构中,而是在电子设备使用该协议架构的过程中逐渐产生并存储的。
设备发现模块,主要用于发现周边设备以及向外公告设备本身的信息,通过调用接入层能力进行设备发现与被发现、确定设备信息等。在本实施例中,设备信息包括设备的域名、媒体访问控制(media access control,MAC)地址、角色、设备型号、设备能力(例如支持的无线连接类型、支持的通信协议)等信息。
在进行设备发现的过程中,设备发现模块具体可以用于广播电子设备自身的设备信息,扫描满足业务需求的电子设备。应理解,对于无线短距通信业务,不同的业务需求通常对应不同类型的目标电子设备。例如,在手机进行投屏时,手机的设备发现模块需要扫描具备投屏显示功能的大屏设备,例如电视、投影仪等,而不扫描其他手机或者无线耳机等不支持被投屏的电子设备。
此外,在本实施例中,设备发现模块还支持SLB/SLE互发现,即在使用SLB接入技术与对端设备通信的过程中,能够发现对端设备开启SLE通信功能,或者,在使用SLE接入技术与对端设备通信的过程中,能够发现对端设备开启SLB通信功能。
服务管理模块,用于为基础应用层的控制指令和小数据发送提供抽象化的数据结构模型,以及,提供读、写、通知、指示等操作数据结构的方法。
通道管理模块,用于管理基础服务层的传输通道,包括传输通道的建立、维护与释放,支持通过默认传输通道传输数据,或者动态分配传输通道以传输数据。
此外,通道管理模块,还用于管理跨层映射关系的建立与维护,其中包括管理基础应用层的Port与基础服务层的传输通道标识(transmission channel identification,TCID)之间的映射关系,以及基础服务层的TCID与接入层的逻辑链路标识(logical channel identifier,LCID)之间的映射关系。
QoS管理模块,用于管理业务的QoS请求静态表,以及与对端设备协商QoS。不同的业务通常有不同的QoS请求静态表,其中,QoS请求静态表中包括传输时延、码率、重传率、传输带宽要求、业务类型、位宽等参数。通过QoS管理,可以缓解电子设备与对端设备通信过程中的网络延迟与阻塞等问题,提高通信质量。
安全管理模块,用于管理基础服务层的安全连接,其中包括身份鉴权、空口通信安全保护、秘钥更新、隐私保护、应用层传输安全、口令要求、设备信息的安全存储、安全执行、安全防护和安全管理等。
多域协调模块,在电子设备处于多个通信域的场景下,用于控制实现通信域之间的信息交互,避免多域之间的相互干扰,保护域之间的负载平衡。在SLB接入技术中,电子设备包括管理节点设备(Grant,简称G节点设备)和终端节点设备(Terminal,简称T节点设备)。一个G节点设备以及其连接的所有T节点设备共同组成的通信系统称为一个通信 域。当电子设备同时处于多个通信域时,多域协调模块需要管理多个通信域对应的多个G节点设备之间的交互通道的建立,维护邻居G节点设备列表以及基本信息;协调多个域之间的资源、进行联合定位、移动性管理、实现负载均衡。
测量管理模块,用于根据接收信号的强度(received signal strenSLBh indication,RSSI)和预设的算法,测量本机与其他电子设备的距离、本机相对于其他电子设备的方位等。此外,测量管理模块还用于配置测量周期,向基础应用层上报测量事件和测量结果,以及调度测量资源、控制测量功率等。
5G融合模块,用于建立5G远端管理能力的通道,通过鉴权和认证机制,获得具有蜂窝5G远端控制功能的设备。也就是说,5G融合模块使各个节点具有能够让5G边缘核心网感知控制的能力。比如,在G节点设备具有连接核心网的能力,而T节点设备不具有连接核心网的能力的情况下,5G核心网可以通过G节点设备向T节点设备下发控制指令,使得T节点设备也可以被5G核心网控制。
(三)星闪接入层
星闪接入层包括SLB模块和SLE模块,其中,SLB模块也可以称作SLB接入层,SLE模块也可以称作SLE接入层。
SLB模块通过SLB接入技术通信。SLB接入技术具备大带宽通信能力,可承载大带宽业务,例如无线投屏业务、视频通话业务等,通信过程中数据吞吐量较高,对数据的传输速度较快。但是,SLB接入技术功耗相对较高,接入过程耗时较长。
在SLB接入技术中,电子设备包括G节点设备和T节点设备,并且规定了G节点设备可以发送广播,T节点设备可以扫描信息。并且,在G节点设备和T节点设备建立SLB连接的过程中,只允许T节点设备扫描发现G节点设备,并向G节点设备发送连接请求,以连接G节点设备。而G节点设备是不允许向T节点设备发送连接请求的。
在一个示例中,当大屏设备(如电视)是G节点设备,手机是T节点设备时,大屏设备在开启SLB通信功能后,将自动向外广播SLB基本连接信息。当手机有投屏的业务需求时,开始扫描周围的各个G节点设备,接收其广播的SLB基本连接信息,并根据SLB基本连接信息显示设备扫描结果(如设备型号、设备名称等)。响应于用户从扫描结果中选择大屏设备的操作,手机向大屏设备发送连接请求,从而与大屏设备建立SLB连接。而大屏设备是不允许向手机发送连接请求的。
SLE模块通过SLE接入技术通信。SLE接入技术通信具备低功耗通信能力,在SLE模块处于空闲态(即未与其它设备连接)时,SLE模块可在固定的三个广播信道上广播设备信息和数据,能够实现快速被发现与连接,有助于节约设备电量。但是,SLE接入技术所支持的带宽较小,数据传输速度较慢。因此,SLE接入技术通常用于处理小带宽需求的业务,例如基于无线耳机的音频播放业务、手机对智能家居设备的控制业务等。
无论是SLB模块,还是SLE模块,均包括数据链路层和物理层。数据链路层包括链路控制层和媒体接入层,链路控制层为基础服务层提供服务。
在发送端,链路控制层用于对上层业务数据(即基础服务层的数据)进行必要的编号(如添加序列号SN)、分段、加密、完整性保护等操作,并将生成的链路控制层协议数据单元(logical channel profile data unit,LC PDU)发送给媒体接入层。媒体接入层主要基于调度的资源量,对不同LC PDU进行复用封装,生成媒体接入层协议数据单元(media  access profile data unit,MAC PDU)。
在接收端,媒体接入层负责对数据进行解封装并递交到不同的逻辑通道。链路控制层可以对数据进行必要的解密、重组、排序等操作,并将业务数据按序递交给基础服务层。
物理层用于向数据链路层提供数据传输服务,具体包括以下功能:传输信息的正确性校验并指示给数据链路层、传输信息的前向纠错(forward error correction,FEC)编码/解码、混合自动重传请求(hybrid automatic repeat request,HARQ)软合并、传输信息到对应的物理资源的速率匹配、编码后的传输信息到对应的物理资源的映射、物理层控制信息和物理层数据信息的调制和接收、频率和时间的同步、无线特性测量并指示给数据链路层、多输入多输出天线处理、波束赋形、射频处理等。
基于上述无线短距通信协议架构,电子设备可以针对应用程序不同的业务需求,灵活地使用不同的接入技术(SLB接入技术和/或SLE接入技术)与对端设备通信。
图3是本申请各个实施例提供的建立SLB连接的方法所适用的无线短距通信系统的示意性架构图。参见图3所示,该系统中包括第一电子设备(简称第一设备)和第二电子设备(简称第二设备),第一设备和第二设备均配置有图1和图2所示的无线短距通信协议架构,并且能够基于该协议架构使用SLB接入技术和/或SLE接入技术相互通信。
在本实施例中,电子设备可以是各个领域的电子设备。例如,智慧家居领域的大屏设备、人工智能(artificial intelligence,AI)音箱、高保真(high fidelity,HiFi)音箱、温度传感器、湿度传感器等。以及,智能终端领域的手机、平板电脑、可穿戴设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等。以及,智能制造领域的机械臂、摄像头、操纵杆、监控器、物流车、智能货架等。本申请实施例对电子设备的具体类型不进行限制。
图4是本申请的一个实施例提供的第一设备和第二设备之间建立SLB连接的流程图。具体包括如下步骤S401~S404。
S401,第一设备成为G节点设备,广播SLB基本连接信息。
首先,需要说明的是,SLB接入技术可以给不同的电子设备设置不同的默认角色。其中,有的电子设备的默认角色是管理角色(简称G角色),在SLB连接过程中默认充当G节点设备;有的电子设备的默认角色是终端角色(简称T角色),在SLB连接过程中默认充当T节点设备。
在一种可能的实现方式中,该默认角色可以根据电子设备的输入输出情况确定。该输入输出情况包括该电子设备是否支持通过鼠标、键盘或者屏幕等装置输入信息,是否支持通过屏幕或者扬声器等装置输出信息等。例如,对于手机、平板电脑等便于用户输入信息的设备,其默认角色通常为T角色,在SLB连接过程中默认充当T节点设备。而对于大屏设备、智能音箱等不便于用户输入信息的设备,其默认角色通常为G角色,在SLB连接过程中默认充当G节点设备。
此外,电子设备还可以根据用户指令确定或者重新设置电子设备的角色。例如,在电子设备的控制中心或者设置界面,重新设置电子设备的默认角色。
基于上述内容,在本实施例中,第一设备(如大屏设备)可以在检测到第一触发事件之后,将SLB模块以管理角色(G角色)唤醒。示例性的,该第一触发事件可以是第一设 备启动,或者根据用户指令开启第一设备的SLB通信功能(可参见图5所示)。具体地,第一设备的应用程序在检测到第一触发事件之后,依次经由基础应用层、基础服务层向SLB模块发送第一SLB启动指令,该第一SLB启动指令用于指示SLB模块以G角色启动。第一设备的SLB模块以G角色启动之后,第一设备成为G节点设备。
第一设备成为G节点设备后,其SLB模块开始广播SLB基本连接信息,该SLB基本连接信息用于T节点设备发现并连接G节点设备。在本实施例中,SLB基本连接信息包括如下(1)~(4):
(1)第一训练信号(first training signal,FTS)
(2)第二训练信号(secondary training signal,STS)
FTS和STS均为SLB接入技术中用作时间同步的信号。其中,FTS为粗同步信号,STS为精同步信号。一个FTS和一个STS为一组,在每组信号中,时域上先出现的信号为FTS,时域上后出现的信号为STS。FTS是根指数为1或40、长度为39的ZC(Zadoff-Chu)序列。STS是根指数在1~20之间、长度为39的ZC序列。
(3)广播信息
广播信息共63比特(bit),在广播信道(broadcast channel,BCH)上传输。广播信息承载SLB物理层配置参数,具体如表1所示,第二设备(T节点设备)必须使用这些参数才能接收其他的系统信息,例如通信域系统信息。
表1广播信息结构
Figure PCTCN2022114541-appb-000001
(4)通信域系统信息
通信域系统信息是SLB协议中的信息元,第二设备需要获取到第一设备的通信域系统信息才能获取接入资源等信息,以便与第一设备建立SLB连接。在本实施例中,通信域系统信息的结构可以如下所示:
Figure PCTCN2022114541-appb-000002
S402,第二设备成为T节点设备。
第二设备(如手机)可以在检测到第二触发事件之后,将SLB模块以终端角色(T角色)唤醒。示例性的,该第二触发事件可以是第二设备启动,或者用户开启第二设备的SLB通信功能(可参见图5所示)。具体地,第二设备的应用程序在检测到第二触发事件至后,依次经由基础应用层、基础服务层向SLB模块发送第二SLB启动指令,该第二SLB启动指令用于指示SLB模块以T角色启动。第二设备的SLB模块以T角色启动之后,第二设备成为T节点设备。
S403,第二设备扫描G节点设备。
第二设备的应用程序在检测到第三触发事件之后,控制第二设备的SLB模块开始扫描周围的G节点设备。
在一些实施例中,该第三触发事件为第二设备检测到用户控制扫描G节点设备的操作。例如图6所示,在第二设备播放视频的过程中,该第三触发事件为用户对视频播放界面中投屏控件的操作。
在另一些实施例中,第二设备在成为T节点设备之后,每间隔预设时长自动扫描周围的G节点设备,基于此,该第三触发条件为经过了预设时长。
在其他一些实施例中,第三触发事件为第二设备显示SLB设置界面等。示例性的,参见图7所示,当第二设备显示SLB设置界面之后,第二设备即开始扫描G节点设备,并将扫描到的G节点设备的设备信息(例如设备名称、设备型号等)显示在可用设备列表中。
具体地,第二设备的应用程序在检测到第三触发事件之后,依次经过基础应用层、基础服务层向SLB模块发送扫描指令,该扫描指令用于控制SLB模块扫描发现G节点设备。SLB模块在接收到扫描指令之后,开始扫描周围的G节点设备,接收周围G节点设备广 播的SLB基本连接信息。随后,SLB模块依次通过基础服务层和基础应用层,将接收到的SLB基本连接信息中携带的设备信息(例如设备名称、设备型号等)作为扫描结果上报应用程序。最后,应用程序根据扫描结果在第二设备的显示界面显示扫描到的G节点设备的设备信息。
第二设备接收SLB基本连接信息依次包括如下内容(1)~(3)。
(1)第二设备接收FTS和STS,根据FTS和STS与第一设备实现下行同步。
基于前文介绍可知,FTS有两种类型,其根指数分别为1和40。STS有20种类型,其根指数分别为1~20。因此,第二设备的SLB模块在接收FTS和STS的过程中,不仅需要接收广播信号,还需要从接收到的广播信号(简称接收信号)中找到FTS和STS,并进一检测出FTS和STS的具体类型。
在本实施例中,第二设备的SLB模块可以通过相关处理检测FTS和STS的具体类型。即第二设备在本地预先存储或生成所有类型的FTS和STS,并在获取接收信号之后,将接收信号与本地的所有类型的FTS和STS分别进行相关处理。若某一部分接收信号与某一预设FTS或STS的相关峰的高度超过门限,则确定该部分接收信号的类型与该预设信号相同。
例如,第二设备的SLB模块在接收FTS的过程中,需要分别将接收信号和本地的根指数为1和40的FTS分别进行相关处理。若接收信号中的某一部分与根指数为1的FTS的相关峰的高度超过门限,则确定该部分接收信号是根指数为1的FTS。若接收信号中的某一部分与根指数为40的FTS的相关峰的高度超过门限,则确定该部分接收信号是根指数为40的FTS。可以理解,第二设备需要进行1~2次相关处理才能检测出FTS的类型。
再例如,第二设备的SLB模块在接收STS的过程中,首先根据FTS相关峰的位置从接收信号中找到STS,随后进一步检测STS的类型。在检测STS的类型时,第二设备的SLB模块需要将找到的STS和本地的根指数为1~20的STS分别进行相关处理。若STS与根指数为k的STS的相关峰的高度超过门限,则确定该部分接收信号是根指数为k的STS。其中,k为1~20中的任一数值,k为整数。可以理解,第二设备需要进行1~20次相关处理才能检测出STS的类型。
第二设备的SLB模块根据FTS和STS可以实现第二设备的SLB模块和第一设备的SLB模块下行同步。其中,下行同步是指T节点设备根据G节点设备发送的信号(包括FTS和/或STS)与G节点设备同步。
第二设备(T节点设备)在与第一设备(G节点设备)完成下行同步之后,即可在对应的时频域位置接收第一设备发送的广播信息和通信域系统信息。
(2)第二设备接收广播信息。
参见图8所示,在时域上,1ms为一个超帧,一个超帧包括48个无线帧(Frames),每个无线帧的长度为20.833us,且每个无线帧中包括8个符号(symbol,简称sym)。图8中仅示例性的给出了两种无线帧的帧结构,其中包括第一帧结构和第二帧结构。在第一帧结构中,前四个符号(如sym#0~sym#3)为G-link(G链路),后四个符号(如sym#4~sym#7)为T-link(T链路)。在第二帧结构中,前四个符号(如sym#0~sym#3)为T-link,后四个符号(如sym#4~sym#7)为G-link。
其中,G链路是指:通信域的G节点设备发送信息、T节点设备接收信息的资源。T链路是指:T节点设备发送信息、G节点设备接收信息的资源。该信息包括物理层信号、 物理层控制信息和物理层数据信息等。
第一设备(即G节点设备)的SLB模块使用连续4个超帧的8个符号(具体指系统开销符号)传输广播信息,并且在每个超帧中占用2个符号。这2个符号分别为:一个超帧中,FTS所在无线帧位置往前的第一个无线帧的最后一个系统开销符号,和FTS所在无线帧位置往前第二个超帧的最后一个系统开销符号。在一个示例中,参见图9所示,这2个符号分别为广播信息2所在无线帧的最后一个系统开销符号,和广播信息1所在无线帧的最后一个系统开销符号。
由于第一设备的SLB模块需要4个超帧才能发送一个完整的广播信息,因此,参见图10所示,第二设备的SLB模块至少需要接收4个完整的超帧才能盲检出完整的广播信息。考虑到盲检操作跨信息边界的场景,第二设备的SLB模块最多需要接收7个完整的超帧才能盲检出完整的广播信息。
(3)第二设备接收通信域系统信息。
通信域系统信息由第一设备(即G节点设备)以广播的方式发送,第二设备在成功接收广播信息之后,即可根据广播信息中携带的参数,继续接收通信域系统信息。
具体地,第二设备根据通信域系统信息的广播周期,和承载通信域系统信息的时频域资源位置,接收通信域系统信息。
通信域系统信息的广播周期为64、128、256或512个超帧,该周期参数在通信域系统信息中携带。但第二设备在接收通信域系统信息的过程中,是不知道通信系统信息的广播周期的具体数值的。因此,第二设备需要根据最小广播周期(即至少每64个超帧)盲检通信域系统信息,盲检过程耗时较长。
承载通信域系统信息的时频域资源位置由系统控制信息指示,该系统控制信息在无线帧中G链路的控制信息传输资源中的公共资源中承载。1个超帧中只有1个公共资源,参见图9所示,该公共资源的位置从承载STS的无线帧之后的第1个无线帧开始,到第N个无线帧结束,N=4、8或者12,N在广播信息中指示。并且,在这N个无线帧中,该公共资源使用其中每个无线帧的最后一个系统开销符号。由于系统控制信息的长度为60bit,且占用4或8个符号,因此,系统控制信息需要占用4或8个无线帧。
第二设备(即T节点设备)在检测到STS以及正确接收广播信息之后,即可推算得到公共资源在超帧中的位置。由于公共资源中可能承载长度69bit的第二类数据动态调度资源指示信息、长度60bit系统控制信息和长度60bit的随机接入响应控制信息中的任一种,因此,第二设备需要在公共资源中按长度60bit和69bit分别进行盲检,以确定该公共资源中承载的信息类型。由于系统控制信息使用4个或者8个符号,且每两个符号为一个资源块,电子设备以资源块为单位盲检系统控制信息(即系统控制信息占用2个或者4个资源块)。因此,在盲检系统控制信息的过程中,电子设备按照长度60bit和69bit分别需要最多盲检成功4次,共计最多盲检成功8次,才能从公共资源中检测到系统控制信息。第二设备在获取公共资源中承载的系统控制信息后,即可根据从系统控制信息中获取到承载通信域系统信息的时频域资源位置,并在该时频域资源位置上,根据通信域系统信息的广播周期检测通信域系统信息。
需要说明的是,第二设备在盲检的过程中,可能盲检成功,也可能盲检失败。其中,盲检成功是指第二设备检测到了所需的信息(例如系统控制信息);盲检失败是指第二设 备并未检测到所需的信息(例如系统控制信息)。
第二设备在成功接收通信域系统信息之后,才能根据广播信息和通信域系统信息向第一设备发起同步连接,从而建立第一设备和第二设备之间的SLB连接,具体参见S404所示。
S404,第二设备和第一设备建立SLB连接。
根据SLB接入技术的定义,只有T节点设备能够向G节点设备发起连接,因此,在本实施例中,在第一设备和第二设备的建立SLB连接的过程中,由第二设备(T节点设备)发起竞争随机接入。具体如下所示。
在第二设备侧,应用程序在检测到用户从扫描到的G节点设备中选择第一设备之后,向基础应用层发送第一设备连接请求。响应于该第一设备连接请求,基础应用层通过基础服务层向SLB模块下发第一设备连接指令,指示其与第一设备之间建立SLB连接。
第二设备的SLB模块在接收到第一设备连接指令后,向第一设备的SLB模块发起竞争随机接入。竞争随机接入的四次握手过程包括如下内容(1)~(4)。
(1)第二设备的SLB模块向第二设备的SLB模块发送第一消息(Msg1),第一消息的内容主要是随机接入请求(random access request)。
在本实施例中,第二设备的SLB模块从信元ContentionAccessResource(在已获取的通信域系统信息中)指示的[contentionPhysID-starting,contentionPhysID-ending]范围内随机选择一个物理层标识,并从信元ContentionAccessResource指示的竞争接入资源中随机选择一个接入资源,第二设备的SLB模块在该竞争接入资源上向第一设备的SLB模块发送物理层标识,指示其存在随机接入请求。
(2)第一设备的SLB模块向第二设备的SLB模块发送第二消息(Msg2),第二消息为随机接入响应(random access response(RAR)),主要用于第一设备的SLB模块通过G链路控制信息为第二设备的SLB模块配置用于发送更多信息的资源,并通过G链路控制信令发送调度信令。该调度信令的循环冗余校验码(cyclic redundancy check,CRC)按被竞争接入物理层资源标识和第二设备(T节点设备)的SLB模块的物理层标识加扰。
(3)第二设备的SLB模块在Msg2中配置的资源上发送XRC设置请求消息(XRCSetupRequest),该请求包含用于冲突解决的标识,该标识是全球唯一的媒体接入控制(media access control,MAC)层标识,可以唯一标识发起接入请求的T节点设备。另外,可选的,第二设备的SLB模块可以在Msg2中配置的资源上通过XRC信令向第一设备的SLB模块上报其能力信息,以及通过MAC控制元素(control element,CE)形式上报链路控制层的数据量大小。
(4)第一设备的SLB模块向第二设备的SLB模块发送第四消息(Msg4),第四消息是XRC设置消息(XRCSetup)。XRC设置消息携带第二设备的SLB模块上报的用于冲突解决的标识,第二设备的SLB模块接收响应消息,根据冲突解决的标识确定是否接入成功。
第一设备的SLB模块与第二设备的SLB模块在完成竞争随机接入之后,需要进行配对与鉴权。在配对与鉴权完成之后,第一设备和第二设备即成功建立SLB连接,可以进行业务数据传输。
第一设备和第二设备在配对与鉴权成功之后,第一设备和第二设备的SLB模块分别通 过基础服务层、基础应用层向各自的应用层上报SLB连接结果,以通知应用层SLB连接已完成。
综上所述,通过上述步骤S401~S404,第一设备和第二设备之间即可建立SLB连接,以处理第二设备的向第一设备发起的大带宽业务。
以手机连接音箱播放高清音频为例,在一些实施例中,音箱在启动后成为G节点设备,向外广播SLB基本连接信息。手机在启动后成为T节点设备,当手机进入设置(Setting)界面后,手机的Setting应用依次通过基础应用层、基础服务层向SLB模块下发扫描指令。SLB模块执行扫描操作,接收SLB基本连接信息,并依次通过基础服务层、基础应用层将扫描结果中的设备信息(如设备名称、型号)上报至Setting应用进行显示,以便用户查看手机周围支持SLB技术的电子设备。当用户在扫描到的电子设备中选择音箱之后,手机便主动连接音箱,与其建立SLB连接。SLB连接建立成功之后,手机即可控制音箱播放高清音频。
目前,第一设备和第二设备建立SLB连接的过程耗时较长,其主要是第一设备和第二设备交互的过程耗时较多。下面对其进行具体说明。
在本实施例中,第一设备和第二设备在建立SLB连接的过程中,主要的交互过程包括图11所示的内容(a)~(c),各个内容的具体耗时可参见表2所示。
(a)第二设备接收SLB基本连接信息,即FTS、STS、广播信息和通信域系统信息。
(b)第一设备和第二设备进行竞争随机接入。
(c)第一设备和第二设备进行配对与鉴权。
表2设备交互过程耗时
Figure PCTCN2022114541-appb-000003
参见表2可知,理想情况下,第一设备(G节点设备)和第二设备(T节点设备)在建立SLB连接的过程中,设备之间交互的过程大约需要140ms。其中,接收通信域系统信息耗时较长(约100ms)。
基于前文描述可知,第一设备和第二设备的之间的交互过程耗时较长主要是因为要经历过程(1)~(4):
(1)检测FTS和STS的类型。在理想情况下,第二设备(T节点设备)的SLB模块将接收信号与根指数为1或40的本地序列进行相关处理,如果相关峰的高度超过门限,则认为找到FTS并检测出了FTS的类型。随后,根据FTS的位置即可推算STS的位置,并检测STS的类型。检测FTS的类型可能需要最多进行2次相关处理,检测STS的类型可能需要最多进行20次相关处理,检测过程耗时较长。
此外,如果在接收FTS过程中,相关峰的高度超过门限但是后续STS类型检测失败(如接收到的FTS为干扰噪声),需要重新进行FTS检测,耗时较长。
(2)接收广播信息。第二设备(T节点设备)发送广播信息需要使用4个超帧,因此,T节点设备在接收广播信息的过程中,需要盲检4~7个超帧才能获取到一个完整的广播信息,具体可参见前文描述。
(3)接收通信域系统信息。
首先,T节点设备需要根据广播信息指示推算承载系统控制信息的公共资源位置,并在公共资源位置上盲检长度60bit的系统控制信息。随后,T节点设备根据系统控制信息的指示,获取承载通信域系统信息的时频域资源位置。最后,T节点设备在时频域资源位置上,根据通信域系统信息的广播周期接收通信域系统信息,接收过程复杂,用时较长。
另外,由于G节点设备广播通信域系统信息的周期为64、128、256或者512个超帧,该周期信息在通信域系统信息中携带,T节点设备在不知道广播周期的具体数值的情况下,需每64个超帧解析一次通信域系统信息,操作繁琐,耗时较长,具体可参见前文描述。
(4)竞争随机接入过程。理想情况下,T节点设备发起一次竞争随机接入过程即可完成与G节点设备的同步连接。但是在冲突中的场景,T节点设备可能需要经历多次随机接入过程才能成功连接。
综上可知,在第一设备(G节点设备)和第二设备(T节点设备)建立SLB连接的过程中,由于第二设备需要盲检接收第一设备广播的FTS、STS、广播信息和通信域系统信息,并进行竞争随机接入、身份认证和冲突解决等,因此,第一设备和第二设备建立SLB连接的过程,连接过程用时较长,用户体验不佳。
为此,本申请实施例提供一种建立SLB连接的方法,涉及第一设备和第二设备利用SLE接入技术辅助建立SLB连接的过程,该方法能够减少第一设备和第二设备建立SLB连接的时长,提高SLB连接效率。
下面对本申请实施例提供的第一设备和第二设备利用SLE接入技术辅助建立SLB连接的过程进行详细说明。应理解,当第一设备与第二设备之间出现建立SLB连接的业务需求时,第一设备和第二设备之间的SLE连接可能已建立成功,也可能未建立。下面分别对这两种场景下,第一设备和第二设备建立SLB连接的过程进行说明。
(一)第一设备和第二设备之间已建立SLE连接。
为了降低设备功耗,在没有大带宽业务需求的场景下,第一设备和第二设备之间可以仅保持SLE连接,而控制SLB模块处于睡眠状态。在第一设备的应用程序向第一设备下发大带宽业务需求后,第一设备和第二设备唤醒各自的SLB模块,并利用SLE连接传递建立SLB连接所需的相关参数信息,辅助第一设备和第二设备快速建立SLB连接。
示例性的,参见图12所示,以第一设备是手机,第二设备是无线耳机为例,在无高清音频播放时,手机和无线耳机仅保持SLE模块的连接。当手机需要播放高清音频时,手机和无线耳机在已有的SLE连接的辅助之下,快速建立SLB连接。
图13是本申请另一个实施例提供的第一设备和第二设备之间建立SLB连接的示意性流程图,涉及第一设备和第二设备之间在已建立SLE连接的情况下,使用SLE连接辅助建立SLB连接的过程。具体包括如下步骤S1301~S1305。
S1301,第一设备确定与第二设备建立SLB连接。
S1302,第一设备利用SLE连接查询第二设备的SLB能力。
S1303,在第二设备具备SLB能力的情况下,第一设备和第二设备进行GT角色协商, 确定G节点设备和T节点设备。
S1304,G节点设备向T节点设备发送第一信息。其中,第一信息包括SLB辅助连接信息中的至少一个,和/或,SLB基本连接信息的第一部分(如广播信息和通信域系统信息)中的至少一个。
S1305,T节点设备接收第二信息。其中,第二信息包括SLB基本连接信息中,前期未通过SLE连接发送给第二设备的部分。
S1306,T节点设备根据第一信息和第二信息连接G节点设备,建立SLB连接。
通过本申请实施例提供的建立SLB连接的方法,第一设备和第二设备可以基于SLE连接快速建立SLB连接,具有较好的用户体验。
下面分别对S1301~S1306进行详细的说明。
S1301,第一设备确定与第二设备建立SLB连接。该步骤具体包括如下内容1-1~1-3。
1-1,第一设备的应用程序向第一设备的基础应用层下发业务需求。
示例性的,在第一设备是手机,第二设备是无线耳机的情况下,参见图14所示,当手机检测到用户控制播放高清音频的操作之后,手机的音频播放应用向手机的基础应用层发送高清音频播放业务对应的业务需求。
1-2,在该业务需求超过SLE链路的承载能力的情况下,第一设备的基础应用层确定需要与第二设备建立SLB连接。
示例性的,大带宽业务需求包括高清视频播放需求、高清音频播放需求等,其对数据传输过程的带宽要求较高。通常情况下,SLB连接可以满足大带宽业务需求,而SLE连接无法满足大带宽业务需求。因此,在该业务需求超过SLE链路的承载能力的情况下,第一设备确定与第二设备建立SLB连接。
需要说明的是,在本实施例中,高清音频是指品质或质量高于预设品质或质量的音频,例如图14所示,高清音频可以是高清品质的音频,或者,无损品质的音频。高清视频是清晰度高于预设清晰度的视频,例如,高清视频可以是480P、720P或者1080P的视频。
在另一实施例中,与1-1和1-2不同的是,在第一设备是手机,第二设备是无线耳机的情况下,参见图15所示,在第一设备通过SLE连接控制无线耳机播放音频的过程中,第一设备也可以根据用户的指令,例如用户对SLB切换控件的操作,确定与第二设备建立SLB连接,以通过SLB连接播放第一设备当前播放的音频。
1-3,第一设备的基础应用层向第一设备的基础服务层下发SLB连接指令。
在本实施例中,该SLB连接指令用于指示第一设备的基础服务层控制建立第一设备与第二设备之间的SLB连接,以传输大带宽业务需求所对应的业务数据。
S1302,第一设备利用SLE连接查询第二设备的SLB能力。
需要说明的是,S1302是一个可选的步骤,在第一设备的基础服务层已知第二设备的SLB能力的情况下,第一设备在执行完S1301之后,可以不执行S1302而直接执行S1303。
在本实施例中,第一设备可以在以下阶段提前获知第二设备的SLB能力。例如,在第一设备与第二设备建立SLE连接前的设备发现阶段,第一设备可能通过第二设备发送的广播获得了第二设备的SLB能力。或者,在第一设备和第二设备建立SLE连接之后,在服务发现过程中,第一设备可能获知了第二设备的SLB能力。
S1302具体包括如下内容2-1~2-6。
2-1,第一设备的基础服务层向第一设备的SLE模块发送SLB能力查询消息,该SLB能力查询消息用于查询第二设备是否具备SLB通信能力。
2-2,第一设备的SLE模块基于SLE连接向第二设备的SLE模块发送SLB能力查询消息。
2-3,第二设备的SLE模块向第二设备的基础服务层上报SLB能力查询消息。
2-4,第二设备的基础服务层响应该SLB能力查询消息,向第二设备的SLE模块发送SLB能力查询结果。该SLB能力查询结果用于表示第二设备是否具备SLB能力。
2-5,第二设备的SLE模块基于SLE连接向第一设备的SLE模块发送SLB能力查询结果。
2-6,第一设备的SLE模块向第一设备的基础服务层发送SLB能力查询结果。
S1303,在第二设备具备SLB能力的情况下,第一设备和第二设备进行GT角色协商,确定G节点设备和T节点设备。
由于SLB接入技术为双方设备的SLB模块定义了G角色和T角色,其中SLB模块为G角色的电子设备为G节点设备,SLB模块为T角色的电子设备为T节点设备。根据SLB接入技术的特点,只允许T节点设备去连接G节点设备(即只允许T节点设备向G节点设备发送连接请求)。因此,在第一设备和第二设备之间建立SLB连接时,需要先明确第一设备和第二设备的角色。也可以理解为,在第一设备和第二设备之间建立SLB连接时,需要先明确第一设备的SLB模块和第二设备的SLB模块的角色。
在本实施例中,由于第一设备为连接业务的触发方,因此,由第一设备查询第二设备的角色,并发起第一设备的SLB模块和第二设备的SLB模块间的角色协商过程。第一设备的SLB模块和第二设备的SLB模块进行GT角色协商可能包括以下三个场景:(1)第一设备的SLB模块未唤醒;(2)第一设备的SLB模块已唤醒且为G角色;(3)第一设备的SLB模块已唤醒且为T角色。下面分别对这三种场景下,第一设备和第二设备的GT角色协商过程进行说明。
场景(1):第一设备的SLB模块未唤醒。
当第二设备的SLB模块未唤醒时,第一设备的基础服务层做出如下裁定结果:第一设备的SLB模块唤醒后为G角色,第二设备的SLB模块唤醒后为T角色,即第一设备为G节点设备,第二设备为T节点设备。或者,第一设备唤醒后为T角色,第二设备唤醒后为G角色,即第一设备为T节点设备,第二设备为G节点设备。
当第二设备的SLB模块已唤醒且为T角色时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块唤醒后为G角色,第二设备的SLB模块继续为T角色,即第一设备为G节点设备,第二设备为T节点设备。
当第二设备的SLB模块已唤醒且为G角色时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块唤醒后为T角色,第二设备的SLB模块继续为G角色,即第一设备为T节点设备,第二设备为G节点设备。
在场景(1)中,第一设备的基础服务层在确定裁定结果之后,基于SLE连接将裁定结果发送给第二设备的基础服务层。第一设备和第二设备根据该裁定结果维护本地SLB模块的角色。
场景(2):第一设备的SLB模块已唤醒且为G角色。
当第二设备的SLB模块未唤醒时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块继续为G角色,第二设备的SLB模块唤醒后的为T节点,即第一设备为G节点设备,第二设备为T节点设备。
当第二设备的SLB模块已唤醒且为T角色时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块继续为G角色,第二设备的SLB模块继续为T角色,即第一设备为G节点设备,第二设备为T节点设备。
在场景(2)的上述两种情况下,第一设备的基础服务层在确定裁定结果之后,基于SLE连接将裁定结果发送给第二设备的基础服务层。第一设备和第二设备根据该裁定结果维护本地SLB模块的角色。
当第二设备的SLB模块已唤醒且为G角色时,由于第一设备和第二设备的SLB模块的角色均为G角色,出现角色冲突,第一设备的基础服务层需要裁定第一设备或者第二设备切换角色。
在一些实施例中,第一设备的基础服务层裁定本地重启SLB模块,将本地SLB模块的角色切换为T角色。若第一设备的SLB模块的角色切换成功,那么GT角色协商成功,协商结果为:第一设备的SLB模块为T角色,第二设备的SLB模块为G角色,即第一设备为T节点设备,第二设备为G节点设备。若第一设备的SLB模块的角色切换失败(如重启失败,无法切换角色),则角色协商失败,第一设备和第二设备由于角色冲突,无法建立SLB连接,基础服务层向基础应用层上报连接失败结果。
在另一些实施例中,第一设备的基础服务层裁定第二设备重启SLB模块,并向第二设备发送SLB模块重启请求,该请求中携带第一设备期望第二设备重启后成为的角色(即T角色)。第二设备在接收到SLB模块重启请求之后,存在如下两种处理情况:
情况1:第二设备同意重启SLB模块,并向第一设备发送指示同意重启SLB模块的通知。以及,在重启SLB模块之后,将重启后SLB模块的角色信息发送给第一设备。
情况2:第二设备不同意重启SLB模块,并向第二设备发送指示不同意重启SLB模块的通知,角色协商失败,SLB连接建立失败,基础服务层向基础应用层上报连接失败结果。
场景(3):第一设备的SLB模块已唤醒且为T角色。
当第二设备的SLB模块未唤醒时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块继续为T角色,第二设备的SLB模块唤醒后为G角色,即第一设备为T节点设备,第二设备为G节点设备。
当第二设备的SLB模块已唤醒且为G角色时,第一设备的基础服务层做出如下裁定:第一设备的SLB模块继续为T角色,第二设备的SLB模块继续为G角色,即第一设备为T节点设备,第二设备为G节点设备。
在场景(3)的上述两种情况下,第一设备的基础服务层在确定裁定结果之后,通过SLB连接将裁定结果发送给第二设备的基础服务层。第一设备和第二设备根据该裁定结果维护本地SLB模块的角色。
当第二设备的SLB模块已唤醒且为T角色时,由于第一设备和第二设备的SLB模块的角色均为T节点,出现了角色冲突,第一设备需要裁定第一设备或者第二设备切换角色。
在一些实施例中,第一设备裁定本地重启SLB模块,将SLB模块切换为G角色。若第一设备的SLB模块的角色切换成功,那么GT角色协商结果为:第一设备的SLB模块 的为G角色,第二设备的SLB模块继续为T角色,即第一设备为G节点设备,第二设备为T节点设备。若第一设备的SLB模块的角色切换失败,则角色协商失败,SLB连接建立失败。
在另一些实施例中,第一设备裁定第二设备重启SLB模块,并向第二设备发送SLB模块重启请求,该请求中携带第一设备期望第二设备重启后成为的角色(即G角色)。第二设备在接收到SLB模块重启请求之后,存在如下两种处理情况:
情况1:第二设备同意重启SLB模块,并向第一设备发送指示同意重启SLB模块的通知。以及,在重启SLB模块之后,将重启后SLB模块的角色信息发送给第一设备。
需要说明的是,若第二设备的SLB模块重启后的角色是G角色(即第一设备期望第二设备重启后成为的角色),那么角色协商成功。GT角色协商结果为:第一设备的SLB模块继续为T角色,第二设备的SLB模块的为G角色,即第一设备为T节点设备,第二设备为G节点设备。若第二设备的SLB模块重启失败,则角色协商失败,SLB连接建立失败,基础服务层向基础应用层上报连接失败结果。
情况2:第二设备不同意重启SLB模块,并向第二设备发送指示不同意重启SLB模块的通知,SLB连接建立失败,基础服务层向基础应用层上报连接失败结果。
在S1303中,以第一设备和第二设备进行角色协商之前,第一设备的SLB模块已唤醒且为G角色,第二设备的SLB模块已唤醒为T角色为例,在S1303中,第一设备与第二设备进行GT角色协商的过程包括如下步骤3-1~3-7。
3-1,第一设备的基础服务层向第一设备的SLE模块发送GT角色查询消息,该GT角色查询消息用于查询第二设备的SLB模块的工作状态和角色信息。
在本实施例中,SLB模块的工作状态包括睡眠状态和唤醒状态。
可选的,该角色查询消息中还携带有第一设备的角色信息,该角色信息指示第一设备为G角色。通过第一设备的角色信息,第二设备可以结合自己的角色信息,确定第一设备和第二设备是否出现了角色冲突。
3-2,第一设备的SLE模块基于SLE连接向第二设备的SLE模块发送GT角色查询消息。
3-3,第二设备的SLE模块向第二设备的基础服务层上报GT角色查询消息。
3-4,第二设备的基础服务层向第二设备的SLE模块发送GT角色查询结果。
GT角色查询结果包括第二设备的SLB模块的工作状态和角色。在本实施例中,该角色查询结果为:第二设备的SLB模块已唤醒且为T角色。
可选的,在第一设备的SLB模块的角色,和第二设备的SLB模块的角色相同的情况下,该角色查询结果中还可以携带有冲突指示信息,该冲突指示信息用于指示第一设备和第二设备的SLB模块存在角色冲突。此外,该角色查询结果中还包括重启指示信息,用于指示第二设备的SLB模块是否支持重启以切换角色。
3-5,第二设备的SLE模块基于SLE连接向第一设备的SLE模块发送GT角色查询结果。
3-6,第一设备的SLE模块向第一设备的基础服务层上报GT角色查询结果。
由于第一设备的SLB模块已唤醒且为G角色,因此,第一设备的基础服务层在获知第二设备的SLB模块已唤醒且为T角色之后,确定自身的角色保持G角色不变。
3-7,第一设备和第二设备进行GT角色协商。
由于第一设备的SLB模块已唤醒且为G角色,第二设备的SLB模块已唤醒且为T角色,不存在角色冲突的情况。那么,第一设备的基础服务层对GT角色的裁定结果为:第一设备的SLB模块为G角色,第二设备的SLB模块为T角色。第一设备的基础服务层将该裁定结果发送给第二设备。第一设备的SLB模块根据该裁定结果保持G角色不变,第二设备的SLB模块根据该裁定结果保持T角色不变。
在第一设备和第二设备进行GT角色协商的过程中,当第一设备和第二设备的SLB模块出现角色冲突时,若第二设备的SLB模块不支持重启以切换角色,则第一设备根据自身业务状态裁定是否重启SLB模块,若满足重启条件,则第一设备重启自身的SLB模块以切换角色,若不满足重启条件,则SLB连接失败。若第二设备的SLB模块支持重启以切换角色,则第一设备根据自身业务状态裁定是否能重启自身SLB模块。若第一设备满足重启条件,则第一设备重启自身的SLB模块以切换角色。若第一设备不满足重启条件,则要求第二设备重启SLB模块以切换角色。
S1304,G节点设备向T节点设备发送第一信息。
以GT角色协商结果是:第一设备是G节点设备,第二设备是T节点设备为例,S1304具体包括如下内容4-1~4-9。
4-1,第一设备的基础服务层向第一设备的SLB模块发送第一唤醒指令,该第一唤醒指令用于唤醒SLB模块并将SLB模块的角色确定为G角色。
4-2,响应于第一唤醒指令,第一设备的SLB模块作为G角色被唤醒。
需要说明的是,4-1和4-2是可选的步骤。在第一设备和第二设备完成GT角色协商之后,若第一设备的SLB模块未唤醒,则第一设备执行步骤4-1和步骤4-2,唤醒第一设备的SLB模块并确定其为G角色,使第一设备成为G节点设备。此外,若第一设备的SLB模块已唤醒且为G角色,则第一设备无需执行步骤4-1和步骤4-2。
4-3,第二设备的基础服务层向第二设备的SLB模块发送第二唤醒指令,该第二唤醒指令用于唤醒SLB模块并将SLB模块的角色确定为T角色。
4-4,响应于第二唤醒指令,第二设备的SLB模块作为T角色被唤醒。
需要说明的是,步骤4-3和步骤4-4是可选的步骤。在第一设备和第二设备完成角色协商之后,若第二设备的SLB模块未唤醒,则第二设备执行步骤4-3和步骤4-4,唤醒第一设备的SLB模块并确定其为T角色,使第二设备成为T节点设备。此外,若第二设备的SLB模块已唤醒且为T角色,则第二设备无需执行步骤4-3和步骤4-4。
4-5,第一设备的基础服务层向第一设备的SLB模块发送第一信息查询消息,该第一信息查询消息用于查询第一设备的第一信息。
4-6,第一设备的SLB模块向第一设备的基础服务层回复第一信息。
在本实施例中,第一设备和第二设备建立SLB连接涉及的信息包括:SLB辅助连接信息和SLB基本连接信息。
SLB辅助连接信息包括如下内容(1)~(5)中的至少一个:
(1)G节点设备的广播频点和带宽。
(2)FTS根指数。FTS根指数用于表示第一设备发送的FTS的根指数。FTS根指数为1或40,用于电子设备在接收FTS的过程中生成或确定本地序列信号,与接收信号进行 相关处理,从而接收FTS。
(3)STS根指数。STS根指数用于表示第一设备发送的STS的根指数。STS根指数为1-20中的某个整数,用于电子设备在接收STS的过程中生成或确定本地序列信号,与接收信号进行相关处理,从而接收STS。
(4)物理层标识:T-PhysID
T-PhysID::=INTEGER(0…4095)
物理层标识,用于在通信域唯一标识该T节点设备,长度为12bit。物理层标识用于选择非竞争随机接入资源选择,具体参见前文描述。对于进行非竞争随机接入,接入资源和物理层标识存在映射关系,确认物理层标识即可获知接入层资源。
(5)认证凭证:认证口令、256bit共享密钥(PSK)。
SLB基本连接信息包如下内容(1)~(4):
(1)FTS。具体可参见前文描述,本实施例在此不进行赘述。
(2)STS。具体可参见前文描述,本实施例在此不进行赘述。
(3)广播信息。广播信息的具体内容可参见前文描述,本实施例在此不进行赘述。
(4)通信域系统信息。需要说明的是,在基于SLE连接辅助建立SLB连接的条件下,通信域系统信息可以是精简后的通信域系统信息。示例性的,精简后的通信域系统信息包括如下内容a~g:
a.域名:DomainID::=BIT STRING(SIZE(48))。其中,域名也就是媒体访问控制(medium access control,MAC)地址。
b.载波信道号:CarrierChannelConf::=SEQUENCE(SIZE(1…32))OF ChannelNumber。
c.非竞争接入资源池信息:
Figure PCTCN2022114541-appb-000004
在通信域系统信息中,nonContentionAccessDuration信元指示非竞争接入资源池的周期,其中ms512表示512超帧,ms1024表示1024超帧,ms2048表示2048超帧,ms4096表示4096超帧。
noncontentionAccessResource信元指示一个超帧内发送非竞争接入信息的资源,包括N个符号。N个符号按照符号时间顺序由contentionAccessSymNum个开销符号组成一组,共分为
Figure PCTCN2022114541-appb-000005
组,在配置周期内共有
Figure PCTCN2022114541-appb-000006
组。 在每一组中,按照子载波最低到最高的顺序包含5个非竞争接入资源。
在配置周期内,共有
Figure PCTCN2022114541-appb-000007
个非竞争接入资源,按照每个资源分组在时间上的顺序,以及每个组内子载波从低到高的顺序,接入资源编号为#0到#(Y-1)。
T节点设备在这些资源中选择编号为mod(T-PhysID,Y)资源,并在该资源上发送T-PhysID构成的接入信息,其中T-PhysID是由G节点设备配置并保存的物理层标识,或者T-PhysID是T节点设备预配置的物理层标识。
waitingWindow为随机接入的等待时间窗口大小,单位为超帧。
d.随机接入目标功率接收配置:
P0-NominalConfig::=SEQUENCE{rach-P0-NominalConfig}
e.T节点设备回复ACK信息资源
DedicatedACK-ResourceSetConf::=INTEGER(0…31)
DedicatedACK-ResourceSetConf指示ACK资源池集合中的一个特定的ACK资源池。ACK在G节点设备给T节点设备调度下行数据时,T节点设备需要在该指定的ACK资源上向G节点设备回复ACK信息。
f.如G节点设备具备接入控制功能,则SLB辅助连接信息中还包括如下内容:
accessControl BIT STRING(SIZE(4)),OPTIONAL,--Need OR
g.密钥协商算法信息
keyAlgNegotiation BIT STRING(SIZE(32))。
在SLB基本连接信息中,广播信息和通信域系统信息可以由第一设备(即G节点设备)通过SLE连接向第二设备发送,本实施例称之为SLB基本连接信息的第一部分。而由于FTS和STS是建立SLB连接过程中的同步信号,因此,只能由第一设备通过SLB广播向第二设备发送。
在本实施例中,第一信息包括SLB辅助连接信息,和/或,SLB基本连接信息的第一部分(即广播信息和通信域系统信息)中的至少一个。因此,结合上述描述可知,第一信息包括但不限于以下形式:
例如,第一信息包括:第一设备的广播频点和带宽。
或者,第一信息包括:FTS根指数。
或者,第一信息包括:FTS根指数、STS根指数。
或者,第一信息包括:通信域系统信息。
或者,第一信息包括:广播信息、通信域系统信息。
或者,第一信息包括:FTS根指数、STS根指数、广播信息和通信域系统信息。
或者,第一信息包括:第一设备的物理层标识、第一设备的认证凭证和广播信息。
或者,第一信息包括:第一设备的广播频点和带宽、FTS根指数、STS根指数、第一设备的物理层标识和第一设备的认证凭证,以及,广播信息和通信域系统信息。
此外,在一些实施例中,第一设备通过SLE连接向第二设备发送广播信息或者通信域系统信息时,也可以只发送广播信息或者通信域系统信息的部分内容。以通信域系统信息为例,第一设备通过SLE连接发送给第二设备的通信域系统信息可以是前文示出的精简后 的通信域系统信息。
4-7,第一设备的基础服务层向第一设备的SLE模块发送第一信息,以及要求第二设备向第一设备发起SLB连接的指示信息。
4-8,第一设备的SLB模块基于SLE连接向第二设备的SLE模块发该第一信息和该指示信息。
4-9,第二设备的SLE模块向基础服务层上报该第一信息和该指示信息。
需要说明的是,若第一设备是SLB连接业务的触发方且为T节点设备,那么第一设备不执行4-5~4-9,而是向第二设备发送第一信息的获取请求,由第二设备基于SLE连接向第一设备发送第一信息。
可选的,在4-7~4-9中,第一设备也可以不用向第二设备发送该指示信息,第二设备在收到第一信息之后,默认作为连接的发起方,向第二设备发起同步连接(即在第一设备和第二设备的时频域同步的状态下进行连接)。
S1305,G节点设备向T节点设备发送第二信息。
第二信息包括SLB基本连接信息中,前期未通过SLE连接发送给第二设备的部分。
在一些实施例中,若第一信息中的SLB基本连接信息仅包括广播信息,则第二信息包括FTS、STS和通信域系统信息。
在另一些实施例中,若第一信息中的SLB基本连接信息仅包括通信域系统信息,则第二信息包括FTS、STS和广播信息。
在又一些实施例中,若第一信息中的SLB基本连接信息同时包括广播信息和通信域系统信息,则第二信息包括FTS和STS。
在其他一些实施例中,若第一信息中不包括SLB基本连接信息,则第二信息包括FTS、STS、广播信息和通信域系统信息。
第一设备在向第二设备发送第一信息和指示信息之后(参见图13中的步骤5-1),第一设备的SLB模块即开始发送SLB广播,SLB广播中包括第二信息(参见图13中的步骤5-2)。第二设备在接收到指示信息之后,即控制第二设备的SLB模块开始扫描第二信息。或者,第二设备在接收到第一信息后,即开始默认作为连接的发起方,开始控制第二设备的SLB模块开始扫描第二信息。
需要说明的是,若第一信息中包括第一设备的广播频点和带宽,即第二设备在接收第二信息时已经知道第一设备发送第二信息的广播频点和带宽,那么第二设备可以在该广播频点和带宽下接收第二信息,从而提高第二信息的接收效率。
第一设备在发送第二信息时,先发送FTS和STS。第二设备的SLB模块在接收到FTS和/或STS之后,根据FTS和/或STS与第一设备实现下行同步。
需要说明的是,若T节点设备的SLB模块和SLE模块的时钟源同步且帧边界对齐,则T节点设备在同步连接G节点设备的过程中,T节点设备需要接收G节点设备发送的STS,以根据的STS完成T节点设备与G节点设备的精确同步。同步完成之后,T节点设备即可向G节点设备发起非竞争随机接入。若T节点设备的SLB模块和SLE模块的时钟源不同步,则T节点设备在同步连接G节点设备的过程中,T节点设备需要接收FTS和STS,并根据FTS和STS先后与G节点设备进行粗同步和精同步。
在本实施例中,在第一信息包括FTS根指数和/或STS根指数的情况下,第二设备可 以根据第一信息快速接收第二信息中的FTS和/或STS。
这是由于第一信息中包括FTS根指数和STS根指数,即对于T节点设备而言,接收FTS和STS所需生成的本地信号的根指数是已知的。因此,T节点设备在进行同步过程中,直接使用FTS根指数和STS根指数分别生成或确定本地序列,再根据本地序列接收FTS和STS,能够提高T节点设备的时钟同步效率。
例如,当第二设备已知FTS根指数,且FTS根指数=1时,第二设备可以确定第一设备发送的是根指数为1的FTS,因此,第二设备可以从本地获取预存的或者在本地生成根指数为1的FTS序列,并根据该序列对接收信号进行相关处理,从接收信号中确定出第一设备发送的根指数为1的FTS。而无需再利用根指数为40的FTS序列对接收信号进行盲检来接收FTS,能够提高FTS的接收效率。
又例如,当第二设备已知STS根指数,且STS根指数=5时,第二设备可以确定第一设备发送的是根指数为5的STS,因此,第二设备可以从本地获取预存的或者在本地生成根指数为5的STS序列,并根据该序列对接收信号进行相关处理,从接收信号中确定出第一设备发送的根指数为5的STS。而无需再利用根指数为1~4和6~20的STS序列对接收信号进行盲检来接收STS,能够提高STS的接收效率。
在完成同步之后,在一些实施例中,在第一信息中不包括广播信息的全部内容的情况下,第一设备在与第二设备同步之后,还需要向第二设备发送广播信息中未发送给第二设备的部分。而第二设备则需要通过SLB接入技术接收该部分广播信息,以保证第二设备在与第一设备进行同步连接之前,接收到完整的广播信息。
在一些实施例中,在第一信息中不包括通信域系统信息的全部内容的情况下,第一设备还需要向第二设备发送通信域系统信息中未发送给第二设备的部分。而第二设备则需要通过SLB接入技术接收该部分通信域系统信息,以保证第二设备在与第一设备进行同步连接之前,接收到完整的通信域系统信息。在第二设备接收到完整的广播信息和通信域系统信息之后,即可根据广播信息和通信域系统信息与第二设备建立连接。
S1306,G节点设备和T节点设备根据第一信息和第二信息,建立SLB连接。
根据SLB接入技术,只有T节点设备能向G节点设备发起连接请求,且在本实施例中,第一设备是G节点设备,第二设备是T节点设备。因此,在S1306中,第二设备主动连接第一设备。基于此,S1306具体包括如下内容6-1~6-6。
6-1,第二设备的SLB模块根据第一信息和第二信息中的广播信息和通信域系统信息,与第一设备的SLB模块进行同步连接。
可选的,在SLB辅助连接信息中包括第一设备的非竞争资源信息和物理层标识的情况下,第二设备向第一设备发起非竞争随机接入。在本实施例中,该非竞争随机接入过程具体包括如下两次握手过程:
(1)第二设备的SLB模块向第一设备的SLB模块发送第一消息(Msg1),该第一消息的内容主要是随机接入请求(random access request),随机接入请求包含第二设备预配置或者存储的物理层标识。
(2)第一设备的SLB模块向第二设备的SLB模块发送第四消息(Msg4),该第四消息为XRC设置消息(xrcsetup),该设置消息中包含第二设备的SLB模块的物理层标识,用于对T节点设备的接入请求进行应答。
6-2,第一设备的SLB模块与第二设备的SLB模块进行配对与鉴权。
可选的,由于在第一设备与第二设备在建立SLE连接时已完成了配对与鉴权,因此,第一设备和第二设备在基于SLE连接辅助建立SLB连接时,也可以不进行配对与鉴权。
6-3,第一设备的SLB模块向第一设备的基础服务层发送SLB连接结果。
6-4,第一设备的基础服务层向第一设备的基础应用层发送SLB连接结果。
6-5,第二设备的SLB模块向第二设备的基础服务层发送SLB连接结果。
6-6,第二设备的基础服务层向第二设备的基础应用层发送SLB连接结果。
通过上述S1301-S1306,第一设备和第二设备之间的SLB连接(具体指SLB物理链路)即建立成功。第一设备和第二设备可以基于该物理链路建立逻辑链路、业务链路,进而传输业务数据。
通过本申请实施例提供的建立SLB连接的方法,第一设备和第二设备可以基于SLE连接传递SLB辅助连接信息,从而根据SLB辅助连接信息快速建立SLB连接;和/或,可以通过SLE连接快速传递部分SLB基本连接信息,以避免在建立SLB连接的过程中盲检接收该部分SLB基本连接信息,从而快速建立SLB连接。本实施例提供的SLB连接方法耗时较短,具有较好的用户体验。
以建立SLB连接过程中涉及的第一信息包括FTS根指数、STS根指数、广播信息和通信域系统信息,第二信息包括FTS和STS为例,结合图16可知,在第一设备和第二设备建立SLB连接的过程中,第一设备和第二设备交互的过程主要如下内容(a)~(e),各部分内容的交互时长可参见表3所示。
(a)第一设备查询第二设备的SLB能力。
(b)第一设备与第二设备进行角色协商。
(c)第一设备向第二设备发送第一信息,即FTS根指数、STS根指数、广播信息和通信域系统信息。
(d)第二设备接收第一设备发送第二信息,即FTS、STS。
(e)第一设备和第二设备进行非竞争随机接入。
表3设备交互过程耗时
Figure PCTCN2022114541-appb-000008
参见表3所示,本实施例提供的SLB连接建立过程中,第一设备和第二设备交互过程的耗时较小,仅需约22ms。相比于无SLE辅助的SLB连接建立过程,在SLE连接的辅助下,SLB的连接建立过程减少了约120ms。其主要原因在于同步连接过程耗时显著降低。
在基于SLE连接辅助建立SLB连接的过程中,第一设备和第二设备的交互过程用时较短具体包括以下因素(1)~(5):
(1)FTS和STS类型的检测时间缩短。这是由于第二设备在接收FTS和STS时,已知FTS根指数和STS根指数,第二设备可以直接使用对应的根指数确定对应的本地序列,再使用该本地序列对接收的FTS和STS进行相关处理,确定FTS和STS的类型。
(2)无需在同步连接过程中接收广播信息。这是由于第一设备在前期已基于SLE连接将广播信息发送给了第二设备,因此,在该同步连接过程中,第二设备无需再接收并检测广播信息。
(3)无需在同步连接过程中接收通信域系统信息。这是由于第一设备在前期已基于SLE连接将通信域系统信息发送给了第二设备,因此,在该同步连接过程中,第二设备无需再接收通信域系统信息。
(4)随机接入过程时间缩短。这是由于第一设备在前期已经基于SLE连接将物理层标识和非竞争接入资源参数发送给了第二设备。因此,第二设备在同步连接第一设备的过程中,可以使用非竞争随机接入方式连接第二设备。
(5)第一设备和第一设备可以通过SLE链路交互SLB的双向认证凭证中的认证口令,减少SLB认证流程。或者,若SLE模块的认证结果适用于SLB模块,则可以不再进行SLB的认证或鉴权过程。
综上可知,通过本实施例提供的建立SLB连接的方法,第一设备和第二设备可以基于SLE连接传输快速建立SLB连接所需的SLB辅助连接信息(如FTS根指数、STS根指数、物理层标识和非竞争接入资源参数等)以及部分SLB基本连接信息(如通信域系统信息、广播信息等),显著减少了第一设备和第二设备的交互时长,从而能够提高了SLB连接的建立效率,同时提高了用户体验。
(二)第一设备和第二设备之间未建立SLE连接。
在一些实施例中,在第一设备和第二设备未建立SLE连接的情况下,当第一设备有大带宽的业务需求时,第一设备可以和第二设备先建立SLE连接,再基于S1301~S1306示出的方法,快速建立SLB连接。本实施例在此不再赘述。
在另一些实施例中,基于第一设备的SLB模块已唤醒且为G角色,第二设备的SLB模块已唤醒且为T角色(即第一设备为G节点设备,第二设备为T节点设备),在第一设备和第二设备未建立SLE连接的情况下,第一设备可以通过SLE广播被第二设备发现。当第二设备有大带宽的业务需求时,可以同步连接第一设备,与第一设备建立SLB连接。具体参见图17所示。
图17是本申请又一个实施例提供的第一设备和第二设备之间建立SLB连接的示意性流程图。该方法涉及第一设备和第二设备在未建立SLE连接的情况下,基于SLE广播辅助建立SLB连接的过程。该方法包括如下步骤S1701~S1704。
S1701,第一设备发送SLE广播,SLE广播携带第一设备的第一信息。
在本实施例中,第一设备的SLB模块为G角色且处于唤醒状态,第二设备的SLB模块为T角色且处于唤醒状态,即第一设备为G节点设备,第二设备为T节点设备。鉴于SLE模块具备低功耗的优势,第一设备的SLE模块可以根据上层的配置(例如在启动之后,或者根据用户指令),周期性地向外发送SLE广播,并且在SLE广播中携带第一信息等 内容。
在本实施例中,第一信息包括SLB辅助连接信息,和/或,SLB基本连接信息的第一部分(即广播信息和通信域系统信息)中的至少一个。
SLB辅助连接信息包括如下内容(1)~(3)中的至少一个:(1)G节点设备的广播频点和带宽;(2)FTS根指数;(3)STS根指数。各个SLB辅助连接信息的具体内容可参见前文描述,本实施例在此不再赘述。需要说明的是,在本实施例中,由于辅助连接信息是通过SLE广播的方式发送的,从保证第一设备信息安全等角度考虑,SLB辅助连接信息中不包括第一设备的设备标识和认证凭证。
SLB基本连接信息包括:FTS、STS、广播信息和基本通信域系统信息,其中,广播信息和基本通信域系统信息为SLB基本连接信息的第一部分。
在本实施例中,通信域系统信息可以包括如下内容a~g。
a.域名(MAC地址):
DomainID::=BIT STRING(SIZE(48))
b.载波信道号:
CarrierChannelConf::=SEQUENCE(SIZE(1…32))OF ChannelNumber
c.竞争接入资源池参数:
Figure PCTCN2022114541-appb-000009
d.随机接入目标接收功率:
P0-NominalConfig::=SEQUENCE{rach-P0-NominalConfig}
e.T节点设备ACK信息资源:
DedicatedACK-ResourceSetConf::=INTEGER(0…31)
f.接入控制:
accessControl BIT STRING(SIZE(4)),OPTIONAL,--Need OR
g.密钥协商算法信息:
keyAlgNegotiation BIT STRING(SIZE(32))
结合上述描述,第一信息包括但不限于以下形式:
例如,第一信息包括:第一设备的广播频点和带宽。
或者,第一信息包括:FTS根指数。
或者,第一信息包括:FTS根指数、STS根指数。
或者,第一信息包括:通信域系统信息。
或者,第一信息包括:广播信息、通信域系统信息。
或者,第一信息包括:FTS根指数、STS根指数、广播信息和通信域系统信息。
或者,第一信息包括:第一设备的广播频点和带宽、FTS根指数和STS根指数,以及,广播信息和通信域系统信息。
此外,在一些实施例中,第一设备通过SLE广播向第二设备发送广播信息或者通信域系统信息时,也可以只发送广播信息或者通信域系统信息的部分内容。
在S1701中,第一设备广播第一信息的具体过程包括如下内容1-1~1-7:
1-1,第一设备的应用层确定使用SLE广播辅助建立SLB连接。
在一些实施例中,第一设备的应用层根据默认配置确定使用SLE广播辅助建立SLB连接。例如,第二设备在开启SLE功能之后,或者,在特定应用程序(如视频播放应用、即时通信应用等)启动之后,确定使用SLE广播辅助建立SLB连接。
在另一些实施例中,应用层接收到用户对辅助连接控件的操作之后,确定使用SLE广播辅助建立SLB连接。
1-2,第一设备的应用层向第一设备的基础应用层发送辅助连接指令。该辅助连接指令用于指示使用SLE广播辅助第一设备与其他设备建立SLB连接。
1-3,第一设备的基础应用层向第一设备的基础服务层发送辅助连接指令。
1-4,第一设备的基础服务层向第一设备的SLB模块发送第一信息查询消息,该第一信息查询消息用于查询第一设备的第一信息。
1-5,第一设备的SLB模块向第一设备的基础服务层回复第一信息。
1-6,第一设备的基础服务层向第一设备的SLE模块发送广播指令,该广播指令携带第一信息,并且用于控制SLE模块发送携带该第一信息的SLE广播。
1-7,第一设备的SLE模块广播第一信息。在本实施例中,第一设备的SLE模块在三个信道上同时广播第一信息。
示例性的,参见图18所示,SLE广播的负载(Payload)包括头部(Header)和数据部(Data)。数据部包括N个数据结构(Data stru)。每一个数据结构包括数据类型(Data Type)、数据长度信息(Length)和数据内容(Value),其中,数据类型占1字节,数据长度信息占1字节(Bytes),数据内容占Length个字节。例如,当数据长度Length=0x64时,数据内容占100个字节。
当SLE广播中携带第一信息时,在承载第一信息的数据结构中,数据类型指示数据为第一信息,数据内容为具体的第一信息。
需要说明的是,第一设备(G节点设备)的SLE模块在唤醒之后,即可开始广播第一信息,以便在第一设备出现大带宽业务需求之前,提前将建立SLB连接所需的一些基本连接信息(例如广播信息和通信域系统信息),或者,加快SLB连接建立的一些辅助连接信息(如FTS根指数、STS根指数等)广播给周围的具备SLE功能的设备。
S1702,第二设备扫描SLE广播,获取SLE广播中携带的第一信息。
当第二设备(T节点设备)无大带宽业务需求时,为节省功耗,第二设备可以控制其SLB模块睡眠,仅保留SLE模块周期性的扫描接收SLE广播。当第二设备需要处理大带宽业务时,T节点设备唤醒其SLB模块,并利用之前接收的SLE广播中的第一信息快速与 建立SLB连接。或者T节点设备需要处理大带宽业务时,先扫描接收SLE广播获取第一信息,再进行SLB连接。
例如,参见图19所示,以第一设备(G节点设备)是电视,第二设备(T节点设备)是手机为例,电视在启动之后可以向外发送SLE广播,SLE广播携带第一信息。手机在无大带宽业务需求时,可以控制其SLB模块睡眠,仅保留SLE周期性扫描接收SLE广播。当手机检测到用户对投屏控件的操作后,手机则可以利用接收的SLE广播中的第一信息进行SLB连接。
若第二设备通过SLE广播获取到了电子设备的第一信息,则第二设备可以确定第一设备是具备SLB通信能力的,即第二设备发现了具备SLB通信功能的第一设备。
需要说明的是,第一设备在通过SLE接入技术向周围的T节点设备广播第一信息的同时,可能还有其他的G节点设备也在通过SLE接入技术广播自身的第一信息。因此,第二设备可能会接收到多个G节点设备发送的第一信息,即第二设备可能会发现多个具备SLB通信功能的电子设备。
在本实施例中,第二设备(T节点设备)扫描接收SLE广播的过程具体包括如下内容2-1~2-4。
2-1,第二设备的应用层向基础服务层发送SLE设备发现请求。
以第一设备是电视,第二设备是手机为例,手机可以基于默认的周期性扫描配置,或者其它发现SLE设备的应用需求,触发应用程序向基础服务层发送SLE设备发现请求。
2-2,第二设备的基础应用层向第二设备的基础服务层发送SLE设备发现请求。
2-3,第二设备的基础服务层向第二设备的SLE模块发送扫描指令。
2-4,第二设备的SLE模块将扫描到的包含第一信息的SLE广播发送到第二设备的基础服务层。
S1703,当第二设备有大带宽业务需求时,第二设备接收第一设备发送的第二信息。
例如,参见图20所示,在第二设备使用视频播放应用播放高清视频的过程中,若第二设备检测到用户对视频播放界面上的投屏控件的操作,则说明第二设备有投屏的大带宽业务需求。因此,第二设备根据前期接收到的各个G节点设备的第一信息,显示可用的G节点设备列表。响应于用户在G节点设备列表中选择第一设备(如客厅的电视)的操作,第二设备开始接收第一设备发送的第二信息。
或者,若第一设备是第二设备常用的投屏设备,则第二设备在检测到用户对视频播放界面上的投屏控件的操作之后,直接将第一设备作为默认投屏设备,并接收第一设备发送的第二信息。
第二信息包括SLB基本连接信息中,前期未通过SLE广播发送给第二设备的部分。
在一些实施例中,若第一信息中的SLB基本连接信息仅包括广播信息,则第二信息包括FTS、STS和通信域系统信息。
在另一些实施例中,若第一信息中的SLB基本连接信息仅包括通信域系统信息,则第二信息包括FTS、STS和广播信息。
在又一些实施例中,若第一信息中的SLB基本连接信息同时包括广播信息和通信域系统信息,则第二信息包括FTS和STS。
在其他一些实施例中,若第一信息中不包括SLB基本连接信息,则第二信息包括FTS、 STS、广播信息和通信域系统信息。
S1703具体包括如下内容3-1~3-4。
3-1,第二设备的应用程序向第二设备的基础应用层发送业务需求。
以第一设备是电视,第二设备是手机为例,手机可以在检测到用户在投屏设备搜索结果中选择连接电视之后,向基础应用层发送业务需求。
3-2,当业务需求为大带宽业务需求时,第二设备的基础应用层确定与第一设备建立SLB连接,向第二设备的基础服务层发送SLB连接指令。
3-3,第二设备的基础服务层向第二设备的SLB模块发送第一信息和指示第二设备连接第一设备的指示信息。
3-4,第二设备接收第一设备发送的第二信息。
需要说明的是,若第一信息中包括第一设备的广播频点和带宽,即第二设备在接收第二信息时已经知道第一设备发送第二信息的广播频点和带宽,那么第二设备可以在该广播频点和带宽下接收第二信息,从而提高第二信息的接收效率。
第一设备在发送第二信息时,先发送FTS和STS。第二设备的SLB模块在接收FTS和/或STS,并根据FTS和/或STS与第一设备实现下行同步。具体参见前文描述,本实施例在此不再赘述。在完成下行同步之后,第二设备即可接收广播信息,和/或,根据广播信息接收通信域系统信息,和/或,在后续根据通信域系统信息与第二设备建立连接。
在一些实施例中,在第一信息中不包括广播信息的全部内容的情况下,第一设备在与第二设备同步之后,还需要向第二设备发送广播信息中未发送给第二设备的部分。而第二设备则需要通过SLB接入技术接收该部分广播信息,以保证第二设备在与第一设备进行同步连接之前,接收到完整的广播信息。
在一些实施例中,在第一信息中不包括通信域系统信息的全部内容的情况下,第一设备还需要向第二设备发送通信域系统信息中未发送给第二设备的部分。而第二设备则需要通过SLB接入技术接收该部分通信域系统信息,以保证第二设备在与第一设备进行同步连接之前,接收到完整的通信域系统信息。
S1704,第二设备和第一设备根据第一信息和第二信息建立SLB连接。具体包括如下内容4-1~4-6。
4-1,第二设备的SLB模块根据第一信息和第二信息中的广播信息和通信域系统信息同步连接第一设备的SLB模块。
需要说明的是,在本实施例中,由于SLB辅助连接信息中不包括第一设备的物理层标识,即第一设备没有向第二设备分配第一设备的物理层标识,并且,第一设备发送给第二设备的通信域系统信息中包括的是第一设备的竞争接入资源信息,因此,第二设备在连接第一设备的过程中,无法选择第一设备的非竞争随机接入资源,只能进行竞争随机接入。竞争随机接入的过程具体请参见S404中的相关描述,本实施例在此不再赘述。
4-2,第二设备的SLB模块与第一设备的SLB模块进行配对与鉴权。
4-3,第一设备的SLB模块向第一设备的基础服务层发送SLB连接结果。
4-4,第一设备的基础服务层向第一设备的基础应用层发送SLB连接结果。
4-5,第二设备的SLB模块向第二设备的基础服务层发送SLB连接结果。
4-6,第二设备的基础服务层向第二设备的基础应用层发送SLB连接结果。
通过上述步骤S1701~S1704,在第一设备和第二设备在未建立SLE连接的情况下,可以通过SLE广播辅助快速建立第一设备与第二设备的SLB连接,具有较好的用户体验。
以建立SLB连接过程中涉及的第一信息包括FTS根指数、STS根指数、广播信息和通信域系统信息,第二信息包括FTS和STS为例,结合图21可知,在第一设备和第二设备建立SLB连接的过程中,第一设备和第二设备交互的过程主要如下内容(a)~(c),各部分内容的交互时长可参见表4所示。
(a)第一设备向第二设备提前广播第一信息,即FTS根指数、STS根指数、广播信息和通信域系统信息。
(b)第二设备接收第一设备发送的第二信息,即FTS、STS。
(c)第一设备和第二设备进行竞争随机接入。
表4设备交互过程耗时
Figure PCTCN2022114541-appb-000010
参见表4可知,本实施例提供的SLB连接过程的耗时较短,仅需约30ms。相比于无SLE辅助的SLB连接建立过程,在SLE连接的辅助下,SLB的连接建立过程减少了约110ms。其主要原因在于同步连接过程耗时显著降低。
在基于SLE广播辅助建立SLB连接的过程中,第一设备和第二设备的交互过程用时较短,具体包括以下因素(1)~(3):
(1)FTS和STS类型的检测时间缩短。这是由于第二设备在接收FTS和STS时,已知FTS根指数和STS根指数,第二设备可以直接使用对应的根指数生成对应的本地序列,再对使用该本地序列对接收的FTS和STS进行相关处理,确定FTS和STS的类型。
(2)无需在同步连接过程中通过盲检接收广播信息。这是由于第一设备在前期已通过扫描接收SLE广播获取广播信息,因此,在该同步连接过程中,第二设备无需再检测广播信息。
(3)无需在同步连接过程中通过盲检接收通信域系统信息。这是由于第一设备在前期已通过扫描接收SLE广播获取了通信域系统信息,因此,在该同步连接过程中,第二设备无需再接收通信域系统信息。
综上所述,第一设备和第二设备在未建立SLE连接的情况下,第一设备通过在SLE广播中携带SLB辅助连接信息和/或SLB基本连接信息中的一部分,第二设备在SLE扫描过程即能预先获取广播中的SLB辅助连接信息,以备使用。当第二设备后续因为业务需求 需要建立SLB连接时,可利用已获取的SLB辅助连接信息和/或SLB基本连接信息中的一部分,快速与第一设备建立SLB连接。该方法显著减少了第一设备和第二设备同步连接过程的耗时,从而能够提高了SLB连接的建立效率,同时提高了用户体验。
下面对本申请实施例涉及的第一设备(G节点设备)和第二设备(T节点设备)进行配对于鉴权的过程进行示例性说明。
图22是本申请实施例提供的第一设备和第二设备进行配对与鉴权的流程图。该流程具体包括如下步骤S2201~S2203。
S2201,第一设备和第二设备协商配对方式。
第一设备(G节点设备)和第二设备(T节点设备)的配对方式包括:数值比较、通信码输入、直接连接、PIN码输入和带外(out of band,OOB)(如基于SLE连接传输)等方式。第一设备和第二设备根据输入输出(input/output,IO)能力协商确定配对方式。其中,IO能力包括是否有键盘输入、是否有屏幕输出等。
在本实施例中,配对方式的具体协商过程包括如下内容:
第二设备的SLB模块向第一设备的SLB模块发送安全请求,该安全请求用于第二设备主动发起配对流程。需要说明的是,在第一设备主动发起配对流程的情况下,第二设备也可以不向第一设备发送安全请求。
第一设备的SLB模块向第二设备的SLB模块发送配对请求,包括第一设备的SLB模块的IO能力等信息,以向第一设备发起配对流程。
第二设备的SLB模块向第一设备的SLB模块发送配对回应消息,包括第二设备的SLB模块的IO能力等信息。
第一设备的SLB模块向第二设备的SLB模块发送配对确认消息,用于与第二设备交互公钥和随机参数等。
第二设备的SLB模块向第一设备的SLB模块发送配对初始信息,该配对初始信息包括第二设备的公钥和随机参数等。
S2202,第一设备和第二设备相互进行鉴权。
第一设备和第二设备根据S2201协商的配对方式(如PIN码输入)进行配对,即完成身份校验信息的交互,根据该身份校验信息生成校验迪菲-赫尔曼(diffie-hellman,DH)秘钥(即DH key),并校验DH key,完成相互鉴权。
在第一设备和第二设备基于SLE连接辅助建立SLB连接的过程中,第一设备和第二设备可以基于SLE连接传递身份校验信息。
S2203,第一设备和第二设备执行加密控制流程。
可选的,第二设备的SLB模块向第一设备的SLB模块发送加密启动指令之后,第一设备和第二设备使用DH key对传输的数据或者对SLB链路加密。或者,在第一设备和第二设备之间校验完DH key之后,直接使用DH key对传输的数据或者对SLB链路加密。
第一设备的SLB模块和第二设备的SLB模块在通信过程中,可以刷新秘钥。刷新秘钥的过程包括暂停加密和加密启动两个流程,即需要先暂停加密,然后更新秘钥,再使用新的秘钥启动加密。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述各个实施例提供的建立SLB连接的方法,本申请实施例还提供如下技术方案。
本申请实施例提供一种建立SLB连接的装置,该装置应用于第一设备,该装置包括:
第一SLE模块,用于通过SLE接入技术向第二设备发送第一信息。
第一SLB模块,用于通过SLB接入技术向第二设备发送第二信息;以及,根据第二设备的请求与第二设备建立SLB连接,该请求是第二设备根据第一信息和第二信息发送的。
其中,第一设备为管理节点设备,第二设备为终端节点设备。该第一设备和第二设备均支持通过SLB接入技术和SLE接入技术通信。
可选的,第一SLE模块,用于通过SLE接入技术向第二设备发送第一信息,包括:第一SLE模块,用于在第一设备和第二设备已建立SLE连接的情况下,第一设备通过SLE连接向第二设备发送第一信息;或者,在第一设备和第二设备未建立SLE连接的情况下,第一设备通过SLE广播向第二设备发送第一信息。
可选的,第一信息包括以下内容中的至少一个:第一设备的广播频点和带宽;第一设备的同步信号的根指数;第一设备的物理层标识;第一设备的认证凭证;第一设备的广播信息的全部或部分内容;第一设备的通信域系统信息的全部或部分内容。其中,在第一信息经由SLE广播发送的情况下,第一信息中不包括物理层标识和认证凭证。
可选的,第二信息包括:同步信号;以及,广播信息中未包括在第一信息中的部分;以及,通信域系统信息中未包括在第一信息中的部分。
本申请另一实施例还提供一种建立SLB连接的装置,该装置应用于第二设备。该装置包括:
第二SLE模块,用于通过SLE接入技术接收第一设备发送的第一信息。
第二SLB模块,用于通过SLB接入技术接收第一设备发送的第二信息。以及,根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接。
其中,第一设备为管理节点设备,第二设备为终端节点设备。该第一设备和第二设备均支持通过SLB接入技术和SLE接入技术通信。
可选的,第二SLE模块,用于通过SLE接入技术接收第一设备发送的第一信息,包括:在第一设备和第二设备已建立SLE连接的情况下,第二设备通过SLE连接接收第一设备发送的第一信息。或者,在第一设备和第二设备未建立SLE连接的情况下,第二设备通过SLE广播接收第一设备发送的第一信息。
可选的,第一信息包括以下内容中的至少一个:第一设备的广播频点和带宽;第一设备的同步信号的根指数;第一设备的物理层标识;第一设备的认证凭证;第一设备的广播信息的全部或者部分内容;第一设备的通信域系统信息的全部或者部分内容。其中,在第一信息通过SLE广播接收的情况下,第一信息中不包括物理层标识和认证凭证。
可选的,第二信息包括:同步信号;以及,广播信息中未包括在第一信息中的部分;以及,通信域系统信息中未包括在第一信息中的部分。
可选的,当第一信息包括广播频点和带宽时,第二SLB模块,用于根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:
第二SLB模块,用于根据该广播频点和带宽接收同步信号;根据同步信号与第一设备进行同步;根据广播频点和带宽接收第二信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;根据广播信息和通信域系统信息,通过SLB接 入技术与第一设备建立SLB连接。
可选的,当第一信息包括同步信号的根指数时,第二SLB模块,用于根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:
第二SLB模块,用于根据同步信号的根指数,接收同步信号;根据同步信号与第一设备进行同步;接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;根据广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
可选的,当同步信号包括FTS和STS,同步信号的根指数包括FTS根指数和STS根指数时,第二SLB模块,用于根据同步信号的根指数,接收同步信号,包括:第二SLB模块,用于根据FTS根指数接收FTS,根据STS根指数接收STS。
可选的,当第一信息包括第一设备的物理层标识时,第二SLB模块,用于根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:第二设备接收同步信号;第二设备根据同步信号与第一设备进行同步;第二设备接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;第二设备根据物理层标识、广播信息和通信域系统信息,与第一设备通过非竞争随机接入的方式建立SLB连接。
可选的,当第一信息包括认证凭证时,第二SLB模块,用于根据第一信息和第二信息,通过SLB接入技术与第一设备建立SLB连接,包括:
第二SLB模块,用于接收同步信号;根据同步信号与第一设备进行同步;接收广播信息中未包括在第一信息中的部分,以及,通信域系统信息中未包括在第一信息中的部分;根据认证凭证、广播信息和通信域系统信息,通过SLB接入技术与第一设备建立SLB连接。
本实施例提供一种电子设备,该电子设备包括上述实施例中示出的星闪无线短距通信协议架构,并且被配置为执行上述各个实施例中示出的第一设备或者第二设备所执行的建立SLB连接的方法。
本实施例提供一种芯片,参见图23所示,该芯片包括处理器和存储器,该存储器中存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例中,第一设备或者第二设备所执行的基于SLE技术辅助的建立SLB连接的方法。
本实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例中,第一设备或者第二设备所执行的基于SLE技术辅助的建立SLB连接的方法。
本实施例提供一种计算机程序产品,该程序产品包括计算机程序,当该计算机程序被电子设备运行时,使得电子设备实现上述各实施例中,第一设备或者第二设备所执行的基于SLE技术辅助建立SLB连接的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在本申请所提供的实施例中,各个框架或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个框架或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种建立星闪基础SLB连接的方法,其特征在于,应用于第一设备和第二设备,所述第一设备为管理节点设备,所述第二设备为终端节点设备,所述第一设备和所述第二设备均支持通过SLB接入技术和星闪低功耗SLE接入技术通信,所述方法包括:
    所述第一设备通过所述SLE接入技术向所述第二设备发送第一信息;
    所述第一设备通过所述SLB接入技术向所述第二设备发送第二信息;
    所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备通过所述SLE接入技术向所述第二设备发送第一信息,包括:
    在所述第一设备和所述第二设备已建立SLE连接的情况下,所述第一设备通过所述SLE连接向所述第二设备发送所述第一信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备通过所述SLE接入技术向所述第二设备发送第一信息,包括:
    在所述第一设备和所述第二设备未建立SLE连接的情况下,所述第一设备通过SLE广播向所述第二设备发送所述第一信息。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一信息包括以下内容中的至少一个:
    所述第一设备的广播频点和带宽;
    所述第一设备的同步信号的根指数;
    所述第一设备的物理层标识;
    所述第一设备的认证凭证;
    所述第一设备的广播信息的全部或部分内容;
    所述第一设备的通信域系统信息的全部或部分内容;
    其中,在所述第一信息经由SLE广播发送的情况下,所述第一信息中不包括所述物理层标识和所述认证凭证。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息包括:
    所述同步信号;以及,
    所述广播信息中未包括在所述第一信息中的部分;以及,
    所述通信域系统信息中未包括在所述第一信息中的部分。
  6. 根据权利要求5所述的方法,其特征在于,当所述第一信息包括所述广播频点和所述带宽时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备根据所述广播频点和所述带宽接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备根据所述广播频点和所述带宽接收所述第二信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  7. 根据权利要求5所述的方法,其特征在于,当所述第一信息包括所述同步信号的根指数时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备根据所述同步信号的根指数,接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  8. 根据权利要求7所述的方法,其特征在于,所述同步信号包括第一训练信号FTS和第二训练信号STS,所述同步信号的根指数包括FTS根指数和STS根指数,所述第二设备根据所述同步信号的根指数,接收所述同步信号,包括:
    所述第二设备根据所述FTS根指数接收FTS,根据所述STS根指数接收STS。
  9. 根据权利要求5所述的方法,其特征在于,当所述第一信息包括所述第一设备的物理层标识时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述物理层标识、所述广播信息和所述通信域系统信息,与所述第一设备通过非竞争随机接入的方式建立SLB连接。
  10. 根据权利要求5所述的方法,其特征在于,当所述第一信息包括所述认证凭证时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述认证凭证、所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  11. 一种建立星闪基础SLB连接的方法,其特征在于,应用于第一设备,所述第一设备支持通过SLB接入技术和星闪低功耗SLE接入技术通信,所述方法包括:
    所述第一设备通过所述SLE接入技术向第二设备发送第一信息;
    所述第一设备通过所述SLB接入技术向所述第二设备发送第二信息;
    所述第一设备根据所述第二设备的请求与所述第二设备建立SLB连接,所述请求是所述第二设备根据所述第一信息和所述第二信息发送的;
    其中,所述第一设备为管理节点设备,所述第二设备为终端节点设备。
  12. 根据权利要求11所述的方法,其特征在于,所述第一设备通过所述SLE接入技术 向所述第二设备发送第一信息,包括:
    在所述第一设备和所述第二设备已建立SLE连接的情况下,所述第一设备通过所述SLE连接向所述第二设备发送所述第一信息。
  13. 根据权利要求11所述的方法,其特征在于,所述第一设备通过所述SLE接入技术向所述第二设备发送第一信息,包括:
    在所述第一设备和所述第二设备未建立SLE连接的情况下,所述第一设备通过SLE广播向所述第二设备发送所述第一信息。
  14. 根据权利要求11~13任一项所述的方法,其特征在于,所述第一信息包括以下内容中的至少一个:
    所述第一设备的广播频点和带宽;
    所述第一设备的同步信号的根指数;
    所述第一设备的物理层标识;
    所述第一设备的认证凭证;
    所述第一设备的广播信息的全部或部分内容;
    所述第一设备的通信域系统信息的全部或部分内容;
    其中,在所述第一信息经由SLE广播发送的情况下,所述第一信息中不包括所述物理层标识和所述认证凭证。
  15. 根据权利要求14所述的方法,其特征在于,所述第二信息包括:
    所述同步信号;以及,
    所述广播信息中未包括在所述第一信息中的部分;以及,
    所述通信域系统信息中未包括在所述第一信息中的部分。
  16. 一种建立星闪基础SLB连接的方法,其特征在于,应用于第二设备,所述第二设备支持通过SLB接入技术和星闪低功耗SLE接入技术通信,所述方法包括:
    所述第二设备通过所述SLE接入技术接收第一设备发送的第一信息;
    所述第二设备通过所述SLB接入技术接收所述第一设备发送的第二信息;
    所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接;
    其中,所述第一设备为管理节点设备,所述第二设备为终端节点设备。
  17. 根据权利要求16所述的方法,其特征在于,所述第二设备通过所述SLE接入技术接收第一设备发送的第一信息,包括:
    在所述第一设备和所述第二设备已建立SLE连接的情况下,所述第二设备通过所述SLE连接接收所述第一设备发送的所述第一信息。
  18. 根据权利要求16所述的方法,其特征在于,所述第二设备通过所述SLE接入技术接收第一设备发送的第一信息,包括:
    在所述第一设备和所述第二设备未建立SLE连接的情况下,所述第二设备通过SLE广播接收所述第一设备发送的所述第一信息。
  19. 根据权利要求16~18任一项所述的方法,其特征在于,所述第一信息包括以下内容中的至少一个:
    所述第一设备的广播频点和带宽;
    所述第一设备的同步信号的根指数;
    所述第一设备的物理层标识;
    所述第一设备的认证凭证;
    所述第一设备的广播信息的全部或者部分内容;
    所述第一设备的通信域系统信息的全部或者部分内容;
    其中,在所述第一信息通过SLE广播接收的情况下,所述第一信息中不包括所述物理层标识和所述认证凭证。
  20. 根据权利要求19所述的方法,其特征在于,所述第二信息包括:
    所述同步信号;以及,
    所述广播信息中未包括在所述第一信息中的部分;以及,
    所述通信域系统信息中未包括在所述第一信息中的部分。
  21. 根据权利要求20所述的方法,其特征在于,当所述第一信息包括所述广播频点和所述带宽时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备根据所述广播频点和所述带宽接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备根据所述广播频点和所述带宽接收所述第二信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  22. 根据权利要求20所述的方法,其特征在于,当所述第一信息包括所述同步信号的根指数时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备根据所述同步信号的根指数,接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  23. 根据权利要求22所述的方法,其特征在于,所述同步信号包括第一训练信号FTS和第二训练信号STS,所述同步信号的根指数包括FTS根指数和STS根指数,所述第二设备根据所述同步信号的根指数,接收所述同步信号,包括:
    所述第二设备根据所述FTS根指数接收FTS,根据所述STS根指数接收STS。
  24. 根据权利要求20所述的方法,其特征在于,当所述第一信息包括所述第一设备的物理层标识时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信 域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述物理层标识、所述广播信息和所述通信域系统信息,与所述第一设备通过非竞争随机接入的方式建立SLB连接。
  25. 根据权利要求20所述的方法,其特征在于,当所述第一信息包括所述认证凭证时,所述第二设备根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接,包括:
    所述第二设备接收所述同步信号;
    所述第二设备根据所述同步信号与所述第一设备进行同步;
    所述第二设备接收所述广播信息中未包括在所述第一信息中的部分,以及,所述通信域系统信息中未包括在所述第一信息中的部分;
    所述第二设备根据所述认证凭证、所述广播信息和所述通信域系统信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  26. 一种通信系统,其特征在于,包括第一设备和第二设备,所述第一设备为管理节点设备,所述第二设备为终端节点设备,所述第一设备和所述第二设备均支持通过星闪基础SLB接入技术和星闪低功耗SLE接入技术通信,
    所述第一设备被配置为,
    通过所述SLE接入技术向所述第二设备发送第一信息;
    通过所述SLB接入技术向所述第二设备发送第二信息;
    所述第二设备被配置为,
    根据所述第一信息和所述第二信息,通过所述SLB接入技术与所述第一设备建立SLB连接。
  27. 一种电子设备,其特征在于,所述电子设备支持通过星闪基础SLB接入技术和星闪低功耗SLE接入技术通信,且所述电子设备为管理节点设备,所述电子设备被配置为执行如权利要求11~15任一项所述的建立SLB连接的方法。
  28. 一种电子设备,其特征在于,所述电子设备支持通过星闪基础SLB接入技术和星闪低功耗SLE接入技术通信,且所述电子设备为终端节点设备,所述电子设备被配置为执行如权利要求16~25任一项所述的建立SLB连接的方法。
  29. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器执行存储器中存储的计算机程序,以实现如权利要求11~15任一项,或者,权利要求16~25任一项所述的建立SLB连接的方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求11~15任一项,或者,权利要求16~25任一项所述的建立SLB连接的方法。
  31. 一种计算机程序产品,其特征在于,所述程序产品包括计算机程序,当所述计算机程序被电子设备运行时,使得所述电子设备实现如权利要求11~15任一项,或者,权利要求16~25任一项所述的建立SLB连接的方法。
PCT/CN2022/114541 2021-10-22 2022-08-24 一种建立slb连接的方法、电子设备和通信系统 WO2023065813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111234162.8 2021-10-22
CN202111234162.8A CN116017377A (zh) 2021-10-22 2021-10-22 一种建立slb连接的方法、电子设备和通信系统

Publications (1)

Publication Number Publication Date
WO2023065813A1 true WO2023065813A1 (zh) 2023-04-27

Family

ID=86017901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114541 WO2023065813A1 (zh) 2021-10-22 2022-08-24 一种建立slb连接的方法、电子设备和通信系统

Country Status (2)

Country Link
CN (1) CN116017377A (zh)
WO (1) WO2023065813A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388697A (zh) * 2001-05-30 2003-01-01 Lg电子株式会社 利用蓝牙终端进行直接话音电话呼叫的方法
WO2018000134A1 (zh) * 2016-06-27 2018-01-04 华为技术有限公司 一种蓝牙连接的方法及终端
CN108064036A (zh) * 2017-12-04 2018-05-22 重庆信络威科技有限公司 蓝牙低功耗协议结构及网络调度方法
CN110191442A (zh) * 2019-04-18 2019-08-30 华为技术有限公司 一种蓝牙连接方法、设备及系统
CN112272375A (zh) * 2020-10-29 2021-01-26 博流智能科技(南京)有限公司 蓝牙通信系统及方法以及蓝牙通信转换装置
CN112449328A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种蓝牙搜索方法、系统及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388697A (zh) * 2001-05-30 2003-01-01 Lg电子株式会社 利用蓝牙终端进行直接话音电话呼叫的方法
WO2018000134A1 (zh) * 2016-06-27 2018-01-04 华为技术有限公司 一种蓝牙连接的方法及终端
CN108064036A (zh) * 2017-12-04 2018-05-22 重庆信络威科技有限公司 蓝牙低功耗协议结构及网络调度方法
CN110191442A (zh) * 2019-04-18 2019-08-30 华为技术有限公司 一种蓝牙连接方法、设备及系统
CN112449328A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种蓝牙搜索方法、系统及相关装置
CN112272375A (zh) * 2020-10-29 2021-01-26 博流智能科技(南京)有限公司 蓝牙通信系统及方法以及蓝牙通信转换装置

Also Published As

Publication number Publication date
CN116017377A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US8437275B2 (en) Remote wireless service invocation with efficient power use on target wireless device
US10136429B2 (en) Method for transmitting and receiving audio data in wireless communication system supporting bluetooth communication and device therefor
US10034160B2 (en) Method and apparatus for transmitting or receiving data using bluetooth in wireless communication system
WO2021018153A1 (zh) 一种设备配网注册的方法、设备及系统
WO2018000134A1 (zh) 一种蓝牙连接的方法及终端
TW202032927A (zh) 在藍芽真無線身歷聲(tws)耳塞式耳機之間的快速角色切換
US20190215673A1 (en) Method for controlling device by using bluetooth technology, and apparatus
US10349253B2 (en) Method for transmitting and receiving data, and device therefor
US10225873B2 (en) System and method for peripheral initiated host arbitration
RU2587417C2 (ru) Системы и способы для аутентификации
US10484363B2 (en) Method and apparatus for authenticating a device using Bluetooth technology
US9961531B2 (en) Method and device for controlling device using bluetooth in wireless communication system
US8631232B2 (en) Wireless personal area network accessing method
US10420156B2 (en) Wireless communication terminal, wireless communication system, wireless communication method, and non-transitory medium saving program
EP3114821B1 (en) Method and devices for establishing a connection between a seeker device and a target device
WO2020020333A1 (zh) 随机接入方法及相关设备
US10492060B2 (en) Method and device for transmitting/receiving data in wireless communication system
US20180146450A1 (en) Method for paging between nan devices, and nan device
US20220391165A1 (en) Method for transmitting audio data using short-range communication in wireless communication system, and device for same
US20230379705A1 (en) Electronic device and method for setting up a data path
US20210243599A1 (en) User authentication method through bluetooth device and device therefor
KR20090009280A (ko) 통신 장치 및 그의 제어 방법, 및 기억 매체
WO2023065813A1 (zh) 一种建立slb连接的方法、电子设备和通信系统
US20220346040A1 (en) Method for transmitting audio data using short-range wireless communication in wireless communication system, and apparatus therefor
US20230103916A1 (en) Audio data reception method using short-range wireless communication in wireless communication system, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882432

Country of ref document: EP

Kind code of ref document: A1