WO2023065739A1 - 一种近钻头多参数井下随钻测控系统 - Google Patents

一种近钻头多参数井下随钻测控系统 Download PDF

Info

Publication number
WO2023065739A1
WO2023065739A1 PCT/CN2022/106152 CN2022106152W WO2023065739A1 WO 2023065739 A1 WO2023065739 A1 WO 2023065739A1 CN 2022106152 W CN2022106152 W CN 2022106152W WO 2023065739 A1 WO2023065739 A1 WO 2023065739A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
measurement
drill
sub
downhole
Prior art date
Application number
PCT/CN2022/106152
Other languages
English (en)
French (fr)
Inventor
廖华林
卢明
刘建胜
牛文龙
卢晓鹏
陈敬凯
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2023065739A1 publication Critical patent/WO2023065739A1/zh
Priority to US18/334,293 priority Critical patent/US20230323769A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B45/00Measuring the drilling time or rate of penetration
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/013Devices specially adapted for supporting measuring instruments on drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/24Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by positive mud pulses using a flow restricting valve within the drill pipe

Definitions

  • the invention relates to the field of downhole data wireless measurement while drilling in drilling engineering, in particular to a multi-parameter downhole measurement and control system while drilling near a drill bit.
  • a near-bit drilling monitoring and control system has been developed.
  • the successful development of the near-bit drilling monitoring and control system can effectively solve many problems encountered in the drilling process of deep wells and horizontal wells with long horizontal sections, reduce operational risks, improve operational efficiency, and can accurately obtain real-time measurements of bottomhole temperature, internal and external Annular pressure, vibration, WOB, torque, speed, bending moment and other data can improve safe drilling efficiency and effectively avoid accidents such as stuck pipe, kick, and lost circulation.
  • this application proposes a multi-parameter downhole measurement and control system while drilling near the drill bit.
  • the measurement parameters of the measurement and control system while drilling the application are rich, and can monitor the real-time changes of downhole engineering parameters in real time.
  • Drilling fluid performance and other drilling parameters are adjusted in real time. It can timely and accurately predict whether there are complex downhole accidents such as well kick, lost circulation, stuck pipe, and drill tool damage, and take corresponding measures to avoid more serious accidents, which can greatly reduce non-drilling time and improve drilling efficiency.
  • the present invention provides a multi-parameter downhole measurement and control system while drilling near the drill bit, which can monitor the real-time changes of downhole engineering parameters in real time, and adjust drilling parameters such as pressure on bit, speed, torque, and drilling fluid performance according to changes in downhole parameters. Make real-time adjustments to improve drilling efficiency.
  • the measurement and control system is composed of ground equipment and downhole assembly.
  • the ground equipment includes pressure sensors, wireless transceiver hosts, wireless sensor hosts, driller displays and data processors.
  • the downhole assembly described above includes sequentially connected drill bits, multi-parameter acquisition, measurement and launch subs, screw power drilling tools, fishing subs, receiving and launching subs, first conversion subs, wireless communication subs, second conversion subs and non-magnetic drill collars
  • the multi-parameter acquisition and measurement launch nipple is composed of a drill collar, a power supply, a data processing circuit, a near-drill measuring instrument, a transmitting antenna, an insulating ring and a data storage module, and the near-drilling measuring instrument collects data according to a preset time interval And the collected data is stored in the data storage module and transmitted to the data processing circuit, the data processing circuit is connected to the transmitting antenna in communication, one end of the transmitting antenna is
  • the signal receiving coil is connected to the drill collar of the receiving and transmitting nipple, and the other end is isolated from the external drilling fluid through an insulating ring.
  • the signal amplifier amplifies the signal received by the signal receiving coil and passes it through the electromagnetic Coupling is used for wireless transmission to transmit the signal to the wireless communication sub, and the wireless communication sub transmits the received signal to the ground equipment through the mud pulse generator in the form of a pulse signal, and the ground equipment decodes and analyzes the downhole data.
  • the outer diameter of the near-drill end of the multi-parameter acquisition and measurement launch nipple drill collar is greater than that of the far drill end, and the drill collar body near the drill end is provided with an opening for placing a near-drill measuring instrument.
  • the power supply, data processing module, launch The antenna and insulating ring are arranged on the far end of the drill collar body and protected by a casing and an end cover.
  • the near-drilling measuring instrument includes a torque strain gauge, a pressure sensor, a temperature sensor, a three-axis acceleration sensor and a circuit board, and the torque strain gauge, a pressure sensor, a temperature sensor, a three-axis acceleration sensor and a circuit board are arranged in the Measure in multiple openings on the drill collar of the launch sub.
  • the data collected by the near-drilling measuring instrument include triaxial acceleration, torque, weight on bit, pressure inside and outside the annulus, temperature, rotational speed and bending moment.
  • the MWD measurement sub-section is installed in the non-magnetic drill collar, and the wireless communication sub-section collects the data measured by the MWD measurement sub-section and transmits it to the ground equipment.
  • the present invention has the following technical effects:
  • the multi-parameter downhole measurement and control system near the drill bit has rich measurement parameters, and can monitor the real-time changes of downhole engineering parameters in real time, and adjust drilling parameters such as pressure on bit, speed, torque, and drilling fluid performance in real time according to changes in downhole parameters. It can timely and accurately predict whether there are complex downhole accidents such as well kick, lost circulation, stuck pipe, and drill tool damage, and take corresponding measures to avoid more serious accidents, which can greatly reduce non-drilling time and improve drilling efficiency.
  • Downhole engineering parameters such as torque, bit pressure, bending moment, temperature, internal and external annular pressure, speed, triaxial vibration measured by the multi-parameter downhole drilling system near the bit are closer to the bit, and the drilling tool and the inner wall of the well are excluded.
  • the friction force and other interference factors can realize the real and accurate downhole data, and achieve the purpose of real-time monitoring of the actual working state of the drilling tool downhole.
  • the communication system of the near-bit measurement and control system while drilling can realize the wireless communication between the near-bit measurement instrument and the signal receiving system of the near-bit measurement and control system and the signal receiving system through cross-screw dynamic drilling tools, ensuring the real-time acquisition and timely measurement data of the near-bit engineering parameter transmission sub-joint. Efficient transmission.
  • the present invention adopts the vertical electric field method to design the transmitting antenna, uses the screw power drilling tool and the drilling fluid to form a channel medium to transmit data, and no metal circuit can appear outside the coil of the transmitting antenna.
  • the insulating ring makes it form a small gap communication channel to realize efficient data transmission.
  • the present invention realizes the cross-screw power drilling tool communication of the near-drill measurement and control system while drilling, reduces the difficulty and cost of designing and processing communication lines, adopts a small gap communication design, and greatly improves the measurement sub-section under the premise of ensuring communication. Wear-resistant and pressure-bearing performance in downhole.
  • Fig. 1 Schematic diagram of the structure of the near-bit multi-parameter downhole measurement and control system while drilling.
  • the measurement and control system while drilling is composed of ground equipment 10 and downhole assembly
  • the ground equipment includes pressure sensor, wireless transceiver host, wireless sensor host, driller display and data processor
  • the downhole assembly includes sequentially connected drill bit 1, multi-parameter acquisition and measurement transmitting sub-joint 2, screw power drilling tool 3, fishing joint 4, receiving and transmitting sub-joint 5, first conversion joint 6, wireless communication sub-joint 7, second conversion
  • the joint 8 and the non-magnetic drill collar 9, the multi-parameter acquisition and measurement transmitting sub-joint 2 are composed of a power supply, a data processing circuit, a measuring instrument near the drill bit, a transmitting antenna, an insulating ring and a data storage module.
  • Near-bit measurement instruments include torque strain gauges, pressure sensors, temperature sensors, triaxial acceleration sensors and circuit boards. Several holes are opened on the body of the multi-parameter acquisition and measurement launch sub for installing torque strain gauges, pressure sensors, temperature sensors, triaxial acceleration sensors, circuit boards, etc.
  • the near-drilling measuring instrument collects data according to a preset time interval and stores the collected data in a storage module and transmits it to a data processing circuit.
  • the data processing circuit communicates with a transmitting antenna, and one end of the transmitting antenna is connected to a multi-parameter acquisition measurement transmitting
  • the drill collar of the pup is connected, and the other end is isolated from the external drilling fluid through an insulating ring.
  • the power supply and data processing circuit are respectively installed on the multi-parameter acquisition and measurement emission sub-joint 2, and the transmitting antenna is installed on the multi-parameter acquisition and measurement emission sub-joint 2.
  • the lower part of the multi-parameter acquisition and measurement launch nipple is connected to the drill bit, and the upper part is connected to the screw power drilling tool 3 .
  • the measurement and control system near the drill bit uses the vertical electric field method to design the antenna coil, and uses the drilling tool and drilling fluid to form a communication medium to realize multi-parameter acquisition, measurement, and transmission of data across the screw rod between the transmitting sub-section and the receiving and transmitting sub-section.
  • One end of the outer metal sheath of the communication coil near the drill bit is installed with a non-metallic insulating ring, and no metal loops should appear, so that it forms a small gap communication channel to realize data transmission.
  • the power supply, data processing circuit, transmitting antenna, and insulating ring of the multi-parameter downhole measurement and control system near the drill bit are installed on the multi-parameter acquisition and measurement transmitting nipple, and are protected by casing and end cover, and assembled into a data acquisition and signal transmitting end near the drill bit. .
  • the receiving and transmitting of the measurement and control system while drilling communicates with the wireless communication sub-section through electromagnetic coupling technology.
  • Multi-parameter acquisition and measurement The engineering parameters such as torque, bit pressure, bending moment, rotational speed, vibration, pressure, temperature and so on measured by launching sub-joint 2 are closer to the drill bit, and the friction force between the drilling tool and the inner wall of the well and other interference factors are eliminated.
  • the downhole data is real and accurate, and the downhole working status during the drilling process can be monitored in real time.
  • the drilling measurement and control system can collect parameters such as triaxial acceleration, torque, bit pressure, pressure inside and outside the annulus, temperature, speed, bending moment and other parameters according to the preset time interval, and store the collected data in the data storage module for the instrument to pull out the drill Post-analysis is used, and the data is transmitted to the receiving and transmitting subsection inside it through the communication coil. Then the receiving and transmitting sub-section transmits the signal wirelessly to the wireless communication sub-section through electromagnetic coupling, and the mud pulse generator transmits the pulse signal to the ground decoding system to decode and analyze the downhole data.
  • parameters such as triaxial acceleration, torque, bit pressure, pressure inside and outside the annulus, temperature, speed, bending moment and other parameters according to the preset time interval
  • the receiving and transmitting sub-section and the multi-parameter acquisition and measurement transmitting sub-section realize communication in the mud medium through the wireless short transmission system.
  • the receiving and transmitting sub-section is provided with a signal receiving coil and a signal amplifier, and the signal amplifier converts the signal received by the signal receiving coil After zooming in, the engineering parameters of the drill bit are transmitted to the wireless communication sub-section 7 in real time.
  • the MWD measurement sub-section is installed in the non-magnetic drill collar 9.
  • the wireless communication sub-section collects the MWD measurement data, and the mud pulse generator is controlled by the wireless communication sub-section 7 to transmit the pulse signal It is transmitted to the ground system, and the ground equipment decodes and analyzes the downhole data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)

Abstract

一种近钻头多参数井下随钻测控系统,由地面设备(10)和井下总成组成,井下总成依次包括钻头(1)、多参数采集测量发射短节(2)、动力钻具(3)、接收发射短节(5)、无线通信短节(7)和无磁钻铤(9)等,测量发射短节(2)根据预先设置的时间间隔采集数据并将采集的数据存储至存储模块和传输至信号接收天线,通过螺杆动力钻具与钻井液之间组成的通讯介质将接收的信号传输给接收发射短节(5),接收发射短节(5)通过电磁耦合的方式进行无线传输将信号传至无线通信短节(7),无线通讯短节(7)将接收到的信号通过泥浆脉冲发生器采用脉冲信号的方式传递到地面设备(10),地面系统进行数据处理及分析。本发明的实时测控系统能够实时监测井下工程参数的实时变化并进行实时调整,提高钻井时效。

Description

一种近钻头多参数井下随钻测控系统 技术领域
本发明涉及钻井工程中的井下数据无线随钻测量领域,具体涉及一种近钻头多参数井下随钻测控系统。
背景技术
随着钻井技术的发展,为进一步提高深井、超深井、长水平段井钻井效率和油气开采率,研制开发了近钻头随钻测控系统。近钻头随钻测控系统的成功研发,可以有效解决了深井及长水平段水平井钻井过程中遇到的诸多难题,降低了作业风险,提高了作业效率,能够实时精确获得测量井底温度、内外环空压力、振动、钻压、扭矩、转速、弯矩等数据,提高安全钻井效率,有效避免卡钻、井涌、井漏等事故的发生。
现有技术的随钻测控系统大部分无法解决井底温度、内外环空压力、三轴振动、钻压、扭矩、转速、弯矩这种多工程参数的测量问题,且无法实现井下数据大数据量的存储及实时传输。且测量短节在机械结构上较为复杂,影响井下工具在井下复杂应力作用下的可靠性。因此,本申请提出一种近钻头多参数井下随钻测控系统,本申请的随钻测控系统测量参数丰富,能够实时监测井下工程参数的实时变化,根据井下参数的变化对钻压、转速、扭矩、钻井液性能等钻井参数进行实时调整。可以及时准确的预判是否出现井涌、井漏、卡钻、钻具损坏等井下复杂事故,并采取相应措施避免更严重的事故出现,能够大幅降低非钻时间,提高钻井时效。
技术解决方案
为解决上述技术问题,本发明提供一种近钻头多参数井下随钻测控系统,能够实时监测井下工程参数的实时变化,根据井下参数的变化对钻压、转速、扭矩、钻井液性能等钻井参数进行实时调整,提高钻井时效。
一种近钻头多参数井下随钻测控系统,所述随钻测控系统由地面设备和井下总成组成,地面设备包括压力传感器、无线收发主机、无线传感器主机、司钻显示器和数据处理仪,所述井下总成包括依次连接的钻头、多参数采集测量发射短节、螺杆动力钻具、打捞接头、接收发射短节、第一转换接头、无线通信短节、第二转换接头和无磁钻铤,所述多参数采集测量发射短节由钻铤、电源、数据处理电路、近钻头测量仪器、发射天线、绝缘环和数据存储模块组成,所述近钻测量仪器根据预先设置的时间间隔采集数据并将采集的数据存储至数据存储模块和传输至数据处理电路,数据处理电路与发射天线通讯连接,所述发射天线一端与多参数采集测量发射短节的钻铤连接、另一端通过绝缘环与外界钻井液隔绝,所述发射天线的天线线圈采用垂直电场法设计、通过螺杆动力钻具与钻井液之间组成的通讯介质将信号传输给所述接收发射短节,所述接收发射短节上设置有信号接收线圈与信号放大器,所述信号接收线圈一端与接收发射短节的钻铤连接,另一端通过绝缘环与外界钻井液隔绝,信号放大器将信号接收线圈接收到的信号放大后通过电磁耦合的方式进行无线传输将信号传至无线通信短节,无线通讯短节将接收到的信号通过泥浆脉冲发生器采用脉冲信号的方式传递到地面设备,地面上设备对井下数据进行解码及分析。
进一步地,所述多参数采集测量发射短节钻铤的近钻端的外径大于远钻端且近钻端钻铤本体上设置有放置近钻头测量仪器的开孔,电源、数据处理模块、发射天线和绝缘环设置在钻铤本体的远钻端并用套管和端盖保护。
进一步地,近钻测量仪器包括扭矩应变片、压力传感器、温度传感器、三轴加速度传感器和电路板,所述扭矩应变片、压力传感器、温度传感器、三轴加速度传感器和电路板设置在多参数采集测量发射短节的钻铤上的多个开孔内。
进一步地,所述近钻测量仪器采集的数据为三轴加速度、扭矩、钻压、环空内外压力、温度、转速和弯矩。
进一步地,所述无磁钻铤内安装MWD测量短节,无线通讯短节采集MWD测量短节测量的数据并传递至地面设备。
有益效果
与现有技术相比,本发明具有以下技术效果:
(1)近钻头多参数井下随钻测控系统,测量参数丰富,能够实时监测井下工程参数的实时变化,根据井下参数的变化对钻压、转速、扭矩、钻井液性能等钻井参数进行实时调整。可以及时准确的预判是否出现井涌、井漏、卡钻、钻具损坏等井下复杂事故,并采取相应措施避免更严重的事故出现,能够大幅降低非钻时间,提高钻井时效。
(2)近钻头多参数井下随钻系统所测量扭矩、钻压、弯矩、温度、内外环空压力、转速、三轴振动等井下工程参数,更加靠近钻头,并且排除了钻具与井内壁的摩擦力和其他的干扰因素,实现井下数据真实准确,达到实时监控钻具井下实际工作状态的目的。
(3)近钻头随钻测控系统的通信系统能够实现近钻头测控系统近钻头测量仪器与信号接收系统通过跨螺杆动力钻具无线通信,确保近钻头工程参数发射短节测量数据的实时采集和及时有效传输。
(4)本发明采用垂直电场法设计发射天线,利用螺杆动力钻具与钻井液组成信道介质传输数据,发射天线的线圈外不可出现金属回路,因此在线圈外部金属护套的一端,安装非金属的绝缘环,使其形成小缝隙通信通道从而实现数据高效传输。
(5)本发明实现了近钻头随钻测控系统跨螺杆动力钻具通信,降低了设计加工通信线路的难度和成本,采用小缝隙通信设计,在保证通信的前提下,大幅提高了测量短节在井下的耐磨和承压性能。
附图说明
图1近钻头多参数井下随钻测控系统的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
参照附图1近钻头多参数井下随钻测控系统,随钻测控系统由地面设备10和井下总成组成,地面设备包括压力传感器、无线收发主机、无线传感器主机、司钻显示器和数据处理仪,井下总成包括依次连接的钻头1、多参数采集测量发射短节2、螺杆动力钻具3、打捞接头4、接收发射短节5、第一转换接头6、无线通信短节7、第二转换接头8和无磁钻铤9,多参数采集测量发射短节2由电源、数据处理电路、近钻头测量仪器、发射天线、绝缘环和数据存储模块组成。近钻头测量仪器包括扭矩应变片、压力传感器、温度传感器、三轴加速度传感器和电路板。多参数采集测量发射短节本体上开若干个孔用于安装扭矩应变片、压力传感器、温度传感器、三轴加速度传感器、电路板等。所述近钻测量仪器根据预先设置的时间间隔采集数据并将采集的数据存储至存储模块和传输至数据处理电路,数据处理电路和发射天线通讯连接,所述发射天线一端与多参数采集测量发射短节的钻铤连接、另一端通过绝缘环与外界钻井液隔绝,电源和数据处理电路分别安装在多参数采集测量发射短节2上,发射天线安装在多参数采集测量发射短节2上,井下连接时多参数采集测量发射短节下部连接钻头,上部连接螺杆动力钻具3。
近钻头随钻测控系统,采用垂直电场法设计天线线圈利用钻具与钻井液组成通信介质,实现多参数采集测量发射短节与接收发射短节之间跨螺杆传输数据。
近钻头随钻测控系统的通信线圈外部金属护套的一端安装非金属的绝缘环,不可出现金属回路,使其形成小缝隙通信通道从而实现数据传输。
近钻头多参数井下随钻测控系统的电源、数据处理电路、发射天线、绝缘环安装在多参数采集测量发射短节上,并用套管和端盖保护,组装成为近钻头数据采集和信号发射端。随钻测控系统的接收发射通过电磁耦合技术与无线通讯短节进行通信。多参数采集测量发射短节2所测量的扭矩、钻压、弯矩、转速、振动、压力、温度等工程参数更加靠近钻头,并且排除了钻具与井内壁的摩擦力和其他的干扰因素,实现井下数据真实准确,能够实现实时监控钻井过程中井下的工作状态。
钻测控系统能根据预先设置的时间间隔采集三轴加速度、扭矩、钻压、环空内外压力、温度、转速、弯矩等参数并将采集的数据存储在数据存储模块内部,以供仪器起钻后分析使用,同时通过通信线圈将数据传给在其内部的接收发射短节。再由接收发射短节通过电磁耦合的方式进行无线传输将信号传至无线通信短节,由泥浆脉冲发生器将脉冲信号传递到地面解码系统,对井下数据进行解码及分析。
接收发射短节与多参数采集测量发射短节通过无线短传系统在泥浆介质内实现通信,所述接收发射短节上设置有信号接收线圈与信号放大器,信号放大器将信号接收线圈接收到的信号放大后将钻头工程参数实时传输到达无线通信短节7,无磁钻铤9内安装MWD测量短节,无线通信短节采集MWD测量数据,由无线通信短节7控制泥浆脉冲发生器将脉冲信号传达到地面系统,地面设备对井下数据进行解码及分析。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (5)

  1. 一种近钻头多参数井下随钻测控系统,所述随钻测控系统由地面设备和井下总成组成,地面设备包括压力传感器、无线收发主机、无线传感器主机、司钻显示器和数据处理仪,其特征在于,所述井下总成包括依次连接的钻头、多参数采集测量发射短节、螺杆动力钻具、打捞接头、接收发射短节、第一转换接头、无线通信短节、第二转换接头和无磁钻铤,所述多参数采集测量发射短节由钻铤、电源、数据处理电路、近钻头测量仪器、发射天线、绝缘环和数据存储模块组成,所述近钻测量仪器根据预先设置的时间间隔采集数据并将采集的数据存储至数据存储模块和传输至数据处理电路,数据处理电路与发射天线通讯连接,所述发射天线一端与多参数采集测量发射短节的钻铤连接、另一端通过绝缘环与外界钻井液隔绝,所述发射天线的天线线圈采用垂直电场法设计、通过螺杆动力钻具与钻井液之间组成的通讯介质将信号传输给所述接收发射短节,所述接收发射短节上设置有信号接收线圈与信号放大器,所述信号接收线圈一端与接收发射短节的钻铤连接,另一端通过绝缘环与外界钻井液隔绝,信号放大器将信号接收线圈接收到的信号放大后通过电磁耦合的方式进行无线传输将信号传至无线通信短节,无线通讯短节将接收到的信号通过泥浆脉冲发生器采用脉冲信号的方式传递到地面设备,地面上设备对井下数据进行解码及分析。
  2. 根据权利要求1所述的一种近钻头多参数井下随钻测控系统,其特征在于,所述多参数采集测量发射短节钻铤的近钻端的外径大于远钻端且近钻端钻铤本体上设置有放置近钻头测量仪器的开孔,电源、数据处理模块、发射天线和绝缘环设置在钻铤本体的远钻端并用套管和端盖保护。
  3. 根据权利要求2所述的一种近钻头多参数井下随钻测控系统,其特征在于,近钻测量仪器包括扭矩应变片、压力传感器、温度传感器、三轴加速度传感器和电路板,所述扭矩应变片、压力传感器、温度传感器、三轴加速度传感器和电路板设置在多参数采集测量发射短节的钻铤上的多个开孔内。
  4. 根据权利要求1所述的一种近钻头多参数井下随钻测控系统,其特征在于,所述近钻测量仪器采集的数据为三轴加速度、扭矩、钻压、环空内外压力、温度、转速和弯矩。
  5. 根据权利要求1-4任一所述的一种近钻头多参数井下随钻测控系统,其特征在于,所述无磁钻铤内安装MWD测量短节,无线通讯短节采集MWD测量短节测量的数据并传递至地面设备。
PCT/CN2022/106152 2021-10-22 2022-07-18 一种近钻头多参数井下随钻测控系统 WO2023065739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/334,293 US20230323769A1 (en) 2021-10-22 2023-06-13 Near-bit multi-parameter downhole measurement and control system while drilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230883.1 2021-10-22
CN202111230883.1A CN114033361A (zh) 2021-10-22 2021-10-22 一种近钻头多参数井下随钻测控系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/334,293 Continuation US20230323769A1 (en) 2021-10-22 2023-06-13 Near-bit multi-parameter downhole measurement and control system while drilling

Publications (1)

Publication Number Publication Date
WO2023065739A1 true WO2023065739A1 (zh) 2023-04-27

Family

ID=80135162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106152 WO2023065739A1 (zh) 2021-10-22 2022-07-18 一种近钻头多参数井下随钻测控系统

Country Status (3)

Country Link
US (1) US20230323769A1 (zh)
CN (1) CN114033361A (zh)
WO (1) WO2023065739A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117449765A (zh) * 2023-12-01 2024-01-26 中国地质科学院探矿工艺研究所 水平绳索钻杆多源实时一体化钻录测装备与数据感知方法
CN118008267A (zh) * 2024-04-08 2024-05-10 上海达坦能源科技股份有限公司四川分公司 一种一体式随钻测量工具

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112523687B (zh) * 2020-12-21 2022-03-25 西南石油大学 一种激光-机械钻井系统
CN114033361A (zh) * 2021-10-22 2022-02-11 中国石油大学(华东) 一种近钻头多参数井下随钻测控系统
CN114719898B (zh) * 2022-03-14 2024-04-05 交通运输部上海打捞局 检测水深和介电常数并功率自调整的方法及定向钻传感器
CN114895374B (zh) * 2022-05-23 2023-03-21 中国矿业大学 一种基于钻-震-磁一体化的岩溶区桩基综合探测方法
CN115596432B (zh) * 2022-09-02 2024-06-18 延安通源石油工程技术服务有限公司 一种信号传输方法、系统、垂钻以及计算机可读存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2314061A1 (en) * 1999-08-25 2001-02-25 Schlumberger Canada Limited Reservoir management system and method
NO20171153A1 (no) * 2004-03-04 2005-09-05 Halliburton Energy Services Inc Multiple distribuerte sensorer langs borestreng
CN203702140U (zh) * 2013-11-08 2014-07-09 北京六合伟业科技股份有限公司 近钻头随钻测量通信系统
CN103967481A (zh) * 2014-05-29 2014-08-06 中国石油集团钻井工程技术研究院 一种全井段多参数随钻实时测量与传输的方法与系统
CN204283413U (zh) * 2014-11-28 2015-04-22 北京六合伟业科技股份有限公司 近钻头随钻测斜仪
CA2893150A1 (en) * 2014-05-30 2015-11-30 Scientific Drilling International, Inc. Downhole mwd signal enhancement, tracking, and decoding
CN106014391A (zh) * 2016-07-26 2016-10-12 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量系统
US20170242153A1 (en) * 2016-02-19 2017-08-24 China Petroleum & Chemical Corporation System for Geosteering and Formation Evaluation Utilizing Near-Bit Sensors
US20180058200A1 (en) * 2016-08-31 2018-03-01 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Receiving apparatus for downhole near-bit wireless transmission
CN110984958A (zh) * 2019-12-12 2020-04-10 商丘睿控仪器仪表有限公司 一种小尺寸钻井工程监控系统
CN111852444A (zh) * 2020-06-11 2020-10-30 中国海洋石油集团有限公司 随钻近钻头测量下短节以及随钻近钻头测量装置
CN114033361A (zh) * 2021-10-22 2022-02-11 中国石油大学(华东) 一种近钻头多参数井下随钻测控系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202023558U (zh) * 2011-02-12 2011-11-02 北京六合伟业科技有限公司 一种低频磁通信装置
CN202081888U (zh) * 2011-06-10 2011-12-21 斯伦贝谢金地伟业油田技术(山东)有限公司 一种近钻头地质导向系统
US9777570B2 (en) * 2015-02-10 2017-10-03 Pulse Directional Technologies, Inc. AT-bit downhole sensor and transmitter
CN106761712A (zh) * 2016-12-28 2017-05-31 山东大学 基于msk调制的井下无线电磁短传方法及系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2314061A1 (en) * 1999-08-25 2001-02-25 Schlumberger Canada Limited Reservoir management system and method
NO20171153A1 (no) * 2004-03-04 2005-09-05 Halliburton Energy Services Inc Multiple distribuerte sensorer langs borestreng
CN203702140U (zh) * 2013-11-08 2014-07-09 北京六合伟业科技股份有限公司 近钻头随钻测量通信系统
CN103967481A (zh) * 2014-05-29 2014-08-06 中国石油集团钻井工程技术研究院 一种全井段多参数随钻实时测量与传输的方法与系统
CA2893150A1 (en) * 2014-05-30 2015-11-30 Scientific Drilling International, Inc. Downhole mwd signal enhancement, tracking, and decoding
CN204283413U (zh) * 2014-11-28 2015-04-22 北京六合伟业科技股份有限公司 近钻头随钻测斜仪
US20170242153A1 (en) * 2016-02-19 2017-08-24 China Petroleum & Chemical Corporation System for Geosteering and Formation Evaluation Utilizing Near-Bit Sensors
CN106014391A (zh) * 2016-07-26 2016-10-12 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量系统
US20180355710A1 (en) * 2016-07-26 2018-12-13 Orient Energy & Technologies Co., Ltd. Near-bit measurement while drilling system
US20180058200A1 (en) * 2016-08-31 2018-03-01 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Receiving apparatus for downhole near-bit wireless transmission
CN110984958A (zh) * 2019-12-12 2020-04-10 商丘睿控仪器仪表有限公司 一种小尺寸钻井工程监控系统
CN111852444A (zh) * 2020-06-11 2020-10-30 中国海洋石油集团有限公司 随钻近钻头测量下短节以及随钻近钻头测量装置
CN114033361A (zh) * 2021-10-22 2022-02-11 中国石油大学(华东) 一种近钻头多参数井下随钻测控系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117449765A (zh) * 2023-12-01 2024-01-26 中国地质科学院探矿工艺研究所 水平绳索钻杆多源实时一体化钻录测装备与数据感知方法
CN118008267A (zh) * 2024-04-08 2024-05-10 上海达坦能源科技股份有限公司四川分公司 一种一体式随钻测量工具
CN118008267B (zh) * 2024-04-08 2024-06-11 上海达坦能源科技股份有限公司四川分公司 一种一体式随钻测量工具

Also Published As

Publication number Publication date
US20230323769A1 (en) 2023-10-12
CN114033361A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023065739A1 (zh) 一种近钻头多参数井下随钻测控系统
US8164980B2 (en) Methods and apparatuses for data collection and communication in drill string components
RU2682400C1 (ru) Система измерения в процессе бурения вблизи от долота
CN110984958B (zh) 一种小尺寸钻井工程监控系统
CA3055546C (en) Wireless communication between downhole components and surface systems
CN103967481A (zh) 一种全井段多参数随钻实时测量与传输的方法与系统
CN103061753A (zh) 一种随钻井下流量测量监测早期溢流的装置
NO335639B1 (no) Fremgangsmåte,datamaskinprogram og måling-under-boring-system for innsamling og analyse av kraftmålinger i et borehull
CN105264172A (zh) 具有光纤的井下钻探最优化钻环
CN103790576A (zh) 一种石油钻井用mwd无线压力传感器传输装置
CN115059449A (zh) 一种煤矿井下自识别多参数近钻头随钻测量装置及方法
CN207194883U (zh) 钻杆参数仪
WO2016023068A1 (en) Monitoring of drilling parameters of drilling operations
CN202866799U (zh) 一种石油钻井用mwd无线压力传感器传输装置
CN205477594U (zh) 一种随钻测斜仪
CA3070383C (en) Connector ring
CN111550234A (zh) 一种电磁波传输近钻头地质导向系统
US20210132244A1 (en) Data acquisition systems
CN204098896U (zh) 用于保护测井井下仪器的实时监控装置
CN114109365B (zh) 一种钻探井动态液面监测方法
WO2021011017A1 (en) Measurement of torque with shear stress sensors
CN102425410A (zh) 一种随钻测量超声波数据传输方法及装置
US11474010B2 (en) System and method to determine fatigue life of drilling components
CN105781519B (zh) 一种钻井液漏失判定仪器
Hernandez et al. The evolution and potential of networked pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882361

Country of ref document: EP

Kind code of ref document: A1