WO2023063285A1 - Surface emission device, display device, method for manufacturing surface emission device, and sealing member sheet for surface emission device - Google Patents

Surface emission device, display device, method for manufacturing surface emission device, and sealing member sheet for surface emission device Download PDF

Info

Publication number
WO2023063285A1
WO2023063285A1 PCT/JP2022/037769 JP2022037769W WO2023063285A1 WO 2023063285 A1 WO2023063285 A1 WO 2023063285A1 JP 2022037769 W JP2022037769 W JP 2022037769W WO 2023063285 A1 WO2023063285 A1 WO 2023063285A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing member
layer
light
emitting device
resin
Prior art date
Application number
PCT/JP2022/037769
Other languages
French (fr)
Japanese (ja)
Inventor
喜洋 金井
淳朗 續木
麻理衣 西川
康佑 佐伯
絵梨奈 大橋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023517710A priority Critical patent/JPWO2023063285A1/ja
Publication of WO2023063285A1 publication Critical patent/WO2023063285A1/en
Priority to JP2023187498A priority patent/JP2024016138A/en
Priority to JP2023187499A priority patent/JP2024020269A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a surface light-emitting device, a display device using the same, a method for manufacturing the surface light-emitting device, and a sealing member sheet for a surface light-emitting device.
  • LED light emitting diode
  • backlights using LED elements are being developed as backlights used in liquid crystal display devices.
  • the backlight is also called a mini-LED backlight.
  • LED backlights are broadly classified into a direct type and an edge light type.
  • Edge-light type LED backlights are usually used in small and medium-sized display devices such as mobile terminals such as smartphones, but direct type LED backlights are often used from the viewpoint of brightness. being considered.
  • direct type LED backlights are often used from the viewpoint of brightness. being considered.
  • large-sized display devices such as large-screen liquid crystal televisions, in many cases, a direct type LED backlight is used.
  • a direct type LED backlight has a structure in which a plurality of LED elements are arranged on a substrate.
  • a direct type LED backlight by independently controlling a plurality of LED elements, the brightness of each area of the LED backlight is adjusted according to the brightness of the displayed image, so-called local dimming is realized. be able to. As a result, it is possible to significantly improve the contrast and reduce the power consumption of the display device.
  • FIG. 12(a) shows a conventional LED backlight 60 in which pins 65 are arranged in order to secure the distance d between the LED elements 63 on the support substrate 62 and the diffusion member 66.
  • FIG. 12(b1) shows a conventional LED backlight 61 in which spacers 67 are arranged between a support substrate 62 and a diffusion member 66, and
  • FIG. 12(b2) is a schematic plan view of the spacers 67.
  • Patent Document 1 When the pins and spacers are arranged in this manner, the light emitted from the LED element may be blocked or reflected by the pins or spacers, resulting in uneven brightness. Therefore, in Patent Document 1, for example, it is necessary to further dispose a diffuser plate or the like above the transmissive reflector plate, which makes it difficult to reduce the thickness of the module. As described above, the conventional surface emitting device has a problem that it is difficult to realize uniformity of luminance in the plane and reduction in thickness at the same time.
  • the present disclosure has been made in view of the above problems, and is mainly to provide a surface light emitting device that can prevent warping during manufacturing and improve the yield during manufacturing of the surface light emitting device. aim.
  • the present disclosure provides a sealing member that seals a light emitting diode element; and an anti-warp layer whose temperature is within the range of ⁇ 6 /° C. or less.
  • the present disclosure also provides a surface used for a surface light emitting device, in which a sealing member for sealing a light emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated.
  • a surface light-emitting device sealing member sheet wherein the elastic modulus of the material constituting the anti-foaming layer is 500 MPa or more.
  • the present disclosure is a surface light emitting device for use in a surface light emitting device, which is formed by laminating a sealing member for sealing a light emitting diode element and an anti-foaming layer disposed on one side of the sealing member.
  • a sealing member sheet for a surface emitting device wherein the melting point of the material constituting the anti-foaming layer is 140° C. or higher.
  • the present disclosure also provides a light emitting diode substrate having a supporting substrate and a light emitting diode element disposed on one side of the supporting substrate, and a light emitting diode substrate disposed on a surface of the light emitting diode substrate facing the light emitting diode element, a sealing member that seals an element; a warp prevention layer disposed on a surface of the sealing member opposite to the light emitting diode substrate; and a diffusion member disposed, wherein the sealing member has a haze value of 4% or more, a thickness greater than that of the light emitting diode element, and a material constituting the anti-warpage layer.
  • linear expansion coefficient is in the range of ⁇ 15 ⁇ 10 ⁇ 6 /° C. or more and 10 ⁇ 10 ⁇ 6 /° C. or less.
  • the present disclosure further provides a light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate; a sealing member that seals the element; a diffusion member that is disposed on the surface of the sealing member opposite to the light emitting diode substrate; and a diffusion member that is disposed on the surface of the light emitting diode substrate opposite to the light emitting diode element. and a warp prevention layer, wherein the sealing member has a haze value of 4% or more, a thickness greater than that of the light emitting diode element, and is made of a material that constitutes the warp prevention layer.
  • a surface light-emitting device having a coefficient of linear expansion equal to or greater than the coefficient of linear expansion of the material forming the sealing member.
  • the present disclosure provides a display device comprising a display panel and the above-described surface emitting device arranged on the back surface of the display panel.
  • the present disclosure is a method for manufacturing the above-described surface light-emitting device, wherein the warp prevention layer, the sealing member, and the light-emitting diode substrate arranged so that the light-emitting diode element is on the side of the sealing member are arranged in this order.
  • a method for manufacturing a surface emitting device comprising the steps of preparing a stacked layered body and thermocompression bonding the layered body.
  • the present disclosure is a method for manufacturing the above-described surface emitting device, comprising a step of thermocompression bonding a first laminate in which the warp prevention layer and the sealing member are laminated, and the thermocompression bonded first laminate and thermocompression bonding a second laminate having the light-emitting diode substrate arranged so that the light-emitting diode element is on the sealing member side, on the sealing member side surface of the surface light-emitting device.
  • a manufacturing method is provided.
  • the present disclosure has the effect of being able to provide a surface light-emitting device capable of preventing warping during manufacturing and improving the yield of manufacturing the surface light-emitting device.
  • FIG. 1 is a schematic cross-sectional view illustrating a surface emitting device according to the present disclosure
  • FIG. FIG. 4 is a process diagram showing an example of a method of forming a sealing member according to the present disclosure
  • FIG. 2 is a schematic cross-sectional view illustrating the structure of the sealing member of the surface emitting device according to the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing an example of a second diffusion member
  • FIG. 4 is a schematic cross-sectional view showing an example of a surface emitting device including a second diffusion member in the present disclosure
  • 5 is a graph illustrating transmitted light intensity distribution
  • FIG. 4A is a schematic plan view and a cross-sectional view showing an example of a first embodiment of a reflective structure of a second diffusion member
  • FIG. 9A is a schematic plan view and a cross-sectional view showing an example of a second embodiment of the reflecting structure of the second diffusion member
  • FIG. 11 is a schematic cross-sectional view showing another example of the second aspect of the reflective structure of the second diffusion member
  • FIG. 4 is a schematic cross-sectional view showing another example of a surface emitting device according to the present disclosure
  • 1 is a schematic diagram showing an example of a display device of the present disclosure
  • FIG. 1 is a schematic cross-sectional view of a conventional LED backlight
  • sheet is used in the sense of including members called films and plates.
  • the reason why the warp occurs is that after the LED support substrate and the sealing member are thermally compressed during manufacturing, the linear expansion coefficients of both are different. I found out that this is the cause.
  • the problem is solved by arranging the anti-warp layer having a coefficient of linear expansion in a predetermined relationship with respect to the sealing member at an appropriate position with respect to the sealing member.
  • A. Surface Emitting Device The surface emitting device in the present disclosure can be divided into three aspects. Hereinafter, each embodiment will be described separately.
  • FIG. 1 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment.
  • a surface light emitting device 1 includes a support substrate 2, an LED substrate 4 having LED elements 3 arranged on one side of the support substrate 2, and an LED substrate 4 on the LED element 3 side.
  • a sealing member 5 arranged on the surface side to seal the LED element 3, a diffusion member 6 arranged on the surface side of the sealing member 5 opposite to the LED substrate 4 side, the sealing member 5 and the and an anti-warp layer 7 disposed between the diffusion member 6 .
  • the sealing member 5 in this embodiment has a haze value of 4% or more, a thickness d greater than the thickness of the LED element 3, and a linear expansion coefficient of the material constituting the warp prevention layer 7 is - It is characterized by being in the range of 15 ⁇ 10 ⁇ 6 /° C. or more and 10 ⁇ 10 ⁇ 6 /° C. or less.
  • a line between the LED substrate and the sealing member is formed during subsequent cooling. Warpage may occur due to differences in expansion coefficients. Further, when the surface emitting device is used at extremely high or low temperatures, warping may occur due to the difference in coefficient of linear expansion between the LED substrate and the sealing member.
  • This embodiment has been made in order to solve such problems, and the anti-warp layer is arranged between the sealing member and the diffusion member, and a wire of a material constituting the anti-warp layer is disposed between the sealing member and the diffusion member. Since the coefficient of expansion is in the range of -15 ⁇ 10 -6 /°C or more and 10 ⁇ 10 -6 /°C or less, the problem of warpage described above is solved.
  • the light emitting surface of the sealing member and the LED element are directly bonded, and the refractive index difference at the interface becomes small, so the light extraction efficiency is higher than that of the unsealed LED element. improves.
  • the light extraction efficiency cannot be improved as described above, resulting in a problem of lowering the luminous efficiency of the surface light emitting device.
  • the anti-warpage layer by providing the anti-warpage layer, the above problem is also solved.
  • the sealing member in this embodiment has a haze value of 4% or more and is thicker than the LED element.
  • the sealing member has optical transparency and is arranged on the light emitting surface side of the LED substrate.
  • the haze value of the sealing member in this embodiment is 4% or more, preferably 8% or more, and more preferably 10% or more. If it is smaller than the above value, luminance unevenness cannot be suppressed.
  • the upper limit is not particularly limited, but is, for example, 85% or less, preferably 60% or less, more preferably 30% or less.
  • the haze value is a value for the entire sealing member, cut out from the surface emitting device, and measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory) to JIS K7136:2000. It can be measured by a method according to
  • the method for adjusting the haze value for obtaining the haze value described above is not particularly limited, but includes a method using the degree of crystallinity of the resin, a method of changing the content of fine particles in the resin, and the like. Among them, the method of adjusting the crystallinity of the resin is preferable. This is because when the haze value is increased by increasing the crystallinity of the resin, it is possible to obtain the effect of reducing the rectilinear transmitted light.
  • the thickness of the sealing member in the present embodiment may be any thickness as long as it is thicker than the LED element, specifically preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, and particularly preferably 200 ⁇ m or more.
  • the thickness of the LED element is preferably 800 ⁇ m or less, more preferably 750 ⁇ m or less, and particularly preferably 700 ⁇ m or less.
  • the "thickness” in this specification is measured using a contact-type film thickness measuring device (Mitutoyo Thickness Gauge 547-301). The same is true for size measurements such as "size”.
  • the thickness becomes insufficient and the light emitted from the LED element cannot be diffused over the entire light emitting surface, and the brightness cannot be improved uniformly within the surface. Moreover, when it is larger than the said thickness, thickness reduction cannot be achieved.
  • the material contained in the sealing member in the present embodiment is not particularly limited as long as it is a material having the haze value described above, but a thermoplastic resin or the like is preferable. By using a thermoplastic resin, it is possible to adjust the haze value to be higher than in the case of using a thermosetting resin, and to form the sealing member at a low temperature.
  • FIG. 2 is a process drawing showing an example of a method of forming a sealing member in this embodiment.
  • a sealing member sheet made of a sealing material composition containing the thermoplastic resin.
  • FIG. 2(a) an LED substrate 4 and a sealing member sheet 5a having a warp prevention layer 7 disposed on one surface are prepared, and on the surface of the LED substrate 4 on the LED element 3 side, The surface of the sealing member sheet 5a opposite to the anti-warp member 7 is laminated.
  • a vacuum lamination method as shown in FIG. can form objects.
  • the sealing member contains a curable resin such as a thermosetting resin or a photocurable resin
  • a liquid sealing material is usually used.
  • a phenomenon may occur in which the thickness of the end portion becomes thicker or thinner than that of the central portion due to surface tension or the like.
  • volume shrinkage or the like tends to occur during curing, and as a result, the thickness of the central portion and the end portions of the sealing member after curing may become uneven.
  • luminance unevenness may occur.
  • the thickness distribution of the coating film occurs due to surface tension and the thickness distribution due to heat shrinkage or light shrinkage, which occurs when a liquid sealing material is used. It is possible to avoid the occurrence of unevenness on the surface of the sealing member, such as occurrence of unevenness. Therefore, a sealing member with good flatness can be obtained, and a higher quality display device can be provided.
  • thermoplastic resin olefin resin, ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral resin and the like can be used as the thermoplastic resin.
  • the thermoplastic resin is preferably an olefin resin. This is because the olefin-based resin is particularly resistant to producing components that degrade the LED substrate and has a low melt viscosity, so that the above-described LED element can be well sealed.
  • olefin resins polyethylene resins, polypropylene resins, and ionomer resins are preferable.
  • the polyethylene-based resin in the present specification includes not only ordinary polyethylene obtained by polymerizing ethylene, but also a compound having an ethylenically unsaturated bond such as ⁇ -olefin obtained by polymerizing Resins, resins obtained by copolymerizing a plurality of different compounds having ethylenically unsaturated bonds, modified resins obtained by grafting other chemical species onto these resins, and the like are included.
  • the sealing member in this embodiment uses a polyethylene-based resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin.
  • a polyethylene-based resin having a density of 0.890 g/cm 3 or more and 0.930 g/cm 3 or less as the base resin.
  • the sealing member is a multi-layer member as will be described later, it is preferable to use a polyethylene-based resin having the density described above as the base resin of the core layer. The density is measured according to JIS Z 8807:2012.
  • the “base resin” refers to a resin having the largest content mass ratio among the resin components of the resin composition containing the base resin. .
  • silane copolymer obtained by copolymerizing an ⁇ -olefin and an ethylenically unsaturated silane compound as comonomers can be preferably used. By using such a resin, higher adhesion between the LED substrate and the sealing member can be obtained.
  • silane copolymer described in JP-A-2018-50027 can be used.
  • thermoplastic resin used in this embodiment is not particularly limited as long as the LED element can be sealed, but for example, it is preferably 90° C. or higher and 135° C. or lower. Among them, it is preferable that the thermoplastic resin is not softened by heat generation during LED light emission, and it is preferable to use a thermoplastic resin having a temperature of 90° C. or more and 120° C. or less.
  • the melting point of the thermoplastic resin can be measured, for example, by differential scanning calorimetry (DSC) in accordance with the method for measuring the transition temperature of plastics (JISK7121:2012). This is the highest melting point when multiple thermoplastic resins are included.
  • DSC differential scanning calorimetry
  • JISK7121:2012 the transition temperature of plastics
  • thermoplastic resin in this embodiment has a melt viscosity that can follow the unevenness of the LED element and other members arranged on one surface side of the LED substrate and can enter the gap by heating. is preferably used.
  • the melt mass flow rate (MFR) of the thermoplastic resin to be used is preferably 0.5 g/10 minutes or more and 40 g/10 minutes or less, and is 2.0 g/10 minutes or more and 40 g/10 minutes or less. more preferably 2.0 g/10 minutes or more and 20 g/10 minutes or less.
  • MFR melt mass flow rate
  • the MFR in this specification refers to the value at 190°C and a load of 2.16 kg measured according to JIS K7210-1:2014 A method.
  • the MFR of the polypropylene resin it also refers to the MFR value at 230°C and a load of 2.16 kg according to the JIS K7210-1:2014 A method.
  • the sealing member is a multilayer member as described later
  • the MFR is measured by the above-described measurement method while maintaining the multilayer state in which all the layers are integrally laminated, and the obtained measured value is used as the multilayer sealing member.
  • the thermoplastic resin in this embodiment preferably has a tensile modulus at room temperature (25°C) of 20 MPa or more and 300 MPa or less, particularly preferably 20 MPa or more and 200 MPa or less.
  • the sealing member can exhibit sufficient adhesion to the LED substrate and has excellent impact resistance when, for example, the surface emitting device is subjected to an external impact.
  • the sealing member is a multi-layer member as described later, it is preferable to use a thermoplastic resin having the above elastic modulus as the base resin of the core layer. The value measured by JISK7127:1999 is used for the tensile modulus.
  • the modulus of elasticity is measured by the following tensile measurement.
  • ⁇ Measuring device Universal material testing machine 5565 manufactured by Instron ⁇ Load cell: 1kN ⁇ Sample width: 10 mm ⁇ Distance between chucks: 50mm ⁇ Speed: 300mm/min
  • Additives such as antioxidants and light stabilizers may be added to the sealing member in addition to the thermoplastic resin.
  • the sealing member has a higher coefficient of linear expansion than the LED substrate described later. Therefore, as described above, after the sealing member and the LED substrate are thermally compressed in the manufacturing process, the shrinkage rate of the sealing member becomes larger than the shrinkage rate of the LED substrate, and as a result, the sealing member side is recessed. A problem arises that warping occurs.
  • the coefficient of linear expansion of the material constituting the sealing member used in this embodiment is preferably 20 ⁇ 10 ⁇ 6 /° C. or higher, particularly 150 ⁇ 10 ⁇ 6 /° C. or higher. is preferred.
  • the upper limit is preferably 1500 ⁇ 10 -6 /°C or less, particularly preferably 1000 ⁇ 10 -6 /°C or less.
  • it is preferably in the range of 20 ⁇ 10 -6 /°C or more and 1500 ⁇ 10 -6 /°C or less, and particularly preferably 20 ⁇ 10 -6 /°C or more and 1000 ⁇ 10 -6 /°C or less, Above all, it is preferably in the range of 150 ⁇ 10 -6 /°C or more and 1000 ⁇ 10 -6 /°C or less.
  • a value measured according to JISK7197:2012 is used as the coefficient of linear expansion.
  • the sealing member in the surface emitting device in this embodiment may be a single layer member in which the sealing member 5 is composed of a single resin layer, as shown in FIG. Also, as shown in FIG. 3, the sealing member 5 includes a plurality of resin layers including a core layer 51 and a skin layer 52 disposed on at least one surface of the core layer 51 (FIG. 3(a)). ) and three layers in FIG. 3B) may be laminated. In particular, a two-layer structure having a core layer or the like and a skin layer disposed on the LED substrate side of the core layer is preferable. Note that FIG. 3 shows an example in which a reflective layer R is arranged around the LED element 3 .
  • the sealing member in this embodiment is a multilayer member having a two-layer structure having a core layer and a skin layer disposed on the LED substrate side of the core layer
  • the film thickness ratio between the skin layer and the core layer is 1:X
  • the lower limit of X is preferably 0.1 or more, particularly preferably 0.5 or more.
  • the lower limit is preferably 10 or less, particularly preferably 6 or less. That is, 1:0.1 to 1:10 is preferred, and 1:0.5 to 1:6 is particularly preferred.
  • the film thickness ratio between the skin layer and the core layer is 1:Y:1.
  • Y is preferably 1 or more, particularly preferably 2 or more, while Y is preferably 10 or less, particularly preferably 8 or less. That is, the thickness ratio of the skin layer to the core layer (skin layer:core layer:skin layer) is preferably 1:1:1 to 1:10:1, particularly preferably 1:2:1 to 1:8. :1.
  • the core layer and the skin layer have the above thermoplastic resins with different density ranges, melting points, etc. as base resins. This is because it becomes easy to ensure adhesion to the LED substrate and molding properties with the skin layer while ensuring the haze value with the core layer.
  • the material constituting the skin layer disposed on the LED substrate side is not particularly limited as long as it has high adhesion and high molding properties, but in the case of the above thermoplastic resin. It is preferable to use the above-mentioned silane copolymer or the like.
  • the material preferably contains the olefin resin and a silane coupling agent. Additives such as antioxidants and light stabilizers may be added to this layer.
  • the sealing member in the present embodiment is preferably a multilayer member composed of a plurality of layers including a core layer and a skin layer arranged on at least one outermost surface,
  • the core layer preferably uses a polyethylene resin with a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. It is preferable to use a polyethylene-based resin having a density of 3 or less and a density lower than that of the base resin for the core layer as the base resin.
  • a low density polyethylene resin LDPE
  • a linear low density polyethylene resin LLDPE
  • M-LLDPE metallocene linear low density polyethylene resin
  • LDPE low density polyethylene resin
  • LDPE low density polyethylene resin
  • M-LLDPE metallocene linear low density polyethylene resin
  • the density of the polyethylene resin used as the base resin for the core layer is 0.900 g/cm 3 or more and 0.930 g /cm 3 or less, and more preferably 0.920 g/cm 3 or less. This is because, by setting the density of the base resin for the core layer within the above range, the haze value of the sealing member in this embodiment can be made equal to or higher than the above specific value. In addition, the sealing member can be provided with necessary and sufficient heat resistance without undergoing a cross-linking treatment.
  • the melting point of the polyethylene resin used as the base resin for the core layer is preferably 90°C or higher and 135°C or lower, more preferably 90°C or higher and 115°C or lower. By setting the melting point within the above range, the heat resistance and molding properties of the sealing member can be maintained within a preferable range.
  • the melting point of the sealing member can be raised to about 165° C. by adding a high melting point resin such as polypropylene to the sealing material composition for the core layer.
  • polypropylene is preferably contained in an amount of 5% by mass or more and 40% by mass or less with respect to the total resin components of the core layer.
  • the polypropylene contained in the core layer is preferably a homopolypropylene (homoPP) resin.
  • homoPP is a polymer consisting of polypropylene alone and has high crystallinity, so it has higher rigidity than block PP or random PP.
  • the homo PP used as an additive resin to the sealing material composition for the core layer has an MFR of 5 g/10 minutes or more and 125 g/10 minutes or more at 230°C and a load of 2.16 kg, measured in accordance with JIS K7210:2014 A method. It is preferably 10 minutes or less.
  • the MFR is too small, the molecular weight will be too high and the rigidity will be too high, making it difficult to ensure the desirable and sufficient flexibility of the encapsulant composition.
  • the MFR is too large, the fluidity during heating cannot be sufficiently suppressed, and the sealing member sheet cannot be sufficiently endowed with heat resistance and dimensional stability.
  • the melt mass flow rate (MFR) of the polyethylene resin used as the base resin for the core layer is preferably 1.0 g/10 min or more and 7.5 g/10 min or less at 190° C. under a load of 2.16 kg. It is more preferably 1.5 g/10 minutes or more and 6.0 g/10 minutes or less.
  • the content of the base resin with respect to the total resin components of the core layer is 70% by mass or more and 99% by mass or less, preferably 90% by mass or more and 99% by mass or less. As long as it contains the base resin within the above range, it may contain other resins.
  • low density polyethylene resin LDPE
  • linear low density polyethylene resin LLDPE
  • metallocene resin A linear low-density polyethylene resin (M-LLDPE) can be preferably used.
  • M-LLDPE metallocene linear low-density polyethylene resin
  • the density of the polyethylene-based resin used as the base resin for the skin layer is 0.875 g/cm 3 or more and 0.910 g/cm 3 or less, and more preferably 0.899 g/cm 3 or less.
  • the melting point of the polyethylene-based resin used as the base resin for the skin layer is preferably 50°C or higher and 100°C or lower, and more preferably 55°C or higher and 95°C or lower. By setting it within the above range, the adhesion of the sealing member can be further reliably improved.
  • the melt mass flow rate (MFR) of the polyethylene resin used as the base resin for the skin layer is preferably 1.0 g/10 min or more and 7.0 g/10 min or less at 190° C. under a load of 2.16 kg. It is more preferably 1.5 g/10 minutes or more and 6.0 g/10 minutes or less.
  • MFR melt mass flow rate
  • the content of the base resin with respect to the total resin components for the skin layer is 60% by mass or more and 99% by mass or less, preferably 90% by mass or more and 99% by mass or less. As long as it contains the base resin within the above range, it may contain other resins.
  • a silane copolymer obtained by copolymerizing an ⁇ -olefin and an ethylenically unsaturated silane compound as comonomers may be added to each encapsulant composition, if necessary. It is more preferable to contain a fixed amount. Such a graft copolymer increases the degree of freedom of the silanol group that contributes to adhesive strength, and thus can improve the adhesiveness of the sealing member to other members.
  • silane copolymers examples include silane copolymers described in JP-A-2003-46105.
  • silane copolymer By using the silane copolymer as a component of the encapsulant composition, excellent strength, durability, etc., and excellent weather resistance, heat resistance, water resistance, light resistance, and other characteristics can be obtained. It is possible to stably obtain a sealing member at a low cost, which has extremely excellent heat-sealability without being affected by manufacturing conditions such as thermocompression bonding when arranging the sealing member.
  • any of random copolymers, alternating copolymers, block copolymers, and graft copolymers can be preferably used, but graft copolymers are preferred. More preferred is a graft copolymer in which a polyethylene for polymerization is used as a main chain and an ethylenically unsaturated silane compound is polymerized as a side chain. In such a graft copolymer, the degree of freedom of silanol groups that contribute to adhesive strength is increased, so that the adhesiveness of the sealing member can be improved.
  • the content of the ethylenically unsaturated silane compound in forming the copolymer of the ⁇ -olefin and the ethylenically unsaturated silane compound is, for example, 0.001% by mass or more and 15% of the total mass of the copolymer. % by mass or less, preferably 0.01% by mass or more and 10% by mass or less, particularly preferably 0.05% by mass or more and 5% by mass or less.
  • the content of the ethylenically unsaturated silane compound constituting the copolymer of the ⁇ -olefin and the ethylenically unsaturated silane compound is high, the mechanical strength and heat resistance are excellent. , tensile strain, and heat-sealability.
  • the content of the silane copolymer in the total resin components of the sealing material composition is 0% by mass or more and 20% by mass or less in the sealing material composition for the core layer, and the amount of the sealing material for the skin layer is In the composition, it is preferably 5% by mass or more and 40% by mass or less. In particular, it is more preferable that the sealant composition for the skin layer contains 5% by mass or more of the silane copolymer.
  • the silane modification amount in the above silane copolymer is preferably about 0.1% by mass or more and 2.0% by mass or less.
  • the preferred content range of the silane copolymer in the sealing material composition is based on the premise that the silane modification amount is within this range, and fine adjustment can be made as appropriate according to the variation in the modification amount. desirable.
  • Additives such as antioxidants and light stabilizers may be added to all layers of the sealing member.
  • an adhesion improver can be added as appropriate. Addition of an adhesion improver can increase adhesion durability with other members.
  • known silane coupling agents can be used, and vinyltrimethoxysilane, vinyltriethoxysilane having a vinyl group, a silane coupling agent having an epoxy group, or a silane having a mercapto group.
  • a coupling agent can be used particularly preferably.
  • the sealing member in the present embodiment is not particularly limited as long as it can exhibit the function as a surface light emitting device, but it is preferably 70% or more, especially 80% or more. preferable.
  • the total light transmittance of the sealing member can be measured, for example, by a method conforming to JIS K7361-1:1997.
  • the sealing member in the present embodiment is formed using a sealing member sheet composed of a sealing material composition containing the thermoplastic resin and other components. can do.
  • the sealing member sheet is obtained by molding the sealing material composition by a conventionally known method to form a sheet.
  • the core layer and skin layer sealing material compositions are used to form a core layer and a skin layer arranged on one surface of the core layer with a predetermined thickness.
  • a sealing member 5 having a two-layered structure of a core layer 51 and a skin layer 52 can be manufactured, as shown in FIG. 3(a), for example.
  • the sealing member 5 having a three-layer structure of the skin layer 52, the core layer 51, and the skin layer 52 can be manufactured.
  • 3 are the same as those in FIG. 1 except for the sealing member 5 and the reflective layer R, and therefore descriptions thereof are omitted here.
  • warpage Prevention Layer is a layer arranged between the sealing member and the diffusion member described later.
  • warping can be prevented by setting the coefficient of linear expansion of the material constituting the warp-preventing layer to a predetermined range in a high-temperature region.
  • the reason why warping can be prevented by setting the coefficient of linear expansion of the material constituting the warp preventing layer within a predetermined range is as follows.
  • a step of thermocompression bonding the sealing member and the LED substrate may be included, but the behavior of the sealing member shrinks more than the LED substrate during cooling after the thermocompression bonding.
  • the anti-warp layer having a small coefficient of linear expansion is arranged on the opposite side of the sealing member from the LED substrate, it is possible to reduce the degree of shrinkage on the side of the sealing member. , it is possible to suppress the occurrence of warpage.
  • the anti-warp layer by disposing the anti-warp layer, it is possible to suppress the deformation of the sealing member that occurs when air bubbles are generated at the site where the air bubbles are generated. Moreover, it is possible to prevent air bubbles from being generated between the sealing member and the LED substrate.
  • the anti-warp layer having a predetermined elastic modulus and a predetermined melting point can effectively obtain the above effects.
  • the coefficient of linear expansion of the material constituting the anti-warp layer in the present disclosure is set within the range of ⁇ 15 ⁇ 10 ⁇ 6 /° C. or more and 10 ⁇ 10 ⁇ 6 /° C. or less.
  • the lower limit of the coefficient of linear expansion is ⁇ 10 ⁇ 10 ⁇ 6 /° C. or more.
  • the upper limit is preferably 5 ⁇ 10 ⁇ 6 /° C. or less, particularly preferably 0 or less.
  • it is preferably -10 ⁇ 10 -6 /°C or higher and 5 ⁇ 10 -6 /°C or lower, and particularly preferably -10 ⁇ 10 -6 /°C or higher and 0 ⁇ 10 -6 /°C or lower.
  • it is usually -10 ⁇ 10 ⁇ 6 /° C. or more and 5 ⁇ 10 ⁇ 6 /° C. or less. If it is smaller than this, it will cause reverse warpage. On the other hand, if it is larger than this, the anti-warping effect will be insufficient.
  • the following method is used. For a sheet cut to 5 mm ⁇ 20 mm, after heating in accordance with JIS K 7197: 2012, the dimensional change during cooling to room temperature was measured, and the coefficient of linear expansion from 100 ° C. to 25 ° C. was averaged and calculated. .
  • the coefficient of linear expansion here is a positive value during contraction and a negative value during expansion. The measurement was performed using the following measurement apparatus and measurement conditions.
  • ⁇ Measuring device Thermomechanical device manufactured by Seiko Instruments (TMA/SS-6000) ⁇ Constant load tensile mode: 0.1 mN ⁇ Measurement temperature range: -50°C to 160°C ⁇ Linear expansion coefficient calculation temperature range: 25°C to 100°C
  • the modulus of elasticity of the anti-warp layer used in this embodiment is preferably 500 MPa or higher, particularly preferably 1000 MPa or higher, and more preferably 4000 MPa or higher. This is because if the elastic modulus is lower than the above range, the effect of suppressing bubble generation and the effect of preventing warpage are reduced. It should be noted that the pressure is 5500 MPa or less in consideration of commonly used materials.
  • ⁇ Measuring device Universal material testing machine 5565 manufactured by Instron ⁇ Load cell: 1kN ⁇ Sample width: 10 mm ⁇ Distance between chucks: 50mm ⁇ Speed: 300mm/min
  • the thickness of the anti-warpage layer in this embodiment is preferably in the range of 35 ⁇ m to 188 ⁇ m, more preferably in the range of 50 ⁇ m to 150 ⁇ m, particularly preferably in the range of 100 ⁇ m to 125 ⁇ m. Within the above range, it is possible to obtain the effect of preventing warpage and the effect of suppressing the generation of bubbles, and does not hinder the compactness of the device.
  • the haze value of the anti-warp layer in this embodiment is preferably 40% or less, more preferably 20% or less, particularly preferably 10% or less. Within the above range, it is possible to improve the in-plane uniformity of luminance. If the haze value exceeds the above range, the light is absorbed while being scattered inside the sealing member, resulting in a decrease in brightness.
  • a method for measuring the haze value the same method as the method for measuring the haze value of the sealing member can be used.
  • the total light transmittance of the anti-warp layer in this embodiment is preferably 80% or more, particularly preferably 90% or more. With such a high total light transmittance, it is possible to prevent the brightness of the surface emitting device from lowering.
  • the total light transmittance of the anti-warp layer can be measured according to JIS K7361-1, and can be measured with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the melting point of the anti-warp layer in this embodiment is preferably 140° C. or higher, particularly preferably 260° C. or higher. Note that the upper limit is 350° C. or less in consideration of commonly used materials and the like.
  • the melting point in this embodiment can be measured, for example, by differential scanning calorimetry (DSC) according to the method for measuring the transition temperature of plastics (JISK7121).
  • the anti-warp layer has the melting point described above, it is possible to effectively prevent the generation of air bubbles even when the surface emitting device is used for a long time in a high temperature environment.
  • the material constituting the anti-warp layer used in this embodiment is not particularly limited as long as it has the above properties, but examples include polyolefin, polyester, celluloses, acrylic resin, and polyimide resin. can be done.
  • polyolefins include polypropylene (PP).
  • polyester include polytetraethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • celluloses include triacetyl cellulose (TAC).
  • PET polytetraethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • PP and PET are particularly preferred from the viewpoint of versatility and the like.
  • the anti-warp layer and the sealing member are in close contact with each other. This is because the anti-warping effect can be exhibited more efficiently.
  • the adhesion strength is preferably 1N or more.
  • the following method can be used in accordance with JIS K 6854-2: 1999.
  • the sealing member adhering to the PCB substrate is cut into a width of 25 mm, and a vertical peeling test (300 mm/min) is performed using a peeling tester (Tensilon universal tester RTF-1150-H) to measure the adhesion strength.
  • the LED substrate in this embodiment is a member in which a plurality of LED elements are arranged on one side of a support substrate.
  • the LED element is a member arranged on one side of the support substrate and functions as a light source.
  • the LED element is not particularly limited as long as it can irradiate white light in the case of a surface emitting device, for example.
  • the LED element can be a chip-shaped LED element.
  • the form of the LED element may be, for example, a light-emitting part (also called an LED chip) itself, or a package LED (also called a chip LED) such as a surface-mount type or a chip-on-board type.
  • a packaged LED can have, for example, a light-emitting portion and a protective portion that covers the light-emitting portion and contains resin.
  • a blue LED element for example, an ultraviolet LED element, or an infrared LED element can be used as the LED element.
  • a white LED element can be used as the LED element.
  • the LED element is a blue LED element, an ultraviolet LED element, or an infrared LED element.
  • a blue LED element can generate white light, for example, by combining it with a yellow phosphor, or by combining it with a red phosphor and a green phosphor.
  • ultraviolet LED elements can generate white light by combining, for example, red phosphors, green phosphors, and blue phosphors. Among them, it is preferable that the LED element is a blue LED element. This is because the surface emitting device of this embodiment can irradiate white light with high luminance.
  • the white LED element is appropriately selected according to the light emission method of the white LED element.
  • the light emission method of the white LED element include a combination of a red LED, a green LED, and a blue LED, a combination of a blue LED, a red phosphor, and a green phosphor, a combination of a blue LED and a yellow phosphor, and an ultraviolet LED.
  • a combination of a red phosphor, a green phosphor, and a blue phosphor can be used.
  • the white LED element may have, for example, a red LED light-emitting portion, a green LED light-emitting portion, and a blue LED light-emitting portion. It may have a blue LED light emitting portion and a protective portion containing a yellow phosphor, and may have an ultraviolet LED light emitting portion and a red phosphor, a green phosphor and a blue phosphor. You may have a protection part.
  • the white LED element has a blue LED light-emitting portion and a protective portion containing a red phosphor and a green phosphor, has a blue LED light-emitting portion and a protective portion containing a yellow phosphor, or emits ultraviolet LED light. It is preferable to have a portion and a protective portion containing a red phosphor, a green phosphor and a blue phosphor.
  • the white LED element may have a blue LED light emitting portion and a protective portion containing a red phosphor and a green phosphor, or may have a blue LED light emitting portion and a protective portion containing a yellow phosphor. preferable. This is because the surface emitting device of this embodiment can irradiate white light with high luminance.
  • the structure of the LED element can be the same as that of a general LED element.
  • the LED elements are usually arranged at regular intervals on one side of the support substrate.
  • the arrangement of the LED elements is appropriately selected according to the application and size of the surface emitting device of this embodiment, the size of the LED elements, and the like. Also, the arrangement density of the LED elements is appropriately selected according to the application and size of the surface emitting device of this embodiment, the size of the LED elements, and the like.
  • the size (chip size) of the LED element can be a general chip size, but a chip size called mini-LED is preferable.
  • the size of the LED element may be, for example, several hundred micrometers square or several tens of micrometers square. Specifically, the size of the LED element can be 100 ⁇ m square or more and 2000 ⁇ m square or less. Due to the small size of the LED elements, the LED elements can be arranged at a high density, that is, the intervals (pitch) between the LED elements can be reduced, and the distance between the LED substrate and the diffusion member can be shortened. This is because the thickness can be reduced. This makes it possible to reduce the thickness and weight of the surface emitting device.
  • the support substrate in this embodiment is a member that supports the above-described LED element, sealing member, diffusion member, and the like.
  • the support substrate may be transparent or opaque. Moreover, the support substrate may have flexibility or may have rigidity.
  • the material of the support substrate may be an organic material, an inorganic material, or a composite material obtained by combining both an organic material and an inorganic material.
  • a resin substrate can be used as the support substrate.
  • a ceramic substrate or a glass substrate can be used as the support substrate.
  • a glass epoxy substrate can be used as the support substrate.
  • a metal core substrate for example, can also be used as the support substrate.
  • a printed circuit board on which a circuit is formed by printing can also be used as the support substrate.
  • the thickness of the support substrate is not particularly limited, and is appropriately selected according to the presence or absence of flexibility or rigidity, the application and size of the surface emitting device of this embodiment, and the like.
  • the support substrate has a lower coefficient of linear expansion than the sealing member described above. For this reason, as described above, there arises a problem that warpage occurs after the sealing member is thermocompression bonded in the manufacturing process.
  • the coefficient of linear expansion of the support substrate used in this embodiment is usually in the range of 5 ⁇ 10 -6 /°C. to 100 ⁇ 10 -6 /°C.
  • the LED substrate in this embodiment is not particularly limited as long as it has the above-described supporting substrate and LED elements, and can have any necessary configuration as appropriate. Examples of such a configuration include a wiring portion, a terminal portion, an insulating layer, a reflective layer, a heat radiating member, and the like. Each configuration can be the same as that used for known LED substrates.
  • the wiring part is electrically connected to the LED element.
  • the wiring part is usually arranged in a pattern.
  • the wiring portion can be arranged on the supporting substrate via an adhesive layer.
  • a metal material, a conductive polymer material, or the like can be used as the material of the wiring portion.
  • the wiring part is electrically connected to the LED element by a joint part.
  • a bonding agent or solder having a conductive material such as a metal or a conductive polymer can be used.
  • a reflective layer can be arranged on the surface of the support substrate on which the LED elements are arranged and in areas other than the LED element mounting area. For example, the light reflected by the second layer of the diffusing member can be reflected by the reflective layer of the support substrate and made to enter the first layer of the diffusing member again, thereby increasing the light utilization efficiency. .
  • the reflective layer can be similar to reflective layers commonly used in LED substrates.
  • the reflective layer includes a white resin film containing metal particles, inorganic particles or a pigment and a resin, a metal film, a porous film, and the like.
  • the thickness of the reflective layer is not particularly limited as long as the desired reflectance is obtained, and is set as appropriate.
  • a method for forming the LED substrate can be the same as a known forming method.
  • the diffusion member is arranged on the side of the sealing member opposite to the LED substrate side.
  • the diffusion member is not particularly limited as long as it has the function of diffusing the light emitted from the LED element and emitting it uniformly in the plane direction, but the following first diffusion member, second diffusion member, and A third diffusion member is included.
  • the first diffusion member usually has at least a resin layer in which a diffusing agent is dispersed.
  • the diffusion member may be, for example, a resin sheet in which a diffusing agent is dispersed, or a laminate having a resin layer in which a diffusing agent is dispersed on a transparent substrate, but the former is more preferable.
  • the resin contained in the resin layer is not particularly limited as long as it can disperse the diffusing agent, but is preferably a thermoplastic resin. This is because the diffusion member can be formed using the resin sheet in which the diffusing agent is dispersed, so that the flatness can be improved.
  • thermoplastic resin used for the diffusing member is not particularly limited as long as it has high light transmittance, and those commonly used in the field of display devices can be used.
  • the material of the diffusing agent is not particularly limited as long as it can diffuse the light from the LED element.
  • it may be an organic material or an inorganic material.
  • the material of the diffusing agent is an organic material, for example, polymethyl methacrylate (PMMA) can be used.
  • PMMA polymethyl methacrylate
  • the material of the diffusing agent is an inorganic material, TiO 2 , SiO 2 , Al 2 O 3 , silicon and the like can be mentioned.
  • the refractive index of the diffusing agent is not particularly limited as long as it can diffuse the light from the LED element, but is, for example, 1.4 or more and 2 or less. Such a refractive index can be measured by an Abbe refractometer, Becke method, minimum deflection angle method, deflection angle analysis, mode line method, ellipsometry method, or the like.
  • the shape of the diffusing agent can be, for example, particulate.
  • the average particle size of the diffusing agent is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the proportion of the diffusing agent in the diffusing member is not particularly limited as long as the light from the LED elements can be diffused, and is, for example, 40% by weight or more and 60% by weight or less.
  • the second diffusion member is a member having a first layer and a second layer in this order from the LED substrate side, and the first layer is a light-transmitting layer. and light diffusing properties, and the reflectance of the second layer increases as the absolute value of the incident angle of light with respect to the first layer side surface of the second layer decreases. It is a member whose transmittance increases as the absolute value of the incident angle of light with respect to the surface on the first layer side increases.
  • the above-described diffusing member it is possible to further improve the in-plane uniformity of luminance and achieve a reduction in thickness. Also, cost and power consumption can be reduced.
  • FIG. 4 is a schematic cross-sectional view showing an example of the second diffusion member.
  • the diffusion member 11 has a first layer 12 and a second layer 13 in this order.
  • the first layer 12 has light transmittance and light diffusion properties, and transmits and diffuses the lights L1 and L2 incident from the surface 12A opposite to the second layer 13 side surface of the first layer 12 .
  • the reflectance of the second layer 13 increases as the absolute value of the incident angle of light with respect to the surface 13A of the second layer 13 on the side of the first layer 12 decreases.
  • the transmittance increases as the absolute value of the incident angle of light with respect to the surface 13A increases.
  • the light L1 incident at a low incident angle ⁇ 1 is reflected to the surface 13A of the second layer 13 on the side of the first layer 12, and the surface 13A of the second layer 13 on the side of the first layer 2 is reflected.
  • the low incident angle means that the absolute value of the incident angle is small
  • the high incident angle means that the absolute value of the incident angle is large.
  • FIG. 5 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment comprising the second diffusion member shown in FIG.
  • the surface emitting device 10 includes an LED substrate 4 having LED elements 3 arranged on one surface of a support substrate 2, and an LED substrate 4 arranged on the surface of the LED substrate 4 on the LED element 3 side. It has a sealing member 5 that seals the element 3 and a diffusion member 11 arranged on the side of the sealing member 5 opposite to the LED substrate 4 side.
  • the diffusion member 11 is arranged so that the surface 11A on the side of the first layer 12 faces the sealing member 5 .
  • the light incident from the surface 11A of the diffusion member 11 on the side of the first layer 12 is diffused by the first layer 12, and of the light transmitted through the first layer 12 and diffused, the second Light L1 incident on the surface 13A of the layer 13 on the side of the first layer 12 at a low incident angle ⁇ 1 is reflected by the surface 13A of the second layer 13 on the side of the first layer 12 as shown in FIG. It can be incident on the first layer 12 again and diffused.
  • the lights L2 and L2' incident on the surface 13A of the second layer 13 on the side of the first layer 12 at a high incident angle ⁇ 2 are 13 and emitted from the surface 11B of the diffusion member 11 on the second layer 13 side.
  • the light incident from the surface of the diffusing member on the first layer side especially the light incident on the surface of the diffusing member on the first layer side at a low angle of incidence
  • the light can also pass through the first layer and be diffused, it can be emitted from the surface of the diffusion member on the second layer side at a high output angle. Therefore, a surface emitting device (particularly, a direct type LED backlight) having such a diffusing member can diffuse the light emitted from the LED elements over the entire light emitting surface, further improving the in-plane uniformity of luminance. can be improved.
  • the first layer and the second layer by combining the first layer and the second layer, light that is incident at a low incident angle from the surface of the diffusion member on the first layer side can be transmitted through the first layer many times. It is possible to lengthen the optical path length from the incident light from the surface of the member on the first layer side to the light emitted from the surface on the second layer side of the diffusing member. As a result, part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to.
  • the first layer in this embodiment is a member that is disposed on one side of the second layer described later and has light transmission and light diffusion properties.
  • the total light transmittance of the first layer is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more. .
  • the brightness of the surface emitting device of this embodiment can be increased.
  • the total light transmittance of the first layer can be measured, for example, by a method conforming to JIS K7361-1:1997.
  • the light diffusing property of the first layer may be, for example, light diffusing property that diffuses light randomly, or light diffusing property that diffuses light mainly in a specific direction.
  • the light diffusing property of diffusing light mainly in a specific direction is the property of deflecting light, that is, the property of changing the traveling direction of light.
  • the diffusion angle of the light incident on the first layer can be 10 ° or more, and 15 ° or more. It may be 20° or more.
  • the diffusion angle of light incident on the first layer can be, for example, 85° or less, may be 60° or less, or may be 50° or less.
  • the diffusion angle is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of this embodiment can be further improved.
  • FIG. 6 is a graph illustrating the transmitted light intensity distribution, and is a diagram for explaining the diffusion angle.
  • light is vertically incident on one surface of the first layer constituting the diffusion member, and the maximum transmitted light intensity Imax of the light emitted from the other surface of the first layer
  • the full width at half maximum (FWHM), which is the difference between the two angles such that is defined as the diffusion angle ⁇ .
  • the diffusion angle can be measured using a goniophotometer or a goniospectrophotometer.
  • a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used to measure the diffusion angle.
  • the first layer is not particularly limited as long as it has the above-described light transmittance and light diffusion properties, and includes a transmissive diffraction grating, a microlens array, a diffusing agent-containing resin film containing a diffusing agent and a resin. etc.
  • a transmissive diffraction grating and a microlens array can be used.
  • a diffusing agent-containing resin film can be used.
  • transmission diffraction gratings and microlens arrays are preferable from the viewpoint of light diffusion.
  • the transmission type diffraction grating is also called a transmission type diffraction optical element (DOE: Diffractive Optical Elements).
  • the transmission type diffraction grating is not particularly limited as long as it has the above-described light transmittance and light diffusion properties.
  • the pitch and the like of the transmissive diffraction grating are adjusted appropriately as long as the above-described light transmittance and light diffusibility are obtained.
  • the wavelengths emitted by the LED elements are single colors such as red, green, and blue, it is possible to effectively bend the light from the LED elements by setting the pitch according to each wavelength. is.
  • the material constituting the transmission diffraction grating may be any material that can provide the transmission diffraction grating having the above-described light transmittance and light diffusing properties. can be done. Also, the method of forming the transmission diffraction grating can be the same as the method of forming a general transmission diffraction grating.
  • the microlens array is not particularly limited as long as it has the above-described light transmittance and light diffusion properties.
  • the shape, pitch, size, and the like of the microlenses are adjusted appropriately as long as the above-described light transmittance and light diffusion are obtained.
  • a material for forming the microlens any material can be used as long as the microlens having the above-described light transmittance and light diffusing properties can be obtained, and materials generally used for microlenses can be employed.
  • the method for forming the microlens can be the same as the method for forming a general microlens.
  • the diffusing agent-containing resin film is not particularly limited as long as it has the above-described light transmittance and light diffusibility.
  • the first layer may have a structure capable of exhibiting light diffusing properties, for example, the entire layer may exhibit light diffusing properties, and the surface may exhibit light diffusing properties.
  • a relief-type diffraction grating and a microlens array can be cited as examples of a surface that exhibits light diffusing properties.
  • a volume type diffraction grating and a diffusing agent-containing resin film can be cited as examples of materials that exhibit light diffusibility in the entire layer.
  • a method of laminating the first layer and the second layer for example, a method of bonding the first layer and the second layer via an adhesive layer or an adhesive layer, or a method of bonding the first layer directly to one surface of the second layer.
  • a forming method and the like can be mentioned.
  • methods for directly forming the first layer on one side of the second layer include a printing method and resin molding using a mold.
  • Second layer The second layer in this embodiment is arranged on one surface side of the first layer, and the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side is small.
  • the incident angle dependence of the reflectance such that the reflectance increases as it increases, and the transmission such that the transmittance increases as the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side increases It is a member having the incident angle dependence of the index.
  • the second layer has incident angle dependence of reflectance such that the reflectance increases as the absolute value of the incident angle of light with respect to the first layer side surface of the second layer decreases. That is, the reflectance of light incident on the first layer side surface of the second layer at a low incident angle is the reflectance of light incident on the first layer side surface of the second layer at a high incident angle be larger than Above all, it is preferable that the reflectance of light incident on the surface of the second layer on the first layer side at a low incident angle is high.
  • the regular reflectance of visible light incident on the surface of the second layer on the first layer side within an incident angle of ⁇ 60° is preferably 50% or more and less than 100%, especially 80%. It is preferably 90% or more and less than 100%, particularly preferably 90% or more and less than 100%. It is preferable that the specular reflectance of visible light satisfies the above range at all incident angles within ⁇ 60°. When the regular reflectance is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment can be further improved.
  • the average value of the regular reflectance of visible light incident on the surface of the second layer on the first layer side at an incident angle of ⁇ 60 ° is preferably, for example, 80% or more and 99% or less. It is preferably 90% or more and 97% or less.
  • the average value of the specular reflectance means the average value of the specular reflectance of visible light at each incident angle.
  • the regular reflectance of visible light incident on the surface of the second layer on the first layer side at an incident angle of 0° is preferably, for example, 80% or more and less than 100%, Among them, it is preferably 90% or more and less than 100%, and particularly preferably 95% or more and less than 100%.
  • the regular reflectance is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment can be further improved.
  • visible light means light with a wavelength of 380 nm or more and 780 nm or less.
  • regular reflectance can be measured using a variable angle photometer or a variable angle spectrophotometer.
  • a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used to measure the specular reflectance.
  • the second layer has an incident angle dependency of transmittance such that the transmittance increases as the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side increases. That is, the transmittance of light incident on the surface of the second layer on the first layer side at a high incident angle is the transmittance of light incident on the surface of the second layer on the first layer side at a low incident angle. be larger than Above all, it is preferable that the transmittance of light incident on the surface of the second layer on the first layer side at a high incident angle is high. Specifically, the total light transmittance of light incident on the surface of the second layer on the first layer side at an incident angle of 70° or more and less than 90° is preferably 30% or more, especially 40% or more.
  • the total light transmittance preferably satisfies the above range at all incident angles of 70° or more and less than 90°. Further, when the absolute value of the incident angle is 70° or more and less than 90°, the total light transmittance preferably satisfies the above range. When the total light transmittance is within the above range, it is possible to further improve the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment.
  • the total light transmittance of the second layer can be measured, for example, using a goniophotometer or a goniospectral colorimeter by a method conforming to JIS K7361-1:1997.
  • a goniophotometer or a goniospectral colorimeter by a method conforming to JIS K7361-1:1997.
  • an ultraviolet-visible-near-infrared spectrophotometer V-7200 manufactured by JASCO Corporation can be used.
  • the second layer is not particularly limited as long as it has the above-described incident angle dependence of reflectance and transmittance, and various configurations having the above-described incident angle dependence of reflectance and transmittance can be used. can be adopted.
  • the second layer includes, for example, a dielectric multilayer film, or a patterned first reflective film and a patterned second reflective film in this order from the first layer side. Examples include a reflective structure, a reflective diffraction grating, and the like, in which the openings of the two reflective films are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
  • the second layer is a dielectric multilayer film, a reflective structure, or a reflective diffraction grating will be described below.
  • the dielectric multilayer film may be, for example, a multilayer film of an inorganic compound in which inorganic layers having different refractive indices are alternately laminated, or a multilayer film having different refractive indices.
  • a resin multilayer film in which resin layers are alternately laminated can be used.
  • the dielectric multilayer film is an inorganic compound multilayer film in which inorganic layers with different refractive indices are alternately laminated
  • the inorganic compound multilayer film has the above-described incident angle dependence of reflectance and transmittance. is not particularly limited.
  • the inorganic compound contained in the high refractive index inorganic layer having a high refractive index may have a refractive index of 1.7 or more, such as 1.7 or more and 2.5 or less.
  • examples of such inorganic compounds include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, and indium oxide, and titanium oxide, tin oxide, and cerium oxide. Examples include those containing a small amount.
  • the inorganic compound contained in the low refractive index inorganic layer having a low refractive index may be, for example, a refractive index of 1.6 or less, 1.2 or more and 1.6 or more. It may be below.
  • examples of such inorganic compounds include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
  • the number of layers of the high-refractive-index inorganic layer and the low-refractive-index inorganic layer is adjusted appropriately as long as the above-described incident angle dependency of reflectance and transmittance can be obtained.
  • the total number of lamination of the high refractive index inorganic layers and the low refractive index inorganic layers can be 4 or more.
  • the upper limit of the total number of layers is not particularly limited, but it can be set to 24 layers or less, for example, because the number of steps increases as the number of layers increases.
  • the thickness of the inorganic compound multilayer film should be sufficient to obtain the above-described incident angle dependency of reflectance and transmittance, and can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • Examples of the method for forming a multilayer film of an inorganic compound include a method of alternately laminating a high refractive index inorganic layer and a low refractive index inorganic layer by a CVD method, a sputtering method, a vacuum deposition method, a wet coating method, or the like.
  • the resin multilayer film may have the above-described incident angle dependency of reflectance and transmittance. is not particularly limited.
  • thermoplastic resins examples include thermoplastic resins and thermosetting resins. Of these, thermoplastic resins are preferred because of their good moldability.
  • the resin layer contains various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, heat stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, and refractive index adjusters.
  • additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, heat stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, and refractive index adjusters.
  • a dopant for may be added.
  • Thermoplastic resins include polyolefin resins, alicyclic polyolefin resins, polyamide resins, aramid resins, polyester resins, polycarbonate resins, polyarylate resins, polyacetal resins, polyphenylene sulfide resins, tetrafluoroethylene resins, trifluoroethylene resins, Fluorine resins such as trifluoroethylene chloride resin, tetrafluoroethylene-hexafluoropropylene copolymer, and vinylidene fluoride resin, acrylic resin, methacrylic resin, polyacetal resin, polyglycolic acid resin, and polylactic acid resin can be used. can.
  • polystyrene resin examples include polyethylene, polypropylene, polystyrene, and polymethylpentene.
  • Polyamide resins include nylon 6 and nylon 66.
  • polyester resins include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polybutylsuccinate, and polyethylene-2,6-naphthalate. In the present disclosure, among others, polyester is more preferable from the viewpoint of strength, heat resistance, and transparency.
  • polyester refers to homopolyesters and copolyesters that are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton.
  • homopolyesters include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and polyethylene diphenylate.
  • polyethylene terephthalate is preferable because it is inexpensive and can be used in a wide variety of applications.
  • the copolyester is defined as a polycondensate composed of at least three components selected from the following components having a dicarboxylic acid skeleton and components having a diol skeleton.
  • Components having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 4,4-diphenylsulfonedicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and their ester derivatives.
  • Components having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis (4- ⁇ -hydroxyethoxyphenyl)propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol.
  • the difference in in-plane average refractive index between the high refractive index resin layer with a high refractive index and the low refractive index resin layer with a low refractive index is preferably 0.03 or more, and more It is preferably 0.05 or more, more preferably 0.1 or more. If the difference in in-plane average refractive index is too small, a sufficient reflectance may not be obtained.
  • the difference between the in-plane average refractive index and the thickness direction refractive index of the high refractive index resin layer is preferably 0.03 or more, and the difference between the in-plane average refractive index and the thickness direction refractive index of the low refractive index resin layer is preferably is preferably 0.03 or less. In this case, even if the incident angle increases, the reflectance at the reflection peak is less likely to decrease.
  • the difference in SP value between the high refractive index resin and the low refractive index resin is preferably 1.0 or less.
  • the absolute value of the SP value difference is within the above range, delamination is less likely to occur.
  • the high refractive index resin and the low refractive index resin contain the same basic skeleton.
  • the basic skeleton means a repeating unit that constitutes the resin.
  • one resin is polyethylene terephthalate
  • ethylene terephthalate is the basic skeleton.
  • ethylene is the basic skeleton.
  • the difference in glass transition temperature between the high refractive index resin and the low refractive index resin is preferably 20° C. or less. If the difference in glass transition temperature is too large, thickness uniformity may be poor when forming a laminated film of a high-refractive-index resin layer and a low-refractive-index resin layer. In addition, overstretching may occur when forming the laminated film.
  • the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate
  • the low refractive index resin is polyester containing spiroglycol.
  • the spiroglycol-containing polyester means a copolyester or homopolyester obtained by copolymerizing spiroglycol, or a polyester obtained by blending them.
  • a spiroglycol-containing polyester has a small difference in glass transition temperature from that of polyethylene terephthalate or polyethylene naphthalate, and thus is less prone to overstretching during molding and less likely to cause delamination, which is preferable.
  • the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate
  • the low refractive index resin is polyester containing spiroglycol and cyclohexanedicarboxylic acid.
  • the low refractive index resin is a polyester containing spiroglycol and cyclohexanedicarboxylic acid
  • the difference in in-plane refractive index from polyethylene terephthalate and polyethylene naphthalate increases, making it easier to obtain high reflectance.
  • the difference in glass transition temperature from polyethylene terephthalate and polyethylene naphthalate is small and the adhesiveness is excellent, overstretching during molding is less likely to occur, and delamination is less likely to occur.
  • the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate
  • the low refractive index resin is polyester containing cyclohexanedimethanol.
  • the polyester containing cyclohexanedimethanol means a copolyester or homopolyester copolymerized with cyclohexanedimethanol, or a blended polyester thereof.
  • a polyester containing cyclohexanedimethanol has a small difference in glass transition temperature from polyethylene terephthalate and polyethylene naphthalate, and thus is less likely to be overstretched during molding and less likely to delaminate, which is preferable.
  • the low refractive index resin is more preferably an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol % or more and 60 mol % or less.
  • ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol within the above range adheres very strongly to polyethylene terephthalate.
  • the cyclohexanedimethanol group has cis and trans isomers as geometric isomers, and chair and boat isomers as conformational isomers.
  • changes in optical properties due to thermal history are even less, and cracking during film formation is less likely to occur.
  • the above resin multilayer film it is sufficient that there is a portion having a structure in which high refractive index resin layers and low refractive index resin layers are alternately laminated in the thickness direction. That is, it is preferable that the arrangement order in the thickness direction of the high refractive index resin layer and the low refractive index resin layer is not random. is not particularly limited.
  • the order of their arrangement is as follows: A for the high refractive index resin layer;
  • the resin layer is B and the other resin layers are C, it is more preferable that the layers are laminated in a regular order such as A(BCA) n , A(BCBA) n , A(BABCBA) n .
  • the number of laminated layers of the high refractive index resin layer and the low refractive index resin layer is appropriately adjusted as long as the above-described incident angle dependency of reflectance and transmittance can be obtained.
  • the high refractive index resin layer and the low refractive index resin layer can be alternately laminated with 30 layers or more, and each layer may be laminated with 200 layers or more.
  • the total number of laminated layers of the high refractive index resin layers and the low refractive index resin layers can be, for example, 600 layers or more. If the number of laminated layers is too small, sufficient reflectance may not be obtained.
  • a desired reflectance can be easily obtained by setting the number of laminations within the above range.
  • the upper limit of the total number of layers to be laminated is not particularly limited, but it can be set to, for example, 1500 layers or less in consideration of deterioration in lamination accuracy due to an increase in the size of the device and an excessive number of layers.
  • the above resin multilayer film preferably has a surface layer containing polyethylene terephthalate or polyethylene naphthalate with a thickness of 3 ⁇ m or more on at least one side, and more preferably has the above surface layer on both sides. Further, it is more preferable that the thickness of the surface layer is 5 ⁇ m or more. By having the surface layer, the surface of the resin multilayer film can be protected.
  • Examples of the method for manufacturing the above resin multilayer film include a co-extrusion method. Specifically, the method for producing a laminated film described in JP-A-2008-200861 can be referred to.
  • the multilayer film of the resin a commercially available laminated film can be used, and specific examples include Picassus (registered trademark) manufactured by Toray Industries, Inc. and ESR manufactured by 3M.
  • the reflective structure has a patterned first reflective film and a patterned second reflective film in this order from the first layer side, and the opening of the first reflective film and the second reflective film The openings are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
  • the reflective structure has two aspects.
  • a first aspect of the reflective structure includes a transparent substrate, a patterned first reflective film arranged on one surface of the transparent substrate, and a patterned second reflective film arranged on the other surface of the transparent substrate. and a reflective film, wherein the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
  • a second aspect of the reflective structure includes a transparent base material, a light-transmissive patterned convex portion disposed on one surface of the transparent base material, and a surface of the convex portion facing the transparent base material.
  • a first aspect of the reflective structure in this embodiment includes a transparent substrate, a patterned first reflective film arranged on one surface of the transparent substrate, and a pattern arranged on the other surface of the transparent substrate. shaped second reflective film, the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap in plan view, and the first reflective film and the second reflective film extend in the thickness direction are placed apart.
  • the first layer is arranged on the surface of the reflective structure on the first reflective film side in the second diffusing member.
  • FIGS. 7A and 7B are a schematic plan view and a cross-sectional view showing an example of the reflecting structure of this embodiment, and FIG. 7A is a view of the reflecting structure from the first reflecting film side.
  • 7(b) is a plan view
  • FIG. 7(b) is a sectional view taken along the line AA of FIG. 7(a).
  • the reflective structure 20 includes a transparent substrate 21, a patterned first reflective film 22 arranged on one surface of the transparent substrate 21, and a transparent substrate. and a second reflective film 24 disposed on the other surface of the material 21 .
  • the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24 are positioned so as not to overlap each other in plan view.
  • FIG. 7A is a schematic cross-sectional view showing an example of a surface emitting device provided with a diffusing member having a reflecting structure of this aspect.
  • the patterned first reflective film and the second reflective film are laminated so that the openings of the first reflective film and the openings of the second reflective film do not overlap in plan view. Therefore, when the diffusing member having the reflective structure of this embodiment is used in a surface emitting device, the first reflective film 22 and the At least one of the second reflecting films 24 must be present. Therefore, for example, as shown in FIG. 7B, the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the side on which the first layer (not shown) of the reflective structure 20 (second layer) is arranged The light L11 incident on the surface 13A at a low incident angle can be reflected by the first reflecting film 22 and the second reflecting film 24. As shown in FIG.
  • the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction, Light incident at a high incident angle on the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the surface 13A on the side where the first layer (not shown) of the reflective structure 20 (second layer) is arranged. L12 and L13 can be emitted from the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24.
  • part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to. Therefore, in-plane uniformity of luminance can be improved.
  • a general reflective film can be used, and a metal film, a dielectric multilayer film, or the like can be used.
  • metal materials used in general reflective films can be employed, including aluminum, gold, silver, and alloys thereof.
  • dielectric multilayer film those used in general reflective films can be adopted, and examples thereof include multilayer films of inorganic compounds such as multilayer films in which zirconium oxide and silicon oxide are alternately laminated. .
  • the materials contained in the first reflective film and the second reflective film may be the same or different.
  • the pitch of the openings of the first reflective film and the second reflective film is sufficient as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained. It is appropriately set according to the light distribution characteristics, size, pitch and shape, the distance between the LED substrate and the diffusion member, and the like.
  • the pitches of the openings of the first reflective film and the second reflective film may be the same or different.
  • the pitch of the openings of the first reflective film may be, for example, larger than the size of the LED elements. Specifically, the pitch of the openings of the first reflective film can be 0.1 mm or more and 20 mm or less.
  • the pitch of the openings of the second reflective film is not particularly limited as long as it can suppress luminance unevenness. is preferably smaller than the pitch of the openings.
  • the pitch of the openings of the second reflective film can be 0.1 mm or more and 2 mm or less.
  • the pitch of the openings of the first reflecting film means the distance P1 between the centers of the openings 23 of the adjacent first reflecting films 22, as shown in FIG. 7(a), for example.
  • the pitch of the openings of the second reflecting film means the distance P2 between the centers of the openings 25 of the adjacent second reflecting films 24 as shown in FIG. 7A, for example.
  • the sizes of the openings of the first reflective film and the second reflective film are sufficient as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained. It is appropriately set according to the distance between the LED substrate and the diffusion member. The sizes of the openings of the first reflective film and the second reflective film may be the same or different.
  • the length of the opening of the first reflective film is 0.1 mm or more. It can be 5 mm or less.
  • the size of the opening of the second reflecting film is not particularly limited as long as it can suppress unevenness in luminance. It is preferably smaller than the size of the opening of the reflective film. Specifically, when the shape of the opening of the second reflective film is rectangular, the length of the opening of the second reflective film can be 0.05 mm or more and 2 mm or less. By making the size of the opening of the second reflective film fine as described above, it is possible to make it difficult to visually recognize the pattern of the portion of the second reflective film and the portion of the opening of the second reflective film. It is possible to emit surface light without
  • the size of the opening of the first reflective film is the size of the opening 23 of the first reflective film 22 as shown in FIG. is the length x1 of
  • the size of the opening of the second reflective film means the length x2 of the opening 25 of the second reflective film 24 as shown in FIG. 7A, for example.
  • the shape of the openings of the first reflective film and the second reflective film can be any shape such as a rectangular shape or a circular shape.
  • the thicknesses of the first reflective film and the second reflective film are appropriately adjusted as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained.
  • the thicknesses of the first reflective film and the second reflective film can be 0.05 ⁇ m or more and 100 ⁇ m or less.
  • the first reflective film and the second reflective film may be formed on the surface of the transparent substrate, or may be sheet-like reflective films.
  • a method for forming the first reflective film and the second reflective film is not particularly limited as long as it is a method capable of forming a patterned reflective film on the surface of the transparent base material, and examples thereof include a sputtering method and a vacuum deposition method.
  • examples of the method of forming the opening include a method of forming a plurality of through holes by punching or the like.
  • a method of laminating the transparent substrate and the sheet-like reflective film for example, a method of bonding the sheet-like reflective film to the transparent substrate via an adhesive layer or an adhesive layer can be used.
  • the transparent base material in the reflective structure of this aspect is a member that supports the first reflective film and the second reflective film, etc., and the first reflective film and the second reflective film are spaced apart in the thickness direction. It is a member for
  • the transparent base material has optical transparency.
  • the total light transmittance of the transparent substrate is preferably, for example, 80% or more, and more preferably 90% or more.
  • the total light transmittance of the transparent substrate can be measured by a method conforming to JIS K7361-1:1997.
  • the material constituting the transparent substrate may be any material having the above-mentioned total light transmittance, and resins such as polyethylene terephthalate, polycarbonate, acrylic, cycloolefin, polyester, polystyrene, acrylic styrene, quartz glass, pyrex ( (registered trademark) and synthetic quartz glass.
  • resins such as polyethylene terephthalate, polycarbonate, acrylic, cycloolefin, polyester, polystyrene, acrylic styrene, quartz glass, pyrex ( (registered trademark) and synthetic quartz glass.
  • the thickness of the transparent substrate for example, as shown in FIG. ) is arranged, the light L12 incident at a high angle of incidence can be emitted from the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24. is preferably set according to the pitch and size of the openings of the first and second reflective films, the thickness of the first and second reflective films, and the like. Specifically, the thickness of the transparent substrate can be 0.05 mm or more and 2 mm or less, preferably 0.1 mm or more and 0.5 mm or less.
  • a second aspect of the reflective structure includes a transparent substrate, a patterned convex portion having light transmittance disposed on one surface of the transparent substrate, and a convex portion opposite to the transparent substrate side of the convex portion. It has a patterned first reflective film arranged on the surface side and a patterned second reflective film arranged in the opening of the convex portion on one surface of the transparent substrate, wherein the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
  • the first layer is arranged on the surface of the reflective structure on the first reflective film side in the second diffusing member.
  • the reflective structure 20 includes a transparent substrate 21 and a patterned convex portion 26 arranged on one surface of the transparent substrate 21 and having light transmittance. , a patterned first reflective film 22 arranged on the surface opposite to the surface of the convex portion 26 facing the transparent substrate 21, and and a patterned second reflective film 24 .
  • the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24 are positioned so as not to overlap each other in plan view.
  • the first reflecting film 22 and the second reflecting film 24 are separated by the convex portion 26 and are spaced apart in the thickness direction.
  • a surface emitting device (in particular, an LED backlight) using a diffusion member having a reflecting structure according to this embodiment has at least one of the first reflecting film and the second reflecting film directly above the LED element.
  • One or the other must exist. Therefore, as in the first aspect of the reflecting structure, for example, as shown in FIG.
  • the light L11 incident on the surface 13A on which the first layer (not shown) is arranged at a low incident angle can be reflected by the first reflecting film 22 and the second reflecting film 24 .
  • the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction, Light incident at a high incident angle on the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the surface 13A on the side where the first layer (not shown) of the reflective structure 20 (second layer) is arranged. L12 can be emitted from the side surface of the convex portion 26 and the opening 25 of the second reflective film 24 .
  • part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to. Therefore, in-plane uniformity of luminance can be improved. Further, in this aspect, since the projections are provided, self-alignment of the openings of the first reflective film and the second reflective film is possible, and the manufacturing cost can be reduced.
  • the materials of the first reflective film and the second reflective film, the pitch of the openings of the first reflective film and the second reflective film, the size of the openings of the first reflective film and the second reflective film, the The shape of the opening of the second reflective film, the thickness of the first reflective film and the second reflective film, the method of forming the first reflective film and the second reflective film, and the like can be the same as in the first aspect.
  • the transparent substrate may be the same as in the first aspect.
  • the convex portion in the reflective structure of this aspect is a member for arranging the first reflective film and the second reflective film apart from each other in the thickness direction.
  • the convex portion has optical transparency.
  • the total light transmittance of the projections is preferably, for example, 80% or more, and more preferably 90% or more.
  • the total light transmittance of the convex portion can be measured by a method conforming to JIS K7361-1:1997.
  • Any material that can form patterned protrusions and has the above-described total light transmittance can be used as a material for forming the protrusions, and examples thereof include thermosetting resins and electron beam curable resins.
  • the light L12 incident at a high angle of incidence can be emitted from the side surface of the convex portion 26 and the opening 25 of the second reflecting film 24.
  • the height of the convex portion can be 0.05 mm or more and 2 mm or less, preferably 0.1 mm or more and 0.5 mm or less.
  • the pitch, size and planar view shape of the projections can be the same as the pitch, size and shape of the openings of the second reflective film.
  • the surface of the projection may be, for example, a smooth surface as shown in FIG. 8(b) or a rough surface as shown in FIG. 9(a). When the surface of the convex portion is rough, the convex portion can be provided with light diffusing properties.
  • the shape of the surface of the convex portion may be flat as shown in FIG. 8(b), or curved as shown in FIG. 9(b).
  • the convex portion can be provided with light diffusing properties.
  • the method of forming the convex portions is not particularly limited as long as it is a method capable of forming pattern-like convex portions, and examples thereof include a printing method and resin molding using a mold.
  • the reflective diffraction grating is not particularly limited as long as it has the above-described incident angle dependency of reflectance and transmittance.
  • the pitch and the like of the reflective diffraction grating are adjusted as appropriate as long as the above-described incident angle dependency of reflectance and transmittance can be obtained.
  • the wavelengths emitted by the LED elements are monochromatic, such as red, green, and blue, it is possible to effectively reflect the light from the LED elements by setting the pitch according to each wavelength. is.
  • the material constituting the reflective diffraction grating may be any material that provides a reflective diffraction grating having the above-described incident angle dependence of reflectance and transmittance. can be adopted. Also, the method of forming the reflective diffraction grating can be the same as the method of forming a general reflective diffraction grating.
  • the third diffusing member is a resin plate containing a light-transmitting resin such as polystyrene (PS) or polycarbonate, which has many voids inside or has an uneven surface. and those generally used in the field of display devices can be used.
  • a light-transmitting resin such as polystyrene (PS) or polycarbonate
  • the wavelength conversion member may be arranged on the side of the diffusion member opposite to the LED substrate side, and the wavelength conversion member may be arranged on the LED substrate side of the diffusion member. may be placed.
  • a wavelength conversion member is a member containing a phosphor that absorbs light emitted from an LED element and emits excitation light.
  • the wavelength conversion member has a function of generating white light by being combined with the LED substrate.
  • a wavelength conversion member usually has at least a wavelength conversion layer containing a phosphor and a resin.
  • the wavelength conversion member may be, for example, a single wavelength conversion layer, or a laminate having a wavelength conversion layer on one side of a transparent substrate.
  • the single wavelength conversion layer is preferable from the point of thickness reduction. More preferably, a sheet-like wavelength conversion member is used.
  • the phosphor can be appropriately selected according to the color of light emitted from the LED element, and blue phosphor, green phosphor, red phosphor, yellow phosphor, and the like can be mentioned.
  • the phosphor may be a green phosphor, a red phosphor, or a yellow phosphor.
  • the LED element is an ultraviolet LED element, a red phosphor, a green phosphor, and a blue phosphor can be used as phosphors.
  • the phosphor used for the wavelength conversion member of the LED backlight can be adopted.
  • Quantum dots can also be used as phosphors.
  • the content of the phosphor in the wavelength conversion member layer is not particularly limited as long as it can generate the desired white light, and is the same as the content of the phosphor in the wavelength conversion member of a general LED backlight. can be
  • the resin contained in the wavelength conversion member is not particularly limited as long as it can disperse the phosphor.
  • the same resins as those used for wavelength conversion members of general LED backlights can be used, and examples thereof include thermosetting resins such as silicone-based resins and epoxy-based resins.
  • the thickness of the wavelength conversion member is not particularly limited as long as it can generate desired white light when used in a surface emitting device.
  • an optical member may be further arranged on the side of the diffusion member opposite to the side facing the LED substrate.
  • optical members include a prism sheet and a reflective polarizing sheet.
  • the prism sheet in this embodiment has the function of concentrating the incident light and intensively improving the luminance in the front direction.
  • the prism sheet has, for example, a prism pattern containing an acrylic resin arranged on one side of a transparent resin substrate.
  • As the prism sheet for example, brightness enhancement film BEF series manufactured by 3M can be used.
  • the reflective polarizing sheet in this embodiment transmits only the first linearly polarized component (e.g., P-polarized light) and the second linearly polarized component orthogonal to the first linearly polarized component. It has the function of reflecting (for example, S-polarized light) without absorbing it.
  • the second linearly polarized component reflected by the reflective polarizing sheet is reflected again, and in a depolarized state (including both the first linearly polarized component and the second linearly polarized component), Incident on the reflective polarizing sheet. Therefore, the reflective polarizing sheet transmits the first linearly polarized light component of the re-entering light, and reflects the second linearly polarized light component orthogonal to the first linearly polarized light component.
  • the surface emitting device of this embodiment is used in a display device, the polarization direction of the first linearly polarized light component (transmission axis component) of the reflective polarizing sheet and the transmission axis direction of the polarizing plate of the display panel are matched. As a result, all the light emitted from the surface emitting device can be used for image formation on the display panel. Therefore, even if the light energy input from the LED element is the same, it is possible to form a brighter image than in the case where the reflective polarizing sheet is not arranged.
  • Examples of reflective polarizing sheets include the DBEF series of brightness enhancement films manufactured by 3M. Also, as the reflective polarizing sheet, for example, a high brightness polarizing sheet WRPS and a wire grid polarizer manufactured by Shinwha Intertek can be used.
  • the use of the surface emitting device in this embodiment is not particularly limited, but it can be suitably used for a display device. Moreover, it can be used for a lighting device or the like.
  • FIG. 10 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment.
  • the surface emitting device 1 of this embodiment includes a support substrate 2 , an LED substrate 4 having LED elements 3 arranged on one side of the support substrate 2 , and LEDs of the LED substrate 4 .
  • a sealing member 5 arranged on the surface side of the element 3 side and sealing the LED element 3, a diffusion member 6 arranged on the surface side of the sealing member 5 opposite to the LED substrate 4 side, and the LED substrate 4 and an anti-warp layer 7 disposed on the surface opposite to the sealing member 5 .
  • the sealing member 5 in this embodiment has a haze value of 4% or more and a thickness greater than that of the LED element 3, and the linear expansion coefficient of the material constituting the warp prevention layer 7 It is characterized by having a coefficient of linear expansion equal to or greater than that of the material forming 5.
  • thermocompression bonding when a means such as thermocompression bonding is used to join the sealing member and the LED substrate, a line between the LED substrate and the sealing member is formed during subsequent cooling. Warpage may occur due to differences in expansion coefficients. Further, when the surface emitting device is used at extremely high or low temperatures, warping may occur due to the difference in coefficient of linear expansion between the LED substrate and the sealing member.
  • This embodiment like the first embodiment, was made to solve such a problem, and the warpage prevention layer is arranged on the surface of the LED substrate opposite to the sealing member.
  • the coefficient of linear expansion of the material constituting the warp prevention layer equal to or greater than the coefficient of linear expansion of the material constituting the sealing member, the above problem of warping is solved. .
  • the warpage prevention layer in this embodiment is a layer arranged on the surface of the LED substrate opposite to the sealing member.
  • the coefficient of linear expansion of the material forming the anti-warp layer is equal to or greater than the coefficient of linear expansion of the material forming the sealing member.
  • the reason why warping can be prevented by making the coefficient of linear expansion of the material forming the warp prevention layer equal to or greater than that of the material forming the sealing member is as follows.
  • “equivalent” means that the coefficient of linear expansion of the material constituting the sealing member is in the range of 0.8 or more and 1.2 or less, particularly 0.95 or more and 1.0 or less. Refers to the case within the range.
  • the linear expansion coefficient of the material constituting such a warp prevention layer is usually in the range of 300 ⁇ 10 ⁇ 6 /° C. or more and 500 ⁇ 10 ⁇ 6 /° C. or less, particularly 350 ⁇ 10 ⁇ 6 /° C. or more and 450 ⁇ 10 Those within the range of -6 /°C or less are used.
  • a method for measuring the coefficient of linear expansion in this embodiment the same method as described in the first embodiment is used.
  • the thickness of the anti-warp layer in this embodiment is preferably 25% or more, more preferably 35% or more, more preferably 45% or more of the thickness of the sealing member.
  • the upper limit is set to 50% or less from the concept of compactness of the apparatus. If it is within the above range, it is possible to obtain the effect of preventing warpage, and it does not hinder the compactness of the device.
  • the elastic modulus of the anti-warp layer used in this embodiment is preferably equal to or higher than the elastic modulus of the sealing member. Specifically, when the elastic modulus of the sealing member is 1, it is preferably 0.8 or more, and particularly preferably 0.9 or more. In addition, it becomes 2.5 or less normally.
  • the actual value is preferably 35 MPa or more, particularly preferably 40 MPa or more, and most preferably 85 MPa or more. This is because if the elastic modulus is lower than the above range, the effect of preventing warpage is reduced. It should be noted that considering the materials that are normally used, it is 300 MPa or less.
  • the modulus of elasticity is measured by the following tensile measurement.
  • ⁇ Measuring device Universal material testing machine 5565 manufactured by Instron ⁇ Load cell: 1kN ⁇ Sample width: 10 mm ⁇ Distance between chucks: 50mm ⁇ Speed: 300mm/min
  • the material constituting the anti-warp layer used in this embodiment is not particularly limited as long as it has the above characteristics, but among them, the same material as that used as the sealing member can be used. .
  • a preferable material is an olefin resin. Among olefin resins, polyethylene resins, polypropylene resins, and ionomer resins are preferable.
  • the anti-warp layer in this embodiment is in close contact with the LED substrate. This is because the warp prevention effect can be further improved. Since the specific degree of adhesion and the like are the same as those of the first embodiment, description thereof is omitted here.
  • Examples of the method of adhering the anti-warp layer and the LED substrate include a method of disposing an adhesive layer between the two and adhering them together, and a method of thermocompression bonding to melt and adhere the anti-warp layer. .
  • the surface light-emitting device of this embodiment uses an anti-foaming layer in place of the anti-warp layer in the first embodiment, and the anti-foaming layer has an elastic modulus of 500 MPa or more.
  • the foaming prevention layer has a melting point of 140° C. or higher.
  • the light emitting surface of the sealing member and the LED element are directly bonded, and the refractive index difference at the interface is small. Improve efficiency. However, if such bubbles exist, the light extraction efficiency cannot be improved as described above, and as a result, the luminous efficiency of the surface light emitting device is lowered.
  • the anti-foaming layer having the properties described above, it is possible to suppress the deformation of the surface of the sealing member, which is expected to occur during foaming, such that the surface shape becomes a convex portion. As a result, for example, even if gas is generated from the LED substrate, the presence of the anti-foaming layer applies pressure to the sealing member, making it possible to prevent the generated gas from forming bubbles. .
  • the elastic modulus of the anti-foaming layer used in this embodiment may be 500 MPa or higher, preferably 1000 MPa or higher, and more preferably 4000 MPa or higher.
  • the pressure is 5500 MPa or less in consideration of commonly used materials.
  • the melting point of the anti-foaming layer in this embodiment may be 140°C or higher, but preferably 260°C or higher.
  • the upper limit is 350.degree.
  • a foam-preventing layer having the above-described elastic modulus and the above-described melting point.
  • the methods for measuring the elastic modulus and the melting point are the same as those described in the first embodiment.
  • the anti-foam layer used in this embodiment does not necessarily have a coefficient of linear expansion within a predetermined range.
  • the anti-foaming layer has a coefficient of linear expansion similar to that of the anti-warping layer in the first embodiment, the same anti-warping effect as in the first embodiment can be obtained, so it is preferable. can do.
  • the present disclosure provides a display device including a display panel and the above-described surface emitting device arranged on the back surface of the display panel.
  • FIG. 11 is a schematic diagram showing an example of the display device of the present disclosure. As illustrated in FIG. 11 , the display device 100 includes a display panel 31 and the surface emitting device 1 according to the present disclosure arranged behind the display panel 31 .
  • the present disclosure by having the above-described surface light emitting device, it is possible to improve the in-plane uniformity of luminance and achieve a reduction in thickness. Therefore, a high-quality display device can be obtained.
  • the surface light-emitting device in the present disclosure is the same as that described in the section “A. Surface Light-Emitting Device” above.
  • Display Panel The display panel in the present disclosure is not particularly limited, and examples thereof include a liquid crystal panel.
  • the present disclosure provides a method for manufacturing the surface light emitting device of the first embodiment.
  • the present disclosure can be divided into two embodiments.
  • a method for manufacturing a surface light-emitting device of this embodiment is the manufacturing method described in the first embodiment of the surface light-emitting device, wherein the anti-warp layer, the sealing member, and the LED element are The method is characterized by comprising a step of preparing a laminate in which the LED substrates arranged so as to face the sealing member side are arranged in this order, and bonding the laminate by thermocompression.
  • a laminate is prepared in which the LED substrate, the sealing member, and the anti-warp layer are arranged in this order.
  • the LED substrate, the sealing member, and the anti-warp layer are the same as those described in the first embodiment of the surface emitting device, description thereof will be omitted here.
  • a step of thermally compressing the laminate is performed.
  • thermocompression bonding method in the present embodiment is not particularly limited as long as it is a method capable of thermocompression bonding, but a vacuum lamination method, a vacuum packing method, a heat lamination method, or the like can be used.
  • a surface light-emitting device can be manufactured by arranging a diffusion member on the side of the anti-warping layer of the laminated body that is press-bonded, and adhering it with an adhesive or the like.
  • a method for manufacturing a surface light-emitting device of this embodiment is the manufacturing method described in the first embodiment of the surface light-emitting device. a step of thermocompression bonding one laminated body; 2. The step of thermally compressing the laminated body.
  • the first laminate is thermocompression bonded by the same method as in the first embodiment.
  • thermocompressed a second laminate in which the LED substrate is arranged on the sealing member side surface of the thermocompressed first laminate is thermocompressed by the same method as in the first embodiment.
  • a surface light-emitting device can be manufactured by arranging a diffusion member on the anti-warp layer side of the pressed second laminated body and adhering it with an adhesive or the like.
  • the surface emitting device sealing member sheet of the present disclosure has the following two aspects.
  • a sealing member sheet for a surface light-emitting device of this aspect comprises a sealing member for sealing an LED element and an anti-warping layer disposed on one side of the sealing member.
  • the surface emitting device includes a support substrate, an LED substrate having the LED elements arranged on one side of the support substrate, the sealing member arranged on the LED element side of the LED substrate, and the warp.
  • a blocking layer and a diffusion blocking member are laminated in this order.
  • the anti-warping layer used in this aspect is the same as that described in the first aspect of the surface emitting device. Also, the LED substrate, the sealing member, and the antireflection member are the same as those described in the surface light emitting device, and therefore descriptions thereof are omitted here.
  • a sealing member for sealing an LED element and an anti-foaming layer disposed on one side of the sealing member are laminated.
  • the surface emitting device includes: a support substrate; an LED substrate having the LED elements arranged on one side of the support substrate; the sealing member arranged on the LED element side of the LED substrate; A blocking layer and a diffusion blocking member are laminated in this order.
  • the anti-foaming layer used in this embodiment is the same as that described in the third embodiment of the surface light-emitting device. Also, the LED substrate, the sealing member, and the antireflection member are the same as those described in the surface light emitting device, and therefore descriptions thereof are omitted here.
  • Experimental example 1 As shown in FIG. 11, a surface emitting device 1 having a support substrate 2, a light emitting diode substrate 4 having a light emitting diode element 3, a sealing member A (450 ⁇ m thick) 5, a diffusion member A 6, and a wavelength converting member 9 is manufactured. bottom.
  • Table 1 shows the haze value, layer structure, density and transmittance at a wavelength of 450 nm of the sealing member A.
  • Table 2 shows the evaluation results of luminance unevenness evaluated by the following method.
  • the members used are as follows. - Light-emitting diode substrate LED chips B0815ACQ0 (chip size 0.2 mm x 0.4 mm, manufactured by GENERITES) were squarely arranged on a support substrate (reflectance 95%) at a pitch of 6 mm. ⁇ Diffusion member A (diffusion plate) 55K3 (manufactured by Entire) ⁇ Wavelength conversion member (QD) QF-6000 (manufactured by Showa Denko Materials)
  • the thickness of the sealing member and the optical properties shown in Table 1 were obtained by sandwiching the sealing member sheet between ETFE films (thickness: 100 ⁇ m) and performing heat treatment by vacuum lamination. is the value The optical properties were measured by peeling off the ETFE film and measuring only the sealing member sample. Vacuum lamination conditions were as follows.
  • Example 2 The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Example 1, except that the diffusion member B described below was used instead of the diffusion member A. Table 2 shows the results.
  • ⁇ Diffusion member B A second diffusion member having a prism structure in which a prism surface is formed on the light emitting diode element side as a first layer and a dielectric multilayer film as a second layer
  • Uniformity minimum front luminance/maximum front luminance
  • the surface emitting devices (Experimental Examples 1 to 6) according to the present disclosure were able to suppress the occurrence of luminance unevenness.
  • Comparative Experimental Examples 3 and 4 using the cured product and in Comparative Experimental Examples 5 and 6 using the sealing member C having a low haze value, the occurrence of luminance unevenness could not be suppressed.
  • Example B-1 (Formation of laminate of sealing member and anti-warp layer) 5 parts by mass of additive resin 1 (weather resistant agent masterbatch) and 20 parts by mass of additive resin 2 (silane-modified polyethylene resin) are mixed with 100 parts by mass of the following base resin 1, and the PET film integrated sealing is performed. A sealing member composition for molding a sealing member material was obtained.
  • ⁇ Base resin 1 A metallocene-based linear low-density polyethylene resin (M-LLDPE) having a density of 0.901 g/cm 3 , a melting point of 93° C., and an MFR of 2.0 g/10 min at 190° C.
  • M-LLDPE metallocene-based linear low-density polyethylene resin
  • KEMISTAB62 HALS: 0.6 parts by mass with respect to 100 parts by mass of a low-density polyethylene resin having a density of 0.919 g/cm 3 and an MFR of 3.5 g/10 minutes at 190°C.
  • KEMISORB12 UV absorber
  • KEMISORB79 UV absorber: Masterbatch with 0.6 parts by mass added
  • Additive resin 2 (silane-modified polyethylene resin) 5 parts by mass of vinyltrimethoxysilane and a radical generator (reaction catalyst ) is mixed with 0.15 parts by mass of dicumyl peroxide, melted at 200° C., and kneaded to obtain a silane-modified polyethylene resin.
  • the added resin 2 has a density of 0.901 g/cm 3 and an MFR of 1.0 g/10 minutes.
  • a biaxially stretched polyethylene terephthalate film (optical grade) with a thickness of 50 ⁇ m is used as the warp prevention layer, and this is integrated with the film in which the above-described sealing member composition is melt extruded by pressure bonding,
  • An anti-warp layer laminate was formed by stacking an anti-warp layer and a sealing member having a thickness of 300 ⁇ m.
  • the PCB substrate and the anti-warp layer laminate were laminated.
  • the PCB board is white paint, copper, and glass epoxy laminated in that order.
  • Example B-2 A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-1, except that the thickness of the anti-warp layer was 100 ⁇ m.
  • Example B-3 A sealing member composition similar to that of Example B-1 and a PCB substrate similar to that of Example B-1 were used. First, on the glass epoxy surface of the PCB member, a film obtained by melt-extrusion of the composition for a sealing member was pressed to a thickness of 160 ⁇ m as a warp prevention layer, and then, on the white painted surface of the PCB member. A film obtained by melt-extrusion of the composition for a sealing member was pressure-bonded as a sealing member so as to have a film thickness of 240 ⁇ m to obtain a sealing member laminate of the second embodiment.
  • Example B-4 A sealing member laminate of the second embodiment was obtained in the same manner as in Example B-3, except that the thickness of the sealing member was 320 ⁇ m and the thickness of the anti-warp layer was 80 ⁇ m.
  • Example B-5 A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-2, except that a biaxially stretched polyethylene terephthalate film (general-purpose grade) different from that in Example 2 was used as the warp prevention layer. .
  • Example B-6 A sealing member laminate was obtained in the same manner as in Example B-1, except that the sealing member laminate was produced by bonding the sealing member and the warp prevention layer with a dry laminate adhesive.
  • a polycarbonate urethane-based adhesive was used as the main agent of the dry laminating adhesive, and an isocyanate-based curing agent was used as the curing agent material.
  • the ratio of the main agent and the curing agent was set at 10:1, and the main agent and the curing agent were dissolved in a solvent to make each 50% by mass (ethyl acetate solution).
  • a biaxially oriented polyethylene terephthalate film (optical grade) is used. Gravure coating was performed so as to have a thickness of 2 to 15 g/m 2 (2 to 15 ⁇ m in film thickness after curing), and the solvent was volatilized and dried in a drying hood at about 70 to 90° C. to prepare an adhesive surface.
  • the sealing member was unwound from the second paper feed, laminated by nip rolls, laminated in a PET/adhesive/sealing member state, and then wound up by a winding unit to produce a sealing member laminate. After the laminated roll was produced, it was cured by aging treatment at 30 to 50° C. for about 70 to 200 hours.
  • Example B-1 A sealing member laminate was obtained in the same manner as in Example B-1, except that the anti-warp layer laminate was used as a sealing member having a film thickness of 400 ⁇ m.
  • Example B-2 A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-1, except that a polycarbonate film (standard grade) having a thickness of 100 ⁇ m was used as the anti-warp layer.
  • melting point It was measured according to JIS K 7121 using a differential scanning calorimeter (DSC-60 Plus, manufactured by Shimadzu Corporation).
  • Total light transmittance Measured by a method conforming to JIS K7361-1:1997.
  • each sealing member laminate was placed in a constant temperature bath at 100° C. for 1000 hours in accordance with JIS C 60068-2-2, and the presence or absence of foaming was observed.
  • Example C-1 A sealing member laminate of the third embodiment was obtained in the same manner as in Example B-1 above, except that a 35 ⁇ m thick biaxially stretched polyethylene terephthalate film (optical grade) was used as the antifoaming layer. Various evaluations were performed regarding the sealing member laminate as a surface emitting device.
  • Example C-2 A sealing member laminate was obtained in the same manner as in Example B-1 above, except that the anti-warp layer was used as the anti-foaming layer.
  • Example C-3 A sealing member laminate was obtained in the same manner as in Example B-2 above, except that the anti-warp layer was used as the anti-foaming layer.
  • Example C-4 A sealing member laminate was obtained in the same manner as in Example B-1 above, except that random polypropylene having a thickness of 100 ⁇ m was used as the anti-foaming layer.
  • Example C-5 A sealing member laminate was obtained in the same manner as in Comparative Example B-2 above, except that the anti-warp layer was used as the anti-foaming layer.
  • a surface light-emitting device for use in a surface light-emitting device in which a sealing member for sealing a light-emitting diode element and a warp prevention layer disposed on one side of the sealing member are laminated.
  • the core layer of the sealing member is made of polyethylene resin having a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more.
  • the surface emitting device according to any one of [5] to [7], wherein the base resin is a polyethylene-based resin having a density of 0.910 g/cm 3 or less and a density lower than that of the base resin for the core layer.
  • Sealing member sheet [9] A surface light-emitting device for use in a surface light-emitting device, in which a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated.
  • a surface light-emitting device for use in a surface light-emitting device in which a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated.
  • a sealing member sheet for a surface light-emitting device wherein the melting point of the material constituting the anti-foaming layer is 140° C. or higher.
  • a light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate;
  • a surface light-emitting device having a coefficient in the range of -15 ⁇ 10 -6 /°C to 10 ⁇ 10 -6 /°C.
  • a light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate;
  • a surface light-emitting device having a coefficient equal to or greater than a linear expansion coefficient of a material forming the sealing member [13] The surface emitting device according to [11] or [12], wherein the sealing member has a thickness of 50 ⁇ m or more and 800 ⁇ m or less. [14] The surface emitting device according to any one of [11] to [13], wherein the sealing member contains a thermoplastic resin. [15] The surface emitting light according to any one of [11] to [14], wherein the sealing member has a polyethylene-based resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. Device.
  • the core layer of the sealing member is made of polyethylene resin having a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more.
  • the surface emitting device according to any one of [16] to [18], wherein the base resin is a polyethylene-based resin having a density of 0.910 g/cm 3 or less and a density lower than that of the base resin for the core layer.
  • a display device comprising a display panel and the surface emitting device according to any one of [11] to [19] arranged behind the display panel.
  • thermocompression bonding a first laminate in which the warpage prevention layer and the sealing member are laminated comprising: thermocompression bonding a first laminate in which the warpage prevention layer and the sealing member are laminated; a step of thermocompression bonding a second laminate in which the light-emitting diode substrate arranged so that the light-emitting diode element is on the sealing member side of the first laminate is placed on the surface of the first laminate on the sealing member side;
  • a method for manufacturing a surface emitting device comprising: thermocompression bonding a first laminate in which the warpage prevention layer and the sealing member are laminated; a step of thermocompression bonding a second laminate in which the light-emitting diode substrate arranged so that the light-emitting diode element is on the sealing member side of the first laminate is placed on the surface of the first laminate on the sealing member side;

Abstract

The present disclosure provides a sealing member sheet for a surface emission device, the sealing member sheet having a sealing member (5) that seals a light-emitting diode element (3), and a warpage prevention layer (7) that is located on the sealing member (5) and has a linear expansion coefficient within the range from -15×10-6/°C to 10×10-6/°C.

Description

面発光装置、表示装置、面発光装置の製造方法、および面発光装置用封止部材シートSurface emitting device, display device, manufacturing method of surface emitting device, and sealing member sheet for surface emitting device
 本開示は、面発光装置、それを用いた表示装置、上記面発光装置の製造方法、および面発光装置用封止部材シートに関する。 The present disclosure relates to a surface light-emitting device, a display device using the same, a method for manufacturing the surface light-emitting device, and a sealing member sheet for a surface light-emitting device.
 近年、表示装置の分野においては、より高画質な表示が求められている。発光ダイオード素子を用いた表示装置は、輝度が高くコントラストを高くすることができるといった利点を有することから、注目されており、開発が進められている。なお、以下の説明において「発光ダイオード」を「LED」と称して説明する場合がある。例えば、液晶表示装置に用いられるバックライトとして、LED素子を用いたバックライトの開発が進められている。上記バックライトは、ミニLEDバックライトとも称される。 In recent years, there has been a demand for higher image quality display in the field of display devices. 2. Description of the Related Art A display device using a light-emitting diode element is attracting attention and is being developed because of its advantages of high brightness and high contrast. In the following description, "light emitting diode" may be referred to as "LED". For example, backlights using LED elements are being developed as backlights used in liquid crystal display devices. The backlight is also called a mini-LED backlight.
 ここで、LEDバックライトは、直下型方式とエッジライト型方式とに大別される。スマートフォン等の携帯端末等の中小型の表示装置においては、通常、エッジライト方式のLEDバックライトが用いられることが多いが、明るさ等の観点から、直下型方式のLEDバックライトを用いることが検討されている。一方、大画面液晶テレビ等の大型の表示装置においては、多くの場合、直下型方式のLEDバックライトが用いられる。 Here, LED backlights are broadly classified into a direct type and an edge light type. Edge-light type LED backlights are usually used in small and medium-sized display devices such as mobile terminals such as smartphones, but direct type LED backlights are often used from the viewpoint of brightness. being considered. On the other hand, in large-sized display devices such as large-screen liquid crystal televisions, in many cases, a direct type LED backlight is used.
 直下型方式のLEDバックライトは、基板に複数のLED素子が配置された構成を有している。このような直下型方式のLEDバックライトでは、複数のLED素子を独立して制御することにより、表示画像の明暗に合わせてLEDバックライト各領域の明るさを調整する、いわゆるローカルディミングを実現することができる。これにより、表示装置の大幅なコントラスト向上および低消費電力化を図ることが可能となる。 A direct type LED backlight has a structure in which a plurality of LED elements are arranged on a substrate. In such a direct type LED backlight, by independently controlling a plurality of LED elements, the brightness of each area of the LED backlight is adjusted according to the brightness of the displayed image, so-called local dimming is realized. be able to. As a result, it is possible to significantly improve the contrast and reduce the power consumption of the display device.
国際公開2013/018902号公報International Publication 2013/018902
 直下型方式のLEDバックライト等の面発光装置においては、輝度ムラの抑制等の観点から、LED素子の上方に拡散板や透過反射板(以下、拡散部材)を配置している。輝度ムラを抑制するために、LED素子と拡散部材とを離して配置する必要がある。そのため、従来では、LED素子と拡散部材との間を所定の間隔に維持するためにピンやスペーサが配置されている(例えば特許文献1)。図12(a)は、支持基板62上のLED素子63と拡散部材66との間の距離dを確保するために、ピン65を配置した従来のLEDバックライト60である。図12(b1)は、支持基板62と拡散部材66との間にスペーサ67を配置した従来のLEDバックライト61であり、図12(b2)はスペーサ67の概略平面図である。 In a surface emitting device such as a direct type LED backlight, a diffuser plate or a transmissive reflector plate (hereinafter referred to as a diffuser member) is placed above the LED elements from the viewpoint of suppressing luminance unevenness. In order to suppress luminance unevenness, it is necessary to separate the LED element and the diffusion member. Therefore, conventionally, pins and spacers are arranged to maintain a predetermined gap between the LED element and the diffusion member (for example, Patent Document 1). FIG. 12(a) shows a conventional LED backlight 60 in which pins 65 are arranged in order to secure the distance d between the LED elements 63 on the support substrate 62 and the diffusion member 66. FIG. 12(b1) shows a conventional LED backlight 61 in which spacers 67 are arranged between a support substrate 62 and a diffusion member 66, and FIG. 12(b2) is a schematic plan view of the spacers 67. FIG.
 このように、ピンやスペーサを配置した場合には、LED素子から出射された光がピンやスペーサによって遮られたり、反射されたりすることで、輝度ムラが生じてしまう場合がある。そのため、例えば特許文献1では透過反射板の上方に更に拡散板等を配置する必要があり、モジュールの薄膜化が困難であった。このように、従来の面発光装置では、輝度の面内均一化と薄型化とを同時に実現するのが困難であるという問題点がある。 When the pins and spacers are arranged in this manner, the light emitted from the LED element may be blocked or reflected by the pins or spacers, resulting in uneven brightness. Therefore, in Patent Document 1, for example, it is necessary to further dispose a diffuser plate or the like above the transmissive reflector plate, which makes it difficult to reduce the thickness of the module. As described above, the conventional surface emitting device has a problem that it is difficult to realize uniformity of luminance in the plane and reduction in thickness at the same time.
 このような課題を解決するために、LEDを支持するLED支持基板と拡散部材との間に、光拡散性を有する封止部材を配置することも考えられる。これにより、輝度の面内均一性を向上させつつ、薄型化を図ることが可能となり、上記問題点を解決できる可能性がある。しかしながら、上記LED支持基板と封止部材とを具備する面発光装置においては、製造時等において、反りが発生する場合があるといった課題が生じる可能性がある。 In order to solve such problems, it is conceivable to dispose a sealing member having light diffusing properties between the LED support substrate that supports the LEDs and the diffusion member. As a result, it is possible to improve the in-plane uniformity of luminance and reduce the thickness of the device, which may solve the above-described problems. However, in the surface emitting device including the LED supporting substrate and the sealing member, there is a possibility that a problem may occur such as warping during manufacturing.
 本開示は、上記課題に鑑みてなされたものであり、製造時等における反りの発生を防止し、面発光装置の製造時の歩留まりを向上させることが可能な面発光装置を提供することを主目的とする。 The present disclosure has been made in view of the above problems, and is mainly to provide a surface light emitting device that can prevent warping during manufacturing and improve the yield during manufacturing of the surface light emitting device. aim.
 上記目的を達成するために、本開示では、発光ダイオード素子を封止する封止部材と、上記封止部材上に配置され、線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、反り防止層と、を有する、面発光装置用封止部材シートを提供する。 In order to achieve the above object, the present disclosure provides a sealing member that seals a light emitting diode element; and an anti-warp layer whose temperature is within the range of −6 /° C. or less.
 本開示は、また、発光ダイオード素子を封止するための封止部材と、上記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、上記発泡防止層を構成する材料の弾性率が、500MPa以上である、面発光装置用封止部材シートを提供する。 The present disclosure also provides a surface used for a surface light emitting device, in which a sealing member for sealing a light emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated. Provided is a surface light-emitting device sealing member sheet, wherein the elastic modulus of the material constituting the anti-foaming layer is 500 MPa or more.
 本開示は、発光ダイオード素子を封止するための封止部材と、上記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、上記発泡防止層を構成する材料の融点が、140℃以上である、面発光装置用封止部材シートを提供する。 The present disclosure is a surface light emitting device for use in a surface light emitting device, which is formed by laminating a sealing member for sealing a light emitting diode element and an anti-foaming layer disposed on one side of the sealing member. Provided is a sealing member sheet for a surface emitting device, wherein the melting point of the material constituting the anti-foaming layer is 140° C. or higher.
 本開示はまた、支持基板、および上記支持基板の片側の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、上記発光ダイオード基板の上記発光ダイオード素子側の面に配置され、上記発光ダイオード素子を封止する封止部材と、上記封止部材の上記発光ダイオード基板とは反対側の面に配置された反り防止層と、上記反り防止層の上記発光ダイオード基板とは反対側の面に配置された拡散部材と、を有する面発光装置であって、上記封止部材は、ヘイズ値が4%以上であり、厚みが上記発光ダイオード素子の厚みより厚く、上記反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、面発光装置提供する。 The present disclosure also provides a light emitting diode substrate having a supporting substrate and a light emitting diode element disposed on one side of the supporting substrate, and a light emitting diode substrate disposed on a surface of the light emitting diode substrate facing the light emitting diode element, a sealing member that seals an element; a warp prevention layer disposed on a surface of the sealing member opposite to the light emitting diode substrate; and a diffusion member disposed, wherein the sealing member has a haze value of 4% or more, a thickness greater than that of the light emitting diode element, and a material constituting the anti-warpage layer. linear expansion coefficient is in the range of −15×10 −6 /° C. or more and 10×10 −6 /° C. or less.
 本開示はさらに、支持基板、および上記支持基板の一方の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、上記発光ダイオード基板の上記発光ダイオード素子側の面に配置され、上記発光ダイオード素子を封止する封止部材と、上記封止部材の上記発光ダイオード基板とは反対の面に配置された拡散部材と、上記発光ダイオード基板の上記発光ダイオード素子とは反対側の面に配置された反り防止層と、を有する面発光装置であって、上記封止部材は、ヘイズ値が4%以上であり、厚みが上記発光ダイオード素子の厚みより厚く、上記反り防止層を構成する材料の線膨張係数が、上記封止部材を構成する材料の線膨張係数と同等もしくは大きい、面発光装置を提供する。 The present disclosure further provides a light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate; a sealing member that seals the element; a diffusion member that is disposed on the surface of the sealing member opposite to the light emitting diode substrate; and a diffusion member that is disposed on the surface of the light emitting diode substrate opposite to the light emitting diode element. and a warp prevention layer, wherein the sealing member has a haze value of 4% or more, a thickness greater than that of the light emitting diode element, and is made of a material that constitutes the warp prevention layer. Provided is a surface light-emitting device having a coefficient of linear expansion equal to or greater than the coefficient of linear expansion of the material forming the sealing member.
 本開示は、表示パネルと、上記表示パネルの背面に配置された、上述した面発光装置を備える、表示装置を提供する。 The present disclosure provides a display device comprising a display panel and the above-described surface emitting device arranged on the back surface of the display panel.
 本開示は、上述した面発光装置の製造方法であって、上記反り防止層、上記封止部材、および上記発光ダイオード素子が封止部材側となるように配置された上記発光ダイオード基板がこの順に配置された積層体を準備し、上記積層体を熱圧着する工程を有する、面発光装置の製造方法を提供する。 The present disclosure is a method for manufacturing the above-described surface light-emitting device, wherein the warp prevention layer, the sealing member, and the light-emitting diode substrate arranged so that the light-emitting diode element is on the side of the sealing member are arranged in this order. Provided is a method for manufacturing a surface emitting device, comprising the steps of preparing a stacked layered body and thermocompression bonding the layered body.
 本開示は、上述した面発光装置の製造方法であって、上記反り防止層、および上記封止部材が積層された第1積層体を熱圧着する工程と、上記熱圧着された第1積層体の上記封止部材側の面に上記発光ダイオード素子が封止部材側となるように配置された上記発光ダイオード基板を配置した第2積層体を熱圧着する工程と、を有する、面発光装置の製造方法を提供する。 The present disclosure is a method for manufacturing the above-described surface emitting device, comprising a step of thermocompression bonding a first laminate in which the warp prevention layer and the sealing member are laminated, and the thermocompression bonded first laminate and thermocompression bonding a second laminate having the light-emitting diode substrate arranged so that the light-emitting diode element is on the sealing member side, on the sealing member side surface of the surface light-emitting device. A manufacturing method is provided.
 本開示は、製造時等における反りの発生を防止し、面発光装置の製造時の歩留まりを向上させることが可能な面発光装置を提供することができるという効果を奏する。 The present disclosure has the effect of being able to provide a surface light-emitting device capable of preventing warping during manufacturing and improving the yield of manufacturing the surface light-emitting device.
本開示における面発光装置を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a surface emitting device according to the present disclosure; FIG. 本開示における封止部材の形成方法の一例を示す工程図である。FIG. 4 is a process diagram showing an example of a method of forming a sealing member according to the present disclosure; 本開示における面発光装置の封止部材の構造を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating the structure of the sealing member of the surface emitting device according to the present disclosure; 第二の拡散部材の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a second diffusion member; 本開示における第二の拡散部材を備える面発光装置の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a surface emitting device including a second diffusion member in the present disclosure; 透過光強度分布を例示するグラフである。5 is a graph illustrating transmitted light intensity distribution; 第二の拡散部材の反射構造体の第1態様の一例を示す概略平面図および断面図である。FIG. 4A is a schematic plan view and a cross-sectional view showing an example of a first embodiment of a reflective structure of a second diffusion member; 第二の拡散部材の反射構造体の第2態様の一例を示す概略平面図および断面図である。FIG. 9A is a schematic plan view and a cross-sectional view showing an example of a second embodiment of the reflecting structure of the second diffusion member; 第二の拡散部材の反射構造体の第2態様の別の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing another example of the second aspect of the reflective structure of the second diffusion member; 本開示における面発光装置の他の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of a surface emitting device according to the present disclosure; 本開示の表示装置の一例を示す模式図である。1 is a schematic diagram showing an example of a display device of the present disclosure; FIG. 従来のLEDバックライトの概略断面図である。1 is a schematic cross-sectional view of a conventional LED backlight; FIG.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。但し、本開示は多くの異なる態様で実施することが可能であり、以下に例示する実施の態様の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実施の態様に比べ、各部材の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Embodiments of the present disclosure will be described below with reference to the drawings and the like. However, the present disclosure can be embodied in many different forms and should not be construed as limited to the description of the embodiments exemplified below. In addition, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each member compared to the embodiment, but this is only an example, and the interpretation of the present disclosure is not limited to In addition, in this specification and each figure, the same reference numerals may be given to the same elements as those described above with respect to the existing figures, and detailed description thereof may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「面側に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上方あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 In this specification, when expressing a mode of arranging another member on top of a certain member, unless otherwise specified, when simply describing “on the surface side”, it means directly above or directly below so as to contact a certain member. It includes both the case of arranging another member on the side and the case of arranging another member above or below a certain member via another member.
 また、本明細書において、「シート」、「フィルム」、「板」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「シート」は、フィルムや板とも呼ばれるような部材も含む意味で用いられる。 Also, in this specification, terms such as "sheet", "film", and "plate" are not to be distinguished from each other based only on the difference in designation. For example, the term "sheet" is used in the sense of including members called films and plates.
 上述したように、新たに提案された上記LED支持基板と封止部材とを具備する面発光装置においては、製造時等において、反りが発生する場合があるといった課題が生じた。 As described above, in the newly proposed surface emitting device including the LED support substrate and the sealing member, there is a problem that warpage may occur during manufacturing.
 本発明者等は、上記新たな課題を解決するために、鋭意検討した結果、反りが生じるのは、製造時にLED支持基板と封止部材とを熱圧着した後に、双方の線膨張係数が異なることが原因であることを知見した。これにより、線膨張係数が上記封止部材に対して所定の関係を有する反り防止層を、上記封止部材に対し適切な位置に配置することにより、上記課題を解決したものである。 As a result of intensive studies by the present inventors in order to solve the above-mentioned new problem, the reason why the warp occurs is that after the LED support substrate and the sealing member are thermally compressed during manufacturing, the linear expansion coefficients of both are different. I found out that this is the cause. Thus, the problem is solved by arranging the anti-warp layer having a coefficient of linear expansion in a predetermined relationship with respect to the sealing member at an appropriate position with respect to the sealing member.
A.面発光装置
 本開示における面発光装置は、三つの態様に分けることができる。以下、それぞれの実施態様に分けて説明する。
A. Surface Emitting Device The surface emitting device in the present disclosure can be divided into three aspects. Hereinafter, each embodiment will be described separately.
I.第1実施態様
 以下、本実施態様の面発光装置について図面を参照して説明する。
 図1は、本実施態様の面発光装置の一例を示す概略断面図である。図1に例示するように、面発光装置1は、支持基板2、および支持基板2の一方の面側に配置されたLED素子3を有するLED基板4と、LED基板4のLED素子3側の面側に配置され、LED素子3を封止する封止部材5と、封止部材5のLED基板4側とは反対の面側に配置された拡散部材6と、上記封止部材5と上記拡散部材6との間に配置された反り防止層7と、を有する。本実施態様における封止部材5は、ヘイズ値が4%以上であり、厚みdが上記LED素子3の厚みより厚いものであり、上記反り防止層7を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内であることを特徴とするものである。
I. First Embodiment Hereinafter, a surface emitting device of this embodiment will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment. As illustrated in FIG. 1, a surface light emitting device 1 includes a support substrate 2, an LED substrate 4 having LED elements 3 arranged on one side of the support substrate 2, and an LED substrate 4 on the LED element 3 side. A sealing member 5 arranged on the surface side to seal the LED element 3, a diffusion member 6 arranged on the surface side of the sealing member 5 opposite to the LED substrate 4 side, the sealing member 5 and the and an anti-warp layer 7 disposed between the diffusion member 6 . The sealing member 5 in this embodiment has a haze value of 4% or more, a thickness d greater than the thickness of the LED element 3, and a linear expansion coefficient of the material constituting the warp prevention layer 7 is - It is characterized by being in the range of 15×10 −6 /° C. or more and 10×10 −6 /° C. or less.
 一般に、面発光装置では、例えば、上記封止部材と上記LED基板とを接合するに際し、熱圧着等の手段が用いられた場合、その後の冷却時に、上記LED基板と上記封止部材との線膨張係数の相違に起因する反りが生じる場合がある。
 また、面発光装置が極端な高温もしくは低温で用いられた場合、上述した上記LED基板と上記封止部材との線膨張係数の相違に起因する反りが生じる場合がある。
In general, in a surface emitting device, for example, when a means such as thermocompression bonding is used to join the sealing member and the LED substrate, a line between the LED substrate and the sealing member is formed during subsequent cooling. Warpage may occur due to differences in expansion coefficients.
Further, when the surface emitting device is used at extremely high or low temperatures, warping may occur due to the difference in coefficient of linear expansion between the LED substrate and the sealing member.
 本実施態様は、このような課題を解決するためになされたものであり、上記反り防止層を、上記封止部材と上記拡散部材との間に配置し、反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内であることにより、上述した反りの発生という課題を解決したものである。 This embodiment has been made in order to solve such problems, and the anti-warp layer is arranged between the sealing member and the diffusion member, and a wire of a material constituting the anti-warp layer is disposed between the sealing member and the diffusion member. Since the coefficient of expansion is in the range of -15×10 -6 /°C or more and 10×10 -6 /°C or less, the problem of warpage described above is solved.
 また、従来の面発光装置では、例えば、面発光装置が極端な高温に長時間用いられた場合、上記LED基板と上記封止部材との間に気泡が生じてしまうという課題もあった。これは、加熱により、LED基板から発生するガスに起因する場合や、LED基板上に反射層等が設けられた際にLED基板と反射層等との間にエア噛み等により存在する空気が界面に沿ってにじみ出る等の原因により発生する。 In addition, in the conventional surface light-emitting device, for example, when the surface light-emitting device is used at extremely high temperatures for a long time, there is a problem that air bubbles are generated between the LED substrate and the sealing member. This is caused by the gas generated from the LED substrate by heating, or when a reflective layer or the like is provided on the LED substrate, air existing between the LED substrate and the reflective layer or the like due to air entrainment or the like may cause the interface It occurs due to causes such as oozing along.
 上記封止部材に封止されたLED素子は、上記封止部材とLED素子の発光面が直接接合され、界面での屈折率差が小さくなるため封止されていないLED素子に比べ光取り出し効率が向上する。しかし、このような気泡が存在すると、上述したような光取り出し効率の向上が得られず、結果的に面発光装置の発光効率を低下させるといった不具合が生じてしまう。
 本実施態様では、上記反り防止層を設けることにより、上記課題をも解決したものである。
 以下、本実施態様の面発光装置について、構成毎に説明する。
In the LED element sealed with the sealing member, the light emitting surface of the sealing member and the LED element are directly bonded, and the refractive index difference at the interface becomes small, so the light extraction efficiency is higher than that of the unsealed LED element. improves. However, if such bubbles exist, the light extraction efficiency cannot be improved as described above, resulting in a problem of lowering the luminous efficiency of the surface light emitting device.
In this embodiment, by providing the anti-warpage layer, the above problem is also solved.
Each structure of the surface emitting device of this embodiment will be described below.
1.封止部材
 本実施態様における封止部材は、ヘイズ値が4%以上であり、厚みがLED素子より厚いものである。封止部材は、光透過性を有し、LED基板の発光面側に配置される。
1. Sealing Member The sealing member in this embodiment has a haze value of 4% or more and is thicker than the LED element. The sealing member has optical transparency and is arranged on the light emitting surface side of the LED substrate.
(1)ヘイズ値
 本実施態様における封止部材のヘイズ値は4%以上であり、好ましくは8%以上であり、更に好ましくは10%以上である。上記値より小さいと、輝度ムラを抑制することができない。一方、上限値は特に限定されないが、例えば、85%以下であり、好ましくは60%以下、更に好ましくは30%以下である。本明細書内において、ヘイズ値は、封止部材全体としての値であり、面発光装置から封止部材を切り出し、ヘイズメーター(HM-150、Murakami Color Research Laboratory製)を用いてJIS K7136:2000に準拠した方法により測定することができる。
(1) Haze Value The haze value of the sealing member in this embodiment is 4% or more, preferably 8% or more, and more preferably 10% or more. If it is smaller than the above value, luminance unevenness cannot be suppressed. On the other hand, the upper limit is not particularly limited, but is, for example, 85% or less, preferably 60% or less, more preferably 30% or less. In this specification, the haze value is a value for the entire sealing member, cut out from the surface emitting device, and measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory) to JIS K7136:2000. It can be measured by a method according to
 上述したヘイズ値を得るためのヘイズ値の調整方法としては、特に限定されないが、樹脂の結晶化度の大小を利用する方法や、樹脂中の微粒子の含有量を変化させる方法等が挙げられる。中でも、樹脂の結晶化度を調整する方法が好ましい。樹脂の結晶化度を大きくすることで、ヘイズ値を大きくした場合は、直進透過光を低減する効果を得ることができるからである。 The method for adjusting the haze value for obtaining the haze value described above is not particularly limited, but includes a method using the degree of crystallinity of the resin, a method of changing the content of fine particles in the resin, and the like. Among them, the method of adjusting the crystallinity of the resin is preferable. This is because when the haze value is increased by increasing the crystallinity of the resin, it is possible to obtain the effect of reducing the rectilinear transmitted light.
(2)厚さ
 本実施態様における封止部材の厚みは、上記LED素子より厚いものであればよく、具体的には50μm以上であることが好ましく、より好ましくは80μm以上であり、特に好ましくは200μm以上である。
 一方、LED素子の厚みとしては、800μm以下であることが好ましく、より好ましくは750μm以下であり、特に好ましくは700μm以下である。
(2) Thickness The thickness of the sealing member in the present embodiment may be any thickness as long as it is thicker than the LED element, specifically preferably 50 μm or more, more preferably 80 μm or more, and particularly preferably 200 μm or more.
On the other hand, the thickness of the LED element is preferably 800 μm or less, more preferably 750 μm or less, and particularly preferably 700 μm or less.
 なお、本明細書における「厚み」は、接触式膜厚測定装置(ミツトヨ製シックネスゲージ547-301)を用いて測定される。「大きさ」等のサイズの測定についても同様である。 The "thickness" in this specification is measured using a contact-type film thickness measuring device (Mitutoyo Thickness Gauge 547-301). The same is true for size measurements such as "size".
 上記厚みより小さいと、厚みが不十分となりLED素子から発せられる光を発光面全体に拡散することができず、面内で均一に輝度を向上させることができない。また、上記厚みよりも大きいと、薄型化を図ることができない。 If the thickness is smaller than the above thickness, the thickness becomes insufficient and the light emitted from the LED element cannot be diffused over the entire light emitting surface, and the brightness cannot be improved uniformly within the surface. Moreover, when it is larger than the said thickness, thickness reduction cannot be achieved.
(3)封止部材の材料
 本実施態様における封止部材に含まれる材料としては、上記ヘイズ値となる材料であれば特に限定されるものではないが、熱可塑性樹脂等が好ましい。熱可塑性樹脂を用いることで、例えば、熱硬化性樹脂を用いる場合に比べ、ヘイズ値を高く調整することができ、さらに、低温で封止部材を形成することができる。
(3) Material of Sealing Member The material contained in the sealing member in the present embodiment is not particularly limited as long as it is a material having the haze value described above, but a thermoplastic resin or the like is preferable. By using a thermoplastic resin, it is possible to adjust the haze value to be higher than in the case of using a thermosetting resin, and to form the sealing member at a low temperature.
 また、封止部材が熱可塑性樹脂を含有する場合には、熱可塑性樹脂を含有する封止材組成物から構成されるシート状の封止部材(以下、封止部材シートと称する場合がある。)を用いることができる。図2は、本実施態様における封止部材の形成方法の一例を示す工程図である。例えば、図2(a)に示すように、LED基板4と片方の表面に反り防止層7が配置された封止部材シート5aとを準備し、LED基板4のLED素子3側の面に、上記封止部材シート5aの上記反り防止部材7と反対側の面を積層する。次いで、例えば真空ラミネーション法を用いることによりこれらを圧着させることで、図2(b)に示すように、片側に反り防止層7が配置された封止部材5と、LED基板4と、の積層物を形成することができる。 When the sealing member contains a thermoplastic resin, a sheet-like sealing member (hereinafter sometimes referred to as a sealing member sheet) made of a sealing material composition containing the thermoplastic resin. ) can be used. FIG. 2 is a process drawing showing an example of a method of forming a sealing member in this embodiment. For example, as shown in FIG. 2(a), an LED substrate 4 and a sealing member sheet 5a having a warp prevention layer 7 disposed on one surface are prepared, and on the surface of the LED substrate 4 on the LED element 3 side, The surface of the sealing member sheet 5a opposite to the anti-warp member 7 is laminated. Next, by press-bonding these by using, for example, a vacuum lamination method, as shown in FIG. can form objects.
 一方、封止部材が熱硬化性樹脂や光硬化性樹脂等の硬化性樹脂を含有する場合には、通常、液状の封止材が用いられる。液状の封止材を用いる場合、表面張力等の関係で、中央部に比較して端部の厚みが厚くなる、もしくは薄くなるといった現象が生じる場合がある。また、硬化性樹脂の場合、硬化に際しての体積の収縮等が生じやすく、結果として、硬化後の封止部材の中央部と端部との厚みが不均一になる場合がある。このように封止部材の厚みが不均一であると、輝度ムラが生じる場合がある。 On the other hand, when the sealing member contains a curable resin such as a thermosetting resin or a photocurable resin, a liquid sealing material is usually used. When a liquid sealing material is used, a phenomenon may occur in which the thickness of the end portion becomes thicker or thinner than that of the central portion due to surface tension or the like. Moreover, in the case of a curable resin, volume shrinkage or the like tends to occur during curing, and as a result, the thickness of the central portion and the end portions of the sealing member after curing may become uneven. When the thickness of the sealing member is uneven in this manner, luminance unevenness may occur.
 これに対し、シート状の封止材を用いる場合には、液状の封止材を用いた場合に生じる、表面張力による塗膜の厚み分布の発生や、熱収縮または光収縮による厚みの分布の発生といった封止部材の表面凹凸が生じることを回避することができる。よって、平坦性が良好な封止部材を得ることができ、より高品質な表示装置を提供することができる。 On the other hand, when a sheet-like sealing material is used, the thickness distribution of the coating film occurs due to surface tension and the thickness distribution due to heat shrinkage or light shrinkage, which occurs when a liquid sealing material is used. It is possible to avoid the occurrence of unevenness on the surface of the sealing member, such as occurrence of unevenness. Therefore, a sealing member with good flatness can be obtained, and a higher quality display device can be provided.
(a)熱可塑性樹脂
 本実施態様においては、上記熱可塑性樹脂としては、オレフィン系樹脂、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール系樹脂等を用いることができる。
(a) Thermoplastic resin In the present embodiment, olefin resin, ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral resin and the like can be used as the thermoplastic resin.
 中でも、上記熱可塑性樹脂は、オレフィン系樹脂であることが好ましい。オレフィン系樹脂は、LED基板を劣化させる成分を特に生じにくく、溶融粘度も低いことから上述したLED素子を良好に封止できるからである。また、オレフィン系樹脂の中でも、ポリエチレン系樹脂、ポリプロピレン系樹脂、アイオノマー系樹脂が好ましい。 Among them, the thermoplastic resin is preferably an olefin resin. This is because the olefin-based resin is particularly resistant to producing components that degrade the LED substrate and has a low melt viscosity, so that the above-described LED element can be well sealed. Among olefin resins, polyethylene resins, polypropylene resins, and ionomer resins are preferable.
 ここで、本明細書におけるポリエチレン系樹脂には、エチレンを重合して得られる通常のポリエチレンのみならず、α-オレフィン等のようなエチレン性の不飽和結合を有する化合物を重合して得られた樹脂、エチレン性不飽和結合を有する複数の異なる化合物を共重合させた樹脂、およびこれらの樹脂に別の化学種をグラフトして得られる変性樹脂等が含まれる。 Here, the polyethylene-based resin in the present specification includes not only ordinary polyethylene obtained by polymerizing ethylene, but also a compound having an ethylenically unsaturated bond such as α-olefin obtained by polymerizing Resins, resins obtained by copolymerizing a plurality of different compounds having ethylenically unsaturated bonds, modified resins obtained by grafting other chemical species onto these resins, and the like are included.
 特に、本実施態様における封止部材は、上記ヘイズ値を得る観点において、密度0.870g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とすることが好ましい。特に、密度0.890g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とすることが好ましい。封止部材が後述するように多層部材である場合、コア層のベース樹脂として上記密度のポリエチレン系樹脂を使用することが好ましい。なお、上記密度の測定は、JIS Z 8807:2012により測定される。
 ここで、本開示において、「ベース樹脂」とは、当該ベース樹脂を含有してなる樹脂組成物において、当該樹脂組成物の樹脂成分中、含有質量比の最も大きい樹脂のことを言うものとする。
In particular, from the viewpoint of obtaining the haze value, it is preferable that the sealing member in this embodiment uses a polyethylene-based resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. In particular, it is preferable to use a polyethylene-based resin having a density of 0.890 g/cm 3 or more and 0.930 g/cm 3 or less as the base resin. When the sealing member is a multi-layer member as will be described later, it is preferable to use a polyethylene-based resin having the density described above as the base resin of the core layer. The density is measured according to JIS Z 8807:2012.
Here, in the present disclosure, the “base resin” refers to a resin having the largest content mass ratio among the resin components of the resin composition containing the base resin. .
 α-オレフィンとエチレン性不飽和シラン化合物とをコモノマーとして共重合してなるシラン共重合体(以下、「シラン共重合体」ともいう。)を好ましく使用することができる。このような樹脂を使用することにより、LED基板と封止部材とのより高い密着性を得ることができる。上記シラン共重合体は、特開2018-50027号公報に記載のものを用いることができる。 A silane copolymer (hereinafter also referred to as "silane copolymer") obtained by copolymerizing an α-olefin and an ethylenically unsaturated silane compound as comonomers can be preferably used. By using such a resin, higher adhesion between the LED substrate and the sealing member can be obtained. The silane copolymer described in JP-A-2018-50027 can be used.
(b)融点
 本実施態様に用いられる熱可塑性樹脂の融点としては、LED素子を封止することができれば特に限定されないが、例えば、90℃以上135℃以下であることが好ましい。中でも、LED発光中における発熱で軟化しないことが好ましく、90℃以上120℃以下の熱可塑性樹脂を使用することが好ましい。
(b) Melting Point The melting point of the thermoplastic resin used in this embodiment is not particularly limited as long as the LED element can be sealed, but for example, it is preferably 90° C. or higher and 135° C. or lower. Among them, it is preferable that the thermoplastic resin is not softened by heat generation during LED light emission, and it is preferable to use a thermoplastic resin having a temperature of 90° C. or more and 120° C. or less.
 なお、熱可塑性樹脂の融点は、例えば、プラスチックの転移温度測定方法(JISK7121:2012)準拠し、示差走査熱量分析(DSC)により測定することができる。
複数の熱可塑性樹脂が含まれる場合においては、最も高融点の値である。封止部材が後述するように多層部材である場合、コア層のベース樹脂としての熱可塑性樹脂が上記融点を有するものを使用することが好ましい。
The melting point of the thermoplastic resin can be measured, for example, by differential scanning calorimetry (DSC) in accordance with the method for measuring the transition temperature of plastics (JISK7121:2012).
This is the highest melting point when multiple thermoplastic resins are included. When the sealing member is a multilayer member as described later, it is preferable to use a thermoplastic resin having the above melting point as the base resin of the core layer.
(c)メルトマスフローレート(MFR)
 また、本実施態様における熱可塑性樹脂としては、加熱することにより、LED基板の一方の面側に配置されたLED素子およびその他の部材の凹凸に、追従し、隙間に入り込むことが可能な溶融粘度を有するものが好適に用いられる。
(c) melt mass flow rate (MFR)
In addition, the thermoplastic resin in this embodiment has a melt viscosity that can follow the unevenness of the LED element and other members arranged on one surface side of the LED substrate and can enter the gap by heating. is preferably used.
 具体的には、用いる熱可塑性樹脂のメルトマスフローレート(MFR)が、0.5g/10分以上40g/10分以下であることが好ましく、2.0g/10分以上40g/10分以下であることがより好ましく、更には2.0g/10分以上20g/10分以下であることがより好ましい。MFRが上記の範囲であることにより、LED素子等の隙間に入り込むことが可能となり、充分な封止性能を発揮することができ、さらにはLED基板との密着性に優れた封止部材とすることができるからである。 Specifically, the melt mass flow rate (MFR) of the thermoplastic resin to be used is preferably 0.5 g/10 minutes or more and 40 g/10 minutes or less, and is 2.0 g/10 minutes or more and 40 g/10 minutes or less. more preferably 2.0 g/10 minutes or more and 20 g/10 minutes or less. When the MFR is within the above range, it becomes possible to enter gaps between LED elements, etc., and the sealing member can exhibit sufficient sealing performance and furthermore has excellent adhesion to the LED substrate. Because you can.
 なお、本明細書におけるMFRは、JIS K7210-1:2014 A法により測定した190℃、荷重2.16kgにおける値をいう。ただし、ポリプロピレン樹脂のMFRについては、同じくJIS K7210-1:2014 A法による、230℃、荷重2.16kgにおけるMFRの値のことをいうものとする。 The MFR in this specification refers to the value at 190°C and a load of 2.16 kg measured according to JIS K7210-1:2014 A method. However, regarding the MFR of the polypropylene resin, it also refers to the MFR value at 230°C and a load of 2.16 kg according to the JIS K7210-1:2014 A method.
 封止部材が後述するように多層部材である場合のMFRについては、全ての層が一体積層された多層状態のまま、上記測定方法による測定を行い、得た測定値を当該多層の封止部材のMFR値とするものとする。 When the sealing member is a multilayer member as described later, the MFR is measured by the above-described measurement method while maintaining the multilayer state in which all the layers are integrally laminated, and the obtained measured value is used as the multilayer sealing member. shall be the MFR value of
d)引張弾性率
 また、本実施態様における熱可塑性樹脂としては、室温(25℃)における引張弾性率が、20MPa以上、300MPa以下であることが好ましく、特に20MPa以上、200MPa以下であることが好ましい。充分なLED基板との密着性を発揮することができ、かつ、例えば面発光装置に外部から衝撃が加わった場合などにおいて耐衝撃性に優れた封止部材となる。封止部材が後述するように多層部材である場合、コア層のベース樹脂としての熱可塑性樹脂が上記弾性率を有するものを使用することが好ましい。上記引張弾性率は、JISK7127:1999により測定された値を用いる。
d) Tensile modulus Further, the thermoplastic resin in this embodiment preferably has a tensile modulus at room temperature (25°C) of 20 MPa or more and 300 MPa or less, particularly preferably 20 MPa or more and 200 MPa or less. . The sealing member can exhibit sufficient adhesion to the LED substrate and has excellent impact resistance when, for example, the surface emitting device is subjected to an external impact. When the sealing member is a multi-layer member as described later, it is preferable to use a thermoplastic resin having the above elastic modulus as the base resin of the core layer. The value measured by JISK7127:1999 is used for the tensile modulus.
 なお、弾性率の測定方法としては、以下に示す引張測定により行われる。
・測定装置:インストロン社製万能材料試験機5565
・ロードセル:1kN
・試料幅:10mm
・チャック間距離:50mm
・速度:300mm/min
The modulus of elasticity is measured by the following tensile measurement.
・Measuring device: Universal material testing machine 5565 manufactured by Instron
・Load cell: 1kN
・Sample width: 10 mm
・Distance between chucks: 50mm
・Speed: 300mm/min
 封止部材は、上記熱可塑性樹脂の他に、酸化防止剤、光安定剤等の添加剤が添加されていてもよい。 Additives such as antioxidants and light stabilizers may be added to the sealing member in addition to the thermoplastic resin.
e)線膨張係数
 本実施態様において、上記封止部材は、後述するLED基板より、線膨張係数が高い。このため、上述したように、製造工程において上記封止部材と上記LED基板とを熱圧着した後、封止部材の収縮率がLED基板の収縮率より大きくなり、その結果、封止部材側が凹むように反りが生じるという課題が生じる。
 本実施態様で用いられる封止部材を構成する材料の線膨張係数としては、下限値が、20×10-6/℃以上であることが好ましく、特に150×10-6/℃以上であることが好ましい。一方、上限値が、1500×10-6/℃以下であることが好ましく、特に1000×10-6/℃以下であることが好ましい。具体的には、20×10-6/℃以上1500×10-6/℃以下の範囲内が好ましく、20×10-6/℃以上1000×10-6/℃以下であることが特に好ましく、中でも150×10-6/℃以上1000×10-6/℃以下の範囲内であることが好ましい。上記線膨張係数は、JISK7197:2012により測定された値を用いる。
e) Coefficient of linear expansion In this embodiment, the sealing member has a higher coefficient of linear expansion than the LED substrate described later. Therefore, as described above, after the sealing member and the LED substrate are thermally compressed in the manufacturing process, the shrinkage rate of the sealing member becomes larger than the shrinkage rate of the LED substrate, and as a result, the sealing member side is recessed. A problem arises that warping occurs.
The coefficient of linear expansion of the material constituting the sealing member used in this embodiment is preferably 20×10 −6 /° C. or higher, particularly 150×10 −6 /° C. or higher. is preferred. On the other hand, the upper limit is preferably 1500×10 -6 /°C or less, particularly preferably 1000×10 -6 /°C or less. Specifically, it is preferably in the range of 20 × 10 -6 /°C or more and 1500 × 10 -6 /°C or less, and particularly preferably 20 × 10 -6 /°C or more and 1000 × 10 -6 /°C or less, Above all, it is preferably in the range of 150×10 -6 /°C or more and 1000×10 -6 /°C or less. A value measured according to JISK7197:2012 is used as the coefficient of linear expansion.
(4)封止部材の構造
 本実施態様における面発光装置における封止部材は、例えば図1に示すように、封止部材5が単一の樹脂層で構成された単層部材であってもよく、また図3に示すように、封止部材5が、コア層51と、コア層51の少なくとも一方の表面に配置されるスキン層52と、を含む複数層の樹脂層(図3(a)においては2層、図3(b)においては3層)が積層された多層部材であってもよい。特に、コア層等と、コア層のLED基板側に配置されたスキン層とを有する2層構造であることが好ましい。なお、図3においては、LED素子3の周囲に反射層Rが配置された例を示すものである。
(4) Structure of Sealing Member The sealing member in the surface emitting device in this embodiment may be a single layer member in which the sealing member 5 is composed of a single resin layer, as shown in FIG. Also, as shown in FIG. 3, the sealing member 5 includes a plurality of resin layers including a core layer 51 and a skin layer 52 disposed on at least one surface of the core layer 51 (FIG. 3(a)). ) and three layers in FIG. 3B) may be laminated. In particular, a two-layer structure having a core layer or the like and a skin layer disposed on the LED substrate side of the core layer is preferable. Note that FIG. 3 shows an example in which a reflective layer R is arranged around the LED element 3 .
 本実施態様における封止部材が、コア層と、コア層のLED基板側に配置されたスキン層とを有する2層構造の多層部材である場合、スキン層とコア層との膜厚比(スキン層:コア層)は、スキン層:コア層を1:Xとした場合、Xの下限値としては、0.1以上であることが好ましく、特に0.5以上であることが好ましい。一方下限値としては、10以下が好ましく、特に6以下が好ましい。すなわち、1:0.1~1:10が好ましく、特に好ましくは1:0.5~1:6である。 When the sealing member in this embodiment is a multilayer member having a two-layer structure having a core layer and a skin layer disposed on the LED substrate side of the core layer, the film thickness ratio between the skin layer and the core layer (skin When skin layer:core layer is 1:X, the lower limit of X is preferably 0.1 or more, particularly preferably 0.5 or more. On the other hand, the lower limit is preferably 10 or less, particularly preferably 6 or less. That is, 1:0.1 to 1:10 is preferred, and 1:0.5 to 1:6 is particularly preferred.
 また、本実施態様における封止部材が3層構造の多層部材である場合、スキン層とコア層との膜厚比(スキン層:コア層:スキン層)を、1:Y:1として場合に、Yは、1以上であることが好ましく、特に2以上であることが好ましい、一方、Yは、10以下であることが好ましく、特に、8以下であることが好ましい。すなわち、スキン層とコア層との膜厚比(スキン層:コア層:スキン層)が、1:1:1~1:10:1が好ましく、特に好ましくは1:2:1~1:8:1である。 Further, when the sealing member in this embodiment is a multi-layer member having a three-layer structure, the film thickness ratio between the skin layer and the core layer (skin layer:core layer:skin layer) is 1:Y:1. , Y is preferably 1 or more, particularly preferably 2 or more, while Y is preferably 10 or less, particularly preferably 8 or less. That is, the thickness ratio of the skin layer to the core layer (skin layer:core layer:skin layer) is preferably 1:1:1 to 1:10:1, particularly preferably 1:2:1 to 1:8. :1.
 本実施態様における封止部材が多層部材である場合、コア層とスキン層は、密度範囲、融点などが異なる上記熱可塑性樹脂をベース樹脂として有することが好ましい。コア層で上記ヘイズ値を担保しつつ、スキン層でLED基板に対する密着性やモールディング特性を担保することが容易となるからである。 When the sealing member in this embodiment is a multilayer member, it is preferable that the core layer and the skin layer have the above thermoplastic resins with different density ranges, melting points, etc. as base resins. This is because it becomes easy to ensure adhesion to the LED substrate and molding properties with the skin layer while ensuring the haze value with the core layer.
 上記多層部材の場合、上記多層部材においてLED基板側に位置するスキン層に、通常高価である密着性やLED素子等の隙間に入り込めるモールディング特性が良好な材料を用いることが可能となる。上記多層部材において、LED基板側に配置されるスキン層を構成する材料としては、密着性が高く、かつモールディング特性が高いものであれば特に限定されるものではないが、上記熱可塑性樹脂の場合、上述したシラン共重合体等を用いることが好ましい。また、上記熱可塑性樹脂の場合、上記材料は、上記オレフィン系樹脂とシランカップリング剤とを含有することも好ましい。なお、この層には、酸化防止剤、光安定剤等の添加剤が添加されていてもよい。 In the case of the multi-layer member, it is possible to use a material with good adhesiveness, which is usually expensive, and molding properties that allow it to enter gaps between LED elements, etc., for the skin layer located on the LED substrate side of the multi-layer member. In the multilayer member, the material constituting the skin layer disposed on the LED substrate side is not particularly limited as long as it has high adhesion and high molding properties, but in the case of the above thermoplastic resin. It is preferable to use the above-mentioned silane copolymer or the like. Moreover, in the case of the thermoplastic resin, the material preferably contains the olefin resin and a silane coupling agent. Additives such as antioxidants and light stabilizers may be added to this layer.
(5)好ましい封止部材
 本実施態様における封止部材は、コア層と、少なくとも一方の最表面に配置されるスキン層と、を含む複数の層によって構成される多層部材であることが好ましく、コア層は、密度0.900g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とすることが好ましく、スキン層については、密度0.875g/cm以上0.910g/cm以下であって、コア層用のベース樹脂よりも低密度のポリエチレン系樹脂をベース樹脂とすることが好ましい。
(5) Preferred sealing member The sealing member in the present embodiment is preferably a multilayer member composed of a plurality of layers including a core layer and a skin layer arranged on at least one outermost surface, The core layer preferably uses a polyethylene resin with a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. It is preferable to use a polyethylene-based resin having a density of 3 or less and a density lower than that of the base resin for the core layer as the base resin.
 コア層用のベース樹脂としては、低密度ポリエチレン系樹脂(LDPE)、直鎖低密度ポリエチレン系樹脂(LLDPE)、またはメタロセン系直鎖低密度ポリエチレン系樹脂(M-LLDPE)を好ましく用いることができる。なかでも、長期信頼性の観点から、低密度ポリエチレン系樹脂(LDPE)をコア層用のベース樹脂として特に好ましく用いることができる。 As the base resin for the core layer, a low density polyethylene resin (LDPE), a linear low density polyethylene resin (LLDPE), or a metallocene linear low density polyethylene resin (M-LLDPE) can be preferably used. . Among them, from the viewpoint of long-term reliability, a low-density polyethylene resin (LDPE) can be particularly preferably used as the base resin for the core layer.
 上記コア層用のベース樹脂として用いるポリエチレン系樹脂の密度は、0.900g/cm以上0.930/cm以下であり、より好ましくは、0.920g/cm以下である。コア層用のベース樹脂の密度を上記範囲とすることにより、本実施態様における封止部材のヘイズ値を、上記特定の値以上とすることができるからである。また、架橋処理を経ることなく、封止部材に必要十分な耐熱性を備えさせることができる。 The density of the polyethylene resin used as the base resin for the core layer is 0.900 g/cm 3 or more and 0.930 g /cm 3 or less, and more preferably 0.920 g/cm 3 or less. This is because, by setting the density of the base resin for the core layer within the above range, the haze value of the sealing member in this embodiment can be made equal to or higher than the above specific value. In addition, the sealing member can be provided with necessary and sufficient heat resistance without undergoing a cross-linking treatment.
 上記コア層用のベース樹脂として用いるポリエチレン系樹脂の融点については、融点90℃以上135℃以下であることが好ましく、融点90℃以上115℃以下であることがより好ましい。上記融点範囲とすることにより、封止部材の耐熱性とモールディング特性とを、好ましい範囲内に保持することができる。なお、コア層用の封止材組成物にポリプロピレン等の高融点の樹脂を添加することによって、封止部材の融点を165℃程度にまで高めることが可能である。この場合、ポリプロピレンは、コア層の全樹脂成分に対して5質量%以上40質量%以下含有されていることが好ましい。 The melting point of the polyethylene resin used as the base resin for the core layer is preferably 90°C or higher and 135°C or lower, more preferably 90°C or higher and 115°C or lower. By setting the melting point within the above range, the heat resistance and molding properties of the sealing member can be maintained within a preferable range. The melting point of the sealing member can be raised to about 165° C. by adding a high melting point resin such as polypropylene to the sealing material composition for the core layer. In this case, polypropylene is preferably contained in an amount of 5% by mass or more and 40% by mass or less with respect to the total resin components of the core layer.
 上記コア層に含有させるポリプロピレンは、ホモポリプロピレン(ホモPP)樹脂であることが好ましい。ホモPPは、ポリプロピレン単体のみからなる重合体であり結晶性が高いため、ブロックPPやランダムPPと比較して、更に高い剛性を有する。これをコア層用の封止材組成物への添加樹脂として用いることにより、封止部材の寸法安定性を高めることができる。また、コア層用の封止材組成物への添加樹脂として用いるホモPPは、JIS  K7210:2014 A法に準拠して測定した230℃、荷重2.16kgにおけるMFRが5g/10分以上125g/10分以下であることが好ましい。上記MFRが小さすぎると、分子量が大きくなり剛性が高くなりすぎて、封止材組成物の好ましい十分な柔軟性が担保しにくくなる。また、上記MFRが大きすぎると、加熱時の流動性が十分に抑制されず、封止部材シートに耐熱性および寸法安定性を十分に付与することが出来ない。 The polypropylene contained in the core layer is preferably a homopolypropylene (homoPP) resin. Homo PP is a polymer consisting of polypropylene alone and has high crystallinity, so it has higher rigidity than block PP or random PP. By using this as an additive resin to the sealing material composition for the core layer, the dimensional stability of the sealing member can be enhanced. Further, the homo PP used as an additive resin to the sealing material composition for the core layer has an MFR of 5 g/10 minutes or more and 125 g/10 minutes or more at 230°C and a load of 2.16 kg, measured in accordance with JIS K7210:2014 A method. It is preferably 10 minutes or less. If the MFR is too small, the molecular weight will be too high and the rigidity will be too high, making it difficult to ensure the desirable and sufficient flexibility of the encapsulant composition. On the other hand, if the MFR is too large, the fluidity during heating cannot be sufficiently suppressed, and the sealing member sheet cannot be sufficiently endowed with heat resistance and dimensional stability.
 上記コア層用のベース樹脂として用いるポリエチレン系樹脂のメルトマスフローレート(MFR)は、190℃、荷重2.16kg、において1.0g/10分以上7.5g/10分以下であることが好ましく、1.5g/10分以上6.0g/10分以下であることがより好ましい。コア層用のベース樹脂のMFRを上記範囲とすることにより、封止部材の耐熱性とモールディング特性とを、好ましい範囲内に保持することができる。また、製膜時の加工適性を十分に高めて封止部材の生産性の向上にも寄与することができる。 The melt mass flow rate (MFR) of the polyethylene resin used as the base resin for the core layer is preferably 1.0 g/10 min or more and 7.5 g/10 min or less at 190° C. under a load of 2.16 kg. It is more preferably 1.5 g/10 minutes or more and 6.0 g/10 minutes or less. By setting the MFR of the base resin for the core layer within the above range, the heat resistance and molding properties of the sealing member can be maintained within preferable ranges. In addition, it is possible to contribute to the improvement of the productivity of the sealing member by sufficiently improving the processability at the time of film formation.
 上記コア層の全樹脂成分に対する上記のベース樹脂の含有量は70質量%以上99質量%以下であり、好ましくは90質量%以上99質量%以下である。上記範囲内でベース樹脂を含むものである限りにおいて、他の樹脂を含んでいてもよい。 The content of the base resin with respect to the total resin components of the core layer is 70% by mass or more and 99% by mass or less, preferably 90% by mass or more and 99% by mass or less. As long as it contains the base resin within the above range, it may contain other resins.
 上記封止部材のスキン層用のベース樹脂としては、コア層用の封止材組成物と同様に、低密度ポリエチレン系樹脂(LDPE)、直鎖低密度ポリエチレン系樹脂(LLDPE)、またはメタロセン系直鎖低密度ポリエチレン系樹脂(M-LLDPE)を好ましく用いることができる。なかでも、モールディング特性の観点から、メタロセン系直鎖低密度ポリエチレン系樹脂(M-LLDPE)をスキン層用の封止材組成物として特に好ましく用いることができる。 As the base resin for the skin layer of the sealing member, similar to the sealing material composition for the core layer, low density polyethylene resin (LDPE), linear low density polyethylene resin (LLDPE), or metallocene resin A linear low-density polyethylene resin (M-LLDPE) can be preferably used. Among them, from the viewpoint of molding properties, a metallocene linear low-density polyethylene resin (M-LLDPE) can be particularly preferably used as the sealing material composition for the skin layer.
 上記スキン層用のベース樹脂として用いる上記のポリエチレン系樹脂の密度は、0.875g/cm以上0.910g/cm以下であり、より好ましくは、0.899g/cm以下である。スキン層用のベース樹脂の密度を上記範囲内とすることにより、封止部材の密着性を好ましい範囲に保持することができる。 The density of the polyethylene-based resin used as the base resin for the skin layer is 0.875 g/cm 3 or more and 0.910 g/cm 3 or less, and more preferably 0.899 g/cm 3 or less. By setting the density of the base resin for the skin layer within the above range, the adhesion of the sealing member can be maintained within a preferable range.
 上記スキン層用のベース樹脂として用いる上記のポリエチレン系樹脂の融点については、融点50℃以上100℃以下であることが好ましく、融点55℃以上95℃以下であることがより好ましい。記範囲内とすることにより、封止部材の密着性を更に確実に向上させることができる。 The melting point of the polyethylene-based resin used as the base resin for the skin layer is preferably 50°C or higher and 100°C or lower, and more preferably 55°C or higher and 95°C or lower. By setting it within the above range, the adhesion of the sealing member can be further reliably improved.
 上記スキン層用のベース樹脂として用いるポリエチレン系樹脂のメルトマスフローレート(MFR)は、190℃、荷重2.16kg、において1.0g/10分以上7.0g/10分以下であることが好ましく、1.5g/10分以上6.0g/10分以下であることがより好ましい。スキン層用のベース樹脂のMFRを上記範囲内とすることにより、封止部材の密着性を更に好ましい範囲内に保持することができる。また、製膜時の加工適性を十分に高めて封止部材の生産性の向上に寄与することができる。 The melt mass flow rate (MFR) of the polyethylene resin used as the base resin for the skin layer is preferably 1.0 g/10 min or more and 7.0 g/10 min or less at 190° C. under a load of 2.16 kg. It is more preferably 1.5 g/10 minutes or more and 6.0 g/10 minutes or less. By setting the MFR of the base resin for the skin layer within the above range, the adhesion of the sealing member can be maintained within a more preferable range. In addition, it is possible to contribute to the improvement of the productivity of the sealing member by sufficiently improving the processability at the time of film formation.
 上記スキン層用の全樹脂成分に対する上記のベース樹脂の含有量は60質量%以上99質量%以下であり、好ましくは90質量%以上99質量%以下である。上記範囲内でベース樹脂を含むものである限りにおいて、他の樹脂を含んでいてもよい。 The content of the base resin with respect to the total resin components for the skin layer is 60% by mass or more and 99% by mass or less, preferably 90% by mass or more and 99% by mass or less. As long as it contains the base resin within the above range, it may contain other resins.
 以上説明した全ての封止材組成物には、α-オレフィンとエチレン性不飽和シラン化合物とをコモノマーとして共重合してなるシラン共重合体を、必要に応じて、各封止材組成物に一定量含有させることがより好ましい。このようなグラフト共重合体は、接着力に寄与するシラノール基の自由度が高くなるため、他の部材への封止部材の接着性を向上させることができる。 For all of the encapsulant compositions described above, a silane copolymer obtained by copolymerizing an α-olefin and an ethylenically unsaturated silane compound as comonomers may be added to each encapsulant composition, if necessary. It is more preferable to contain a fixed amount. Such a graft copolymer increases the degree of freedom of the silanol group that contributes to adhesive strength, and thus can improve the adhesiveness of the sealing member to other members.
 シラン共重合体は、例えば、特開2003-46105号公報に記載されているシラン共重合体を挙げることができる。上記シラン共重合体を封止材組成物の成分として使用することにより、強度、耐久性等に優れ、且つ、耐候性、耐熱性、耐水性、耐光性、その他の諸特性に優れ、更に、封止部材を配置する際の加熱圧着等の製造条件に影響を受けることなく極めて優れた熱融着性を有し、安定的に、低コストで封止部材を得ることができる。 Examples of silane copolymers include silane copolymers described in JP-A-2003-46105. By using the silane copolymer as a component of the encapsulant composition, excellent strength, durability, etc., and excellent weather resistance, heat resistance, water resistance, light resistance, and other characteristics can be obtained. It is possible to stably obtain a sealing member at a low cost, which has extremely excellent heat-sealability without being affected by manufacturing conditions such as thermocompression bonding when arranging the sealing member.
 シラン共重合体としては、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれであっても好ましく使用することができるが、グラフト共重合体であることがより好ましく、重合用ポリエチレンを主鎖とし、エチレン性不飽和シラン化合物が側鎖として重合したグラフト共重合体が更に好ましい。このようなグラフト共重合体は、接着力に寄与するシラノール基の自由度が高くなるため、封止部材の接着性を向上することができる。 As the silane copolymer, any of random copolymers, alternating copolymers, block copolymers, and graft copolymers can be preferably used, but graft copolymers are preferred. More preferred is a graft copolymer in which a polyethylene for polymerization is used as a main chain and an ethylenically unsaturated silane compound is polymerized as a side chain. In such a graft copolymer, the degree of freedom of silanol groups that contribute to adhesive strength is increased, so that the adhesiveness of the sealing member can be improved.
 α-オレフィンとエチレン性不飽和シラン化合物との共重合体を構成する際のエチレン性不飽和シラン化合物の含有量としては、全共重合体質量に対して、例えば、0.001質量%以上15質量%以下、好ましくは、0.01質量%以上10質量%以下、特に好ましくは、0.05質量%以上5質量%以下が望ましい。α-オレフィンとエチレン性不飽和シラン化合物との共重合体を構成するエチレン性不飽和シラン化合物の含有量が多い場合には、機械的強度、および耐熱性等に優れるが、含量が過度になると、引張ひずみ、および熱融着性等に劣る傾向にある。 The content of the ethylenically unsaturated silane compound in forming the copolymer of the α-olefin and the ethylenically unsaturated silane compound is, for example, 0.001% by mass or more and 15% of the total mass of the copolymer. % by mass or less, preferably 0.01% by mass or more and 10% by mass or less, particularly preferably 0.05% by mass or more and 5% by mass or less. When the content of the ethylenically unsaturated silane compound constituting the copolymer of the α-olefin and the ethylenically unsaturated silane compound is high, the mechanical strength and heat resistance are excellent. , tensile strain, and heat-sealability.
 上記シラン共重合体の封止材組成物の全樹脂成分に対する含有量は、上記コア層用の封止材組成物においては、0質量%以上20質量%以下、上記スキン層用の封止材組成物においては、5質量%以上40質量%以下であることが好ましい。特にスキン層用の封止材組成物には、5質量%以上のシラン共重合体が含有されていることがより好ましい。なお、上記のシラン共重合体におけるシラン変性量は、0.1質量%以上2.0質量%以下程度であることが好ましい。上記の封止材組成物中における好ましいシラン共重合体の含有量範囲は、上記シラン変性量がこの範囲内であることを前提としており、この変性量の変動に応じて適宜微調整することが望ましい。 The content of the silane copolymer in the total resin components of the sealing material composition is 0% by mass or more and 20% by mass or less in the sealing material composition for the core layer, and the amount of the sealing material for the skin layer is In the composition, it is preferably 5% by mass or more and 40% by mass or less. In particular, it is more preferable that the sealant composition for the skin layer contains 5% by mass or more of the silane copolymer. The silane modification amount in the above silane copolymer is preferably about 0.1% by mass or more and 2.0% by mass or less. The preferred content range of the silane copolymer in the sealing material composition is based on the premise that the silane modification amount is within this range, and fine adjustment can be made as appropriate according to the variation in the modification amount. desirable.
 全ての封止部材の層には、酸化防止剤、光安定剤等の添加剤が添加されていてもよい。
 また、適宜、密着性向上剤を添加することができる。密着性向上剤の添加により、他の部材との密着耐久性をより高いものとすることができる。密着性向上剤としては、公知のシランカップリング剤を用いることができるが、ビニル基を有する、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシ基を有するシランカップリング剤または、メルカプト基を有するシランカップリング剤を、特に好ましく用いることができる。
Additives such as antioxidants and light stabilizers may be added to all layers of the sealing member.
In addition, an adhesion improver can be added as appropriate. Addition of an adhesion improver can increase adhesion durability with other members. As the adhesion improver, known silane coupling agents can be used, and vinyltrimethoxysilane, vinyltriethoxysilane having a vinyl group, a silane coupling agent having an epoxy group, or a silane having a mercapto group. A coupling agent can be used particularly preferably.
(6)全光線透過率
 本実施態様における封止部材は、面発光装置としての機能を発揮することができれば特に限定されないが、70%以上であることが好ましく、中でも80%以上であることが好ましい。なお、封止部材の全光線透過率は、例えば、JIS K7361-1:1997に準拠する方法により測定することができる。
(6) Total light transmittance The sealing member in the present embodiment is not particularly limited as long as it can exhibit the function as a surface light emitting device, but it is preferably 70% or more, especially 80% or more. preferable. The total light transmittance of the sealing member can be measured, for example, by a method conforming to JIS K7361-1:1997.
(7)封止部材の形成方法
 上述したように、本実施態様における封止部材は、上記熱可塑性樹脂およびその他成分を含有する封止材組成物から構成される封止部材シートを用いて形成することができる。
 上記封止部材シートは、封止材組成物を、従来公知の方法で成型加工してシート状としたものである。
(7) Method for forming sealing member As described above, the sealing member in the present embodiment is formed using a sealing member sheet composed of a sealing material composition containing the thermoplastic resin and other components. can do.
The sealing member sheet is obtained by molding the sealing material composition by a conventionally known method to form a sheet.
 封止部材が多層部材の場合、コア層用、およびスキン層用の各封止材組成物により、所定の厚みで、コア層およびコア層の一方の表面に配置されているスキン層からなる2層構造の多層フィルムを成形することにより、例えば図3(a)に示すように、コア層51、およびスキン層52の2層構造の封止部材5を製造することができる。または、コア層の両方の表面にスキン層が配置されている3層構造の多層フィルムを成形することも可能である。これにより、例えば図3(b)に示すように、スキン層52、コア層51、およびスキン層52の3層構造の封止部材5を製造することができる。なお、図3における封止部材5および反射層R以外の構成については、図1と同様であるので、ここでの説明は省略する。 When the sealing member is a multi-layer member, the core layer and skin layer sealing material compositions are used to form a core layer and a skin layer arranged on one surface of the core layer with a predetermined thickness. By molding a multi-layer film having a layered structure, a sealing member 5 having a two-layered structure of a core layer 51 and a skin layer 52 can be manufactured, as shown in FIG. 3(a), for example. Alternatively, it is possible to form a multilayer film having a three-layer structure in which skin layers are arranged on both surfaces of a core layer. As a result, for example, as shown in FIG. 3B, the sealing member 5 having a three-layer structure of the skin layer 52, the core layer 51, and the skin layer 52 can be manufactured. 3 are the same as those in FIG. 1 except for the sealing member 5 and the reflective layer R, and therefore descriptions thereof are omitted here.
2.反り防止層
 本実施態様における反り防止層は、上記封止部材と後述する拡散部材との間に配置される層である。
2. Warpage Prevention Layer The warpage prevention layer in this embodiment is a layer arranged between the sealing member and the diffusion member described later.
 本実施態様においては、上記反り防止層を構成する材料の高温領域での線膨張係数を、所定の範囲とすることで反りを防止することができる。上記反り防止層を構成する材料の線膨張係数が、所定の範囲とすることにより、反りを防止できるのは、以下の理由による。 In this embodiment, warping can be prevented by setting the coefficient of linear expansion of the material constituting the warp-preventing layer to a predetermined range in a high-temperature region. The reason why warping can be prevented by setting the coefficient of linear expansion of the material constituting the warp preventing layer within a predetermined range is as follows.
 すなわち、面発光装置を製造する場合、封止部材とLED基板とを熱圧着する工程を有してもよいが、熱圧着後の冷却時に封止部材がLED基板より大きく収縮する挙動をとる。この際、上記封止部材の上記LED基板と反対側に、線膨張係数の小さい反り防止層が配置されているので、上記封止部材側の収縮の程度を小さくすることが可能となり、その結果、反りの発生を抑えることが可能となる。 That is, when manufacturing a surface emitting device, a step of thermocompression bonding the sealing member and the LED substrate may be included, but the behavior of the sealing member shrinks more than the LED substrate during cooling after the thermocompression bonding. At this time, since the anti-warp layer having a small coefficient of linear expansion is arranged on the opposite side of the sealing member from the LED substrate, it is possible to reduce the degree of shrinkage on the side of the sealing member. , it is possible to suppress the occurrence of warpage.
 また、本実施態様においては、上記反り防止層が配置されることにより、気泡が発生する部位において、気泡発生の際に生じる封止部材の変形を押さえることが可能となり、これにより、上述したように封止部材とLED基板との間の気泡の発生を防止することが可能となる。特に、所定の弾性率を有し、所定の融点を有する反り防止層により、効果的に上記効果を得ることができる。 In addition, in this embodiment, by disposing the anti-warp layer, it is possible to suppress the deformation of the sealing member that occurs when air bubbles are generated at the site where the air bubbles are generated. Moreover, it is possible to prevent air bubbles from being generated between the sealing member and the LED substrate. In particular, the anti-warp layer having a predetermined elastic modulus and a predetermined melting point can effectively obtain the above effects.
a)線膨張係数
 本開示における反り防止層を構成する材料の線膨張係数としては、-15×10-6/℃以上10×10-6/℃以下の範囲内とする。
 本開示においては、中でも上記線膨張係数の下限値が-10×10-6/℃以上であることが好ましい。一方、上限値は5×10-6/℃以下であることが好ましく、特に0以下であることが好ましい。すなわち、-10×10-6/℃以上5×10-6/℃以下であることが好ましく、特に-10×10-6/℃以上0×10-6/℃以下であることが好ましい。一方、用いる材料等と考慮すると、通常は、-10×10-6/℃以上5×10-6/℃以下となる。これよりも小さいと逆ぞりの原因となる。一方でこれよりも大きいと反り防止効果が不足する。
a) Coefficient of linear expansion The coefficient of linear expansion of the material constituting the anti-warp layer in the present disclosure is set within the range of −15×10 −6 /° C. or more and 10×10 −6 /° C. or less.
In the present disclosure, it is particularly preferable that the lower limit of the coefficient of linear expansion is −10×10 −6 /° C. or more. On the other hand, the upper limit is preferably 5×10 −6 /° C. or less, particularly preferably 0 or less. That is, it is preferably -10×10 -6 /°C or higher and 5×10 -6 /°C or lower, and particularly preferably -10×10 -6 /°C or higher and 0×10 -6 /°C or lower. On the other hand, considering the materials used, it is usually -10×10 −6 /° C. or more and 5×10 −6 /° C. or less. If it is smaller than this, it will cause reverse warpage. On the other hand, if it is larger than this, the anti-warping effect will be insufficient.
 本実施態様における線膨張係数の測定方法としては、以下の方法により行われる。
 5mm×20mmにカットしたシートについて、JIS K 7197:2012に準拠して昇温後、室温までの降温時の寸法変化を測定し、100℃から25℃での線膨張係数を平均して算出した。ここでの線膨張係数は収縮時には正の値、膨張時には負の値となる。測定は、以下の測定装置及び測定条件により行った。
・測定装置:セイコーインスツルメンツ製熱機械的装置(TMA/SS-6000)
・定荷重引張モード:0.1mN
・測定温度範囲:-50℃以上160℃以下
・線膨張係数算出温度範囲:25℃以上100℃以下
As a method for measuring the linear expansion coefficient in this embodiment, the following method is used.
For a sheet cut to 5 mm × 20 mm, after heating in accordance with JIS K 7197: 2012, the dimensional change during cooling to room temperature was measured, and the coefficient of linear expansion from 100 ° C. to 25 ° C. was averaged and calculated. . The coefficient of linear expansion here is a positive value during contraction and a negative value during expansion. The measurement was performed using the following measurement apparatus and measurement conditions.
・Measuring device: Thermomechanical device manufactured by Seiko Instruments (TMA/SS-6000)
・Constant load tensile mode: 0.1 mN
・Measurement temperature range: -50°C to 160°C ・Linear expansion coefficient calculation temperature range: 25°C to 100°C
b)弾性率
 本実施態様に用いられる反り防止層の弾性率は、500MPa以上であることが好ましく、特に1000Mpa以上であることが好ましく、中でも4000Mpa以上であることが好ましい。
 上記範囲より弾性率が低い場合は、気泡発生の抑止効果や、反り防止効果が低減してしまうからである。なお、通常に用いられる材料を考慮すると5500MPa以下となる。
b) Modulus of Elasticity The modulus of elasticity of the anti-warp layer used in this embodiment is preferably 500 MPa or higher, particularly preferably 1000 MPa or higher, and more preferably 4000 MPa or higher.
This is because if the elastic modulus is lower than the above range, the effect of suppressing bubble generation and the effect of preventing warpage are reduced. It should be noted that the pressure is 5500 MPa or less in consideration of commonly used materials.
 本実施態様における弾性率の測定方法としては、以下に示す引張測定により行われる。
(測定方法)
・測定装置:インストロン社製万能材料試験機5565
・ロードセル:1kN
・試料幅:10mm
・チャック間距離:50mm
・速度:300mm/min
As a method for measuring the elastic modulus in this embodiment, the following tensile measurement is performed.
(Measuring method)
・Measuring device: Universal material testing machine 5565 manufactured by Instron
・Load cell: 1kN
・Sample width: 10 mm
・Distance between chucks: 50mm
・Speed: 300mm/min
c)厚み
 本実施態様における反り防止層の厚みとしては、35μm以上188μm以下の範囲内、中でも50μm以上150μm以下の範囲内、特に100μm以上125μm以下の範囲内であることが好ましい。上記範囲内であれば、反り防止効果、および気泡発生の抑止効果を得ることが可能であり、また装置のコンパクト化の妨げとならない。
c) Thickness The thickness of the anti-warpage layer in this embodiment is preferably in the range of 35 µm to 188 µm, more preferably in the range of 50 µm to 150 µm, particularly preferably in the range of 100 µm to 125 µm. Within the above range, it is possible to obtain the effect of preventing warpage and the effect of suppressing the generation of bubbles, and does not hinder the compactness of the device.
d)透過率およびヘイズ値
 本実施態様における反り防止層のヘイズ値は、40%以下であることが好ましく、中でも20%以下であることが好ましく、特に10%以下であることが好ましい。
 上記範囲内であれば、輝度の面内均一性を向上させることが可能となる。なお、ヘイズ値が上記範囲を超える場合は、光が封止部材内部で散乱されるうちに吸収され、輝度が低下する。
 ヘイズ値の測定方法は、上記封止部材のヘイズ値の測定方法と同じ方法を用いることができる。
d) Transmittance and Haze Value The haze value of the anti-warp layer in this embodiment is preferably 40% or less, more preferably 20% or less, particularly preferably 10% or less.
Within the above range, it is possible to improve the in-plane uniformity of luminance. If the haze value exceeds the above range, the light is absorbed while being scattered inside the sealing member, resulting in a decrease in brightness.
As a method for measuring the haze value, the same method as the method for measuring the haze value of the sealing member can be used.
 一方、本実施態様における反り防止層の全光線透過率としては、80%以上であることが好ましく、特に90%以上であることが好ましい。このように全光線透過率が高いことにより、面発光装置の輝度の低下を防止することができる。 On the other hand, the total light transmittance of the anti-warp layer in this embodiment is preferably 80% or more, particularly preferably 90% or more. With such a high total light transmittance, it is possible to prevent the brightness of the surface emitting device from lowering.
 ここで、反り防止層の全光線透過率は、JIS K7361-1に準拠して測定することができ、村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 Here, the total light transmittance of the anti-warp layer can be measured according to JIS K7361-1, and can be measured with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
e)融点
 本実施態様における反り防止層の融点は、140℃以上であることが好ましく、特に260℃以上であることが好ましい。なお通常用いられる材料等を考慮すると上限は、350℃以下である。
 本実施態様における融点は、例えば、プラスチックの転移温度測定方法(JISK7121)に準拠し、示差走査熱量分析(DSC)により測定することができる。
e) Melting Point The melting point of the anti-warp layer in this embodiment is preferably 140° C. or higher, particularly preferably 260° C. or higher. Note that the upper limit is 350° C. or less in consideration of commonly used materials and the like.
The melting point in this embodiment can be measured, for example, by differential scanning calorimetry (DSC) according to the method for measuring the transition temperature of plastics (JISK7121).
 本実施態様においては、反り防止層が上述した融点を有することにより、面発光装置が高温環境下で長時間用いられた場合においても、効果的に気泡の発生を防止することが可能となる。 In this embodiment, since the anti-warp layer has the melting point described above, it is possible to effectively prevent the generation of air bubbles even when the surface emitting device is used for a long time in a high temperature environment.
f)材料
 本実施態様に用いられる反り防止層を構成する材料としては、上記特性を有するものであれば特に限定されないが、ポリオレフィン、ポリエステル、セルロース類,アクリル系樹脂,ポリイミド系樹脂、を挙げることができる。ポリオレフィンとしては、例えば、ポリプロピレン(PP)を挙げることができる。ポリエステルとしては、例えば、ポリテトラエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、を挙げることができる。セルロース類としては、例えば、トリアセチルセルロース(TAC)を挙げることができる。
 本実施態様においては、中でもPPおよびPETが、汎用性等の観点から好ましい。
f) Material The material constituting the anti-warp layer used in this embodiment is not particularly limited as long as it has the above properties, but examples include polyolefin, polyester, celluloses, acrylic resin, and polyimide resin. can be done. Examples of polyolefins include polypropylene (PP). Examples of polyester include polytetraethylene terephthalate (PET) and polyethylene naphthalate (PEN). Examples of celluloses include triacetyl cellulose (TAC).
In the present embodiment, PP and PET are particularly preferred from the viewpoint of versatility and the like.
g)その他
 本実施態様においては、上記反り防止層と上記封止部材とは、密着していることが好ましい。反り防止効果がより効率的に発揮できるからである。本実施形態において、「反り防止層と上記封止部材とが密着している」とは、両者を取り出した際に自重で剥離しない状態をいう。
 具体的には、上記密着強度が1N以上であることが好ましい。接着強度の測定方法としては、JIS K 6854-2 : 1999に準拠して、以下の方法を用いることができる。
g) Others In this embodiment, it is preferable that the anti-warp layer and the sealing member are in close contact with each other. This is because the anti-warping effect can be exhibited more efficiently. In the present embodiment, "the anti-warp layer and the sealing member are in close contact" refers to a state in which they do not separate due to their own weight when they are taken out.
Specifically, the adhesion strength is preferably 1N or more. As a method for measuring adhesive strength, the following method can be used in accordance with JIS K 6854-2: 1999.
(測定方法)
 PCB基板上に密着している封止部材を25mm幅に切り出し、剥離試験機(テンシロン万能試験機 RTF-1150-H)にて垂直剥離(300mm/min)試験を行い、密着強度を測定する。
(Measuring method)
The sealing member adhering to the PCB substrate is cut into a width of 25 mm, and a vertical peeling test (300 mm/min) is performed using a peeling tester (Tensilon universal tester RTF-1150-H) to measure the adhesion strength.
 上記反り防止層と上記封止部材とを密着させるためには、両者を、接着層を介して配置する方法や、熱圧着することにより溶融させて密着させる方法等を挙げることができる。 In order to bring the warp prevention layer and the sealing member into close contact, a method of arranging them with an adhesive layer interposed therebetween, a method of melting them by thermocompression bonding, and the like can be mentioned.
3.LED基板
 本実施態様におけるLED基板は、支持基板の一方の面側に複数のLED素子が配置された部材である。
3. LED Substrate The LED substrate in this embodiment is a member in which a plurality of LED elements are arranged on one side of a support substrate.
(1)LED素子
 LED素子は、支持基板の一方の面側に配置される部材であり、光源として機能する。
 LED素子としては、例えば面発光装置とした場合に白色光を照射することができれば特に限定されず、例えば、白色、青色、紫外線もしくは赤外線等を発光することができるLED素子を挙げることができる。
(1) LED element The LED element is a member arranged on one side of the support substrate and functions as a light source.
The LED element is not particularly limited as long as it can irradiate white light in the case of a surface emitting device, for example.
 LED素子は、チップ状のLED素子とすることができる。LED素子の形態としては、例えば、発光部(LEDチップとも称する。)そのものであってもよく、表面実装型やチップオンボード型等のパッケージLED(チップLEDとも称する。)であってもよい。パッケージLEDは、例えば、発光部と、発光部を覆い樹脂を含有する保護部とを有することができる。具体的には、LED素子が発光部そのものである場合、LED素子としては、例えば青色LED素子、紫外線LED素子または赤外線LED素子を用いることができる。また、LED素子がパッケージLEDである場合、LED素子としては、例えば白色LED素子を用いることができる。 The LED element can be a chip-shaped LED element. The form of the LED element may be, for example, a light-emitting part (also called an LED chip) itself, or a package LED (also called a chip LED) such as a surface-mount type or a chip-on-board type. A packaged LED can have, for example, a light-emitting portion and a protective portion that covers the light-emitting portion and contains resin. Specifically, when the LED element is the light emitting part itself, for example, a blue LED element, an ultraviolet LED element, or an infrared LED element can be used as the LED element. Moreover, when the LED element is a package LED, for example, a white LED element can be used as the LED element.
 本実施態様の面発光装置が、LED素子と上記波長変換部材とを組み合わせて白色光を照射するものである場合、LED素子としては、青色LED素子、紫外線LED素子、または赤外線LED素子であることが好ましい。青色LED素子は、例えば黄色蛍光体と組み合わせる、あるいは赤色蛍光体および緑色蛍光体と組み合わせことにより、白色光を生成することができる。また、紫外線LED素子は、例えば赤色蛍光体、緑色蛍光体および青色蛍光体と組み合わせることにより、白色光を生成することができる。中でも、LED素子が青色LED素子であることが好ましい。本実施態様の面発光装置において、輝度の高い白色光を照射することができるからである。 When the surface emitting device of the present embodiment combines an LED element and the wavelength conversion member to irradiate white light, the LED element is a blue LED element, an ultraviolet LED element, or an infrared LED element. is preferred. A blue LED element can generate white light, for example, by combining it with a yellow phosphor, or by combining it with a red phosphor and a green phosphor. In addition, ultraviolet LED elements can generate white light by combining, for example, red phosphors, green phosphors, and blue phosphors. Among them, it is preferable that the LED element is a blue LED element. This is because the surface emitting device of this embodiment can irradiate white light with high luminance.
 また、LED素子が白色LED素子である場合、白色LED素子としては、白色LED素子の発光方式等により適宜選択される。白色LED素子の発光方式としては、例えば、赤色LEDと緑色LEDと青色LEDとの組み合わせ、青色LEDと赤色蛍光体と緑色蛍光体との組み合わせ、青色LEDと黄色蛍光体との組み合わせ、紫外線LEDと赤色蛍光体と緑色蛍光体と青色蛍光体との組み合わせ等を挙げることができる。 Also, when the LED element is a white LED element, the white LED element is appropriately selected according to the light emission method of the white LED element. Examples of the light emission method of the white LED element include a combination of a red LED, a green LED, and a blue LED, a combination of a blue LED, a red phosphor, and a green phosphor, a combination of a blue LED and a yellow phosphor, and an ultraviolet LED. A combination of a red phosphor, a green phosphor, and a blue phosphor can be used.
 そのため、白色LED素子としては、例えば、赤色LED発光部と緑色LED発光部と青色LED発光部とを有していてもよく、青色LED発光部と赤色蛍光体および緑色蛍光体を含有する保護部とを有していてもよく、青色LED発光部と黄色蛍光体を含有する保護部とを有していてもよく、紫外LED発光部と赤色蛍光体、緑色蛍光体および青色蛍光体を含有する保護部とを有していてもよい。 Therefore, the white LED element may have, for example, a red LED light-emitting portion, a green LED light-emitting portion, and a blue LED light-emitting portion. It may have a blue LED light emitting portion and a protective portion containing a yellow phosphor, and may have an ultraviolet LED light emitting portion and a red phosphor, a green phosphor and a blue phosphor. You may have a protection part.
 中でも、白色LED素子は、青色LED発光部と赤色蛍光体および緑色蛍光体を含有する保護部とを有する、青色LED発光部と黄色蛍光体を含有する保護部とを有する、あるいは、紫外LED発光部と赤色蛍光体、緑色蛍光体および青色蛍光体を含有する保護部とを有することが好ましい。 Among them, the white LED element has a blue LED light-emitting portion and a protective portion containing a red phosphor and a green phosphor, has a blue LED light-emitting portion and a protective portion containing a yellow phosphor, or emits ultraviolet LED light. It is preferable to have a portion and a protective portion containing a red phosphor, a green phosphor and a blue phosphor.
 これらの中でも、白色LED素子は、青色LED発光部と赤色蛍光体および緑色蛍光体を含有する保護部とを有する、あるいは、青色LED発光部と黄色蛍光体を含有する保護部とを有することが好ましい。本実施態様の面発光装置において、輝度の高い白色光を照射することができるからである。
 LED素子の構造としては、一般的なLED素子と同様とすることができる。
Among these, the white LED element may have a blue LED light emitting portion and a protective portion containing a red phosphor and a green phosphor, or may have a blue LED light emitting portion and a protective portion containing a yellow phosphor. preferable. This is because the surface emitting device of this embodiment can irradiate white light with high luminance.
The structure of the LED element can be the same as that of a general LED element.
 LED素子は、通常、支持基板の一方の面側に等間隔で配置される。LED素子の配置としては、本実施態様の面発光装置の用途および大きさや、LED素子のサイズ等に応じて適宜選択される。また、LED素子の配置密度も、本実施態様の面発光装置の用途および大きさや、LED素子のサイズ等に応じて適宜選択される。 The LED elements are usually arranged at regular intervals on one side of the support substrate. The arrangement of the LED elements is appropriately selected according to the application and size of the surface emitting device of this embodiment, the size of the LED elements, and the like. Also, the arrangement density of the LED elements is appropriately selected according to the application and size of the surface emitting device of this embodiment, the size of the LED elements, and the like.
 LED素子のサイズ(チップサイズ)は、一般的なチップサイズとすることができるが、中でも、ミニLEDと呼ばれるチップサイズであることが好ましい。LED素子のサイズは、例えば、数百マイクロメートル角であってもよく、数十マイクロメートル角であってもよい。具体的には、LED素子のサイズは、100μm角以上2000μm角以下とすることができる。LED素子のサイズが小さいことにより、LED素子を高密度で配置する、すなわちLED素子間の間隔(ピッチ)を小さくすることができ、LED基板および拡散部材の距離を短くする、つまり封止部材の厚みを薄くすることができるからである。これにより、面発光装置の薄型化および軽量化を図ることができる。 The size (chip size) of the LED element can be a general chip size, but a chip size called mini-LED is preferable. The size of the LED element may be, for example, several hundred micrometers square or several tens of micrometers square. Specifically, the size of the LED element can be 100 μm square or more and 2000 μm square or less. Due to the small size of the LED elements, the LED elements can be arranged at a high density, that is, the intervals (pitch) between the LED elements can be reduced, and the distance between the LED substrate and the diffusion member can be shortened. This is because the thickness can be reduced. This makes it possible to reduce the thickness and weight of the surface emitting device.
(2)支持基板
 本実施態様における支持基板は、上記のLED素子、封止部材および拡散部材等を支持する部材である。
(2) Support Substrate The support substrate in this embodiment is a member that supports the above-described LED element, sealing member, diffusion member, and the like.
 支持基板は、透明であってもよく、不透明であってもよい。また、支持基板は、フレキシブル性を有していてもよく、剛性を有していてもよい。支持基板の材質は、有機材料であってもよく、無機材料であってもよく、有機材料および無機材料の両方を複合させた複合材料であってもよい。 The support substrate may be transparent or opaque. Moreover, the support substrate may have flexibility or may have rigidity. The material of the support substrate may be an organic material, an inorganic material, or a composite material obtained by combining both an organic material and an inorganic material.
 支持基板の材質が有機材料である場合、支持基板としては、樹脂基板を用いることができる。一方、支持基板の材質が無機材料である場合、支持基板としては、セラミック基板、ガラス基板を用いることができる。また、支持基板の材質が複合材料である場合、支持基板としては、ガラスエポキシ基板を用いることができる。また、支持基板として、例えばメタルコア基板を用いることもできる。支持基板としては、印刷により回路が形成された印刷回路基板を用いることもできる。 When the material of the support substrate is an organic material, a resin substrate can be used as the support substrate. On the other hand, when the material of the support substrate is an inorganic material, a ceramic substrate or a glass substrate can be used as the support substrate. Further, when the material of the support substrate is a composite material, a glass epoxy substrate can be used as the support substrate. A metal core substrate, for example, can also be used as the support substrate. A printed circuit board on which a circuit is formed by printing can also be used as the support substrate.
 支持基板の厚みは、特に限定されるものではなく、フレキシブル性または剛性の有無や、本実施態様の面発光装置の用途や大きさ等に応じて適宜選択される。
 本実施態様において、上記支持基板は、上述した封止部材より、線膨張係数が低い。このため、上述したように、製造工程において上記封止部材を熱圧着した後、反りが生じるという課題が生じる。
The thickness of the support substrate is not particularly limited, and is appropriately selected according to the presence or absence of flexibility or rigidity, the application and size of the surface emitting device of this embodiment, and the like.
In this embodiment, the support substrate has a lower coefficient of linear expansion than the sealing member described above. For this reason, as described above, there arises a problem that warpage occurs after the sealing member is thermocompression bonded in the manufacturing process.
 本実施態様で用いられる支持基板の線膨張係数としては、通常5×10-6/℃以上100×10-6/℃以下の範囲内である。 The coefficient of linear expansion of the support substrate used in this embodiment is usually in the range of 5×10 -6 /°C. to 100×10 -6 /°C.
(3)その他
 本実施態様におけるLED基板は、上述した支持基板およびLED素子を有していれば特に限定されず、必要な構成を適宜有することができる。このような構成としては、配線部、端子部、絶縁層、反射層、放熱部材等を挙げることができる。各構成については、公知のLED基板に用いられるものと同様とすることができる。
(3) Others The LED substrate in this embodiment is not particularly limited as long as it has the above-described supporting substrate and LED elements, and can have any necessary configuration as appropriate. Examples of such a configuration include a wiring portion, a terminal portion, an insulating layer, a reflective layer, a heat radiating member, and the like. Each configuration can be the same as that used for known LED substrates.
 配線部は、LED素子と電気的に接続される。配線部は、通常、パターン状に配置される。また、配線部は、支持基材に接着層を介して配置することができる。配線部の材料としては、金属材料や導電性高分子材料等を用いることができる。 The wiring part is electrically connected to the LED element. The wiring part is usually arranged in a pattern. Also, the wiring portion can be arranged on the supporting substrate via an adhesive layer. A metal material, a conductive polymer material, or the like can be used as the material of the wiring portion.
 配線部は、上記LED素子と接合部によって電気的に接続される。接合部の材料としては、金属や導電性高分子等の導電性材料を有する接合剤やハンダを用いることができる。 The wiring part is electrically connected to the LED element by a joint part. As a material for the joint, a bonding agent or solder having a conductive material such as a metal or a conductive polymer can be used.
 支持基板のLED素子が配置される面であって、LED素子実装領域以外の領域には、反射層を配置することができる。例えば、上記拡散部材の第2層で反射された光を、支持基板の反射層で反射させて、再度、拡散部材の第1層に入射させることができ、光の利用効率を高めることができる。 A reflective layer can be arranged on the surface of the support substrate on which the LED elements are arranged and in areas other than the LED element mounting area. For example, the light reflected by the second layer of the diffusing member can be reflected by the reflective layer of the support substrate and made to enter the first layer of the diffusing member again, thereby increasing the light utilization efficiency. .
 反射層は、一般的にLED基板に用いられる反射層と同様とすることができる。具体的には、反射層としては、金属粒子、無機粒子または顔料と樹脂とを含有する白色樹脂膜や、金属膜、多孔質膜等が挙げられる。反射層の厚みは、所望の反射率が得られる厚みであれば特に限定されるものではなく、適宜設定される。
 LED基板の形成方法については、公知の形成方法と同様とすることができる。
The reflective layer can be similar to reflective layers commonly used in LED substrates. Specifically, the reflective layer includes a white resin film containing metal particles, inorganic particles or a pigment and a resin, a metal film, a porous film, and the like. The thickness of the reflective layer is not particularly limited as long as the desired reflectance is obtained, and is set as appropriate.
A method for forming the LED substrate can be the same as a known forming method.
4.拡散部材
 拡散部材としては、封止部材のLED基板側とは反対の面側に配置される。拡散部材としては、LED素子から出射された光を拡散させ、面方向に均一に出射させる機能を有する部材であれば特に限定されないが、以下の第一の拡散部材、第二の拡散部材、及び第三の拡散部材が挙げられる。
4. Diffusion Member The diffusion member is arranged on the side of the sealing member opposite to the LED substrate side. The diffusion member is not particularly limited as long as it has the function of diffusing the light emitted from the LED element and emitting it uniformly in the plane direction, but the following first diffusion member, second diffusion member, and A third diffusion member is included.
4.1 第一の拡散部材
 第一の拡散部材は、通常、少なくとも拡散剤が分散された樹脂層を有する。上記拡散部材は、例えば、拡散剤が分散された樹脂シートであってもよく、透明基板上に拡散剤が分散された樹脂層を有する積層体であってもよいが、前者がより好ましい。樹脂層に含有される樹脂としては、拡散剤を分散させることができれば特に限定されないが、熱可塑性樹脂であることが好ましい。拡散剤を分散させた樹脂シートを用いて拡散部材を形成することができるため、平坦性を良好にすることができるからである。
4.1 First Diffusion Member The first diffusion member usually has at least a resin layer in which a diffusing agent is dispersed. The diffusion member may be, for example, a resin sheet in which a diffusing agent is dispersed, or a laminate having a resin layer in which a diffusing agent is dispersed on a transparent substrate, but the former is more preferable. The resin contained in the resin layer is not particularly limited as long as it can disperse the diffusing agent, but is preferably a thermoplastic resin. This is because the diffusion member can be formed using the resin sheet in which the diffusing agent is dispersed, so that the flatness can be improved.
 上記拡散部材に用いられる熱可塑性樹脂については、光透過度が高いものであれば特に限定されるものではなく、一般に表示装置分野において汎用されているものを用いることができる。 The thermoplastic resin used for the diffusing member is not particularly limited as long as it has high light transmittance, and those commonly used in the field of display devices can be used.
 上記拡散剤の材質としては、LED素子からの光を拡散させることができれば特に限定されず、例えば、有機材料であってもよく、無機材料であってもよい。拡散剤の材質が有機材料である場合、例えば、ポリメチルメタアクリレート(PMMA)を挙げることができる。一方、拡散剤の材質が無機材料である場合、TiO、SiO、Al、シリコン等を挙げることができる。 The material of the diffusing agent is not particularly limited as long as it can diffuse the light from the LED element. For example, it may be an organic material or an inorganic material. When the material of the diffusing agent is an organic material, for example, polymethyl methacrylate (PMMA) can be used. On the other hand, when the material of the diffusing agent is an inorganic material, TiO 2 , SiO 2 , Al 2 O 3 , silicon and the like can be mentioned.
 拡散剤の屈折率は、LED素子からの光を拡散させることができれば特に限定されないが、例えば、1.4以上2以下である。このような屈折率は、アッベ屈折計、ベッケ法、最小偏角法、偏角解析、モード・ライン法、エリプソメトリ法等によって測定することができる。拡散剤の形状は、例えば、粒子状を挙げることができる。拡散剤の平均粒径は、例えば、1μm以上100μm以下である。 The refractive index of the diffusing agent is not particularly limited as long as it can diffuse the light from the LED element, but is, for example, 1.4 or more and 2 or less. Such a refractive index can be measured by an Abbe refractometer, Becke method, minimum deflection angle method, deflection angle analysis, mode line method, ellipsometry method, or the like. The shape of the diffusing agent can be, for example, particulate. The average particle size of the diffusing agent is, for example, 1 μm or more and 100 μm or less.
 拡散部材における拡散剤の割合は、LED素子からの光を拡散させることができれば特に限定されず、例えば、40重量%以上60重量%以下である。 The proportion of the diffusing agent in the diffusing member is not particularly limited as long as the light from the LED elements can be diffused, and is, for example, 40% by weight or more and 60% by weight or less.
4.2 第二の拡散部材
 第二の拡散部材は、上記LED基板側から順に、第1層と、第2層とをこの順で有する部材であって、上記第1層は、光透過性および光拡散性を有し、上記第2層は、上記第2層の上記第1層側の面に対する光の入射角の絶対値が小さくなるにつれて反射率が大きくなり、上記第2層の上記第1層側の面に対する光の入射角の絶対値が大きくなるにつれて透過率が大きくなる、部材である。本実施態様においては、上述した拡散部材を有することにより、更なる輝度の面内均一性を向上させつつ、薄型化を図ることが可能である。また、コストおよび消費電力の低減も可能である。
4.2 Second diffusion member The second diffusion member is a member having a first layer and a second layer in this order from the LED substrate side, and the first layer is a light-transmitting layer. and light diffusing properties, and the reflectance of the second layer increases as the absolute value of the incident angle of light with respect to the first layer side surface of the second layer decreases. It is a member whose transmittance increases as the absolute value of the incident angle of light with respect to the surface on the first layer side increases. In this embodiment, by including the above-described diffusing member, it is possible to further improve the in-plane uniformity of luminance and achieve a reduction in thickness. Also, cost and power consumption can be reduced.
 以下、第二の拡散部材について図面を参照して説明する。図4は、第二の拡散部材の一例を示す概略断面図である。図4に例示するように、拡散部材11は、第1層12と第2層13とをこの順で有する。第1層12は、光透過性および光拡散性を有しており、第1層12の第2層13側の面とは反対の面12Aから入射した光L1、L2を透過および拡散する。また、第2層13は、第2層13の第1層12側の面13Aに対する光の入射角の絶対値が小さくなるにつれて反射率が大きくなり、第2層13の第1層12側の面13Aに対する光の入射角の絶対値が大きくなるにつれて透過率が大きくなる。そのため、第2層13では、第2層13の第1層12側の面13Aに対して低入射角θ1で入射した光L1を反射させ、第2層13の第1層2側の面13Aに対して高入射角θ2で入射した光L2を透過させることができる。なお、低入射角とは、入射角の絶対値が小さいものをいい、高入射角とは、入射角の絶対値が大きいものをいう。 The second diffusion member will be described below with reference to the drawings. FIG. 4 is a schematic cross-sectional view showing an example of the second diffusion member. As illustrated in FIG. 4, the diffusion member 11 has a first layer 12 and a second layer 13 in this order. The first layer 12 has light transmittance and light diffusion properties, and transmits and diffuses the lights L1 and L2 incident from the surface 12A opposite to the second layer 13 side surface of the first layer 12 . In addition, the reflectance of the second layer 13 increases as the absolute value of the incident angle of light with respect to the surface 13A of the second layer 13 on the side of the first layer 12 decreases. The transmittance increases as the absolute value of the incident angle of light with respect to the surface 13A increases. Therefore, in the second layer 13, the light L1 incident at a low incident angle θ1 is reflected to the surface 13A of the second layer 13 on the side of the first layer 12, and the surface 13A of the second layer 13 on the side of the first layer 2 is reflected. can transmit light L2 incident at a high incident angle θ2 with respect to . The low incident angle means that the absolute value of the incident angle is small, and the high incident angle means that the absolute value of the incident angle is large.
 図5は、図4に示す第二の拡散部材を備える本実施態様の面発光装置の一例を示す概略断面図である。図5に例示するように、面発光装置10は、支持基板2の一方の面にLED素子3が配置されたLED基板4と、LED基板4のLED素子3側の面側に配置され、LED素子3を封止する封止部材5と、封止部材5のLED基板4側とは反対の面側に配置された拡散部材11とを有する。拡散部材11は、第1層12側の面11Aが封止部材5に対向するように配置される。 FIG. 5 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment comprising the second diffusion member shown in FIG. As illustrated in FIG. 5, the surface emitting device 10 includes an LED substrate 4 having LED elements 3 arranged on one surface of a support substrate 2, and an LED substrate 4 arranged on the surface of the LED substrate 4 on the LED element 3 side. It has a sealing member 5 that seals the element 3 and a diffusion member 11 arranged on the side of the sealing member 5 opposite to the LED substrate 4 side. The diffusion member 11 is arranged so that the surface 11A on the side of the first layer 12 faces the sealing member 5 .
 図4に示すように、拡散部材11の第1層12側の面11Aから入射した光を、第1層12で拡散させるとともに、第1層12を透過して拡散した光のうち、第2層13の第1層12側の面13Aに対して低入射角θ1で入射した光L1については、図5に示すように、第2層13の第1層12側の面13Aで反射させ、再び第1層12に入射させて拡散させることができる。そして、第1層12を透過して拡散した光のうち、第2層13の第1層12側の面13Aに対して高入射角θ2で入射した光L2、L2′については、第2層13を透過させ、拡散部材11の第2層13側の面11Bから出射させることができる。 As shown in FIG. 4, the light incident from the surface 11A of the diffusion member 11 on the side of the first layer 12 is diffused by the first layer 12, and of the light transmitted through the first layer 12 and diffused, the second Light L1 incident on the surface 13A of the layer 13 on the side of the first layer 12 at a low incident angle θ1 is reflected by the surface 13A of the second layer 13 on the side of the first layer 12 as shown in FIG. It can be incident on the first layer 12 again and diffused. Among the lights transmitted through the first layer 12 and diffused, the lights L2 and L2' incident on the surface 13A of the second layer 13 on the side of the first layer 12 at a high incident angle θ2 are 13 and emitted from the surface 11B of the diffusion member 11 on the second layer 13 side.
 また、第1層および第2層を組み合わせることにより、拡散部材の第1層側の面から入射した光、特に拡散部材の第1層側の面から低入射角で入射した光について、何度も第1層を透過させて拡散させることができるので、拡散部材の第2層側の面から高出射角で出射させることができる。したがって、このような拡散部材を有する面発光装置(特に、直下型方式のLEDバックライト)は、LED素子から発せられる光を発光面全体に拡散させることができ、輝度の面内均一性を更に向上させることができる。 In addition, by combining the first layer and the second layer, the light incident from the surface of the diffusing member on the first layer side, especially the light incident on the surface of the diffusing member on the first layer side at a low angle of incidence, can be Since the light can also pass through the first layer and be diffused, it can be emitted from the surface of the diffusion member on the second layer side at a high output angle. Therefore, a surface emitting device (particularly, a direct type LED backlight) having such a diffusing member can diffuse the light emitted from the LED elements over the entire light emitting surface, further improving the in-plane uniformity of luminance. can be improved.
 また、第1層および第2層を組み合わせることにより、拡散部材の第1層側の面から低入射角で入射した光について、何度も第1層を透過させることができるため、光が拡散部材の第1層側の面から入射してから拡散部材の第2層側の面から出射するまでの光路長を長くすることができる。これにより、LED素子から発せられたのち拡散部材の第2層側の面から出射する光の一部を、LED素子の直上ではなく、LED素子から面内方向に離れた位置から出射させることができるようになる。 In addition, by combining the first layer and the second layer, light that is incident at a low incident angle from the surface of the diffusion member on the first layer side can be transmitted through the first layer many times. It is possible to lengthen the optical path length from the incident light from the surface of the member on the first layer side to the light emitted from the surface on the second layer side of the diffusing member. As a result, part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to.
(1)第1層
 本実施態様における第1層は、後述の第2層の一方の面側に配置され、光透過性および光拡散性を有する部材である。第1層が有する光透過性としては、例えば、第1層の全光線透過率が50%以上であることが好ましく、中でも70%以上であることが好ましく、特に90%以上であることが好ましい。第1層の全光線透過率が上記範囲であることにより、本実施態様の面発光装置の輝度を高くすることができる。
(1) First Layer The first layer in this embodiment is a member that is disposed on one side of the second layer described later and has light transmission and light diffusion properties. As for the light transmittance of the first layer, for example, the total light transmittance of the first layer is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more. . When the total light transmittance of the first layer is within the above range, the brightness of the surface emitting device of this embodiment can be increased.
 なお、第1層の全光線透過率は、例えば、JIS K7361-1:1997に準拠する方法により測定することができる。 The total light transmittance of the first layer can be measured, for example, by a method conforming to JIS K7361-1:1997.
 第1層の光拡散性としては、例えば、光をランダムに拡散する光拡散性であってもよく、光を主に特定の方向に拡散する光拡散性であってもよい。光を主に特定の方向に拡散する光拡散性は、光を偏向する性質であり、すなわち光の進行方向を変化させる性質である。第1層の光拡散性としては、光をランダムに拡散する光拡散性である場合、例えば、第1層に入射した光の拡散角が、10°以上とすることができ、15°以上であってもよく、20°以上であってもよい。また、第1層に入射した光の拡散角は、例えば、85°以下とすることができ、60°以下であってもよく、50°以下であってもよい。上記拡散角が上記範囲内であることにより、本実施態様の面発光装置の、輝度の面内均一性を更に向上させることができる。 The light diffusing property of the first layer may be, for example, light diffusing property that diffuses light randomly, or light diffusing property that diffuses light mainly in a specific direction. The light diffusing property of diffusing light mainly in a specific direction is the property of deflecting light, that is, the property of changing the traveling direction of light. As the light diffusion property of the first layer, if the light diffusion property is to randomly diffuse light, for example, the diffusion angle of the light incident on the first layer can be 10 ° or more, and 15 ° or more. It may be 20° or more. Further, the diffusion angle of light incident on the first layer can be, for example, 85° or less, may be 60° or less, or may be 50° or less. When the diffusion angle is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of this embodiment can be further improved.
 ここで、拡散角について説明する。図6は、透過光強度分布を例示するグラフであり、拡散角を説明する図である。本明細書においては、拡散部材を構成する第1層の一方の面に光を垂直に入射させて、第1層の他方の面から出射される光の最大透過光強度Imaxの2分の1になる2つの角度の差である半値全幅(FWHM)を拡散角αと定義する。 Here, the diffusion angle will be explained. FIG. 6 is a graph illustrating the transmitted light intensity distribution, and is a diagram for explaining the diffusion angle. In this specification, light is vertically incident on one surface of the first layer constituting the diffusion member, and the maximum transmitted light intensity Imax of the light emitted from the other surface of the first layer The full width at half maximum (FWHM), which is the difference between the two angles such that , is defined as the diffusion angle α.
 なお、拡散角は、変角光度計や変角分光測色器を用いて測定することができる。拡散角の測定には、村上色彩技術研究所社製の変角光度計(ゴニオフォトメーター)GP-200を用いることができる。 The diffusion angle can be measured using a goniophotometer or a goniospectrophotometer. A goniophotometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used to measure the diffusion angle.
 第1層としては、上述の光透過性および光拡散性を有するものであれば特に限定されるものではなく、透過型回折格子、マイクロレンズアレイ、拡散剤および樹脂を含有する拡散剤含有樹脂膜等が挙げられる。具体的には、第1層が、光を主に特定の方向に拡散する光拡散性を有する場合、透過型回折格子、マイクロレンズアレイを挙げることができる。一方、第1層が、光をランダムに拡散する光拡散性を有する場合、拡散剤含有樹脂膜を挙げることができる。中でも、光拡散性の観点から、透過型回折格子、マイクロレンズアレイが好ましい。なお、透過型回折格子は、透過型の回折光学素子(DOE;Diffractive Optical Elements)とも称される。 The first layer is not particularly limited as long as it has the above-described light transmittance and light diffusion properties, and includes a transmissive diffraction grating, a microlens array, a diffusing agent-containing resin film containing a diffusing agent and a resin. etc. Specifically, when the first layer has a light diffusing property of diffusing light mainly in a specific direction, a transmissive diffraction grating and a microlens array can be used. On the other hand, when the first layer has a light diffusing property of randomly diffusing light, a diffusing agent-containing resin film can be used. Among them, transmission diffraction gratings and microlens arrays are preferable from the viewpoint of light diffusion. The transmission type diffraction grating is also called a transmission type diffraction optical element (DOE: Diffractive Optical Elements).
 第1層が透過型回折格子である場合、透過型回折格子としては、上述の光透過性および光拡散性を有するものであれば特に限定されない。透過型回折格子のピッチ等としては、上述の光透過性および光拡散性が得られればよく、適宜調整される。具体的には、LED素子の出力する波長が、赤色、緑色、青色等の単色である場合は、各波長に応じたピッチとすることで、効果的にLED素子からの光を曲げることが可能である。 When the first layer is a transmission type diffraction grating, the transmission type diffraction grating is not particularly limited as long as it has the above-described light transmittance and light diffusion properties. The pitch and the like of the transmissive diffraction grating are adjusted appropriately as long as the above-described light transmittance and light diffusibility are obtained. Specifically, when the wavelengths emitted by the LED elements are single colors such as red, green, and blue, it is possible to effectively bend the light from the LED elements by setting the pitch according to each wavelength. is.
 透過型回折格子を構成する材料としては、上述の光透過性および光拡散性を有する透過型回折格子が得られる材料であればよく、一般的に透過型回折格子に用いられるものを採用することができる。また、透過型回折格子の形成方法としては、一般的な透過型回折格子の形成方法と同様とすることができる。 The material constituting the transmission diffraction grating may be any material that can provide the transmission diffraction grating having the above-described light transmittance and light diffusing properties. can be done. Also, the method of forming the transmission diffraction grating can be the same as the method of forming a general transmission diffraction grating.
 第1層がマイクロレンズアレイである場合、マイクロレンズアレイとしては、上述の光透過性および光拡散性を有するものであれば特に限定されない。マイクロレンズの形状、ピッチ、大きさ等としては、上述の光透過性および光拡散性が得られればよく、適宜調整される。マイクロレンズを構成する材料としては、上述の光透過性および光拡散性を有するマイクロレンズが得られる材料であればよく、一般的にマイクロレンズに用いられるものを採用することができる。また、マイクロレンズの形成方法としては、一般的なマイクロレンズの形成方法と同様とすることができる。 When the first layer is a microlens array, the microlens array is not particularly limited as long as it has the above-described light transmittance and light diffusion properties. The shape, pitch, size, and the like of the microlenses are adjusted appropriately as long as the above-described light transmittance and light diffusion are obtained. As a material for forming the microlens, any material can be used as long as the microlens having the above-described light transmittance and light diffusing properties can be obtained, and materials generally used for microlenses can be employed. Also, the method for forming the microlens can be the same as the method for forming a general microlens.
 第1層が拡散剤含有樹脂膜である場合、拡散剤含有樹脂膜としては、上述の光透過性および光拡散性を有するものであれば特に限定されない。 When the first layer is a diffusing agent-containing resin film, the diffusing agent-containing resin film is not particularly limited as long as it has the above-described light transmittance and light diffusibility.
 第1層は、光拡散性を発現することが可能な構造を有するものであればよく、例えば、層全体で光拡散性を発現するものであってもよく、面で光拡散性を発現するものであってもよい。面で光拡散性を発現するものとしては、例えば、レリーフ型回折格子やマイクロレンズアレイが挙げられる。一方、層全体で光拡散性を発現するものとしては、例えば、体積型回折格子や拡散剤含有樹脂膜が挙げられる。第1層および第2層を積層する方法としては、例えば、第1層および第2層を接着層または粘着層を介して貼り合せる方法や、第2層の一方の面に第1層を直接形成する方法等が挙げられる。第2層の一方の面に第1層を直接形成する方法としては、印刷法、金型による樹脂賦形等が挙げられる。 The first layer may have a structure capable of exhibiting light diffusing properties, for example, the entire layer may exhibit light diffusing properties, and the surface may exhibit light diffusing properties. can be anything. For example, a relief-type diffraction grating and a microlens array can be cited as examples of a surface that exhibits light diffusing properties. On the other hand, for example, a volume type diffraction grating and a diffusing agent-containing resin film can be cited as examples of materials that exhibit light diffusibility in the entire layer. As a method of laminating the first layer and the second layer, for example, a method of bonding the first layer and the second layer via an adhesive layer or an adhesive layer, or a method of bonding the first layer directly to one surface of the second layer. A forming method and the like can be mentioned. Examples of methods for directly forming the first layer on one side of the second layer include a printing method and resin molding using a mold.
(2)第2層
 本実施態様における第2層は、上記第1層の一方の面側に配置され、上記第2層の上記第1層側の面に対する光の入射角の絶対値が小さくなるにつれて反射率が大きくなるような反射率の入射角依存性と、上記第2層の上記第1層側の面に対する光の入射角の絶対値が大きくなるにつれて透過率が大きくなるような透過率の入射角依存性とを有する部材である。
(2) Second layer The second layer in this embodiment is arranged on one surface side of the first layer, and the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side is small. The incident angle dependence of the reflectance such that the reflectance increases as it increases, and the transmission such that the transmittance increases as the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side increases It is a member having the incident angle dependence of the index.
 第2層は、第2層の第1層側の面に対する光の入射角の絶対値が小さくなるにつれて反射率が大きくなるような反射率の入射角依存性を有する。すなわち、第2層の第1層側の面に対して低入射角で入射する光の反射率は、第2層の第1層側の面に対して高入射角で入射する光の反射率よりも大きくなる。中でも、第2層の第1層側の面に対して低入射角で入射する光の反射率は、大きいことが好ましい。 The second layer has incident angle dependence of reflectance such that the reflectance increases as the absolute value of the incident angle of light with respect to the first layer side surface of the second layer decreases. That is, the reflectance of light incident on the first layer side surface of the second layer at a low incident angle is the reflectance of light incident on the first layer side surface of the second layer at a high incident angle be larger than Above all, it is preferable that the reflectance of light incident on the surface of the second layer on the first layer side at a low incident angle is high.
 具体的には、第2層の第1層側の面に対して入射角±60°以内で入射する可視光の正反射率が、50%以上100%未満であることが好ましく、中でも80%以上100%未満であることが好ましく、特に90%以上100%未満であることが好ましい。なお、入射角±60°以内のすべての入射角において、可視光の正反射率が上記範囲を満たすことが好ましい。上記正反射率が上記範囲であることにより、本実施態様の面発光装置の輝度の面内均一性を更に向上させることができる。 Specifically, the regular reflectance of visible light incident on the surface of the second layer on the first layer side within an incident angle of ±60° is preferably 50% or more and less than 100%, especially 80%. It is preferably 90% or more and less than 100%, particularly preferably 90% or more and less than 100%. It is preferable that the specular reflectance of visible light satisfies the above range at all incident angles within ±60°. When the regular reflectance is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment can be further improved.
 また、第2層の第1層側の面に対して入射角±60°以内で入射する可視光の正反射率の平均値は、例えば、80%以上99%以下であることが好ましく、中でも90%以上97%以下であることが好ましい。なお、上記正反射率の平均値とは、各入射角での可視光の正反射率の平均値をいう。上記正反射率の平均値が上記範囲であることにより、本実施態様における面発光装置の輝度の面内均一性を更に向上させることができる。 In addition, the average value of the regular reflectance of visible light incident on the surface of the second layer on the first layer side at an incident angle of ± 60 ° is preferably, for example, 80% or more and 99% or less. It is preferably 90% or more and 97% or less. In addition, the average value of the specular reflectance means the average value of the specular reflectance of visible light at each incident angle. When the average value of the regular reflectance is within the above range, the in-plane uniformity of luminance of the surface emitting device in this embodiment can be further improved.
 また、第2層の第1層側の面に対して入射角0°で入射する(垂直に入射する)可視光の正反射率は、例えば、80%以上100%未満であることが好ましく、中でも90%以上100%未満であることが好ましく、特に95%以上100%未満であることが好ましい。上記正反射率が上記範囲であることにより、本実施態様の面発光装置の輝度の面内均一性を更に向上させることができる。 In addition, the regular reflectance of visible light incident on the surface of the second layer on the first layer side at an incident angle of 0° (perpendicularly incident) is preferably, for example, 80% or more and less than 100%, Among them, it is preferably 90% or more and less than 100%, and particularly preferably 95% or more and less than 100%. When the regular reflectance is within the above range, the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment can be further improved.
 なお、「可視光」とは、本明細書では、波長380nm以上波長780nm以下の光を意味する。また、正反射率は、変角光度計や変角分光測色器を用いて測定することができる。正反射率の測定には、村上色彩技術研究所社製の変角光度計(ゴニオフォトメーター)GP-200を用いることができる。 In this specification, "visible light" means light with a wavelength of 380 nm or more and 780 nm or less. Also, the regular reflectance can be measured using a variable angle photometer or a variable angle spectrophotometer. A goniophotometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used to measure the specular reflectance.
 第2層は、第2層の第1層側の面に対する光の入射角の絶対値が大きくなるにつれて透過率が大きくなるような透過率の入射角依存性を有する。すなわち、第2層の第1層側の面に対して高入射角で入射する光の透過率は、第2層の第1層側の面に対して低入射角で入射する光の透過率よりも大きくなる。中でも、第2層の第1層側の面に対して高入射角で入射する光の透過率は、大きいことが好ましい。具体的には、第2層の第1層側の面に対して入射角70°以上90°未満で入射する光の全光線透過率が、30%以上であることが好ましく、中でも40%以上であることが好ましく、特に50%以上であることが好ましい。なお、入射角70°以上90°未満のすべての入射角において、全光線透過率が上記範囲を満たすことが好ましい。また、入射角の絶対値が70°以上90°未満の場合に、全光線透過率が上記範囲を満たすことが好ましい。上記全光線透過率が上記範囲であることにより、本実施態様の面発光装置の、輝度の面内均一性を更に向上させることができる。 The second layer has an incident angle dependency of transmittance such that the transmittance increases as the absolute value of the incident angle of light with respect to the surface of the second layer on the first layer side increases. That is, the transmittance of light incident on the surface of the second layer on the first layer side at a high incident angle is the transmittance of light incident on the surface of the second layer on the first layer side at a low incident angle. be larger than Above all, it is preferable that the transmittance of light incident on the surface of the second layer on the first layer side at a high incident angle is high. Specifically, the total light transmittance of light incident on the surface of the second layer on the first layer side at an incident angle of 70° or more and less than 90° is preferably 30% or more, especially 40% or more. is preferable, and 50% or more is particularly preferable. The total light transmittance preferably satisfies the above range at all incident angles of 70° or more and less than 90°. Further, when the absolute value of the incident angle is 70° or more and less than 90°, the total light transmittance preferably satisfies the above range. When the total light transmittance is within the above range, it is possible to further improve the in-plane uniformity of luminance of the surface light-emitting device of the present embodiment.
 なお、第2層の全光線透過率は、例えば、変角光度計や変角分光測色器を用いて、JIS K7361-1:1997に準拠する方法により測定することができる。全光線透過率の測定には、日本分光社製の紫外可視近赤外分光光度計 V-7200を用いることができる。 The total light transmittance of the second layer can be measured, for example, using a goniophotometer or a goniospectral colorimeter by a method conforming to JIS K7361-1:1997. For the measurement of the total light transmittance, an ultraviolet-visible-near-infrared spectrophotometer V-7200 manufactured by JASCO Corporation can be used.
 第2層としては、上述した反射率および透過率の入射角依存性を有するものであれば特に限定されるものではなく、上述した反射率および透過率の入射角依存性を有する種々の構成を採用することができる。第2層としては、例えば、誘電体多層膜や、上記第1層側から順にパターン状の第1反射膜とパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されている反射構造体や、反射型回折格子等が挙げられる。 The second layer is not particularly limited as long as it has the above-described incident angle dependence of reflectance and transmittance, and various configurations having the above-described incident angle dependence of reflectance and transmittance can be used. can be adopted. The second layer includes, for example, a dielectric multilayer film, or a patterned first reflective film and a patterned second reflective film in this order from the first layer side. Examples include a reflective structure, a reflective diffraction grating, and the like, in which the openings of the two reflective films are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
 以下、第2層が、誘電体多層膜、反射構造体、または反射型回折格子である場合について説明する。 A case where the second layer is a dielectric multilayer film, a reflective structure, or a reflective diffraction grating will be described below.
a)誘電体多層膜
 第2層が誘電体多層膜である場合、誘電体多層膜としては、例えば、屈折率の異なる無機層が交互に積層された無機化合物の多層膜や、屈折率の異なる樹脂層が交互に積層された樹脂の多層膜が挙げられる。
a) Dielectric multilayer film When the second layer is a dielectric multilayer film, the dielectric multilayer film may be, for example, a multilayer film of an inorganic compound in which inorganic layers having different refractive indices are alternately laminated, or a multilayer film having different refractive indices. A resin multilayer film in which resin layers are alternately laminated can be used.
(無機化合物の多層膜)
 誘電体多層膜が、屈折率の異なる無機層が交互に積層された無機化合物の多層膜である場合、無機化合物の多層膜としては、上述した反射率および透過率の入射角依存性を有するものであれば特に限定されない。
(Multilayer film of inorganic compound)
When the dielectric multilayer film is an inorganic compound multilayer film in which inorganic layers with different refractive indices are alternately laminated, the inorganic compound multilayer film has the above-described incident angle dependence of reflectance and transmittance. is not particularly limited.
 屈折率が異なる無機層のうち、屈折率が高い高屈折率無機層に含まれる無機化合物としては、例えば、屈折率は1.7以上とすることができ、1.7以上2.5以下であってもよい。このような無機化合物としては、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、酸化インジウムを主成分とし、酸化チタン、酸化スズ、酸化セリウムを少量含有させたものが挙げられる。 Among the inorganic layers having different refractive indices, the inorganic compound contained in the high refractive index inorganic layer having a high refractive index may have a refractive index of 1.7 or more, such as 1.7 or more and 2.5 or less. There may be. Examples of such inorganic compounds include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, and indium oxide, and titanium oxide, tin oxide, and cerium oxide. Examples include those containing a small amount.
 また、屈折率が異なる無機層のうち、屈折率が低い低屈折率無機層に含まれる無機化合物としては、例えば、屈折率は1.6以下とすることができ、1.2以上1.6以下であってもよい。このような無機化合物としては、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウム、六フッ化アルミニウムナトリウム等が挙げられる。 Further, among the inorganic layers having different refractive indices, the inorganic compound contained in the low refractive index inorganic layer having a low refractive index may be, for example, a refractive index of 1.6 or less, 1.2 or more and 1.6 or more. It may be below. Examples of such inorganic compounds include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
 高屈折率無機層および低屈折率無機層の積層数は、上述した反射率および透過率の入射角依存性が得られればよく、適宜調整される。具体的には、高屈折率無機層および低屈折率無機層の総積層数は、4層以上とすることができる。また、上記総積層数の上限としては特に限定されないが、積層数が多くなると工程が増えることから、例えば24層以下とすることができる。 The number of layers of the high-refractive-index inorganic layer and the low-refractive-index inorganic layer is adjusted appropriately as long as the above-described incident angle dependency of reflectance and transmittance can be obtained. Specifically, the total number of lamination of the high refractive index inorganic layers and the low refractive index inorganic layers can be 4 or more. The upper limit of the total number of layers is not particularly limited, but it can be set to 24 layers or less, for example, because the number of steps increases as the number of layers increases.
 無機化合物の多層膜の厚みは、上述した反射率および透過率の入射角依存性が得られればよく、例えば、0.5μm以上10μm以下とすることができる。無機化合物の多層膜の形成方法としては、CVD法、スパッタリング法、真空蒸着法、または湿式塗工法等により、高屈折率無機層と低屈折率無機層とを交互に積層する方法が挙げられる。 The thickness of the inorganic compound multilayer film should be sufficient to obtain the above-described incident angle dependency of reflectance and transmittance, and can be, for example, 0.5 μm or more and 10 μm or less. Examples of the method for forming a multilayer film of an inorganic compound include a method of alternately laminating a high refractive index inorganic layer and a low refractive index inorganic layer by a CVD method, a sputtering method, a vacuum deposition method, a wet coating method, or the like.
(樹脂の多層膜)
 誘電体多層膜が、屈折率の異なる樹脂層が交互に積層された樹脂の多層膜である場合、樹脂の多層膜としては、上述した反射率および透過率の入射角依存性を有するものであれば特に限定されない。
(Resin multilayer film)
When the dielectric multilayer film is a resin multilayer film in which resin layers with different refractive indices are alternately laminated, the resin multilayer film may have the above-described incident angle dependency of reflectance and transmittance. is not particularly limited.
 樹脂層を構成する樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。中でも、成形性が良好であることから、熱可塑性樹脂が好ましい。 Examples of resins that make up the resin layer include thermoplastic resins and thermosetting resins. Of these, thermoplastic resins are preferred because of their good moldability.
 樹脂層には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤が添加されていてもよい。 The resin layer contains various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, heat stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, and refractive index adjusters. A dopant for may be added.
 熱可塑性樹脂としては、ポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ポリアミド樹脂、アラミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、フッ化ビニリデン樹脂等のフッ素樹脂、アクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂を用いることができる。上記ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルペンテンを挙げることができる。また、ポリアミド樹脂としては、ナイロン6、ナイロン66を挙げることができる。さらに、ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチルサクシネート、ポリエチレン-2,6-ナフタレートを挙げることができる。本開示においては、中でも、強度、耐熱性、透明性の観点から、ポリエステルであることがより好ましい。 Thermoplastic resins include polyolefin resins, alicyclic polyolefin resins, polyamide resins, aramid resins, polyester resins, polycarbonate resins, polyarylate resins, polyacetal resins, polyphenylene sulfide resins, tetrafluoroethylene resins, trifluoroethylene resins, Fluorine resins such as trifluoroethylene chloride resin, tetrafluoroethylene-hexafluoropropylene copolymer, and vinylidene fluoride resin, acrylic resin, methacrylic resin, polyacetal resin, polyglycolic acid resin, and polylactic acid resin can be used. can. Examples of the polyolefin resin include polyethylene, polypropylene, polystyrene, and polymethylpentene. Polyamide resins include nylon 6 and nylon 66. Furthermore, polyester resins include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polybutylsuccinate, and polyethylene-2,6-naphthalate. In the present disclosure, among others, polyester is more preferable from the viewpoint of strength, heat resistance, and transparency.
 本明細書において、ポリエステルとは、ジカルボン酸成分骨格とジオール成分骨格との重縮合体であるホモポリエステルや共重合ポリエステルのことをいう。ここで、ホモポリエステルとしては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレンジフェニルレート等が挙げられる。中でも、ポリエチレンテレフタレートは、安価であるため、非常に多岐にわたる用途に用いることができ好ましい。 In the present specification, polyester refers to homopolyesters and copolyesters that are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton. Examples of homopolyesters include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and polyethylene diphenylate. Among them, polyethylene terephthalate is preferable because it is inexpensive and can be used in a wide variety of applications.
 また、本明細書において、共重合ポリエステルとは、次に挙げるジカルボン酸骨格を有する成分とジオール骨格を有する成分とより選ばれる少なくとも3つ以上の成分からなる重縮合体のことと定義される。ジカルボン酸骨格を有する成分としては、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、4,4-ジフェニルスルホンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体等が挙げられる。グリコール骨格を有する成分としては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、ジエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン、イソソルベート、1,4-シクロヘキサンジメタノール、スピログリコールが挙げられる。 In this specification, the copolyester is defined as a polycondensate composed of at least three components selected from the following components having a dicarboxylic acid skeleton and components having a diol skeleton. Components having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 4,4-diphenylsulfonedicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and their ester derivatives. Components having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis (4-β-hydroxyethoxyphenyl)propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol.
 屈折率が異なる樹脂層のうち、屈折率が高い高屈折率樹脂層と屈折率が低い低屈折率樹脂層との面内平均屈折率の差は、0.03以上であることが好ましく、より好ましくは0.05以上であり、さらに好ましくは0.1以上である。上記面内平均屈折率の差が小さすぎると、十分な反射率が得られない場合がある。 Among the resin layers having different refractive indexes, the difference in in-plane average refractive index between the high refractive index resin layer with a high refractive index and the low refractive index resin layer with a low refractive index is preferably 0.03 or more, and more It is preferably 0.05 or more, more preferably 0.1 or more. If the difference in in-plane average refractive index is too small, a sufficient reflectance may not be obtained.
 また、高屈折率樹脂層の面内平均屈折率と厚み方向屈折率との差が、0.03以上であることが好ましく、低屈折率樹脂層の面内平均屈折率と厚み方向屈折率との差が、0.03以下であることが好ましい。この場合、入射角が大きくなっても、反射ピークの反射率の低下が起こりにくい。 Further, the difference between the in-plane average refractive index and the thickness direction refractive index of the high refractive index resin layer is preferably 0.03 or more, and the difference between the in-plane average refractive index and the thickness direction refractive index of the low refractive index resin layer is preferably is preferably 0.03 or less. In this case, even if the incident angle increases, the reflectance at the reflection peak is less likely to decrease.
 高屈折率樹脂層に用いられる高屈折率樹脂と低屈折率樹脂層に用いられる低屈折率樹脂との好ましい組み合わせとしては、第一に、高屈折率樹脂および低屈折率樹脂のSP値の差の絶対値が、1.0以下であることが好ましい。SP値の差の絶対値が上記範囲であると、層間剥離が生じにくくなる。この場合、高屈折率樹脂および低屈折率樹脂が同一の基本骨格を含むことがより好ましい。ここで、基本骨格とは、樹脂を構成する繰り返し単位のことである。例えば、一方の樹脂がポリエチレンテレフタレートの場合、エチレンテレフタレートが基本骨格である。また例えば、一方の樹脂がポリエチレンの場合、エチレンが基本骨格である。高屈折率樹脂および低屈折率樹脂が同一の基本骨格を含む樹脂であると、さらに層間での剥離が生じにくくなる。 As a preferable combination of the high refractive index resin used for the high refractive index resin layer and the low refractive index resin used for the low refractive index resin layer, first, the difference in SP value between the high refractive index resin and the low refractive index resin is preferably 1.0 or less. When the absolute value of the SP value difference is within the above range, delamination is less likely to occur. In this case, it is more preferable that the high refractive index resin and the low refractive index resin contain the same basic skeleton. Here, the basic skeleton means a repeating unit that constitutes the resin. For example, when one resin is polyethylene terephthalate, ethylene terephthalate is the basic skeleton. Further, for example, when one resin is polyethylene, ethylene is the basic skeleton. When the high-refractive-index resin and the low-refractive-index resin are resins containing the same basic skeleton, separation between layers is even more difficult to occur.
 高屈折率樹脂層に用いられる高屈折率樹脂と低屈折率層に用いられる低屈折率樹脂との好ましい組み合わせとしては、第二に、高屈折率樹脂および低屈折率樹脂のガラス転移温度の差が、20℃以下であることが好ましい。ガラス転移温度の差が大きすぎると、高屈折率樹脂層および低屈折率樹脂層の積層フィルムを製膜する際の厚み均一性が不良となる場合がある。また、上記積層フィルムを成形する際にも、過延伸が発生する場合がある。 As a preferable combination of the high refractive index resin used for the high refractive index resin layer and the low refractive index resin used for the low refractive index layer, secondly, the difference in glass transition temperature between the high refractive index resin and the low refractive index resin is preferably 20° C. or less. If the difference in glass transition temperature is too large, thickness uniformity may be poor when forming a laminated film of a high-refractive-index resin layer and a low-refractive-index resin layer. In addition, overstretching may occur when forming the laminated film.
 また、高屈折率樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートであり、低屈折率樹脂がスピログリコールを含むポリエステルであることが好ましい。ここで、スピログリコールを含むポリエステルとは、スピログリコールを共重合したコポリエステル、またはホモポリエステル、またはそれらをブレンドしたポリエステルのことをいう。スピログリコールを含むポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度の差が小さいため、成形時に過延伸になりにくく、かつ層間剥離もしにくいために好ましい。 Also, it is preferable that the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate, and the low refractive index resin is polyester containing spiroglycol. Here, the spiroglycol-containing polyester means a copolyester or homopolyester obtained by copolymerizing spiroglycol, or a polyester obtained by blending them. A spiroglycol-containing polyester has a small difference in glass transition temperature from that of polyethylene terephthalate or polyethylene naphthalate, and thus is less prone to overstretching during molding and less likely to cause delamination, which is preferable.
 より好ましくは、高屈折率樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートであり、低屈折率樹脂がスピログリコールおよびシクロヘキサンジカルボン酸を含むポリエステルであることが好ましい。低屈折率樹脂がスピログリコールおよびシクロヘキサンジカルボン酸を含むポリエステルであると、ポリエチレンテレフタレートやポリエチレンナフタレートとの面内屈折率の差が大きくなるため、高い反射率が得られやすくなる。また、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度の差が小さく、接着性にも優れるため、成形時に過延伸になりにくく、かつ層間剥離もしにくい。 More preferably, the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate, and the low refractive index resin is polyester containing spiroglycol and cyclohexanedicarboxylic acid. When the low refractive index resin is a polyester containing spiroglycol and cyclohexanedicarboxylic acid, the difference in in-plane refractive index from polyethylene terephthalate and polyethylene naphthalate increases, making it easier to obtain high reflectance. In addition, since the difference in glass transition temperature from polyethylene terephthalate and polyethylene naphthalate is small and the adhesiveness is excellent, overstretching during molding is less likely to occur, and delamination is less likely to occur.
 また、高屈折率樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートであり、低屈折率樹脂がシクロヘキサンジメタノールを含むポリエステルであることも好ましい。ここで、シクロヘキサンジメタノールを含むポリエステルとは、シクロヘキサンジメタノールを共重合したコポリエステル、またはホモポリエステル、またはそれらをブレンドしたポリエステルのことをいう。シクロヘキサンジメタノールを含むポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度の差が小さいため、成形時に過延伸になることがなりにくく、かつ層間剥離もしにくいために好ましい。この場合、低屈折率樹脂は、シクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体であることがより好ましい。 It is also preferable that the high refractive index resin is polyethylene terephthalate or polyethylene naphthalate, and the low refractive index resin is polyester containing cyclohexanedimethanol. Here, the polyester containing cyclohexanedimethanol means a copolyester or homopolyester copolymerized with cyclohexanedimethanol, or a blended polyester thereof. A polyester containing cyclohexanedimethanol has a small difference in glass transition temperature from polyethylene terephthalate and polyethylene naphthalate, and thus is less likely to be overstretched during molding and less likely to delaminate, which is preferable. In this case, the low refractive index resin is more preferably an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol % or more and 60 mol % or less.
 このようにすることにより、高い反射性能を有しながら、特に加熱や経時による光学的特性の変化が小さく、層間での剥離も生じにくくなる。シクロヘキサンジメタノールの共重合量が上記範囲内であるエチレンテレフタレート重縮合体は、ポリエチレンテレフタレートと非常に強く接着する。また、そのシクロヘキサンジメタノール基は幾何異性体としてシス体あるいはトランス体があり、また配座異性体としてイス型あるいはボート型もあるので、ポリエチレンテレフタレートと共延伸しても配向結晶化しにくく、高反射率で、熱履歴による光学特性の変化もさらに少なく、製膜時のやぶれも生じにくい。 By doing so, while maintaining high reflective performance, changes in optical properties due to heating and aging are particularly small, and delamination between layers is less likely to occur. An ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol within the above range adheres very strongly to polyethylene terephthalate. In addition, the cyclohexanedimethanol group has cis and trans isomers as geometric isomers, and chair and boat isomers as conformational isomers. In addition, changes in optical properties due to thermal history are even less, and cracking during film formation is less likely to occur.
 上記の樹脂の多層膜においては、高屈折率樹脂層と低屈折率樹脂層とが厚み方向に交互に積層された構造を有している部分が存在していればよい。すなわち、高屈折率樹脂層および低屈折率樹脂層の厚み方向における配置の序列がランダムな状態ではないことが好ましく、高屈折率樹脂層および低屈折率樹脂層以外の樹脂層の配置の序列については特に限定されるものではない。また、上記の樹脂の多層膜が、高屈折率樹脂層と低屈折率樹脂層と他の樹脂層とを有する場合、それらの配置の順列としては、高屈折率樹脂層をA、低屈折率樹脂層をB、他の樹脂層をCとしたとき、A(BCA)、A(BCBA)、A(BABCBA)等の規則的順列で各層が積層されることがより好ましい。ここで、nは繰り返しの単位数であり、例えばA(BCA)においてn=3の場合、厚み方向にABCABCABCAの順列で積層されているものを表す。 In the above resin multilayer film, it is sufficient that there is a portion having a structure in which high refractive index resin layers and low refractive index resin layers are alternately laminated in the thickness direction. That is, it is preferable that the arrangement order in the thickness direction of the high refractive index resin layer and the low refractive index resin layer is not random. is not particularly limited. Further, when the multilayer film of the above resin has a high refractive index resin layer, a low refractive index resin layer, and another resin layer, the order of their arrangement is as follows: A for the high refractive index resin layer; When the resin layer is B and the other resin layers are C, it is more preferable that the layers are laminated in a regular order such as A(BCA) n , A(BCBA) n , A(BABCBA) n . Here, n is the number of repeating units, and for example, when n=3 in A(BCA) n , it indicates that layers are stacked in the order of ABCABCABCA in the thickness direction.
 また、高屈折率樹脂層および低屈折率樹脂層の積層数は、上述した反射率および透過率の入射角依存性が得られればよく、適宜調整される。具体的には、高屈折率樹脂層と低屈折率樹脂層とは交互にそれぞれ30層以上積層することができ、それぞれ200層以上積層してもよい。また、高屈折率樹脂層および低屈折率樹脂層の総積層数は、例えば600層以上とすることができる。積層数が少なすぎると、十分な反射率が得られなくなる場合がある。また、積層数が上記範囲であることにより、所望の反射率を容易に得ることができる。また、上記総積層数の上限としては特に限定されないが、装置の大型化や層数が多くなりすぎることによる積層精度の低下を考慮すると、例えば1500層以下とすることができる。 In addition, the number of laminated layers of the high refractive index resin layer and the low refractive index resin layer is appropriately adjusted as long as the above-described incident angle dependency of reflectance and transmittance can be obtained. Specifically, the high refractive index resin layer and the low refractive index resin layer can be alternately laminated with 30 layers or more, and each layer may be laminated with 200 layers or more. Also, the total number of laminated layers of the high refractive index resin layers and the low refractive index resin layers can be, for example, 600 layers or more. If the number of laminated layers is too small, sufficient reflectance may not be obtained. Moreover, a desired reflectance can be easily obtained by setting the number of laminations within the above range. The upper limit of the total number of layers to be laminated is not particularly limited, but it can be set to, for example, 1500 layers or less in consideration of deterioration in lamination accuracy due to an increase in the size of the device and an excessive number of layers.
 さらに、上記の樹脂の多層膜は、少なくとも片面に厚み3μm以上のポリエチレンテレフタレートまたはポリエチレンナフタレートを含有する表面層を有することが好ましく、中でも両面に上記表面層を有することが好ましい。また、表面層の厚みは5μm以上であることがより好ましい。上記表面層を有することにより、上記の樹脂の多層膜の表面を保護することができる。 Furthermore, the above resin multilayer film preferably has a surface layer containing polyethylene terephthalate or polyethylene naphthalate with a thickness of 3 μm or more on at least one side, and more preferably has the above surface layer on both sides. Further, it is more preferable that the thickness of the surface layer is 5 μm or more. By having the surface layer, the surface of the resin multilayer film can be protected.
 上記の樹脂の多層膜の製造方法としては、共押出法等が挙げられる。具体的には、特開2008-200861号公報に記載の積層フィルムの製造方法を参照することができる。 Examples of the method for manufacturing the above resin multilayer film include a co-extrusion method. Specifically, the method for producing a laminated film described in JP-A-2008-200861 can be referred to.
 また、上記の樹脂の多層膜としては、市販の積層フィルムを用いることができ、具体的には、東レ株式会社製のピカサス(登録商標)、3M社製のESR等が挙げられる。 In addition, as the multilayer film of the resin, a commercially available laminated film can be used, and specific examples include Picassus (registered trademark) manufactured by Toray Industries, Inc. and ESR manufactured by 3M.
b)反射構造体
 反射構造体は、上記第1層側から順にパターン状の第1反射膜とパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されているものである。
b) Reflective structure The reflective structure has a patterned first reflective film and a patterned second reflective film in this order from the first layer side, and the opening of the first reflective film and the second reflective film The openings are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction.
 反射構造体は、2つの態様を有する。反射構造体の第1態様は、透明基材と、透明基材の一方の面に配置されたパターン状の第1反射膜と、透明基材の他方の面に配置されたパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されているものである。また、反射構造体の第2態様は、透明基材と、透明基材の一方の面に配置され、光透過性を有するパターン状の凸部と、凸部の透明基材側の面とは反対の面側に配置されたパターン状の第1反射膜と、透明基材の一方の面の凸部の開口部に配置されたパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されているものである。以下、各態様に分けて説明する。 The reflective structure has two aspects. A first aspect of the reflective structure includes a transparent substrate, a patterned first reflective film arranged on one surface of the transparent substrate, and a patterned second reflective film arranged on the other surface of the transparent substrate. and a reflective film, wherein the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction. There is. A second aspect of the reflective structure includes a transparent base material, a light-transmissive patterned convex portion disposed on one surface of the transparent base material, and a surface of the convex portion facing the transparent base material. A patterned first reflective film arranged on the opposite surface side, and a patterned second reflective film arranged in the opening of the convex portion on one surface of the transparent substrate, wherein the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction. Hereinafter, each aspect will be described separately.
(反射構造体の第1態様)
 本実施態様における反射構造体の第1態様は、透明基材と、透明基材の一方の面に配置されたパターン状の第1反射膜と、透明基材の他方の面に配置されたパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されているものである。
本態様の反射構造体の場合、第二の拡散部材において、反射構造体の第1反射膜側の面側に第1層が配置される。
(First aspect of reflecting structure)
A first aspect of the reflective structure in this embodiment includes a transparent substrate, a patterned first reflective film arranged on one surface of the transparent substrate, and a pattern arranged on the other surface of the transparent substrate. shaped second reflective film, the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap in plan view, and the first reflective film and the second reflective film extend in the thickness direction are placed apart.
In the case of the reflective structure of this aspect, the first layer is arranged on the surface of the reflective structure on the first reflective film side in the second diffusing member.
 図7(a)、(b)は、本態様の反射構造体の一例を示す概略平面図および断面図であり、図7(a)は反射構造体の第1反射膜側の面から見た平面図であり、図7(b)は図7(a)のA-A線断面図である。図7(a)、(b)に示すように、反射構造体20は、透明基材21と、透明基材21の一方の面に配置されたパターン状の第1反射膜22と、透明基材21の他方の面に配置された第2反射膜24とを有している。第1反射膜22の開口部23および第2反射膜24の開口部25は、平面視上重ならないように位置している。また、第1反射膜22および第2反射膜24は、透明基材21の両面にそれぞれ配置されており、厚み方向に離れて配置されている。なお、図7(a)において、第2反射膜の開口部は破線で示している。また、図7(c)は、本態様の反射構造体を有する拡散部材を備える面発光装置の一例を示す概略断面図である。 7A and 7B are a schematic plan view and a cross-sectional view showing an example of the reflecting structure of this embodiment, and FIG. 7A is a view of the reflecting structure from the first reflecting film side. 7(b) is a plan view, and FIG. 7(b) is a sectional view taken along the line AA of FIG. 7(a). As shown in FIGS. 7A and 7B, the reflective structure 20 includes a transparent substrate 21, a patterned first reflective film 22 arranged on one surface of the transparent substrate 21, and a transparent substrate. and a second reflective film 24 disposed on the other surface of the material 21 . The opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24 are positioned so as not to overlap each other in plan view. The first reflective film 22 and the second reflective film 24 are arranged on both sides of the transparent base material 21, respectively, and are spaced apart in the thickness direction. In addition, in FIG. 7A, the opening of the second reflective film is indicated by a broken line. Further, FIG. 7C is a schematic cross-sectional view showing an example of a surface emitting device provided with a diffusing member having a reflecting structure of this aspect.
 このような反射構造体においては、パターン状の第1反射膜および第2反射膜が積層されており、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置していることから、本態様の反射構造体を有する拡散部材を面発光装置に用いた場合、例えば図7(c)に示すように、LED素子3の直上には第1反射膜22および第2反射膜24の少なくともいずれか一方が必ず存在することになる。そのため、例えば図7(b)に示すように、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して低入射角で入射した光L11を、第1反射膜22および第2反射膜24で反射させることができる。 In such a reflective structure, the patterned first reflective film and the second reflective film are laminated so that the openings of the first reflective film and the openings of the second reflective film do not overlap in plan view. Therefore, when the diffusing member having the reflective structure of this embodiment is used in a surface emitting device, the first reflective film 22 and the At least one of the second reflecting films 24 must be present. Therefore, for example, as shown in FIG. 7B, the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the side on which the first layer (not shown) of the reflective structure 20 (second layer) is arranged The light L11 incident on the surface 13A at a low incident angle can be reflected by the first reflecting film 22 and the second reflecting film 24. As shown in FIG.
 また、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されていることから、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して高入射角で入射した光L12、L13を、第1反射膜22の開口部23および第2反射膜24の開口部25から出射させることができる。これにより、LED素子から発せられたのち拡散部材の第2層側の面から出射する光の一部を、LED素子の直上ではなく、LED素子から面内方向に離れた位置から出射させることができるようになる。よって、輝度の面内均一性を向上させることができる。 In addition, since the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction, Light incident at a high incident angle on the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the surface 13A on the side where the first layer (not shown) of the reflective structure 20 (second layer) is arranged. L12 and L13 can be emitted from the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24. FIG. As a result, part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to. Therefore, in-plane uniformity of luminance can be improved.
 第1反射膜および第2反射膜としては、一般的な反射膜を用いることができ、金属膜、誘電体多層膜等を用いることができる。金属膜の材料としては、一般的な反射膜に使用される金属材料を採用することができ、アルミニウム、金、銀、およびそれらの合金が挙げられる。また、誘電体多層膜としては、一般的な反射膜に使用されるものを採用することができ、酸化ジルコニウムと酸化ケイ素とが交互に積層された多層膜等の無機化合物の多層膜が挙げられる。第1反射膜および第2反射膜に含まれる材料は、同一であってもよく、互いに異なっていてもよい。 As the first reflective film and the second reflective film, a general reflective film can be used, and a metal film, a dielectric multilayer film, or the like can be used. As the material of the metal film, metal materials used in general reflective films can be employed, including aluminum, gold, silver, and alloys thereof. In addition, as the dielectric multilayer film, those used in general reflective films can be adopted, and examples thereof include multilayer films of inorganic compounds such as multilayer films in which zirconium oxide and silicon oxide are alternately laminated. . The materials contained in the first reflective film and the second reflective film may be the same or different.
 第1反射膜および第2反射膜の開口部のピッチとしては、上述した反射率および透過率の入射角依存性が得られればよく、本態様の拡散部材が用いられる面発光装置におけるLED素子の配光特性、サイズ、ピッチおよび形状や、LED基板と拡散部材との距離等に応じて適宜設定される。第1反射膜および第2反射膜の開口部のピッチは、同一であってもよく、互いに異なっていてもよい。 The pitch of the openings of the first reflective film and the second reflective film is sufficient as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained. It is appropriately set according to the light distribution characteristics, size, pitch and shape, the distance between the LED substrate and the diffusion member, and the like. The pitches of the openings of the first reflective film and the second reflective film may be the same or different.
 第1反射膜の開口部のピッチは、例えば、LED素子のサイズよりも大きくてもよい。具体的には、第1反射膜の開口部のピッチは、0.1mm以上20mm以下とすることができる。 The pitch of the openings of the first reflective film may be, for example, larger than the size of the LED elements. Specifically, the pitch of the openings of the first reflective film can be 0.1 mm or more and 20 mm or less.
 また、第2反射膜の開口部のピッチは、輝度ムラを抑制することができれば特に限定されないが、中でも、上記第1反射膜の開口部のピッチ以下であることが好ましく、上記第1反射膜の開口部のピッチより小さいことが好ましい。具体的には、第2反射膜の開口部のピッチは、0.1mm以上2mm以下とすることができる。上記のように第2反射膜の開口部のピッチを微細にすることにより、第2反射膜の部分と第2反射膜の開口部の部分とのパターンを視認しにくくすることができ、ムラのない面発光が可能となる。 Also, the pitch of the openings of the second reflective film is not particularly limited as long as it can suppress luminance unevenness. is preferably smaller than the pitch of the openings. Specifically, the pitch of the openings of the second reflective film can be 0.1 mm or more and 2 mm or less. By making the pitch of the openings of the second reflective film fine as described above, it is possible to make it difficult to visually recognize the pattern of the portion of the second reflective film and the portion of the openings of the second reflective film. It is possible to emit surface light without
 なお、第1反射膜の開口部のピッチとは、例えば図7(a)に示すような、隣り合う第1反射膜22の開口部23の中心間の距離P1をいう。また、第2反射膜の開口部のピッチとは、例えば図7(a)に示すような、隣り合う第2反射膜24の開口部25の中心間の距離P2をいう。 It should be noted that the pitch of the openings of the first reflecting film means the distance P1 between the centers of the openings 23 of the adjacent first reflecting films 22, as shown in FIG. 7(a), for example. Further, the pitch of the openings of the second reflecting film means the distance P2 between the centers of the openings 25 of the adjacent second reflecting films 24 as shown in FIG. 7A, for example.
 第1反射膜および第2反射膜の開口部の大きさとしては、上述した反射率および透過率の入射角依存性が得られればよく、LED素子の配光特性、サイズ、ピッチおよび形状や、LED基板と拡散部材との距離等に応じて適宜設定される。第1反射膜および第2反射膜の開口部の大きさは、同一であってもよく、互いに異なっていてもよい。 The sizes of the openings of the first reflective film and the second reflective film are sufficient as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained. It is appropriately set according to the distance between the LED substrate and the diffusion member. The sizes of the openings of the first reflective film and the second reflective film may be the same or different.
 第1反射膜の開口部の大きさとしては、具体的には、第1反射膜の開口部の形状が矩形状である場合、第1反射膜の開口部の長さは、0.1mm以上5mm以下とすることができる。 Regarding the size of the opening of the first reflective film, specifically, when the shape of the opening of the first reflective film is rectangular, the length of the opening of the first reflective film is 0.1 mm or more. It can be 5 mm or less.
 また、第2反射膜の開口部の大きさは、輝度ムラを抑制することができれば特に限定されないが、中でも、上記第1反射膜の開口部の大きさ以下であることが好ましく、上記第1反射膜の開口部の大きさより小さいことが好ましい。具体的には、第2反射膜の開口部の形状が矩形状である場合、第2反射膜の開口部の長さは、0.05mm以上2mm以下とすることができる。上記のように第2反射膜の開口部の大きさを微細にすることにより、第2反射膜の部分と第2反射膜の開口部の部分とのパターンを視認しにくくすることができ、ムラのない面発光が可能となる。 Also, the size of the opening of the second reflecting film is not particularly limited as long as it can suppress unevenness in luminance. It is preferably smaller than the size of the opening of the reflective film. Specifically, when the shape of the opening of the second reflective film is rectangular, the length of the opening of the second reflective film can be 0.05 mm or more and 2 mm or less. By making the size of the opening of the second reflective film fine as described above, it is possible to make it difficult to visually recognize the pattern of the portion of the second reflective film and the portion of the opening of the second reflective film. It is possible to emit surface light without
 なお、第1反射膜の開口部の大きさとは、例えば第1反射膜の開口部の形状が矩形状である場合、図7(a)に示すような、第1反射膜22の開口部23の長さx1をいう。また、第2反射膜の開口部の大きさとは、例えば図7(a)に示すような、第2反射膜24の開口部25の長さx2をいう。 For example, when the shape of the opening of the first reflective film is rectangular, the size of the opening of the first reflective film is the size of the opening 23 of the first reflective film 22 as shown in FIG. is the length x1 of Further, the size of the opening of the second reflective film means the length x2 of the opening 25 of the second reflective film 24 as shown in FIG. 7A, for example.
 第1反射膜および第2反射膜の開口部の形状としては、矩形状、円形状等、任意の形状とすることができる。第1反射膜および第2反射膜の厚みとしては、上述した反射率および透過率の入射角依存性が得られればよく、適宜調整される。具体的には、第1反射膜および第2反射膜の厚みは、0.05μm以上100μm以下とすることができる。 The shape of the openings of the first reflective film and the second reflective film can be any shape such as a rectangular shape or a circular shape. The thicknesses of the first reflective film and the second reflective film are appropriately adjusted as long as the above-described dependence of reflectance and transmittance on the incident angle can be obtained. Specifically, the thicknesses of the first reflective film and the second reflective film can be 0.05 μm or more and 100 μm or less.
 第1反射膜および第2反射膜は、透明基材の面に形成されたものであってもよく、シート状の反射膜であってもよい。第1反射膜および第2反射膜の形成方法としては、透明基材の面にパターン状に反射膜を形成できる方法であれば特に限定されず、スパッタリング法、真空蒸着法等が挙げられる。また、第1反射膜および第2反射膜がシート状の反射膜である場合、開口部の形成方法としては、打ち抜き加工等により複数の貫通孔を形成する方法等が挙げられる。この場合、透明基材およびシート状の反射膜の積層方法としては、例えば、透明基材に接着層や粘着層を介してシート状の反射膜を貼り合せる方法を用いることができる。 The first reflective film and the second reflective film may be formed on the surface of the transparent substrate, or may be sheet-like reflective films. A method for forming the first reflective film and the second reflective film is not particularly limited as long as it is a method capable of forming a patterned reflective film on the surface of the transparent base material, and examples thereof include a sputtering method and a vacuum deposition method. Further, when the first reflective film and the second reflective film are sheet-like reflective films, examples of the method of forming the opening include a method of forming a plurality of through holes by punching or the like. In this case, as a method of laminating the transparent substrate and the sheet-like reflective film, for example, a method of bonding the sheet-like reflective film to the transparent substrate via an adhesive layer or an adhesive layer can be used.
 本態様の反射構造体における透明基材は、上記の第1反射膜および第2反射膜等を支持する部材であり、また、第1反射膜および第2反射膜を厚み方向に離れて配置させるための部材である。 The transparent base material in the reflective structure of this aspect is a member that supports the first reflective film and the second reflective film, etc., and the first reflective film and the second reflective film are spaced apart in the thickness direction. It is a member for
 透明基材は光透過性を有する。透明基材の光透過性としては、透明基材の全光線透過率が、例えば80%以上であることが好ましく、中でも90%以上であることが好ましい。なお、透明基材の全光線透過率は、JIS K7361-1:1997に準拠する方法により測定することができる。 The transparent base material has optical transparency. As for the light transmittance of the transparent substrate, the total light transmittance of the transparent substrate is preferably, for example, 80% or more, and more preferably 90% or more. The total light transmittance of the transparent substrate can be measured by a method conforming to JIS K7361-1:1997.
 透明基材を構成する材料としては、上述した全光線透過率を有する材料であればよく、ポリエチレンテレフタレート、ポリカーボネート、アクリル、シクロオレフィン、ポリエステル、ポリスチレン、アクリルスチレン等の樹脂や、石英ガラス、パイレックス(登録商標)、合成石英等のガラスが挙げられる。 The material constituting the transparent substrate may be any material having the above-mentioned total light transmittance, and resins such as polyethylene terephthalate, polycarbonate, acrylic, cycloolefin, polyester, polystyrene, acrylic styrene, quartz glass, pyrex ( (registered trademark) and synthetic quartz glass.
 透明基材の厚みとしては、例えば図7(b)に示すように、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して高入射角で入射した光L12を、第1反射膜22の開口部23および第2反射膜24の開口部25から出射させることができるような厚みであることが好ましく、第1反射膜および第2反射膜の開口部のピッチおよび大きさや、第1反射膜および第2反射膜の厚み等に応じて適宜設定される。具体的には、透明基材の厚みは、0.05mm以上2mm以下とすることができ、中でも0.1mm以上0.5mm以下であることが好ましい。 As for the thickness of the transparent substrate, for example, as shown in FIG. ) is arranged, the light L12 incident at a high angle of incidence can be emitted from the opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24. is preferably set according to the pitch and size of the openings of the first and second reflective films, the thickness of the first and second reflective films, and the like. Specifically, the thickness of the transparent substrate can be 0.05 mm or more and 2 mm or less, preferably 0.1 mm or more and 0.5 mm or less.
(反射構造体の第2態様)
 反射構造体の第2態様は、透明基材と、透明基材の一方の面に配置され、光透過性を有するパターン状の凸部と、凸部の透明基材側の面とは反対の面側に配置されたパターン状の第1反射膜と、透明基材の一方の面の凸部の開口部に配置されたパターン状の第2反射膜とを有し、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されているものである。本態様の反射構造体の場合、第二の拡散部材において、反射構造体の第1反射膜側の面側に第1層が配置される。
(Second aspect of reflecting structure)
A second aspect of the reflective structure includes a transparent substrate, a patterned convex portion having light transmittance disposed on one surface of the transparent substrate, and a convex portion opposite to the transparent substrate side of the convex portion. It has a patterned first reflective film arranged on the surface side and a patterned second reflective film arranged in the opening of the convex portion on one surface of the transparent substrate, wherein the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction. In the case of the reflective structure of this aspect, the first layer is arranged on the surface of the reflective structure on the first reflective film side in the second diffusing member.
 図8(a)、(b)は、本実施態様における反射構造体の第2態様の一例を示す概略平面図および断面図であり、図8(a)は反射構造体の第1反射膜側の面から見た平面図であり、図8(b)は図8(a)のA-A線断面図である。図8(a)、(b)に示すように、反射構造体20は、透明基材21と、透明基材21の一方の面に配置され、光透過性を有するパターン状の凸部26と、凸部26の透明基材21側の面とは反対の面に配置されたパターン状の第1反射膜22と、透明基材21の一方の面の凸部26の開口部に配置されたパターン状の第2反射膜24とを有している。第1反射膜22の開口部23および第2反射膜24の開口部25は、平面視上重ならないように位置している。また、第1反射膜22および第2反射膜24は、凸部26によって隔てられており、厚み方向に離れて配置されている。 8A and 8B are a schematic plan view and a cross-sectional view showing an example of a second aspect of the reflecting structure in this embodiment, and FIG. 8A shows the first reflecting film side of the reflecting structure. 8(b) is a cross-sectional view taken along the line AA of FIG. 8(a). As shown in FIGS. 8A and 8B, the reflective structure 20 includes a transparent substrate 21 and a patterned convex portion 26 arranged on one surface of the transparent substrate 21 and having light transmittance. , a patterned first reflective film 22 arranged on the surface opposite to the surface of the convex portion 26 facing the transparent substrate 21, and and a patterned second reflective film 24 . The opening 23 of the first reflecting film 22 and the opening 25 of the second reflecting film 24 are positioned so as not to overlap each other in plan view. In addition, the first reflecting film 22 and the second reflecting film 24 are separated by the convex portion 26 and are spaced apart in the thickness direction.
 このような反射構造体においては、パターン状の第1反射膜および第2反射膜が積層されており、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置していることから、本態様の反射構造体を有する拡散部材を用いた面発光装置(特に、LEDバックライト)は、LED素子の直上には第1反射膜および第2反射膜の少なくともいずれか一方が必ず存在することになる。そのため、上記反射構造体の第1態様と同様に、例えば図8(b)に示すように、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して低入射角で入射した光L11を、第1反射膜22および第2反射膜24で反射させることができる。 In such a reflective structure, the patterned first reflective film and the second reflective film are laminated so that the openings of the first reflective film and the openings of the second reflective film do not overlap in plan view. Therefore, a surface emitting device (in particular, an LED backlight) using a diffusion member having a reflecting structure according to this embodiment has at least one of the first reflecting film and the second reflecting film directly above the LED element. One or the other must exist. Therefore, as in the first aspect of the reflecting structure, for example, as shown in FIG. The light L11 incident on the surface 13A on which the first layer (not shown) is arranged at a low incident angle can be reflected by the first reflecting film 22 and the second reflecting film 24 .
 また、第1反射膜の開口部および第2反射膜の開口部が平面視上重ならないように位置し、第1反射膜および第2反射膜が厚み方向に離れて配置されていることから、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して高入射角で入射した光L12を、凸部26の側面および第2反射膜24の開口部25から出射させることができる。これにより、LED素子から発せられたのち拡散部材の第2層側の面から出射する光の一部を、LED素子の直上ではなく、LED素子から面内方向に離れた位置から出射させることができるようになる。よって、輝度の面内均一性を向上させることができる。また、本態様においては、凸部を有することから、第1反射膜および第2反射膜の開口部のセルフアライメントが可能であり、製造コストを削減することができる。 In addition, since the opening of the first reflective film and the opening of the second reflective film are positioned so as not to overlap each other in plan view, and the first reflective film and the second reflective film are spaced apart in the thickness direction, Light incident at a high incident angle on the surface of the reflective structure 20 on the side of the first reflective film 22, that is, the surface 13A on the side where the first layer (not shown) of the reflective structure 20 (second layer) is arranged. L12 can be emitted from the side surface of the convex portion 26 and the opening 25 of the second reflective film 24 . As a result, part of the light emitted from the LED element and then emitted from the surface of the diffusion member on the second layer side can be emitted from a position away from the LED element in the in-plane direction instead of directly above the LED element. become able to. Therefore, in-plane uniformity of luminance can be improved. Further, in this aspect, since the projections are provided, self-alignment of the openings of the first reflective film and the second reflective film is possible, and the manufacturing cost can be reduced.
 なお、第1反射膜および第2反射膜の材料、第1反射膜および第2反射膜の開口部のピッチ、第1反射膜および第2反射膜の開口部の大きさ、第1反射膜および第2反射膜の開口部の形状、第1反射膜および第2反射膜の厚み、ならびに第1反射膜および第2反射膜の形成方法等については、上記第1態様と同様とすることができる。
 また、透明基材については、上記第1態様と同様とすることができる。
The materials of the first reflective film and the second reflective film, the pitch of the openings of the first reflective film and the second reflective film, the size of the openings of the first reflective film and the second reflective film, the The shape of the opening of the second reflective film, the thickness of the first reflective film and the second reflective film, the method of forming the first reflective film and the second reflective film, and the like can be the same as in the first aspect. .
Also, the transparent substrate may be the same as in the first aspect.
 本態様の反射構造体における凸部は、上記の第1反射膜および第2反射膜を厚み方向に離れて配置させるための部材である。凸部は光透過性を有する。凸部の光透過性としては、凸部の全光線透過率が、例えば80%以上であることが好ましく、中でも90%以上であることが好ましい。なお、凸部の全光線透過率は、JIS K7361-1:1997に準拠する方法により測定することができる。 The convex portion in the reflective structure of this aspect is a member for arranging the first reflective film and the second reflective film apart from each other in the thickness direction. The convex portion has optical transparency. As for the light transmittance of the projections, the total light transmittance of the projections is preferably, for example, 80% or more, and more preferably 90% or more. Incidentally, the total light transmittance of the convex portion can be measured by a method conforming to JIS K7361-1:1997.
 凸部を構成する材料としては、パターン状の凸部を形成可能であり、上述した全光線透過率を有する材料であればよく、熱硬化性樹脂、電子線硬化性樹脂等が挙げられる。 Any material that can form patterned protrusions and has the above-described total light transmittance can be used as a material for forming the protrusions, and examples thereof include thermosetting resins and electron beam curable resins.
 凸部の高さとしては、例えば図8(b)に示すように、反射構造体20の第1反射膜22側の面、すなわち反射構造体20(第2層)の第1層(図示なし)が配置される側の面13Aに対して高入射角で入射した光L12を、凸部26の側面および第2反射膜24の開口部25から出射させることができるような高さであることが好ましく、第1反射膜および第2反射膜の開口部のピッチおよび大きさや、第1反射膜および第2反射膜の厚み等に応じて適宜設定される。具体的には、凸部の高さは、0.05mm以上2mm以下とすることができ、中でも0.1mm以上0.5mm以下であることが好ましい。 As for the height of the projection, for example, as shown in FIG. ) is arranged, the light L12 incident at a high angle of incidence can be emitted from the side surface of the convex portion 26 and the opening 25 of the second reflecting film 24. is preferably set according to the pitch and size of the openings of the first reflective film and the second reflective film, the thickness of the first reflective film and the second reflective film, and the like. Specifically, the height of the convex portion can be 0.05 mm or more and 2 mm or less, preferably 0.1 mm or more and 0.5 mm or less.
 凸部のピッチ、大きさおよび平面視形状については、上記第2反射膜の開口部のピッチ、大きさおよび形状と同様とすることができる。凸部の表面は、例えば図8(b)に示すように平滑面であってもよく、図9(a)に示すように粗面であってもよい。凸部の表面が粗面である場合には、凸部に光拡散性を付与することができる。 The pitch, size and planar view shape of the projections can be the same as the pitch, size and shape of the openings of the second reflective film. The surface of the projection may be, for example, a smooth surface as shown in FIG. 8(b) or a rough surface as shown in FIG. 9(a). When the surface of the convex portion is rough, the convex portion can be provided with light diffusing properties.
 また、凸部の表面の形状としては、例えば図8(b)に示すように平面であってもよく、図9(b)に示すように曲面であってもよい。凸部の表面が曲面である場合には、凸部に光拡散性を付与することができる。 Also, the shape of the surface of the convex portion may be flat as shown in FIG. 8(b), or curved as shown in FIG. 9(b). When the convex portion has a curved surface, the convex portion can be provided with light diffusing properties.
 凸部の形成方法としては、パターン状の凸部を形成可能な方法であれば特に限定されず、印刷法、金型による樹脂賦形等が挙げられる。 The method of forming the convex portions is not particularly limited as long as it is a method capable of forming pattern-like convex portions, and examples thereof include a printing method and resin molding using a mold.
c)反射型回折格子
 第2層が反射型回折格子である場合、反射型回折格子としては、上述した反射率および透過率の入射角依存性を有するものであれば特に限定されない。
c) Reflective Diffraction Grating When the second layer is a reflective diffraction grating, the reflective diffraction grating is not particularly limited as long as it has the above-described incident angle dependency of reflectance and transmittance.
 反射型回折格子のピッチ等としては、上述した反射率および透過率の入射角依存性が得られればよく、適宜調整される。具体的には、LED素子の出力する波長が、赤色、緑色、青色等の単色である場合は、各波長に応じたピッチとすることで、効果的にLED素子の光を反射させることが可能である。 The pitch and the like of the reflective diffraction grating are adjusted as appropriate as long as the above-described incident angle dependency of reflectance and transmittance can be obtained. Specifically, when the wavelengths emitted by the LED elements are monochromatic, such as red, green, and blue, it is possible to effectively reflect the light from the LED elements by setting the pitch according to each wavelength. is.
 反射型回折格子を構成する材料としては、上述した反射率および透過率の入射角依存性を有する反射型回折格子が得られる材料であればよく、一般的に反射型回折格子に用いられるものを採用することができる。また、反射型回折格子の形成方法としては、一般的な反射型回折格子の形成方法と同様とすることができる。 The material constituting the reflective diffraction grating may be any material that provides a reflective diffraction grating having the above-described incident angle dependence of reflectance and transmittance. can be adopted. Also, the method of forming the reflective diffraction grating can be the same as the method of forming a general reflective diffraction grating.
4.3 第三の拡散部材
 第三の拡散部材としては、ポリスチレン(PS)、ポリカーボネート等の光透過性樹脂を有する樹脂板であり、内部に多数の空隙が存在するもの、または、表面に凹凸を有するものが挙げられ、一般に表示装置分野において汎用されているものを用いることができる。
4.3 Third Diffusing Member The third diffusing member is a resin plate containing a light-transmitting resin such as polystyrene (PS) or polycarbonate, which has many voids inside or has an uneven surface. and those generally used in the field of display devices can be used.
5.波長変換部材
 本実施態様の面発光装置においては、例えば、拡散部材のLED基板側とは反対の面側に波長変換部材が配置されていてもよく、拡散部材のLED基板側に波長変換部材が配置されていてもよい。
5. Wavelength Conversion Member In the surface emitting device of this embodiment, for example, the wavelength conversion member may be arranged on the side of the diffusion member opposite to the LED substrate side, and the wavelength conversion member may be arranged on the LED substrate side of the diffusion member. may be placed.
 波長変換部材は、LED素子から出射された光を吸収し、励起光を発光する蛍光体を含有する部材である。波長変換部材は、LED基板と組み合わせることにより、白色光を生成する機能を有する。 A wavelength conversion member is a member containing a phosphor that absorbs light emitted from an LED element and emits excitation light. The wavelength conversion member has a function of generating white light by being combined with the LED substrate.
 波長変換部材は、通常、蛍光体および樹脂を含有する波長変換層を少なくとも有する。波長変換部材は、例えば、波長変換層単体であってもよく、透明基材の一方の面側に波長変換層を有する積層体であってもよい。中でも、薄型化の点から、波長変換層単体が好ましい。より好ましくは、シート状の波長変換部材が用いられる。 A wavelength conversion member usually has at least a wavelength conversion layer containing a phosphor and a resin. The wavelength conversion member may be, for example, a single wavelength conversion layer, or a laminate having a wavelength conversion layer on one side of a transparent substrate. Among them, the single wavelength conversion layer is preferable from the point of thickness reduction. More preferably, a sheet-like wavelength conversion member is used.
 上記蛍光体としては、LED素子からの発光色に応じて適宜選択することができ、青色蛍光体、緑色蛍光体、赤色蛍光体、黄色蛍光体等を挙げることができる。例えば、LED素子が青色LED素子である場合、蛍光体としては、緑色蛍光体と赤色蛍光体とを用いてもよく、黄色蛍光体を用いてもよい。また、例えば、LED素子が紫外線LED素子である場合、蛍光体としては、赤色蛍光体と緑色蛍光体と青色蛍光体とを用いることができる。 The phosphor can be appropriately selected according to the color of light emitted from the LED element, and blue phosphor, green phosphor, red phosphor, yellow phosphor, and the like can be mentioned. For example, when the LED element is a blue LED element, the phosphor may be a green phosphor, a red phosphor, or a yellow phosphor. Further, for example, when the LED element is an ultraviolet LED element, a red phosphor, a green phosphor, and a blue phosphor can be used as phosphors.
 蛍光体としては、例えばLEDバックライトの波長変換部材に用いられる蛍光体を採用することができる。また、量子ドットを蛍光体として用いることもできる。波長変換部材層中の蛍光体の含有量は、所望の白色光を生成することができる程度であれば特に限定されず、一般的なLEDバックライトの波長変換部材における蛍光体の含有量と同様とすることができる。 As the phosphor, for example, the phosphor used for the wavelength conversion member of the LED backlight can be adopted. Quantum dots can also be used as phosphors. The content of the phosphor in the wavelength conversion member layer is not particularly limited as long as it can generate the desired white light, and is the same as the content of the phosphor in the wavelength conversion member of a general LED backlight. can be
 また、波長変換部材に含まれる樹脂としては、蛍光体を分散させることができれば特に限定されるものではない。上記樹脂としては、一般的なLEDバックライトの波長変換部材に用いられる樹脂と同様とすることができ、シリコーン系樹脂やエポキシ系樹脂等の熱硬化性樹脂を挙げることができる。 Also, the resin contained in the wavelength conversion member is not particularly limited as long as it can disperse the phosphor. As the resin, the same resins as those used for wavelength conversion members of general LED backlights can be used, and examples thereof include thermosetting resins such as silicone-based resins and epoxy-based resins.
 波長変換部材の厚みとしては、面発光装置に用いた場合に、所望の白色光を生成することができる厚みであれば特に限定されず、例えば、10μm以上1000μm以下とすることができる。 The thickness of the wavelength conversion member is not particularly limited as long as it can generate desired white light when used in a surface emitting device.
6.その他光学部材
 本実施態様の面発光装置は、例えば、拡散部材のLED基板側の面とは反対の面側に光学部材がさらに配置されていてもよい。光学部材としては、プリズムシート、反射型偏光シート等が挙げられる。
6. Other Optical Members In the surface emitting device of the present embodiment, for example, an optical member may be further arranged on the side of the diffusion member opposite to the side facing the LED substrate. Examples of optical members include a prism sheet and a reflective polarizing sheet.
(1)プリズムシート
 本実施態様におけるプリズムシートは、入射した光を集光し、正面方向の輝度を集中的に向上させる機能を有する。プリズムシートは、例えば、透明樹脂基材の一方の面側に、アクリル樹脂を含むプリズムパターンが配置されたものである。プリズムシートとしては、例えば、3M社製の輝度上昇フィルムBEFシリーズを用いることができる。
(1) Prism Sheet The prism sheet in this embodiment has the function of concentrating the incident light and intensively improving the luminance in the front direction. The prism sheet has, for example, a prism pattern containing an acrylic resin arranged on one side of a transparent resin substrate. As the prism sheet, for example, brightness enhancement film BEF series manufactured by 3M can be used.
(2)反射型偏光シート
 本実施態様における反射型偏光シートは、第1の直線偏光成分(例えば、P偏光)のみを透過し、かつ第1の直線偏光成分と直交する第2の直線偏光成分(例えば、S偏光)を吸収せずに反射する機能を有する。反射型偏光シートで反射された第2の直線偏光成分は再度反射され、偏光が解消された状態(第1の直線偏光成分と第2の直線偏光成分とを両方含んだ状態)で、再度、反射型偏光シートに入射する。よって、反射型偏光シートは再度入射する光のうち第1の直線偏光成分を透過し、第1の直線偏光成分と直交する第2の直線偏光成分は再度反射される。
(2) Reflective polarizing sheet The reflective polarizing sheet in this embodiment transmits only the first linearly polarized component (e.g., P-polarized light) and the second linearly polarized component orthogonal to the first linearly polarized component. It has the function of reflecting (for example, S-polarized light) without absorbing it. The second linearly polarized component reflected by the reflective polarizing sheet is reflected again, and in a depolarized state (including both the first linearly polarized component and the second linearly polarized component), Incident on the reflective polarizing sheet. Therefore, the reflective polarizing sheet transmits the first linearly polarized light component of the re-entering light, and reflects the second linearly polarized light component orthogonal to the first linearly polarized light component.
 以下、同上の過程を繰り返す事により、上記第2層から出射した光の70%以上80%以下程度が第1の直線偏光成分となった光として出光される。したがって、本実施態様の面発光装置を表示装置に用いた場合、反射型偏光シートの第1の直線偏光成分(透過軸成分)の偏光方向と表示パネルの偏光板の透過軸方向とを一致させることにより、面発光装置からの出射光は全て表示パネルで画像形成に利用可能となる。そのため、LED素子から投入される光エネルギーが同じであっても、反射型偏光シートを未配置の場合に比べて、より高輝度の画像形成が可能となる。 By repeating the above process, about 70% or more and 80% or less of the light emitted from the second layer is emitted as the first linearly polarized light component. Therefore, when the surface emitting device of this embodiment is used in a display device, the polarization direction of the first linearly polarized light component (transmission axis component) of the reflective polarizing sheet and the transmission axis direction of the polarizing plate of the display panel are matched. As a result, all the light emitted from the surface emitting device can be used for image formation on the display panel. Therefore, even if the light energy input from the LED element is the same, it is possible to form a brighter image than in the case where the reflective polarizing sheet is not arranged.
 反射型偏光シートとしては、例えば、3M社製の輝度上昇フィルムDBEFシリーズが挙げられる。また、反射型偏光シートとして、例えば、Shinwha Intertek社製の高輝度偏光シートWRPS、ワイヤーグリッド偏光子を用いることもできる。 Examples of reflective polarizing sheets include the DBEF series of brightness enhancement films manufactured by 3M. Also, as the reflective polarizing sheet, for example, a high brightness polarizing sheet WRPS and a wire grid polarizer manufactured by Shinwha Intertek can be used.
7.用途
 本実施態様における面発光装置の用途は、特に限定されないが、表示装置に好適に使用することができる。また、照明装置等にも使用することができる。
7. Use The use of the surface emitting device in this embodiment is not particularly limited, but it can be suitably used for a display device. Moreover, it can be used for a lighting device or the like.
II.第2実施態様
 次に、本実施態様の面発光装置の第2実施態様について説明する。
 図10は、本実施態様の面発光装置の一例を示す概略断面図である。図10に例示するように、本実施態様の面発光装置1は、支持基板2、および支持基板2の一方の面側に配置されたLED素子3を有するLED基板4と、LED基板4のLED素子3側の面側に配置され、LED素子3を封止する封止部材5と、封止部材5のLED基板4側とは反対の面側に配置された拡散部材6と、上記LED基板4の封止部材5と反対側の面に配置された反り防止層7と、を有する。本実施態様における封止部材5は、ヘイズ値が4%以上であり、厚みが上記LED素子3より厚いものであり、上記反り防止層7を構成する材料の線膨張係数が、上記封止部材5を構成する材料の線膨張係数と同等、もしくは大きいものであることを特徴とするものである。
II. Second Embodiment Next, a second embodiment of the surface emitting device of this embodiment will be described.
FIG. 10 is a schematic cross-sectional view showing an example of the surface emitting device of this embodiment. As illustrated in FIG. 10 , the surface emitting device 1 of this embodiment includes a support substrate 2 , an LED substrate 4 having LED elements 3 arranged on one side of the support substrate 2 , and LEDs of the LED substrate 4 . A sealing member 5 arranged on the surface side of the element 3 side and sealing the LED element 3, a diffusion member 6 arranged on the surface side of the sealing member 5 opposite to the LED substrate 4 side, and the LED substrate 4 and an anti-warp layer 7 disposed on the surface opposite to the sealing member 5 . The sealing member 5 in this embodiment has a haze value of 4% or more and a thickness greater than that of the LED element 3, and the linear expansion coefficient of the material constituting the warp prevention layer 7 It is characterized by having a coefficient of linear expansion equal to or greater than that of the material forming 5.
 本実施態様の面発光装置では、上記封止部材と上記LED基板とを接合するに際し、熱圧着等の手段が用いられた場合、その後の冷却時に、上記LED基板と上記封止部材との線膨張係数の相違に起因する反りが生じる場合がある。
 また、面発光装置が極端な高温もしくは低温で用いられた場合、上述した上記LED基板と上記封止部材との線膨張係数の相違に起因する反りが生じる場合がある。
In the surface emitting device of this embodiment, when a means such as thermocompression bonding is used to join the sealing member and the LED substrate, a line between the LED substrate and the sealing member is formed during subsequent cooling. Warpage may occur due to differences in expansion coefficients.
Further, when the surface emitting device is used at extremely high or low temperatures, warping may occur due to the difference in coefficient of linear expansion between the LED substrate and the sealing member.
 本実施態様は、上記第1実施態様と同様に、このような課題を解決するためになされたものであり、上記反り防止層を、上記LED基板の上記封止部材と反対側の面に配置し、反り防止層を構成する材料の線膨張係数が、上記封止部材を構成する材料の線膨張係数と同等もしくは大きいものとすることにより、上述した反りの発生という課題を解決したものである。 This embodiment, like the first embodiment, was made to solve such a problem, and the warpage prevention layer is arranged on the surface of the LED substrate opposite to the sealing member. However, by making the coefficient of linear expansion of the material constituting the warp prevention layer equal to or greater than the coefficient of linear expansion of the material constituting the sealing member, the above problem of warping is solved. .
 以下、本実施態様の面発光装置について、説明する。なお、本実施態様は、上記第1実施態様とは、上記反り防止層の配置位置と、上記反り防止層を構成する材料が異なること以外は、上記第1実施態様と同様であるので、反り防止層以外の構成については、説明を省略する。 The surface emitting device of this embodiment will be described below. In addition, since this embodiment is the same as the first embodiment except that the arrangement position of the warp prevention layer and the material constituting the warp prevention layer are different from the first embodiment, warp Description of the configuration other than the prevention layer is omitted.
1,反り防止層
 本実施態様における反り防止層は、LED基板の上記封止部材とは反対側の面に配置される層である。
 本実施態様においては、上記反り防止層を構成する材料の線膨張係数が、上記封止部材を構成する材料の線膨張係数と同等もしくは大きいものとなる。上記反り防止層を構成する材料の線膨張係数が、上記封止部材を構成する材料の線膨張係数と同等もしくはより大きいものとすることにより、反りを防止できるのは、以下の理由による。
1. Warpage Prevention Layer The warpage prevention layer in this embodiment is a layer arranged on the surface of the LED substrate opposite to the sealing member.
In this embodiment, the coefficient of linear expansion of the material forming the anti-warp layer is equal to or greater than the coefficient of linear expansion of the material forming the sealing member. The reason why warping can be prevented by making the coefficient of linear expansion of the material forming the warp prevention layer equal to or greater than that of the material forming the sealing member is as follows.
 すなわち、面発光装置を製造する場合、封止部材とLED基板とを熱圧着する工程を有するが、熱圧着後の冷却時に封止部材がLED基板より大きく収縮する挙動をとる。この際、上記LED基板の上記封止部材と反対側の面に、線膨張係数が封止部材と同等もしくは大きい反り防止層が配置されているので、上記封止部材側の収縮に対し、反り防止層も収縮するため、LED基板の反りの程度を小さくすることが可能となり、その結果、反りの発生を抑えることが可能となる。 That is, when manufacturing a surface emitting device, there is a step of thermally compressing the sealing member and the LED substrate, but the sealing member shrinks more than the LED substrate during cooling after the thermal compression bonding. At this time, since a warp prevention layer having a coefficient of linear expansion equal to or larger than that of the sealing member is disposed on the surface of the LED substrate opposite to the sealing member, warping is prevented with respect to the contraction of the sealing member. Since the prevention layer also shrinks, it is possible to reduce the degree of warping of the LED substrate, and as a result, it is possible to suppress the occurrence of warping.
a)線膨張係数
 本実施態様においては、上記反り防止層を構成する材料の線膨張係数と、上記封止部材を構成する材料との線膨張係数の差は、大きければ大きい程好ましいが、封止部材に用いられる材料を考慮すると、ある程度制限されたものとなる。したがって、上記線膨張係数の差は、通常は400×10-6/℃以下であり、同等のものであってもよい
a) Coefficient of linear expansion In this embodiment, the greater the difference between the coefficient of linear expansion of the material forming the anti-warp layer and the coefficient of linear expansion of the material forming the sealing member, the better. Considering the material used for the stop member, it is somewhat limited. Therefore, the difference in the coefficient of linear expansion is usually 400 × 10 -6 / ° C. or less, and may be equivalent
 なお、本実施態様における同等とは、封止部材を構成する材料の線膨張係数を1とした場合に、0.8以上1.2以下の範囲内、特に0.95以上1.0以下の範囲内の場合をいう。 In this embodiment, "equivalent" means that the coefficient of linear expansion of the material constituting the sealing member is in the range of 0.8 or more and 1.2 or less, particularly 0.95 or more and 1.0 or less. Refers to the case within the range.
 このような反り防止層を構成する材料の線膨張係数としては、通常300×10-6/℃以上500×10-6/℃以下の範囲内、特に350×10-6/℃以上450×10-6/℃以下の範囲内のものが用いられる。
 本実施態様における線膨張係数の測定方法としては、上記第1実施態様で説明した方法と同様の方法により行われる。
The linear expansion coefficient of the material constituting such a warp prevention layer is usually in the range of 300×10 −6 /° C. or more and 500×10 −6 /° C. or less, particularly 350×10 −6 /° C. or more and 450×10 Those within the range of -6 /°C or less are used.
As a method for measuring the coefficient of linear expansion in this embodiment, the same method as described in the first embodiment is used.
b)厚み
 本実施態様における反り防止層の厚みとしては、上記封止部材の厚みの25%以上であることが好ましく、特に35%以上、中でも45%以上であることが好ましい。なお、上限は、装置のコンパクト化の概念から、50%以下とされる。上記範囲内であれば、反り防止効果を得ることが可能であり、また装置のコンパクト化の妨げとならない。
b) Thickness The thickness of the anti-warp layer in this embodiment is preferably 25% or more, more preferably 35% or more, more preferably 45% or more of the thickness of the sealing member. Note that the upper limit is set to 50% or less from the concept of compactness of the apparatus. If it is within the above range, it is possible to obtain the effect of preventing warpage, and it does not hinder the compactness of the device.
c)弾性率
 本実施態様に用いられる反り防止層の弾性率は、上記封止部材の弾性率と同等以上であることが好ましい。
 具体的には、封止部材の弾性率を1とした場合に、0.8以上であることが好ましく、特に0.9以上であることが好ましい。なお、通常は、2.5以下となる。
c) Elastic modulus The elastic modulus of the anti-warp layer used in this embodiment is preferably equal to or higher than the elastic modulus of the sealing member.
Specifically, when the elastic modulus of the sealing member is 1, it is preferably 0.8 or more, and particularly preferably 0.9 or more. In addition, it becomes 2.5 or less normally.
 また、実際の値としては、35MPa以上であることが好ましく、特に40MPa以上であることが好ましく、中でも85MPa以上であることが好ましい。上記範囲より弾性率が低い場合は、反り防止効果が低減してしまうからである。なお、通常に用いられる材料を考慮すると、300MPa以下となる。 In addition, the actual value is preferably 35 MPa or more, particularly preferably 40 MPa or more, and most preferably 85 MPa or more. This is because if the elastic modulus is lower than the above range, the effect of preventing warpage is reduced. It should be noted that considering the materials that are normally used, it is 300 MPa or less.
 なお、弾性率の測定方法としては、以下に示す引張測定により行われる。
・測定装置:インストロン社製万能材料試験機5565
・ロードセル:1kN
・試料幅:10mm
・チャック間距離:50mm
・速度:300mm/min
The modulus of elasticity is measured by the following tensile measurement.
・Measuring device: Universal material testing machine 5565 manufactured by Instron
・Load cell: 1kN
・Sample width: 10 mm
・Distance between chucks: 50mm
・Speed: 300mm/min
d)材料
 本実施態様に用いられる反り防止層を構成する材料としては、上記特性を有するものであれば特に限定されないが、中でも封止部材として用いらえる材料と同様のものを用いることができる。
 好ましい材料としては、オレフィン系樹脂であることが好ましい。また、オレフィン系樹脂の中でも、ポリエチレン系樹脂、ポリプロピレン系樹脂、アイオノマー系樹脂が好ましい。
d) Material The material constituting the anti-warp layer used in this embodiment is not particularly limited as long as it has the above characteristics, but among them, the same material as that used as the sealing member can be used. .
A preferable material is an olefin resin. Among olefin resins, polyethylene resins, polypropylene resins, and ionomer resins are preferable.
(2)その他
 本実施態様における反り防止層は、上記LED基板と密着していることが好ましい。より反り防止効果を向上させることができるからである。
 具体的な密着の程度等については、上記第1実施態様と同等であるのでここでの説明は省略する。
 上記反り防止層と上記LED基板とを密着させる方法としては、両者の間に接着層を配置して、接着する方法や、熱圧着させて反り防止層を溶融密着させる方法等を挙げることができる。
(2) Others It is preferable that the anti-warp layer in this embodiment is in close contact with the LED substrate. This is because the warp prevention effect can be further improved.
Since the specific degree of adhesion and the like are the same as those of the first embodiment, description thereof is omitted here.
Examples of the method of adhering the anti-warp layer and the LED substrate include a method of disposing an adhesive layer between the two and adhering them together, and a method of thermocompression bonding to melt and adhere the anti-warp layer. .
III.第3実施態様
 本実施態様の面発光装置は、上記第1実施態様における反り防止層に替えて、発泡防止層を用いたものであり、上記発泡防止層の弾性率が、500MPa以上のものである態様、および上記発泡防止層の融点が、140℃以上のものである態様の二つの態様を有する。
III. Third Embodiment The surface light-emitting device of this embodiment uses an anti-foaming layer in place of the anti-warp layer in the first embodiment, and the anti-foaming layer has an elastic modulus of 500 MPa or more. There are two aspects, one aspect and the aspect in which the foaming prevention layer has a melting point of 140° C. or higher.
 従来の面発光装置では、例えば、面発光装置が極端な高温に長時間用いられた場合、上記LED基板と上記封止部材との間に気泡が生じてしまうという課題もあった。これは、加熱により、LED基板から発生するガスに起因する場合や、LED基板上に反射層等が設けられた際にLED基板と反射層等との間にエア噛み等により存在する空気が界面に沿ってにじみ出る等の原因により発生する。 In conventional surface emitting devices, for example, when the surface emitting device is used at extremely high temperatures for a long time, there is also the problem that air bubbles are generated between the LED substrate and the sealing member. This is caused by the gas generated from the LED substrate by heating, or when a reflective layer or the like is provided on the LED substrate, air existing between the LED substrate and the reflective layer or the like due to air entrainment or the like may cause the interface It occurs due to causes such as oozing along.
 上記封止部材に封止されたLED素子は、上記封止部材とLED素子の発光面が直接接合され、界面での屈折率差が小さくなるため、封止されていないLED素子に比べ光取り出し効率が向上する。しかし、このような気泡が存在すると、上述したような光取り出し効率の向上が得られず、結果として面発光装置の発光効率を低下させるといった不具合が生じてしまう。 In the LED element sealed with the sealing member, the light emitting surface of the sealing member and the LED element are directly bonded, and the refractive index difference at the interface is small. Improve efficiency. However, if such bubbles exist, the light extraction efficiency cannot be improved as described above, and as a result, the luminous efficiency of the surface light emitting device is lowered.
 本実施態様では、上述した特性を有する発泡防止層を設けることにより、発泡時に生じるであろうと想定される封止部材の表面形状が凸部となる変形を押さえることができる。
これにより、例えばLED基板からガスが発生した場合でも、上記発泡防止層が存在することにより、封止部材に圧力が加わることから、発生したガスが気泡となることを防止することが可能となる。
In this embodiment, by providing the anti-foaming layer having the properties described above, it is possible to suppress the deformation of the surface of the sealing member, which is expected to occur during foaming, such that the surface shape becomes a convex portion.
As a result, for example, even if gas is generated from the LED substrate, the presence of the anti-foaming layer applies pressure to the sealing member, making it possible to prevent the generated gas from forming bubbles. .
 本実施態様に用いられる発砲防止層の弾性率は、500MPa以上であればよいが、好ましくは1000Mpa以上であり、中でも4000Mpa以上であることが好ましい。 The elastic modulus of the anti-foaming layer used in this embodiment may be 500 MPa or higher, preferably 1000 MPa or higher, and more preferably 4000 MPa or higher.
 上記範囲より弾性率が低い場合は、気泡発生の抑止効果が低減してしまうからである。
なお、通常に用いられる材料を考慮すると5500MPa以下となる。
This is because if the elastic modulus is lower than the above range, the effect of suppressing bubble generation is reduced.
It should be noted that the pressure is 5500 MPa or less in consideration of commonly used materials.
 本実施態様における発泡防止層の融点は、140℃以上であればよいが、260℃以上であることが好ましい。なお通常用いられる材料等を考慮すると上限は350℃以下である。 The melting point of the anti-foaming layer in this embodiment may be 140°C or higher, but preferably 260°C or higher. The upper limit is 350.degree.
 本実施態様においては、上述した弾性率を有し、かつ上述した融点を有する発泡防止層を用いることがより好ましい。
 なお、上記弾性率および融点の測定方法は、上述した第1実施態様で説明した方法と同様である。
In this embodiment, it is more preferable to use a foam-preventing layer having the above-described elastic modulus and the above-described melting point.
The methods for measuring the elastic modulus and the melting point are the same as those described in the first embodiment.
 本実施態様に用いられる発泡防止層は、上記反り防止層とは異なり、線膨張係数が所定の範囲内であることを必須とするものではない。しかしながら、発泡防止層が上記第1実施態様における反り防止層の線膨張係数と同様の線膨張係数を有することにより、上記第1実施態様と同様の反り防止効果を得られることから、好ましいものとすることができる。 Unlike the anti-warp layer, the anti-foam layer used in this embodiment does not necessarily have a coefficient of linear expansion within a predetermined range. However, since the anti-foaming layer has a coefficient of linear expansion similar to that of the anti-warping layer in the first embodiment, the same anti-warping effect as in the first embodiment can be obtained, so it is preferable. can do.
 本実施態様の面発光装置のその他の点は、第1実施態様の面発光装置の反り防止層を発泡防止層と読み替えたものと同様であるので、ここでの説明は省略する。 Other points of the surface light-emitting device of this embodiment are the same as those of the surface light-emitting device of the first embodiment except that the anti-foaming layer is used instead of the anti-warp layer, so description thereof will be omitted here.
B.表示装置
 本開示は、表示パネルと、上記表示パネルの背面に配置された、上述の面発光装置を備える、表示装置を提供する。
B. Display Device The present disclosure provides a display device including a display panel and the above-described surface emitting device arranged on the back surface of the display panel.
 図11は、本開示の表示装置の一例を示す模式図である。図11に例示するように、表示装置100は、表示パネル31と、表示パネル31の背面に配置された、本開示おける面発光装置1とを備える。 FIG. 11 is a schematic diagram showing an example of the display device of the present disclosure. As illustrated in FIG. 11 , the display device 100 includes a display panel 31 and the surface emitting device 1 according to the present disclosure arranged behind the display panel 31 .
 本開示によれば、上述した面発光装置を有することにより、輝度の面内均一性を向上させつつ、薄型化を図ることが可能である。したがって、高品質な表示装置を得ることができる。 According to the present disclosure, by having the above-described surface light emitting device, it is possible to improve the in-plane uniformity of luminance and achieve a reduction in thickness. Therefore, a high-quality display device can be obtained.
1.面発光装置
 本開示における面発光装置は、上記「A.面発光装置」の項に記載したものと同様である。
1. Surface Light-Emitting Device The surface light-emitting device in the present disclosure is the same as that described in the section “A. Surface Light-Emitting Device” above.
2.表示パネル
 本開示における表示パネルとしては、特に限定されるものではなく、例えば、液晶パネルが挙げられる。
2. Display Panel The display panel in the present disclosure is not particularly limited, and examples thereof include a liquid crystal panel.
C.面発光装置の製造方法
 本開示においては、上記第1実施態様の面発光装置の製造方法を提供する。本開示においては、二つの実施形態に分けることができる。
C. Method for Manufacturing Surface Light Emitting Device The present disclosure provides a method for manufacturing the surface light emitting device of the first embodiment. The present disclosure can be divided into two embodiments.
I.第1実施形態
 本実施形態の面発光装置の製造方法は、上記面発光装置の第1実施態様に記載された製造方法であって、上記反り防止層、上記封止部材、および上記LED素子が封止部材側となるように配置された上記LED基板がこの順配置された積層体を準備し、上記積層体を熱圧着する工程を有することを特徴とする。
 本実施形態においては、まず、上記LED基板、上記封止部材、および上記反り防止層がこの順配置された積層体を準備する。
I. First Embodiment A method for manufacturing a surface light-emitting device of this embodiment is the manufacturing method described in the first embodiment of the surface light-emitting device, wherein the anti-warp layer, the sealing member, and the LED element are The method is characterized by comprising a step of preparing a laminate in which the LED substrates arranged so as to face the sealing member side are arranged in this order, and bonding the laminate by thermocompression.
In this embodiment, first, a laminate is prepared in which the LED substrate, the sealing member, and the anti-warp layer are arranged in this order.
 ここで、上記LED基板、上記封止部材、上記反り防止層については、上記面発光装置の第1実施態様で説明したものと同様であるので、ここでの説明は省略する。
 次いで、上記積層体を熱圧着する工程を行う。
Here, since the LED substrate, the sealing member, and the anti-warp layer are the same as those described in the first embodiment of the surface emitting device, description thereof will be omitted here.
Next, a step of thermally compressing the laminate is performed.
 本実施形態における熱圧着法としては、これらを熱圧着可能な方法であれば、特に限定されないが、真空ラミネート法、真空パック法、熱ラミネート法等を用いることができる。 The thermocompression bonding method in the present embodiment is not particularly limited as long as it is a method capable of thermocompression bonding, but a vacuum lamination method, a vacuum packing method, a heat lamination method, or the like can be used.
 本実施形態においては、圧着された上記積層体の上記反り防止層側に拡散部材を配置し、接着剤等を用いて接着することにより、面発光装置を製造することができる。 In this embodiment, a surface light-emitting device can be manufactured by arranging a diffusion member on the side of the anti-warping layer of the laminated body that is press-bonded, and adhering it with an adhesive or the like.
II.第2実施形態
 本実施形態の面発光装置の製造方法は、上記面発光装置の第1実施態様に記載された製造方法であって、上記反り防止層、および上記封止部材が積層された第1積層体を熱圧着する工程と、上記熱圧着された第1積層体の上記封止部材側の面に上記LED素子が封止部材側となるように配置された上記LED基板を配置した第2積層体を熱圧着する工程と、を有することを特徴とする。
II. Second Embodiment A method for manufacturing a surface light-emitting device of this embodiment is the manufacturing method described in the first embodiment of the surface light-emitting device. a step of thermocompression bonding one laminated body; 2. The step of thermally compressing the laminated body.
 本実施形態においては、まず上記反り防止層、および上記封止部材が積層された第1積層体を準備する。次いで、上記第1積層体を、上記第1実施形態と同様の方法により熱圧着する。 In the present embodiment, first, a first laminate in which the anti-warp layer and the sealing member are laminated is prepared. Next, the first laminate is thermocompression bonded by the same method as in the first embodiment.
 次に、熱圧着された第1積層体の上記封止部材側の面に上記LED基板を配置した第2積層体を、上記第1実施形態と同様の方法により熱圧着する。
 本実施形態においては、圧着された上記第2積層体の上記反り防止層側に拡散部材を配置し、接着剤等を用いて接着することにより、面発光装置を製造することができる。
Next, a second laminate in which the LED substrate is arranged on the sealing member side surface of the thermocompressed first laminate is thermocompressed by the same method as in the first embodiment.
In this embodiment, a surface light-emitting device can be manufactured by arranging a diffusion member on the anti-warp layer side of the pressed second laminated body and adhering it with an adhesive or the like.
D.面発光装置用封止部材シート
 本開示の面発光装置用封止部材シートは、以下の二つの態様がある。
D. Surface Emitting Device Sealing Member Sheet The surface emitting device sealing member sheet of the present disclosure has the following two aspects.
1.第1の態様
 本態様の面発光装置用封止部材シートは、LED素子を封止するための封止部材と、上記封止部材の片方の面側に配置された反り防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、上記反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内であることを特徴とする。
1. First Aspect A sealing member sheet for a surface light-emitting device of this aspect comprises a sealing member for sealing an LED element and an anti-warping layer disposed on one side of the sealing member. A surface light emitting device sealing member sheet used in a surface light emitting device, wherein the linear expansion coefficient of the material constituting the warp prevention layer is −15×10 −6 /° C. or more and 10×10 −6 / °C or less.
 上記面発光装置は、支持基板、および上記支持基板の片方の面側に配置された上記LED素子を有するLED基板と、上記LED基板のLED素子側に配置された上記封止部材と、上記反り防止層と、拡散防止部材と、がこの順に積層されてなるものである。 The surface emitting device includes a support substrate, an LED substrate having the LED elements arranged on one side of the support substrate, the sealing member arranged on the LED element side of the LED substrate, and the warp. A blocking layer and a diffusion blocking member are laminated in this order.
 本態様に用いられる反り防止層は、上記面発光装置の第1実施態様で説明したものと同様である。また、上記LED基板、上記封止部材、上記反射防止部材は、上記面発光装置で説明したものと同様であるので、ここでの説明は省略する。 The anti-warping layer used in this aspect is the same as that described in the first aspect of the surface emitting device. Also, the LED substrate, the sealing member, and the antireflection member are the same as those described in the surface light emitting device, and therefore descriptions thereof are omitted here.
2.第2の態様
 本態様の面発光装置用封止部材シートは、LED素子を封止するための封止部材と、上記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、上記発泡防止層を構成する材料の弾性率が500MPa以上である形態、および上記発泡防止層を構成する材料の融点が140℃以上である形態の二つの形態を有する。
2. Second Aspect In the surface emitting device sealing member sheet of this aspect, a sealing member for sealing an LED element and an anti-foaming layer disposed on one side of the sealing member are laminated. A sealing member sheet for a surface light emitting device used in a surface light emitting device, wherein the elastic modulus of the material constituting the antifoaming layer is 500 MPa or more, and the melting point of the material constituting the antifoaming layer is 140° C. or higher.
 上記面発光装置は、支持基板、および上記支持基板の片方の面側に配置された上記LED素子を有するLED基板と、上記LED基板のLED素子側に配置された上記封止部材と、上記発泡防止層と、拡散防止部材と、がこの順に積層されてなるものである。 The surface emitting device includes: a support substrate; an LED substrate having the LED elements arranged on one side of the support substrate; the sealing member arranged on the LED element side of the LED substrate; A blocking layer and a diffusion blocking member are laminated in this order.
 本態様に用いられる発泡防止層は、上記面発光装置の第3実施態様で説明したものと同様である。また、上記LED基板、上記封止部材、上記反射防止部材は、上記面発光装置で説明したものと同様であるので、ここでの説明は省略する。 The anti-foaming layer used in this embodiment is the same as that described in the third embodiment of the surface light-emitting device. Also, the LED substrate, the sealing member, and the antireflection member are the same as those described in the surface light emitting device, and therefore descriptions thereof are omitted here.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 It should be noted that the present disclosure is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present disclosure and achieves the same effect is the present invention. It is included in the technical scope of the disclosure.
 以下に、封止部材に関する実験例を示し、その後、本開示の実施例および比較例を示し、本開示をさらに詳細に説明する。 Experimental examples regarding sealing members are shown below, and then examples and comparative examples of the present disclosure are shown to describe the present disclosure in more detail.
A.実験例
(実験例1)
 図11に示すように、支持基板2、および発光ダイオード素子3を有する発光ダイオード基板4、封止部材A(厚さ450μm)5、拡散部材A6、波長変換部材9を有する面発光装置1を製造した。封止部材Aのヘイズ値、層構成、密度および波長450nmにおける透過率を表1に示す。下記方法で評価した輝度ムラの評価結果を表2に示す。
A. Experimental example (Experimental example 1)
As shown in FIG. 11, a surface emitting device 1 having a support substrate 2, a light emitting diode substrate 4 having a light emitting diode element 3, a sealing member A (450 μm thick) 5, a diffusion member A 6, and a wavelength converting member 9 is manufactured. bottom. Table 1 shows the haze value, layer structure, density and transmittance at a wavelength of 450 nm of the sealing member A. Table 2 shows the evaluation results of luminance unevenness evaluated by the following method.
 使用した部材は以下の通りである。
・発光ダイオード基板
LEDチップ B0815ACQ0(チップサイズ0.2mm×0.4mm、ジェネライツ製)を6mmピッチで支持基板(反射率95%)上に正方配置した。
・拡散部材A(拡散板)
55K3(エンタイア製)
・波長変換部材(QD)
QF-6000(昭和電工マテリアルズ製)
The members used are as follows.
- Light-emitting diode substrate LED chips B0815ACQ0 (chip size 0.2 mm x 0.4 mm, manufactured by GENERITES) were squarely arranged on a support substrate (reflectance 95%) at a pitch of 6 mm.
・Diffusion member A (diffusion plate)
55K3 (manufactured by Entire)
・Wavelength conversion member (QD)
QF-6000 (manufactured by Showa Denko Materials)
 尚、封止部材の厚さおよび表1に示す光学特性は、封止部材シートを、ETFEフィルム(厚み100μm)で挟み込んで、真空ラミネーションにより加熱処理を行った後の封止部材用試料を測定した値である。光学特性の測定は、ETFEフィルムを剥がし、封止部材用試料のみを測定した。真空ラミネート条件は下記の通りとした。 The thickness of the sealing member and the optical properties shown in Table 1 were obtained by sandwiching the sealing member sheet between ETFE films (thickness: 100 μm) and performing heat treatment by vacuum lamination. is the value The optical properties were measured by peeling off the ETFE film and measuring only the sealing member sample. Vacuum lamination conditions were as follows.
(真空ラミネート条件)
(a)真空引き:5.0分
(b)加圧:0kPaから100kPaに、5秒で変化させた
(c)圧力保持:(100kPa):7分
(d)温度:150℃
(Vacuum lamination conditions)
(a) Evacuation: 5.0 minutes (b) Pressure: changed from 0 kPa to 100 kPa in 5 seconds (c) Pressure retention: (100 kPa): 7 minutes (d) Temperature: 150 ° C.
(実験例2)
 拡散部材Aの代わりに、下記の拡散部材Bを使用した以外は、実験例1と同様に輝度ムラの発生を評価した。結果を表2に示す。
・拡散部材B
 第1層としてプリズム面が発光ダイオード素子側に形成されたプリズム構造、第2層として誘電体多層膜を有する第二の拡散部材
(Experimental example 2)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Example 1, except that the diffusion member B described below was used instead of the diffusion member A. Table 2 shows the results.
・Diffusion member B
A second diffusion member having a prism structure in which a prism surface is formed on the light emitting diode element side as a first layer and a dielectric multilayer film as a second layer
(実験例3、4)
 封止部材Aの代わりに、表1に示す封止部材B(厚さ450μm)を使用した以外は、実験例1、2と同様に輝度ムラの発生を評価した。
(Experimental examples 3 and 4)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Examples 1 and 2, except that the sealing member B (thickness: 450 μm) shown in Table 1 was used instead of the sealing member A.
(実験例5、6)
 封止部材Aの代わりに、表1に示す封止部材D(厚さ450μm)を使用した以外は、実験例1、2と同様に輝度ムラの発生を評価した。
(Experimental Examples 5 and 6)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Examples 1 and 2, except that the sealing member D (thickness: 450 μm) shown in Table 1 was used instead of the sealing member A.
(対比実験例1、2)
 封止部材Aの代わりに、拡散部材と発光ダイオード基板との間にピンを設けた以外は、実験例1、2と同様に輝度ムラの発生を評価した。結果を表2に示す。この際、発光ダイオード素子と拡散部材との間の距離は500μmであった。
(Comparative Experimental Examples 1 and 2)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Examples 1 and 2, except that instead of the sealing member A, a pin was provided between the diffusion member and the light emitting diode substrate. Table 2 shows the results. At this time, the distance between the light emitting diode element and the diffusion member was 500 μm.
(対比実験例3、4)
 封止部材Aの代わりに、高透明ポッティングタイプの液状シリコーン組成物を使用したSi硬化物(厚さ450μm)を設けた以外は、実験例1、2と同様に輝度ムラの発生を評価した。結果を表2に示す。
(Comparative Experimental Examples 3 and 4)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Examples 1 and 2, except that instead of the sealing member A, a cured Si material (450 μm thick) using a highly transparent potting type liquid silicone composition was provided. Table 2 shows the results.
(対比実験例5、6)
 封止部材Aの代わりに、表1に示す封止部材C(厚さ450μm)を使用した以外は、実験例1、2と同様に輝度ムラの発生を評価した。結果を表2に示す。
(Comparative Experimental Examples 5 and 6)
The occurrence of luminance unevenness was evaluated in the same manner as in Experimental Examples 1 and 2, except that the sealing member C (thickness: 450 μm) shown in Table 1 was used instead of the sealing member A. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[輝度ムラ評価方法]
 得られた面発光装置について、2次元色彩輝度計CA2000を用いてLED発光時の輝度を測定し、輝度ムラを評価した。輝度ムラの指標は、ユニフォミティの数値によって以下のように判断した。
[Brightness unevenness evaluation method]
For the obtained surface light-emitting device, the luminance during LED emission was measured using a two-dimensional color luminance meter CA2000, and luminance unevenness was evaluated. The index of luminance unevenness was judged as follows from the numerical value of uniformity.
[評価基準]
ユニフォミティ=正面輝度の最小値/正面輝度の最大値
A:ユニフォミティ 0.9より大きい
B:ユニフォミティ 0.8以上0.9以下
C:ユニフォミティ 0.8より小さい
[Evaluation criteria]
Uniformity = minimum front luminance/maximum front luminance A: Uniformity greater than 0.9 B: Uniformity 0.8 or more and 0.9 or less C: Uniformity less than 0.8
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本開示における面発光装置(実験例1~6)は、輝度ムラの発生を抑制することができた一方で、封止部材Aの代わりにピンを設けた対比実験例1、2、液状Siの硬化物を使用した対比実験例3、4、および、ヘイズ値が低い封止部材Cを使用した対比実験例5、6では、輝度ムラの発生を抑制することができなかった。 The surface emitting devices (Experimental Examples 1 to 6) according to the present disclosure were able to suppress the occurrence of luminance unevenness. In Comparative Experimental Examples 3 and 4 using the cured product, and in Comparative Experimental Examples 5 and 6 using the sealing member C having a low haze value, the occurrence of luminance unevenness could not be suppressed.
B.第1実施態様および第2実施態様の実施例
 以下に第1実施態様および第2実施態様の面発光装置に対する実施例を示す。
B. Examples of First and Second Embodiments Examples of the surface emitting devices of the first and second embodiments are shown below.
[実施例B-1]
(封止部材および反り防止層の積層体の形成)
 下記のベース樹脂1 100質量部に対して、添加樹脂1(耐候剤マスターバッチ)を5質量部、添加樹脂2(シラン変性ポリエチレン樹脂)を20質量部の割合で混合し、PETフィルム一体型封止部材材を成形するための封止部材用組成物とした。
[Example B-1]
(Formation of laminate of sealing member and anti-warp layer)
5 parts by mass of additive resin 1 (weather resistant agent masterbatch) and 20 parts by mass of additive resin 2 (silane-modified polyethylene resin) are mixed with 100 parts by mass of the following base resin 1, and the PET film integrated sealing is performed. A sealing member composition for molding a sealing member material was obtained.
・ベース樹脂1
 密度0.901g/cm、融点93℃、190℃でのMFRが2.0g/10分であるメタロセン系直鎖状低密度ポリエチレン系樹脂(M-LLDPE)。
Base resin 1
A metallocene-based linear low-density polyethylene resin (M-LLDPE) having a density of 0.901 g/cm 3 , a melting point of 93° C., and an MFR of 2.0 g/10 min at 190° C.
・添加樹脂1(耐候剤マスターバッチ)
 密度0.919g/cm、190℃でのMFRが3.5g/10分の低密度ポリエチレン系樹脂100質量部に対して、KEMISTAB62(HALS):0.6質量部。
KEMISORB12(UV吸収剤):3.5質量部。KEMISORB79(UV吸収剤):0.6質量部を添加したマスターバッチ
・Additive resin 1 (weather resistant agent masterbatch)
KEMISTAB62 (HALS): 0.6 parts by mass with respect to 100 parts by mass of a low-density polyethylene resin having a density of 0.919 g/cm 3 and an MFR of 3.5 g/10 minutes at 190°C.
KEMISORB12 (UV absorber): 3.5 parts by mass. KEMISORB79 (UV absorber): Masterbatch with 0.6 parts by mass added
・添加樹脂2(シラン変性ポリエチレン系樹脂)
 密度0.898g/cm、MFRが3.5g/10分であるメタロセン系直鎖状低密度ポリエチレン系樹脂95質量部に対して、ビニルトリメトキシシラン5質量部と、ラジカル発生剤(反応触媒)としてのジクミルパーオキサイド0.15質量部とを混合し、200℃で溶融、混練して得たシラン変性ポリエチレン系樹脂。この添加樹脂2の密度は、0.901g/cm、MFRは、1.0g/10分である。
・Additive resin 2 (silane-modified polyethylene resin)
5 parts by mass of vinyltrimethoxysilane and a radical generator (reaction catalyst ) is mixed with 0.15 parts by mass of dicumyl peroxide, melted at 200° C., and kneaded to obtain a silane-modified polyethylene resin. The added resin 2 has a density of 0.901 g/cm 3 and an MFR of 1.0 g/10 minutes.
 次に、反り防止層として、膜厚50μmの2軸延伸ポリエチレンテレフタレートフィルム(光学グレード)を用い、これを上述した封止部材用組成物が溶融押出しされたフィルムと圧着することによって一体化して、反り防止層および膜厚300μmの封止部材が積層された反り防止層積層体を形成した。 Next, a biaxially stretched polyethylene terephthalate film (optical grade) with a thickness of 50 μm is used as the warp prevention layer, and this is integrated with the film in which the above-described sealing member composition is melt extruded by pressure bonding, An anti-warp layer laminate was formed by stacking an anti-warp layer and a sealing member having a thickness of 300 μm.
 次いで、真空ラミネーターを用いて、PCB基板と上記反り防止層積層体とのラミネートを実施した。PCB基板は、白塗装、銅、およびガラスエポキシがこの順で積層されたものである。 Then, using a vacuum laminator, the PCB substrate and the anti-warp layer laminate were laminated. The PCB board is white paint, copper, and glass epoxy laminated in that order.
 真空ラミネーターのホットプレート側から、ホットプレート、テフロン(登録商標)コートガラスシート0.3mm、ガラス(厚さ3mm)、離型PET(離型面:上)、ガラスエポキシ面を上記離型PET側とした上記PCB基板、上記封止部材を上記PCB基板側とした反り防止層積層体、離型PET(離型面:下)、ガラス(厚さ3mm)、およびテフロン(登録商標)コートガラスシート0.3mmを積層した状態にて、真空ラミネーターの条件として、130℃、8分の処理条件にて真空加熱ラミネーターでラミネート処理を行った。ラミネート完了後、ガラスシートごと、冷却棚に移動し、約10~15分掛けて冷却処理を行い、第1実施態様の封止部材積層体を得た。上記封止部材積層体を面発光装置とみなして、各種評価を行った。 From the hot plate side of the vacuum laminator, hot plate, Teflon (registered trademark) coated glass sheet 0.3 mm, glass (thickness 3 mm), release PET (release surface: upper), glass epoxy surface on the release PET side The above PCB substrate, the warp prevention layer laminate with the sealing member on the PCB substrate side, release PET (release surface: bottom), glass (thickness 3 mm), and Teflon (registered trademark) coated glass sheet Lamination processing was performed with a vacuum heating laminator under the processing conditions of 130° C. and 8 minutes as the conditions of the vacuum laminator in a state in which a thickness of 0.3 mm was laminated. After completion of lamination, the whole glass sheet was moved to a cooling shelf and cooled for about 10 to 15 minutes to obtain a sealing member laminate of the first embodiment. Various evaluations were performed regarding the sealing member laminate as a surface emitting device.
[実施例B-2]
 反り防止層の膜厚を、100μmとした以外は、実施例B-1と同様にして第1実施態様の封止部材積層体を得た。
[Example B-2]
A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-1, except that the thickness of the anti-warp layer was 100 μm.
[実施例B-3]
 実施例B-1と同様の封止部材用組成物、実施例B-1と同様のPCB基板を用いた。
 まず、上記PCB部材のガラスエポキシ面に、反り防止層として膜厚が160μmとなるように上記封止部材用組成物が溶融押出しされたフィルムを圧着し、次いで、上記PCB部材の白塗装面に、封止部材として膜厚が240μmとなるように上記封止部材用組成物が溶融押出しされたフィルムを圧着し、第2実施態様の封止部材積層体を得た。
[Example B-3]
A sealing member composition similar to that of Example B-1 and a PCB substrate similar to that of Example B-1 were used.
First, on the glass epoxy surface of the PCB member, a film obtained by melt-extrusion of the composition for a sealing member was pressed to a thickness of 160 μm as a warp prevention layer, and then, on the white painted surface of the PCB member. A film obtained by melt-extrusion of the composition for a sealing member was pressure-bonded as a sealing member so as to have a film thickness of 240 μm to obtain a sealing member laminate of the second embodiment.
[実施例B-4]
 封止部材としての膜厚を320μm、反り防止層としての膜厚を80μmとした以外は、実施例B-3と同様にして、第2実施態様の封止部材積層体を得た。
[Example B-4]
A sealing member laminate of the second embodiment was obtained in the same manner as in Example B-3, except that the thickness of the sealing member was 320 μm and the thickness of the anti-warp layer was 80 μm.
[実施例B-5]
 反り防止層として、実施例2とは異なる2軸延伸ポリエチレンテレフタレートフィルム(汎用グレード)を用いた以外は、実施例B-2と同様にして、第1実施態様の封止部材積層体を得た。
[実施例B-6]
 上記封止部材積層体を、封止部材と反り防止層をドライラミネート接着剤で接合して作製した以外は、実施例B-1と同様にして封止部材積層体を得た。
 ドライラミネート用接着剤の主剤としては、ポリカーボネートウレタン系のものとし、硬化剤の材料としては、イソシアネート系の硬化剤を用いた。また、主剤と硬化剤の配合は10:1とし、主剤、硬化剤を溶剤に溶解させて、それぞれ50質量%(酢酸エチル溶液)とし配合を行った。
[Example B-5]
A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-2, except that a biaxially stretched polyethylene terephthalate film (general-purpose grade) different from that in Example 2 was used as the warp prevention layer. .
[Example B-6]
A sealing member laminate was obtained in the same manner as in Example B-1, except that the sealing member laminate was produced by bonding the sealing member and the warp prevention layer with a dry laminate adhesive.
A polycarbonate urethane-based adhesive was used as the main agent of the dry laminating adhesive, and an isocyanate-based curing agent was used as the curing agent material. Also, the ratio of the main agent and the curing agent was set at 10:1, and the main agent and the curing agent were dissolved in a solvent to make each 50% by mass (ethyl acetate solution).
 上記の主剤と硬化剤からなる2液タイプの接着剤を使用して、ドライラミネートが可能なラミネーターを用い、PETとシート状の封止部材を接合して積層したバックライト用の封止部材積層体を製造した。PETフィルムとしては、2軸延伸ポリエチレンテレフタレートフィルム(光学グレード)を用い、このPETフィルムをラミネーターの第1給紙側から繰り出し、PET面に対し接着剤を溶剤酢酸エチルに溶解し、固形分塗布量2~15g/m2(硬化後膜厚2~15μm)となるようにグラビアコートを行ない、70~90℃程度の乾燥フード内にて溶剤を揮発・乾燥させた、接着剤面を作製した。その後、第2給紙から封止部材を繰り出し、ニップロールにて貼合し、PET/接着剤/封止部材の状態に積層後、巻き上げユニットにて巻上げ、封止部材積層体を製造した。また、積層ロール作製後、30~50℃、70~200時間程度のエージング処理をして硬化させた。 Lamination of sealing member for backlight by bonding and laminating PET and sheet-shaped sealing member using a laminator capable of dry lamination using a two-liquid type adhesive consisting of the above main agent and curing agent manufactured the body. As the PET film, a biaxially oriented polyethylene terephthalate film (optical grade) is used. Gravure coating was performed so as to have a thickness of 2 to 15 g/m 2 (2 to 15 μm in film thickness after curing), and the solvent was volatilized and dried in a drying hood at about 70 to 90° C. to prepare an adhesive surface. After that, the sealing member was unwound from the second paper feed, laminated by nip rolls, laminated in a PET/adhesive/sealing member state, and then wound up by a winding unit to produce a sealing member laminate. After the laminated roll was produced, it was cured by aging treatment at 30 to 50° C. for about 70 to 200 hours.
[比較例B-1]
 上記反り防止層積層体を、膜厚400μmの封止部材とした以外は、実施例B-1と同様にして封止部材積層体を得た。
[Comparative Example B-1]
A sealing member laminate was obtained in the same manner as in Example B-1, except that the anti-warp layer laminate was used as a sealing member having a film thickness of 400 μm.
[比較例B-2]
 上記反り防止層として、膜厚100μmのポリカーボネートフィルム(標準グレード)を用いた以外は、実施例B-1と同様にして第1実施態様の封止部材積層体を得た。
[Comparative Example B-2]
A sealing member laminate of the first embodiment was obtained in the same manner as in Example B-1, except that a polycarbonate film (standard grade) having a thickness of 100 μm was used as the anti-warp layer.
[評価法]
(線膨張係数)
 5mm×20mmにカットしたシートについて、JISK7197に準拠して昇温後、室温までの降温時の寸法変化を測定し、100℃から25℃での線膨張係数を平均して算出した。ここでの線膨張係数は収縮時には正の値、膨張時には負の値となる。測定は、以下の測定装置及び測定条件により行った。
・測定装置:セイコーインスツルメンツ製熱機械的装置(TMA/SS-6000)
・定荷重引張モード:0.1mN
・測定温度範囲:-50℃~160℃
・線膨張係数算出温度範囲:25℃~100℃
[Evaluation method]
(linear expansion coefficient)
For a sheet cut to 5 mm×20 mm, the dimensional change was measured according to JISK7197 when the temperature was raised and then lowered to room temperature. The coefficient of linear expansion here is a positive value during contraction and a negative value during expansion. The measurement was performed using the following measurement apparatus and measurement conditions.
・Measuring device: Thermomechanical device manufactured by Seiko Instruments (TMA/SS-6000)
・Constant load tensile mode: 0.1 mN
・Measurement temperature range: -50°C to 160°C
・Linear expansion coefficient calculation temperature range: 25°C to 100°C
(弾性率)
 以下に示す引張測定により行われた。
(測定方法)
・測定装置:インストロン社製万能材料試験機5565
・ロードセル:1kN
・試料幅:10mm
・チャック間距離:50mm
・速度:300mm/min
(elastic modulus)
Tensile measurements were performed as described below.
(Measuring method)
・Measuring device: Universal material testing machine 5565 manufactured by Instron
・Load cell: 1kN
・Sample width: 10 mm
・Distance between chucks: 50mm
・Speed: 300mm/min
(融点)
 示差走査熱量計(DSC-60 Plus、島津製作所製)を用いてJIS K 7121に準拠した方法により測定した。
(melting point)
It was measured according to JIS K 7121 using a differential scanning calorimeter (DSC-60 Plus, manufactured by Shimadzu Corporation).
(全光線透過率)
 JIS K7361-1:1997に準拠する方法により測定した。
(Total light transmittance)
Measured by a method conforming to JIS K7361-1:1997.
(ヘイズ値)
 ヘイズメーター(HM-150、Murakami Color Research Laboratory製)を用いてJIS K7136に準拠した方法により測定した。
(Haze value)
Measured according to JIS K7136 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory).
(反り量)
 真空ラミネート直後の各封止部材積層体を、水平面に、常温環境下で24時間以上静置する。その後、角部の水平面から基板下側までの高さをJIS B 7514準拠の鋼製直定規にて測定した。
(Warpage amount)
Each sealing member laminate immediately after vacuum lamination is left to stand on a horizontal surface in a normal temperature environment for 24 hours or more. After that, the height from the horizontal plane of the corner to the bottom side of the substrate was measured with a steel straightedge in accordance with JIS B 7514.
(発泡試験)
 真空ラミネート直後の各封止部材積層体を、JIS C 60068-2-2に準拠して100℃条件下の恒温槽に1000h投入し、発泡の発生有無を観察した。
(Foam test)
Immediately after vacuum lamination, each sealing member laminate was placed in a constant temperature bath at 100° C. for 1000 hours in accordance with JIS C 60068-2-2, and the presence or absence of foaming was observed.
(輝度ムラ)
 実施例B-1~実施例B-6、および比較例B-1~比較例B-2で得られた封止部材積層体の、封止部材側の面に拡散部材を載置し、それぞれに対応する面発光装置を得た。輝度ムラの測定方法、および評価基準は、上記実験例で示したものと同様である。また、拡散部材としては、上記実験例2で用いた拡散部材Bと同じものを用いた。
(Brightness unevenness)
A diffusion member was placed on the sealing member side surface of each of the sealing member laminates obtained in Examples B-1 to B-6 and Comparative Examples B-1 to B-2. was obtained. The measurement method and evaluation criteria for luminance unevenness are the same as those shown in the above experimental example. As the diffusion member, the same diffusion member B used in Experimental Example 2 was used.
 結果を表3に示す。 The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
C.第3実施態様の実施例
 次に、第3実施態様の面発光装置に対する実施例を示す。
C. Example of the Third Embodiment Next, an example of the surface emitting device of the third embodiment will be shown.
[実施例C-1]
 発泡防止層として、膜厚35μmの2軸延伸ポリエチレンテレフタレートフィルム(光学グレード)を用いた以外は、上記実施例B-1と同様にして第3実施態様の封止部材積層体を得た。上記封止部材積層体を面発光装置とみなして、各種評価を行った。
[Example C-1]
A sealing member laminate of the third embodiment was obtained in the same manner as in Example B-1 above, except that a 35 μm thick biaxially stretched polyethylene terephthalate film (optical grade) was used as the antifoaming layer. Various evaluations were performed regarding the sealing member laminate as a surface emitting device.
[実施例C-2]
 反り防止層を発泡防止層として用いた以外は、上記実施例B-1と同様にして封止部材積層体を得た。
[Example C-2]
A sealing member laminate was obtained in the same manner as in Example B-1 above, except that the anti-warp layer was used as the anti-foaming layer.
[実施例C-3]
 反り防止層を発泡防止層として用いた以外は、上記実施例B-2と同様にして封止部材積層体を得た。
[Example C-3]
A sealing member laminate was obtained in the same manner as in Example B-2 above, except that the anti-warp layer was used as the anti-foaming layer.
[実施例C-4]
 発泡防止層として、膜厚100μmのランダムポリプロピレンを用いた以外は、上記実施例B-1と同様にして封止部材積層体を得た。
[Example C-4]
A sealing member laminate was obtained in the same manner as in Example B-1 above, except that random polypropylene having a thickness of 100 μm was used as the anti-foaming layer.
[実施例C-5]
 反り防止層を発泡防止層として用いた以外は、上記比較例B-2と同様にして封止部材積層体を得た。
[Example C-5]
A sealing member laminate was obtained in the same manner as in Comparative Example B-2 above, except that the anti-warp layer was used as the anti-foaming layer.
[比較例C-1]
 比較例B-1と同様にして封止部材積層体を得た。
[Comparative Example C-1]
A sealing member laminate was obtained in the same manner as in Comparative Example B-1.
[評価法]
 弾性率、融点、および発泡試験は、上記「B.第1実施態様および第2実施態様の実施例」と同様にして行った。
 結果を、表4に示す。
[Evaluation method]
Elastic modulus, melting point, and foaming test were performed in the same manner as in "B. Examples of first and second embodiments" above.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 すなわち、本開示においては、以下の発明を提供できる。
[1]発光ダイオード素子を封止するための封止部材と、前記封止部材の片方の面側に配置された反り防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、前記反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、面発光装置用封止部材シート。
[2]前記封止部材の厚みが、50μm以上800μm以下である、[1]に記載の面発光装置用封止部材シート。
[3]前記封止部材が、熱可塑性樹脂を有する、[1]または[2]に記載の面発光装置用封止部材シート。
[4]前記封止部材が、密度0.870g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂として有する、[1]から[3]までのいずれかに記載の面発光装置用封止部材シート。
[5]前記封止部材が、コア層と、前記コア層の少なくとも一方の面側に配置されたスキン層とを有する、[1]から[4]までのいずれかに記載の面発光装置用封止部材シート。
[6]前記コア層と前記スキン層とは、ベース樹脂として含まれる熱可塑性樹脂の融点が異なる、[5]に記載の面発光装置用封止部材シート。
[7]前記封止部材は、前記コア層のベース樹脂として、融点が90℃以上120℃以下の熱可塑性樹脂を有する、[6]または[7]に記載の面発光装置用封止部材シート。
[8]前記封止部材における前記コア層は、密度0.900g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とし、前記スキン層は、密度0.875g/cm以上0.910g/cm以下であって、前記コア層用のベース樹脂よりも低密度のポリエチレン系樹脂をベース樹脂とする、[5]から[7]までのいずれかに記載の面発光装置用封止部材シート。
[9]発光ダイオード素子を封止するための封止部材と、前記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、前記発泡防止層を構成する材料の弾性率が、500MPa以上である、面発光装置用封止部材シート。
[10]発光ダイオード素子を封止するための封止部材と、前記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、前記発泡防止層を構成する材料の融点が、140℃以上である、面発光装置用封止部材シート。
[11]支持基板、および前記支持基板の片側の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、前記発光ダイオード基板の前記発光ダイオード素子側の面に配置され、前記発光ダイオード素子を封止する封止部材と、前記封止部材の前記発光ダイオード基板とは反対側の面に配置された反り防止層と、前記反り防止層の前記発光ダイオード基板とは反対の面に配置された拡散部材と、を有する面発光装置であって、前記封止部材は、ヘイズ値が4%以上であり、厚みが前記発光ダイオード素子の厚みより厚く、前記反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、面発光装置。
[12]支持基板、および前記支持基板の一方の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、前記発光ダイオード基板の前記発光ダイオード素子側の面に配置され、前記発光ダイオード素子を封止する封止部材と、前記封止部材の前記発光ダイオード基板とは反対の面に配置された拡散部材と、前記発光ダイオード基板の前記発光ダイオード素子とは反対側の面に配置された反り防止層と、を有する面発光装置であって、前記封止部材は、ヘイズ値が4%以上であり、厚みが前記発光ダイオード素子の厚みより厚く、前記反り防止層を構成する材料の線膨張係数が、前記封止部材を構成する材料の線膨張係数と同等もしくは大きい、面発光装置。
[13]前記封止部材の厚みが、50μm以上800μm以下である、[11]または[12]に記載の面発光装置。
[14]前記封止部材が、熱可塑性樹脂を有する、[11]から[13]までのいずれかに記載の面発光装置。
[15]前記封止部材が、密度0.870g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂として有する、[11]から[14]までのいずれかに記載の面発光装置。
[16]前記封止部材が、コア層と、前記コア層の少なくとも一方の面側に配置されたスキン層とを有する、[11]から[15]までのいずれかに記載の面発光装置。
[17]前記コア層と前記スキン層とは、ベース樹脂として含まれる熱可塑性樹脂の融点が異なる、[16]に記載の面発光装置。
[18]前記封止部材は、前記コア層のベース樹脂として、融点が90℃以上120℃以下の熱可塑性樹脂を有する、[16]または[17に記載の面発光装置。
[19]前記封止部材における前記コア層は、密度0.900g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とし、前記スキン層は、密度0.875g/cm以上0.910g/cm以下であって、前記コア層用のベース樹脂よりも低密度のポリエチレン系樹脂をベース樹脂とする、[16]から[18]までのいずれかに記載の面発光装置。
[20]表示パネルと、前記表示パネルの背面に配置された、[11]から[19]までのいずれかに記載の面発光装置を備える、表示装置。
[21][11]に記載された面発光装置の製造方法であって、前記反り防止層、前記封止部材、および前記発光ダイオード素子が封止部材側となるように配置された前記発光ダイオード基板がこの順配置された積層体を準備し、前記積層体を熱圧着する工程を有する、面発光装置の製造方法。
[22][11]に記載された面発光装置の製造方法であって、前記反り防止層、および前記封止部材が積層された第1積層体を熱圧着する工程と、前記熱圧着された第1積層体の前記封止部材側の面に前記発光ダイオード素子が封止部材側となるように配置された前記発光ダイオード基板を配置した第2積層体を熱圧着する工程と、を有する、面発光装置の製造方法。
That is, the present disclosure can provide the following inventions.
[1] A surface light-emitting device for use in a surface light-emitting device, in which a sealing member for sealing a light-emitting diode element and a warp prevention layer disposed on one side of the sealing member are laminated. A surface light emitting device sealing member sheet, wherein the linear expansion coefficient of the material constituting the warp prevention layer is in the range of -15 × 10 -6 /°C or more and 10 × 10 -6 /°C or less Stopper sheet.
[2] The sealing member sheet for a surface emitting device according to [1], wherein the thickness of the sealing member is 50 μm or more and 800 μm or less.
[3] The surface emitting device sealing member sheet according to [1] or [2], wherein the sealing member contains a thermoplastic resin.
[4] The surface emission according to any one of [1] to [3], wherein the sealing member has a polyethylene-based resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. Device sealing member sheet.
[5] The surface emitting device according to any one of [1] to [4], wherein the sealing member has a core layer and a skin layer arranged on at least one side of the core layer. Sealing member sheet.
[6] The surface emitting device sealing member sheet according to [5], wherein the core layer and the skin layer have different melting points of thermoplastic resins contained as base resins.
[7] The surface emitting device sealing member sheet according to [6] or [7], wherein the sealing member has a thermoplastic resin having a melting point of 90° C. or higher and 120° C. or lower as a base resin of the core layer. .
[8] The core layer of the sealing member is made of polyethylene resin having a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more. The surface emitting device according to any one of [5] to [7], wherein the base resin is a polyethylene-based resin having a density of 0.910 g/cm 3 or less and a density lower than that of the base resin for the core layer. Sealing member sheet.
[9] A surface light-emitting device for use in a surface light-emitting device, in which a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated. A sealing member sheet for a surface light-emitting device, wherein the elastic modulus of the material constituting the anti-foaming layer is 500 MPa or more.
[10] A surface light-emitting device for use in a surface light-emitting device, in which a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated. A sealing member sheet for a surface light-emitting device, wherein the melting point of the material constituting the anti-foaming layer is 140° C. or higher.
[11] A light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate; A sealing member for sealing, a warp prevention layer disposed on a surface of the sealing member opposite to the light emitting diode substrate, and a surface of the warp prevention layer disposed on a surface opposite to the light emitting diode substrate and a diffusion member, wherein the sealing member has a haze value of 4% or more, a thickness greater than the thickness of the light emitting diode element, and a linear expansion of a material constituting the warp prevention layer. A surface light-emitting device having a coefficient in the range of -15×10 -6 /°C to 10×10 -6 /°C.
[12] A light-emitting diode substrate having a support substrate and a light-emitting diode element arranged on one surface side of the support substrate; A sealing member for sealing, a diffusion member arranged on the surface of the sealing member opposite to the light emitting diode substrate, and a warp arranged on the surface of the light emitting diode substrate opposite to the light emitting diode element a prevention layer, wherein the sealing member has a haze value of 4% or more, a thickness greater than the thickness of the light emitting diode element, and a linear expansion of a material constituting the warp prevention layer. A surface light-emitting device having a coefficient equal to or greater than a linear expansion coefficient of a material forming the sealing member.
[13] The surface emitting device according to [11] or [12], wherein the sealing member has a thickness of 50 μm or more and 800 μm or less.
[14] The surface emitting device according to any one of [11] to [13], wherein the sealing member contains a thermoplastic resin.
[15] The surface emitting light according to any one of [11] to [14], wherein the sealing member has a polyethylene-based resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin. Device.
[16] The surface emitting device according to any one of [11] to [15], wherein the sealing member has a core layer and a skin layer arranged on at least one side of the core layer.
[17] The surface emitting device according to [16], wherein the core layer and the skin layer have different melting points of thermoplastic resins contained as base resins.
[18] The surface emitting device according to [16] or [17], wherein the sealing member has a thermoplastic resin having a melting point of 90°C or higher and 120°C or lower as a base resin of the core layer.
[19] The core layer of the sealing member is made of polyethylene resin having a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more. The surface emitting device according to any one of [16] to [18], wherein the base resin is a polyethylene-based resin having a density of 0.910 g/cm 3 or less and a density lower than that of the base resin for the core layer.
[20] A display device comprising a display panel and the surface emitting device according to any one of [11] to [19] arranged behind the display panel.
[21] The method for manufacturing a surface emitting device according to [11], wherein the warpage prevention layer, the sealing member, and the light emitting diode element are arranged so as to face the sealing member side. A method of manufacturing a surface emitting device, comprising the steps of: preparing a laminate in which substrates are arranged in this order; and thermocompression bonding the laminate.
[22] The method for manufacturing a surface emitting device according to [11], comprising: thermocompression bonding a first laminate in which the warpage prevention layer and the sealing member are laminated; a step of thermocompression bonding a second laminate in which the light-emitting diode substrate arranged so that the light-emitting diode element is on the sealing member side of the first laminate is placed on the surface of the first laminate on the sealing member side; A method for manufacturing a surface emitting device.
 1、10 … 面発光装置
 2 … 支持基板
 3 … LED素子
 4 … LED基板
 5 … 封止部材
 6 … 拡散部材
 7 … 反り防止層
100 … 表示装置
DESCRIPTION OF SYMBOLS 1, 10... Surface-emitting device 2... Support substrate 3... LED element 4... LED substrate 5... Sealing member 6... Diffusion member 7... Warpage prevention layer 100... Display device

Claims (22)

  1.  発光ダイオード素子を封止する封止部材と、
     前記封止部材上に配置され、線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、反り防止層と、
    を有する、面発光装置用封止部材シート。
    a sealing member that seals the light-emitting diode element;
    A warp prevention layer disposed on the sealing member and having a coefficient of linear expansion in the range of −15×10 −6 /° C. or more and 10×10 −6 /° C. or less;
    A sealing member sheet for a surface emitting device.
  2.  前記封止部材の厚みが、50μm以上800μm以下である、請求項1に記載の面発光装置用封止部材シート。 The sealing member sheet for a surface emitting device according to claim 1, wherein the thickness of the sealing member is 50 µm or more and 800 µm or less.
  3.  前記封止部材が、熱可塑性樹脂を有する、請求項1に記載の面発光装置用封止部材シート。 The sealing member sheet for a surface emitting device according to claim 1, wherein the sealing member contains a thermoplastic resin.
  4.  前記封止部材が、密度0.870g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂として有する、請求項1に記載の面発光装置用封止部材シート。 The sealing member sheet for a surface emitting device according to claim 1, wherein the sealing member has a polyethylene resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin.
  5.  前記封止部材が、コア層と、前記コア層の少なくとも一方の面側に配置されたスキン層とを有する、請求項1に記載の面発光装置用封止部材シート。 The sealing member sheet for a surface emitting device according to claim 1, wherein the sealing member has a core layer and a skin layer arranged on at least one side of the core layer.
  6.  前記コア層と前記スキン層とは、ベース樹脂として含まれる熱可塑性樹脂の融点が異なる、請求項5に記載の面発光装置用封止部材シート。 The sealing member sheet for a surface emitting device according to claim 5, wherein the core layer and the skin layer have different melting points of the thermoplastic resin contained as the base resin.
  7.  前記封止部材は、前記コア層のベース樹脂として、融点が90℃以上120℃以下の熱可塑性樹脂を有する、請求項6に記載の面発光装置用封止部材シート。 The surface emitting device sealing member sheet according to claim 6, wherein the sealing member has a thermoplastic resin having a melting point of 90°C or higher and 120°C or lower as a base resin of the core layer.
  8.  前記封止部材における前記コア層は、密度0.900g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とし、前記スキン層は、密度0.875g/cm以上0.910g/cm以下であって、前記コア層用のベース樹脂よりも低密度のポリエチレン系樹脂をベース樹脂とする、請求項5に記載の面発光装置用封止部材シート。 The core layer in the sealing member uses a polyethylene resin with a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more and 0.910 g. /cm 3 or less, and the base resin is a polyethylene-based resin having a density lower than that of the base resin for the core layer.
  9.  発光ダイオード素子を封止するための封止部材と、前記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、
     前記発泡防止層を構成する材料の弾性率が、500MPa以上である、面発光装置用封止部材シート。
    A surface light-emitting device sealing member for use in a surface light-emitting device, wherein a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated. a sheet,
    A sealing member sheet for a surface light-emitting device, wherein the elastic modulus of the material constituting the anti-foaming layer is 500 MPa or more.
  10.  発光ダイオード素子を封止するための封止部材と、前記封止部材の片方の面側に配置された発泡防止層とが積層されてなり、面発光装置に用いられる面発光装置用封止部材シートであって、
     前記発泡防止層を構成する材料の融点が、140℃以上である、面発光装置用封止部材シート。
    A surface light-emitting device sealing member for use in a surface light-emitting device, wherein a sealing member for sealing a light-emitting diode element and an anti-foaming layer disposed on one side of the sealing member are laminated. a sheet,
    A sealing member sheet for a surface light-emitting device, wherein the melting point of the material constituting the anti-foaming layer is 140° C. or higher.
  11.  支持基板、および前記支持基板の片側の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、
     前記発光ダイオード基板の前記発光ダイオード素子側の面に配置され、前記発光ダイオード素子を封止する封止部材と、
     前記封止部材の前記発光ダイオード基板とは反対側の面に配置された反り防止層と、
     前記反り防止層の前記発光ダイオード基板とは反対側の面に配置された拡散部材と、を有する面発光装置であって、
     前記封止部材は、ヘイズ値が4%以上であり、厚みが前記発光ダイオード素子の厚みより厚く、
     前記反り防止層を構成する材料の線膨張係数が、-15×10-6/℃以上10×10-6/℃以下の範囲内である、面発光装置。
    a light-emitting diode substrate having a support substrate and a light-emitting diode element disposed on one side of the support substrate;
    a sealing member disposed on the surface of the light emitting diode substrate on the side of the light emitting diode element and sealing the light emitting diode element;
    a warp prevention layer disposed on a surface of the sealing member opposite to the light emitting diode substrate;
    and a diffusion member disposed on a surface of the warp prevention layer opposite to the light emitting diode substrate, the surface emitting device comprising:
    The sealing member has a haze value of 4% or more and a thickness greater than the thickness of the light emitting diode element,
    A planar light-emitting device, wherein the coefficient of linear expansion of the material forming the anti-warpage layer is in the range of -15×10 -6 /°C to 10×10 -6 /°C.
  12.  支持基板、および前記支持基板の一方の面側に配置された発光ダイオード素子を有する発光ダイオード基板と、
     前記発光ダイオード基板の前記発光ダイオード素子側の面に配置され、前記発光ダイオード素子を封止する封止部材と、
     前記封止部材の前記発光ダイオード基板とは反対の面に配置された拡散部材と、
     前記発光ダイオード基板の前記発光ダイオード素子とは反対側の面に配置された反り防止層と、を有する面発光装置であって、
     前記封止部材は、ヘイズ値が4%以上であり、厚みが前記発光ダイオード素子の厚みより厚く、
     前記反り防止層を構成する材料の線膨張係数が、前記封止部材を構成する材料の線膨張係数と同等もしくは大きい、面発光装置。
    a light-emitting diode substrate having a support substrate and light-emitting diode elements disposed on one surface of the support substrate;
    a sealing member disposed on the surface of the light emitting diode substrate on the side of the light emitting diode element and sealing the light emitting diode element;
    a diffusion member disposed on a surface of the sealing member opposite to the light emitting diode substrate;
    and a warp prevention layer disposed on the surface of the light emitting diode substrate opposite to the light emitting diode element, the surface emitting device comprising:
    The sealing member has a haze value of 4% or more and a thickness greater than the thickness of the light emitting diode element,
    A surface light-emitting device, wherein a coefficient of linear expansion of a material forming the anti-warp layer is equal to or greater than a coefficient of linear expansion of a material forming the sealing member.
  13.  前記封止部材の厚みが、50μm以上800μm以下である、請求項11または請求項12に記載の面発光装置。 The surface emitting device according to claim 11 or 12, wherein the sealing member has a thickness of 50 µm or more and 800 µm or less.
  14.  前記封止部材が、熱可塑性樹脂を有する、請求項11または請求項12に記載の面発光装置。 The surface emitting device according to claim 11 or 12, wherein the sealing member contains a thermoplastic resin.
  15.  前記封止部材が、密度0.870g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂として有する、請求項11または請求項12に記載の面発光装置。 13. The surface emitting device according to claim 11, wherein said sealing member has a polyethylene resin having a density of 0.870 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin.
  16.  前記封止部材が、コア層と、前記コア層の少なくとも一方の面側に配置されたスキン層とを有する、請求項11または請求項12に記載の面発光装置。 The surface emitting device according to claim 11 or 12, wherein the sealing member has a core layer and a skin layer arranged on at least one side of the core layer.
  17.  前記コア層と前記スキン層とは、ベース樹脂として含まれる熱可塑性樹脂の融点が異なる、請求項16に記載の面発光装置。 The surface emitting device according to claim 16, wherein said core layer and said skin layer have different melting points of thermoplastic resins contained as base resins.
  18.  前記封止部材は、前記コア層のベース樹脂として、融点が90℃以上120℃以下の熱可塑性樹脂を有する、請求項16に記載の面発光装置。 17. The surface emitting device according to claim 16, wherein the sealing member has a thermoplastic resin having a melting point of 90° C. or higher and 120° C. or lower as a base resin of the core layer.
  19.  前記封止部材における前記コア層は、密度0.900g/cm以上0.930g/cm以下のポリエチレン系樹脂をベース樹脂とし、前記スキン層は、密度0.875g/cm以上0.910g/cm以下であって、前記コア層用のベース樹脂よりも低密度のポリエチレン系樹脂をベース樹脂とする、請求項16に記載の面発光装置。 The core layer in the sealing member uses a polyethylene resin with a density of 0.900 g/cm 3 or more and 0.930 g/cm 3 or less as a base resin, and the skin layer has a density of 0.875 g/cm 3 or more and 0.910 g. /cm 3 or less, and the surface emitting device according to claim 16, wherein the base resin is a polyethylene-based resin having a density lower than that of the base resin for the core layer.
  20.  表示パネルと、
     前記表示パネルの背面に配置された、請求項11または請求項12に記載の面発光装置を備える、表示装置。
    a display panel;
    A display device comprising the surface emitting device according to claim 11 or 12 arranged behind the display panel.
  21.  請求項11に記載された面発光装置の製造方法であって、
     前記反り防止層、前記封止部材、および前記発光ダイオード素子が封止部材側となるように配置された前記発光ダイオード基板がこの順に配置された積層体を準備し、前記積層体を熱圧着する工程を有する、面発光装置の製造方法。
    A method for manufacturing a surface emitting device according to claim 11,
    A laminate is prepared in which the warpage prevention layer, the sealing member, and the light-emitting diode substrate arranged so that the light-emitting diode element is on the side of the sealing member are arranged in this order, and the laminate is thermocompression bonded. A method for manufacturing a surface emitting device, comprising steps.
  22.  請求項11に記載された面発光装置の製造方法であって、
     前記反り防止層、および前記封止部材が積層された第1積層体を熱圧着する工程と、
     前記熱圧着された第1積層体の前記封止部材側の面に前記発光ダイオード素子が封止部材側となるように配置された前記発光ダイオード基板を配置した第2積層体を熱圧着する工程と、
     を有する、面発光装置の製造方法。
    A method for manufacturing a surface emitting device according to claim 11,
    a step of thermocompression bonding a first laminate in which the warpage prevention layer and the sealing member are laminated;
    a step of thermocompression bonding a second laminated body in which the light emitting diode substrate arranged so that the light emitting diode elements are on the sealing member side is arranged on the surface of the thermocompressed first laminated body on the side of the sealing member; and,
    A method for manufacturing a surface emitting device, comprising:
PCT/JP2022/037769 2021-10-11 2022-10-11 Surface emission device, display device, method for manufacturing surface emission device, and sealing member sheet for surface emission device WO2023063285A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023517710A JPWO2023063285A1 (en) 2021-10-11 2022-10-11
JP2023187498A JP2024016138A (en) 2021-10-11 2023-11-01 Surface emitting device, display device, method for manufacturing surface emitting device, and sealing member sheet for surface emitting device
JP2023187499A JP2024020269A (en) 2021-10-11 2023-11-01 Surface emitting device, display device, method for manufacturing surface emitting device, and sealing member sheet for surface emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021166678 2021-10-11
JP2021-166678 2021-10-11
JP2022-068297 2022-04-18
JP2022068297 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023063285A1 true WO2023063285A1 (en) 2023-04-20

Family

ID=85987768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037769 WO2023063285A1 (en) 2021-10-11 2022-10-11 Surface emission device, display device, method for manufacturing surface emission device, and sealing member sheet for surface emission device

Country Status (3)

Country Link
JP (3) JPWO2023063285A1 (en)
TW (1) TW202329501A (en)
WO (1) WO2023063285A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125991A (en) * 2010-12-15 2012-07-05 Nitto Denko Corp Laminate
WO2019225761A1 (en) * 2018-05-24 2019-11-28 大日本印刷株式会社 Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
JP2020035738A (en) * 2018-08-28 2020-03-05 隆達電子股▲ふん▼有限公司 Light emitting device and backlight module
WO2021200035A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Optical semiconductor device sealing sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125991A (en) * 2010-12-15 2012-07-05 Nitto Denko Corp Laminate
WO2019225761A1 (en) * 2018-05-24 2019-11-28 大日本印刷株式会社 Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
JP2020035738A (en) * 2018-08-28 2020-03-05 隆達電子股▲ふん▼有限公司 Light emitting device and backlight module
WO2021200035A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Optical semiconductor device sealing sheet

Also Published As

Publication number Publication date
TW202329501A (en) 2023-07-16
JP2024016138A (en) 2024-02-06
JPWO2023063285A1 (en) 2023-04-20
JP2024020269A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2021002247A1 (en) Diffusion member, laminate, diffusion member set, led backlight, and display device
JP2024036355A (en) Diffusion member, laminate, set of diffusion member, LED backlight and display device
JP7327610B2 (en) Surface light-emitting device, display device, sealing member sheet for surface light-emitting device, and method for manufacturing surface light-emitting device
WO2023063285A1 (en) Surface emission device, display device, method for manufacturing surface emission device, and sealing member sheet for surface emission device
JP7367897B1 (en) Surface emitting device and display device
JP7443682B2 (en) Backlight module and display device
JP2017199736A (en) Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023517710

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880980

Country of ref document: EP

Kind code of ref document: A1