WO2023065781A1 - 复合机器人的控制方法、装置及系统 - Google Patents

复合机器人的控制方法、装置及系统 Download PDF

Info

Publication number
WO2023065781A1
WO2023065781A1 PCT/CN2022/111062 CN2022111062W WO2023065781A1 WO 2023065781 A1 WO2023065781 A1 WO 2023065781A1 CN 2022111062 W CN2022111062 W CN 2022111062W WO 2023065781 A1 WO2023065781 A1 WO 2023065781A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical arm
displacement value
force
target
motion mechanism
Prior art date
Application number
PCT/CN2022/111062
Other languages
English (en)
French (fr)
Inventor
许雄
刘博峰
戚祯祥
杨帆
李明洋
王家鹏
Original Assignee
节卡机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 节卡机器人股份有限公司 filed Critical 节卡机器人股份有限公司
Priority to EP22871098.4A priority Critical patent/EP4205915A1/en
Priority to US18/036,779 priority patent/US20240017407A1/en
Priority to MX2023006910A priority patent/MX2023006910A/es
Priority to JP2023533806A priority patent/JP2023552991A/ja
Publication of WO2023065781A1 publication Critical patent/WO2023065781A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H7/00Devices for suction-kneading massage; Devices for massaging the skin by rubbing or brushing not otherwise provided for
    • A61H7/002Devices for suction-kneading massage; Devices for massaging the skin by rubbing or brushing not otherwise provided for by rubbing or brushing
    • A61H7/004Devices for suction-kneading massage; Devices for massaging the skin by rubbing or brushing not otherwise provided for by rubbing or brushing power-driven, e.g. electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1659Free spatial automatic movement of interface within a working area, e.g. Robot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39338Impedance control, also mechanical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39339Admittance control, admittance is tip speed-force

Definitions

  • the present application relates to the technical field of intelligent control, for example, to a control method, device and system of a compound robot.
  • composite robots combine the advantages of industrial, mobile, and collaborative robots. Services, rehabilitation medicine, special operations and other fields have broad application prospects, and have become an important direction leading the development of robots in the future. In the field of rehabilitation medicine, there are many cases or products that use robots instead of masseurs for massage. However, mainstream composite robots or mobile robotic arms often control the robotic arm and mobile chassis independently, which cannot give full play to the performance advantages of composite robots and limits the application of massage robots.
  • the task space is divided into position control and force control subspaces, because neither position nor force can be controlled along any given direction, force control is generally performed in the direction of the vertical plane, and in the tangential plane The direction is controlled by the position, which is not convenient for people to freely tow the composite robot.
  • This application provides a control method, device and system for a composite robot, which can realize the dynamic coupling between the mechanical arm and the motion mechanism, and only need a small force to complete the flexible following of the robot when dragging the composite robot, and make the dragging
  • the drag effect is more in line with the needs of human-computer interaction.
  • the application provides a control method for a composite robot, which is applied to a controller in a mechanical arm of a composite robot, where the mechanical arm is installed on a motion mechanism; a force sensor is installed on the mechanical arm; the controller is connected to the motion mechanism by communication; the method include:
  • each set of displacement values includes the first displacement value corresponding to the mechanical arm and the corresponding first displacement value of the kinematic mechanism
  • the second displacement value the preset model includes an admittance model or an impedance model
  • the first target displacement value corresponding to the mechanical arm and the second target displacement value corresponding to the motion mechanism are obtained;
  • the present application also provides a control device for a composite robot, which is applied to a controller in a mechanical arm of a composite robot.
  • the mechanical arm is mounted on a motion mechanism; a force sensor is installed on the mechanical arm; the controller is connected to the motion mechanism by communication;
  • the Devices include:
  • the torque acquisition module is configured to obtain multiple forces and multiple torques collected by the force sensor under the current motion when the mechanical arm is pulled;
  • the displacement calculation module is configured to perform calculations based on multiple forces and multiple moments, preset expected forces and moments, and preset models to obtain multiple sets of displacement values; wherein each set of displacement values includes the corresponding first displacement of the mechanical arm value and the second displacement value corresponding to the motion mechanism; the preset model includes an admittance model or an impedance model;
  • the target displacement determination module is configured to perform an optimization solution according to multiple sets of displacement values to obtain a first target displacement value corresponding to the mechanical arm and a second target displacement value corresponding to the motion mechanism;
  • the motion control module is configured to control the movement of the mechanical arm and the kinematic mechanism according to the first target displacement value and the second target displacement value;
  • the cycle module is configured to repeatedly execute the operation of acquiring multiple forces and multiple torques collected by the force sensor in the current motion until the mechanical arm and the motion mechanism stop moving.
  • the application also provides a control system for a composite robot, the system includes a composite robot and a massage platform; the composite robot and the massage platform are connected in communication; the composite robot includes a mechanical arm and a motion mechanism; a controller and a force sensor are installed in the mechanical arm, and the mechanical The arm is installed on the kinematic mechanism; the controller communicates with the kinematic mechanism; the controller is configured to execute the control method of the above-mentioned compound robot.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions When the computer-executable instructions are called and executed by the processor, the computer-executable instructions prompt the processor to realize the above-mentioned composite robot. Control Method.
  • FIG. 1 is a flow chart of a control method for a composite robot provided in an embodiment of the present application
  • FIG. 2 is a structural diagram of an admittance control system provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a composite robot control device provided in an embodiment of the present application.
  • Fig. 4 is a structural block diagram of a compound robot control system provided by an embodiment of the present application.
  • Mainstream composite robots or mobile manipulators often control the manipulator and the mobile chassis independently, which cannot give full play to the performance advantages of the composite robot, and also limits the application of massage robots.
  • the task space is divided into The subspace of position control and force control, because neither position nor force can be controlled along any given direction, force control is generally performed in the direction of the vertical plane, and position control is performed in the direction of the tangential plane.
  • the above hybrid force control method ignores the manipulator and The dynamic coupling between environments is not convenient for humans to freely tow the composite robot.
  • the embodiments of the present application provide a control method, device and system for a composite robot, which can realize the dynamic coupling between the mechanical arm and the motion mechanism, and only need a small force to complete the flexible following of the robot when dragging the composite robot, and Make the dragging effect more in line with the needs of human-computer interaction.
  • An embodiment of the present application provides a control method for a composite robot, which is applied to a controller in a mechanical arm of the composite robot, where the mechanical arm is installed on a motion mechanism; a force sensor is installed on the mechanical arm; and the controller is connected to the motion mechanism by communication.
  • a six-dimensional force sensor is installed at the end of the robotic arm; the motion mechanism can use an automated guided vehicle (Automated Guided Vehicle, AGV) platform.
  • AGV Automated Guided Vehicle
  • the method includes:
  • the force sensor described above includes a six-dimensional sensor installed at the end of the robot arm, or a joint sensor installed at each joint of the robot arm.
  • a six-dimensional sensor installed at the end of the manipulator when the manipulator is pulled, the force and moment on the six degrees of freedom of the manipulator can be accurately measured through the six-dimensional force sensor installed at the end of the manipulator. That is, the force on the three translational degrees of freedom x, y, z of the mechanical arm and the torque on the three rotational degrees of freedom rx, ry, rz.
  • each set of displacement values includes the first displacement value corresponding to the mechanical arm and the corresponding first displacement value of the kinematic mechanism
  • the second displacement value the preset model includes an admittance model or an impedance model.
  • the above-mentioned multiple forces and multiple moments include: forces corresponding to three translational degrees of freedom among the six degrees of freedom and forces corresponding to three rotational degrees of freedom
  • For torque refer to the structure diagram of the admittance control system shown in Figure 2, where f d is the preset expected force or torque, f h is the actually received force or torque, and f u is the force or torque deviation value.
  • the torque corresponding to the three rotational degrees of freedom and the preset expected force and moment determine the force or moment deviation value; input the force or torque deviation value into the admittance model Solve to obtain a set of displacement values after admittance control; according to the force corresponding to three translational degrees of freedom in the six degrees of freedom and the torque corresponding to three rotational degrees of freedom, the displacement value after this set of admittance control is inverse solution, multiple sets of displacement values can be obtained, that is, ⁇ (q d ), ⁇ (q d ) is a set of inverse solutions obtained from a set of admittance-controlled displacement values.
  • the set of admittance-controlled displacement values includes a first admittance-controlled displacement value corresponding to the mechanical arm and a second admittance-controlled displacement value corresponding to the motion mechanism.
  • M is the inertia coefficient
  • K is the stiffness coefficient
  • B is the damping coefficient
  • f is the deviation value between the expected human-computer interaction force or moment and the actual human-computer interaction force or moment
  • x d is the displacement value after admittance control
  • x d is the displacement value after admittance control
  • x d is the displacement value after admittance control
  • x d is the displacement value after admittance control
  • the admittance model When the handle below the force sensor is dragged, the admittance model will output the target acceleration according to the set inertia coefficient, stiffness coefficient, and damping coefficient. Combined with the current speed and position obtained by the AGV sensor, the target speed and position can be calculated. That is, a set of displacement values after admittance control, and then calculate the inverse solution according to the displacement values of this set of admittance control to obtain the first displacement value and motion mechanism corresponding to the mechanical arm included in each set of displacement values in multiple sets of displacement values The corresponding second displacement value.
  • the steps of the above optimization solution include: obtaining the current kinematic parameters and force-related parameters (such as AGV displacement-speed-acceleration; displacement-speed-acceleration at the end of the mechanical arm; six degrees of freedom at the end of the mechanical arm: x, y, z and rx, ry, rz); determine the filter condition according to the current kinematic parameters and force-related parameters; determine the displacement value satisfying the filter condition in multiple sets of displacement values as the target displacement value; the target displacement value includes the first target corresponding to the mechanical arm The displacement value and the second target displacement value corresponding to the motion mechanism.
  • the current kinematic parameters and force-related parameters such as AGV displacement-speed-acceleration; displacement-speed-acceleration at the end of the mechanical arm; six degrees of freedom at the end of the mechanical arm: x, y, z and rx, ry, rz
  • determine the filter condition according to the current kinematic parameters and force-related parameters determine the displacement value satisfying the filter condition in multiple
  • the optimal solution is to add constraints to all solutions to obtain a solution that satisfies the conditions, and the conditions are determined by the kinematic parameters and the forces received in different states. For example, at the beginning and end of traction, the mechanical arm is pulled first. When the displacement of the mechanical arm relative to the AGV is not large enough or the force on the mechanical arm is relatively small, the AGV basically does not move; in the traction phase, the force on the mechanical arm does not change greatly. When , the relative position of the AGV and the end of the mechanical arm is given priority. In this embodiment, the influence weight of the force or moment on the six degrees of freedom can be adjusted.
  • a first position controller is installed in the mechanical arm; a second position controller is installed in the motion mechanism; a first control signal is sent to the first position controller according to the first target displacement value, so that the first position controller according to The first control signal controls the movement of the mechanical arm; the second control signal is sent to the second position controller according to the second target displacement value, so that the second position controller controls the movement of the movement mechanism according to the second control signal.
  • q k is the output of the motion tracker for the joints of the manipulator and the AGV actual trajectory.
  • the admittance controller takes the force or torque deviation value f u as input, outputs multiple sets of displacement values ⁇ (q d ), and obtains the displacement of the mechanical arm and the motion mechanism through the optimization solution
  • the optimal solution of the value through the position controllers installed in the manipulator and the AGV respectively, controls the movement of the manipulator and the motion mechanism until the manipulator and the motion mechanism are pulled to the desired position, stop the traction, f h is equal to 0, and the force Or the torque deviation value f u is also 0, that is, the input of the admittance controller is 0, and the mechanical arm and the motion mechanism stop moving.
  • the solution given by the optimization algorithm can make the movement range of the robot arm large and the AGV movement range small if the extension degree of the robot arm is small during dragging; if the robot arm is stretched enough, the movement range of the robot arm is small when dragging.
  • the AGV has a large range of motion. This effect is more in line with the needs of human-composite robot interaction.
  • admittance control parameters on the six degrees of freedom can be set separately. Make dragging in different directions have different effects.
  • One degree of freedom can be set not to be opened for AGV, and dragging can not be opened for the robot arm (the robot arm is fixed) to make it more flexible and changeable in practical applications.
  • the control method of the composite robot provided in the embodiment of the present application can obtain multiple sets of displacements by obtaining multiple forces and multiple moments collected by the force sensor under the current motion, and calculating according to the preset expected force and torque, and the preset model value; and optimize the solution according to multiple sets of displacement values to obtain the target displacement value corresponding to the mechanical arm and the moving mechanism, and control the movement of the mechanical arm and the moving mechanism; repeat the above steps until the mechanical arm and the moving mechanism stop moving, and realize the mechanical Due to the dynamic coupling between the arm and the motion mechanism, only a small force is needed to complete the flexible following of the robot when dragging the composite robot, which is convenient for people to freely pull the composite robot.
  • the target displacement value solution obtained by the optimization solution can make When dragging, the following effects are achieved: if the stretching degree of the mechanical arm is small, the range of motion of the mechanical arm is large, and the range of motion of the kinematic mechanism is small; It is more in line with the needs of human-composite human-computer interaction.
  • the embodiment of the present application also provides a method for implementing a massage technique of a composite robot, which is implemented based on the force control function of the force sensor of the mechanical arm of the composite robot.
  • the controller of the mechanical arm communicates with the massage platform; the massage platform is equipped with pressing parameters corresponding to various massage techniques; the pressing parameters include strength and conversion speed; the controller receives the target pressing parameters sent by the massage platform; according to the target pressing parameters And the force sensor, to control the pressing method of the mechanical arm on the person being massaged, so as to achieve the target massage technique corresponding to the target pressing parameters.
  • the aforementioned massage techniques include at least one of the following: pointing method, finger pressing method, finger pushing method, elbow pushing method, palm pushing method and one-finger Zen method.
  • the kinematic description of the pointing method, the finger pressing method and the elbow point method is: fixed position on the human body surface, making vertical up and down motion; Step; "press”: gradually approach the human body, touch the surface of the human body and output a linearly increasing pressure/pressure (calculated in N or N/cm ⁇ 2) (including, initial pressure, linear increase coefficient, end pressure); “close” : Gradually move away from the human body surface, and output linearly decreasing pressure/pressure (including initial pressure, linear reduction coefficient, and end pressure);
  • the corresponding force control requirements are described as: (1) Maintain the posture of the cooperative arm and maintain the vertical surface of the human body (normal direction); (2) Real-time feedback of 6-dimensional force information in the normal direction; (3) Real-time feedback of changes in the softness of human tissue during contact with the human body; (4) According to the initial pressure, variation coefficient and end pressure, and the softness of the human body degree, continuously adjust the posture of the cooperative arm, and output linearly changing strength; the safety requirement is: ensure that the pressure/pressure is less than the
  • the kinematic description of finger push, elbow push and palm push is as follows: on a fixed path on the surface of the human body, make a uniform linear motion; maintain a certain angle relative to the surface of the human body; including three steps of "pressing”, “push” and “retracting” ;Kinetics are described as: “press”: gradually approach the human body, contact the human body surface and output a linearly increasing pressure/pressure (calculated in N or N/cm ⁇ 2) (including, initial pressure, linear increase coefficient, end pressure) ;Maintain this pressure; “Push”: while maintaining the downward pressure, output a constant thrust along the pushing path (including initial force, change system and target force); “Retract”: gradually move away from the human body surface, output linearly decreasing Pressure/pressure (including initial pressure, linear reduction coefficient, and end pressure); the corresponding force control requirements are described as: (1) the posture of the cooperative arm maintains a certain angle on the human body surface; (2) real-time feedback of normal 6-dimensional force Information; (3) Real-time feedback of
  • the kinematic description of the one-finger meditation push method is: fixed position on the surface of the human body, reciprocating rotation along the vertical axis, wherein, the angle range of forward rotation and reverse rotation is 120-180 degrees; dynamics description is: keep Vertical to the surface of the human body, including three steps of “press”, “turn” and “close”; “press”: gradually approach the human body, touch the human body surface and output linearly increasing pressure/pressure (calculated in N or N/cm ⁇ 2) ( Including, starting pressure, linear increase coefficient, end pressure); maintain this pressure; “rotation”: while maintaining downward pressure, rotate along the axis vertical to the human body surface, and output linearly changing torque (including starting torque, variation coefficient (increase or decrease) and target torque); after reaching the target torque, keep it constant; “close”: gradually move away from the surface of the human body, and output linearly decreasing pressure/pressure (including, initial pressure, linear reduction coefficient, end pressure ); the corresponding force control requirements are described as: (1) maintain the posture of the cooperative arm and keep the human body
  • the force control function of the mechanical arm can set six dimensions of damping force (torque), constant force (torque), etc., and the massage intensity can be changed by changing the force control parameters.
  • each technique and the intensity preferred by each person are also different.
  • the real-time adjustment of the force control parameters can make the robot massage closer to the masseur's technique, and the design of the safety plane also ensures the safety of the robot massage.
  • the trajectory of the robotic arm during massage is essentially determined by a series of poses in Cartesian space. Multiple functions can be realized by recording, editing, and reproducing the set of poses. Therefore, the software development of composite robots can be applied
  • the toolkit Software Development Kit, SDK
  • SDK Software Development Kit
  • the toolkit can freely adjust the speed, splicing and scaling of multi-segment tracks, so that complex massage techniques can be easily reproduced and adjusted according to different massage objects. For example, it can realize the functions of manual traction recording track, track speed editing, force control, track combination and zooming, etc. Users can record tracks by themselves and adjust the force parameters to restore complex skills, or directly use pre-designed tracks and pointers. Press, finger push, finger twist and other skills.
  • the development of the above SDK part is mainly reflected in the functional design, which can be realized by using other collaborative robots.
  • the implementation method of the composite robot massage technique provided by the embodiment of the present application is to configure the pressing parameters corresponding to various massage techniques in the controller of the mechanical arm; the controller receives the target pressing parameters sent by the massage platform; according to the target pressing parameters And the force sensor controls the way the mechanical arm presses the person being massaged to achieve the target massage technique corresponding to the target pressing parameters.
  • This method changes the massage intensity by changing the force control parameters, which can make the robot massage closer to the masseur's technique. At the same time, the safety of the robot massage is ensured.
  • the embodiment of the present application also provides a control device of a composite robot, referring to Fig. 3, the device is applied to the controller in the mechanical arm of the composite robot, and the mechanical arm is installed on the kinematic mechanism; a force sensor; the controller communicates with the motion mechanism; the device includes:
  • the torque acquisition module 31 is configured to obtain multiple forces and multiple torques collected by the force sensor under the current motion when the mechanical arm is pulled and moved;
  • the displacement calculation module 32 is configured to preset expectations according to multiple forces and multiple torques.
  • the force and moment, and the preset model are calculated to obtain multiple sets of displacement values; each set of displacement values includes the first displacement value corresponding to the mechanical arm and the second displacement value corresponding to the motion mechanism;
  • the preset model includes the admittance model or impedance model;
  • the target displacement determination module 33 is set to optimize and solve according to multiple groups of displacement values, and obtains the first target displacement value corresponding to the mechanical arm and the second target displacement value corresponding to the kinematic mechanism;
  • the motion control module 34 is set to according to the first target displacement value A target displacement value and a second target displacement value control the movement of the mechanical arm and the kinematic mechanism;
  • the cycle module 35 is configured to repeatedly execute the operation of obtaining multiple forces and multiple torques collected by the force sensor under the current motion until the mechanical arm and
  • the control device of the composite robot provided in the embodiment of the present application can obtain multiple sets of displacements by obtaining multiple forces and multiple moments collected by the force sensor under the current motion, and calculating according to the preset expected force and torque, and the preset model value; and optimize the solution according to multiple sets of displacement values to obtain the target displacement value corresponding to the mechanical arm and the moving mechanism, and control the movement of the mechanical arm and the moving mechanism; repeat the above steps until the mechanical arm and the moving mechanism stop moving, and realize the mechanical
  • the dynamic coupling between the arm and the motion mechanism requires only a small force to complete the flexible following of the robot when dragging the composite robot, and makes the dragging effect more in line with the needs of human-computer interaction.
  • the force sensor described above includes a six-dimensional sensor installed at the end of the robot arm, or a joint sensor installed at each joint of the robot arm.
  • the aforementioned preset model includes an admittance model; the force sensor is a six-dimensional sensor; the multiple forces and multiple moments include: forces corresponding to three translational degrees of freedom among the six degrees of freedom and moments corresponding to three rotational degrees of freedom.
  • the above-mentioned displacement calculation module 32 is configured to determine the force or moment deviation value according to the force corresponding to the three translational degrees of freedom in the six degrees of freedom, the moment corresponding to the three rotational degrees of freedom and the preset expected force and moment; Or the torque deviation value is input into the admittance model to solve, and a set of displacement values after admittance control is obtained; according to the force corresponding to the three translational freedoms and the torque corresponding to the three rotational degrees of freedom in the six degrees of freedom, and the The inverse solution of the displacement value after group admittance control is obtained to obtain multiple groups of displacement values.
  • the target displacement determination module 33 is set to obtain the current kinematic parameters and force-related parameters; determine the filter conditions according to the current kinematic parameters and force-related parameters; determine the displacement values satisfying the filter conditions among the multiple sets of displacement values as target displacement values;
  • the displacement value includes a first target displacement value corresponding to the mechanical arm and a second target displacement value corresponding to the motion mechanism.
  • a first position controller is installed in the above-mentioned mechanical arm; a second position controller is installed in the kinematic mechanism; the above-mentioned motion control module 34 is configured to send a first control signal to the first position controller according to the first target displacement value, so as to Make the first position controller control the movement of the mechanical arm according to the first control signal; send the second control signal to the second position controller according to the second target displacement value, so that the second position controller controls the movement according to the second control signal Institutional movement.
  • the above-mentioned controller is communicated with the massage platform; the massage platform is equipped with pressing parameters corresponding to various massage techniques; the pressing parameters include strength and conversion speed; the above-mentioned device also includes a massage module: set to receive the target pressing parameters sent by the massage platform ; According to the target pressing parameters and the force sensor, control the pressing method of the mechanical arm on the massaged person, so as to realize the target massage technique corresponding to the target pressing parameters.
  • the aforementioned massage techniques include at least one of the following: pointing method, finger pressing method, finger pushing method, elbow pushing method, palm pushing method and one-finger Zen method.
  • the control device of the compound robot provided by the embodiment of the present application has the same realization principle and technical effect as the above-mentioned embodiment of the control method of the compound robot.
  • the parts not mentioned in the embodiment of the control device of the compound robot are as follows: Reference may be made to the corresponding content in the aforementioned embodiment of the control method of the compound robot.
  • the embodiment of the present application also provides a control system of a composite robot, as shown in FIG. 4 , the system includes a composite robot 41 and a massage platform 42; the composite robot 41 and the massage platform 42 are connected in communication; A motion mechanism 412; a controller 4111 and a force sensor 4112 are installed in the mechanical arm, and the mechanical arm 411 is installed on the motion mechanism 412; the controller 4111 communicates with the motion mechanism 412; the controller 4111 is configured to execute the control method of the above-mentioned composite robot,
  • the system includes a composite robot 41 and a massage platform 42; the composite robot 41 and the massage platform 42 are connected in communication; A motion mechanism 412; a controller 4111 and a force sensor 4112 are installed in the mechanical arm, and the mechanical arm 411 is installed on the motion mechanism 412; the controller 4111 communicates with the motion mechanism 412; the controller 4111 is configured to execute the control method of the above-mentioned composite robot,
  • the controller 4111 is configured to execute the control method of the above-ment
  • the control system of the composite robot provided in the embodiment of the present application can obtain multiple sets of displacements by obtaining multiple forces and multiple moments collected by the force sensor under the current motion, and calculating according to the preset expected force and torque, and the preset model value; and optimize the solution according to multiple sets of displacement values to obtain the target displacement value corresponding to the mechanical arm and the moving mechanism, and control the movement of the mechanical arm and the moving mechanism; repeat the above steps until the mechanical arm and the moving mechanism stop moving, and realize the mechanical
  • the dynamic coupling between the arm and the motion mechanism requires only a small force to complete the flexible following of the robot when dragging the composite robot, and makes the dragging effect more in line with the needs of human-computer interaction.
  • the massage parameters can be set, and the control system can change the massage force by changing the force control parameters, which can make the robot massage closer to the masseur's technique, and at the same time ensure the safety of the robot massage.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions When invoked and executed by a processor, the computer-executable instructions prompt the processor to
  • the implementation method may refer to the above-mentioned method embodiments, which will not be repeated here.
  • the computer program product of the method, device, and system provided by the embodiments of the present application includes a computer-readable storage medium that stores program codes, and the instructions included in the program codes can be used to execute the composite robot described in the method embodiments above.
  • the control method and the implementation manner refer to the method embodiments, and details are not repeated here.
  • the functions are realized in the form of software function units and sold or used as independent products, they can be stored in a non-volatile computer-readable storage medium executable by a processor.
  • the technical solution of the present application can be embodied in the form of a software product in essence.
  • the computer software product is stored in a storage medium and includes a plurality of instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) ) Execute all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. or non-transitory storage media.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate orientation or position The relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, therefore It should not be construed as a limitation of the application.
  • the terms “first”, “second”, and “third” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种复合机器人(41)的控制方法、装置及系统。复合机器人(41)的控制方法应用于复合机器人(41)的机械臂(411)中的控制器(4111),机械臂(411)安装于运动机构(412)上;机械臂(411)上安装有力传感器(4112);控制器(4111)与运动机构(412)通信连接;该方法包括:在机械臂(411)被牵引运动的情况下,获取当前运动下力传感器(4112)采集的多个力和多个力矩;根据多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;根据多组位移值进行最优化求解,得到机械臂(411)对应的第一目标位移值和运动机构(412)对应的第二目标位移值;根据第一目标位移值和第二目标位移值控制机械臂(411)和运动机构(412)运动;重复执行获取当前运动下多个力和多个力矩的操作,直到机械臂(411)和运动机构(412)停止运动。

Description

复合机器人的控制方法、装置及系统
本申请要求在2021年10月18日提交中国专利局、申请号为202111209630.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能控制技术领域,例如涉及一种复合机器人的控制方法、装置及系统。
背景技术
复合机器人作为新一代机器人的代表,集工业、移动、协作机器人优点于一身,具有人机融合、安全易用、灵敏精准及灵活通用等特征,改变了传统机器人的工作模式,在工业生产、社会服务、康复医疗、特种作业等领域具有广阔的应用前景,已经成为引领未来机器人发展的重要方向。在康复医疗领域,有很多使用机械人代替按摩师进行按摩的案例或产品。然而,主流复合机器人或移动机械臂往往将机械臂与移动底盘分别独立控制,不能充分发挥复合机器人的性能优势,也限制了按摩机器人的应用。在复合机器人的力位混合控制中,任务空间被分为位置控制和力控制的子空间,因为位置和力都不能沿任何给定方向控制,一般是在垂直面方向上进行力控制,在切面方向进行位置控制,不便于人自由地牵引复合机器人。
发明内容
本申请提供一种复合机器人的控制方法、装置及系统,能够实现机械臂和运动机构之间的动态耦合,拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随,并使拖拽效果更符合人机交互的需求。
本申请提供一种复合机器人的控制方法,该方法应用于复合机器人的机械臂中的控制器,机械臂安装于运动机构上;机械臂上安装有力传感器;控制器与运动机构通信连接;该方法包括:
在机械臂被牵引运动时,获取当前运动下力传感器采集的多个力和多个力矩;
根据多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;其中,每组位移值包括机械臂对应的第一位移值和运动机构对应的第二位移值;预设模型包括导纳模型或阻抗模型;
根据多组位移值进行最优化求解,得到机械臂对应的第一目标位移值和运动机构对应的第二目标位移值;
根据第一目标位移值和第二目标位移值控制机械臂和运动机构运动;
重复执行获取当前运动下力传感器采集的多个力和多个力矩的操作,直到机械臂和运动机构停止运动。
本申请还提供一种复合机器人的控制装置,该装置应用于复合机器人的机械臂中的控制器,机械臂安装于运动机构上;机械臂上安装有力传感器;控制器与运动机构通信连接;该装置包括:
力矩获取模块,设置为在机械臂被牵引运动时,获取当前运动下力传感器采集的多个力和多个力矩;
位移计算模块,设置为根据多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;其中,每组位移值包括机械臂对应的第一位移值和运动机构对应的第二位移值;预设模型包括导纳模型或阻抗模型;
目标位移确定模块,设置为根据多组位移值进行最优化求解,得到机械臂对应的第一目标位移值和运动机构对应的第二目标位移值;
运动控制模块,设置为根据第一目标位移值和第二目标位移值控制机械臂和运动机构运动;
循环模块,设置为重复执行获取当前运动下力传感器采集的多个力和多个力矩的操作,直到机械臂和运动机构停止运动。
本申请还提供一种复合机器人的控制系统,该系统包括复合机器人和按摩平台;复合机器人和按摩平台通信连接;复合机器人包括机械臂和运动机构;机械臂中安装有控制器和力传感器,机械臂安装于运动机构上;控制器与运动机构通信连接;控制器设置为执行上述的复合机器人的控制方法。
本申请还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现上述的复合机器人的控制方法。
附图说明
图1为本申请实施例提供的一种复合机器人控制方法的流程图;
图2为本申请实施例提供的一种导纳控制系统的结构图;
图3为本申请实施例提供的一种复合机器人控制装置的结构框图;
图4为本申请实施例提供的一种复合机器人控制系统的结构框图。
具体实施方式
下面将结合实施例对本申请的技术方案进行描述,所描述的实施例是本申请一部分实施例。
主流复合机器人或移动机械臂往往将机械臂与移动底盘分别独立控制,不能充分发挥复合机器人的性能优势,也限制了按摩机器人的应用,在复合机器人的力位混合控制中,任务空间被分为位置控制和力控制的子空间,因为位置和力都不能沿任何给定方向控制,一般是在垂直面方向上进行力控制,在切面方向进行位置控制,上述力位混合控制方法忽略了机械手与环境之间的动态耦合,不便于人自由地牵引复合机器人。
本申请实施例提供一种复合机器人的控制方法、装置及系统,能够实现机械臂和运动机构之间的动态耦合,拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随,并使拖拽效果更符合人机交互的需求。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种复合机器人的控制方法进行介绍。
本申请实施例提供一种复合机器人的控制方法,该方法应用于复合机器人的机械臂中的控制器,机械臂安装于运动机构上;机械臂上安装有力传感器;控制器与运动机构通信连接。其中,机械臂的末端加装六维力传感器;运动机构可以使用自动引导车(Automated Guided Vehicle,AGV)平台。
参见图1所示的复合机器人控制方法的流程图,该方法包括:
S102,在机械臂被牵引运动时,获取当前运动下力传感器采集的多个力和多个力矩。
上述力传感器包括安装于机械臂的末端的六维传感器,或者,安装于机械臂的每个关节处的关节传感器。如使用安装于机械臂的末端的六维传感器,当机械臂被牵引运动时,通过安装在机械臂末端的六维力传感器,可以精确地测量出机械臂六个自由度上的力和力矩,即机械臂的3个平动自由度x,y,z上的力和3个转动自由度rx,ry,rz上的力矩。
S104,根据多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;每组位移值包括机械臂对应的第一位移值和运动机构对应的第二位移值;预设模型包括导纳模型或阻抗模型。
当预设模型为导纳模型时,力传感器为六维传感器时,上述多个力和多个力矩包括:六个自由度中三个平动自由度对应的力以及三个转动自由度对应的 力矩,参见图2所示的导纳控制系统的结构图,其中,f d是预设期望力或力矩,f h是实际收到的力或力矩,f u为力或力矩偏差值。
根据六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩和预设期望的力和力矩,确定力或力矩偏差值;将力或力矩偏差值输入导纳模型进行求解,得到一组导纳控制后的位移值;根据六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩、该组导纳控制后的位移值求逆解,可以得到多组位移值,即Φ(q d),Φ(q d)是根据一组导纳控制后的位移值求出的逆解集合。该组导纳控制后的位移值包括机械臂对应的第一导纳控制后的位移值和运动机构对应的第二导纳控制后的位移值。
上述导纳模型如下:
Figure PCTCN2022111062-appb-000001
Figure PCTCN2022111062-appb-000002
其中,M为惯性系数,K为刚度系数,B为阻尼系数,f为期望的人机交互力或力矩与实际的人机交互力或力矩的偏差值,x d为导纳控制后的位移值,
Figure PCTCN2022111062-appb-000003
为导纳控制后的位移值的一阶导数,
Figure PCTCN2022111062-appb-000004
为导纳控制后的位移值的二阶导数。
当力传感器下方的把手被拖动时,导纳模型会根据设定好的惯性系数,刚度系数,阻尼系数输出目标加速度,结合AGV传感器获取的当前速度和位置,可以计算出目标速度和位置,即一组导纳控制后的位移值,进而根据该组导纳控制后的位移值求逆解得到多组位移值中的每组位移值所包括的机械臂对应的第一位移值和运动机构对应的第二位移值。
S106,根据多组位移值进行最优化求解,得到机械臂对应的第一目标位移值和运动机构对应的第二目标位移值。
由于AGV和六自由度机械臂共有9个自由度,求逆解后有多组解,需要限制运动范围并使用优化算法得出最优解,以确定机械臂的运动和AGV的运动,如图2所示,q d即是根据最优化算法求出的最优解。上述最优化求解的步骤包括:获取当前运动学参数和力相关参数(如AGV位移-速度-加速度;机械臂末端的位移-速度-加速度;机械臂末端的六个自由度:x,y,z和rx,ry,rz);根据当前运动学参数和力相关参数确定筛选条件;将多组位移值中满足筛选条件的位移值确定为目标位移值;目标位移值包括机械臂对应的第一目标位移值和运动机构对应的第二目标位移值。
最优化求解是在所有解中增加限制条件获得满足条件的解,条件由不同状态时的运动学参数和受到的力决定。譬如在牵引开始和结束阶段,先牵引机械 臂,在机械臂相对AGV的位移不够大或者机械臂受到的力比较小时,AGV基本不动;在牵引阶段,即机械臂受到的力没有很大突变时,优先考虑AGV和机械臂末端相对位置不变,本实施例中,六个自由度上的力或力矩的影响权重可以调节。
S108,根据第一目标位移值和第二目标位移值控制机械臂和所述运动机构运动。
机械臂中安装有第一位置控制器;运动机构中安装有第二位置控制器;根据第一目标位移值向所述第一位置控制器发送第一控制信号,以使第一位置控制器根据第一控制信号控制机械臂运动;根据第二目标位移值向第二位置控制器发送第二控制信号,以使第二位置控制器根据第二控制信号控制所述运动机构运动。
在得到机械臂和AGV的目标位移值之后,机械臂和AGV接收到控制信号,由各自的位置控制器完成运动,如图2所示,q k是运动量跟踪器输出的机械臂关节和AGV的实际轨迹。
S110,重复执行获取当前运动下力传感器采集的多个力和多个力矩的操作,直到机械臂和运动机构停止运动。
如图2所示,假设预设期望力或力矩f d为0,当机械臂被牵引时,如果通过人机实际交互模型的传感器采集到实际受到的力或力矩f h不为0,则力或力矩偏差值f u也不为0,导纳控制器以力或力矩偏差值f u作为输入,输出多组位移值Φ(q d),并通过最优化求解得到机械臂和运动机构的位移值的最优解,通过机械臂中和AGV中分别安装的位置控制器,控制机械臂和运动机构运动,直到机械臂和运动机构被牵引到期望位置时,停止牵引,f h等于0,力或力矩偏差值f u也为0,即导纳控制器的输入为0,机械臂和运动机构停止运动。
拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随。此外,优化算法给出的解能够使拖拽时,如果机械臂伸展程度小,则机械臂运动幅度大,AGV运动幅度小;如果机械臂已经足够伸展,则拖拽时机械臂运动幅度小,AGV运动幅度大。这种效果更符合人-复合机器人交互的需求。
另外,可以分别设置六个自由度上的导纳控制参数。使得不同方向上的拖拽有不同的效果。对AGV可以设置不开放一个自由度,对机械臂也可以不开放拖拽(机械臂固定不动)使其在实际应用中更灵活多变。
本申请实施例提供的复合机器人的控制方法,能够通过获取当前运动下力传感器采集的多个力和多个力矩,根据预设期望的力和力矩、及预设模型进行计算,得到多组位移值;并根据多组位移值进行最优化求解,得到机械臂和运 动机构对应的目标位移值,并控制机械臂和运动机构的运动;循环上述步骤直到机械臂和运动机构停止运动,实现了机械臂和运动机构之间的动态耦合,拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随,便于人自由地牵引复合机器人,其最优化求解得出的目标位移值解能够使拖拽时实现如下效果:如果机械臂伸展程度小,则机械臂运动幅度大,运动机构运动幅度小;如果机械臂已经足够伸展,则拖拽时机械臂运动幅度小,运动机构运动幅度大,更符合人-复合人机交互的需求。
本申请实施例还提供一种复合机器人按摩技法的实现方法,该方法基于复合机器人机械臂的力传感器的力控功能实现。
机械臂的控制器与按摩平台通信连接;按摩平台中配置有多种按摩技法分别对应的按压参数;按压参数包括力度大小和转换速度;控制器接收按摩平台发送的目标按压参数;根据目标按压参数和力传感器,控制机械臂对被按摩者的按压方式,以实现目标按压参数对应的目标按摩技法。
上述按摩技法至少包括以下之一:指点法、指按法、指推法、肘推法、掌推法和一指禅法。
针对不同的按摩技法,可以将其运动学描述和动力学描述,转化为相应的力控需求描述,根据不同的力控需求设置不同的按压参数,同时还可以设置该技法实现的优先级和实现部位等。
例如,指点法、指按法和肘点法的运动学描述为:在人体表面固定位置,做垂直方向的上下运动;动力学描述为:保持垂直人体表面,包括“按”和“收”两步;“按”:逐渐靠近人体,接触人体表面并输出线性增加的压力/压强(用N或N/cm^2计算)(包括,起始压力,线性增加系数,结束压力);“收”:逐渐远离人体表面,输出线性减小的压力/压强(包括,起始压力,线性减小系数,结束压力);相应的力控需求描述为:(1)保持协作臂位姿保持人体曲面垂直(法向);(2)实时反馈法向6维力信息;(3)接触人体过程中,实时反馈人体组织柔软度变化;(4)根据起始压力、变化系数和结束压力,及人体柔软度,持续调节协作臂位姿,输出线性变化的力度;安全要求为:确保压力/压强小于人体最大承受能力;可设置该技法的实现优先级为:1级,实现部位为:背部、腰部和臀部。
指推法、肘推法和掌推法的运动学描述为:在人体表面固定路径上,做匀速直线运动;相对人体表面保持一定角度;包括“按”、“推”和“收”三步;动力学描述为:“按”:逐渐靠近人体,接触人体表面并输出线性增加的压力/压强(用N 或N/cm^2计算)(包括,起始压力,线性增加系数,结束压力);保持这个压力;“推”:保持向下压力的同时,沿推法路径输出恒定推力(包括起始力,变化系统和目标力);“收”:逐渐远离人体表面,输出线性减小的压力/压强(包括,起始压力,线性减小系数,结束压力);相应的力控需求描述为:(1)协作臂位姿保持人体表面一定角度;(2)实时反馈法向6维力信息;(3)接触人体过程中,实时反馈人体组织柔软度变化;(4)根据起始压力、变化系数和结束压力,及人体柔软度,持续调节协作臂位姿,输出线性变化的力度;(5)沿推法路径保持恒力(包括起始力,变化系统和目标力);安全要求为:确保压力/压强小于人体最大承受能力;可设置该技法的实现优先级为:2级,实现部位为:背部、腰部和臀部。
一指禅推法的运动学描述为:在人体表面固定位置,沿垂直方向的轴做往复旋转运动,其中,正向旋转以及反向旋转的角度范围120~180度;动力学描述为:保持垂直人体表面,包括“按”、“转”和“收”三步;“按”:逐渐靠近人体,接触人体表面并输出线性增加的压力/压强(用N或N/cm^2计算)(包括,起始压力,线性增加系数,结束压力);保持这个压力;“转”:保持向下压力的同时,沿垂直人体表面的轴旋转,输出线性变化的扭矩(包括起始扭矩,变化系数(增加或减小)和目标扭矩);达到目标扭矩后,保持恒定;“收”:逐渐远离人体表面,输出线性减小的压力/压强(包括,起始压力,线性减小系数,结束压力);相应的力控需求描述为:(1)保持协作臂位姿保持人体曲面垂直(法向);(2)实时反馈法向6维力信息;(3)接触人体过程中,实时反馈人体组织柔软度变化;(4)根据起始压力、变化系数和结束压力,及人体柔软度,持续调节协作臂位姿,输出线性变化的力度。(5)沿法向轴旋转,输出线性变化的扭矩;安全要求为:确保压力/压强小于人体最大承受能力;可设置该技法的实现优先级为:3级,实现部位为:背部、腰部和臀部。
机械臂的力控功能可以设置六个维度的阻尼力(扭矩),恒力(扭矩)等,通过改变力控参数即可实现按摩力度的变化。另外,传统按摩中每种技法和每个人偏好的力度也不同,力控参数的实时调整能够让机器人按摩更接近按摩师的手法,安全平面的设计也确保了机器人按摩的安全性。
此外,按摩时机械臂的轨迹实质上由一系列笛卡尔空间中的位姿确定,通过对位姿集合的记录,编辑,复现即可以实现多种功能,因此,可以应用复合机器人的软件开发工具包(Software Development Kit,SDK),自由地对多段轨迹调速,拼接,缩放,从而使复杂的按摩技艺能够被简单地复现出来,并且根据不同的按摩对象进行调整。例如,可以实现人工牵引录制轨迹,轨迹速度编辑,力度控制,轨迹的组合和缩放等功能,使用者可以自己录制轨迹并调节力度参数还原复杂的技艺,也可以直接使用预先设计好的轨迹和指按,指推,指 扭等技艺。上述SDK部分的开发主要体现在功能设计,可以使用其他协作机器人实现。
本申请实施例提供的复合机器人按摩技法的实现方法,通过在机械臂的控制器中配置有多种按摩技法分别对应的按压参数;由控制器接收按摩平台发送的目标按压参数;根据目标按压参数和力传感器,控制机械臂对被按摩者的按压方式,得以实现目标按压参数对应的目标按摩技法,该方法通过改变力控参数实现按摩力度的变化,能够让机器人按摩更接近按摩师的手法,同时确保了机器人按摩的安全性。
基于上述方法实施例,本申请实施例还提供一种复合机器人的控制装置,参见图3,该装置应用于复合机器人的机械臂中的控制器,机械臂安装于运动机构上;机械臂上安装有力传感器;控制器与运动机构通信连接;该装置包括:
力矩获取模块31,设置为在机械臂被牵引运动时,获取当前运动下力传感器采集的多个力和多个力矩;位移计算模块32,设置为根据多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;每组位移值包括机械臂对应的第一位移值和运动机构对应的第二位移值;预设模型包括导纳模型或阻抗模型;目标位移确定模块33,设置为根据多组位移值进行最优化求解,得到机械臂对应的第一目标位移值和运动机构对应的第二目标位移值;运动控制模块34,设置为根据第一目标位移值和第二目标位移值控制所述机械臂和运动机构运动;循环模块35,设置为重复执行获取当前运动下力传感器采集的多个力和多个力矩的操作,直到机械臂和运动机构停止运动。
本申请实施例提供的复合机器人的控制装置,能够通过获取当前运动下力传感器采集的多个力和多个力矩,根据预设期望的力和力矩、及预设模型进行计算,得到多组位移值;并根据多组位移值进行最优化求解,得到机械臂和运动机构对应的目标位移值,并控制机械臂和运动机构的运动;循环上述步骤直到机械臂和运动机构停止运动,实现了机械臂和运动机构之间的动态耦合,拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随,并使拖拽效果更符合人机交互的需求。
上述力传感器包括安装于机械臂的末端的六维传感器,或者,安装于机械臂的每个关节处的关节传感器。上述预设模型包括导纳模型;力传感器为六维传感器;多个力和多个力矩包括:六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩。
上述位移计算模块32设置为,根据六个自由度中三个平动自由度对应的力 以及三个转动自由度对应的力矩和预设期望的力和力矩,确定力或力矩偏差值;将力或力矩偏差值输入导纳模型进行求解,得到一组导纳控制后的位移值;根据所述六个自由度中三个平动自由对应的力以及三个转动自由度对应的力矩、以及该组导纳控制后的位移值求逆解,得到多组位移值。
目标位移确定模块33设置为,获取当前运动学参数和力相关参数;根据当前运动学参数和力相关参数确定筛选条件;将多组位移值中满足筛选条件的位移值确定为目标位移值;目标位移值包括机械臂对应的第一目标位移值和运动机构对应的第二目标位移值。
上述机械臂中安装有第一位置控制器;运动机构中安装有第二位置控制器;上述运动控制模块34设置为,根据第一目标位移值向第一位置控制器发送第一控制信号,以使第一位置控制器根据第一控制信号控制机械臂运动;根据第二目标位移值向第二位置控制器发送第二控制信号,以使第二位置控制器根据第二控制信号控制所述运动机构运动。
上述控制器与按摩平台通信连接;按摩平台中配置有多种按摩技法分别对应的按压参数;按压参数包括力度大小和转换速度;上述装置还包括按摩模块:设置为接收按摩平台发送的目标按压参数;根据目标按压参数和力传感器,控制机械臂对被按摩者的按压方式,以实现目标按压参数对应的目标按摩技法。
上述按摩技法至少包括以下之一:指点法、指按法、指推法、肘推法、掌推法和一指禅法。
本申请实施例提供的复合机器人的控制装置,其实现原理及产生的技术效果和前述复合机器人的控制方法实施例相同,为简要描述,复合机器人的控制装置的实施例部分未提及之处,可参考前述复合机器人的控制方法实施例中相应内容。
本申请实施例还提供了一种复合机器人的控制系统,参见图4所示,该系统包括复合机器人41和按摩平台42;复合机器人41和按摩平台42通信连接;复合机器人41包括机械臂411和运动机构412;机械臂中安装有控制器4111和力传感器4112,机械臂411安装于运动机构412上;控制器4111与运动机构412通信连接;控制器4111设置为执行上述复合机器人的控制方法,实现方式可参见前述方法实施例,在此不再赘述。
本申请实施例提供的复合机器人的控制系统,能够通过获取当前运动下力传感器采集的多个力和多个力矩,根据预设期望的力和力矩、及预设模型进行计算,得到多组位移值;并根据多组位移值进行最优化求解,得到机械臂和运动机构对应的目标位移值,并控制机械臂和运动机构的运动;循环上述步骤直 到机械臂和运动机构停止运动,实现了机械臂和运动机构之间的动态耦合,拖拽复合机器人时只需要较小的力就能完成机器人的柔性跟随,并使拖拽效果更符合人机交互的需求,并且,上述按摩平台上设置有人机交互界面,通过人机交互界面可以设置按摩参数,控制系统通过改变力控参数实现按摩力度的变化,能够让机器人按摩更接近按摩师的手法,同时确保了机器人按摩的安全性。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令在被处理器调用和执行时,该计算机可执行指令促使处理器实现上述复合机器人的控制方法,实现方式可参见前述方法实施例,在此不再赘述。
本申请实施例所提供的方法、装置和系统的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的复合机器人的控制方法,实现方式可参见方法实施例,在此不再赘述。
除非另外说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本申请的范围。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质或者非暂态存储介质。
在本申请的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

Claims (10)

  1. 一种复合机器人的控制方法,应用于复合机器人的机械臂中的控制器,所述机械臂安装于运动机构上;所述机械臂上安装有力传感器;所述控制器与所述运动机构通信连接;所述方法包括:
    在所述机械臂被牵引运动的情况下,获取当前运动下所述力传感器采集的多个力和多个力矩;
    根据所述多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;其中,每组位移值包括所述机械臂对应的第一位移值和所述运动机构对应的第二位移值;所述预设模型包括导纳模型或阻抗模型;
    根据所述多组位移值进行最优化求解,得到所述机械臂对应的第一目标位移值和所述运动机构对应的第二目标位移值;
    根据所述第一目标位移值和所述第二目标位移值控制所述机械臂和所述运动机构运动;
    重复执行所述获取当前运动下所述力传感器采集的多个力和多个力矩的操作,直到所述机械臂和所述运动机构停止运动。
  2. 根据权利要求1所述的方法,其中,所述力传感器包括安装于所述机械臂的末端的六维传感器,或者,安装于所述机械臂的每个关节处的关节传感器。
  3. 根据权利要求1所述的方法,其中,所述预设模型包括导纳模型;所述力传感器为六维传感器;所述多个力和多个力矩包括:六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩;
    根据所述多个力矩和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值,包括:
    根据所述六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩和所述预设期望的力和力矩,确定力或力矩偏差值;
    将所述力或力矩偏差值输入所述导纳模型进行求解,得到一组导纳控制后的位移值;
    根据所述六个自由度中三个平动自由度对应的力以及三个转动自由度对应的力矩、以及所述一组导纳控制后的位移值求逆解,得到所述多组位移值。
  4. 根据权利要求1所述的方法,其中,所述根据所述多组位移值进行最优化求解,得到所述机械臂对应的第一目标位移值和所述运动机构对应的第二目标位移值,包括:
    获取当前运动学参数和力相关参数;
    根据所述当前运动学参数和所述力相关参数确定筛选条件;
    将所述多组位移值中满足所述筛选条件的位移值确定为目标位移值;其中,所述目标位移值包括所述机械臂对应的第一目标位移值和所述运动机构对应的第二目标位移值。
  5. 根据权利要求1所述的方法,其中,所述机械臂中安装有第一位置控制器;所述运动机构中安装有第二位置控制器;所述根据所述第一目标位移值控制所述机械臂运动,根据所述第二目标位移值控制所述运动机构运动,包括:
    根据所述第一目标位移值向所述第一位置控制器发送第一控制信号,以使所述第一位置控制器根据所述第一控制信号控制所述机械臂运动;
    根据所述第二目标位移值向所述第二位置控制器发送第二控制信号,以使所述第二位置控制器根据所述第二控制信号控制所述运动机构运动。
  6. 根据权利要求1所述的方法,其中,所述控制器与按摩平台通信连接;所述按摩平台中配置有多种按摩技法分别对应的按压参数;所述按压参数包括力度大小和转换速度;所述方法还包括:
    接收所述按摩平台发送的目标按压参数;
    根据所述目标按压参数和所述力传感器,控制所述机械臂对被按摩者的按压方式,以实现所述目标按压参数对应的目标按摩技法。
  7. 根据权利要求6所述的方法,其中,所述按摩技法至少包括以下之一:指点法、指按法、指推法、肘推法、掌推法、一指禅法。
  8. 一种复合机器人的控制装置,所述装置应用于复合机器人的机械臂中的控制器,所述机械臂安装于运动机构上;所述机械臂上安装有力传感器;所述控制器与所述运动机构通信连接;所述装置包括:
    力矩获取模块,设置为在所述机械臂被牵引运动的情况下,获取当前运动下所述力传感器采集的多个力和多个力矩;
    位移计算模块,设置为根据所述多个力和多个力矩、预设期望的力和力矩、及预设模型进行计算,得到多组位移值;其中,每组位移值包括所述机械臂对应的第一位移值和所述运动机构对应的第二位移值;所述预设模型包括导纳模型或阻抗模型;
    目标位移确定模块,设置为根据所述多组位移值进行最优化求解,得到所述机械臂对应的第一目标位移值和所述运动机构对应的第二目标位移值;
    运动控制模块,设置为根据所述第一目标位移值和所述第二目标位移值控 制所述机械臂和所述运动机构运动;
    循环模块,设置为重复执行所述获取当前运动下所述力传感器采集的多个力和多个力矩的操作,直到所述机械臂和所述运动机构停止运动。
  9. 一种复合机器人的控制系统,包括复合机器人和按摩平台;所述复合机器人和所述按摩平台通信连接;所述复合机器人包括机械臂和运动机构;所述机械臂中安装有控制器和力传感器,所述机械臂安装于所述运动机构上;所述控制器与所述运动机构通信连接;所述控制器设置为执行如权利要求1-7中任一项所述的复合机器人的控制方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现权利要求1-7中任一项所述的复合机器人的控制方法。
PCT/CN2022/111062 2021-10-18 2022-08-09 复合机器人的控制方法、装置及系统 WO2023065781A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22871098.4A EP4205915A1 (en) 2021-10-18 2022-08-09 Control method, device, and system for hybrid robot
US18/036,779 US20240017407A1 (en) 2021-10-18 2022-08-09 Control method, apparatus, and system of a composite robot
MX2023006910A MX2023006910A (es) 2021-10-18 2022-08-09 Metodo, aparato y sistema de control de un robot compuesto.
JP2023533806A JP2023552991A (ja) 2021-10-18 2022-08-09 複合ロボットの制御方法、装置及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111209630.6A CN113843801B (zh) 2021-10-18 2021-10-18 复合机器人的控制方法、装置及系统
CN202111209630.6 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023065781A1 true WO2023065781A1 (zh) 2023-04-27

Family

ID=78978616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111062 WO2023065781A1 (zh) 2021-10-18 2022-08-09 复合机器人的控制方法、装置及系统

Country Status (6)

Country Link
US (1) US20240017407A1 (zh)
EP (1) EP4205915A1 (zh)
JP (1) JP2023552991A (zh)
CN (1) CN113843801B (zh)
MX (1) MX2023006910A (zh)
WO (1) WO2023065781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619393A (zh) * 2023-07-24 2023-08-22 杭州键嘉医疗科技股份有限公司 基于svm的机械臂变导纳控制方法、装置及设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843801B (zh) * 2021-10-18 2022-11-29 上海节卡机器人科技有限公司 复合机器人的控制方法、装置及系统
CN114454166B (zh) * 2022-02-11 2023-04-28 苏州艾利特机器人有限公司 一种机械臂阻抗控制方法及装置
CN115946120B (zh) * 2023-01-09 2024-02-13 上海艾利特机器人有限公司 机械臂控制方法、装置、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240739A (zh) * 2013-05-07 2013-08-14 武汉科技大学 一种移动机械臂分散集中自主切换控制方法
JP2013158837A (ja) * 2012-02-01 2013-08-19 Seiko Epson Corp ロボット制御装置、およびロボット制御方法
CN108000477A (zh) * 2017-12-05 2018-05-08 哈尔滨工业大学 一种全位姿主被动柔顺机器人及利用该机器人的旋拧阀门方法
CN109397244A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种一体化双7自由度机械臂全向移动机器人系统与控制方法
CN111376263A (zh) * 2018-12-29 2020-07-07 沈阳新松机器人自动化股份有限公司 一种复合机器人人机协作系统及其交叉耦合力控制方法
CN112497208A (zh) * 2020-10-22 2021-03-16 西安交通大学 基于全状态阻抗控制器的移动操作机器人通用控制方法
CN113843801A (zh) * 2021-10-18 2021-12-28 上海节卡机器人科技有限公司 复合机器人的控制方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106420257B (zh) * 2016-09-05 2018-11-09 南京航空航天大学 基于串联弹性驱动器的上肢用康复外骨骼机器人
KR20210149091A (ko) * 2019-03-27 2021-12-08 보스턴 다이나믹스, 인크. 상자들을 팔레타이징하기 위한 로봇 및 방법
CN111887906B (zh) * 2019-09-10 2021-05-11 深圳市精锋医疗科技有限公司 手术机器人及其机械臂的控制方法、控制装置
CN112157659A (zh) * 2020-10-28 2021-01-01 成都九系机器人科技有限公司 一种基于机器人力位混合控制的飞机部件装配系统及方法
CN113305838B (zh) * 2021-05-26 2022-04-29 深圳市优必选科技股份有限公司 按摩运动控制方法、装置、机器人控制设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158837A (ja) * 2012-02-01 2013-08-19 Seiko Epson Corp ロボット制御装置、およびロボット制御方法
CN103240739A (zh) * 2013-05-07 2013-08-14 武汉科技大学 一种移动机械臂分散集中自主切换控制方法
CN108000477A (zh) * 2017-12-05 2018-05-08 哈尔滨工业大学 一种全位姿主被动柔顺机器人及利用该机器人的旋拧阀门方法
CN109397244A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种一体化双7自由度机械臂全向移动机器人系统与控制方法
CN111376263A (zh) * 2018-12-29 2020-07-07 沈阳新松机器人自动化股份有限公司 一种复合机器人人机协作系统及其交叉耦合力控制方法
CN112497208A (zh) * 2020-10-22 2021-03-16 西安交通大学 基于全状态阻抗控制器的移动操作机器人通用控制方法
CN113843801A (zh) * 2021-10-18 2021-12-28 上海节卡机器人科技有限公司 复合机器人的控制方法、装置及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619393A (zh) * 2023-07-24 2023-08-22 杭州键嘉医疗科技股份有限公司 基于svm的机械臂变导纳控制方法、装置及设备
CN116619393B (zh) * 2023-07-24 2023-11-14 杭州键嘉医疗科技股份有限公司 基于svm的机械臂变导纳控制方法、装置及设备

Also Published As

Publication number Publication date
CN113843801A (zh) 2021-12-28
JP2023552991A (ja) 2023-12-20
CN113843801B (zh) 2022-11-29
US20240017407A1 (en) 2024-01-18
MX2023006910A (es) 2023-08-22
EP4205915A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2023065781A1 (zh) 复合机器人的控制方法、装置及系统
CN107053179B (zh) 一种基于模糊强化学习的机械臂柔顺力控制方法
CN107050763B (zh) 一种新型踝关节康复机器人其控制方法
CN108524187B (zh) 一种六自由度的上肢康复机器人控制系统
Garrido et al. Modular design and control of an upper limb exoskeleton
Xiong et al. A novel HCI based on EMG and IMU
CN113001540A (zh) 负载机动型外骨骼的人机交互智能控制方法及外骨骼系统
Zheng et al. Design of a lightweight force-feedback glove with a large workspace
CN112263440A (zh) 一种柔性下肢外骨骼与助行器共融康复助力方法及装置
Liang et al. Mechanism design and optimization of a haptic master manipulator for laparoscopic surgical robots
Zhao et al. Design of a single-degree-of-freedom immersive rehabilitation device for clustered upper-limb motion
Liu et al. I-feed: A robotic platform of an assistive feeding robot for the disabled elderly population
Sun et al. Kinematic dexterity analysis of human-robot interaction of an upper limb rehabilitation robot
CN107696036A (zh) 一种仿人机械臂用的拖动示教器
Zhu et al. Adaptive control of man-machine interaction force for lower limb exoskeleton rehabilitation robot
Peer et al. Influence of varied human movement control on task performance and feeling of telepresence
Wang et al. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton
Zhang et al. Configuration synthesis and performance analysis of finger soft actuator
Gonzalez et al. Smooth transition-based control of encounter-type haptic devices
Ji et al. Self-Identification of Cable-Driven Exoskeleton Based on Asynchronous Iterative Method
Park et al. A Whole-Body Integrated AVATAR System: Implementation of Telepresence With Intuitive Control and Immersive Feedback
Fasoulas et al. Modeling and grasp stability analysis for object manipulation by soft rolling fingertips
Duan et al. Design of Robot Control System for Knee Joint Replacement Surgery Based on STM32
CN117017718A (zh) 一种基于无模型按需辅助控制算法的上肢外骨骼系统
Yuan et al. Design of adaptive compliance control algorithm for upper limb exoskeleton rehabilitation robot

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022871098

Country of ref document: EP

Effective date: 20230330

WWE Wipo information: entry into national phase

Ref document number: 18036779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023533806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/006910

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871098

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014879

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023014879

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230725