WO2023063313A1 - Photoelectric composite substrate and method for manufacturing same - Google Patents

Photoelectric composite substrate and method for manufacturing same Download PDF

Info

Publication number
WO2023063313A1
WO2023063313A1 PCT/JP2022/037877 JP2022037877W WO2023063313A1 WO 2023063313 A1 WO2023063313 A1 WO 2023063313A1 JP 2022037877 W JP2022037877 W JP 2022037877W WO 2023063313 A1 WO2023063313 A1 WO 2023063313A1
Authority
WO
WIPO (PCT)
Prior art keywords
clad
substrate
optical waveguide
core
insulating layer
Prior art date
Application number
PCT/JP2022/037877
Other languages
French (fr)
Japanese (ja)
Inventor
徹 中芝
潤子 栗副
彩 吉田
直幸 近藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023063313A1 publication Critical patent/WO2023063313A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Definitions

  • the present invention relates to an opto-electric composite substrate and a manufacturing method thereof.
  • optical fiber has been the mainstream transmission medium in the field of FTTH (Fiber to the Home) and long-distance and medium-distance communication in the in-vehicle field.
  • FTTH Fiber to the Home
  • high-density wiring narrow pitch, branching, crossing, multi-layering, etc.
  • surface mountability integration with electric substrates
  • optical waveguide type optical wiring boards that can be bent at small diameters, which cannot be done with optical fibers.
  • such an optical wiring board includes a light emitting device such as a vertical cavity surface emitting laser (VCSEL), a light receiving device such as a photodiode (PD), and the like. It is preferable that a semiconductor element such as an integrated circuit (IC) is mounted. In order to drive these elements, an electric circuit must be provided on the optical wiring board or the like. For this reason, the opto-electrical composite wiring board is preferably provided with not only an optical waveguide but also an electric circuit.
  • Such an opto-electric composite wiring board includes, for example, a bendable opto-electric composite flexible wiring board (for example, Patent Documents 1 and 2). This opto-electric composite flexible wiring board can be flexibly mounted, for example, by arranging it over the hinge of a small terminal device or by changing its shape according to the space.
  • Electrode pad A substrate 1 Conventional opto-electrical composite substrates usually have an electric circuit layer (electrode pad A substrate 1) containing 4 was placed on top, and an optical waveguide with a core 2 and a cladding 3 was formed as a second layer, and a coverlay layer 6 was formed for protection purposes. Further, in the conventional composite substrate, when the electrode pads 4 for mounting the components are on the back side (optical waveguide side) of the surface electrical circuit layer, in order to obtain electrical connection from the front side, the electrode pads 4 shown in FIG. 2, a through-hole was provided in the upper portion of the electrode pad 4 by laser processing or the like.
  • an object of the present invention is to provide an opto-electric composite substrate that can improve the above problems and reduce the loss of light during input and output.
  • an opto-electrical composite substrate includes a substrate having an insulating layer and an electrode pad formed on one surface of the insulating layer, and an optical waveguide laminated on the one surface of the insulating layer. and the optical waveguide leads to a clad, a core surrounded by the clad, an input micromirror, an output micromirror, and a surface of the electrode pad opposite to the surface in contact with the insulating layer. It is characterized by having holes.
  • an opto-electrical composite substrate comprising the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate.
  • the step of forming the optical waveguide includes laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes; laminating a core material on the lower clad to form a core by photolithography; laminating an upper clad material on the lower clad on which the core is formed; a step of forming a through hole in the substrate to form an upper clad; and a step of forming a micromirror.
  • FIG. 1 is a schematic cross-sectional view showing a general configuration of a conventional optoelectric composite substrate.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the optoelectric composite substrate according to this embodiment.
  • FIG. 3 is a schematic top view of the opto-electric composite substrate shown in FIG. 2 as viewed from above.
  • FIG. 4 is a schematic cross-sectional view (upper) and a schematic top view (lower) showing steps related to the formation of through-holes in the method for manufacturing an opto-electrical composite substrate of the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a step related to mirror formation in the method for manufacturing an optoelectric composite substrate according to this embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a state in which an optical signal is transmitted using the opto-electric composite substrate of this embodiment.
  • each reference sign indicates the following: 1 substrate, 2 core, 3 clad, 4 electrode pad, 5 mirror, 6 coverlay layer, 7 laser chip, 8 bump, 9 through hole, 10 Photomask, 11 blade, 12 diluted varnish, 13 deposition mask, 14 gold (metal layer).
  • the opto-electrical composite substrate includes a substrate 1 having an insulating layer and an electrode pad 4 formed on one surface of the insulating layer, and a laminated optical waveguide comprising a clad 3, a core 2 surrounded by the clad, an input micromirror 5 and an output micromirror 5', and the insulating layer of the electrode pad 4. It is characterized by having a through hole 9 leading to the surface opposite to the surface in contact with the .
  • the distance between the optical component and the mirror can be shortened, and the optical loss can be reduced.
  • the base material of the wiring board is not present in the input/output optical path, the attenuation of light can be suppressed, and the loss of light during input/output can be further reduced. Therefore, according to the present invention, it is possible to provide an opto-electric composite substrate capable of reducing light loss and having high light input/output efficiency. Furthermore, a method for manufacturing the optoelectric composite substrate can also be provided.
  • any material can be used without particular limitation as long as it is a material used for ordinary substrates for electrical materials, and examples thereof include materials for general printed wiring boards.
  • examples of materials for forming the insulating layer include epoxy resin, acrylic resin, phenol resin, silicone resin, bismaleimide resin, polyimide resin, liquid crystal polymer (LCP), benzoxazine, PPE (polyphenylene ether). ), vinyl-based resins, fluorine-based resins such as Teflon (registered trademark), and various modified products thereof.
  • the substrate 1 is preferably composed of a flexible insulating layer.
  • the insulating layer "has flexibility" means that it does not break even if it is deformed by bending the substrate. Specifically, it means that the tensile modulus at 20°C is 10 GPa or less. In this embodiment, the tensile modulus is measured by attaching a sample cut to a size of 90 mm * 5.5 mm to a universal testing machine (AGS-X manufactured by Shimadzu Corporation) and testing at a tensile speed of 500 mm / min. and the tensile modulus is calculated from the stress at elongation from 1.0% to 5.0%.
  • AGS-X manufactured by Shimadzu Corporation
  • a material for such an insulating layer it is particularly preferable to use a material having durability against mechanical stress such as bending. It can be used as one insulating layer.
  • An electrode pad 4 made of a conductive material such as metal is formed on one surface (for example, the upper surface) of the insulating layer.
  • the electrode pad 4 is electrically connected to the optical component via bumps 8, as shown in the right diagram of FIG.
  • the conductive material that constitutes the electrode pad 4 is not particularly limited, but examples thereof include copper, gold, silver, aluminum, and alloys thereof.
  • an electric circuit (wiring) made of the same conductive material as the electrode pad 4 may be provided.
  • the positions of the electrode pads 4 and the electric circuit are not limited to the left and right positions of the substrate 1, and can be patterned according to the purpose of use.
  • the thickness of the insulating layer in the substrate 1 is not particularly limited, it is preferably 20 ⁇ m or more and 80 ⁇ m or less. With such a thickness, there is an advantage that both high flexibility (ease of bending) and ease of processing can be achieved at the same time.
  • the thickness of the substrate 1 is preferably 20 ⁇ m or more and 50 ⁇ m or less, more preferably 30 ⁇ m or more and 40 ⁇ m or less.
  • An optical waveguide is laminated on the surface of the insulating layer on which the electrode pads 4 are formed.
  • the optical waveguide includes a core 2, a clad 3 surrounding it, micromirrors 5 and 5' capable of inputting and outputting light, and a through hole leading to the surface of the electrode pad 4 opposite to the surface in contact with the insulating layer. and holes 9 .
  • FIG. 3 is a schematic top view of the opto-electric composite substrate of this embodiment (actually, the core 2 is not visible in the top view, but the core 2 is also shown for convenience). Since the electrode pads 4 of the substrate 1 are exposed by having the through holes 9, optical components such as the laser chip 7 can be mounted there.
  • the size of the through hole 9 is not particularly limited as long as it can accommodate the bump 8 for mounting the optical component.
  • Optical components that can be mounted on the opto-electric composite substrate of this embodiment include laser chips, photodiodes, and the like.
  • the optical component and the optical waveguide are not completely in close contact with each other and are slightly separated from each other. This is because it is possible to prevent physical interference with optical components when the optical waveguide material expands and contracts according to temperature changes during use.
  • the optical waveguide of the present embodiment is not particularly limited as long as it has the through hole 9 as described above and can be provided in the opto-electrical composite wiring board. Specifically, as described above, it is an optical waveguide that includes the core 2 and the clad 3 surrounding the core 2, reflects light at the interface between the core 2 and the clad 3, and propagates the light into the core 2. .
  • the optical waveguide of this embodiment includes an input micromirror (inclined surface) 5 for reflecting light so as to guide light incident from the outside of the opto-electrical composite wiring board into the core 2, It has an output micromirror 5' for reflecting light so as to guide the emitted light to the outside of the opto-electrical composite wiring board.
  • an inclined surface forming an angle of 45° with the planar direction of the opto-electrical composite wiring board can be used.
  • micromirrors may be provided with a metal layer of gold, silver, copper, aluminum, etc. on the slanted surfaces.
  • These micromirrors 5 and 5' are formed in the mounting area of the optical elements (parts), and the micromirrors 5 and 5' pass light when introducing light from the outside or leading it to the outside.
  • the electrode pad 4 and the through hole 9 are not formed in the region where the .
  • a resin material having a lower refractive index at the transmission wavelength of guided light than the material of the core 2, which will be described later, is used.
  • a resin material having a refractive index at the transmission wavelength of, for example, about 1.5 to 1.55 can be used.
  • examples of such resin materials include curable resins that are cured by energy rays such as light or heat.
  • photosensitive materials it is preferable to use photosensitive materials.
  • a photosensitive material is a material whose solubility in a liquid used in development, which will be described later, changes in a portion irradiated with energy rays.
  • Another example is a material that dissolves easily in a liquid used in development, which will be described later, before being irradiated with energy rays, but becomes less soluble after being irradiated with energy rays.
  • the photosensitive material specifically includes, for example, a photosensitive polymer material.
  • the energy ray is not particularly limited as long as it can change the solubility.
  • ultraviolet rays are preferably used because of ease of handling and the like.
  • a photosensitive polymeric material is preferably used in which the solubility of the portion irradiated with ultraviolet rays changes. More specifically, it is preferable to use a photosensitive polymer material whose portion irradiated with ultraviolet rays is cured and becomes difficult to dissolve in the liquid used in the development described below.
  • examples of the photosensitive polymer forming the clad 3 include epoxy-based resins, acrylic-based resins, polycarbonate-based resins, polyimide-based resins, and the like, which have refractive indices as described above.
  • bisphenol type epoxy resins are particularly preferred.
  • a dry film made of a resin composition containing the above resin and a curing agent (for example, a photocationic curing agent).
  • the resin composition may further contain additives such as leveling agents and antioxidants.
  • the thickness of the clad 3 of the present embodiment is not particularly limited, but among the clads surrounding the core, when the clad on the substrate side is the lower clad and the clad on the opposite side to the substrate is the upper clad, the lower clad Preferably, the clad is thinner than the upper clad. As a result, the distance between the optical component 7 and the core 2 mounted on the opto-electric composite substrate of the present embodiment is shortened, and the loss of light can be further reduced. expected to improve.
  • the thickness of the lower clad is 2 ⁇ m or more thicker than the thickness of the electrode pad described above.
  • the thickness of the lower clad is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the upper clad is preferably about 5 ⁇ m or more and 10 ⁇ m or less.
  • a material having a higher refractive index at the transmission wavelength of guided light than the material of the clad 3 is used as a core material for forming the core 2.
  • a resin material having a refractive index at the transmission wavelength of, for example, about 1.55 to 1.6 can be used as a core material for forming the core 2.
  • a photosensitive polymer material For example, epoxy resin, acrylic resin, polycarbonate resin, polyimide resin having a refractive index as described above and the like as a resin component.
  • epoxy resin acrylic resin, polycarbonate resin, polyimide resin having a refractive index as described above and the like
  • bisphenol type epoxy resins are particularly preferred.
  • a dry film made of a resin composition containing the resin as described above and a curing agent (for example, a photocationic curing agent).
  • the resin composition may further contain additives such as leveling agents and antioxidants.
  • the core material for forming the core is preferably of the same type as the clad material for forming the clad.
  • the thickness of the core 2 is not particularly limited, it is preferably about 20 ⁇ m or more and 50 ⁇ m or less. That is, the thickness of the entire optical waveguide is preferably 45 ⁇ m or more and 110 ⁇ m or less, including the thicknesses of the upper clad and the lower clad. As a result, there is an advantage that both high flexibility (ease of bending) and ease of processing can be achieved at the same time.
  • a more preferable thickness of the optical waveguide is 50 ⁇ m or more and 100 ⁇ m or less.
  • the optical waveguide of this embodiment may have a coverlay layer 6 laminated on the surface opposite to the surface in contact with the substrate 1 .
  • the coverlay layer 6 is mainly provided on the portion where the optical components are not mounted.
  • the portion where the optical component is not mounted can be a bending portion, and the presence of the coverlay layer 6 at that portion improves the bending resistance of the opto-electrical composite substrate, Furthermore, there is an advantage that the waveguide can be prevented from being damaged.
  • the coverlay layer 6 is preferably an insulating resin film, and for example, a resin film made of polyimide resin, PET resin, liquid crystal polymer (LCP) or the like can be used.
  • the thickness of the coverlay layer 6 is not particularly limited, it is preferably equal to the thickness of the insulating layer of the substrate 1 described above from the viewpoint of symmetry. More specifically, it is usually about 20 ⁇ m or more and 80 ⁇ m or less.
  • the coverlay layer 6 is preferably laminated via an adhesive layer (not shown) made of epoxy resin, acrylic resin, or the like, and the thickness of the adhesive layer is usually about 5 ⁇ m or more and 20 ⁇ m or less.
  • the method for manufacturing an opto-electrical composite substrate of this embodiment includes the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate.
  • the step of forming the optical waveguide includes laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes; laminating a core material on the lower clad to form a core by photolithography; laminating an upper clad material on the lower clad on which the core is formed; a step of forming a through hole in the substrate to form an upper clad; and a step of forming a micromirror.
  • a substrate 1 that is, an electric wiring board, which includes an insulating layer, electrode pads 4 laminated on the insulating layer, and, if necessary, an electric circuit.
  • the substrate 1 is a portion corresponding to the substrate portion of the opto-electric composite substrate as the final product.
  • the means for preparing the substrate 1 is not particularly limited, and can be carried out by appropriately using means for manufacturing a normal flexible circuit board.
  • a copper-clad laminate in which a copper foil having a desired thickness is laminated on one side of an insulating layer made of polyimide film or the like, and electrode pads 4 are formed at sites where optical components are desired to be mounted.
  • the substrate 1 having the insulating layer and the electrode pads can be prepared by removing the copper foil from the other portions.
  • FIGS. 4A to 4F the upper diagrams are schematic cross-sectional views seen from the cut planes indicated by dotted lines A to F in the lower diagrams.
  • a clad 3 (lower clad) is formed on the substrate 1 as shown in FIG. 4(A).
  • the method of forming the clad 3 is not limited, but the clad 3 (lower cladding) is obtained.
  • a first specific example is a method in which a resin film made of a lower clad material having a predetermined refractive index for forming the clad 3 is attached to the surface of the substrate 1 and then cured.
  • a resin film made of a lower clad material having a predetermined refractive index for forming the clad 3 is attached to the surface of the substrate 1 and then cured.
  • a liquid lower clad material for forming the clad 3 and then curing the material.
  • there is a method of applying a varnish of a lower clad material for forming the clad 3 and then curing the varnish it is preferable to subject the surface of the substrate 1 to a plasma treatment or the like in advance in order to improve adhesion.
  • the following method is used. First, a resin film made of the material for the lower clad is placed on the surface of the substrate 1 so as to be superimposed and then laminated by a hot press or the like. Stick together with an agent. Then, the bonded resin film is cured by irradiating energy rays such as light.
  • a liquid lower clad material or varnish of the lower clad material is applied to the surface of the substrate 1 by spin coating, bar coating, dip coating, or the like. Then, the applied liquid lower clad material or varnish of the lower clad material is cured by irradiation with energy rays such as light.
  • through holes 9 are formed by photolithography. do. Specifically, a photomask 10 is placed only on the electrode pads 4, the cladding material is subjected to exposure processing from thereon, and then the through holes 9 are formed by developing processing.
  • the exposure treatment here can be used without any particular limitation, as long as it is a method of exposing the curable resin material (photosensitive material) with a necessary amount of light having a wavelength that can cause the curable resin material (photosensitive material) to be altered (cured, etc.) by light.
  • a method using energy rays such as ultraviolet rays and X-rays as the exposure light used here can be used.
  • Ultraviolet rays are preferably used because of ease of handling and the like.
  • the exposure conditions can be appropriately selected according to the type of the photosensitive material.
  • the conditions are selected such that an ultra-high pressure mercury lamp is used and the exposure is performed at 500 to 3500 mJ/cm 2 .
  • the clad resin layer may be heat-treated before being cured by exposure. By doing so, irregularities, air bubbles, voids, etc. on the clad surface can be eliminated to make the clad surface smoother.
  • the heat treatment temperature is preferably a temperature at which the clad surface becomes smooth without irregularities, bubbles, voids, etc., and is appropriately selected according to the type of the curable resin material forming the clad.
  • the heat treatment time is preferably about 20 to 40 minutes, since the effect of eliminating irregularities, bubbles, voids, etc. on the surface of the clad and making it smooth can be sufficiently obtained.
  • the means of heat treatment is not particularly limited, and a method of treating in an oven set at a predetermined temperature, a method of heating with a hot plate, or the like is used.
  • through-holes 9 are formed in the clad 3 (lower clad) by performing a development process, as shown in FIG. 4(B).
  • the clad 3 may be subjected to heat treatment (post-curing) before the development process. It is believed that this makes it possible to more reliably cure the resin forming the clad.
  • the post-curing conditions are preferably a temperature of about 120 to 150° C. and a time of about 10 to 30 minutes. However, it is not particularly limited to this range, and may be optimized according to the resin material used.
  • the developing process for forming the through holes 9 is performed by washing away the unexposed areas with a developing solution. , to remove unnecessary parts. That is, in the embodiment shown in FIG. 4(B), the clad 3 in the portion of the through hole 9 is removed. If the resin layer is of a negative type, the exposed portion will be removed with a developer.
  • Examples of the developer used here include acetone, isopropyl alcohol, toluene, ethylene glycol, MEK, or a mixture thereof at a predetermined ratio. Furthermore, for example, a water-based developer as disclosed in JP-A-2007-292964 can also be preferably used. Examples of the developing method include a method of injecting a developer by spraying, a method of using ultrasonic cleaning, and the like.
  • the clad 3 (lower clad) having the through holes 9 is formed on the substrate 1 .
  • a core 2 is formed on the clad 3 by photolithography.
  • a core resin layer made of a core material having a predetermined refractive index for forming the core 2 is formed on the outer surface of the clad 3 (lower clad) formed above.
  • the method is not particularly limited, and can be formed by bonding a resin film to the lower clad or applying a liquid resin (or resin varnish) to the surface of the lower clad in the same manner as the clad described above.
  • a plasma treatment or the like may be performed in advance in order to activate the outer surface of the lower clad and improve adhesion.
  • the core resin layer is irradiated with exposure light through a photomask 10 to perform pattern exposure of a predetermined shape on the core resin layer.
  • the exposure is not particularly limited as long as it is a method of exposing the photosensitive material to light having a wavelength that can cause deterioration (curing, etc.) of the photosensitive material with the necessary amount of light, and can be performed under the same conditions as for the cladding described above. can.
  • the heat treatment before exposure, the heat treatment after exposure (post-cure), and the development treatment can be performed in the same manner as for the lower clad described above.
  • development processing in the embodiment shown in FIG. 4D, since the core resin layer is of a positive type, processing is performed to remove unnecessary portions by washing away unexposed portions with a developer. That is, in the embodiment shown in FIG. 4D, the core 2 is formed by removing the exposed resin layer other than the core 2, and the through hole 9 is also maintained.
  • an optical waveguide is formed by forming a clad 3 (upper clad) so as to bury the core 2 formed above. .
  • the method of forming the clad 3 is not particularly limited. A clad 3 (upper clad) is obtained.
  • an upper clad material having a predetermined refractive index for forming the clad 3 (upper clad) is applied to the outer surface of the clad 3 (lower clad) on which the core formed above is laminated.
  • a cladding resin layer is formed.
  • the material for the upper clad is not particularly limited as long as it is a material having a lower refractive index at the transmission wavelength of the guided light than the material for the core. Use resin material.
  • the method of forming the resin layer for the upper clad is not particularly limited, and in the same manner as the formation of the lower clad described above, a resin film is attached to the lower clad, or a liquid resin (or resin varnish) is applied to the surface of the lower clad. It can be formed by coating.
  • through holes 9 are formed by photolithography. Specifically, a photomask 10 is placed only on the electrode pad 4, the material for the upper clad is exposed from thereon, and then the through hole 9 is formed by developing.
  • the exposure treatment, heat treatment before exposure, heat treatment after exposure (post-cure), and development treatment can be performed in the same manner as for the lower clad described above.
  • an optical waveguide having a through hole 9 is formed on the substrate 1 (FIG. 4(F)).
  • the manufacturing method of this embodiment includes a step of forming a micromirror on the optical waveguide.
  • a micromirror is a core with an inclined surface for reflecting light.
  • the method is not particularly limited as long as it can form an inclined surface as described above on the optical waveguide.
  • examples of the method of forming the inclined surface include a method of cutting with a dicing blade and a method of laser ablation. More specifically, for example, one surface of the cutting edge is a surface parallel to the plane direction of the blade, and the other surface is a surface having a predetermined angle, for example, 45°, with respect to the plane direction of the blade.
  • a blade is used to cut into the optical waveguide.
  • a disk-shaped rotary blade having a cutting edge on the circumference, such as a dicing blade is used.
  • the cutting may be performed while softening the optical waveguide by heating the substrate, the blade, etc., if necessary.
  • the micromirror is an inclined surface for reflecting light on the core, it may be formed from the outer surface of the opto-electrical composite substrate to the core. may have reached
  • a metal layer may be formed on the inclined surface formed as described above.
  • the metal constituting the metal layer is not particularly limited, and gold, silver, copper, aluminum, etc. can be used, for example.
  • the method for forming the metal layer is not particularly limited, and a known method can be used. Specifically, for example, a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a nano-paste method, and the like can be used.
  • the thickness of the metal layer is not particularly limited as long as it can reflect light, and examples include a thickness of about 1000 ⁇ .
  • the manufacturing method of this embodiment may include a step of providing a coverlay layer on the optical waveguide.
  • the means for providing the coverlay layer is not particularly limited. Lay layers.
  • the resin film is preferably laminated on the optical waveguide via an adhesive layer such as epoxy resin and/or acrylic resin.
  • the opto-electric composite substrate of the present embodiment obtained in this way, since the distance between the optical component and the mirror is short, the incident light does not spread so much, and the optical loss can be reduced. In addition, since the base material of the wiring board is not present in the input/output optical path, the attenuation of light can be suppressed, and the loss of light during input/output can be further reduced.
  • An opto-electric composite substrate comprises a substrate having an insulating layer and electrode pads laminated on the insulating layer, and an optical waveguide formed on one surface of the insulating layer,
  • the optical waveguide has a clad, a core surrounded by the clad, an input micromirror, an output micromirror, and a through hole leading to a surface of the electrode pad opposite to the surface in contact with the insulating layer.
  • An opto-electric composite substrate according to a second aspect is the opto-electric composite substrate according to the first aspect, wherein, of the clads surrounding the core in the optical waveguide, the clad on the substrate side is the lower clad and is opposite to the substrate.
  • the clad on the side is defined as the upper clad, the lower clad is thinner than the upper clad.
  • An opto-electric composite substrate according to a third aspect is the opto-electric composite substrate according to the first or second aspect, wherein the substrate has a thickness of 20 ⁇ m or more and 50 ⁇ m or less, and the optical waveguide has a thickness of 50 ⁇ m or more and 100 ⁇ m or less. .
  • An opto-electric composite substrate according to a fourth aspect is the opto-electric composite substrate according to any one of the first to third aspects, wherein an optical component is arranged on the optical waveguide, the optical component and the electrode pad are electrically connected through the through holes.
  • An opto-electric composite substrate according to a fifth aspect is the opto-electric composite substrate according to any one of the first to fourth aspects, wherein the insulating layer has flexibility.
  • a coverlay is laminated on the surface opposite to the surface in contact with the substrate in the optical waveguide of the opto-electric composite substrate according to the fifth aspect.
  • a method for manufacturing an opto-electrical composite substrate includes the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate. comprising at least a step and The step of forming the optical waveguide includes: a step of laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes; A step of laminating a core material on the lower clad and forming a core by a photolithographic method; a step of laminating an upper clad material on the lower clad on which the core is formed, forming through holes on the electrode pads by photolithography, and forming an upper clad; and forming a micromirror.
  • a flexible printed wiring board was prepared in which electrode pads and electric circuits were formed on an insulating layer made of polyimide resin with a thickness of 25 ⁇ m and a copper foil with a thickness of 18 ⁇ m.
  • a lower clad material (a dry film made of UV-curing epoxy resin, with a release film, 20 ⁇ m thick) is laminated on the substrate so as to cover the electrode pads and electric circuit, and a pressurized vacuum laminator (Nikko Materials Co., Ltd.) is applied.
  • V-130 manufactured by Nichigo-Morton Co., Ltd., hereinafter simply referred to as "vacuum laminator V-130" by applying pressure at 80 ° C. and 0.2 MPa, the substrate A dry film for the lower clad was laminated thereon.
  • the lower clad dry film was exposed to ultraviolet light from an ultra-high pressure mercury lamp under the condition of 2 J/cm 2 .
  • a mask having four circular slits with a diameter of 50 ⁇ m was positioned above the lower clad dry film, and the lower clad dry film was exposed through the mask. By doing so, the portion corresponding to the lower clad was cured.
  • a core material dry film made of UV curable epoxy resin, with release film, thickness 25 ⁇ m
  • vacuum laminator V-130 is applied.
  • the core dry film was laminated on the lower clad by applying pressure at 80° C. and 0.2 MPa.
  • the core dry film was exposed to ultraviolet light under the conditions of 3 J/cm 2 with an ultra-high pressure mercury lamp so as to obtain a core of a predetermined shape. was exposed by irradiating the Specifically, a mask having a linear pattern of slits with a width of 25 ⁇ m and a length of 50 mm was used, and the mask was positioned so that the slits were at appropriate positions above the core dry film. exposed. By doing so, the portion corresponding to the core was cured.
  • an upper clad material (a dry film made of UV-cured epoxy resin, with a release film, thickness of 30 ⁇ m) is placed, and vacuum laminator V is applied.
  • the upper clad dry film was laminated on the entire surface of the substrate by applying pressure at 100° C. and 0.3 MPa using ⁇ 130.
  • the upper clad dry film was exposed to ultraviolet light from an ultra-high pressure mercury lamp under the condition of 2 J/cm 2 .
  • a mask having four circular slits with a diameter of 50 ⁇ m was positioned above the upper clad dry film, and the upper clad dry film was exposed through the mask. By doing so, the portion corresponding to the upper clad was cured.
  • a blade 11 (a blade manufactured by Disco Co., Ltd. (particle size: No. 5000) (model number: B1E863SD5000L100MT38)) having an angle of 45° with respect to the surface direction of the blade on only one side in the plane of the cutting edge. was used to make two cuts at both end portions of the core under conditions of a rotation speed of 10000 rpm and a moving speed of 0.1 mm/sec. By doing so, the core was formed with a 45° inclined surface as shown in FIG. 5(B). At that time, a cut of 40 ⁇ m was made from the surface of the optical waveguide.
  • a vapor deposition mask (metal mask) 13 having an opening only in the region where the 45° inclined surface is formed is used to mask the surface of the 45° inclined surface with gold 14 having a thickness of 1000 ⁇ .
  • a micromirror having a metal layer 14 on the optical waveguide was formed by vacuum deposition (FIG. 5(E)).
  • coverlay film coverlay film “CISV-1215 manufactured by Nikkan Kogyo Co., Ltd. ”, Laminated film having an adhesive layer with a thickness of 12.5 ⁇ m on one side of a polyimide film with a thickness of 15 ⁇ m), and using a vacuum laminator V-130 at 120 ° C. and 0.3 MPa. , laminated. After that, it was heated at 160° C. for 1 hour. By doing so, the adhesive layer of the coverlay film was cured to form a coverlay layer.
  • a substrate having an insulating layer and electrode pads stacked on the insulating layer and an optical waveguide stacked on a surface of the substrate on which the electrode pads are stacked are provided by the above steps, and the optical waveguide comprises a clad and a , an opto-electric composite substrate having a core surrounded by the clad, an input micromirror, an output micromirror, and a through hole provided on the electrode pad.
  • optical signals can be efficiently transmitted with high reliability.
  • the opto-electric composite substrate of the present invention has flexibility and can reduce optical loss. Therefore, the present invention is preferably used as a flexible printed wiring board for optical transmission, and is very applicable to various electronic devices such as mobile phones, personal digital assistants, communication devices such as routers and servers, and base station equipment. useful for

Abstract

The purpose of the present invention is to provide a photoelectric composite substrate capable of reducing light loss at the time of input and output. One aspect of the present invention relates to a photoelectric composite substrate comprising: a substrate (1) having an insulating layer and an electrode pad (4) formed on one surface of the insulating layer; and an optical waveguide stacked on the one surface of the insulating layer, the optical waveguide having a cladding (3), a core (2) surrounded by the cladding (3), an input micromirror (5) and an output micromirror (5'), and a hole (9) leading to a surface on the reverse side from a surface abutting on the insulating layer of the electrode pad (4).

Description

光電気複合基板およびその製造方法Optoelectric composite substrate and manufacturing method thereof
 本発明は、光電気複合基板およびその製造方法に関する。 The present invention relates to an opto-electric composite substrate and a manufacturing method thereof.
 従来、FTTH(Fiber to the Home)や車載分野の長距離、中距離通信の分野で伝送媒体として光ファイバーが主流であった。近年、1m以内の短距離においても光を用いた高速伝送が必要となってきている。この領域には、光ファイバーではできない、高密度配線(狭ピッチ、分岐、交差、多層化等)、表面実装性、電気基板との一体化、小径での曲げが可能な光導波路型の光配線板が適している。 Conventionally, optical fiber has been the mainstream transmission medium in the field of FTTH (Fiber to the Home) and long-distance and medium-distance communication in the in-vehicle field. In recent years, there has been a need for high-speed transmission using light over a short distance of 1 m or less. In this area, high-density wiring (narrow pitch, branching, crossing, multi-layering, etc.), surface mountability, integration with electric substrates, and optical waveguide type optical wiring boards that can be bent at small diameters, which cannot be done with optical fibers. is suitable.
 また、このような光配線板には、光導波路から入出力された光を利用するために、垂直共振器面発光レーザ(VCSEL)等の発光素子、フォトダイオード(PD)等の受光素子、及び集積回路(IC)等の半導体素子等が実装されていることが好ましい。そして、これらの素子を駆動させるために、光配線板上等に、電気回路が設けられている必要がある。このことから、光導波路だけではなく、電気回路も設けられた光電気複合配線板であることが好ましい。このような光電気複合配線板としては、例えば、屈曲可能な光電気複合フレキシブル配線板が挙げられる(例えば、特許文献1および特許文献2)。この光電気複合フレキシブル配線板は、例えば、小型端末機器のヒンジをまたいで配置したり、スペースに合わせて形状を変化させるなど柔軟な実装が可能である。 In order to utilize the light input and output from the optical waveguide, such an optical wiring board includes a light emitting device such as a vertical cavity surface emitting laser (VCSEL), a light receiving device such as a photodiode (PD), and the like. It is preferable that a semiconductor element such as an integrated circuit (IC) is mounted. In order to drive these elements, an electric circuit must be provided on the optical wiring board or the like. For this reason, the opto-electrical composite wiring board is preferably provided with not only an optical waveguide but also an electric circuit. Such an opto-electric composite wiring board includes, for example, a bendable opto-electric composite flexible wiring board (for example, Patent Documents 1 and 2). This opto-electric composite flexible wiring board can be flexibly mounted, for example, by arranging it over the hinge of a small terminal device or by changing its shape according to the space.
 従来の光電気複合基板は、通常、図1(A)~(C)に示すように、レーザーチップ7等の光学素子をバンプ8等を介して表面実装するために、電気回路層(電極パッド4を含む基板1)が最表面に置かれており、第2層としてコア2及びクラッド3を有する光導波路、更に保護の目的でカバーレイ層6が形成されていた。また、従来の複合基板において、部品を実装するための電極パッド4が、表層電気回路層の裏面側(光導波路側)にある場合は、表面からの電気接続を得るため、図1(C)に示すように、レーザ加工などで電極パッド4の上部に貫通穴が設けられていた。 Conventional opto-electrical composite substrates usually have an electric circuit layer (electrode pad A substrate 1) containing 4 was placed on top, and an optical waveguide with a core 2 and a cladding 3 was formed as a second layer, and a coverlay layer 6 was formed for protection purposes. Further, in the conventional composite substrate, when the electrode pads 4 for mounting the components are on the back side (optical waveguide side) of the surface electrical circuit layer, in order to obtain electrical connection from the front side, the electrode pads 4 shown in FIG. 2, a through-hole was provided in the upper portion of the electrode pad 4 by laser processing or the like.
 このような従来構成の光電気複合基板では、電極パッド4が光導波路の表面側にあるため、光学素子(レーザーチップ7等)を実装した際に、図1の右側に示す断面図のように、受発光部から入出力部(ミラー5)までの距離が遠くなる傾向があった。レーザーチップ7からミラー5までの距離が遠いと光が広がるため、光導波路やフォトダイオード(PD)等の受光素子で受けきれずに損失が大きくなるという問題があった。また、フレキシブル基板の基材として一般的に使用されるポリイミド(PI)樹脂は不透明であるが、光がこの層を通過することでより損失が大きくなるという問題もあり、一方で、この層を除去するために、物理的、化学的な加工を加えると、隣接している光導波路にダメージを与えやすいという問題もあった。 In such a conventional opto-electric composite substrate, since the electrode pads 4 are on the surface side of the optical waveguide, when an optical element (laser chip 7, etc.) is mounted, the cross-sectional view shown on the right side of FIG. , the distance from the light receiving/emitting unit to the input/output unit (mirror 5) tends to increase. If the distance from the laser chip 7 to the mirror 5 is long, the light spreads, so there is a problem that the light cannot be received by a light receiving element such as an optical waveguide or a photodiode (PD), resulting in a large loss. Polyimide (PI) resin, which is commonly used as a base material for flexible substrates, is opaque. There is also the problem that if physical or chemical processing is applied for removal, the adjacent optical waveguides are likely to be damaged.
 そこで、本発明は、上記問題を改善し、入出力時の光の損失を低減できる光電気複合基板を提供することを目的とする。 Therefore, an object of the present invention is to provide an opto-electric composite substrate that can improve the above problems and reduce the loss of light during input and output.
特開2013-137469号公報JP 2013-137469 A 国際公開第2012/093462号WO2012/093462
 本発明者らは、前記課題を解決すべく鋭意検討した結果、以下の構成により前記課題を解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors found that the above problems can be solved with the following configuration.
 すなわち、本発明の一局面に係る光電気複合基板は、絶縁層及び前記絶縁層の一方の面に形成された電極パッドを有する基板と、前記絶縁層の前記一方の面に積層された光導波路とを備え、前記光導波路は、クラッドと、前記クラッドに囲まれたコアと、入力用マイクロミラー及び出力用マイクロミラーと、前記電極パッドの前記絶縁層に接する面とは反対側の面に通じる孔を有することを特徴とする。 That is, an opto-electrical composite substrate according to one aspect of the present invention includes a substrate having an insulating layer and an electrode pad formed on one surface of the insulating layer, and an optical waveguide laminated on the one surface of the insulating layer. and the optical waveguide leads to a clad, a core surrounded by the clad, an input micromirror, an output micromirror, and a surface of the electrode pad opposite to the surface in contact with the insulating layer. It is characterized by having holes.
 本発明の他の局面に関する光電気複合基板の製造方法は、絶縁層及び前記絶縁層の一方の面に形成される電極パッドを有する基板を準備する工程と、前記基板の上に光導波路を形成する工程とを少なくとも備え、
 前記光導波路を形成する工程が、前記基板に下クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、貫通孔を有する下クラッドを形成する工程と、前記下クラッドにコア用材料を積層し、フォトリソグラフィー法によってコアを形成する工程と、前記コアを形成した下クラッドに、上クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、上クラッドを形成する工程と、マイクロミラーを形成する工程とを含むことを特徴とする。
According to another aspect of the present invention, there is provided a method of manufacturing an opto-electrical composite substrate, comprising the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate. and at least the step of
The step of forming the optical waveguide includes laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes; laminating a core material on the lower clad to form a core by photolithography; laminating an upper clad material on the lower clad on which the core is formed; a step of forming a through hole in the substrate to form an upper clad; and a step of forming a micromirror.
図1は、従来の光電気複合基板の一般的な構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a general configuration of a conventional optoelectric composite substrate. 図2は、本実施形態における光電気複合基板の構成の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the optoelectric composite substrate according to this embodiment. 図3は、図2に示した光電気複合基板を上から見た上面模式図である。FIG. 3 is a schematic top view of the opto-electric composite substrate shown in FIG. 2 as viewed from above. 図4は、本実施形態の光電気複合基板の製造方法における、貫通孔の形成に関連する工程を示す、断面模式図(上段)及び上面模式図(下段)である。FIG. 4 is a schematic cross-sectional view (upper) and a schematic top view (lower) showing steps related to the formation of through-holes in the method for manufacturing an opto-electrical composite substrate of the present embodiment. 図5は、本実施形態の光電気複合基板の製造方法における、ミラー形成に関連する工程を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a step related to mirror formation in the method for manufacturing an optoelectric composite substrate according to this embodiment. 図6は、本実施形態の光電気複合基板を用いて光信号を伝送している状態を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a state in which an optical signal is transmitted using the opto-electric composite substrate of this embodiment.
 以下に、本発明を実施するための実施形態を、図面などを参照して具体的に説明するが、本発明はこれらに限定されるわけではない。なお、本実施形態に係る光電気複合基板では、実使用上において上下左右の方向は特に規定されるものではないが、その構成を説明する便宜上、図面における紙面の上下左右をもって各構成の位置関係を特定している。また、各図面や以下の説明において、各符号は以下を示す:1 基板、2 コア、3 クラッド、4 電極パッド、5 ミラー、6 カバーレイ層、7 レーザーチップ、8 バンプ、9 貫通孔、10 フォトマスク、11 ブレード、12 希釈ワニス、13 蒸着マスク、14 金(金属層)。 Embodiments for carrying out the present invention will be specifically described below with reference to the drawings and the like, but the present invention is not limited to these. In the opto-electrical composite substrate according to the present embodiment, the vertical and horizontal directions are not particularly defined in actual use. are identified. In addition, in each drawing and the following description, each reference sign indicates the following: 1 substrate, 2 core, 3 clad, 4 electrode pad, 5 mirror, 6 coverlay layer, 7 laser chip, 8 bump, 9 through hole, 10 Photomask, 11 blade, 12 diluted varnish, 13 deposition mask, 14 gold (metal layer).
 (光電気複合基板)
 本実施形態に係る光電気複合基板は、図2に示すように、絶縁層及び前記絶縁層の一方の面に形成された電極パッド4を有する基板1と、前記絶縁層の前記一方の面に積層された光導波路とを備え、前記光導波路は、クラッド3と、前記クラッドに囲まれたコア2と、入力用マイクロミラー5及び出力用マイクロミラー5’と、前記電極パッド4の前記絶縁層に接する面とは反対側の面に通じる貫通孔9を有することを特徴とする。
(Optical-electrical composite substrate)
As shown in FIG. 2, the opto-electrical composite substrate according to the present embodiment includes a substrate 1 having an insulating layer and an electrode pad 4 formed on one surface of the insulating layer, and a laminated optical waveguide comprising a clad 3, a core 2 surrounded by the clad, an input micromirror 5 and an output micromirror 5', and the insulating layer of the electrode pad 4. It is characterized by having a through hole 9 leading to the surface opposite to the surface in contact with the .
 このような構成により、光学部品とミラーまでの距離を縮めることができ、光損失を低減することができる。また、出入力光路に配線基板の基材が存在しなくなることで、光の減衰を抑制することもでき、入出力時の光の損失をより低減できる。よって、本発明によれば、光の損失を低減でき、光の入出力効率が高い、光電気複合基板を提供することができる。さらに、前記光電気複合基板を製造する方法も提供することができる。 With such a configuration, the distance between the optical component and the mirror can be shortened, and the optical loss can be reduced. In addition, since the base material of the wiring board is not present in the input/output optical path, the attenuation of light can be suppressed, and the loss of light during input/output can be further reduced. Therefore, according to the present invention, it is possible to provide an opto-electric composite substrate capable of reducing light loss and having high light input/output efficiency. Furthermore, a method for manufacturing the optoelectric composite substrate can also be provided.
 基板1を構成する前記絶縁層には、通常の電気材料用基板に用いる材料であれば特に限定なく使用することができ、一般的なプリント配線板用の材料がその例示として挙げられる。 For the insulating layer that constitutes the substrate 1, any material can be used without particular limitation as long as it is a material used for ordinary substrates for electrical materials, and examples thereof include materials for general printed wiring boards.
 基板がリジット基板である場合、前記絶縁層の形成材料としては、例えばエポキシ樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂、ビスマレイミド樹脂、ポリイミド樹脂,液晶ポリマー(LCP)、ベンゾオキサジン、PPE(ポリフェニレンエーテル)、ビニル系樹脂、テフロン(登録商標)等のフッ素系樹脂、及び、それらの各種変性物等が挙げられる。 When the substrate is a rigid substrate, examples of materials for forming the insulating layer include epoxy resin, acrylic resin, phenol resin, silicone resin, bismaleimide resin, polyimide resin, liquid crystal polymer (LCP), benzoxazine, PPE (polyphenylene ether). ), vinyl-based resins, fluorine-based resins such as Teflon (registered trademark), and various modified products thereof.
 基板がフレキシブル基板またはストレッチャブル基板である場合、基板1は、柔軟性を有する絶縁層で構成されていることが好ましい。 When the substrate is a flexible substrate or a stretchable substrate, the substrate 1 is preferably composed of a flexible insulating layer.
 本実施形態において、前記絶縁層が「柔軟性を有する」とは、基板を曲げるなどして変形しても破損しないことを意味する。具体的には、20℃における引張弾性率が10GPa以下であることを意味する。本実施形態において、前記引張弾性率は、90mm*5.5mmの大きさにカットしたサンプルを、万能試験機(株式会社島津製作所社製AGS-X)に取り付け、引張速度:500mm/minで試験を行い、伸び率1.0%から5.0%までの応力から引張弾性率を算出する。 In this embodiment, the insulating layer "has flexibility" means that it does not break even if it is deformed by bending the substrate. Specifically, it means that the tensile modulus at 20°C is 10 GPa or less. In this embodiment, the tensile modulus is measured by attaching a sample cut to a size of 90 mm * 5.5 mm to a universal testing machine (AGS-X manufactured by Shimadzu Corporation) and testing at a tensile speed of 500 mm / min. and the tensile modulus is calculated from the stress at elongation from 1.0% to 5.0%.
 このような絶縁層の材料としては、特に、屈曲等の機械応力に対して耐久性を有するものを用いることが好ましく、例えば、ポリイミド、液晶ポリマー(LCP)などの樹脂シートを本実施形態の基板1の絶縁層として用いることができる。 As a material for such an insulating layer, it is particularly preferable to use a material having durability against mechanical stress such as bending. It can be used as one insulating layer.
 前記絶縁層の一方の面(例えば、上面)には金属等の導電材料からなる電極パッド4が形成されている。この電極パッド4は、図2の右図に示すように、レーザーチップ等の光学部品7を実装する際には、バンプ8を介して当該光学部品と電気的に接続される。 An electrode pad 4 made of a conductive material such as metal is formed on one surface (for example, the upper surface) of the insulating layer. When mounting an optical component 7 such as a laser chip, the electrode pad 4 is electrically connected to the optical component via bumps 8, as shown in the right diagram of FIG.
 電極パッド4を構成する導電材料としては、特に限定はされないが、例えば、銅、金、銀、アルミニウム、またはそれらの合金等が挙げられる。 The conductive material that constitutes the electrode pad 4 is not particularly limited, but examples thereof include copper, gold, silver, aluminum, and alloys thereof.
 また、前記絶縁層の上面には、電極パッド4だけでなく、電極パッド4と同様の導電材料からなる電気回路(配線)を設けてもよい。 Further, on the upper surface of the insulating layer, not only the electrode pad 4 but also an electric circuit (wiring) made of the same conductive material as the electrode pad 4 may be provided.
 電極パッド4および電気回路の位置は基板1の左右位置に限定されるものではなく、使用目的に応じたパターン形状とすることができる。 The positions of the electrode pads 4 and the electric circuit are not limited to the left and right positions of the substrate 1, and can be patterned according to the purpose of use.
 前記基板1における絶縁層の厚みとしては、特に限定はされないが、20μm以上80μm以下であることが好ましい。このような厚みであれば、高柔軟性(曲げやすさ)と加工のしやすさを共に両立できるといった利点がある。 Although the thickness of the insulating layer in the substrate 1 is not particularly limited, it is preferably 20 μm or more and 80 μm or less. With such a thickness, there is an advantage that both high flexibility (ease of bending) and ease of processing can be achieved at the same time.
 前記基板1の厚みとしては、20μm以上、50μm以下であることが好ましく、30μm以上、40μm以下であることがさらに好ましい。 The thickness of the substrate 1 is preferably 20 µm or more and 50 µm or less, more preferably 30 µm or more and 40 µm or less.
 前記絶縁層の電極パッド4が形成されている面には、光導波路が積層されている。光導波路は、コア2とその周りを囲んでいるクラッド3と、光を入出力できるマイクロミラー5、5’と、前記電極パッド4の前記絶縁層に接する面とは反対側の面に通じる貫通孔9とを有する。 An optical waveguide is laminated on the surface of the insulating layer on which the electrode pads 4 are formed. The optical waveguide includes a core 2, a clad 3 surrounding it, micromirrors 5 and 5' capable of inputting and outputting light, and a through hole leading to the surface of the electrode pad 4 opposite to the surface in contact with the insulating layer. and holes 9 .
 図3は本実施形態の光電気複合基板を上から見た概略図であるが(実際は上面図ではコア2は見えていないが、便宜上、コア2も示している)、このように光導波路が貫通孔9を有することによって、基板1の電極パッド4が露出しているため、そこへレーザーチップ7等の光学部品を実装可能となる。貫通孔9の大きさは特に限定されず、光学部品を実装するためのバンプ8が入る大きさであればよい。 FIG. 3 is a schematic top view of the opto-electric composite substrate of this embodiment (actually, the core 2 is not visible in the top view, but the core 2 is also shown for convenience). Since the electrode pads 4 of the substrate 1 are exposed by having the through holes 9, optical components such as the laser chip 7 can be mounted there. The size of the through hole 9 is not particularly limited as long as it can accommodate the bump 8 for mounting the optical component.
 本実施形態の光電気複合基板に実装可能な光学部品としては、レーザーチップ、フォトダイオード、等が挙げられる。 Optical components that can be mounted on the opto-electric composite substrate of this embodiment include laser chips, photodiodes, and the like.
 光学部品を実装する際には、当該光学部品と光導波路とは完全に密着せずに、若干離れていることが好ましい。使用中の温度変化に応じて光導波路材料が膨張収縮をした際の、光学部品への物理干渉を防ぐことができるためである。 When mounting an optical component, it is preferable that the optical component and the optical waveguide are not completely in close contact with each other and are slightly separated from each other. This is because it is possible to prevent physical interference with optical components when the optical waveguide material expands and contracts according to temperature changes during use.
 本実施形態の光導波路は、上述したような貫通孔9を有する限り、光電気複合配線板に備えることができるものであれば特に限定されない。具体的には、上述したように、コア2及びコア2を囲むクラッド3を備え、コア2とクラッド3との界面で、光を反射させて、コア2中に光を進行させる光導波路である。 The optical waveguide of the present embodiment is not particularly limited as long as it has the through hole 9 as described above and can be provided in the opto-electrical composite wiring board. Specifically, as described above, it is an optical waveguide that includes the core 2 and the clad 3 surrounding the core 2, reflects light at the interface between the core 2 and the clad 3, and propagates the light into the core 2. .
 また、本実施形態の光導波路は、光電気複合配線板の外部から入射される光をコア2内に誘導するように、光を反射させる入力用マイクロミラー(傾斜面)5と、コア2から出射される光を光電気複合配線板の外部に導出するように、光を反射させる出力用マイクロミラー5’を有する。入力用マイクロミラー5及び出力用マイクロミラー5’としては、例えば、光電気複合配線板の面方向となす角が45°である傾斜面等が挙げられる。傾斜面が光導波路用のコアと空気との界面とすることで、光が全反射する性質を用いた反射効率が高いミラーが実現できる。これらマイクロミラーには、傾斜面上に金、銀、銅、アルミニウム等からなる金属層が備えられていてもよい。また、これらマイクロミラー5、5’は、光学素子(部品)の実装領域において形成されているが、マイクロミラー5、5’が外部から光を導入したり、外部へ導出する際の光が通過する領域には、電極パッド4や貫通孔9は形成されていない。 In addition, the optical waveguide of this embodiment includes an input micromirror (inclined surface) 5 for reflecting light so as to guide light incident from the outside of the opto-electrical composite wiring board into the core 2, It has an output micromirror 5' for reflecting light so as to guide the emitted light to the outside of the opto-electrical composite wiring board. As the input micromirror 5 and the output micromirror 5', for example, an inclined surface forming an angle of 45° with the planar direction of the opto-electrical composite wiring board can be used. By making the inclined surface the interface between the core for the optical waveguide and the air, it is possible to realize a mirror with high reflection efficiency using the property of total reflection of light. These micromirrors may be provided with a metal layer of gold, silver, copper, aluminum, etc. on the slanted surfaces. These micromirrors 5 and 5' are formed in the mounting area of the optical elements (parts), and the micromirrors 5 and 5' pass light when introducing light from the outside or leading it to the outside. The electrode pad 4 and the through hole 9 are not formed in the region where the .
 クラッド3を形成するためのクラッド用材料としては、後述するコア2の材料よりも導波光の伝送波長における屈折率が低くなるような樹脂材料が用いられる。具体的には、その伝送波長における屈折率として、例えば、1.5~1.55程度である樹脂材料が挙げられる。このような樹脂材料の種類としては、光等のエネルギ線や熱によって硬化する硬化性樹脂等が挙げられ、例えば、感光性材料等を用いることが好ましい。 As a clad material for forming the clad 3, a resin material having a lower refractive index at the transmission wavelength of guided light than the material of the core 2, which will be described later, is used. Specifically, a resin material having a refractive index at the transmission wavelength of, for example, about 1.5 to 1.55 can be used. Examples of such resin materials include curable resins that are cured by energy rays such as light or heat. For example, it is preferable to use photosensitive materials.
 本明細書中、感光性材料とは、エネルギ線が照射された部分において、後述する現像で用いる液体に対する溶解性が変化する材料である。具体的には、例えば、エネルギ線を照射する前には、後述する現像で用いる液体に対して溶解しにくいが、エネルギ線を照射した後には、溶解しやすくなる材料が挙げられる。また、他の例としては、エネルギ線を照射する前には、後述する現像で用いる液体に対して溶解しやすいが、エネルギ線を照射した後には、溶解しにくくなる材料が挙げられる。感光性材料とは、具体的には、例えば、感光性高分子材料等が挙げられる。また、エネルギ線とは、溶解性を変化させることができるものであれば、特に限定されない。具体的には、取扱の容易さ等から、紫外線が好ましく用いられる。感光性材料としては、一般的に、紫外線が照射された部分の、溶解性が変化する感光性高分子材料が好ましく用いられる。より具体的には、紫外線が照射された部分が硬化されて、後述する現像で用いる液体に対して溶解しにくくなる感光性高分子材料が好ましく用いられる。 In this specification, a photosensitive material is a material whose solubility in a liquid used in development, which will be described later, changes in a portion irradiated with energy rays. Specifically, for example, there is a material that is difficult to dissolve in a liquid used in development, which will be described later, before being irradiated with energy rays, but is easily dissolved after being irradiated with energy rays. Another example is a material that dissolves easily in a liquid used in development, which will be described later, before being irradiated with energy rays, but becomes less soluble after being irradiated with energy rays. The photosensitive material specifically includes, for example, a photosensitive polymer material. Also, the energy ray is not particularly limited as long as it can change the solubility. Specifically, ultraviolet rays are preferably used because of ease of handling and the like. As the photosensitive material, generally, a photosensitive polymeric material is preferably used in which the solubility of the portion irradiated with ultraviolet rays changes. More specifically, it is preferable to use a photosensitive polymer material whose portion irradiated with ultraviolet rays is cured and becomes difficult to dissolve in the liquid used in the development described below.
 クラッド3を構成する感光性高分子として、より具体的には、例えば、上述したような屈折率を有する、エポキシ系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂等が挙げられる。これらの中でも特に、ビスフェノール型エポキシ樹脂が好ましい。 More specifically, examples of the photosensitive polymer forming the clad 3 include epoxy-based resins, acrylic-based resins, polycarbonate-based resins, polyimide-based resins, and the like, which have refractive indices as described above. Among these, bisphenol type epoxy resins are particularly preferred.
 クラッドには、上述したような樹脂、及び硬化剤(例えば、光カチオン系硬化剤)を含む樹脂組成物からなるドライフィルムを使用することが好ましい。前記樹脂組成物には、さらにレベリング剤、酸化防止剤等の添加剤が含まれていてもよい。 For the clad, it is preferable to use a dry film made of a resin composition containing the above resin and a curing agent (for example, a photocationic curing agent). The resin composition may further contain additives such as leveling agents and antioxidants.
 本実施形態のクラッド3の厚みは特に限定はされないが、前記コアを囲むクラッドのうち、基板側にあるクラッドを下クラッド、かつ、基板と反対側にあるクラッドを上クラッドとしたとき、前記下クラッドの方が前記上クラッドより厚みが薄いことが好ましい。それにより、本実施形態の光電気複合基板に実装する光学部品7とコア2との距離がより短くなり光の損失をより低減でき、かつ、電極パッド4を埋めることもより容易となりプロセス性も向上すると考えられる。 The thickness of the clad 3 of the present embodiment is not particularly limited, but among the clads surrounding the core, when the clad on the substrate side is the lower clad and the clad on the opposite side to the substrate is the upper clad, the lower clad Preferably, the clad is thinner than the upper clad. As a result, the distance between the optical component 7 and the core 2 mounted on the opto-electric composite substrate of the present embodiment is shortened, and the loss of light can be further reduced. expected to improve.
 具体的なクラッドの厚みとしては、下クラッドの厚みが上述の電極パッドの厚みより2μm以上厚いことが好ましい。それにより、電極パッドを埋めた際の厚みバラツキを抑制できるという利点がある。具体的には、下クラッドの厚みは、20μm以上50μm以下であることが好ましい。一方、上クラッドの厚みは5μm以上10μm以下程度であることが好ましい。 As for the specific thickness of the clad, it is preferable that the thickness of the lower clad is 2 μm or more thicker than the thickness of the electrode pad described above. As a result, there is an advantage that variations in thickness when the electrode pads are buried can be suppressed. Specifically, the thickness of the lower clad is preferably 20 μm or more and 50 μm or less. On the other hand, the thickness of the upper clad is preferably about 5 μm or more and 10 μm or less.
 次に、コア2を形成するためのコア用材料としては、前記クラッド3の材料よりも導波光の伝送波長における屈折率が高い材料が用いられる。具体的には、その伝送波長における屈折率として、例えば、1.55~1.6程度である樹脂材料が挙げられる。 Next, as a core material for forming the core 2, a material having a higher refractive index at the transmission wavelength of guided light than the material of the clad 3 is used. Specifically, a resin material having a refractive index at the transmission wavelength of, for example, about 1.55 to 1.6 can be used.
 より具体的には、クラッド用材料と同様、感光性高分子材料を使用することが好ましく、例えば、上述したような屈折率を有する、エポキシ系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂、等を樹脂成分とする感光性材料が挙げられる。これらの中でも特に、ビスフェノール型エポキシ樹脂が好ましい。 More specifically, similarly to the cladding material, it is preferable to use a photosensitive polymer material. For example, epoxy resin, acrylic resin, polycarbonate resin, polyimide resin having a refractive index as described above and the like as a resin component. Among these, bisphenol type epoxy resins are particularly preferred.
 コアには、上述したような樹脂、及び硬化剤(例えば、光カチオン系硬化剤)を含む樹脂組成物からなるドライフィルムを使用することが好ましい。前記樹脂組成物には、さらにレベリング剤、酸化防止剤等の添加剤が含まれていてもよい。 For the core, it is preferable to use a dry film made of a resin composition containing the resin as described above and a curing agent (for example, a photocationic curing agent). The resin composition may further contain additives such as leveling agents and antioxidants.
 なお、コア2とクラッド3との接着性の観点から、コアを形成するためのコア用材料は、クラッドを形成するためのクラッド用材料と同系統のものであることが好ましい。 From the viewpoint of adhesion between the core 2 and the clad 3, the core material for forming the core is preferably of the same type as the clad material for forming the clad.
 コア2の厚みとしては、特に限定はされないが、20μm以上50μm以下程度であることが好ましい。すなわち、光導波路全体の厚みは、上述した上クラッドと下クラッドの厚みを加えて、45μm以上110μm以下となることが好ましい。それにより、高柔軟性(曲げやすさ)と加工のしやすさを共に両立できるといった利点がある。さらに好ましい光導波路の厚みは、50μm以上100μm以下である。 Although the thickness of the core 2 is not particularly limited, it is preferably about 20 μm or more and 50 μm or less. That is, the thickness of the entire optical waveguide is preferably 45 μm or more and 110 μm or less, including the thicknesses of the upper clad and the lower clad. As a result, there is an advantage that both high flexibility (ease of bending) and ease of processing can be achieved at the same time. A more preferable thickness of the optical waveguide is 50 μm or more and 100 μm or less.
 本実施形態の光導波路には、基板1と接する面とは反対側の面にカバーレイ層6が積層されていてもよい。図2および図3に示すように、カバーレイ層6は主に光学部品が実装されない部分に設けられることが好ましい。本実施形態の光電気複合基板において、光学部品が実装されていない部位は屈曲部位とすることができるが、そこにカバーレイ層6があることによって、光電気複合基板の屈曲耐性が向上し、さらに導波路の破損防止にもなるという利点がある。 The optical waveguide of this embodiment may have a coverlay layer 6 laminated on the surface opposite to the surface in contact with the substrate 1 . As shown in FIGS. 2 and 3, it is preferable that the coverlay layer 6 is mainly provided on the portion where the optical components are not mounted. In the opto-electrical composite substrate of the present embodiment, the portion where the optical component is not mounted can be a bending portion, and the presence of the coverlay layer 6 at that portion improves the bending resistance of the opto-electrical composite substrate, Furthermore, there is an advantage that the waveguide can be prevented from being damaged.
 カバーレイ層6は、絶縁性の樹脂フィルムであることが好ましく、例えば、ポリイミド樹脂、PET樹脂、液晶ポリマー(LCP)等からなる樹脂フィルムを使用できる。カバーレイ層6の厚みも特に限定されないが、上述した基板1の絶縁層の厚みと同等であることが対称性の観点から好ましい。より具体的には、通常、20μm以上80μm以下程度である。 The coverlay layer 6 is preferably an insulating resin film, and for example, a resin film made of polyimide resin, PET resin, liquid crystal polymer (LCP) or the like can be used. Although the thickness of the coverlay layer 6 is not particularly limited, it is preferably equal to the thickness of the insulating layer of the substrate 1 described above from the viewpoint of symmetry. More specifically, it is usually about 20 μm or more and 80 μm or less.
 カバーレイ層6は、エポキシ樹脂、アクリル樹脂、等の接着層(図示せず)を介して積層することが好ましく、当該接着層の厚みは、通常は、5μm以上、20μm以下程度である。 The coverlay layer 6 is preferably laminated via an adhesive layer (not shown) made of epoxy resin, acrylic resin, or the like, and the thickness of the adhesive layer is usually about 5 μm or more and 20 μm or less.
 (光電気複合基板の製造方法)
 次に、光電気複合基板の製造方法について説明する。ここでは、図2及び図3に示す光電気複合基板を製造する方法を例に挙げて説明する。
(Method for manufacturing optoelectric composite substrate)
Next, a method for manufacturing an opto-electric composite substrate will be described. Here, a method for manufacturing the opto-electric composite substrate shown in FIGS. 2 and 3 will be described as an example.
 本実施形態の光電気複合基板の製造方法は、絶縁層及び前記絶縁層の一方の面に形成される電極パッドを有する基板を準備する工程と、前記基板の上に光導波路を形成する工程とを少なくとも備え、
 前記光導波路を形成する工程が、前記基板に下クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、貫通孔を有する下クラッドを形成する工程と、前記下クラッドにコア用材料を積層し、フォトリソグラフィー法によってコアを形成する工程と、前記コアを形成した下クラッドに、上クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、上クラッドを形成する工程と、マイクロミラーを形成する工程とを含むことを特徴とする。
The method for manufacturing an opto-electrical composite substrate of this embodiment includes the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate. with at least
The step of forming the optical waveguide includes laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes; laminating a core material on the lower clad to form a core by photolithography; laminating an upper clad material on the lower clad on which the core is formed; a step of forming a through hole in the substrate to form an upper clad; and a step of forming a micromirror.
 以下、各工程についてより具体的に説明する。 Each step will be explained in more detail below.
 まず、絶縁層と、前記絶縁層に積層される電極パッド4と、必要に応じてさらに電気回路とを備える基板1、すなわち、電気配線板を準備する。基板1は、最終製品である光電気複合基板の基板部分に相当する部分である。 First, prepare a substrate 1, that is, an electric wiring board, which includes an insulating layer, electrode pads 4 laminated on the insulating layer, and, if necessary, an electric circuit. The substrate 1 is a portion corresponding to the substrate portion of the opto-electric composite substrate as the final product.
 基板1を準備する手段は特に限定されず、通常のフレキシブル回路基板を製造する手段を適宜用いて行うことができる。 The means for preparing the substrate 1 is not particularly limited, and can be carried out by appropriately using means for manufacturing a normal flexible circuit board.
 具体的には、例えば、ポリイミドフィルム等からなる絶縁層の片面に所望の厚みを有する銅箔を積層した銅張積層板を用い、光学部品の実装を所望する部位に電極パッド4が形成されるように、それ以外の部位の銅箔を除去することによって、絶縁層と電極パッドを有する基板1を準備することができる。 Specifically, for example, a copper-clad laminate is used in which a copper foil having a desired thickness is laminated on one side of an insulating layer made of polyimide film or the like, and electrode pads 4 are formed at sites where optical components are desired to be mounted. Thus, the substrate 1 having the insulating layer and the electrode pads can be prepared by removing the copper foil from the other portions.
 次に、前記基板1の上に光導波路を形成する工程を、主に図4を用いて説明するが、本実施形態はそれに限定されることはない。なお、図4(A)~図4(F)において、上段の図は、下段の図においてそれぞれA~Fの点線で示す切断面から見た概略断面図である。 Next, the process of forming an optical waveguide on the substrate 1 will be described mainly with reference to FIG. 4, but the present embodiment is not limited thereto. In FIGS. 4A to 4F, the upper diagrams are schematic cross-sectional views seen from the cut planes indicated by dotted lines A to F in the lower diagrams.
 まず、図4(A)に示すように、前記基板1上にクラッド3(下クラッド)を形成する。クラッド3を形成する方法は限定されないが、クラッド3を形成するための所定の屈折率を有する下クラッド用材料からなるクラッド用樹脂層を形成し、当該樹脂層を硬化させることによってクラッド3(下クラッド)が得られる。 First, a clad 3 (lower clad) is formed on the substrate 1 as shown in FIG. 4(A). The method of forming the clad 3 is not limited, but the clad 3 (lower cladding) is obtained.
 具体的な第1の例としては、基板1の表面に、クラッド3を形成するための所定の屈折率を有する下クラッド用材料からなる樹脂フィルムを貼り合せた後、硬化させる方法が挙げられる。また、第2の例としては、クラッド3を形成するための液状の下クラッド用材料を塗布した後、硬化させる方法が挙げられる。また、第3の例としては、クラッド3を形成するための下クラッド用材料のワニスを塗布した後、硬化させる方法が挙げられる。なお、クラッド3を形成する際には、密着性を高めるために、予め、基板1の表面にプラズマ処理等を施しておくことが好ましい。 A first specific example is a method in which a resin film made of a lower clad material having a predetermined refractive index for forming the clad 3 is attached to the surface of the substrate 1 and then cured. As a second example, there is a method of applying a liquid lower clad material for forming the clad 3 and then curing the material. As a third example, there is a method of applying a varnish of a lower clad material for forming the clad 3 and then curing the varnish. In addition, when forming the clad 3, it is preferable to subject the surface of the substrate 1 to a plasma treatment or the like in advance in order to improve adhesion.
 前記第1の例のより具体的な方法としては、例えば、以下のような方法が用いられる。まず、基板1表面に下クラッド用材料からなる樹脂フィルムを重ねるように載置した後、加熱プレス等により貼り合せる、又は、基板1表面に下クラッド用材料からなる樹脂フィルムを、透明性の接着剤により貼り合わせる。そして、貼り合せられた樹脂フィルムに、光等のエネルギ線を照射することにより硬化させる。 As a more specific method of the first example, for example, the following method is used. First, a resin film made of the material for the lower clad is placed on the surface of the substrate 1 so as to be superimposed and then laminated by a hot press or the like. Stick together with an agent. Then, the bonded resin film is cured by irradiating energy rays such as light.
 また、前記第2および第3の例の具体的な方法としては、例えば、以下のような方法が用いられる。まず、基板1表面に液状の下クラッド用材料又は下クラッド用材料のワニスを、スピンコート法、バーコート法、又は、ディップコート法等を用いて塗布させる。そして、塗布された液状の下クラッド用材料又は下クラッド用材料のワニスに、光等のエネルギ線を照射することにより硬化させる。 Also, as a specific method of the second and third examples, for example, the following method is used. First, a liquid lower clad material or varnish of the lower clad material is applied to the surface of the substrate 1 by spin coating, bar coating, dip coating, or the like. Then, the applied liquid lower clad material or varnish of the lower clad material is cured by irradiation with energy rays such as light.
 本実施形態では、図4(A)に示すように、クラッド用樹脂フィルムを基板1に貼り合わせるか、もしくは、クラッド用材料を基板1に塗布した後、フォトリソグラフィー法によって、貫通孔9を形成する。具体的には、電極パッド4の上にのみフォトマスク10をして、その上からクラッド用材料に露光処理をし、その後、現像処理をすることにより、貫通孔9を設ける。 In this embodiment, as shown in FIG. 4A, after bonding a clad resin film to the substrate 1 or applying a clad material to the substrate 1, through holes 9 are formed by photolithography. do. Specifically, a photomask 10 is placed only on the electrode pads 4, the cladding material is subjected to exposure processing from thereon, and then the through holes 9 are formed by developing processing.
 ここでの露光処理は、前記硬化性樹脂材料(感光性材料)を光により変質(硬化等)させうる波長の光を必要な光量で露光する方法であれば、特に限定なく用いることができる。具体的には、例えば、ここで用いる露光光として、紫外線及びX線等のエネルギ線を用いる方法等が挙げられる。そして、取扱の容易さ等から、紫外線が好ましく用いられる。 The exposure treatment here can be used without any particular limitation, as long as it is a method of exposing the curable resin material (photosensitive material) with a necessary amount of light having a wavelength that can cause the curable resin material (photosensitive material) to be altered (cured, etc.) by light. Specifically, for example, a method using energy rays such as ultraviolet rays and X-rays as the exposure light used here can be used. Ultraviolet rays are preferably used because of ease of handling and the like.
 露光条件としては、感光性材料の種類に応じて適宜選択できるが、例えば、超高圧水銀灯を用い、500~3500mJ/cmとなるように露光する条件等 が選ばれる。 The exposure conditions can be appropriately selected according to the type of the photosensitive material. For example, the conditions are selected such that an ultra-high pressure mercury lamp is used and the exposure is performed at 500 to 3500 mJ/cm 2 .
 なお、露光処理をして硬化させる前に、クラッド用樹脂層に熱処理を施してもよい。そうすることにより、クラッドの表面の凹凸、気泡、ボイド等を消失させてより平滑にすることができる。熱処理温度は、クラッドの表面の凹凸、気泡、ボイド等が消失して平滑になるような粘度になる温度が好ましく、クラッドを形成する硬化性樹脂材料の種類によって適宜選択されるが。また、熱処理時間としては、20~40分間程度であることが、クラッドの表面の凹凸、気泡、ボイド等を消失させて平滑にできるという効果が充分に得られる点から好ましい。なお、熱処理の手段は特に限定されず、所定の温度に設定したオーブン中で処理する方法やホットプレートで加熱する等の方法が用いられる。 Note that the clad resin layer may be heat-treated before being cured by exposure. By doing so, irregularities, air bubbles, voids, etc. on the clad surface can be eliminated to make the clad surface smoother. The heat treatment temperature is preferably a temperature at which the clad surface becomes smooth without irregularities, bubbles, voids, etc., and is appropriately selected according to the type of the curable resin material forming the clad. Further, the heat treatment time is preferably about 20 to 40 minutes, since the effect of eliminating irregularities, bubbles, voids, etc. on the surface of the clad and making it smooth can be sufficiently obtained. The means of heat treatment is not particularly limited, and a method of treating in an oven set at a predetermined temperature, a method of heating with a hot plate, or the like is used.
 前記露光処理の後、図4(B)に示すように、現像処理を行うことにより、クラッド3(下クラッド)に貫通孔9が形成される。なお、露光処理後、現像処理の前にクラッド3に熱処理(後キュア)を施してもよい。それによりクラッドを構成する樹脂の硬化をより確実にできると考えられる。後キュアの条件としては、温度120~150℃程度、時間10~30分間程度が好ましい。しかしながら、特にこの範囲に限られるものでは無く、使用する樹脂材料によって最適化すればよい。 After the exposure process, through-holes 9 are formed in the clad 3 (lower clad) by performing a development process, as shown in FIG. 4(B). After the exposure process, the clad 3 may be subjected to heat treatment (post-curing) before the development process. It is believed that this makes it possible to more reliably cure the resin forming the clad. The post-curing conditions are preferably a temperature of about 120 to 150° C. and a time of about 10 to 30 minutes. However, it is not particularly limited to this range, and may be optimized according to the resin material used.
 貫通孔9を形成させるための現像処理としては、図4(B)で示す実施形態では、クラッド用材料からなる樹脂層がポジ型であるため、露光されなかった部分を現像液で洗い流すことにより、不要な部分を除去する処理を行う。つまり、図4(B)で示す実施形態では、貫通孔9の部分のクラッド3が除去される。なお、もし前記樹脂層がネガ型である場合には、露光された部分が現像液で除去されることになる。 In the embodiment shown in FIG. 4B, since the resin layer made of the clad material is a positive type, the developing process for forming the through holes 9 is performed by washing away the unexposed areas with a developing solution. , to remove unnecessary parts. That is, in the embodiment shown in FIG. 4(B), the clad 3 in the portion of the through hole 9 is removed. If the resin layer is of a negative type, the exposed portion will be removed with a developer.
 ここで用いる現像液としては、例えば、アセトン、イソプロピルアルコール、トルエン、エチレングリコール、MEK、又は、これらを所定割合で混合させたもの等が挙げられる。さらに、例えば、特開2007-292964号公報で開示されているような水系の現像液も好ましく用いられ得る。現像方法としてはスプレーにより現像液を噴射する方法や超音波洗浄を利用する方法等が挙げられる。 Examples of the developer used here include acetone, isopropyl alcohol, toluene, ethylene glycol, MEK, or a mixture thereof at a predetermined ratio. Furthermore, for example, a water-based developer as disclosed in JP-A-2007-292964 can also be preferably used. Examples of the developing method include a method of injecting a developer by spraying, a method of using ultrasonic cleaning, and the like.
 以上の工程によって、基板1の上に、貫通孔9を有するクラッド3(下クラッド)が形成される。 Through the above steps, the clad 3 (lower clad) having the through holes 9 is formed on the substrate 1 .
 次に、図4(C)に示すように、前記クラッド3の上に、フォトリソグラフィー法によって、コア2を形成する。 Next, as shown in FIG. 4(C), a core 2 is formed on the clad 3 by photolithography.
 具体的には、まず、上記で形成されたクラッド3(下クラッド)の外表面に、コア2を形成するための所定の屈折率を有するコア用材料からなるコア用樹脂層を形成する。その方法は特に限定されず、上述したクラッドと同様に、樹脂フィルムを下クラッドと貼り合わせるか、液状樹脂(もしくは樹脂ワニス)を下クラッド表面に塗布することによって形成できる。なお、コア用樹脂層を形成する際にも、下クラッドの外表面を活性化させて密着性を高めるために、予め、プラズマ処理などを行ってもよい。 Specifically, first, a core resin layer made of a core material having a predetermined refractive index for forming the core 2 is formed on the outer surface of the clad 3 (lower clad) formed above. The method is not particularly limited, and can be formed by bonding a resin film to the lower clad or applying a liquid resin (or resin varnish) to the surface of the lower clad in the same manner as the clad described above. Also when forming the core resin layer, a plasma treatment or the like may be performed in advance in order to activate the outer surface of the lower clad and improve adhesion.
 その後、前記コア用樹脂層に対して、フォトマスク10を介して露光光を照射して、コア用樹脂層に対して所定形状のパターン露光を行う。露光は、感光性材料を光により変質(硬化等)させうる波長の光を必要な光量で露光する方法であれば、特に限定なく用いることができ、上述したクラッドと同様の条件で行うことができる。 After that, the core resin layer is irradiated with exposure light through a photomask 10 to perform pattern exposure of a predetermined shape on the core resin layer. The exposure is not particularly limited as long as it is a method of exposing the photosensitive material to light having a wavelength that can cause deterioration (curing, etc.) of the photosensitive material with the necessary amount of light, and can be performed under the same conditions as for the cladding described above. can.
 露光前の熱処理、露光後の熱処理(後キュア)、及び、現像処理についても、上述した下クラッドと同様にして行うことができる。現像処理については、図4(D)で示す実施形態では、コア用樹脂層がポジ型であるため、露光されなかった部分を現像液で洗い流すことにより、不要な部分を除去する処理を行う。つまり、図4(D)で示す実施形態では、露光されたコア2以外の樹脂層が除去されることによってコア2が形成され、貫通孔9も維持される。 The heat treatment before exposure, the heat treatment after exposure (post-cure), and the development treatment can be performed in the same manner as for the lower clad described above. As for development processing, in the embodiment shown in FIG. 4D, since the core resin layer is of a positive type, processing is performed to remove unnecessary portions by washing away unexposed portions with a developer. That is, in the embodiment shown in FIG. 4D, the core 2 is formed by removing the exposed resin layer other than the core 2, and the through hole 9 is also maintained.
 次に、図4(E)~図4(F)に示すように、上記で形成されたコア2を埋設するように、クラッド3(上クラッド)を形成することにより、光導波路が形成される。 Next, as shown in FIGS. 4(E) to 4(F), an optical waveguide is formed by forming a clad 3 (upper clad) so as to bury the core 2 formed above. .
 クラッド3(上クラッド)の形成方法は特に限定されないが、クラッド3を形成するための所定の屈折率を有する上クラッド用材料からなるクラッド用樹脂層を形成し、当該樹脂層を硬化させることによってクラッド3(上クラッド)が得られる。 The method of forming the clad 3 (upper clad) is not particularly limited. A clad 3 (upper clad) is obtained.
 具体的には、まず、上記で形成されたコアが積層されたクラッド3(下クラッド)の外表面に、クラッド3(上クラッド)を形成するための所定の屈折率を有する上クラッド用材料からなるクラッド用樹脂層を形成する。上クラッド用材料としては前記コア用の材料よりも導波光の伝送波長における屈折率が低い材料であれば特に限定はされないが、通常は、上述したクラッド(下クラッド)の材料と同様の硬化性樹脂材料を使用する。 Specifically, first, an upper clad material having a predetermined refractive index for forming the clad 3 (upper clad) is applied to the outer surface of the clad 3 (lower clad) on which the core formed above is laminated. A cladding resin layer is formed. The material for the upper clad is not particularly limited as long as it is a material having a lower refractive index at the transmission wavelength of the guided light than the material for the core. Use resin material.
 上クラッド用の樹脂層を形成する方法は特に限定されず、上述した下クラッドの形成と同様に、樹脂フィルムを前記下クラッドと貼り合わせるか、液状樹脂(もしくは樹脂ワニス)を前記下クラッド表面に塗布することによって形成できる。 The method of forming the resin layer for the upper clad is not particularly limited, and in the same manner as the formation of the lower clad described above, a resin film is attached to the lower clad, or a liquid resin (or resin varnish) is applied to the surface of the lower clad. It can be formed by coating.
 その後、図4(E)に示すように、フォトリソグラフィー法によって、貫通孔9を形成する。具体的には、電極パッド4の上にのみフォトマスク10をして、その上から上クラッド用材料に露光処理をし、その後、現像処理をすることにより、貫通孔9を設ける。 After that, as shown in FIG. 4(E), through holes 9 are formed by photolithography. Specifically, a photomask 10 is placed only on the electrode pad 4, the material for the upper clad is exposed from thereon, and then the through hole 9 is formed by developing.
 露光処理、露光前の熱処理、露光後の熱処理(後キュア)、及び、現像処理については、上述した下クラッドと同様にして行うことができる。 The exposure treatment, heat treatment before exposure, heat treatment after exposure (post-cure), and development treatment can be performed in the same manner as for the lower clad described above.
 以上の工程によって、基板1の上に、貫通孔9を有する光導波路が形成される(図4(F))。 Through the above steps, an optical waveguide having a through hole 9 is formed on the substrate 1 (FIG. 4(F)).
 さらに、本実施形態の製造方法は、図示はしないが、前記光導波路にマイクロミラーを形成する工程を含む。 Furthermore, although not shown, the manufacturing method of this embodiment includes a step of forming a micromirror on the optical waveguide.
 マイクロミラーはコアに、光を反射させるための傾斜面である。その方法としては、光導波路に前述したような傾斜面を形成することができれば、特に限定されない。 A micromirror is a core with an inclined surface for reflecting light. The method is not particularly limited as long as it can form an inclined surface as described above on the optical waveguide.
 具体的には、傾斜面の形成方法としては、例えば、ダイシングブレードで切り込む方法やレーザアブレーションによる方法等が挙げられる。より具体的には、例えば、刃先の一方の面が、刃の面方向に平行な面で、他方の面が、刃の面方向に対する角度が所定の角度、例えば、45°である面である刃を用いて、光導波路を切り込む方法等が挙げられる。なお、使用する刃としては、円盤状の回転刃物であって、円周部に刃先があるもの、例えば、ダイシングブレード等が用いられる。 Specifically, examples of the method of forming the inclined surface include a method of cutting with a dicing blade and a method of laser ablation. More specifically, for example, one surface of the cutting edge is a surface parallel to the plane direction of the blade, and the other surface is a surface having a predetermined angle, for example, 45°, with respect to the plane direction of the blade. For example, a blade is used to cut into the optical waveguide. As the blade to be used, a disk-shaped rotary blade having a cutting edge on the circumference, such as a dicing blade, is used.
 光導波路を刃で切り込む際、必要に応じて、基板や刃等を加熱することにより、光導波路を軟化させながら切り込んでもよい。マイクロミラーは、コアに光を反射させるための傾斜面であるため、光電気複合基板の外表面からコアまで形成されていればよいが、図2等に示す実施形態のように下クラッドにまで達していてもよい。 When cutting the optical waveguide with a blade, the cutting may be performed while softening the optical waveguide by heating the substrate, the blade, etc., if necessary. Since the micromirror is an inclined surface for reflecting light on the core, it may be formed from the outer surface of the opto-electrical composite substrate to the core. may have reached
 さらに、上記のようにして形成された傾斜面上に、金属層を形成させてもよい。それにより、切込みでできた空間に埃などが入っても反射率に影響しないという利点がある。金属層を構成する金属としては特に限定されず、例えば、金、銀、銅、アルミ_等を使用できる。また、金属層を形成させる方法も特に限定されず、公知の方法を用いることができる。具体的には、例えば、真空蒸着法等の蒸着法、スパッタ法、及びナノペースト法等が挙げられる。前記金属層の厚みとしては、光を反射させることができれば特に限定されず、例えば、1000Å程度の厚み等が挙げられる。 Furthermore, a metal layer may be formed on the inclined surface formed as described above. As a result, there is an advantage that even if dust or the like enters the space created by the cut, the reflectance is not affected. The metal constituting the metal layer is not particularly limited, and gold, silver, copper, aluminum, etc. can be used, for example. Also, the method for forming the metal layer is not particularly limited, and a known method can be used. Specifically, for example, a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a nano-paste method, and the like can be used. The thickness of the metal layer is not particularly limited as long as it can reflect light, and examples include a thickness of about 1000 Å.
 さらに、本実施形態の製造方法は、前記光導波路にカバーレイ層を設ける工程を含んでいてもよい。 Furthermore, the manufacturing method of this embodiment may include a step of providing a coverlay layer on the optical waveguide.
 カバーレイ層を設ける手段については特に限定はなく、例えば、ポリイミド樹脂、PET樹脂、液晶ポリマー(LCP)等からなる樹脂フィルムを、光導波路における光学部品が実装されない部分に積層することによって、カバーレイ層を設ける。前記樹脂フィルムは、エポキシ樹脂及び/またはアクリル樹脂等の接着層を介して、光導波路の上に積層することが好ましい。 The means for providing the coverlay layer is not particularly limited. Lay layers. The resin film is preferably laminated on the optical waveguide via an adhesive layer such as epoxy resin and/or acrylic resin.
 このようにして得られる本実施形態の光電気複合基板は、光学部品とミラーまでの距離が近いため、入射光などがあまり広がることがなく、光損失を低減することができる。また、出入力光路に配線基板の基材が存在しなくなることで、光の減衰を抑制することもでき、入出力時の光の損失をより低減できる。 In the opto-electric composite substrate of the present embodiment obtained in this way, since the distance between the optical component and the mirror is short, the incident light does not spread so much, and the optical loss can be reduced. In addition, since the base material of the wiring board is not present in the input/output optical path, the attenuation of light can be suppressed, and the loss of light during input/output can be further reduced.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 As described above, this specification discloses various aspects of the technology, of which the main technologies are summarized below.
 本発明の第1の態様に係る光電気複合基板は、絶縁層及び前記絶縁層に積層される電極パッドを有する基板と、前記絶縁層の一方の面に形成された光導波路とを備え、
 前記光導波路は、クラッドと、前記クラッドに囲まれたコアと、入力用マイクロミラー及び出力用マイクロミラーと、前記電極パッドの前記絶縁層に接する面とは反対側の面に通じる貫通孔を有する。
An opto-electric composite substrate according to a first aspect of the present invention comprises a substrate having an insulating layer and electrode pads laminated on the insulating layer, and an optical waveguide formed on one surface of the insulating layer,
The optical waveguide has a clad, a core surrounded by the clad, an input micromirror, an output micromirror, and a through hole leading to a surface of the electrode pad opposite to the surface in contact with the insulating layer. .
 第2の態様に係る光電気複合基板は、第1の態様の光電気複合基板において、前記光導波路における、前記コアを囲むクラッドのうち、基板側にあるクラッドを下クラッド、かつ、基板と反対側にあるクラッドを上クラッドとしたとき、前記下クラッドの方が前記上クラッドより厚みが薄い。 An opto-electric composite substrate according to a second aspect is the opto-electric composite substrate according to the first aspect, wherein, of the clads surrounding the core in the optical waveguide, the clad on the substrate side is the lower clad and is opposite to the substrate. When the clad on the side is defined as the upper clad, the lower clad is thinner than the upper clad.
 第3の態様に係る光電気複合基板は、第1または第2の態様の光電気複合基板において、前記基板の厚みが20μm以上50μm以下であり、前記光導波路の厚みが50μm以上100μm以下である。 An opto-electric composite substrate according to a third aspect is the opto-electric composite substrate according to the first or second aspect, wherein the substrate has a thickness of 20 μm or more and 50 μm or less, and the optical waveguide has a thickness of 50 μm or more and 100 μm or less. .
 第4の態様に係る光電気複合基板は、第1~第3の態様のいずれかの光電気複合基板において、前記光導波路上に光学部品が配置されており、前記光学部品と、前記電極パッドとは、前記貫通孔を通じて電気的に接続されている。 An opto-electric composite substrate according to a fourth aspect is the opto-electric composite substrate according to any one of the first to third aspects, wherein an optical component is arranged on the optical waveguide, the optical component and the electrode pad are electrically connected through the through holes.
 第5の態様に係る光電気複合基板は、第1~第4の態様のいずれかの光電気複合基板において、前記絶縁層が柔軟性を有する。 An opto-electric composite substrate according to a fifth aspect is the opto-electric composite substrate according to any one of the first to fourth aspects, wherein the insulating layer has flexibility.
 第6の態様に係る光電気複合基板は、第5の態様の光電気複合基板の光導波路において、前記基板と接する面とは反対側の面に、カバーレイが積層されている。 In the opto-electric composite substrate according to the sixth aspect, a coverlay is laminated on the surface opposite to the surface in contact with the substrate in the optical waveguide of the opto-electric composite substrate according to the fifth aspect.
 第7の態様に係る光電気複合基板の製造方法は、絶縁層及び前記絶縁層の一方の面に形成される電極パッドを有する基板を準備する工程と、前記基板の上に光導波路を形成する工程とを少なくとも備え、
 前記光導波路を形成する工程が、
  前記基板に下クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、貫通孔を有する下クラッドを形成する工程と、
  前記下クラッドにコア用材料を積層し、フォトリソグラフィー法によってコアを形成する工程と、
  前記コアを形成した下クラッドに、上クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、上クラッドを形成する工程と、
  マイクロミラーを形成する工程とを含む。
A method for manufacturing an opto-electrical composite substrate according to a seventh aspect includes the steps of preparing a substrate having an insulating layer and electrode pads formed on one surface of the insulating layer, and forming an optical waveguide on the substrate. comprising at least a step and
The step of forming the optical waveguide includes:
a step of laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes;
A step of laminating a core material on the lower clad and forming a core by a photolithographic method;
a step of laminating an upper clad material on the lower clad on which the core is formed, forming through holes on the electrode pads by photolithography, and forming an upper clad;
and forming a micromirror.
 (製造例1)
 厚み25μmのポリイミド樹脂からなる絶縁層に厚み18μmの銅箔によって電極パッド及び電気回路が形成されたフレキシブルプリント配線板を準備した。
(Production example 1)
A flexible printed wiring board was prepared in which electrode pads and electric circuits were formed on an insulating layer made of polyimide resin with a thickness of 25 μm and a copper foil with a thickness of 18 μm.
 その電極パッド及び電気回路を覆うように、下クラッド用材料(UV硬化性エポキシ樹脂からなるドライフィルム、離型フィルム付き、厚み20μm)を基板上に積層し、加圧式真空ラミネータ(ニッコーマテリアルズ株式会社(旧ニチゴー・モートン株式会社)製のV-130、以下、単に、「真空ラミネータV-130」とも称する)を用いて、80℃、0.2MPaの加圧条件で加圧することによって、基板上に、下クラッド用ドライフィルムを積層した。 A lower clad material (a dry film made of UV-curing epoxy resin, with a release film, 20 μm thick) is laminated on the substrate so as to cover the electrode pads and electric circuit, and a pressurized vacuum laminator (Nikko Materials Co., Ltd.) is applied. V-130 manufactured by Nichigo-Morton Co., Ltd., hereinafter simply referred to as "vacuum laminator V-130"), by applying pressure at 80 ° C. and 0.2 MPa, the substrate A dry film for the lower clad was laminated thereon.
 そして、図4(A)に示すようなフォトマスクを介して、下クラッド用ドライフィルムに、超高圧水銀灯で、2J/cmの条件で、紫外光を照射することによって露光した。具体的には、直径50μmの円形のスリットを4つ有するマスクを、下クラッド用ドライフィルムの上方に位置させ、そのマスクを介して、下クラッド用ドライフィルムを露光した。そうすることによって、下クラッドに相当する部分を硬化させた。 Then, through a photomask as shown in FIG. 4A, the lower clad dry film was exposed to ultraviolet light from an ultra-high pressure mercury lamp under the condition of 2 J/cm 2 . Specifically, a mask having four circular slits with a diameter of 50 μm was positioned above the lower clad dry film, and the lower clad dry film was exposed through the mask. By doing so, the portion corresponding to the lower clad was cured.
 次に、硬化後の下クラッド用ドライフィルムから離型フィルムを剥離した後、140℃で30分間熱処理を行った。そして、現像液として、55℃に調整した水系フラックス洗浄液(荒川化学工業株式会社製のパインアルファST-100SX)を用いて現像処理した。そうすることによって、下クラッド用ドライフィルムの未露光部分を溶解除去し、貫通孔を形成した。さらに、水で仕上げ洗浄した後、エアブローした。その後、100℃で10分間乾燥させた。これにより、基板上に下クラッドを形成した。 Next, after peeling off the release film from the cured lower clad dry film, heat treatment was performed at 140°C for 30 minutes. Then, development processing was performed using an aqueous flux cleaning solution (Pine Alpha ST-100SX manufactured by Arakawa Chemical Industries, Ltd.) adjusted to 55° C. as a developer. By doing so, the unexposed portion of the lower clad dry film was dissolved away to form through holes. Further, after finishing washing with water, air blowing was performed. After that, it was dried at 100° C. for 10 minutes. Thus, a lower clad was formed on the substrate.
 次に、基板の、下クラッドが形成された側の表面上に、コア用材料(UV硬化性エポキシ樹脂からなるドライフィルム、離型フィルム付き、厚み25μm)を載置し、真空ラミネータV-130を用いて、80℃、0.2MPaの加圧条件で加圧することによって、下クラッド上に、コア用ドライフィルムを積層した。 Next, on the surface of the substrate on which the lower clad is formed, a core material (dry film made of UV curable epoxy resin, with release film, thickness 25 μm) is placed, and vacuum laminator V-130 is applied. The core dry film was laminated on the lower clad by applying pressure at 80° C. and 0.2 MPa.
 そして、図4(C)に示すようなフォトマスクを使用して、所定の形状のコアが得られるように、コア用ドライフィルムに、超高圧水銀灯で、3J/cmの条件で、紫外光を照射することによって露光した。具体的には、幅25μm、長さ50mmの直線パターンのスリットを有するマスクを用い、そのスリットが、コア用ドライフィルム上方の適切な位置になるように、マスクを位置決めし、そのマスクを介して露光した。そうすることによって、コアに相当する部分を硬化させた。 Then, using a photomask as shown in FIG. 4(C), the core dry film was exposed to ultraviolet light under the conditions of 3 J/cm 2 with an ultra-high pressure mercury lamp so as to obtain a core of a predetermined shape. was exposed by irradiating the Specifically, a mask having a linear pattern of slits with a width of 25 μm and a length of 50 mm was used, and the mask was positioned so that the slits were at appropriate positions above the core dry film. exposed. By doing so, the portion corresponding to the core was cured.
 次に、硬化後のコア用ドライフィルムから離型フィルムを剥離した後、100℃で30分間熱処理を行った。そして、現像液として、55℃に調整した水系フラックス洗浄液(荒川化学工業株式会社製のパインアルファST-100SX)を用いて現像処理した。そうすることによって、コア用ドライフィルムの未露光部分が溶解除去された。さらに、水で仕上げ洗浄した後、エアブローした。その後、100℃で10分間乾燥させた。これにより、下クラッド上に、断面形状が縦幅25μm×横幅25μmとなるコアを形成した。また、コアと基板の絶縁層表面との間のクラッド厚は20μmとなっている。 Next, after peeling off the release film from the cured core dry film, heat treatment was performed at 100°C for 30 minutes. Then, development processing was performed using an aqueous flux cleaning solution (Pine Alpha ST-100SX manufactured by Arakawa Chemical Industries, Ltd.) adjusted to 55° C. as a developer. By doing so, the unexposed portions of the core dry film were dissolved away. Further, after finishing washing with water, air blowing was performed. After that, it was dried at 100° C. for 10 minutes. As a result, a core having a cross-sectional shape of 25 μm in length×25 μm in width was formed on the lower clad. Moreover, the clad thickness between the core and the insulating layer surface of the substrate is 20 μm.
 次に、基板の、下クラッドやコアが形成された側の表面上に、上クラッド用材料(UV硬化エポキシ樹脂からなるドライフィルム、離型フィルム付き、厚み30μm)を載置し、真空ラミネータV-130を用いて、100℃、0.3MPaの加圧条件で加圧することによって、基板の全面に、上クラッド用ドライフィルムを積層した。 Next, on the surface of the substrate on which the lower clad and core are formed, an upper clad material (a dry film made of UV-cured epoxy resin, with a release film, thickness of 30 μm) is placed, and vacuum laminator V is applied. The upper clad dry film was laminated on the entire surface of the substrate by applying pressure at 100° C. and 0.3 MPa using −130.
 そして、図4(E)に示すようなフォトマスクを介して、上クラッド用ドライフィルムに、超高圧水銀灯で、2J/cmの条件で、紫外光を照射することによって露光した。具体的には、直径50μmの円形のスリットを4つ有するマスクを、上クラッド用ドライフィルムの上方に位置させ、そのマスクを介して、上クラッド用ドライフィルムを露光した。そうすることによって、上クラッドに相当する部分を硬化させた。 Then, through a photomask as shown in FIG. 4(E), the upper clad dry film was exposed to ultraviolet light from an ultra-high pressure mercury lamp under the condition of 2 J/cm 2 . Specifically, a mask having four circular slits with a diameter of 50 μm was positioned above the upper clad dry film, and the upper clad dry film was exposed through the mask. By doing so, the portion corresponding to the upper clad was cured.
 その後、硬化後の上クラッド用ドライフィルムから離型フィルムを剥離した後、120℃で30分間熱処理を行った。そして、現像液として、55℃に調整した水系フラックス洗浄液(荒川化学工業株式会社製のパインアルファST-100SX)を用いて現像処理した。そうすることによって、上クラッド用ドライフィルムの未露光部分を溶解除去し、貫通孔を形成した。さらに、水で仕上げ洗浄した後、エアブローした。その後、100℃で10分間乾燥させた。これにより、貫通孔を有する上クラッドを形成した。コアと後述するカバーレイ層との間のクラッド厚は5μmとなっている。 After that, after peeling off the release film from the cured upper clad dry film, heat treatment was performed at 120°C for 30 minutes. Then, development processing was performed using an aqueous flux cleaning solution (Pine Alpha ST-100SX manufactured by Arakawa Chemical Industries, Ltd.) adjusted to 55° C. as a developer. By doing so, the unexposed portion of the dry film for the upper clad was removed by dissolving to form through-holes. Further, after finishing washing with water, air blowing was performed. After that, it was dried at 100° C. for 10 minutes. Thus, an upper clad having through holes was formed. The clad thickness between the core and the later-described coverlay layer is 5 μm.
 次に、図5(A)に示すように、刃先の面において、刃の面方向に対する角度が片側のみ45°であるブレード11(株式会社ディスコ製のブレード(粒度5000番)(型番B1E863SD5000L100MT38))を用い、回転数10000rpm、移動速度0.1mm/秒の条件で、コアの両端部がある場所を2カ所切り込んだ。そうすることによって、コアに図5(B)に示すような45°傾斜面を形成させた。その際、光導波路の表面から40μm切り込んだ。 Next, as shown in FIG. 5A, a blade 11 (a blade manufactured by Disco Co., Ltd. (particle size: No. 5000) (model number: B1E863SD5000L100MT38)) having an angle of 45° with respect to the surface direction of the blade on only one side in the plane of the cutting edge. was used to make two cuts at both end portions of the core under conditions of a rotation speed of 10000 rpm and a moving speed of 0.1 mm/sec. By doing so, the core was formed with a 45° inclined surface as shown in FIG. 5(B). At that time, a cut of 40 μm was made from the surface of the optical waveguide.
 その後、図5(C)に示すように、下クラッド用材料と同じ材料からなる樹脂ワニスを、トルエンとMEKとを、質量比で3:7で混合した混合溶剤で50倍に希釈した溶液12を、45°傾斜面、及び、90°面にブラシで薄く塗布した。その後、100℃で30分間乾燥した後に、超高圧水銀灯で1J/cm2の条件で紫外光を照射して露光した。その後、さらに120℃で10分間熱処理を行なった。そうすることによって、45°傾斜面、及び、90°面が平滑化された。 After that, as shown in FIG. 5(C), a solution 12 obtained by diluting a resin varnish made of the same material as the lower clad material 50 times with a mixed solvent of toluene and MEK at a mass ratio of 3:7. was thinly applied to the 45° inclined surface and the 90° surface with a brush. Then, after drying at 100° C. for 30 minutes, exposure was performed by irradiating ultraviolet light under the condition of 1 J/cm 2 with an extra-high pressure mercury lamp. After that, heat treatment was further performed at 120° C. for 10 minutes. By doing so, the 45° inclined plane and the 90° plane were smoothed.
 次いで、図5(D)に示すように、45°傾斜面が形成された領域のみが開口された蒸着マスク(メタルマスク)13でマスキングして45°傾斜面の表面に1000Å厚の金14を真空蒸着することにより、光導波路に金属層14を有するマイクロミラーを形成した(図5(E))。 Then, as shown in FIG. 5(D), a vapor deposition mask (metal mask) 13 having an opening only in the region where the 45° inclined surface is formed is used to mask the surface of the 45° inclined surface with gold 14 having a thickness of 1000 Å. A micromirror having a metal layer 14 on the optical waveguide was formed by vacuum deposition (FIG. 5(E)).
 その後、上クラッドの表面を酸素プラズマ処理し、上クラッドにおける部品実装箇所以外の部位(図2や図3における中央領域)に、カバーレイフィルム(ニッカン工業株式会社製のカバーレイフィルム「CISV-1215」、厚み15μmのポリイミド製のフィルムの一方の面上に、12.5μm厚の接着層を有する積層フィルム)を積層し、真空ラミネータV-130を用いて、120℃、0.3MPaの条件で、ラミネートした。その後、160℃で1時間加熱した。そうすることによって、カバーレイフィルムの接着層を硬化させ、カバーレイ層を形成した。 After that, the surface of the upper clad is treated with oxygen plasma, and a coverlay film (coverlay film “CISV-1215 manufactured by Nikkan Kogyo Co., Ltd. ”, Laminated film having an adhesive layer with a thickness of 12.5 μm on one side of a polyimide film with a thickness of 15 μm), and using a vacuum laminator V-130 at 120 ° C. and 0.3 MPa. , laminated. After that, it was heated at 160° C. for 1 hour. By doing so, the adhesive layer of the coverlay film was cured to form a coverlay layer.
 以上の工程により、絶縁層及び前記絶縁層に積層される電極パッドを有する基板と、前記基板における前記電極パッドが積層される面に積層された光導波路とを備え、前記光導波路は、クラッドと、前記クラッドに囲まれたコアと、入力用マイクロミラー及び出力用マイクロミラーと、前記電極パッドの上に設けられる貫通孔を有する、光電気複合基板を製造した。 A substrate having an insulating layer and electrode pads stacked on the insulating layer and an optical waveguide stacked on a surface of the substrate on which the electrode pads are stacked are provided by the above steps, and the optical waveguide comprises a clad and a , an opto-electric composite substrate having a core surrounded by the clad, an input micromirror, an output micromirror, and a through hole provided on the electrode pad.
 本実施形態の光電気複合基板によれば、図6に示すように、光信号を高い信頼性で効率よく伝送することが可能である。 According to the opto-electric composite substrate of the present embodiment, as shown in FIG. 6, optical signals can be efficiently transmitted with high reliability.
 この出願は、2021年10月14日に出願された日本国特許出願特願2021-168549を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2021-168549 filed on October 14, 2021, the contents of which are included in this application.
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described above through the embodiments with reference to specific examples, drawings, etc., but those skilled in the art may modify and/or improve the above-described embodiments. should be recognized as something that can be done easily. Therefore, to the extent that modifications or improvements made by those skilled in the art do not deviate from the scope of the claims set forth in the claims, such modifications or modifications do not fall within the scope of the claims. is interpreted to be subsumed by
 本発明の光電気複合基板は、柔軟性を有し、かつ、光損失を低減できる。よって、本発明は、光伝送用フレキシブルプリント配線板として好ましく用いられ、例えば、携帯電話、携帯情報端末、ルータ、サーバなどの通信機器、基地局設備、等の様々な電子機器への適用に非常に有用である。 The opto-electric composite substrate of the present invention has flexibility and can reduce optical loss. Therefore, the present invention is preferably used as a flexible printed wiring board for optical transmission, and is very applicable to various electronic devices such as mobile phones, personal digital assistants, communication devices such as routers and servers, and base station equipment. useful for

Claims (7)

  1.  絶縁層及び前記絶縁層の一方の面に形成された電極パッドを有する基板と、
     前記絶縁層の前記一方の面に積層された光導波路とを備え、
     前記光導波路は、クラッドと、前記クラッドに囲まれたコアと、入力用マイクロミラー及び出力用マイクロミラーと、前記電極パッドの前記絶縁層に接する面とは反対側の面に通じる孔を有する、
     光電気複合基板。
    a substrate having an insulating layer and an electrode pad formed on one surface of the insulating layer;
    an optical waveguide laminated on the one surface of the insulating layer,
    The optical waveguide has a clad, a core surrounded by the clad, an input micromirror, an output micromirror, and a hole leading to a surface of the electrode pad opposite to the surface in contact with the insulating layer.
    Optoelectric composite substrate.
  2.  前記光導波路において、前記コアを囲むクラッドのうち、基板側にあるクラッドを下クラッド、かつ、基板と反対側にあるクラッドを上クラッドとしたとき、前記下クラッドの方が前記上クラッドより厚みが薄い、請求項1に記載の光電気複合基板。 In the optical waveguide, when the clad on the substrate side of the clad surrounding the core is defined as a lower clad and the clad on the opposite side of the substrate is defined as an upper clad, the lower clad is thicker than the upper clad. The opto-electric composite substrate according to claim 1, which is thin.
  3.  前記基板の厚みは20μm以上50μm以下であり、前記光導波路の厚みは50μm以上100μm以下である、請求項1に記載の光電気複合基板。 The opto-electric composite substrate according to claim 1, wherein the substrate has a thickness of 20 µm or more and 50 µm or less, and the optical waveguide has a thickness of 50 µm or more and 100 µm or less.
  4.  前記光導波路上に光学部品が配置されており、前記光学部品と、前記電極パッドとは、前記貫通孔を通じて電気的に接続されている、請求項1に記載の光電複合基板。 The photoelectric composite substrate according to claim 1, wherein an optical component is arranged on the optical waveguide, and the optical component and the electrode pad are electrically connected through the through hole.
  5.  前記絶縁層は柔軟性を有する、請求項1に記載の光電気複合基板。 The optoelectric composite substrate according to claim 1, wherein the insulating layer has flexibility.
  6.  前記光導波路において、前記基板と接する面とは反対側の面に、カバーレイが積層されている、請求項5に記載の光電気複合基板。 The optoelectric composite substrate according to claim 5, wherein a coverlay is laminated on the surface of the optical waveguide opposite to the surface in contact with the substrate.
  7.  絶縁層及び前記絶縁層の一方の面に形成される電極パッドを有する基板を準備する工程と、前記基板の上に光導波路を形成する工程とを少なくとも備え、
     前記光導波路を形成する工程が、
      前記基板に下クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、貫通孔を有する下クラッドを形成する工程と、
      前記下クラッドにコア用材料を積層し、フォトリソグラフィー法によってコアを形成する工程と、
      前記コアを形成した下クラッドに、上クラッド用材料を積層して、フォトリソグラフィー法によって、前記電極パッドの上に貫通孔を形成し、上クラッドを形成する工程と、
      マイクロミラーを形成する工程とを含む、
    光電気複合基板の製造方法。
    at least comprising the steps of: preparing a substrate having an insulating layer and an electrode pad formed on one surface of the insulating layer; and forming an optical waveguide on the substrate;
    The step of forming the optical waveguide includes:
    a step of laminating a lower clad material on the substrate, forming through holes on the electrode pads by photolithography, and forming a lower clad having through holes;
    A step of laminating a core material on the lower clad and forming a core by a photolithographic method;
    a step of laminating an upper clad material on the lower clad on which the core is formed, forming through holes on the electrode pads by photolithography, and forming an upper clad;
    forming a micromirror;
    A method for manufacturing an optoelectric composite substrate.
PCT/JP2022/037877 2021-10-14 2022-10-11 Photoelectric composite substrate and method for manufacturing same WO2023063313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021168549 2021-10-14
JP2021-168549 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063313A1 true WO2023063313A1 (en) 2023-04-20

Family

ID=85987964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037877 WO2023063313A1 (en) 2021-10-14 2022-10-11 Photoelectric composite substrate and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW202316156A (en)
WO (1) WO2023063313A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277060A (en) * 2009-04-27 2010-12-09 Kyocera Corp Optical transmission line, optical transmission substrate, and optical module
WO2012090901A1 (en) * 2010-12-28 2012-07-05 京セラ株式会社 Optical module and optical wiring substrate
JP2015102739A (en) * 2013-11-26 2015-06-04 住友ベークライト株式会社 Manufacturing method of optical waveguide, optical waveguide, and photoelectric hybrid substrate
JP2019113574A (en) * 2017-12-20 2019-07-11 新光電気工業株式会社 Optical waveguide device and lens component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277060A (en) * 2009-04-27 2010-12-09 Kyocera Corp Optical transmission line, optical transmission substrate, and optical module
WO2012090901A1 (en) * 2010-12-28 2012-07-05 京セラ株式会社 Optical module and optical wiring substrate
JP2015102739A (en) * 2013-11-26 2015-06-04 住友ベークライト株式会社 Manufacturing method of optical waveguide, optical waveguide, and photoelectric hybrid substrate
JP2019113574A (en) * 2017-12-20 2019-07-11 新光電気工業株式会社 Optical waveguide device and lens component

Also Published As

Publication number Publication date
TW202316156A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
US7330612B2 (en) Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US9008480B2 (en) Method of manufacturing optical waveguide core, method of manufacturing optical waveguide, optical waveguide, and optoelectric composite wiring board
US9310575B2 (en) Manufacturing method of opto-electric hybrid flexible printed circuit board and opto-electric hybrid flexible printed circuit board
US9146348B2 (en) Optical-electrical composite flexible circuit substrate including optical circuit and electrical circuit
JP2007084765A (en) Curable epoxy resin film, optical waveguide using the same and photoelectric composite substrate
JP5468744B2 (en) Manufacturing method of optical waveguide
JP2001027717A (en) Production of optical waveguide and production of optical transmitter receiver
JP2010170118A (en) Method for forming mirror-reflecting film in optical wiring board, and optical wiring board
JP2009103827A (en) Photoelectric complex substrate, and manufacturing method therefor
JP2015114390A (en) Adhesive sheet, optical waveguide with adhesive sheet, photo-electric hybrid board, method for manufacturing photo-electric hybrid board, optical module, and electronic equipment
JP2005275343A (en) Device with optical waveguide structure and its manufacturing method
JP2004302345A (en) Photoelectric printed board and its manufacturing method
WO2023063313A1 (en) Photoelectric composite substrate and method for manufacturing same
JP5625706B2 (en) Manufacturing method of laminate
JP2006003868A (en) Optical waveguide device and its manufacturing method
JP2012103425A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP2013228467A (en) Opto-electric hybrid flexible print circuit board and manufacturing method thereof
JP4280677B2 (en) Manufacturing method of device with optical waveguide structure
JP6958063B2 (en) Manufacturing method of optical waveguide
JP6857835B2 (en) Optical waveguide coupling
JP4284233B2 (en) Method for manufacturing optical waveguide structure
JP5934932B2 (en) Optical waveguide, photoelectric composite wiring board, and method for manufacturing optical waveguide
JP2014153582A (en) Dry film for optical waveguide, optical waveguide and photoelectricity composite wiring board using the same, and method of manufacturing photoelectricity composite wiring board
JP5399671B2 (en) Photoelectric composite substrate and manufacturing method thereof
JP2012098332A (en) Method of manufacturing photoelectric composite wiring board and photoelectric composite wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881008

Country of ref document: EP

Kind code of ref document: A1