WO2023063185A1 - Composite metal material and production method therefor - Google Patents

Composite metal material and production method therefor Download PDF

Info

Publication number
WO2023063185A1
WO2023063185A1 PCT/JP2022/037265 JP2022037265W WO2023063185A1 WO 2023063185 A1 WO2023063185 A1 WO 2023063185A1 JP 2022037265 W JP2022037265 W JP 2022037265W WO 2023063185 A1 WO2023063185 A1 WO 2023063185A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite metal
core
metal material
pipe
manufacturing
Prior art date
Application number
PCT/JP2022/037265
Other languages
French (fr)
Japanese (ja)
Inventor
裕 宇都宮
大將 谷口
丈二 宮本
良 松本
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2023554440A priority Critical patent/JPWO2023063185A1/ja
Publication of WO2023063185A1 publication Critical patent/WO2023063185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals

Definitions

  • the present invention relates to a composite metal material and a method for producing the same, and more particularly to a method for efficiently producing a composite metal material having desired properties in a short time by extrusion, and a composite metal material produced by the above production method. .
  • a clad material is attracting attention as a composite metal material (Patent Document 1).
  • the material properties of the clad material can be changed by changing the types and ratios of the constituent materials, and it is possible to relatively easily produce a material having a combination of properties not found in a single material.
  • the clad material there is a rolled type that is produced by laminating and rolling flat materials and bonding the materials together, and a billet (intermediate material) that is made by inserting a core material into a sheath (tube material).
  • a billet intermediate material
  • extrusion in which the sheath and core and/or multiple core members are joined by extrusion.
  • the rolling type requires large-scale equipment for laminating and rolling flat materials, but the degree of processing that can be applied at one time is small, and it cannot be said that productivity is high.
  • the extrusion type generally does not require as large equipment as the rolling type, and the degree of processing is large, so the process is short and productivity is high. Moreover, since high pressure acts, it is also advantageous in terms of bonding.
  • an object of the present invention is to provide a technique for appropriately arranging dissimilar metal materials and manufacturing a composite metal material with desired properties in a short time and with high accuracy in properties by extrusion.
  • the core material inserted inside the pipe material is a plurality of core materials,
  • the cross-sectional shape and cross-sectional dimensions of the plurality of core materials are all the same, At least one core material among the plurality of core materials is a core material of a material type different from the material type of the pipe material,
  • a composite metal material having desired characteristics is manufactured by extruding after manufacturing the intermediate material by adjusting the content of the combination of the pipe material and the plurality of core materials. manufacturing method.
  • the invention according to claim 2 The contents of the combination of the pipe material and the plurality of core materials are the material type of the pipe material, the number of the core materials, the material type of each of the plurality of core materials, and each of the plurality of core materials. 2. The method of manufacturing a composite metal material according to claim 1, wherein the content of combination with the insertion position into the pipe material.
  • the invention according to claim 4 The manufacturing of the composite metal material according to any one of claims 1 to 3, wherein the number of the plurality of core members is equal to or greater than the number of desired properties of the composite metal material. The method.
  • the core material inserted inside the tubular material is a single core material,
  • the material type of the core material is a material type different from the material type of the tube material,
  • the invention according to claim 9, 9.
  • the intermediate material is manufactured by sequentially inserting the core materials of a plurality of material types shorter than the length of the pipe into the same cross-sectional position inside the pipe. 1.
  • the invention according to claim 12 Based on the characteristics of the pipe material and the characteristics of the core material, the characteristics of the composite metal material obtained by combining the pipe material and the core material are predicted, and the composite metal material with desired characteristics is obtained by referring to the predicted contents. After determining the configuration of the intermediate material necessary to obtain the intermediate material, the intermediate material is produced based on the determined configuration, and then extruded to produce a composite metal material with desired characteristics.
  • the invention according to claim 13 Analyzing the characteristics of the composite metal material manufactured based on the method for manufacturing a composite metal material according to any one of claims 1 to 12, and analyzing the obtained composite metal material based on the contents of the analysis It is possible to manufacture a composite metal material having desired characteristics by changing the combination of the pipe material and the core material used in the production, producing the intermediate material based on the changed content, and then extruding it. A method for producing a composite metal material according to any one of claims 1 to 12.
  • the invention according to claim 14 Preparing in advance a plurality of core materials having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types, Using a plurality of core materials prepared in advance, by appropriately changing one or more of the material type, insertion position, and number of insertion of the core materials, the content of the combination of the pipe material and the core material is adjusted. 14.
  • the method for manufacturing a composite metal material according to any one of claims 1 to 13, wherein the composite metal material having desired properties is manufactured by extruding the intermediate material after manufacturing the intermediate material. is.
  • the invention according to claim 15 Preparing in advance a plurality of pipe members having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types, Using a plurality of previously prepared pipe materials and appropriately changing the material type of the pipe materials to adjust the content of the combination of the pipe materials and the core material to prepare the intermediate material, and then extruding. 15.
  • FIG. 1 is a diagram showing an example of a manufacturing flow of a composite metal material according to one embodiment of the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram conceptually showing a manufacturing method of a multifilamentary composite metal material according to an embodiment of the present invention
  • 1 is a cross-sectional view showing a configuration example of an intermediate material in one embodiment of the present invention
  • FIG. 1 is a longitudinal sectional view showing the configuration of an extrusion device used in one embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing an example of a cut surface of a sample after extrusion of the present invention
  • FIG. 4 is a diagram showing experimental results of product density in Example 1 of the present invention.
  • FIG. 2 is a diagram showing experimental results of yield strength of a product in Example 1 of the present invention
  • FIG. 2 is a diagram showing experimental results of the electrical resistivity of the product in Example 1 of the present invention
  • FIG. 4 is a diagram illustrating a combination of material types for the core material in the example of the present invention
  • It is a figure showing (a) Al, Fe, Cu and (b) Mg, Ag, Ti, each density, yield strength, and electrical resistivity.
  • It is a figure which shows the cut surface of each sample after extrusion in Example 2 of this invention. It is the figure which compared the measurement result in the Example of this invention.
  • the present inventors first examined the conditions under which uniform deformation is possible. As a result, it was found that uniform deformation can be achieved by using a soft core material whose deformation resistance is lower than that of the tube material and by preventing relative slippage at the interface between the core material and the tube material. (Daiso Taniguchi et al.: Copper and Copper Alloys, Vol. 60, No. 1, 280-284)
  • the present inventors studied a method of improving the prediction accuracy so that a composite metal material with properties as predicted can be obtained, even if only a little, during manufacturing through trial and error.
  • pipes have various conditions such as the diameter, length, and material of the pipes.
  • the core material has various conditions such as thickness, length, material, and number, it is not easy to improve the prediction accuracy.
  • the inventors of the present invention have found that after manufacturing a composite metal material, as a method of making necessary corrections in a short time, the cross-sectional shape and cross-sectional dimensions of the core material are all made the same, and the previously manufactured composite Based on the characteristics of the metal material, the inventors came up with a method of replacing the core material in a short time and changing the material and arrangement position of the core material in a short time.
  • the composite metal material can be manufactured repeatedly in a short period of time.
  • the present invention is a technique that can meet such a strong demand in recent years, and its effect is great.
  • the prediction accuracy is improved.
  • the composite metal material is manufactured by predicting the characteristics of the composite metal material from the characteristics of the intermediate material and setting the manufacturing conditions at the stage where the intermediate material is manufactured without manufacturing the composite metal material in advance It is possible to exhibit the effects of the present invention.
  • Main Constituent Elements of the Present Invention are as follows. [1] When there are a plurality of core members First, the case where there are a plurality of core members in the cross section of the pipe member will be described.
  • a plurality of core members are inserted inside the pipe member.
  • the cross-sectional shape and cross-sectional dimensions of the plurality of core members are all the same.
  • at least one core member is of a material type different from that of the tube member.
  • the intermediate material is extruded to manufacture a composite metal material having desired properties.
  • all of the core materials have the same cross-sectional shape and cross-sectional dimensions, and the intermediate material is manufactured by appropriately replacing the plurality of core materials and adjusting the combination of the pipe material and the plurality of core materials. Therefore, it is possible to easily combine core materials of a plurality of types of materials without changing the shape and dimensions of the cross section of the intermediate material in the process of manufacturing the intermediate material. Also, the characteristics can be easily predicted.
  • the properties of the composite metal material are predicted based on the physical properties of the tube material and the core material, and by referring to the predicted content and determining the composition of the intermediate material, the composite metal material with the desired properties can be produced efficiently. Generally, it can be manufactured with high accuracy. Further, as described above, in the case of the present invention, since the cross-sectional shape and cross-sectional dimensions of the core material are all the same, it is possible to refer to the predicted content with improved accuracy.
  • rule of mixture compound rule
  • prediction by machine learning may also be used.
  • the cross-sectional shape and cross-sectional dimensions of the plurality of core materials are all the same, it is easy to analyze the characteristics, and even if a composite metal material with desired characteristics cannot be obtained, It is also possible to easily analyze the factors that caused the difference between the predicted value and the measured value in .
  • the pipe materials and core materials that are prepared in advance can be prepared efficiently because they have the same cross-sectional shape, cross-sectional dimensions, and length.
  • the material types of the tube materials and the core materials It is possible to quickly change the combination of the material type, insertion position, number of insertions, etc. in a short time. As a result, a composite metal material having desired properties can be produced in a short period of time, improving productivity.
  • Insertion position of core material It is preferable that the insertion positions of a plurality of core materials are symmetrical with respect to the center of the pipe material. Since the tube member is usually cylindrical, it is preferable to insert a plurality of core members concentrically around the same position as the center of the tube member. This suppresses the occurrence of non-uniform deformation in the extrusion process. In addition, a composite metal material with uniform properties can be easily produced.
  • the number of core materials is preferably equal to or greater than the number of desired properties of the composite metal material. For example, when three characteristics of density, yield strength, and electrical resistivity are specified as a desired composite metal material, at least three types of core materials, such as Al, Fe, and Cu, are used as the core material. is preferred. This makes it easier to respond to each desired characteristic.
  • the properties of composite metal materials are generally determined by the law of mixture, and the regression formula for determining each property is determined by a regression formula that uses the individual physical properties of the material types that make up the composite metal material and their ratios as factors. be done. Therefore, in order to achieve highly accurate optimization, it is necessary to increase the number of factors used in the design. can be optimized.
  • the cross-sectional shape of the core material is preferably circular or polygonal.
  • the core material has a simple cross-sectional shape and is easy to manufacture.
  • the cross-sectional shape of the core material is preferably circular or polygonal. Polygons include triangles, quadrilaterals, hexagons, and the like. In the case of a polygon, it is preferably a regular polygon.
  • tube material with one end closed As the tube material, it is preferable to use a tube material with one end closed.
  • Wire rods are preferable as the core material. Wire rods also have the advantage of being easy to manufacture and readily available from the outside. As the wire, a round wire is particularly preferable, but a wire having a triangular, quadrangular, hexagonal cross section, or the like may also be used.
  • (10) Deformation resistance of tube material As the tube material, it is preferable to use a tube material whose deformation resistance is greater than the deformation resistance of at least one of the core members.
  • the extrusion process may be cold extrusion process or hot extrusion process.
  • Cold extrusion processing does not require material temperature control, so production efficiency is high. Moreover, when hot extruding a composite material consisting of a large number of materials, such as a multifilamentary material, the temperature dependence of the deformation resistance of each material differs depending on the type of material, so that each material does not always deform uniformly. In this regard, cold extrusion is preferable as a method for extruding a multifilamentary material because it is not affected by temperature dependence of deformation resistance.
  • hot extrusion can be used with a small extrusion force to achieve a large degree of processing, that is, a large processing ratio.
  • FIG. 1 is a diagram showing an example of a production flow of a composite metal material according to this embodiment.
  • the external dimensions of the intermediate material are selected, and the extruder, extrusion ratio, speed, lubrication, die angle, etc. are set to determine the extrusion conditions.
  • composition of the intermediate material based on the specified characteristics and the outer diameter of the intermediate material, selection of the inner diameter of the tube material, selection of the wire diameter and number of insertions of the core material, selection of the material type of the tube material and the core material, And the insertion position (arrangement position) of the core material is determined to determine the configuration of the intermediate material.
  • the cross-sectional shape and cross-sectional dimensions of the core material are all the same, it is easy to predict the characteristics of the composite metal material and whether uniform deformation without breakage is possible.
  • the intermediate material is assembled based on the configuration of the intermediate material determined above. After that, the intermediate materials are extruded and joined to produce a composite metal material.
  • the core material F1 of the first layer is made of aluminum (Al)
  • the core material F2 of the second layer is made of iron (Fe)
  • the core material F3 of the third layer is made of copper (Cu).
  • the area ratio of the tube material after extrusion f s is the number of cores
  • d0 is the outer diameter (mm) of the sheath (pipe)
  • d is the inner diameter (mm) of the sheath (pipe)
  • df is the diameter of the core (mm).
  • f s (d 0 2 ⁇ d i 2 )/(d 0 2 ⁇ d i 2 +nd f 2 )
  • f c nd f 2 /(d 0 2 ⁇ d i 2 +nd f 2 )
  • f f d f 2 /(d 0 2 ⁇ d i 2 +nd f 2 )
  • the density ⁇ of the composite metal material is such that ⁇ s is the density of the tube material, ⁇ c is the density of the core material, fc is the area ratio of one core material, ⁇ Al , ⁇ Fe , ⁇ Cu ,
  • the densities of Al, Fe, and Cu, n Al , n Fe , and n Cu are respectively the numbers of the Al core material, the Fe core material, and the Cu core material, they are predicted by the following formulas.
  • the electrical resistivity ⁇ of the composite metal material is defined as the electrical resistivity of the tube material, ⁇ Al , ⁇ Fe , ⁇ Cu , assuming that the tube material and all the core materials are connected in parallel.
  • are the electrical resistivities of Al, Fe, and Cu, respectively, are predicted by the following equations. 1/ ⁇ fs / ⁇ s +( nAl / ⁇ Al + nFe / ⁇ Fe + nCu / ⁇ Cu ) fff
  • FIG. 2 is a view conceptually showing a method of manufacturing a multifilamentary composite metal material according to an embodiment of the present invention.
  • C is a core (core material)
  • S is a sheath (tube material)
  • IM is an intermediate material
  • P is a composite metal material as a product.
  • D is the diameter of the die and also the outer diameter of the composite metal material.
  • the core (core material) C is composed of three types of core materials with different material types, that is, a first layer core material F 1 , a second layer core material F 2 and a third layer core material F 3 in order from the center. Consists of For example, the core material F1 of the first layer is made of aluminum (Al), the core material F2 of the second layer is made of iron (Fe), and the core material F3 of the third layer is made of copper (Cu).
  • the intermediate material is assembled by inserting each core material into the pipe material.
  • FIG. 3 is a cross-sectional view showing a configuration example of the intermediate material IM.
  • the sheath (tubing material) S has a cylindrical shape, d0 is the outer diameter (mm) of the sheath (tubing material), and d i is the inner diameter (mm).
  • the core material has a circular cross section, and the core material F 1 of the first layer, the core material F 2 of the second layer, and the core material F 3 of the third layer all have the same diameter of d f mm.
  • the core materials are inserted in a close-packed state, and the numbers of the core material F 1 in the first layer, the core material F 2 in the second layer, and the core material F 3 in the third layer are 1 and 6, respectively. 12, which are arranged concentrically and axially symmetrically.
  • FIG. 4 is a vertical cross-sectional view showing the configuration of an extrusion device.
  • D is the die diameter (mm) and also the outer diameter of the composite metal material.
  • the intermediate material IM is inserted into the container 12, the punch 11 is lowered, and the material is passed through the die 14 and extruded to manufacture a composite metal material as a product.
  • Example 1 a multifilamentary composite metal material was produced, and the density, yield strength, and electrical resistivity were compared with the predicted values based on the prediction method described above and the measured values of the produced composite metal material. , it was evaluated whether or not a composite metal material having properties as expected could be produced by the production method of the present invention.
  • Al, Fe, and Cu are suitable materials for composite metal materials that require lightness (low density), high yield strength, and high electrical conductivity (low electrical resistivity). It was used as a core material. As a result of the experiment, as shown below, a composite metal material having excellent properties as expected was obtained.
  • Example 2 whether or not a composite metal material having excellent properties equivalent to those of the composite metal material of Al, Fe, and Cu used in Example 1 can be easily manufactured from other metals using the manufacturing method of the present invention.
  • Mg, Ag and Ti were used as core materials.
  • the density of Mg is lower than that of Al
  • the electrical conductivity of Ag is higher than that of Cu
  • the specific strength (strength/density) of Ti is higher than that of Fe. It is a combination of high-quality materials.
  • a composite metal material having excellent properties equivalent to those of a composite metal material of Al, Fe, and Cu can be easily obtained by the production method of the present invention.
  • Example 1 Composition of Materials (1) Tubing As the tubing, pure copper (C1020) having an outer diameter d 0 of 10.9 mm and a length of 35.0 mm with one end closed was used. The hole for inserting the core material had an inner diameter d i of 7.5 mm and a depth of 30 mm.
  • each core material is inserted into the pipe material and arranged is the position shown in FIG. 3 .
  • one core material F1 of the first layer is arranged in the center of the tube material
  • six core materials F2 of the second layer are arranged around the core material of the first layer
  • the core material F2 of the second layer is arranged around the first layer core material.
  • Twelve core members F3 of the third layer are arranged around the core member.
  • the combination of material types of the core material F 1 of the first layer, the core material F 2 of the second layer, and the core material F 3 of the third layer is CCC, FFF, AAA, AFC. , ACF, FAC, FCA, CAF, and CFA.
  • C, F, and A represent pure copper (Cu), pure iron (Fe), and pure aluminum (Al), respectively, and from the left, the core material F 1 of the first layer and the core of the second layer.
  • the material types of the material F 2 and the core material F 3 of the third layer are shown.
  • FCA indicates an arrangement with a first layer of pure iron (Fe), a second layer of pure copper (Cu), and a third layer of pure aluminum (Al).
  • each core material was inserted into the pipe material described above to prepare an intermediate material.
  • the prepared intermediate material is inserted into the container 12, the punch 11 is lowered, and the composite metal material is manufactured by extruding through the die 14.
  • the die a tool steel die with a hole diameter (die diameter) of 6 mm and a half angle of 60° was used.
  • the extrusion ratio er defined by the ratio of the cross-sectional area of the entire intermediate material to the area of the die hole is 3.30, and the net extrusion ratio excluding the voids in the intermediate material is 2.85. .
  • Yield Strength As the yield strength, a 0.2% yield strength obtained by axially uniaxially compressing a cylindrical test piece sampled at a position of 60 mm to 69 mm from the tip of the extruded material was used. Compression was performed at a speed of 1.0 mm/min with the end face lubricated with a Teflon sheet (registered trademark).
  • the method of manufacturing a composite metal material of the present invention is a rational manufacturing method, and by predicting the characteristics of the composite metal material, it is possible to narrow down the configuration of the intermediate material at the design stage.
  • the fabrication method of the present invention, and the prediction of properties in the present invention have been found to be sufficiently effective in optimizing material placement, ie speeding up topology optimization.
  • Example 2 a composite metal material having excellent properties equivalent to those of the composite metal material of Al, Fe, and Cu used in Example 1 can be easily produced using other metals using the production method of the present invention. Experiments were conducted using Mg, Ag, and Ti in order to confirm by experiments whether they could be produced.
  • composition of materials (1) Tubing
  • the tubing is made of pure copper (C1020) with an outer diameter d 0 of 10.9 mm and a length of 35.0 mm with one end closed, in the same manner as in Example 1, and a core material is inserted.
  • a hole having an inner diameter d i of 7.5 mm and a depth of 30 mm was provided as a hole for this purpose.
  • Example 2 Core material Pure titanium (purity 99.5%), pure magnesium (purity 99.95%), and pure silver of the same size (diameter d f 1.45 mm, length 30 mm) as in Example 1 were used as the core material. (Purity 99.99%) was prepared.
  • the combination of material types of the core material is as follows: , (b) a combination of 3 Mg, 6 Ti and 10 Ag (MTA), and (c) a combination of 1 Ti, 4 Ag and 14 Mg (TAM).
  • TMA is an example of a combination assumed to obtain characteristics equivalent to those of the FAC in Example 1, the MTA to the FCA, and the TAM to the CAF.
  • FIG. 9A shows the corresponding combinations of material types for the core materials of FAC, FCA, and CAF.
  • FIG. 10 is a diagram (radar chart) showing the density, yield strength, and electrical resistivity of (a) Al, Fe, and Cu, and (b) Mg, Ag, and Ti.
  • the density is expressed by the reciprocal of the density
  • the electrical resistivity is expressed by the reciprocal of the electrical resistivity (electrical conductivity).
  • each core material was inserted into the pipe material described above to prepare an intermediate material.
  • FIG. 11 shows a cut surface of each sample before extrusion.
  • the present invention has a great effect, but although it is an invention that does not require a complicated method, the reason why such a technology has not been developed for many years is the extrusion process.
  • research has mainly been carried out on hard core materials, in which non-uniform deformation occurs remarkably, and in the field of manufacturing technology for clad materials by extrusion, there is a practice that the arrangement of core materials should not be changed easily. This seems to have been a major factor.
  • the present inventors first investigated a method for preventing non-uniform deformation during extrusion and clarified the conditions for uniform deformation.
  • the characteristics of the previously manufactured composite metal material are analyzed, the arrangement is appropriately modified, etc., and the problem of uneven deformation in the repeated work of manufacturing the composite metal material again is resolved, and the repeated work is performed. time can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Provided is a technology whereby different types of material are appropriately arranged and a composite metal material having desired characteristics can be produced in a short time by extrusion. The production method comprises: an intermediate material creation step in which a core material is inserted inside a cylindrical tube material and an intermediate material is created; and a composite metal material production step in which the created intermediate material is extruded and a tube material and a core material and/or core materials are composited to produce a composite metal material. The core material inserted inside the tube material comprises a plurality of core materials and the cross-sectional shape of the plurality of core materials and the cross-sectional dimensions are the same for all. At least one core material among the plurality of core materials is a different type of material from the tube material. A composite metal material having the desired characteristics is produced by adjusting the combination of tube material and plurality of core materials, creating the intermediate material, and then extruding same.

Description

複合金属材料およびその製造方法Composite metal material and its manufacturing method
 本発明は、複合金属材料およびその製造方法に関し、より詳しくは、所望する特性の複合金属材料を押出し加工により短時間に効率的に製造する方法、および前記製造方法により製造された複合金属材料に関する。 TECHNICAL FIELD The present invention relates to a composite metal material and a method for producing the same, and more particularly to a method for efficiently producing a composite metal material having desired properties in a short time by extrusion, and a composite metal material produced by the above production method. .
 近年、多くの製品や部材は、単一の材料で構成されているのではなく、異種材料から構成されている。例えば、自動車の場合、鉄鋼材料、銅合金、アルミニウム合金など多種な材料が使用されている。このため、燃費や衝突安全性の向上、製造コストの低減などを目的に材料配置の最適化(トポロジー最適化)が行われている。 In recent years, many products and parts are not made of a single material, but are made of different materials. For example, in the case of automobiles, various materials such as steel materials, copper alloys, and aluminum alloys are used. For this reason, optimization of material arrangement (topology optimization) is being carried out for the purpose of improving fuel efficiency, collision safety, and reducing manufacturing costs.
 複合金属材料としてクラッド材が注目されている(特許文献1)。クラッド材は、構成する材料の種類や割合を変化させることで材料特性を変化させることができ、単一材料にはない特性の組み合わせを有する材料を比較的容易に製造することが可能である。 A clad material is attracting attention as a composite metal material (Patent Document 1). The material properties of the clad material can be changed by changing the types and ratios of the constituent materials, and it is possible to relatively easily produce a material having a combination of properties not found in a single material.
 クラッド材には、平板状の材料を積層して圧延し、材料同士を接合して製造する圧延タイプと、シース(管材)にコアとなる芯材を挿入してビレット(中間素材)を作製した後、押出し加工して、シースとコア、および/または複数の芯材同士を接合する押出しタイプがある。 For the clad material, there is a rolled type that is produced by laminating and rolling flat materials and bonding the materials together, and a billet (intermediate material) that is made by inserting a core material into a sheath (tube material). After that, there is an extrusion type in which the sheath and core and/or multiple core members are joined by extrusion.
 この場合において、圧延タイプは、平板状の材料を積層して圧延するにあたり、大型の設備が必要である一方、1回に付与できる加工度が小さく、生産性が高いとは言えない。 In this case, the rolling type requires large-scale equipment for laminating and rolling flat materials, but the degree of processing that can be applied at one time is small, and it cannot be said that productivity is high.
 一方、押出しタイプは、一般に圧延タイプほどの大型の設備を必要とすることがなく、また加工度が大きいため、プロセスが短く生産性が高い。また高い圧力が作用するため、接合の点でも有利である。 On the other hand, the extrusion type generally does not require as large equipment as the rolling type, and the degree of processing is large, so the process is short and productivity is high. Moreover, since high pressure acts, it is also advantageous in terms of bonding.
特開2013-40370号公報JP 2013-40370 A
 しかし、押出しタイプの場合、異種材料を適切と思われる位置に配置して製造し、目的とする特性の複合金属材料を短時間に得ることが困難である。 However, in the case of the extrusion type, it is difficult to produce a composite metal material with the desired characteristics by arranging dissimilar materials in appropriate positions and obtaining the desired properties in a short period of time.
 このため、異種材料、特に異種金属材料を適切と思われる位置に配置をして押出し加工により複合金属材料を製造した後、製造した複合金属材料の特性を解析して、適宜、配置替えなどを行い、再度、押出し加工により複合金属材料を製造し、その後、再度、製造した複合金属材料の特性を解析して、配置替えなどの修正を検討するという試行錯誤の繰り返しにより製造しており、所望する特性の複合金属材料を短時間に精度高く製造することが困難な状況にある。 For this reason, dissimilar materials, especially dissimilar metal materials, are arranged in appropriate positions and extruded to manufacture a composite metal material. Then, the composite metal material is manufactured again by extrusion, and then the characteristics of the manufactured composite metal material are analyzed again, and modifications such as rearrangement are considered. Therefore, it is difficult to manufacture a composite metal material with the properties of
 しかし、押出しタイプのクラッド材の場合、上記のように試行錯誤の繰り返しに多くの時間、費用を掛けても、適切な条件が決められた後は、同じ条件の下に大量の製品を長期間に亘って製造するため、試行錯誤の繰り返しに要する時間、費用は、それほど大きな問題にはならなかった。 However, in the case of extrusion-type clad materials, even if it takes a lot of time and money to repeat trial and error as described above, once the appropriate conditions are determined, a large amount of products can be manufactured under the same conditions for a long period of time. Since it is manufactured over a long period of time, the time and cost required for repeating trial and error did not pose a big problem.
 一方、今日、大量生産品ではなく、所望の特性を有する材料を、短時間にオンデマンドで適当な数量、精度高く製造することが要求される機会が増えている。しかし、このような場合に対応できる技術は今までなかった。 On the other hand, today, there are more and more occasions where it is required to manufacture materials with desired properties in short time, on demand, in suitable quantities and with high accuracy, instead of mass-produced products. However, until now, there has been no technology capable of coping with such a case.
 このため、本発明は、異種金属材料を適切に配置し、所望する特性の複合金属材料を押出し加工により短時間に、特性の精度を高く製造する技術を提供することを課題とする。 Therefore, an object of the present invention is to provide a technique for appropriately arranging dissimilar metal materials and manufacturing a composite metal material with desired properties in a short time and with high accuracy in properties by extrusion.
 本発明者らは、上記課題の解決について鋭意検討を行い、以下に記載する発明により上記課題が解決できることを見出し、本発明を完成させるに至った。 The present inventors have diligently studied how to solve the above problems, found that the above problems can be solved by the invention described below, and completed the present invention.
 請求項1に記載の発明は、
 円筒形状の管材の内側に芯材を挿入して中間素材を作製する中間素材作製工程と、
 作製された前記中間素材を押出し加工して、前記管材と前記芯材、および/または芯材同士を複合化することにより複合金属材料を製造する複合金属材料製造工程とを備えており、
 前記管材の内側に挿入する芯材は、複数本の芯材であり、
 前記複数本の芯材の断面形状および断面寸法は、全て同一であり、
 前記複数本の芯材の内、少なくとも1本の芯材は、前記管材の材料種とは異なる材料種の芯材であり、
 前記管材と前記複数本の芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする複合金属材料の製造方法である。
The invention according to claim 1,
an intermediate material manufacturing step of inserting a core material inside a cylindrical tubular material to create an intermediate material;
a composite metal material manufacturing step of manufacturing a composite metal material by extruding the produced intermediate material to composite the pipe material and the core material and/or the core materials together,
The core material inserted inside the pipe material is a plurality of core materials,
The cross-sectional shape and cross-sectional dimensions of the plurality of core materials are all the same,
At least one core material among the plurality of core materials is a core material of a material type different from the material type of the pipe material,
A composite metal material having desired characteristics is manufactured by extruding after manufacturing the intermediate material by adjusting the content of the combination of the pipe material and the plurality of core materials. manufacturing method.
 請求項2に記載の発明は、
 前記管材と前記複数本の芯材との組み合わせ内容が、前記管材の材料種と、前記芯材の本数と、前記複数本の芯材のそれぞれの材料種と、前記複数本の芯材のそれぞれの前記管材への挿入位置との組み合わせ内容であることを特徴とする請求項1に記載の複合金属材料の製造方法である。
The invention according to claim 2,
The contents of the combination of the pipe material and the plurality of core materials are the material type of the pipe material, the number of the core materials, the material type of each of the plurality of core materials, and each of the plurality of core materials. 2. The method of manufacturing a composite metal material according to claim 1, wherein the content of combination with the insertion position into the pipe material.
 請求項3に記載の発明は、
 前記複数本の芯材を、軸対称となる位置に挿入することを特徴とする請求項1または請求項2に記載の複合金属材料の製造方法である。
The invention according to claim 3,
3. The method for producing a composite metal material according to claim 1, wherein the plurality of core members are inserted at positions that are axially symmetrical.
 請求項4に記載の発明は、
 前記複数本の芯材の本数が、所望する前記複合金属材料の特性の数以上の本数であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 4,
The manufacturing of the composite metal material according to any one of claims 1 to 3, wherein the number of the plurality of core members is equal to or greater than the number of desired properties of the composite metal material. The method.
 請求項5に記載の発明は、
 円筒形状の管材の内側に、芯材を挿入して中間素材を作製する中間素材作製工程と、
 作製された前記中間素材を押出し加工して、前記管材と前記芯材を複合化することにより複合金属材料を製造する複合金属材料製造工程とを備えており、
 前記管材の内側に挿入される芯材は、1本の芯材であり、
 前記芯材の材料種は、前記管材の材料種とは異なる材料種であり、
 前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする複合金属材料の製造方法である。
The invention according to claim 5,
an intermediate material manufacturing step of inserting a core material inside a cylindrical tubular material to create an intermediate material;
a composite metal material manufacturing step of manufacturing a composite metal material by extruding the produced intermediate material to combine the pipe material and the core material,
The core material inserted inside the tubular material is a single core material,
The material type of the core material is a material type different from the material type of the tube material,
A method for producing a composite metal material, wherein the combination of the pipe material and the core material is adjusted to prepare the intermediate material, and then the composite metal material having desired characteristics is produced by extrusion. be.
 請求項6に記載の発明は、
 前記芯材の断面形状が、円形または多角形であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 6,
6. The method for producing a composite metal material according to any one of claims 1 to 5, wherein the cross-sectional shape of the core material is circular or polygonal.
 請求項7に記載の発明は、
 前記管材が、一端が閉じられた管材であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 7,
7. The method for producing a composite metal material according to any one of claims 1 to 6, wherein the tubular member is a tubular member with one end closed.
 請求項8に記載の発明は、
 前記芯材として、線材を用いることを特徴とする請求項1ないし請求項7のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 8,
8. The method for producing a composite metal material according to any one of claims 1 to 7, wherein a wire rod is used as the core material.
 請求項9に記載の発明は、
 前記管材として、変形抵抗が、前記芯材の少なくとも1本の変形抵抗より大きい管材を用いることを特徴とする請求項1ないし請求項8のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 9,
9. The method for producing a composite metal material according to any one of claims 1 to 8, wherein a tube material having a deformation resistance greater than the deformation resistance of at least one core material is used as the tube material. be.
 請求項10に記載の発明は、
 前記管材の内側の同一断面位置に、前記管材の長さより短い複数の材料種の前記芯材を順次挿入して、前記中間素材を作製することを特徴とする請求項1ないし請求項9のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 10,
10. The intermediate material is manufactured by sequentially inserting the core materials of a plurality of material types shorter than the length of the pipe into the same cross-sectional position inside the pipe. 1. A method for producing a composite metal material according to claim 1.
 請求項11に記載の発明は、
 前記押出し加工が、冷間押出し加工または熱間押出し加工であることを特徴とする請求項1ないし請求項10のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 11,
11. The method for producing a composite metal material according to any one of claims 1 to 10, wherein the extrusion process is cold extrusion process or hot extrusion process.
 請求項12に記載の発明は、
 前記管材の特性および前記芯材の特性に基づいて、前記管材と前記芯材との組み合わせ内容により得られる複合金属材料の特性を予測し、予測内容を参照して、所望する特性の複合金属材料を得るために必要な前記中間素材の構成を決定し、決定した構成に基づいて前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項11のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 12,
Based on the characteristics of the pipe material and the characteristics of the core material, the characteristics of the composite metal material obtained by combining the pipe material and the core material are predicted, and the composite metal material with desired characteristics is obtained by referring to the predicted contents. After determining the configuration of the intermediate material necessary to obtain the intermediate material, the intermediate material is produced based on the determined configuration, and then extruded to produce a composite metal material with desired characteristics. A method for producing a composite metal material according to any one of claims 1 to 11.
 請求項13に記載の発明は、
 請求項1ないし請求項12のいずれか1項に記載の複合金属材料の製造方法に基づいて製造された複合金属材料の特性を解析し、解析内容に基づいて、得られた前記複合金属材料の製造に用いた前記管材と前記芯材との組み合わせ内容を変更し、変更した内容に基づいて前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項12のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 13,
Analyzing the characteristics of the composite metal material manufactured based on the method for manufacturing a composite metal material according to any one of claims 1 to 12, and analyzing the obtained composite metal material based on the contents of the analysis It is possible to manufacture a composite metal material having desired characteristics by changing the combination of the pipe material and the core material used in the production, producing the intermediate material based on the changed content, and then extruding it. A method for producing a composite metal material according to any one of claims 1 to 12.
 請求項14に記載の発明は、
 予め、断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の前記芯材を準備し、
 予め準備した複数本の前記芯材を用いて、前記芯材の材料種、挿入位置および挿入本数の1つ以上を適宜変更することにより、前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項13のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 14,
Preparing in advance a plurality of core materials having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types,
Using a plurality of core materials prepared in advance, by appropriately changing one or more of the material type, insertion position, and number of insertion of the core materials, the content of the combination of the pipe material and the core material is adjusted. 14. The method for manufacturing a composite metal material according to any one of claims 1 to 13, wherein the composite metal material having desired properties is manufactured by extruding the intermediate material after manufacturing the intermediate material. is.
 請求項15に記載の発明は、
 予め、断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の前記管材を準備し、
 予め準備した複数本の前記管材を用いて、前記管材の材料種を適宜変更することにより、前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項14のいずれか1項に記載の複合金属材料の製造方法である。
The invention according to claim 15,
Preparing in advance a plurality of pipe members having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types,
Using a plurality of previously prepared pipe materials and appropriately changing the material type of the pipe materials to adjust the content of the combination of the pipe materials and the core material to prepare the intermediate material, and then extruding. 15. The method for producing a composite metal material according to any one of claims 1 to 14, wherein the composite metal material having desired properties is produced by
 請求項16に記載の発明は、
 請求項1ないし請求項15のいずれか1項に記載の複合金属材料の製造方法により製造されていることを特徴とする複合金属材料である。
The invention according to claim 16,
A composite metal material manufactured by the method for manufacturing a composite metal material according to any one of claims 1 to 15.
 本発明によれば、異種金属材料を適切に配置し、所望する特性の複合金属材料を押出し加工により短時間に、特性の精度を高く製造する技術を提供することができる。 According to the present invention, it is possible to provide a technology for appropriately arranging dissimilar metal materials and manufacturing a composite metal material with desired properties in a short time and with high accuracy in properties by extrusion.
本発明の一実施の形態における複合金属材料の製造フローの例を示す図である。1 is a diagram showing an example of a manufacturing flow of a composite metal material according to one embodiment of the present invention; FIG. 本発明の一実施の形態に係る多芯材の複合金属材料の製造方法を概念的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram conceptually showing a manufacturing method of a multifilamentary composite metal material according to an embodiment of the present invention; 本発明の一実施の形態における中間素材の構成例を示す横断面図である。1 is a cross-sectional view showing a configuration example of an intermediate material in one embodiment of the present invention; FIG. 本発明の一実施の形態において用いられる押出装置の構成を示す縦断面図である。1 is a longitudinal sectional view showing the configuration of an extrusion device used in one embodiment of the present invention; FIG. 本発明の押出し後の試料の切断面の例を示す図である。FIG. 4 is a diagram showing an example of a cut surface of a sample after extrusion of the present invention; 本発明の実施例における製品の密度の実験結果を示す図である。FIG. 4 is a diagram showing experimental results of product density in Example 1 of the present invention. 本発明の実施例における製品の降伏強度の実験結果を示す図である。FIG. 2 is a diagram showing experimental results of yield strength of a product in Example 1 of the present invention; 本発明の実施例における製品の電気抵抗率の実験結果を示す図である。FIG. 2 is a diagram showing experimental results of the electrical resistivity of the product in Example 1 of the present invention; 本発明の実施例における芯材の材料種の組み合わせを説明する図である。FIG. 4 is a diagram illustrating a combination of material types for the core material in the example of the present invention; (a)Al、Fe、Cuと、(b)Mg、Ag、Ti、それぞれの密度、降伏強度および電気抵抗率について表した図である。It is a figure showing (a) Al, Fe, Cu and (b) Mg, Ag, Ti, each density, yield strength, and electrical resistivity. 本発明の実施例2における押出し加工前の各試料の切断面を示す図である。It is a figure which shows the cut surface of each sample before extrusion in Example 2 of this invention. 本発明の実施例2における押出し加工後の各試料の切断面を示す図である。It is a figure which shows the cut surface of each sample after extrusion in Example 2 of this invention. 本発明の実施例における測定結果を比較した図である。It is the figure which compared the measurement result in the Example of this invention.
 以下、本発明を実施の形態に基づいて説明する。 The present invention will be described below based on embodiments.
1、本発明の検討の経緯
 本発明者らは、異種金属材料を適切に配置し、所望する特性の複合金属材料を押出し加工により短時間に精度高く製造することが、従来、困難であった理由を検討した。
1. Circumstances of the Study of the Present Invention The present inventors have conventionally found it difficult to properly arrange dissimilar metal materials and manufacture a composite metal material with desired characteristics in a short period of time and with high accuracy by extrusion. I considered the reason.
 その結果、まず、原因の一つは、押出し加工における不均一変形にあることが分かった。管材に芯材を挿入して中間素材(ビレット)を作製した後、中間素材を押出し加工した場合、管材あるいは芯材にくびれや破断といった不均一変形が生じやすかった。 As a result, it was found that one of the causes was uneven deformation during extrusion. When an intermediate material (billet) is produced by inserting a core material into a tube material and then extruding the intermediate material, uneven deformation such as constriction or breakage tends to occur in the tube material or the core material.
 このため、前記したように、異種金属材料を適切と思われる位置に配置をして複合金属材料を製造した後、製造した複合金属材料の特性を解析して、適宜、配置替えなどの修正を行い、再度、複合金属材料を製造するという試行錯誤の繰り返しにより製造しているが、複合金属材料を製造する毎に、不均一変形が生じることが多く、配置替えなどの修正方法がより一層複雑になり、試行錯誤の繰り返しが増えていた。 For this reason, as described above, after dissimilar metal materials are arranged in positions considered appropriate to produce a composite metal material, the characteristics of the produced composite metal material are analyzed, and modifications such as rearrangement are made as appropriate. However, each time a composite metal material is manufactured, uneven deformation often occurs, and correction methods such as rearrangement are even more complicated. It became, and repetition of trial and error increased.
 このため、所望する特性の複合金属材料を製造するにあたり、不均一変形が生じないように工夫しなければならないが、不均一変形が生じないようにするための条件が分からなかったため、複雑な試行錯誤が要求されることになっていた。 For this reason, in order to produce a composite metal material with desired properties, it is necessary to devise ways to prevent non-uniform deformation. Errors were to be claimed.
 そこで、本発明らは、まず、均一変形ができる条件を検討した。その結果、芯材の変形抵抗が管材より低い軟芯材を用いることや、芯材と管材の界面の相対すべりを防ぐことになどより均一変形ができることが分かった。(谷口大將ら:銅と銅合金、第60巻1号、280-284) Therefore, the present inventors first examined the conditions under which uniform deformation is possible. As a result, it was found that uniform deformation can be achieved by using a soft core material whose deformation resistance is lower than that of the tube material and by preventing relative slippage at the interface between the core material and the tube material. (Daiso Taniguchi et al.: Copper and Copper Alloys, Vol. 60, No. 1, 280-284)
 次に、本発明らは、試行錯誤して製造するに際して、少しでも、予測通りの特性の複合金属材料が得られるように、予測精度を向上させる方法を検討した。しかし、管材には、管材の径、長さ、材質など種々の条件がある。また、芯材にも太さ、長さ、材質、本数など種々の条件があるため、予測精度を向上させることは容易ではなかった。 Next, the present inventors studied a method of improving the prediction accuracy so that a composite metal material with properties as predicted can be obtained, even if only a little, during manufacturing through trial and error. However, pipes have various conditions such as the diameter, length, and material of the pipes. In addition, since the core material has various conditions such as thickness, length, material, and number, it is not easy to improve the prediction accuracy.
 このため、予測精度を向上させる方法を検討する一方、先に製造した複合金属材料の特性を解析して、適宜、配置替えなどの修正を行い、再度、複合金属材料を製造するという試行錯誤の繰り返しをする方法において、これらの繰り返し作業を短時間に行い、短時間に複合金属材料を製造する方法を検討した。 For this reason, while studying methods to improve the prediction accuracy, we will analyze the characteristics of the composite metal material that was manufactured in advance, make corrections such as rearrangement as appropriate, and manufacture the composite metal material again. In the repetitive method, a method for producing a composite metal material in a short period of time by repeating these operations in a short period of time was investigated.
 そして、本発明者らは、鋭意検討の結果、複合金属材料を製造した後、短時間に必要な修正を加える方法として、芯材の断面形状および断面寸法を全て同一にし、先に製造した複合金属材料の特性に基づいて、芯材を短時間に差し替えて、芯材の材質や配置位置を短時間に変更する方法に思い至った。 As a result of intensive studies, the inventors of the present invention have found that after manufacturing a composite metal material, as a method of making necessary corrections in a short time, the cross-sectional shape and cross-sectional dimensions of the core material are all made the same, and the previously manufactured composite Based on the characteristics of the metal material, the inventors came up with a method of replacing the core material in a short time and changing the material and arrangement position of the core material in a short time.
 即ち、芯材の断面形状および断面寸法を全て同一にしておくことにより、押出しのパス毎の芯材の差し替えが容易であり、このため、短時間に芯材の材質の変更や配置位置の変更などをすることができ、短時間に複合金属材料を繰り返して製造することができると考えられる。 That is, by making the cross-sectional shape and cross-sectional dimensions of the core material the same, it is easy to replace the core material for each pass of extrusion. etc., and it is thought that the composite metal material can be manufactured repeatedly in a short period of time.
 また、芯材の断面形状および断面寸法が、全て同一にされているため、出来上がった複合金属材料の特性についての予測を従来よりも容易にすることができ、予測精度が向上すると考えられる。 In addition, since the cross-sectional shape and cross-sectional dimensions of the core material are all the same, it is possible to predict the properties of the finished composite metal material more easily than before, and it is thought that the prediction accuracy will be improved.
 そして、上記の考えに基づいて、押出し加工によりクラッド材の製造実験をした結果、ほぼ予測した通りの複合金属材料を短時間に精度高く製造できることが確認できた。 Then, based on the above idea, we conducted an experiment to manufacture the clad material by extrusion, and as a result, we were able to confirm that the composite metal material almost exactly as predicted could be manufactured in a short period of time with high accuracy.
 異種材料を適材適所に配置するマルチマテリアルデザインが注目されている今日において、マルチプロパティデザインとして様々に要求される特性に応じた材料をチャンスフリー、即ち、オンデマンドで製造することが強く要望されているが、本発明はこのような近年の強い要請に応えることができる技術であり、その効果は大きい。 In today's world where multi-material design, in which dissimilar materials are placed in the right place, is attracting attention, there is a strong demand for chance-free, in other words, on-demand manufacturing of materials that meet various required properties as multi-property design. However, the present invention is a technique that can meet such a strong demand in recent years, and its effect is great.
 なお、上記においては、不均一変形を避ける技術として、芯材の変形抵抗が管材より低い軟芯材を用いることや、芯材と管材の界面の相対すべりを防ぐことなどの技術ついて述べたが、これら以外の方法でもよく、また、不均一変形をする場合においても、本発明を適用することにより、所望の特性に近い複合金属材料を少しでも短時間に製造できることができる。 In the above, as techniques for avoiding uneven deformation, techniques such as using a soft core material whose deformation resistance is lower than that of the tube material and preventing relative slippage at the interface between the core material and the tube material have been described. Alternatively, even in the case of non-uniform deformation, by applying the present invention, a composite metal material having properties close to the desired properties can be produced in as short a time as possible.
 また、上記においては、先に製造した複合金属材料の特性を解析して、適宜、配置替えなどの修正を行い、再度、複合金属材料を製造するという方法について説明したが、本発明は、このような場合に限られない。 Further, in the above description, the method of analyzing the characteristics of the previously manufactured composite metal material, appropriately correcting such as rearrangement, and manufacturing the composite metal material again has been described. It is not limited to such cases.
 本発明においては、芯材の断面形状および断面寸法が、全て同一にされているため、上記した通り、予測精度が向上するため、例えば、指定された条件に基づいて、予測により条件を設定し、繰り返し作業を行うことなく所望の特性の複合金属材料を製造することも可能である。 In the present invention, since the cross-sectional shape and cross-sectional dimensions of the core material are all the same, as described above, the prediction accuracy is improved. , it is also possible to produce a composite metal material with desired properties without repeated operations.
 また、事前に複合金属材料を製造することなく、中間素材を作製した段階で、中間素材の特性から複合金属材料の特性を予測して製造条件を設定し、複合金属材料を製造する場合にも本発明の効果を発揮させることが可能である。 In addition, when the composite metal material is manufactured by predicting the characteristics of the composite metal material from the characteristics of the intermediate material and setting the manufacturing conditions at the stage where the intermediate material is manufactured without manufacturing the composite metal material in advance It is possible to exhibit the effects of the present invention.
2、本発明の内容
 次に、上記した本発明について整理して説明する。
2. Contents of the Present Invention Next, the above-described present invention will be described in order.
<1>本発明の主な構成要件
 本発明の主な構成要件は、以下の通りである。
[1]芯材が複数本ある場合
 まず、芯材が管材の断面において複数本ある場合について説明する。
<1> Main Constituent Elements of the Present Invention The main constituent elements of the present invention are as follows.
[1] When there are a plurality of core members First, the case where there are a plurality of core members in the cross section of the pipe member will be described.
(1)円筒形状の管材の内側に、芯材を挿入して中間素材を作製する中間素材作製工程と、作製された中間素材を押出し加工して、管材と芯材、および/または芯材同士を複合化することにより複合金属材料を製造する複合金属材料製造工程とを備えている。
(2)管材の内側に挿入する芯材は、複数本である。
(3)複数本の芯材の断面形状および断面寸法は、全て同一である。
(4)複数本の芯材の内、少なくとも1本の芯材は、管材の材料種とは異なる材料種の芯材である。
(5)管材と複数本の芯材との組み合わせ内容を調整して中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造する。
(1) An intermediate material producing step of inserting a core material into the inside of a cylindrical tubular material to produce an intermediate material, extruding the produced intermediate material, and extruding the tubular material and the core material, and/or between the core materials. and a composite metal material manufacturing step of manufacturing a composite metal material by combining the.
(2) A plurality of core members are inserted inside the pipe member.
(3) The cross-sectional shape and cross-sectional dimensions of the plurality of core members are all the same.
(4) Among the plurality of core members, at least one core member is of a material type different from that of the tube member.
(5) After preparing an intermediate material by adjusting the combination of the tube material and a plurality of core materials, the intermediate material is extruded to manufacture a composite metal material having desired properties.
 上記のように、芯材の断面形状および断面寸法を、全て同一にし、複数本の芯材を適宜差し替えて、管材と複数本の芯材との組み合わせ内容を調整して中間素材を作製することにより、中間素材作製工程において中間素材の横断面の形状および寸法を変えることなく、複数の材料種の芯材を組み合わせることが容易に可能となる。また、特性の予測が容易にできる。 As described above, all of the core materials have the same cross-sectional shape and cross-sectional dimensions, and the intermediate material is manufactured by appropriately replacing the plurality of core materials and adjusting the combination of the pipe material and the plurality of core materials. Therefore, it is possible to easily combine core materials of a plurality of types of materials without changing the shape and dimensions of the cross section of the intermediate material in the process of manufacturing the intermediate material. Also, the characteristics can be easily predicted.
 このため、中間素材の構成の変更が容易にでき、所望する特性の複合金属材料を短時間に製造することができる。 Therefore, it is possible to easily change the composition of the intermediate material, and to manufacture a composite metal material with desired properties in a short period of time.
[2]芯材が1本である場合
 次に、芯材が管材の断面において1本である場合について説明するが、芯材が1本であるため、芯材の材料種が管材の材料種とは異なる材料種であることだけが、芯材が複数本の場合と異なる。
[2] When there is one core material The only difference from the case of a plurality of core materials is that they are different material types.
 芯材が1本であるために、目的とする特性に限界はあるが、単純な構成であるため、要求される特性の複合金属材料を短時間に製造できる。また、製造した複合金属材料を芯材として管材に挿入して、より多くの特性を満足させることができるマルチプロパティデザインの複合金属材料を容易に得ることが可能となる。 Because there is only one core material, there is a limit to the desired properties, but because of the simple structure, a composite metal material with the required properties can be produced in a short period of time. In addition, by inserting the manufactured composite metal material into a pipe material as a core material, it is possible to easily obtain a multi-property design composite metal material that can satisfy more properties.
<2>本発明の好ましい実施の形態
 次に、本発明の好ましい実施の形態を以下に記載するが、本発明は、以下の実施の形態に限定されるものではない。
<2> Preferred Embodiments of the Present Invention Next, preferred embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
(1)管材および芯材の物性に基づく予測
 管材の物性および芯材の物性に基づいて、管材と複数本の芯材との組み合わせ内容により得られる複合金属材料の特性を予測し、予測内容を参照して、所望する特性の複合金属材料を得るために必要な中間素材の構成を決定し、決定した構成に基づいて中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することが好ましい。
(1) Prediction based on physical properties of tube and core material Based on the physical properties of the tube material and the physical properties of the core material, the properties of the composite metal material obtained by combining the tube material and multiple core materials are predicted. By referring to the above, the composition of the intermediate material necessary to obtain the composite metal material with the desired properties is determined, and the intermediate material is produced based on the determined composition, and then extruded to obtain the composite metal with the desired properties. It is preferred to manufacture materials.
 このように管材の物性および芯材の物性に基づいて、複合金属材料の特性を予測し、予測内容を参照して、中間素材の構成を決定することにより、所望する特性の複合金属材料を効率的に、精度高く製造することができる。そして、前記した通り、本発明の場合、芯材の断面形状および断面寸法が、全て同一にされているため、精度が向上した予測内容を参照することができる。 In this way, the properties of the composite metal material are predicted based on the physical properties of the tube material and the core material, and by referring to the predicted content and determining the composition of the intermediate material, the composite metal material with the desired properties can be produced efficiently. Generally, it can be manufactured with high accuracy. Further, as described above, in the case of the present invention, since the cross-sectional shape and cross-sectional dimensions of the core material are all the same, it is possible to refer to the predicted content with improved accuracy.
 具体的な予測方法としては、簡便に予測できる混合則(複合則)が好ましいが、機械学習による予測を採用してもよい。 As a specific prediction method, it is preferable to use a rule of mixture (compound rule) that can be easily predicted, but prediction by machine learning may also be used.
(2)先行して製造した複合金属材料の特性の解析内容に基づく予測
 本発明の製造方法により複合金属材料を製造するに際して、本発明の製造方法より先行して製造された複合金属材料の特性を解析し、解析内容に基づいて、先行して製造した複合金属材料の製造に用いた管材と複数本の芯材との組み合わせ内容を変更し、変更した内容に基づいて中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することが好ましい。
(2) Prediction based on analysis of the properties of the composite metal material manufactured in advance When manufacturing the composite metal material by the manufacturing method of the present invention, the properties of the composite metal material manufactured prior to the manufacturing method of the present invention is analyzed, and based on the analysis content, the content of the combination of the pipe material and multiple core materials used in the manufacture of the composite metal material manufactured in advance is changed, and the intermediate material is produced based on the changed content. , preferably by extrusion to produce a composite metal material of desired properties.
 先行して製造した複合金属材料の特性を解析することにより、目的とする特性の複合金属材料を製造するための中間素材の構成を容易に決めることができ、さらに、芯材は全て断面形状および断面寸法が同一であるため、管材と複数本の芯材との組み合わせ内容を短時間に迅速に変更することができる。そして、変更した内容に基づいて中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を短時間に迅速に製造することができる。 By analyzing the characteristics of the composite metal material manufactured in advance, it is possible to easily determine the composition of the intermediate material for manufacturing the composite metal material with the desired characteristics. Since the cross-sectional dimensions are the same, it is possible to quickly change the combination of the tube material and the plurality of core materials in a short time. Then, after manufacturing an intermediate material based on the changed contents, by extruding it, a composite metal material having desired properties can be rapidly manufactured in a short time.
 また、本発明においては、前記した通り、複数本の芯材の断面形状および断面寸法が全て同一であるため、特性の解析も容易であり、所望する特性の複合金属材料が得られなかった場合における予側値と実測値に差が生じた要因の解析も容易に行うことができる。 In addition, in the present invention, as described above, since the cross-sectional shape and cross-sectional dimensions of the plurality of core materials are all the same, it is easy to analyze the characteristics, and even if a composite metal material with desired characteristics cannot be obtained, It is also possible to easily analyze the factors that caused the difference between the predicted value and the measured value in .
(3)管材および芯材の事前準備
 上記した本発明を実施するにあたり、予め、断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の管材や芯材を準備しておくことが好ましい。
(3) Advance preparation of pipe materials and core materials In carrying out the above-described present invention, a plurality of pipe materials and core materials having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types are prepared in advance. It is preferable to keep
 あらかじめ準備する管材や芯材は、断面形状、断面寸法および長さが同一であるため、効率的に準備することができる。 The pipe materials and core materials that are prepared in advance can be prepared efficiently because they have the same cross-sectional shape, cross-sectional dimensions, and length.
 そして、予め、準備した断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の管材や芯材を用いることにより、中間素材作製工程において、管材の材料種や、芯材の材料種、挿入位置、挿入本数などの組み合わせ内容を短時間に迅速に変更することができ、管材と芯材との組み合わせ内容を短時間に調整して中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を短時間に製造することができ、生産性が向上する。 Then, by using a plurality of tubes and core materials prepared in advance and having the same cross-sectional shape, cross-sectional dimension and length and made of a plurality of material types, in the intermediate material manufacturing process, the material types of the tube materials and the core materials It is possible to quickly change the combination of the material type, insertion position, number of insertions, etc. in a short time. As a result, a composite metal material having desired properties can be produced in a short period of time, improving productivity.
(4)管材と複数本の芯材との組み合わせ内容
 管材と複数本の芯材との組み合わせ内容は、管材の材料種と、芯材の本数と、複数本の芯材のそれぞれの材料種と、複数本の芯材のそれぞれの管材への挿入位置との組み合わせ内容であることが好ましい。
(4) Contents of combination of tube material and multiple core materials , and insertion positions of a plurality of core members into respective pipe members.
 管材の材料種と、芯材の本数と、芯材の材料種と、芯材の挿入位置との組み合わせにより所望する特性の複合金属材料のほとんどに対応することができ、一方、これらに限定することにより、予測、設計および製造を迅速、効率的に進めることができる。 Most of the composite metal materials with desired characteristics can be handled by combining the type of tube material, the number of cores, the type of core material, and the insertion position of the core material. This allows prediction, design and manufacturing to proceed quickly and efficiently.
(5)芯材の挿入位置
 複数本の芯材の挿入位置は、管材の中心を軸として軸対称となる位置に挿入することが好ましい。管材は通常、円筒であるため、複数本の芯材を、管材の中心と同じ位置を中心とする同心円状に挿入することが好ましい。これにより、押出し加工において、不均一変形の発生が抑制される。また、特性の偏りのない複合金属材料を容易に製造することができる。
(5) Insertion position of core material It is preferable that the insertion positions of a plurality of core materials are symmetrical with respect to the center of the pipe material. Since the tube member is usually cylindrical, it is preferable to insert a plurality of core members concentrically around the same position as the center of the tube member. This suppresses the occurrence of non-uniform deformation in the extrusion process. In addition, a composite metal material with uniform properties can be easily produced.
(6)所望する特性の数と、芯材の材料種の数
 芯材の本数は、所望する複合金属材料の特性の数以上にしておくことが好ましい。例えば、所望する複合金属材料として、密度、降伏強度、電気抵抗率の3つの特性が指定されている場合、芯材として、少なくとも、例えば、Al、Fe、Cuの3つの種類の芯材を用いることが好ましい。これにより、所望する各特性に対応し易くなる。
(6) Desired Number of Properties and Number of Types of Core Materials The number of core materials is preferably equal to or greater than the number of desired properties of the composite metal material. For example, when three characteristics of density, yield strength, and electrical resistivity are specified as a desired composite metal material, at least three types of core materials, such as Al, Fe, and Cu, are used as the core material. is preferred. This makes it easier to respond to each desired characteristic.
 複合金属材料の特性は、一般に混合則により求められ、それぞれの特性を求めるための回帰式は、それぞれ複合金属材料を構成する材料種の個々の物性と、その比率を因子とする回帰式で求められる。このため、精度の高い最適化を図る為には設計に使用する因子の数を多くする必要があり、芯材の材料種の数を、所望する特性の数以上にしておくことにより精度の高い最適化を図ることができる。 The properties of composite metal materials are generally determined by the law of mixture, and the regression formula for determining each property is determined by a regression formula that uses the individual physical properties of the material types that make up the composite metal material and their ratios as factors. be done. Therefore, in order to achieve highly accurate optimization, it is necessary to increase the number of factors used in the design. can be optimized.
(7)芯材の断面形状
 芯材の断面形状は、円形または多角形であることが好ましい。
(7) Cross-Sectional Shape of Core Material The cross-sectional shape of the core material is preferably circular or polygonal.
 管材には、芯材をできるだけ隙間なく、多く挿入することが好ましい。また、芯材は単純な断面形状で、製造が容易であることが好ましい。このようなことを考慮すると、芯材の断面形状は、円形または多角形であることが好ましい。多角形としては、三角形、四角形、六角形などが挙げられる。そして、多角形の場合、正多角形であることが好ましい。 It is preferable to insert as many core materials as possible into the pipe material without any gaps. Moreover, it is preferable that the core material has a simple cross-sectional shape and is easy to manufacture. Considering this, the cross-sectional shape of the core material is preferably circular or polygonal. Polygons include triangles, quadrilaterals, hexagons, and the like. In the case of a polygon, it is preferably a regular polygon.
(8)一端が閉じられた管材の使用
 管材としては、一端が閉じられた管材を使用することが好ましい。
(8) Use of tube material with one end closed As the tube material, it is preferable to use a tube material with one end closed.
 一端が閉じられた管材を使用することにより、挿入した芯材の固定や、位置管理がし易くなる。 By using a tubular material with one end closed, it becomes easier to fix the inserted core material and manage its position.
(9)線材の使用
 芯材としては、線材を使用することが好ましい。
(9) Use of wire A wire is preferably used as the core material.
 小径の芯材を多数挿入することにより、要求される特性に近い特性を得やすくなる。このため、芯材としては、線材が好ましい。そして、線材は製造が容易であり、外部から入手しやすいという利点も有する。線材としては、丸線材が特に好ましいが、断面が三角形、四角形、六角形などの線材であってもよい。 By inserting a large number of small-diameter core materials, it becomes easier to obtain characteristics close to the required characteristics. For this reason, a wire rod is preferable as the core material. Wire rods also have the advantage of being easy to manufacture and readily available from the outside. As the wire, a round wire is particularly preferable, but a wire having a triangular, quadrangular, hexagonal cross section, or the like may also be used.
(10)管材の変形抵抗
 管材として、変形抵抗が、芯材の少なくとも1本の変形抵抗より大きい管材を用いることが好ましい。
(10) Deformation resistance of tube material As the tube material, it is preferable to use a tube material whose deformation resistance is greater than the deformation resistance of at least one of the core members.
 このような管材を使用することにより、管材の破断を抑制し、押出し加工において、均一変形させることができる。 By using such a pipe material, it is possible to suppress the breakage of the pipe material and to uniformly deform it in the extrusion process.
(11)管材の長手方向への複数芯材の挿入
 管材の内側の同一断面位置に、管材の長さより短い複数の材料種の芯材を順次挿入して、中間素材を作製することが好ましい。
(11) Insertion of Multiple Core Materials in Longitudinal Direction of Tube Material It is preferable to prepare an intermediate material by sequentially inserting core materials of a plurality of material types shorter than the length of the tube material at the same cross-sectional position inside the tube material.
 このようにすることにより、長手方向において異なる特性の複合金属材料を1回のパスだけで容易に得ることができる。 By doing so, a composite metal material with different properties in the longitudinal direction can be easily obtained in a single pass.
(12)冷間加工と熱間加工 (12) Cold working and hot working
 押出し加工は、冷間押出し加工であっても、熱間押出し加工であってもよい。 The extrusion process may be cold extrusion process or hot extrusion process.
 冷間押出し加工は、材料の温度制御が不要であるため、生産効率が高い。また、特に多芯材のように多数の材料からなる複合材料を熱間押出しする場合、各材料の変形抵抗の温度依存性が材料種によって異なるため、各材料が均一に変形するとは限らない。この点、冷間押出しは、変形抵抗の温度依存性の影響を受けないため、多芯材の押出し加工方法として好ましい。 Cold extrusion processing does not require material temperature control, so production efficiency is high. Moreover, when hot extruding a composite material consisting of a large number of materials, such as a multifilamentary material, the temperature dependence of the deformation resistance of each material differs depending on the type of material, so that each material does not always deform uniformly. In this regard, cold extrusion is preferable as a method for extruding a multifilamentary material because it is not affected by temperature dependence of deformation resistance.
 しかし、熱間押出し加工は、小さい押出力で大きい加工度、即ち大きい加工比の押出し加工ができるため、熱間押出し加工を採用してもよい。 However, hot extrusion can be used with a small extrusion force to achieve a large degree of processing, that is, a large processing ratio.
3、複合金属材料の具体的な製造方法
<1>複合金属材料の製造フロー
 はじめに、複合金属材料の製造フローの例について説明する。図1は本実施の形態における複合金属材料の製造フローの例を示す図である。
3. Specific Manufacturing Method of Composite Metal Material <1> Manufacturing Flow of Composite Metal Material First, an example of a manufacturing flow of a composite metal material will be described. FIG. 1 is a diagram showing an example of a production flow of a composite metal material according to this embodiment.
(1)製品の基本設計
 まず、製品の基本的な設計を行う。
(1) Basic design of the product First, perform the basic design of the product.
(2)部材の寸法、特性の指定
 次に、製品に必要な部材の寸法、特性を指定する。
(2) Designation of dimensions and properties of parts Next, the dimensions and properties of parts required for the product are specified.
(3)押出し条件および中間素材の構成の決定
 次に、各部材を作製するための押出し条件および中間素材の構成を決定する。
(3) Determination of Extrusion Conditions and Configuration of Intermediate Material Next, the extrusion conditions and the configuration of the intermediate material for producing each member are determined.
 押出し条件については、中間素材の外形寸法の選定、および押出し機、押出し比、速度、潤滑、ダイス角などの設定を行って押出し条件を決定する。 Regarding the extrusion conditions, the external dimensions of the intermediate material are selected, and the extruder, extrusion ratio, speed, lubrication, die angle, etc. are set to determine the extrusion conditions.
 中間素材の構成については、指定された特性および中間素材の外径寸法等に基づいて、管材の内径の選定、芯材の線径と挿入本数の選定、管材と芯材の材料種の選定、および芯材の挿入位置(配置位置)を決定して中間素材の構成を決定する。 Regarding the composition of the intermediate material, based on the specified characteristics and the outer diameter of the intermediate material, selection of the inner diameter of the tube material, selection of the wire diameter and number of insertions of the core material, selection of the material type of the tube material and the core material, And the insertion position (arrangement position) of the core material is determined to determine the configuration of the intermediate material.
(4)製造可否の判定
 次に、決定された中間素材の構成に基づいて得られる複合金属材料の特性を予測する。また、中間素材の構成および押出し比などの押出し条件に基づいて破断無く均一変形が可能であるか否かを予測する。
(4) Judgment of Manufacturability Next, the characteristics of the composite metal material obtained based on the determined configuration of the intermediate material are predicted. In addition, it is predicted whether or not uniform deformation without breakage is possible based on the composition of the intermediate material and the extrusion conditions such as the extrusion ratio.
 そして、予測結果が指定された特性を満足し、さらに破断無く均一変形が可能である場合、次の中間素材の組立工程に進む。一方、予測結果が指定された特性を満足しない場合、あるいは破断無く均一変形させることができない場合には、設計をし直す。 Then, if the prediction result satisfies the specified characteristics and uniform deformation is possible without breakage, proceed to the next intermediate material assembly process. On the other hand, if the predicted result does not satisfy the specified characteristics, or if uniform deformation without breakage cannot be achieved, the design is redesigned.
 なお、本発明においては、芯材の断面形状および断面寸法が全て同一であるため、複合金属材料の特性の予測や、破断無く均一変形が可能であるか否かの予測がし易い。 In addition, in the present invention, since the cross-sectional shape and cross-sectional dimensions of the core material are all the same, it is easy to predict the characteristics of the composite metal material and whether uniform deformation without breakage is possible.
(5)複合金属材料の製造
 次に、上記において決定した中間素材の構成に基づいて、中間素材を組み立てる。その後、中間素材を押出して接合し複合金属材料を製造する。
(5) Manufacture of Composite Metal Material Next, the intermediate material is assembled based on the configuration of the intermediate material determined above. After that, the intermediate materials are extruded and joined to produce a composite metal material.
(6)複合金属材料の寸法、特性の確認
 最後に、製造した複合金属材料の寸法及び特性を確認する。そして、問題がなければ出荷し、出荷先において、複合金属材料を二次加工し、種々の用途に利用する。
(6) Confirmation of Dimensions and Characteristics of Composite Metal Material Finally, confirm dimensions and characteristics of the manufactured composite metal material. Then, if there is no problem, the product is shipped, and the composite metal material is secondary-processed at the shipping destination and used for various purposes.
<2>複合金属材料の特性予測
 上記の通り、複合金属材料の製造においては、複合金属材料の特性を予測することが好ましい。以下に、複合金属材料の密度、降伏強度、電気抵抗率を予測する方法について説明する。なお、以下においては、第1層の芯材Fがアルミニウム(Al)、第2層の芯材Fが鉄(Fe)、第3層の芯材Fが銅(Cu)により構成されているとする。
<2> Characteristic Prediction of Composite Metal Material As described above, in manufacturing the composite metal material, it is preferable to predict the characteristics of the composite metal material. Methods for predicting the density, yield strength, and electrical resistivity of composite metal materials are described below. In the following, the core material F1 of the first layer is made of aluminum (Al), the core material F2 of the second layer is made of iron (Fe), and the core material F3 of the third layer is made of copper (Cu). Suppose you are
(1)面積率
 複合金属材料の特性予測には、一般に押出し前の横断面の面積の重みを付けた算術平均(混合則)が用いられる。
(1) Area Ratio Generally, the weighted arithmetic mean (rule of mixture) of the area of the cross section before extrusion is used to predict the properties of the composite metal material.
 押出しにおいて、管材と芯材が均一に変形すると仮定すると、押出し後の管材の面積率f、および押出し後の芯材の面積率f、および押出し後の芯材1本の面積率fは、nを芯材の本数、dをシース(管材)の外径(mm)、dをシース(管材)の内径(mm)、dを芯材の直径(mm)としたとき、それぞれ下記の式で求められる。
   f=(d -d )/(d -d +nd
   f=nd /(d -d +nd
   f=d /(d -d +nd
Assuming that the tube material and the core material deform uniformly during extrusion, the area ratio of the tube material after extrusion f s , the area ratio of the core material after extrusion f c , and the area ratio of one core material after extrusion f f is the number of cores, d0 is the outer diameter (mm) of the sheath (pipe), d is the inner diameter (mm) of the sheath (pipe), and df is the diameter of the core (mm). Each is obtained by the following formula.
f s =(d 0 2 −d i 2 )/(d 0 2 −d i 2 +nd f 2 )
f c =nd f 2 /(d 0 2 −d i 2 +nd f 2 )
f f =d f 2 /(d 0 2 −d i 2 +nd f 2 )
(2)密度
 そして、複合金属材料の密度ρは、ρを管材の密度、ρを芯材の密度、fを芯材1本の面積率、ρAl、ρFe、ρCuを、それぞれAl、Fe、Cuの密度、nAl、nFe、nCuを、それぞれAl芯材、Fe芯材、Cu芯材の本数としたとき、下記の式で予測される。
 ρ=ρ・f+ρ・f
 =ρ・f+ρAl・nAl・f+ρFe・nFe・f+ρCu・nCu・f
(2) Density Then, the density ρ of the composite metal material is such that ρ s is the density of the tube material, ρ c is the density of the core material, fc is the area ratio of one core material, ρ Al , ρ Fe , ρ Cu , When the densities of Al, Fe, and Cu, n Al , n Fe , and n Cu are respectively the numbers of the Al core material, the Fe core material, and the Cu core material, they are predicted by the following formulas.
ρ = ρ s · f s + ρ c · f c
= ρ s · f s + ρ Al · n Al · ff + ρ Fe · n Fe · ff + ρ Cu · n Cu · ff
(3)降伏強度
 また、複合金属材料の降伏強度σは、σを管材の降伏強度、σを芯材の降伏強度、σAl、σFe、σCuを、それぞれAl、Fe、Cuの降伏強度としたとき、下記の式で予測される。
 σ=σ・f+σ・f
 =σ・f+σAl・nAl・f+σFe・nFe・f+σCu・nCu・f
(3) Yield strength In addition, the yield strength σ of the composite metal material is such that σ s is the yield strength of the tube material, σ c is the yield strength of the core material, and σ Al , σ Fe , and σ Cu are the respective amounts of Al, Fe, and Cu. Yield strength is predicted by the following formula.
σ = σ s · f s + σ c · f c
= σ s · f s + σ Al · n Al · ff + σ Fe · n Fe · ff + σ Cu · n Cu · ff
(4)電気抵抗率
 また、複合金属材料の電気抵抗率κは、管材および全ての芯材が並列に接続しているとして、κを管材の電気抵抗率、κAl、κFe、κCuを、それぞれAl、Fe、Cuの電気抵抗率としたとき、下記の式で予測される。
 1/κ=f/κ+(nAl/κAl+nFe/κFe+nCu/κCu)f
(4) Electrical resistivity In addition, the electrical resistivity κ of the composite metal material is defined as the electrical resistivity of the tube material, κ Al , κ Fe , κ Cu , assuming that the tube material and all the core materials are connected in parallel. are the electrical resistivities of Al, Fe, and Cu, respectively, are predicted by the following equations.
1/κ= fs / κs +( nAl / κAl + nFe / κFe + nCu / κCu ) ff
(5)その他
 なお、上記予測では混合則を用いたが、機械学習を用いても良い。機械学習を用いることにより精度の高い予測が期待される。機械学習としては、ニューラルネットワーク、ディープラーニングなどの教師あり学習や、クラスタリングなどの教師なし学習など公知の方法を用いることができる。
(5) Others In addition, although the rule of mixture was used in the above prediction, machine learning may be used. Highly accurate prediction is expected by using machine learning. As machine learning, known methods such as supervised learning such as neural network and deep learning, and unsupervised learning such as clustering can be used.
<3>製造方法の具体的な例
 次に、具体的な製造方法について、多芯材の複合金属材料の製造を例に挙げて説明する。
<3> Specific Example of Manufacturing Method Next, a specific manufacturing method will be described with reference to manufacturing of a multifilamentary composite metal material as an example.
(1)中間素材の組立
 図2は、本発明の一実施の形態に係る多芯材の複合金属材料の製造方法を概念的に示す図である。図2において、Cはコア(芯材)であり、Sはシース(管材)であり、IMは中間素材であり、Pは製品としての複合金属材料である。また、Dはダイス径であり、複合金属材料の外径でもある。
(1) Assembly of Intermediate Material FIG. 2 is a view conceptually showing a method of manufacturing a multifilamentary composite metal material according to an embodiment of the present invention. In FIG. 2, C is a core (core material), S is a sheath (tube material), IM is an intermediate material, and P is a composite metal material as a product. D is the diameter of the die and also the outer diameter of the composite metal material.
 コア(芯材)Cは、材料種が異なる3種類の芯材、即ち、中心より順に、第1層の芯材F、第2層の芯材F、第3層の芯材Fにより構成される。例えば、第1層の芯材Fがアルミニウム(Al)、第2層の芯材Fが鉄(Fe)、第3層の芯材Fが銅(Cu)により構成される。 The core (core material) C is composed of three types of core materials with different material types, that is, a first layer core material F 1 , a second layer core material F 2 and a third layer core material F 3 in order from the center. Consists of For example, the core material F1 of the first layer is made of aluminum (Al), the core material F2 of the second layer is made of iron (Fe), and the core material F3 of the third layer is made of copper (Cu).
 そして、各芯材が、管材内に挿入されることにより、中間素材が組み立てられる。 Then, the intermediate material is assembled by inserting each core material into the pipe material.
 図3は、中間素材IMの構成例を示す横断面図である。シース(管材)Sは円筒形状であり、dはシース(管材)の外径(mm)、dは内径(mm)である。芯材は、断面円形であり、第1層の芯材F、第2層の芯材F、第3層の芯材Fの直径は、全て等しくdmmである。 FIG. 3 is a cross-sectional view showing a configuration example of the intermediate material IM. The sheath (tubing material) S has a cylindrical shape, d0 is the outer diameter (mm) of the sheath (tubing material), and d i is the inner diameter (mm). The core material has a circular cross section, and the core material F 1 of the first layer, the core material F 2 of the second layer, and the core material F 3 of the third layer all have the same diameter of d f mm.
 芯材は、最密充填の状態で挿入されており、第1層の芯材F、第2層の芯材F、第3層の芯材Fの本数は、それぞれ1本、6本、12本であり、それぞれ同心円状に、軸対称となるように配置されている。 The core materials are inserted in a close-packed state, and the numbers of the core material F 1 in the first layer, the core material F 2 in the second layer, and the core material F 3 in the third layer are 1 and 6, respectively. 12, which are arranged concentrically and axially symmetrically.
(2)複合金属材料の製造
 図4は、押出装置の構成を示す縦断面図であり、押出装置1は、パンチ11、コンテナ12、ダイホルダ13、ダイ14を備えている。Dは、ダイス径(mm)であり、複合金属材料の外径でもある。
(2) Manufacture of Composite Metal Material FIG. 4 is a vertical cross-sectional view showing the configuration of an extrusion device. D is the die diameter (mm) and also the outer diameter of the composite metal material.
 そして、コンテナ12内に中間素材IMを挿入し、パンチ11を下降させ、ダイ14を通過させて押出し加工することにより製品としての複合金属材料を製造する。 Then, the intermediate material IM is inserted into the container 12, the punch 11 is lowered, and the material is passed through the die 14 and extruded to manufacture a composite metal material as a product.
 以下、実施例に基づき本発明をより具体的に説明する。実施例1では、多芯材の複合金属材料を製造し、密度、降伏強度および電気抵抗率について、前記した予測方法に基づく予測値と、製造した複合金属材料の実測値とを比較することで、本発明の製造方法により予測通りの特性を有する複合金属材料が製造できたか否かを評価した。なお、軽さ(小さい密度)、高い降伏強度、および高い電気伝導度(小さい電気抵抗率)が求められる複合金属材料に適した材料として、コストの観点も考慮して、Al、Fe、Cuを芯材として用いた。そして、実験の結果、以下に示す通り、予測通りの優れた特性の複合金属材料を得ることができた。 The present invention will be described more specifically below based on examples. In Example 1, a multifilamentary composite metal material was produced, and the density, yield strength, and electrical resistivity were compared with the predicted values based on the prediction method described above and the measured values of the produced composite metal material. , it was evaluated whether or not a composite metal material having properties as expected could be produced by the production method of the present invention. In consideration of cost, Al, Fe, and Cu are suitable materials for composite metal materials that require lightness (low density), high yield strength, and high electrical conductivity (low electrical resistivity). It was used as a core material. As a result of the experiment, as shown below, a composite metal material having excellent properties as expected was obtained.
 次に、実施例1に用いたAl、Fe、Cuの複合金属材料と同等の優れた特性の複合金属材料を、他の金属によっても、本発明の製造方法を用いて容易に製造できるかを、実施例2として実験により確認した。実験においては、芯材としてMg、Ag、Tiを用いた。Mgの密度はAlより小さく、Agの電気伝導度はCuより高く、Tiの比強度(強度/密度)はFeより高いため、Al、Fe、Cuを芯材として用いる場合に比べて設計の自由度が高い材料種の組み合わせとなる。その結果、以下に示す通り、Al、Fe、Cuの複合金属材料と同等の優れた特性の複合金属材料を、本発明の製造方法により容易に得られることが確認できた。 Next, whether or not a composite metal material having excellent properties equivalent to those of the composite metal material of Al, Fe, and Cu used in Example 1 can be easily manufactured from other metals using the manufacturing method of the present invention. , confirmed by experiments as Example 2. In the experiments, Mg, Ag and Ti were used as core materials. The density of Mg is lower than that of Al, the electrical conductivity of Ag is higher than that of Cu, and the specific strength (strength/density) of Ti is higher than that of Fe. It is a combination of high-quality materials. As a result, as shown below, it was confirmed that a composite metal material having excellent properties equivalent to those of a composite metal material of Al, Fe, and Cu can be easily obtained by the production method of the present invention.
[実施例1]
1、材料の構成
(1)管材
 管材は、一端が閉じられた外径d10.9mm、長さ35.0mmの純銅(C1020)を用いた。そして、芯材を挿入するための穴は、内径d7.5mm、深さ30mmとした。
[Example 1]
1. Composition of Materials (1) Tubing As the tubing, pure copper (C1020) having an outer diameter d 0 of 10.9 mm and a length of 35.0 mm with one end closed was used. The hole for inserting the core material had an inner diameter d i of 7.5 mm and a depth of 30 mm.
(2)芯材
 芯材として、直径d1.45mm、長さ30mmの純銅(C1020)、純アルミニウム(A1070)、純鉄(純度99.65%)の3種類の芯材を準備した。
(2) Core Material Three types of core materials, pure copper (C1020), pure aluminum (A1070), and pure iron (purity 99.65%) having a diameter d f of 1.45 mm and a length of 30 mm were prepared.
(3)芯材の配置位置
 各芯材を管材に挿入して配置する位置を、図3に示す位置とした。具体的には、管材の中央に第1層の芯材Fを1本配置し、第1層の芯材の周囲に第2層の芯材Fを6本配置し、第2層の芯材の周囲に第3層の芯材Fを12本配置する構成とした。
(3) Arrangement position of core material The position where each core material is inserted into the pipe material and arranged is the position shown in FIG. 3 . Specifically, one core material F1 of the first layer is arranged in the center of the tube material, six core materials F2 of the second layer are arranged around the core material of the first layer, and the core material F2 of the second layer is arranged around the first layer core material. Twelve core members F3 of the third layer are arranged around the core member.
(4)芯材の材料種の組み合わせ
 第1層の芯材F、第2層の芯材Fおよび第3層の芯材Fの材料種の組み合わせを、CCC、FFF、AAA、AFC、ACF、FAC、FCA、CAF、CFAの9種類の組合せとした。なお、上記において、C、F、Aは、それぞれ純銅(Cu)、純鉄(Fe)、純アルミニウム(Al)を示し、左側から順に、第1層の芯材F、第2層の芯材F、第3層の芯材Fの材料種を示す。例えば、FCAは、第1層を純鉄(Fe)、第2層を純銅(Cu)、第3層を純アルミニウム(Al)とする配置を示す。
(4) Combination of Material Types of Core Materials The combination of material types of the core material F 1 of the first layer, the core material F 2 of the second layer, and the core material F 3 of the third layer is CCC, FFF, AAA, AFC. , ACF, FAC, FCA, CAF, and CFA. In the above, C, F, and A represent pure copper (Cu), pure iron (Fe), and pure aluminum (Al), respectively, and from the left, the core material F 1 of the first layer and the core of the second layer. The material types of the material F 2 and the core material F 3 of the third layer are shown. For example, FCA indicates an arrangement with a first layer of pure iron (Fe), a second layer of pure copper (Cu), and a third layer of pure aluminum (Al).
(5)中間素材の作製
 上記した芯材の組み合わせに従って、各芯材を上記した管材に挿入して、中間素材を作製した。
(5) Preparation of Intermediate Material According to the combination of the core materials described above, each core material was inserted into the pipe material described above to prepare an intermediate material.
2、押出し加工
 図4に示す押出装置1を用いて、作製した中間素材をコンテナ12内に挿入し、パンチ11を下降させ、ダイ14を通過させて押出し加工することにより複合金属材料を製造した。なお、ダイスとしては、孔径(ダイス径)6mm、半角60°の工具鋼製ダイスを用いた。このときの中間素材全体の横断面積とダイス孔の面積の比で定義される押出比eは3.30であり、中間素材中の空隙部を除外した正味の押出比は2.85である。
2. Extrusion Using the extrusion device 1 shown in FIG. 4, the prepared intermediate material is inserted into the container 12, the punch 11 is lowered, and the composite metal material is manufactured by extruding through the die 14. . As the die, a tool steel die with a hole diameter (die diameter) of 6 mm and a half angle of 60° was used. At this time, the extrusion ratio er defined by the ratio of the cross-sectional area of the entire intermediate material to the area of the die hole is 3.30, and the net extrusion ratio excluding the voids in the intermediate material is 2.85. .
3、特性の測定方法
(1)電気抵抗率
 電気抵抗率は、押出し材の先端から20mmと60mmの位置に、電圧端子を取り付けた四端子法によって測定した。
3. Method of Measuring Characteristics (1) Electrical Resistivity The electrical resistivity was measured by a four-probe method in which voltage terminals were attached at positions of 20 mm and 60 mm from the tip of the extruded material.
(2)密度
 密度は、押出し材の先端から20mmから30mmの位置で採取した円柱状試験片を用いてアルキメデス法で測定した。
(2) Density Density was measured by the Archimedes method using a cylindrical test piece sampled at a position of 20 mm to 30 mm from the tip of the extruded material.
(3)降伏強度
 降伏強度は、押出し材の先端から60mmから69mmの位置で採取した円柱状試験片を、軸方向に単軸圧縮することで求めた0.2%耐力を用いた。圧縮は、テフロンシート(登録商標)で端面を潤滑し、速度1.0mm/minで行った。
(3) Yield Strength As the yield strength, a 0.2% yield strength obtained by axially uniaxially compressing a cylindrical test piece sampled at a position of 60 mm to 69 mm from the tip of the extruded material was used. Compression was performed at a speed of 1.0 mm/min with the end face lubricated with a Teflon sheet (registered trademark).
4、銅、アルミニウム、鉄の密度、降伏強度、電気抵抗率
 芯材、管材ともに銅を用いた場合の押出し材の測定結果から、まず銅の密度、降伏強度、電気抵抗率を逆算で求めた。次にアルミニウムのみ(AAA)、鉄のみ(FFF)を芯材に用いた押出し材の測定結果から、アルミニウムと鉄の密度、降伏強度、電気抵抗率を逆算で求めた。このようにして求められた上記3種類の各材料種の特性値を表1にまとめて示す。
4, Density, yield strength, and electrical resistivity of copper, aluminum, and iron From the measurement results of the extruded material when copper was used for both the core material and the tube material, the density, yield strength, and electrical resistivity of copper were first calculated by back calculation. . Next, from the measurement results of the extruded materials using only aluminum (AAA) and only iron (FFF) as core materials, the densities, yield strengths, and electrical resistivities of aluminum and iron were obtained by back calculation. Table 1 summarizes the characteristic values of the three types of materials obtained in this way.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
5、複合金属材料の特性予測
 密度および降伏強度の予測は、表1の各材料種の特性値を用い、押出し前の横断面積の重みをつけた算術平均(混合則)で行った。その際、押出し後に空隙は残留しないものと仮定した。押出し材の電気抵抗率は、管材および全ての芯材が並列接続しているとしてそれらの調和平均で予測した。
5. Property Prediction of Composite Metal Material Density and yield strength were predicted using the property values of each material type in Table 1, and the weighted arithmetic mean (rule of mixture) of the cross-sectional area before extrusion. It was assumed that no voids remained after extrusion. The electrical resistivity of the extruded material was predicted by the harmonic mean of the tube and all cores assuming they were connected in parallel.
6、実験結果
(1)均一変形
 外観および押出し後の試料の切断面の観察では、管材、芯材共に破断は観察されず、均一変形をしていることが確認できた。図5に、押出し後の試料の切断面の例を示す。
6. Experimental Results (1) Uniform Deformation Observation of the appearance and the cut surface of the sample after extrusion showed no breakage in both the tube material and the core material, confirming uniform deformation. FIG. 5 shows an example of a cut surface of the sample after extrusion.
(2)密度、降伏強度、電気抵抗率の予測値と実測値
 密度、降伏強度、電気抵抗率の実験結果を、それぞれ図6、図7、図8に示す。なお、これらの図において、横軸は予測値、縦軸は実測値である。
(2) Predicted Values and Measured Values of Density, Yield Strength, and Electrical Resistivity Experimental results of density, yield strength, and electrical resistivity are shown in FIGS. 6, 7, and 8, respectively. In these figures, the horizontal axis is the predicted value and the vertical axis is the measured value.
 図6、図7、図8において予測値と実測の相関係数は、それぞれ、密度:0.996、降伏強度:0.983、電気抵抗率:0.967と算定された。この結果から、作製した各複合金属材料は、密度、降伏強度、電気抵抗率の3種類の特性が、ほぼ予測値通りの特性を有していることが確認された。  In Figures 6, 7, and 8, the correlation coefficients between the predicted values and the actual measurements were calculated as density: 0.996, yield strength: 0.983, and electrical resistivity: 0.967, respectively. From these results, it was confirmed that each of the composite metal materials prepared had three types of characteristics, ie, density, yield strength, and electrical resistivity, which were almost as predicted.
 上記のことから、本発明の複合金属材料の製造方法は合理性のある製造方法であり、また複合金属材料の特性を予測することで設計の段階で中間素材の構成を絞り込むことが可能であり、本発明の製造方法、および本発明における特性の予測は、材料配置の最適化、即ち、トポロジー最適化のスピードアップに十分有効であることが分かった。 From the above, the method of manufacturing a composite metal material of the present invention is a rational manufacturing method, and by predicting the characteristics of the composite metal material, it is possible to narrow down the configuration of the intermediate material at the design stage. , the fabrication method of the present invention, and the prediction of properties in the present invention have been found to be sufficiently effective in optimizing material placement, ie speeding up topology optimization.
[実施例2]
 次に、上記した通り、実施例1に用いたAl、Fe、Cuの複合金属材料と同等の優れた特性の複合金属材料を、他の金属によっても、本発明の製造方法を用いて容易に製造できるかを実験により確認するために、Mg、Ag、Tiを用いて実験した。
[Example 2]
Next, as described above, a composite metal material having excellent properties equivalent to those of the composite metal material of Al, Fe, and Cu used in Example 1 can be easily produced using other metals using the production method of the present invention. Experiments were conducted using Mg, Ag, and Ti in order to confirm by experiments whether they could be produced.
1、材料の構成
(1)管材
 管材は、実施例1と同様に、一端が閉じられた外径d10.9mm、長さ35.0mmの純銅(C1020)を用い、芯材を挿入するための穴として、内径d7.5mm、深さ30mmの穴を設けた。
1. Composition of materials (1) Tubing The tubing is made of pure copper (C1020) with an outer diameter d 0 of 10.9 mm and a length of 35.0 mm with one end closed, in the same manner as in Example 1, and a core material is inserted. A hole having an inner diameter d i of 7.5 mm and a depth of 30 mm was provided as a hole for this purpose.
(2)芯材
 芯材として、実施例1と同じサイズ(直径d1.45mm、長さ30mm)の純チタン(純度99.5%)、純マグネシウム(純度99.95%)、および純銀(純度99.99%)を準備した。
(2) Core material Pure titanium (purity 99.5%), pure magnesium (purity 99.95%), and pure silver of the same size (diameter d f 1.45 mm, length 30 mm) as in Example 1 were used as the core material. (Purity 99.99%) was prepared.
(3)芯材の配置位置
 各芯材を管材に挿入して配置する位置は、実施例1と同様に、管材の中央に第1層の芯材を1本配置し、第1層の芯材の周囲に第2層の芯材を6本配置し、第2層の芯材の周囲に第3層の芯材を12本配置する構成とした。
(3) Arrangement position of the core material The position where each core material is inserted and arranged in the pipe material is the same as in Example 1, one core material of the first layer is arranged in the center of the pipe material, and the core of the first layer is arranged. Six core members of the second layer are arranged around the core member, and 12 core members of the third layer are arranged around the core member of the second layer.
(4)芯材の材料種の組み合わせ
 本実施例において、芯材の材料種の組み合わせは、図9(b)に示すように、(イ)Ti1本、Mg6本、Ag12本の組み合わせ(TMA)、(ロ)Mg3本、Ti6本、Ag10本の組み合わせ(MTA)、(ハ)Ti1本、Ag4本、Mg14本の組み合わせ(TAM)の3種類とした。
(4) Combination of material types of core material In this embodiment, as shown in FIG. 9B, the combination of material types of the core material is as follows: , (b) a combination of 3 Mg, 6 Ti and 10 Ag (MTA), and (c) a combination of 1 Ti, 4 Ag and 14 Mg (TAM).
 なお、上記のTMAは実施例1におけるFACと、MTAはFCAと、TAMはCAFと同等の特性が得られるように想定した組み合わせの例である。両者の対応関係を示すために、図9(a)に、対応するFAC、FCA、CAFの芯材の材料種の組み合わせを表示した。 It should be noted that the above TMA is an example of a combination assumed to obtain characteristics equivalent to those of the FAC in Example 1, the MTA to the FCA, and the TAM to the CAF. In order to show the correspondence between the two, FIG. 9A shows the corresponding combinations of material types for the core materials of FAC, FCA, and CAF.
 図10は、(a)Al、Fe、Cuと、(b)Mg、Ag、Ti、それぞれの密度、降伏強度および電気抵抗率について表した図(レーダーチャート)である。なお、中心点より遠くなるほど特性が優れているように表示するため、密度については、密度の逆数を、電気抵抗率については、電気抵抗率の逆数(電気伝導度)で表している。 FIG. 10 is a diagram (radar chart) showing the density, yield strength, and electrical resistivity of (a) Al, Fe, and Cu, and (b) Mg, Ag, and Ti. In order to indicate that the characteristics become more excellent as the distance from the center point increases, the density is expressed by the reciprocal of the density, and the electrical resistivity is expressed by the reciprocal of the electrical resistivity (electrical conductivity).
 図10より、Mg、Ag、Tiを用いた方がより優れた特性が得やすく、設計の自由度が高いことが分かる。そして、FAC、FCA、CAFに対応する複合金属材料を得るために、Mg、Ag、Tiそれぞれの特性を考慮して、Mg、Ag、Tiの各本数、配置位置を上記した通り、図9(b)のようにした。 From FIG. 10, it can be seen that the use of Mg, Ag, and Ti makes it easier to obtain better characteristics and has a higher degree of freedom in design. Then, in order to obtain a composite metal material corresponding to FAC, FCA, and CAF, considering the characteristics of each of Mg, Ag, and Ti, the number and arrangement positions of Mg, Ag, and Ti are determined as shown in FIG. b).
(5)中間素材の作製
 上記した芯材の組み合わせに従って、各芯材を上記した管材に挿入して、中間素材を作製した。図11に、押出し加工前の各試料の切断面を示す。
(5) Preparation of Intermediate Material According to the combination of the core materials described above, each core material was inserted into the pipe material described above to prepare an intermediate material. FIG. 11 shows a cut surface of each sample before extrusion.
2、押出し加工および特性の測定
 作製した中間素材を用いて、実施例1と同様に、押出し加工することにより複合金属材料を製造した。そして、その後、実施例1と同様の方法で、電気抵抗率、密度、降伏強度を測定した。
2. Extrusion Processing and Measurement of Properties A composite metal material was manufactured by extrusion processing in the same manner as in Example 1 using the produced intermediate material. After that, the electrical resistivity, density and yield strength were measured in the same manner as in Example 1.
3、実験結果
(1)均一変形
 外観および押出し後の各試料の切断面の観察では、管材、芯材共に破断は観察されず、均一変形をしていることが確認できた。図12に、押出し加工後の各試料の切断面を示す。
3. Experimental Results (1) Uniform Deformation Observation of the external appearance and the cut surface of each sample after extrusion showed no breakage in both the tube material and the core material, confirming uniform deformation. FIG. 12 shows a cut surface of each sample after extrusion.
(2)測定結果の比較
 実施例1のFAC、FCA、CAFと、実施例2のTMA、MTA、TAMの電気抵抗率、密度、降伏強度の結果を比較するために、両結果を重ねて図13(a)~(c)に示すレーダーチャートを作成した。
(2) Comparison of measurement results In order to compare the results of electrical resistivity, density, and yield strength of FAC, FCA, and CAF in Example 1 and TMA, MTA, and TAM in Example 2, both results are superimposed on each other. Radar charts shown in 13(a) to (c) were prepared.
 その結果、図13のいずれにおいても、両者はほぼ同じ特性が得られており、Mg,Ti,Agの組み合わせによっても、Al,Fe,Cuの組み合わせとほぼ同じ特性の複合金属材料の製造が、本発明の製造方法を適用することにより実現可能であることが確認できた。 As a result, in any of FIG. 13, substantially the same characteristics were obtained for both, and the combination of Mg, Ti, and Ag also produced a composite metal material with substantially the same characteristics as the combination of Al, Fe, and Cu. It has been confirmed that it can be realized by applying the manufacturing method of the present invention.
 以上のように、本発明は大きな効果を有しているが、複雑な方法を必要としない発明であるにも関わらず、長年に亘りこのような技術が開発されていなかったのは、押出し加工においては、不均一変形が顕著に生じる硬芯材について主として研究されてきたこと、また押出し加工によるクラッド材の製造技術の分野において、安易に芯材を配置変更してはならないという慣行に捕らわれていたことなどが大きな原因であったと思われる。 As described above, the present invention has a great effect, but although it is an invention that does not require a complicated method, the reason why such a technology has not been developed for many years is the extrusion process. In , research has mainly been carried out on hard core materials, in which non-uniform deformation occurs remarkably, and in the field of manufacturing technology for clad materials by extrusion, there is a practice that the arrangement of core materials should not be changed easily. This seems to have been a major factor.
 この点において、前記した通り、本発明者らは、まず、押出し加工における不均一変形を防止する方法を検討し、均一変形させる条件を解明した。これにより、先に製造した複合金属材料の特性を解析して、適宜、配置替えなどの修正を行い、再度、複合金属材料を製造するという繰り返し作業における不均一変形の問題を解消させ、繰り返し作業の時間を短縮させることができた。 In this respect, as described above, the present inventors first investigated a method for preventing non-uniform deformation during extrusion and clarified the conditions for uniform deformation. As a result, the characteristics of the previously manufactured composite metal material are analyzed, the arrangement is appropriately modified, etc., and the problem of uneven deformation in the repeated work of manufacturing the composite metal material again is resolved, and the repeated work is performed. time can be shortened.
 そして、均一変形させる条件が解明できたため、安易に芯材を配置変更してはならないという慣行に捕らわれることなく、短時間に複合金属材料を製造する方法を検討することに注力でき、本発明に至ることができた。 Then, since the conditions for uniform deformation could be clarified, it was possible to concentrate on studying a method for producing a composite metal material in a short time without being bound by the practice that the arrangement of the core material should not be changed easily. I was able to reach
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments. Various modifications can be made to the above embodiment within the same and equivalent scope of the present invention.
 1      押出装置
 11     パンチ
 12     コンテナ
 13     ダイホルダ
 14     ダイ
 C      コア(芯材)
 D      ダイス径(複合金属材料の外径)
 F     第1層の芯材
 F     第2層の芯材
 F     第3層の芯材
 IM     中間素材
 P      複合金属材料
 S      シース(管材)
 d     芯材の径
 d     管材の内径
 d     管材の外径
1 extrusion device 11 punch 12 container 13 die holder 14 die C core (core material)
D Die diameter (outer diameter of composite metal material)
F1 Core material of the first layer F2 Core material of the second layer F3 Core material of the third layer IM Intermediate material P Composite metal material S Sheath (tube material)
d f diameter of core material d i inner diameter of tube material d 0 outer diameter of tube material

Claims (16)

  1.  円筒形状の管材の内側に芯材を挿入して中間素材を作製する中間素材作製工程と、
     作製された前記中間素材を押出し加工して、前記管材と前記芯材、および/または芯材同士を複合化することにより複合金属材料を製造する複合金属材料製造工程とを備えており、
     前記管材の内側に挿入する芯材は、複数本の芯材であり、
     前記複数本の芯材の断面形状および断面寸法は、全て同一であり、
     前記複数本の芯材の内、少なくとも1本の芯材は、前記管材の材料種とは異なる材料種の芯材であり、
     前記管材と前記複数本の芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする複合金属材料の製造方法。
    an intermediate material manufacturing step of inserting a core material inside a cylindrical tubular material to create an intermediate material;
    a composite metal material manufacturing step of manufacturing a composite metal material by extruding the produced intermediate material to composite the pipe material and the core material and/or the core materials together,
    The core material inserted inside the pipe material is a plurality of core materials,
    The cross-sectional shape and cross-sectional dimensions of the plurality of core materials are all the same,
    At least one core material among the plurality of core materials is a core material of a material type different from the material type of the pipe material,
    A composite metal material having desired characteristics is manufactured by extruding after manufacturing the intermediate material by adjusting the combination of the pipe material and the plurality of core materials. Production method.
  2.  前記管材と前記複数本の芯材との組み合わせ内容が、前記管材の材料種と、前記芯材の本数と、前記複数本の芯材のそれぞれの材料種と、前記複数本の芯材のそれぞれの前記管材への挿入位置との組み合わせ内容であることを特徴とする請求項1に記載の複合金属材料の製造方法。 The contents of the combination of the pipe material and the plurality of core materials are the material type of the pipe material, the number of the core materials, the material type of each of the plurality of core materials, and each of the plurality of core materials. 2. The method for manufacturing a composite metal material according to claim 1, wherein the content of the combination with the insertion position into the pipe material.
  3.  前記複数本の芯材を、軸対称となる位置に挿入することを特徴とする請求項1または請求項2に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to claim 1 or 2, characterized in that the plurality of core members are inserted at axially symmetrical positions.
  4.  前記複数本の芯材の本数が、所望する前記複合金属材料の特性の数以上の本数であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の複合金属材料の製造方法。 The manufacturing of the composite metal material according to any one of claims 1 to 3, wherein the number of the plurality of core members is equal to or greater than the number of desired properties of the composite metal material. Method.
  5.  円筒形状の管材の内側に、芯材を挿入して中間素材を作製する中間素材作製工程と、
     作製された前記中間素材を押出し加工して、前記管材と前記芯材を複合化することにより複合金属材料を製造する複合金属材料製造工程とを備えており、
     前記管材の内側に挿入される芯材は、管材の断面において1本の芯材であり、
     前記芯材の材料種は、前記管材の材料種とは異なる材料種であり、
     前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする複合金属材料の製造方法。
    an intermediate material manufacturing step of inserting a core material inside a cylindrical tubular material to create an intermediate material;
    a composite metal material manufacturing step of manufacturing a composite metal material by extruding the produced intermediate material to combine the pipe material and the core material,
    The core material inserted inside the tubular material is one core material in the cross section of the tubular material,
    The material type of the core material is a material type different from the material type of the tube material,
    A method for manufacturing a composite metal material, comprising: manufacturing a composite metal material having desired characteristics by adjusting the content of the combination of the pipe material and the core material to prepare the intermediate material, and then extruding the intermediate material.
  6.  前記芯材の断面形状が、円形または多角形であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to any one of claims 1 to 5, wherein the cross-sectional shape of the core material is circular or polygonal.
  7.  前記管材が、一端が閉じられた管材であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to any one of claims 1 to 6, characterized in that the tubular member is a tubular member with one end closed.
  8.  前記芯材として、線材を用いることを特徴とする請求項1ないし請求項7のいずれか1項に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to any one of claims 1 to 7, wherein a wire rod is used as the core material.
  9.  前記管材として、変形抵抗が、前記芯材の少なくとも1本の変形抵抗より大きい管材を用いることを特徴とする請求項1ないし請求項8のいずれか1項に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to any one of claims 1 to 8, wherein a tube material having deformation resistance greater than that of at least one core material is used as the tube material.
  10.  前記管材の内側の同一断面位置に、前記管材の長さより短い複数の材料種の前記芯材を順次挿入して、前記中間素材を作製することを特徴とする請求項1ないし請求項9のいずれか1項に記載の複合金属材料の製造方法。 10. The intermediate material is manufactured by sequentially inserting the core materials of a plurality of material types shorter than the length of the pipe into the same cross-sectional position inside the pipe. 2. A method for producing a composite metal material according to claim 1.
  11.  前記押出し加工が、冷間押出し加工または熱間押出し加工であることを特徴とする請求項1ないし請求項10のいずれか1項に記載の複合金属材料の製造方法。 The method for producing a composite metal material according to any one of claims 1 to 10, wherein the extrusion is cold extrusion or hot extrusion.
  12.  前記管材の特性および前記芯材の特性に基づいて、前記管材と前記芯材との組み合わせ内容により得られる複合金属材料の特性を予測し、予測内容を参照して、所望する特性の複合金属材料を得るために必要な前記中間素材の構成を決定し、決定した構成に基づいて前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項11のいずれか1項に記載の複合金属材料の製造方法。 Based on the characteristics of the pipe material and the characteristics of the core material, the characteristics of the composite metal material obtained by combining the pipe material and the core material are predicted, and the composite metal material with desired characteristics is obtained by referring to the predicted contents. After determining the configuration of the intermediate material necessary to obtain the intermediate material, the intermediate material is produced based on the determined configuration, and then extruded to produce a composite metal material with desired characteristics. A method for manufacturing a composite metal material according to any one of claims 1 to 11.
  13.  請求項1ないし請求項12のいずれか1項に記載の複合金属材料の製造方法に基づいて製造された複合金属材料の特性を解析し、解析内容に基づいて、得られた前記複合金属材料の製造に用いた前記管材と前記芯材との組み合わせ内容を変更し、変更した内容に基づいて前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項12のいずれか1項に記載の複合金属材料の製造方法。 The characteristics of the composite metal material manufactured based on the method for manufacturing a composite metal material according to any one of claims 1 to 12 are analyzed, and based on the analysis content, the obtained composite metal material It is possible to manufacture a composite metal material having desired characteristics by changing the combination of the pipe material and the core material used in the production, producing the intermediate material based on the changed content, and then extruding it. 13. A method for producing a composite metal material according to any one of claims 1 to 12.
  14.  予め、断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の前記芯材を準備し、
     予め準備した複数本の前記芯材を用いて、前記芯材の材料種、挿入位置および挿入本数の1つ以上を適宜変更することにより、前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項13のいずれか1項に記載の複合金属材料の製造方法。
    Preparing in advance a plurality of core materials having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types,
    Using a plurality of core materials prepared in advance, by appropriately changing one or more of the material type, insertion position, and number of insertion of the core materials, the content of the combination of the pipe material and the core material is adjusted. 14. The method for manufacturing a composite metal material according to any one of claims 1 to 13, wherein the composite metal material having desired properties is manufactured by extruding the intermediate material after manufacturing the intermediate material. .
  15.  予め、断面形状、断面寸法および長さが同一で、複数の材料種からなる複数本の前記管材を準備し、
     予め準備した複数本の前記管材を用いて、前記管材の材料種を適宜変更することにより、前記管材と前記芯材との組み合わせ内容を調整して前記中間素材を作製した後、押出し加工することにより、所望する特性の複合金属材料を製造することを特徴とする請求項1ないし請求項14のいずれか1項に記載の複合金属材料の製造方法。
    Preparing in advance a plurality of pipe members having the same cross-sectional shape, cross-sectional dimensions and length and made of a plurality of material types,
    Using a plurality of previously prepared pipe materials and appropriately changing the material type of the pipe materials to adjust the content of the combination of the pipe materials and the core material to prepare the intermediate material, and then extruding. 15. The method for manufacturing a composite metal material according to any one of claims 1 to 14, wherein the composite metal material having desired properties is manufactured by
  16.  請求項1ないし請求項15のいずれか1項に記載の複合金属材料の製造方法により製造されていることを特徴とする複合金属材料。 A composite metal material manufactured by the method for manufacturing a composite metal material according to any one of claims 1 to 15.
PCT/JP2022/037265 2021-10-11 2022-10-05 Composite metal material and production method therefor WO2023063185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554440A JPWO2023063185A1 (en) 2021-10-11 2022-10-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166711 2021-10-11
JP2021166711 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023063185A1 true WO2023063185A1 (en) 2023-04-20

Family

ID=85988618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037265 WO2023063185A1 (en) 2021-10-11 2022-10-05 Composite metal material and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2023063185A1 (en)
WO (1) WO2023063185A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704877A (en) * 1971-02-22 1972-12-05 John Nunes Means and method of energy storage and damping
JPH03412A (en) * 1989-05-30 1991-01-07 Calsonic Corp Manufacture of composite material of aluminum
US5286577A (en) * 1990-07-23 1994-02-15 Aluminum Company Of America Drawn conductors for cryogenic applications
JPH08138467A (en) * 1994-11-08 1996-05-31 Furukawa Electric Co Ltd:The Manufacture of a3b type compound superconductive wire
CN1850383A (en) * 2006-04-30 2006-10-25 重庆大学 Magnesium-aluminium bimetal composite pipe/bar
US20070214857A1 (en) * 2006-03-17 2007-09-20 James Wong Valve metal ribbon type fibers for solid electrolytic capacitors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704877A (en) * 1971-02-22 1972-12-05 John Nunes Means and method of energy storage and damping
JPH03412A (en) * 1989-05-30 1991-01-07 Calsonic Corp Manufacture of composite material of aluminum
US5286577A (en) * 1990-07-23 1994-02-15 Aluminum Company Of America Drawn conductors for cryogenic applications
JPH08138467A (en) * 1994-11-08 1996-05-31 Furukawa Electric Co Ltd:The Manufacture of a3b type compound superconductive wire
US20070214857A1 (en) * 2006-03-17 2007-09-20 James Wong Valve metal ribbon type fibers for solid electrolytic capacitors
CN1850383A (en) * 2006-04-30 2006-10-25 重庆大学 Magnesium-aluminium bimetal composite pipe/bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANIGUCHI, DAISUKE ET AL.: "Non-Uniform Deformation in Extrusion of Dissimilar Metal Composite Billet", PROCEEDINGS OF THE 60TH ANNUAL CONFERENCE OF THE COPPER SOCIETY OF JAPAN; 2020/10/24- 25, COPPER SOCIETY OF JAPAN, JP, 16 October 2020 (2020-10-16) - 25 October 2020 (2020-10-25), JP, pages 71 - 72, XP009546281 *

Also Published As

Publication number Publication date
JPWO2023063185A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
CN105814223B (en) The extruded product of airplane floor is used for made of aluminum-copper-lithium alloys
DE60205006T2 (en) Metal pipe and process for its production
DE2638680A1 (en) SUPRAL CONDUCTING COMPOSITE BODY AND METHOD FOR PRODUCING IT
DE2035654A1 (en) Method and device for the production of composite superconductors
DE3018105A1 (en) METHOD FOR PRODUCING A COMPOSITE ITEM THAT CAN BE USED AS A SUPER LADDER
EP3425665B1 (en) Method for the production of a bonding wire
DE69630336T2 (en) Titanium alloy, workpiece made of titanium alloy and method for producing a workpiece made of titanium alloy
CN1865829A (en) Extruded multi-path flat tubes of aluminium alloy for heat exchanger and method of manufacture thereof
CN103394537B (en) A kind of preparation method of thin crystalline substance/ultrafine grain metal stratified material
WO2023063185A1 (en) Composite metal material and production method therefor
DE112012003596T5 (en) Aluminum-based connection fitting
CN103982711A (en) Corrosion-resisting aluminum alloy composite pipe and processing method thereof
EP2844467B1 (en) Application-specific weldable composite metal sheet
EP1983583B1 (en) Multifilament superconductor and method for its manufacture
EP3864710B1 (en) Subelement based on nb-containing rod elements with powder-filled core tube for an nb3sn-containing superconductor wire, and associated production method
EP2003224B1 (en) Secondary processing of structures derived from AI-RE-TM Alloys
DE69028172T2 (en) Superconducting magnetic shielding and process for its manufacture
DE3586162T2 (en) SHAFTED REINFORCEMENT WIRE.
DE102016210268A1 (en) Electric conductor with multiple filaments in a matrix
DE102016101989B4 (en) Process for the production of an aluminum pipe and a pipeline as well as an aluminum pipe and a pipeline
Jafarzadeh et al. Retracted Article: Numerical and experimental analyses of repetitive tube expansion and shrinking processed AZ91 magnesium alloy tubes
EP2907615A1 (en) Composite sheet
DE102019130522A1 (en) Process for the production of composite wires
DE19612274B4 (en) Process for the production of a superconducting wire with Nb3Sn
JPS5991610A (en) Method of producing stabilizer for superconductive conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554440

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE