WO2023063135A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2023063135A1
WO2023063135A1 PCT/JP2022/036921 JP2022036921W WO2023063135A1 WO 2023063135 A1 WO2023063135 A1 WO 2023063135A1 JP 2022036921 W JP2022036921 W JP 2022036921W WO 2023063135 A1 WO2023063135 A1 WO 2023063135A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
shield case
refrigerator
food
drawer
Prior art date
Application number
PCT/JP2022/036921
Other languages
French (fr)
Japanese (ja)
Inventor
貴代志 森
桂 南部
範幸 米野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023063135A1 publication Critical patent/WO2023063135A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes

Definitions

  • the present invention relates to a refrigerator that can dielectrically heat food.
  • Patent Document 1 discloses a freezer that can thaw frozen food.
  • the freezer of Patent Document 1 has a high-frequency heating chamber in which food to be thawed is accommodated and in which high-frequency heating (dielectric heating) is performed on the accommodated food.
  • the high-frequency heating chamber is configured to be able to introduce cold air from the freezer compartment. This allows the high-frequency heating chamber to be used as a freezing chamber when not used for defrosting.
  • an object of the present invention is to suppress leakage of an alternating electric field from the heating space of a refrigerator that dielectrically heats food to the outside.
  • a shield case made of a metal material and having an opening on the front side that communicates between the inside and the outside; a flat plate-like first electrode arranged in the shield case; A plate-shaped plate disposed in the shield case so as to face the first electrode with a gap, forming a heating space for dielectrically heating food between the first electrode and the first electrode, and connected to the ground a second electrode of an oscillation unit that generates an alternating voltage to be applied between the first electrode and the second electrode;
  • the distance D between the first electrode and the second electrode in the facing direction, the output power W of the oscillator, the output impedance Z of the oscillator, and the opening of the shield case from the front end of the second electrode The distance D1 to A refrigerator is provided to satisfy
  • leakage of an alternating electric field to the outside from the heating space of a refrigerator that dielectrically heats food can be suppressed.
  • a refrigerator includes a shield case having an opening on the front side that communicates between the inside and the outside, the shield case being made of a metal material, and a flat plate-like first electrode arranged in the shield case.
  • a flat plate arranged in the shield case so as to face the first electrode with a gap, forming a heating space between the first electrode and the first electrode for dielectrically heating food, and connected to the ground; and an oscillator for generating an alternating voltage to be applied between the first electrode and the second electrode, wherein the first electrode and the second electrode , the output power W of the oscillator, the output impedance Z of the oscillator, and the distance D1 from the front end of the second electrode to the opening of the shield case, satisfy.
  • leakage of the alternating electric field to the outside from the heating space of the refrigerator that dielectrically heats the food can be suppressed.
  • the front end of the first electrode may be further away from the opening of the shield case than the front end of the second electrode. This makes it possible to further suppress leakage of the alternating electric field to the outside.
  • the facing direction distance D, the output power W, the impedance Z, and the distance D2 from the side end of the second electrode to the inner wall surface of the shield case are satisfy. This suppresses the formation of capacitance between the side end of the second electrode and the inner wall surface of the shield case. As a result, the dielectric heating efficiency of food is improved.
  • the side edge of the first electrode may be farther from the inner wall surface of the shield case than the side edge of the second electrode. This suppresses the formation of capacitance between the side end of the first electrode and the inner wall surface of the shield case. As a result, the dielectric heating efficiency of food is improved.
  • the heating space may be at least part of a freezer compartment that freezes food.
  • frozen food can be thawed as it is.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1.
  • FIG. 1 the left side is the front side of the refrigerator and the right side is the rear side of the refrigerator.
  • FIG. 2 is a block diagram showing the control system of the refrigerator.
  • the XYZ orthogonal coordinate system shown in the drawings is for facilitating understanding of the embodiments according to the present invention, and does not limit the embodiments.
  • the X-axis direction indicates the front-rear direction (depth direction) of the refrigerator 10
  • the Y-axis direction indicates the left-right direction (width direction)
  • the Z-axis direction indicates the vertical direction (height direction).
  • refrigerator 10 includes main body 12 .
  • the main body 12 includes an outer housing 14 that is made of a metal material and constitutes the outer surface of the refrigerator 10, an inner housing 16 that is made of a resin material such as ABS and constitutes the inner surface of the refrigerator 10, and an outer housing.
  • the space between the body 14 and the inner housing 16 is filled with a heat insulating material 18 such as rigid urethane foam.
  • the main body 12 of the refrigerator 10 has a plurality of storage chambers for storing food (ingredients, processed foodstuffs, etc.).
  • storage chambers are provided from the top with a refrigerating chamber 12a, a freezing/thawing chamber 12b, a freezing chamber 12c, and a vegetable chamber 12d.
  • the freeze/thaw chamber 12b and the freezer chamber 12c are in communication with each other.
  • the refrigerator compartment 12a is a space that maintains a temperature range in which food does not freeze, for example, a temperature range of 1°C to 5°C.
  • the freezing/thawing chamber 12b and the freezing chamber 12c are spaces maintained in a temperature range in which food is frozen, for example, a temperature range of -22°C to -15°C.
  • the freezing/thawing chamber 12b which will be described later in detail, can not only freeze food but also heat food, for example, thaw frozen food.
  • the vegetable compartment 12d is a space maintained in a temperature range equal to or higher than the temperature range of the refrigerator compartment 12a, for example, a temperature range of 2°C to 7°C.
  • the refrigerator 10 may be provided with semi-freezing spaces at -1°C or -3°C.
  • a machine room 12e is provided in the upper part of the main body 12 of the refrigerator 10.
  • the machine room 8 houses a compressor 20 that constitutes a refrigerating cycle of the refrigerator 10 and circulates the refrigerant of the refrigerating cycle.
  • the machine room 12e can be provided in the lower part of the main body 12 of the refrigerator 10.
  • a cooling chamber 12f is provided behind the freezer compartment 12c and the vegetable compartment 12d. Inside the cooling chamber 12f, a cooler 22 that forms a refrigerating cycle of the refrigerator 10 and through which a refrigerant passes is arranged. A cooling fan 24 blows the air (cold air) in the cooling chamber 12f cooled by the cooler 22 toward the refrigerating chamber 12a, the freezing/thawing chamber 12b, the freezing chamber 12c, and the vegetable chamber 12d to the cooling chamber 12f. is provided.
  • the refrigerator 10 is provided with three doors 12g to 12i.
  • the door 12g can be opened and closed, and connects or disconnects the refrigerator compartment 12a and the outside.
  • the door 12h can be opened and closed, and connects or separates the freezing/thawing chamber 12b and the freezing chamber 12c from the outside.
  • the door 12i can be opened and closed, and connects or separates the vegetable compartment 12d and the outside.
  • dampers 26A to 26C for controlling the flow rate of cold air flowing into each chamber 12a to 12d are arranged in the flow path between each chamber 12a to 12d and the cooling fan 24 (see FIG. 2). 1 shows only the damper 26B).
  • a damper 26B is arranged in the flow path between the freezing/thawing chamber 12b and the cooling fan 24. As shown in FIG. Cold air passes through freeze/thaw compartment 12b and flows into freezer compartment 12c.
  • the refrigerator 10 includes temperature sensors 28A to 28C that measure the internal temperatures of the refrigerating compartment 12a, the freezing/thawing compartment 12b, the freezing compartment 12c, and the vegetable compartment 12d.
  • the control unit 30 of the refrigerator 10 executes cooling control based on the measurement results of the plurality of temperature sensors 28A to 28C. , and dampers 26A to 26C, the temperatures in refrigerator compartment 12a, freeze/thaw compartment 12b, freezer compartment 12c, and vegetable compartment 12d are appropriately maintained.
  • the control unit 30 is, for example, a control board that is arranged in the machine room 12e and includes a processor such as a CPU, a storage device such as a memory that stores programs, and a circuit.
  • a processor controls compressor 20, cooling fan 24, and dampers 26A-26C according to a program stored in a memory device.
  • the refrigerator 10 includes door opening/closing sensors 32A to 32C that detect the opening/closing states of the plurality of doors 12g to 12i, respectively.
  • the door opening/closing sensors 32A-32C are, for example, switches that detect the closed doors 12g-12i by coming into contact with the doors 12g-12i.
  • the door open/close sensors 32A-32C are provided at positions on the main body 12 of the refrigerator 10 where they can come into contact with the inner surfaces of the doors 12g-12i. Further, detection signals of the door opening/closing sensors 32A to 32C are transmitted to the control section 30.
  • the control unit 30 controls lighting devices (not shown) provided in each of the refrigerator compartment 12a, the freeze/thaw compartment 12b, the freezer compartment 12c, and the vegetable compartment 12d. is ON/OFF controlled.
  • the switch may be a mechanical switch, or a magnetic sensor such as a Hall sensor, that is, a non-contact switch. Magnetic sensors such as Hall sensors, MR sensors, and reed switches have the advantages of being easier to be miniaturized than mechanical switches and not impairing the design of refrigerator 10 because they do not have projections.
  • refrigerator 10 includes a user interface 34 for the user to operate refrigerator 10 .
  • the user interface 34 may be a touch panel or the like built into the refrigerator 10 and/or may be the user's mobile device.
  • software (application) for operating the refrigerator 10 is installed in the mobile terminal.
  • the user interface 34 when one of the door opening/closing sensors 32A to 32C detects that the corresponding door 12g to 12i is open for a predetermined time, the user interface 34 notifies the user that the door is open.
  • the user interface 34 is also used by the user when performing thawing in the freeze/thaw compartment 12b. Details of the freezing/thawing chamber 12b will now be described.
  • FIG. 3 is a perspective view of the heating module. 4 is a cross-sectional view of the heating module, and FIG. 5 is a cross-sectional view of the heating module taken along line AA shown in FIG.
  • FIG. 6 is a block diagram showing the control system of the heating module.
  • the heating module 40 shown in FIGS. 3 to 5 is a module that heats frozen food and is incorporated in the refrigerator 10. Freeze/thaw chamber 12 b is provided within heating module 40 . Although details will be described later, the heating module 40 is configured to generate an alternating electric field in the freezing/thawing chamber 12b and dielectrically heat the food by the alternating electric field.
  • the heating module 40 has a rectangular parallelepiped shape and is a double-walled structure including an inner case 42 and a shield case 44 that houses the inner case 42 .
  • the shield case 44 functions as a housing for the heating module 40 .
  • the inner case 42 defines a storage chamber in which food is stored, that is, a freeze/thaw chamber 12b.
  • the inner case 42 is a rectangular parallelepiped box made of an insulating material such as resin and provided with an opening on the front side for communication between the inside and the outside.
  • the shield case 44 is made of a metal material, for example, made of a metal material such as aluminum.
  • the shield case 44 is a rectangular parallelepiped box having an opening on the front side for communication between the inside and the outside, and stores the inner case 42 therein.
  • the heating module 40 includes a drawer 46 that is inserted into and removed from the freezing/thawing chamber 12b in the front-rear direction (X-axis direction) and stores food.
  • the drawer 46 is made from a resin material.
  • a guide rail 47 is provided on the inner wall surface 42a of the inner case 42 to guide the drawer 46 in the front-rear direction (X-axis direction) when the drawer 46 is put in and taken out.
  • Such a drawer 46 facilitates the loading and unloading of food from the freeze/thaw chamber 12b.
  • the inner case 42 and the shield case 44 of the heating module 40 are provided with a plurality of ventilation holes 42b, 44a communicating with the freezing/thawing chamber 12b so that the food in the freezing/thawing chamber 12b can be frozen. Cool air that has passed through the damper 26B flows into the freezing/thawing chamber 12b through these ventilation holes 42b and 44a. Thereby, the food in the heating module 40, that is, in the freezing/thawing chamber 12b can be frozen.
  • the heating module 40 comprises a first electrode 48 and a second electrode 50 for dielectric heating of food in the freeze/thaw chamber 12b, for example for thawing frozen food.
  • the first electrode 48 and the second electrode 50 are plate-shaped members made of a metal material. Also, the first electrode 48 and the second electrode 50 are arranged in the shield case 44 so as to face each other with a space therebetween. In the case of this embodiment, the first electrode 48 and the second electrode 50 face each other in the vertical direction (Z-axis direction) and are parallel to each other. A first electrode 48 and a second electrode 50 facing each other at a distance form therebetween a heating space HZ for dielectric heating of food.
  • a drawer 46 is provided in the heating module 40 such that it can be drawn in and out of the heating space HZ between the first electrode 48 and the second electrode 50 .
  • the first electrode 48 is arranged between the top plate portion 42c of the inner case 42 and the top plate portion 44b of the shield case 44.
  • a space that is, an air layer is provided between the shield case 44 and the first electrode 48 .
  • the second electrode 50 is arranged on the bottom plate portion 42d of the inner case 42 .
  • the refrigerator 10 is arranged between the first electrode 48 and the second electrode 50 as shown in FIG.
  • An oscillator 52 is provided to generate an AC voltage to be applied.
  • the oscillator 52 is, for example, an oscillator circuit board arranged in the machine room 12 e of the refrigerator 10 and electrically connected to the first electrode 48 and the second electrode 50 .
  • Oscillator 52 converts an AC voltage from power supply unit 54 of refrigerator 10 connected to a commercial power supply, and applies the converted AC voltage between first electrode 48 and second electrode 50 .
  • an AC voltage of a predetermined VHF band frequency eg, 40.68 MHz is applied.
  • the refrigerator 10 has a matching circuit 56 that matches the impedance between the first electrode 48 and the second electrode 50 .
  • Matching circuit 56 is, for example, a circuit board housed in heating module 40 .
  • a matching circuit 56 is electrically connected to the first electrode 48 and the second electrode 50 .
  • the second electrode 50 is grounded.
  • the role of the matching circuit 56 will be explained. As the frozen food is thawed, the number of water molecules in the food increases. As the number of water molecules increases, the impedance between the first electrode 48 and the second electrode 50 changes from its proper value and the reflectance increases. The reflectance is the ratio of the reflected wave returning to the oscillator 52 to the incident wave output from the oscillator 52 . As the reflectance increases, the dielectric heating of food becomes less efficient.
  • a matching circuit 56 is provided to maintain the impedance between the first electrode 48 and the second electrode 50 at a proper value.
  • the refrigerator 10 includes a reflected wave detection circuit 58 in order for the matching circuit 56 to maintain the impedance between the first electrode 48 and the second electrode 50 at a proper value.
  • the reflected wave detection circuit 58 is provided, for example, on a substrate arranged in the machine room 12e of the refrigerator 10 .
  • the control section 30 calculates the reflectance based on the incident wave output from the oscillation section 52 and the reflected wave detected by the reflected wave detection circuit 58 . Based on the calculated reflectance, the control unit 30 controls the matching circuit 56 so that the impedance between the first electrode 48 and the second electrode 50 becomes an appropriate value.
  • the control unit 30 causes the oscillation unit 52 to generate a heating start signal to generate an AC voltage. to cause the oscillator 52 to generate an AC voltage.
  • an alternating voltage is applied between the first electrode 48 and the second electrode 50, an alternating electric field is generated in the shield case 44 (the freezing/thawing chamber 12b), and the food is dielectrically heated by the alternating electric field. be done.
  • an alternating electric field is generated inside the freezing/thawing chamber 12b.
  • the shield case 44 shields the alternating electric field and suppresses leakage of the alternating electric field to the outside of the shield case 44 (freezing/thawing chamber 12b).
  • the door 12h is provided with a metal shield plate 12j covering the opening 44c of the shield case 44, as shown in FIG. is provided.
  • the oscillator 52 can generate an AC voltage only when the door opening/closing sensor 32B detects the closed door 12h.
  • the control unit 30 receives a thawing instruction from the user via the user interface 34, if the door opening/closing sensor 32B detects the closed door 12h, the oscillation unit A heating start signal is output to 52 .
  • the control unit 30 does not output the heating start signal to the oscillation unit 52, The user is notified via the user interface 34 to close the door 12h.
  • control unit 30 outputs a heating stop signal to oscillation unit 52, thereby causing oscillation unit 52 to stop generating AC voltage.
  • the AC voltage generation control of the oscillator 52 based on the open/closed state of the door 12h suppresses leakage of the alternating electric field to the outside of the shield case 44 (freezing/thawing chamber 12b).
  • the door open/close sensor 32B is a switch that detects the closed state of the door 12h by contacting the door 12h and is located outside the shield case 44. It is less susceptible to the generated alternating electric field. As a result, leakage of the alternating electric field to the outside of the shield case 44 is reliably suppressed.
  • the heating module 40 further has a drawer detection sensor 60 that detects the drawer 46, as shown in FIG. Specifically, the drawer detection sensor 60 detects the drawer 46 when the drawer 46 exists at a predetermined position between the first electrode 48 and the second electrode 50 .
  • the "predetermined position" referred to here is the position of the drawer 46 when the food to be heated stored in the drawer 46 is placed in the heating space HZ between the first electrode 48 and the second electrode 50. say the location.
  • a bottom surface 46a of the drawer 46 is provided with a marker 46b for presenting the user with the placement position of the food to be heated. That is, when the food to be heated is placed on the marker 46b and the drawer 46 is placed in a predetermined position, the food to be heated is placed in the heating space HZ between the first electrode 48 and the second electrode 50. and is properly dielectrically heated.
  • the drawer detection sensor 60 is a mechanical sensor provided at the opening edge 42e of the inner case 42 and in contact with the front end 46c of the drawer 46, as shown in FIGS. As a result, the drawer detection sensor 60 is provided outside the freezing/thawing chamber 12 b , that is, outside the shield case 44 . This allows the drawer detection sensor 60 to reliably detect the drawer 46 .
  • the drawer detection sensor 60 may erroneously detect the drawer 46.
  • the drawer sensor 60 is a Hall sensor that detects a magnetic field, it may malfunction due to an alternating electric field (magnetic field) generated inside the shield case 44 .
  • the drawer sensor 60 is a mechanical sensor, the contact surface of the drawer detection sensor 60 and the contact surface of the drawer 46 may stick to each other through ice. Also, the moving parts of the drawer detection sensor 60 may freeze and become unable to move properly. Therefore, the drawer detection sensor 60 is provided outside the radio wave irradiation space of the freezing/thawing chamber 12 b , that is, outside the space between the first electrode 48 and the second electrode 50 .
  • the oscillator 52 is enabled to generate AC voltage only when the drawer detection sensor 60 detects the drawer 46 existing at a predetermined position.
  • the drawer detection sensor 60 is electrically connected to the oscillator 52 .
  • the oscillator 52 receives a detection signal from the drawer detection sensor 60 indicating that the drawer 46 exists at a predetermined position, the oscillator 52 waits in a state in which an AC voltage can be generated.
  • the oscillation unit 52 in the standby state starts generating AC voltage.
  • the oscillation section 52 does not generate an AC voltage even if the heating start signal is received from the control section 30 .
  • the door opening/closing sensor 32B detects the closed door 12h
  • the drawer detection sensor 60 detects the drawer 46 existing at a predetermined position.
  • the oscillator 32 generates an alternating voltage to be applied between the first electrode 48 and the second electrode 50 .
  • the drawer 46 does not exist in a predetermined position, so that the food to be heated is placed in the heating space HZ between the first electrode 48 and the second electrode 50. is not properly positioned, the onset of dielectric heating is inhibited. As a result, insufficient thawing of food and wasteful power consumption are suppressed.
  • the oscillator 52 When the drawer 46 is pulled out from a predetermined position while the oscillator 52 is generating AC voltage (that is, during dielectric heating of the food), the AC voltage is generated when the drawer detection sensor 60 becomes unable to detect the drawer 46 existing at the predetermined position.
  • the oscillator 52 that is generating the voltage stops generating the AC voltage. In the case of this embodiment, when the detection signal from the drawer detection sensor 60 can no longer be received, the oscillator 52 stops generating the AC voltage.
  • the door 12h must first be opened in order to pull out the drawer 46 from the predetermined position while the oscillator 52 is generating AC voltage (that is, during the dielectric heating of the food). Therefore, when the door 12h is opened, the door opening/closing sensor 32B cannot detect the closed door 12h, and the oscillator 52 stops generating the AC voltage.
  • the oscillator 52 may generate AC voltage for some reason, for example, due to an erroneous detection of the door open/close sensor 32B. In this case, when the drawer 46 is pulled out from the predetermined position and the drawer detection sensor 60 cannot detect the drawer 46 existing at the predetermined position, the oscillator 52 stops generating the AC voltage.
  • the drawer detection sensor 60 is provided outside the freezing/thawing chamber 12b, that is, at the opening edge 42e of the inner case 42, and detects (contacts) the front end 46c of the drawer 46.
  • the drawer detection sensor 60 can also be provided at a position other than the opening edge 42 e of the inner case 42 . That is, the drawer detection sensor 60 should be located at a position where it can detect the drawer 46 arranged at a predetermined position.
  • the oscillator 52 may generate AC voltage for some reason.
  • the positions of the first electrode 48 and the second electrode 50 in the shield case 44 are defined. . Specifically, as shown in FIG. 4, a distance D1 from the front end 50a of the second electrode 50 to the opening 44c of the shield case 44 is defined. This distance D1 will be specifically described.
  • FIG. 7A is a diagram showing a simulation result of the spread of the alternating electric field in the front-rear direction.
  • FIG. 7B is a diagram showing a simulation result of horizontal expansion of the alternating electric field.
  • the alternating electric field generated by the AC voltage applied between the first electrode 48 and the second electrode 50 spreads in the front-rear direction (X-axis direction) inside the shield case 44 .
  • an alternating electric field generated by the AC voltage applied between the first electrode 48 and the second electrode 50 spreads in the shield case 44 in the horizontal direction (Y-axis direction).
  • Equation 1 The electric field strength E [V/mm] of the alternating electric field generated between the first electrode 48 and the second electrode 50 is, as shown in Equation 1, the difference between the first electrode 48 and the second electrode 50 It can be simply represented by the voltage V [V] between the first electrode 48 and the second electrode 50 and the distance D [mm] in the opposing direction (Z-axis direction) between the first electrode 48 and the second electrode 50 .
  • the voltage V can be expressed by Equation 2 using the output power W [w] of the oscillator 52 and the impedance Z [ ⁇ ].
  • the impedance Z is a target impedance value to be adjusted by the matching circuit 56 and is a fixed value. By equalizing the output impedance of the oscillator 52 and the impedance Z adjusted by the matching circuit 56, reflection of radio waves can be suppressed.
  • impedance Z is typically 50 ⁇ .
  • Equation 4 was found by experiment.
  • a distance D1 from the front end 50a of the second electrode 50 to the opening 44c of the shield case 44 is determined based on the output power W and the output impedance Z of the oscillator 52 so as to satisfy Equation 4.
  • the distance D1 determined in this way can suppress leakage of the alternating electric field to the outside of the shield case 44, that is, the freezing/heating chamber 12b.
  • the impedance Z (the output impedance of the oscillation unit 52) is 50 ⁇
  • the output power W is 100W
  • the distance D between the electrodes is 100mm
  • D1 is larger than 17.67mm. Leakage of the alternating electric field to the outside of the chamber 12b can be suppressed.
  • a relatively high intensity electric field is generated near the front end 48a of the first electrode 48, which is the end of the shield case 44 near the opening 44c. This occurs because the first electrode 48, unlike the second electrode 50, is an electrode that is not connected to ground.
  • the first electrode 48 unlike the second electrode 50, is an electrode that is not connected to ground.
  • FIG. It is farther from the opening 44c of the shield case 44 than the front end 50a of the second electrode 50 is.
  • the distance D2 from the left-right direction (Y-axis direction) side end 50b of the second electrode 50 to the inner wall surface 44d of the shield case 44 is also equal to the distance D1. similarly stipulated.
  • the distance D2 is determined based on the output power W and the output impedance Z of the oscillation section 52 so as to satisfy Equation 5, like the distance D1.
  • Equations 4 and 5 for determining the distance D1 and the distance D2 are the same. However, unlike Expression 4, Expression 5 is not a conditional expression for suppressing leakage of the alternating electric field to the outside of shield case 44 . Equation 5 is a conditional expression for suppressing formation of capacitance between the side end 50 b of the second electrode 50 and the inner wall surface 44 d of the shield case 44 . If the distance D2 does not satisfy Equation 5, a large capacitance is formed between the side end 50b of the second electrode 50 and the inner wall surface 44d of the shield case 44. That is, the electric field generated at the side end 50b of the second electrode 50 reaches the inner wall surface 44d of the shield case 44. As shown in FIG.
  • the distance D2 is determined so as to satisfy Equation (5).
  • a relatively high intensity electric field is generated in the vicinity of the side end 48b of the first electrode 48, as shown in FIGS. 5 and 7B. If the side edge 48b of the first electrode 48, which generates such a relatively high-intensity electric field, comes too close to the inner wall surface 44d of the shield case 44, there will be a large gap between the side edge 48b and the inner wall surface 44d. A large capacity is formed. The side edge 48b of the first electrode 48 is farther from the inner wall surface 44d of the shield case 44 than the side edge 50b of the second electrode 50 so as not to form a very large capacitance.
  • leakage of an alternating electric field to the outside from the heating space of a refrigerator that dielectrically heats food can be suppressed.
  • the door 12h and the drawer 46 are not connected in the above embodiment.
  • embodiments of the present invention are not limited to this.
  • FIG. 8 is a longitudinal sectional view of part of a refrigerator according to another embodiment of the present invention.
  • a door 112h that connects or separates the heating space HZ and the outside of the shield case 44 is connected to a drawer 46 that can be put into and taken out of the heating space HZ. ing. Therefore, when the door 112h opens, the drawer 46 moves forward.
  • the door 112h is not a door that rotates about a rotation center line extending in the vertical direction (Z-axis direction), but a door that can move in parallel in the front-rear direction (X-axis direction).
  • the drawer detection sensor is omitted.
  • the door opening/closing sensor 32B functions not only to detect opening/closing of the door 112h, but also as a drawer detection sensor.
  • the heating space HZ for thawing food is a part of the freeze/thaw chamber 12b for freezing food.
  • the entire freezing/thawing chamber 12b may be the heating space HZ.
  • the first electrode 48 and the second electrode 50 face each other in the vertical direction (Z-axis direction), as shown in FIGS.
  • the second electrode 50 located on the lower side is connected to the ground as shown in FIG.
  • this embodiment is not limited to this.
  • the first electrode and the second electrode may face each other in the vertical direction, and the upper first electrode may be connected to the ground.
  • the first electrode and the second electrode may face each other in the left-right direction (the width direction of the refrigerator).
  • the heating module 40 is provided with the freezing/thawing chamber 12b.
  • the heating module 40 is configured to permit food to be stored frozen in addition to dielectrically heating the food.
  • embodiments of the present invention are not limited to this. Heating module 40 may be used only for dielectric heating of food products. In this case, there is no need to introduce cold air into the heating module 40 .
  • the refrigerator according to the embodiment of the present invention includes a shield case having an opening on the front side that communicates the inside and the outside, made of a metal material, and a flat plate disposed in the shield case.
  • a first electrode having a shape and a heating space disposed in the shield case so as to face the first electrode with a gap, and forming a heating space for dielectrically heating food between the first electrode and the first electrode, and a flat plate-like second electrode connected to the ground, and an oscillator for generating an AC voltage applied between the first electrode and the second electrode, wherein the first electrode and the second electrode, the output power W of the oscillator, the output impedance Z of the oscillator, and the distance D1 from the front end of the second electrode to the opening of the shield case , satisfy.
  • the present invention is applicable to refrigerators that can dielectrically heat food.

Abstract

This refrigerator has: a shield case in which an opening is provided to the front side and which is fabricated from a metal material; a flat first electrode disposed within the shield case; a flat second electrode disposed within the shield case so as to face the first electrode with spacing therebetween, the second electrode forming a heating space for dielectrically heating a food product located between the first and second electrodes, and being connected to ground; and an oscillation part for generating an AC voltage to be applied between the first and second electrodes. The facing-direction distance D between the first and second electrodes, the output electric power W of the oscillation part, the output impedance Z of the oscillation part, and the distance D1 from the front end of the second electrode to the opening in the shield case satisfy the given formula.

Description

冷蔵庫refrigerator
 本発明は、食品を誘電加熱することが可能な冷蔵庫に関する。 The present invention relates to a refrigerator that can dielectrically heat food.
 例えば、特許文献1には、冷凍状態の食品を解凍可能な冷凍庫が開示されている。特許文献1の冷凍庫は、解凍対象の食品が収容され、その収容された食品を高周波加熱(誘電加熱)する高周波加熱室を有する。高周波加熱室は冷凍室の冷気を導入可能に構成されている。これにより、解凍に使用しない場合、高周波加熱室は冷凍室として使用される。 For example, Patent Document 1 discloses a freezer that can thaw frozen food. The freezer of Patent Document 1 has a high-frequency heating chamber in which food to be thawed is accommodated and in which high-frequency heating (dielectric heating) is performed on the accommodated food. The high-frequency heating chamber is configured to be able to introduce cold air from the freezer compartment. This allows the high-frequency heating chamber to be used as a freezing chamber when not used for defrosting.
特開2002-147919号公報JP-A-2002-147919
 ところで、特許文献1のように食品を誘電加熱する場合、その誘電加熱に使用される交番電界の外部への漏出を抑制する必要がある。 By the way, when food is dielectrically heated as in Patent Document 1, it is necessary to suppress leakage of the alternating electric field used for the dielectric heating to the outside.
 そこで、本発明は、食品を誘電加熱する冷蔵庫の加熱空間から外部への交番電界の漏出を抑制することを課題とする。 Therefore, an object of the present invention is to suppress leakage of an alternating electric field from the heating space of a refrigerator that dielectrically heats food to the outside.
 本発明に係る一態様によれば、
 内部と外部とを連通する開口部を前側に備え、金属材料から作製されたシールドケースと、
 前記シールドケース内に配置された平板状の第1の電極と、
 前記第1の電極に間隔をあけて対向するように前記シールドケース内に配置され、前記第1の電極との間に食品を誘電加熱する加熱空間を形成し、且つグランドに接続された平板状の第2の電極と、
 前記第1の電極と前記第2の電極との間に印加する交流電圧を発生させる発振部と、を有し、
 前記第1の電極と前記第2の電極との対向方向距離D、前記発振部の出力電力W、前記発振部の出力インピーダンスZ、および前記第2の電極の前端から前記シールドケースの前記開口部までの距離D1が、
Figure JPOXMLDOC01-appb-M000003
を満足する、冷蔵庫が提供される。
According to one aspect of the present invention,
a shield case made of a metal material and having an opening on the front side that communicates between the inside and the outside;
a flat plate-like first electrode arranged in the shield case;
A plate-shaped plate disposed in the shield case so as to face the first electrode with a gap, forming a heating space for dielectrically heating food between the first electrode and the first electrode, and connected to the ground a second electrode of
an oscillation unit that generates an alternating voltage to be applied between the first electrode and the second electrode;
The distance D between the first electrode and the second electrode in the facing direction, the output power W of the oscillator, the output impedance Z of the oscillator, and the opening of the shield case from the front end of the second electrode The distance D1 to
Figure JPOXMLDOC01-appb-M000003
A refrigerator is provided to satisfy
 本発明によれば、食品を誘電加熱する冷蔵庫の加熱空間から外部への交番電界の漏出を抑制することができる。 According to the present invention, leakage of an alternating electric field to the outside from the heating space of a refrigerator that dielectrically heats food can be suppressed.
本発明の一実施の形態に係る冷蔵庫の縦断面図BRIEF DESCRIPTION OF THE DRAWINGS Longitudinal sectional view of a refrigerator according to one embodiment of the present invention 冷蔵庫の制御系を示すブロック図Block diagram showing the control system of a refrigerator 加熱モジュールの斜視図Perspective view of heating module 加熱モジュールの断面図Cross section of heating module 図4に示すA-A線に沿った加熱モジュールの断面図Sectional view of the heating module along line AA shown in FIG. 加熱モジュールの制御系を示すブロック図Block diagram showing the control system of the heating module 交番電界の前後方向の拡がりのシミュレーション結果を示す図Figure showing the simulation result of the spread of the alternating electric field in the front-back direction 交番電界の左右方向の拡がりのシミュレーション結果を示す図A diagram showing the simulation result of the horizontal spread of the alternating electric field. 本発明の別の実施の形態に係る冷蔵庫の一部分の縦断面図Partial longitudinal sectional view of a refrigerator according to another embodiment of the present invention
 本発明の一態様に係る冷蔵庫は、内部と外部とを連通する開口部を前側に備え、金属材料から作製されたシールドケースと、前記シールドケース内に配置された平板状の第1の電極と、前記第1の電極に間隔をあけて対向するように前記シールドケース内に配置され、前記第1の電極との間に食品を誘電加熱する加熱空間を形成し、且つグランドに接続された平板状の第2の電極と、前記第1の電極と前記第2の電極との間に印加する交流電圧を発生させる発振部と、を有し、前記第1の電極と前記第2の電極との対向方向距離D、前記発振部の出力電力W、前記発振部の出力インピーダンスZ、および前記第2の電極の前端から前記シールドケースの前記開口部までの距離D1が、
Figure JPOXMLDOC01-appb-M000004
を満足する。
A refrigerator according to an aspect of the present invention includes a shield case having an opening on the front side that communicates between the inside and the outside, the shield case being made of a metal material, and a flat plate-like first electrode arranged in the shield case. a flat plate arranged in the shield case so as to face the first electrode with a gap, forming a heating space between the first electrode and the first electrode for dielectrically heating food, and connected to the ground; and an oscillator for generating an alternating voltage to be applied between the first electrode and the second electrode, wherein the first electrode and the second electrode , the output power W of the oscillator, the output impedance Z of the oscillator, and the distance D1 from the front end of the second electrode to the opening of the shield case,
Figure JPOXMLDOC01-appb-M000004
satisfy.
 このような態様によれば、食品を誘電加熱する冷蔵庫の加熱空間から外部への交番電界の漏出を抑制することができる。 According to this aspect, leakage of the alternating electric field to the outside from the heating space of the refrigerator that dielectrically heats the food can be suppressed.
 例えば、前記第1の電極の前端が、前記第2の電極の前端に比べて、前記シールドケースの前記開口部から離れていてもよい。これにより、交番電界の外部への漏出をより抑制することができる。 For example, the front end of the first electrode may be further away from the opening of the shield case than the front end of the second electrode. This makes it possible to further suppress leakage of the alternating electric field to the outside.
 例えば、前記対向方向距離D、前記出力電力W、前記インピーダンスZ、および前記第2の電極の側端から前記シールドケースの内壁面までの距離D2が、
Figure JPOXMLDOC01-appb-M000005
を満足する。これにより、第2の電極の側端とシールドケースの内壁面との間に容量が形成されることが抑制される。その結果、食品の誘電加熱効率が向上する。
For example, the facing direction distance D, the output power W, the impedance Z, and the distance D2 from the side end of the second electrode to the inner wall surface of the shield case are
Figure JPOXMLDOC01-appb-M000005
satisfy. This suppresses the formation of capacitance between the side end of the second electrode and the inner wall surface of the shield case. As a result, the dielectric heating efficiency of food is improved.
 例えば、前記第1の電極の側端が、前記第2の電極の側端に比べて、前記シールドケースの内壁面から離れていてもよい。これにより、第1の電極の側端とシールドケースの内壁面との間に容量が形成されることが抑制される。その結果、食品の誘電加熱効率が向上する。 For example, the side edge of the first electrode may be farther from the inner wall surface of the shield case than the side edge of the second electrode. This suppresses the formation of capacitance between the side end of the first electrode and the inner wall surface of the shield case. As a result, the dielectric heating efficiency of food is improved.
 例えば、前記加熱空間が、食品を冷凍する冷凍室の少なくとも一部であってもよい。これにより、冷凍保存されている食品をそのまま解凍することができる。 For example, the heating space may be at least part of a freezer compartment that freezes food. As a result, frozen food can be thawed as it is.
 以下、本発明の一実施の形態に係る冷蔵庫について、図面を参照しながら説明する。 A refrigerator according to an embodiment of the present invention will be described below with reference to the drawings.
 図1は、本実施の形態1の冷蔵庫の縦断面図である。図1において、左側が冷蔵庫の前側であり、右側が冷蔵庫の後側である。また、図2は、冷蔵庫の制御系を示すブロック図である。なお、図面に示すX-Y-Z直交座標系は、本発明に係る実施の形態の理解を容易にするためのものであって、実施の形態を限定するものではない。X軸方向は冷蔵庫10の前後方向(奥行方向)を示し、Y軸方向は左右方向(幅方向)を示し、Z軸方向は上下方向(高さ方向)を示している。 FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1. FIG. In FIG. 1, the left side is the front side of the refrigerator and the right side is the rear side of the refrigerator. FIG. 2 is a block diagram showing the control system of the refrigerator. The XYZ orthogonal coordinate system shown in the drawings is for facilitating understanding of the embodiments according to the present invention, and does not limit the embodiments. The X-axis direction indicates the front-rear direction (depth direction) of the refrigerator 10, the Y-axis direction indicates the left-right direction (width direction), and the Z-axis direction indicates the vertical direction (height direction).
 図1に示すように、冷蔵庫10は、本体12を備える。本体12は、金属材料から作製されて冷蔵庫10の外側表面を構成する外側筐体14と、例えばABSなどの樹脂材料から作製されて冷蔵庫10の内側表面を構成する内側筐体16と、外側筐体14と内側筐体16との間の空間に充填された、例えば硬質発泡ウレタンなどの断熱材18とから構成されている。 As shown in FIG. 1, refrigerator 10 includes main body 12 . The main body 12 includes an outer housing 14 that is made of a metal material and constitutes the outer surface of the refrigerator 10, an inner housing 16 that is made of a resin material such as ABS and constitutes the inner surface of the refrigerator 10, and an outer housing. The space between the body 14 and the inner housing 16 is filled with a heat insulating material 18 such as rigid urethane foam.
 冷蔵庫10の本体12は、食品(食材、食材の加工品など)を貯蔵する複数の収容室を備える。本実施の形態の場合、収容室として、一番上から、冷蔵室12a、冷凍/解凍室12b、冷凍室12c、および野菜室12dを備える。なお、本実施の形態の場合、冷凍/解凍室12bと冷凍室12cは、互いに連絡している。 The main body 12 of the refrigerator 10 has a plurality of storage chambers for storing food (ingredients, processed foodstuffs, etc.). In the case of the present embodiment, storage chambers are provided from the top with a refrigerating chamber 12a, a freezing/thawing chamber 12b, a freezing chamber 12c, and a vegetable chamber 12d. In addition, in the case of this embodiment, the freeze/thaw chamber 12b and the freezer chamber 12c are in communication with each other.
 冷蔵室12aは、食品が凍らない温度帯、例えば1℃~5℃の温度帯で維持される空間である。また、冷凍/解凍室12bと冷凍室12cは、食品が凍る温度帯、例えば-22℃~-15℃の温度帯で維持される空間である。冷凍/解凍室12bは、詳細は後述するが、食品を冷凍するだけではなく、食品を加熱することができる、例えば冷凍状態の食品を解凍することができる。そして、野菜室12dは、冷蔵室12aの温度帯に比べて同等またはそれ以上の温度帯、例えば2℃~7℃の温度帯で維持される空間である。なお、これらの空間以外にも、-1℃や-3℃の半凍結空間を、冷蔵庫10は備えてもよい。 The refrigerator compartment 12a is a space that maintains a temperature range in which food does not freeze, for example, a temperature range of 1°C to 5°C. The freezing/thawing chamber 12b and the freezing chamber 12c are spaces maintained in a temperature range in which food is frozen, for example, a temperature range of -22°C to -15°C. The freezing/thawing chamber 12b, which will be described later in detail, can not only freeze food but also heat food, for example, thaw frozen food. The vegetable compartment 12d is a space maintained in a temperature range equal to or higher than the temperature range of the refrigerator compartment 12a, for example, a temperature range of 2°C to 7°C. In addition to these spaces, the refrigerator 10 may be provided with semi-freezing spaces at -1°C or -3°C.
 本実施の形態の場合、冷蔵庫10の本体12の上部に、機械室12eが設けられている。機械室8には、冷蔵庫10の冷凍サイクルを構成し、その冷凍サイクルの冷媒を循環させる圧縮機20などが収容されている。なお、これに代わって、機械室12eは、冷蔵庫10の本体12の下部に設けることも可能である。 In the case of this embodiment, a machine room 12e is provided in the upper part of the main body 12 of the refrigerator 10. The machine room 8 houses a compressor 20 that constitutes a refrigerating cycle of the refrigerator 10 and circulates the refrigerant of the refrigerating cycle. Alternatively, the machine room 12e can be provided in the lower part of the main body 12 of the refrigerator 10.
 本実施の形態の場合、冷凍室12cと野菜室12dの背面側には、冷却室12fが設けられている。その冷却室12f内には、冷蔵庫10の冷凍サイクルを構成し、冷媒が通過する冷却器22が配置されている。また、冷却器22によって冷却された冷却室12fの空気(冷気)を、冷蔵室12a、冷凍/解凍室12b、冷凍室12c、および野菜室12dに向かって送風する冷却ファン24が冷却室12fに設けられている。 In the case of this embodiment, a cooling chamber 12f is provided behind the freezer compartment 12c and the vegetable compartment 12d. Inside the cooling chamber 12f, a cooler 22 that forms a refrigerating cycle of the refrigerator 10 and through which a refrigerant passes is arranged. A cooling fan 24 blows the air (cold air) in the cooling chamber 12f cooled by the cooler 22 toward the refrigerating chamber 12a, the freezing/thawing chamber 12b, the freezing chamber 12c, and the vegetable chamber 12d to the cooling chamber 12f. is provided.
 本実施の形態の場合、冷蔵庫10には、3つの扉12g~12iが設けられている。扉12gは、開閉可能であって、冷蔵室12aと外部とを連絡するまたは分断する。また、扉12hは、開閉可能であって、冷凍/解凍室12bおよび冷凍室12cと外部とを連絡するまたは分断する。そして、扉12iは、開閉可能であって、野菜室12dと外部とを連絡するまたは分断する。 In the case of this embodiment, the refrigerator 10 is provided with three doors 12g to 12i. The door 12g can be opened and closed, and connects or disconnects the refrigerator compartment 12a and the outside. Moreover, the door 12h can be opened and closed, and connects or separates the freezing/thawing chamber 12b and the freezing chamber 12c from the outside. The door 12i can be opened and closed, and connects or separates the vegetable compartment 12d and the outside.
 さらに、図2に示すように、各室12a~12dに流入する冷気流量を制御するダンパー26A~26Cが、各室12a~12dと冷却ファン24との間の流路に配置されている(図1には、ダンパー26Bのみが示されている)。ダンパー26Bは、冷凍/解凍室12bと冷却ファン24との間の流路に配置されている。冷気は、冷凍/解凍室12bを通過して冷凍室12cに流入する。 Furthermore, as shown in FIG. 2, dampers 26A to 26C for controlling the flow rate of cold air flowing into each chamber 12a to 12d are arranged in the flow path between each chamber 12a to 12d and the cooling fan 24 (see FIG. 2). 1 shows only the damper 26B). A damper 26B is arranged in the flow path between the freezing/thawing chamber 12b and the cooling fan 24. As shown in FIG. Cold air passes through freeze/thaw compartment 12b and flows into freezer compartment 12c.
 さらにまた、冷蔵庫10は、図2に示すように、冷蔵室12a、冷凍/解凍室12b、冷凍室12c、および野菜室12dそれぞれの内部温度を測定する温度センサ28A~28Cを備える。 Furthermore, as shown in FIG. 2, the refrigerator 10 includes temperature sensors 28A to 28C that measure the internal temperatures of the refrigerating compartment 12a, the freezing/thawing compartment 12b, the freezing compartment 12c, and the vegetable compartment 12d.
 図2に示すように、冷蔵庫10の制御部30が、複数の温度センサ28A~28Cの測定結果に基づいて、冷却制御を実行する、すなわち圧縮機20の出力制御、冷却ファン24の回転数制御、およびダンパー26A~26Cそれぞれの開閉制御を実行することにより、冷蔵室12a、冷凍/解凍室12b、冷凍室12c、および野菜室12d内の温度が適切に維持される。制御部30は、例えば、機械室12eに配置されてCPUなどのプロセッサ、プログラムなどを記憶するメモリなどの記憶装置、および回路を備えた制御基板である。記憶装置に記憶されているプログラムにしたがい、プロセッサが、圧縮機20、冷却ファン24、およびダンパー26A~26Cを制御する。 As shown in FIG. 2, the control unit 30 of the refrigerator 10 executes cooling control based on the measurement results of the plurality of temperature sensors 28A to 28C. , and dampers 26A to 26C, the temperatures in refrigerator compartment 12a, freeze/thaw compartment 12b, freezer compartment 12c, and vegetable compartment 12d are appropriately maintained. The control unit 30 is, for example, a control board that is arranged in the machine room 12e and includes a processor such as a CPU, a storage device such as a memory that stores programs, and a circuit. A processor controls compressor 20, cooling fan 24, and dampers 26A-26C according to a program stored in a memory device.
 また、冷蔵庫10は、図1に示すように、複数の扉12g~12iの開閉状態をそれぞれ検出する扉開閉センサ32A~32Cを備える。扉開閉センサ32A~32Cは、例えば、扉12g~12iと接触することによって閉じた状態の扉12g~12iを検出するスイッチである。扉開閉センサ32A~32Cは、扉12g~12iの内面と接触することができる冷蔵庫10の本体12上の位置に設けられている。また、扉開閉センサ32A~32Cの検出信号は、制御部30に送信される。制御部30は、例えば、扉開閉センサ32A~32Cからの検出信号に基づいて、冷蔵室12a、冷凍/解凍室12b、冷凍室12c、野菜室12dそれぞれに設けられた照明装置(図示せず)をON/OFF制御する。なお、スイッチは、メカニカルスイッチでもよく、また、ホールセンサなどの磁気センサ、すなわち非接触式スイッチであってもよい。ホールセンサ、MRセンサ、リードスイッチなどの磁気センサには、メカニカルスイッチに比べて小型化しやすく、また突起がないために冷蔵庫10の意匠性を損なわないメリットがある。 In addition, as shown in FIG. 1, the refrigerator 10 includes door opening/closing sensors 32A to 32C that detect the opening/closing states of the plurality of doors 12g to 12i, respectively. The door opening/closing sensors 32A-32C are, for example, switches that detect the closed doors 12g-12i by coming into contact with the doors 12g-12i. The door open/close sensors 32A-32C are provided at positions on the main body 12 of the refrigerator 10 where they can come into contact with the inner surfaces of the doors 12g-12i. Further, detection signals of the door opening/closing sensors 32A to 32C are transmitted to the control section 30. FIG. For example, based on detection signals from door opening/closing sensors 32A to 32C, the control unit 30 controls lighting devices (not shown) provided in each of the refrigerator compartment 12a, the freeze/thaw compartment 12b, the freezer compartment 12c, and the vegetable compartment 12d. is ON/OFF controlled. The switch may be a mechanical switch, or a magnetic sensor such as a Hall sensor, that is, a non-contact switch. Magnetic sensors such as Hall sensors, MR sensors, and reed switches have the advantages of being easier to be miniaturized than mechanical switches and not impairing the design of refrigerator 10 because they do not have projections.
 図2に示すように、本実施の形態の場合、冷蔵庫10は、ユーザが冷蔵庫10を操作するためのユーザインターフェース34を備える。ユーザインターフェース34は、冷蔵庫10に組み込まれたタッチパネルなどでもよく、および/またはユーザの携帯端末であってもよい。ユーザインターフェース34が携帯端末である場合、冷蔵庫10を操作するためのソフトウェア(アプリケーション)が携帯端末にインストールされる。 As shown in FIG. 2, in the case of the present embodiment, refrigerator 10 includes a user interface 34 for the user to operate refrigerator 10 . The user interface 34 may be a touch panel or the like built into the refrigerator 10 and/or may be the user's mobile device. When the user interface 34 is a mobile terminal, software (application) for operating the refrigerator 10 is installed in the mobile terminal.
 ユーザインターフェース34は、例えば、扉開閉センサ32A~32Cのいずれかが対応する扉12g~12iが所定の時間開いた状態を検出すると、ユーザに扉が開いた状態であることを通知する。また、ユーザインターフェース34は、冷凍/解凍室12bで解凍を行うときにユーザに使用される。ここからは、この冷凍/解凍室12bの詳細について説明する。 For example, when one of the door opening/closing sensors 32A to 32C detects that the corresponding door 12g to 12i is open for a predetermined time, the user interface 34 notifies the user that the door is open. The user interface 34 is also used by the user when performing thawing in the freeze/thaw compartment 12b. Details of the freezing/thawing chamber 12b will now be described.
 図3は、加熱モジュールの斜視図である。また、図4は、加熱モジュールの断面図である、さらに、図5は、図4に示すA-A線に沿った加熱モジュールの断面図である。そして、図6は、加熱モジュールの制御系を示すブロック図である。 FIG. 3 is a perspective view of the heating module. 4 is a cross-sectional view of the heating module, and FIG. 5 is a cross-sectional view of the heating module taken along line AA shown in FIG. FIG. 6 is a block diagram showing the control system of the heating module.
 本実施の形態の場合、図3~図5に示す加熱モジュール40は、冷凍された食品を加熱するモジュールであって、冷蔵庫10に組み込まれる。冷凍/解凍室12bは、加熱モジュール40内に設けられている。加熱モジュール40は、詳細は後述するが、冷凍/解凍室12b内に交番電界を発生させ、その交番電界によって食品を誘電加熱するように構成されている。 In the case of the present embodiment, the heating module 40 shown in FIGS. 3 to 5 is a module that heats frozen food and is incorporated in the refrigerator 10. Freeze/thaw chamber 12 b is provided within heating module 40 . Although details will be described later, the heating module 40 is configured to generate an alternating electric field in the freezing/thawing chamber 12b and dielectrically heat the food by the alternating electric field.
 図3~図5に示すように、加熱モジュール40は、直方体形状であって、インナーケース42と、インナーケース42を格納するシールドケース44とを備える二重壁構造体である。シールドケース44は、加熱モジュール40の筐体として機能する。インナーケース42は、食品が収容される収容室、すなわち冷凍/解凍室12bを画定している。 As shown in FIGS. 3 to 5, the heating module 40 has a rectangular parallelepiped shape and is a double-walled structure including an inner case 42 and a shield case 44 that houses the inner case 42 . The shield case 44 functions as a housing for the heating module 40 . The inner case 42 defines a storage chamber in which food is stored, that is, a freeze/thaw chamber 12b.
 インナーケース42は、樹脂などの絶縁材料から作製され、内部と外部とを連通する開口部が前側に設けられた直方体形状の箱体である。シールドケース44は、金属材料から構成され、例えばアルミなどの金属材料から作製される。また、シールドケース44は、内部と外部とを連通する開口部が前側に設けられた直方体状の箱体であって、その内部にインナーケース42を格納する。 The inner case 42 is a rectangular parallelepiped box made of an insulating material such as resin and provided with an opening on the front side for communication between the inside and the outside. The shield case 44 is made of a metal material, for example, made of a metal material such as aluminum. The shield case 44 is a rectangular parallelepiped box having an opening on the front side for communication between the inside and the outside, and stores the inner case 42 therein.
 本実施の形態の場合、図3に示すように、加熱モジュール40は、冷凍/解凍室12bに前後方向(X軸方向)に出し入れされ、食品を収容する引き出し46を備える。引き出し46は、樹脂材料から作製されている。また、図5に示すように、出し入れの際に引き出し46を前後方向(X軸方向)にガイドするガイドレール47が、インナーケース42の内壁面42aに設けられている。このような引き出し46により、冷凍/解凍室12bから食品を出し入れしやすくなる。 In the case of this embodiment, as shown in FIG. 3, the heating module 40 includes a drawer 46 that is inserted into and removed from the freezing/thawing chamber 12b in the front-rear direction (X-axis direction) and stores food. The drawer 46 is made from a resin material. Further, as shown in FIG. 5, a guide rail 47 is provided on the inner wall surface 42a of the inner case 42 to guide the drawer 46 in the front-rear direction (X-axis direction) when the drawer 46 is put in and taken out. Such a drawer 46 facilitates the loading and unloading of food from the freeze/thaw chamber 12b.
 また、冷凍/解凍室12b内の食品を冷凍できるように、加熱モジュール40のインナーケース42およびシールドケース44は、冷凍/解凍室12bに連通する複数の通気穴42b、44aを備える。ダンパー26Bを通過した冷気は、これらの通気穴42b、44aを介して、冷凍/解凍室12b内に流入する。これにより、加熱モジュール40内、すなわち冷凍/解凍室12b内の食品を冷凍することができる。 In addition, the inner case 42 and the shield case 44 of the heating module 40 are provided with a plurality of ventilation holes 42b, 44a communicating with the freezing/thawing chamber 12b so that the food in the freezing/thawing chamber 12b can be frozen. Cool air that has passed through the damper 26B flows into the freezing/thawing chamber 12b through these ventilation holes 42b and 44a. Thereby, the food in the heating module 40, that is, in the freezing/thawing chamber 12b can be frozen.
 冷凍/解凍室12b内の食品を誘電加熱するために、例えば冷凍状態の食品を解凍するために、加熱モジュール40は、第1の電極48と第2の電極50とを備える。 The heating module 40 comprises a first electrode 48 and a second electrode 50 for dielectric heating of food in the freeze/thaw chamber 12b, for example for thawing frozen food.
 図4および図5に示すように、第1の電極48と第2の電極50は、平板状の部材であって、金属材料から作製されている。また、第1の電極48と第2の電極50は、間隔をあけて対向するようにシールドケース44内に配置されている。本実施の形態の場合、第1の電極48と第2の電極50は、上下方向(Z軸方向)に対向し、互いに対して平行である。間隔をあけて互いに対向する第1の電極48と第2の電極50は、その間に、食品を誘電加熱するための加熱空間HZを形成する。これらの第1の電極48と第2の電極50との間の加熱空間HZに対して、引き出し46が出し入れ可能に加熱モジュール40に設けられている。 As shown in FIGS. 4 and 5, the first electrode 48 and the second electrode 50 are plate-shaped members made of a metal material. Also, the first electrode 48 and the second electrode 50 are arranged in the shield case 44 so as to face each other with a space therebetween. In the case of this embodiment, the first electrode 48 and the second electrode 50 face each other in the vertical direction (Z-axis direction) and are parallel to each other. A first electrode 48 and a second electrode 50 facing each other at a distance form therebetween a heating space HZ for dielectric heating of food. A drawer 46 is provided in the heating module 40 such that it can be drawn in and out of the heating space HZ between the first electrode 48 and the second electrode 50 .
 本実施の形態の場合、第1の電極48は、インナーケース42の天板部42cとシールドケース44の天板部44bとの間に配置されている。シールドケース44と第1の電極48との間には、スペース(すなわち空気層)が設けられている。 In the case of the present embodiment, the first electrode 48 is arranged between the top plate portion 42c of the inner case 42 and the top plate portion 44b of the shield case 44. A space (that is, an air layer) is provided between the shield case 44 and the first electrode 48 .
 本実施の形態の場合、第2の電極50は、インナーケース42の底板部42d上に配置されている。 In the case of this embodiment, the second electrode 50 is arranged on the bottom plate portion 42d of the inner case 42 .
 第1の電極48と第2の電極50との間に加熱空間HZを形成するために、図6に示すように、冷蔵庫10は、第1の電極48と第2の電極50との間に印加させる交流電圧を発生させる発振部52を備える。発振部52は、例えば、冷蔵庫10の機械室12eに配置された発振回路基板であって、第1の電極48と第2の電極50とに電気的に接続されている。発振部52は、商用電源に接続された冷蔵庫10の電源部54からの交流電圧を変換し、その変換した交流電圧を第1の電極48と第2の電極50との間に印加する。第1の電極48と第2の電極50との間には、所定のVHF帯の周波数、例えば40.68MHzの交流電圧が印加される。 In order to form the heating space HZ between the first electrode 48 and the second electrode 50, the refrigerator 10 is arranged between the first electrode 48 and the second electrode 50 as shown in FIG. An oscillator 52 is provided to generate an AC voltage to be applied. The oscillator 52 is, for example, an oscillator circuit board arranged in the machine room 12 e of the refrigerator 10 and electrically connected to the first electrode 48 and the second electrode 50 . Oscillator 52 converts an AC voltage from power supply unit 54 of refrigerator 10 connected to a commercial power supply, and applies the converted AC voltage between first electrode 48 and second electrode 50 . Between the first electrode 48 and the second electrode 50, an AC voltage of a predetermined VHF band frequency, eg, 40.68 MHz is applied.
 発振部52が第1の電極48と第2の電極50との間に交流電圧を印加すると、シールドケース44(冷凍/加熱室12b)内に、交番電界が発生する。この交番電界により、引き出し46に収容され、第1の電極48と第2の電極50との間に配置されている加熱対象の食品、すなわち加熱空間HZ内に配置されている食品が誘電加熱される。その結果、その食品が誘電加熱される。 When the oscillator 52 applies an AC voltage between the first electrode 48 and the second electrode 50, an alternating electric field is generated in the shield case 44 (freezing/heating chamber 12b). This alternating electric field dielectrically heats the food to be heated which is housed in the drawer 46 and arranged between the first electrode 48 and the second electrode 50, that is, the food which is arranged in the heating space HZ. be. As a result, the food is dielectrically heated.
 本実施の形態の場合、図6に示すように、冷蔵庫10は、第1の電極48と第2の電極50との間のインピーダンスを整合する整合回路56を備える。整合回路56は、例えば、加熱モジュール40に収容にされた回路基板である。整合回路56は、第1の電極48と第2の電極50とに電気的に接続されている。本実施の形態の場合、第2の電極50はグランドに接続されている。 In the case of this embodiment, as shown in FIG. 6, the refrigerator 10 has a matching circuit 56 that matches the impedance between the first electrode 48 and the second electrode 50 . Matching circuit 56 is, for example, a circuit board housed in heating module 40 . A matching circuit 56 is electrically connected to the first electrode 48 and the second electrode 50 . In this embodiment, the second electrode 50 is grounded.
 整合回路56の役割について説明する。冷凍状態の食品の解凍が進むと、その食品内の水分子が増加する。水分子が増加すると、第1の電極48と第2の電極50との間のインピーダンスが適正値から変化し、反射率が増加する。なお、反射率は、発振部52から出力された入射波に対する発振部52に戻る反射波の割合である。反射率が増加すると、食品の誘電加熱の効率が低下する。整合回路56は、第1の電極48と第2の電極50との間のインピーダンスを適正値に維持するために設けられている。 The role of the matching circuit 56 will be explained. As the frozen food is thawed, the number of water molecules in the food increases. As the number of water molecules increases, the impedance between the first electrode 48 and the second electrode 50 changes from its proper value and the reflectance increases. The reflectance is the ratio of the reflected wave returning to the oscillator 52 to the incident wave output from the oscillator 52 . As the reflectance increases, the dielectric heating of food becomes less efficient. A matching circuit 56 is provided to maintain the impedance between the first electrode 48 and the second electrode 50 at a proper value.
 具体的には、図6に示すように、整合回路56が第1の電極48と第2の電極50との間のインピーダンスを適正値に維持するために、冷蔵庫10は、反射波検出回路58を備える。反射波検出回路58は、例えば、冷蔵庫10の機械室12eに配置された基板上に設けられている。制御部30が、発振部52から出力された入射波と反射波検出回路58によって検出された反射波とに基づいて反射率を算出する。その算出された反射率に基づいて、制御部30は、第1の電極48と第2の電極50との間のインピーダンスを適正値になるように整合回路56を制御する。 Specifically, as shown in FIG. 6, the refrigerator 10 includes a reflected wave detection circuit 58 in order for the matching circuit 56 to maintain the impedance between the first electrode 48 and the second electrode 50 at a proper value. Prepare. The reflected wave detection circuit 58 is provided, for example, on a substrate arranged in the machine room 12e of the refrigerator 10 . The control section 30 calculates the reflectance based on the incident wave output from the oscillation section 52 and the reflected wave detected by the reflected wave detection circuit 58 . Based on the calculated reflectance, the control unit 30 controls the matching circuit 56 so that the impedance between the first electrode 48 and the second electrode 50 becomes an appropriate value.
 ユーザが、加熱対象の食品を冷凍/解凍室12bの加熱空間HZに配置し、ユーザインターフェース34に対して加熱指示を行うと、制御部30が、交流電圧を発生させる加熱開始信号を発振部52に出力し、発振部52に交流電圧を発生させる。それにより、第1の電極48と第2の電極50との間に交流電圧が印加され、シールドケース44(冷凍/解凍室12b)内に交番電界が発生し、その交番電界によって食品が誘電加熱される。 When the user places food to be heated in the heating space HZ of the freezing/thawing chamber 12b and issues a heating instruction to the user interface 34, the control unit 30 causes the oscillation unit 52 to generate a heating start signal to generate an AC voltage. to cause the oscillator 52 to generate an AC voltage. As a result, an alternating voltage is applied between the first electrode 48 and the second electrode 50, an alternating electric field is generated in the shield case 44 (the freezing/thawing chamber 12b), and the food is dielectrically heated by the alternating electric field. be done.
 加熱空間HZでの食品の加熱中、冷凍/解凍室12b内には交番電界が発生している。このとき、シールドケース44が、交番電界をシールドし、交番電界のシールドケース44(冷凍/解凍室12b)の外部への漏出を抑制する。なお、シールドケース44の前側の開口部44cを介する交番電界の漏出を抑制するために、図1に示すように、扉12hには、シールドケース44の開口部44cを覆う金属製のシールドプレート12jが設けられている。 During the heating of food in the heating space HZ, an alternating electric field is generated inside the freezing/thawing chamber 12b. At this time, the shield case 44 shields the alternating electric field and suppresses leakage of the alternating electric field to the outside of the shield case 44 (freezing/thawing chamber 12b). In order to suppress leakage of the alternating electric field through the opening 44c on the front side of the shield case 44, the door 12h is provided with a metal shield plate 12j covering the opening 44c of the shield case 44, as shown in FIG. is provided.
 また、扉12hが完全に閉じておらず、そのために交番電界が外部に漏出しうる場合、発振部52による第1の電極48と第2の電極50との間の交流電圧の印加が禁止されている。すなわち、扉開閉センサ32Bが閉じた状態の扉12hを検出しているときのみ、発振部52は、交流電圧を発生することが可能にされている。本実施の形態の場合、制御部30は、ユーザインターフェース34を介してユーザの解凍指示を受けたとき、扉開閉センサ32Bが閉じた状態の扉12hを検出している状態であれば、発振部52に対して加熱開始信号を出力する。その一方、ユーザの解凍指示を受けたとき、扉開閉センサ32Bが閉じた状態の扉12hを検出していない状態であれば、制御部30は、加熱開始信号を発振部52に出力せず、ユーザインターフェース34を介してユーザに扉12hを閉じるように通知する。 Further, when the door 12h is not completely closed and the alternating electric field can leak outside, the application of the AC voltage between the first electrode 48 and the second electrode 50 by the oscillator 52 is prohibited. ing. That is, the oscillator 52 can generate an AC voltage only when the door opening/closing sensor 32B detects the closed door 12h. In the case of the present embodiment, when the control unit 30 receives a thawing instruction from the user via the user interface 34, if the door opening/closing sensor 32B detects the closed door 12h, the oscillation unit A heating start signal is output to 52 . On the other hand, if the door open/close sensor 32B has not detected the closed door 12h when receiving the user's thawing instruction, the control unit 30 does not output the heating start signal to the oscillation unit 52, The user is notified via the user interface 34 to close the door 12h.
 さらに、本実施の形態の場合、発振部52の交流電圧の発生中(すなわち食品の誘電加熱中)、扉12hが開くと、すなわち扉開閉センサ32Bが閉じた状態の扉12hを検出できなくなると、交流電圧を発生中の発振部52が、その交流電圧の発生を停止する。本実施の形態の場合、制御部30が加熱停止信号を発振部52に出力し、それにより発振部52が交流電圧の発生を停止する。 Furthermore, in the case of the present embodiment, if the door 12h is opened while the oscillator 52 is generating AC voltage (that is, the food is being dielectrically heated), the door opening/closing sensor 32B cannot detect the closed door 12h. , the oscillator 52 that is generating the AC voltage stops generating the AC voltage. In the case of the present embodiment, control unit 30 outputs a heating stop signal to oscillation unit 52, thereby causing oscillation unit 52 to stop generating AC voltage.
 このような扉12hの開閉状態に基づく発振部52の交流電圧発生制御により、交番電界がシールドケース44(冷凍/解凍室12b)の外部に漏出することが抑制される。また、本実施の形態の場合、扉開閉センサ32Bが扉12hと接触することによって閉じた状態の扉12hを検出するスイッチであって且つシールドケース44の外部に位置するため、シールドケース44内で発生する交番電界の影響を受けにくい。その結果、交番電界のシールドケース44の外部への漏出が確実に抑制される。 The AC voltage generation control of the oscillator 52 based on the open/closed state of the door 12h suppresses leakage of the alternating electric field to the outside of the shield case 44 (freezing/thawing chamber 12b). Further, in the case of the present embodiment, the door open/close sensor 32B is a switch that detects the closed state of the door 12h by contacting the door 12h and is located outside the shield case 44. It is less susceptible to the generated alternating electric field. As a result, leakage of the alternating electric field to the outside of the shield case 44 is reliably suppressed.
 加えて、本実施の形態の場合、図4に示すように、加熱モジュール40は、引き出し46を検出する引き出し検出センサ60をさらに有する。具体的には、引き出し検出センサ60は、第1の電極48と第2の電極50との間の所定の位置に引き出し46が存在しているときに、その引き出し46を検出する。ここで言う「所定の位置」とは、引き出し46に収容されている加熱対象の食品が第1の電極48と第2の電極50との間の加熱空間HZに配置されるときの引き出し46の位置を言う。なお、そのために、図3に示すように、引き出し46の底面46aには、加熱対象の食品の載置位置をユーザに提示するマーカー46bが設けられている。すなわち、マーカー46b上に加熱対象の食品を載置し、引き出し46が所定の位置に配置されると、加熱対象の食品が第1の電極48と第2の電極50との間の加熱空間HZに配置されて適切に誘電加熱される。 In addition, in the case of this embodiment, the heating module 40 further has a drawer detection sensor 60 that detects the drawer 46, as shown in FIG. Specifically, the drawer detection sensor 60 detects the drawer 46 when the drawer 46 exists at a predetermined position between the first electrode 48 and the second electrode 50 . The "predetermined position" referred to here is the position of the drawer 46 when the food to be heated stored in the drawer 46 is placed in the heating space HZ between the first electrode 48 and the second electrode 50. say the location. For this purpose, as shown in FIG. 3, a bottom surface 46a of the drawer 46 is provided with a marker 46b for presenting the user with the placement position of the food to be heated. That is, when the food to be heated is placed on the marker 46b and the drawer 46 is placed in a predetermined position, the food to be heated is placed in the heating space HZ between the first electrode 48 and the second electrode 50. and is properly dielectrically heated.
 本実施の形態の場合、引き出し検出センサ60は、図3および図4に示すように、インナーケース42の開口縁42eに設けられ、引き出し46の前端46cと接触するメカニカルセンサである。その結果として、引き出し検出センサ60は、冷凍/解凍室12bの外部、すなわちシールドケース44の外部に設けられている。これにより、引き出し検出センサ60は、確実に引き出し46を検出することができる。 In the case of the present embodiment, the drawer detection sensor 60 is a mechanical sensor provided at the opening edge 42e of the inner case 42 and in contact with the front end 46c of the drawer 46, as shown in FIGS. As a result, the drawer detection sensor 60 is provided outside the freezing/thawing chamber 12 b , that is, outside the shield case 44 . This allows the drawer detection sensor 60 to reliably detect the drawer 46 .
 これと異なり、冷凍/解凍室12b、すなわち交番電界が発生するシールドケース44の内部に引き出し検出センサ60が設けられた場合、引き出しセンサ60は、引き出し46を誤検出する可能性がある。例えば、引き出しセンサ60が、磁界を検出するホールセンサの場合、シールドケース44の内部に発生する交番電界(磁界)によって誤動作する可能性がある。また例えば、引き出しセンサ60がメカニカルセンサである場合、引き出し検出センサ60の接触面と引き出し46の接触面が氷を介して互いに貼り付く可能性がある。また、引き出し検出センサ60の可動部品が凍って適切に移動できなくなる可能性がある。したがって、引き出し検出センサ60は、冷凍/解凍室12bの電波照射空間の外部、すなわち第1の電極48と第2の電極50の間の空間の外部に設けられている。 Unlike this, if the drawer detection sensor 60 is provided inside the freezing/thawing chamber 12b, that is, inside the shield case 44 where the alternating electric field is generated, the drawer sensor 60 may erroneously detect the drawer 46. For example, if the drawer sensor 60 is a Hall sensor that detects a magnetic field, it may malfunction due to an alternating electric field (magnetic field) generated inside the shield case 44 . Further, for example, if the drawer sensor 60 is a mechanical sensor, the contact surface of the drawer detection sensor 60 and the contact surface of the drawer 46 may stick to each other through ice. Also, the moving parts of the drawer detection sensor 60 may freeze and become unable to move properly. Therefore, the drawer detection sensor 60 is provided outside the radio wave irradiation space of the freezing/thawing chamber 12 b , that is, outside the space between the first electrode 48 and the second electrode 50 .
 本実施の形態の場合、引き出し検出センサ60が所定の位置に存在する引き出し46を検出しているときのみ、発振部52は、交流電圧を発生することが可能にされている。本実施の形態の場合、引き出し検出センサ60は発振部52に電気的に接続されている。発振部52は、引き出し46が所定の位置に存在することを示す検出信号を引き出し検出センサ60から受信している間は交流電圧が発生可能な状態で待機する。そして、制御部30から加熱開始信号を受信すると、待機状態の発振部52は交流電圧の発生を開始する。一方、引き出し検出センサ60から検出信号を受信していない間は、制御部30から加熱開始信号を受信しても、発振部52は交流電圧を発生しない。 In the case of the present embodiment, the oscillator 52 is enabled to generate AC voltage only when the drawer detection sensor 60 detects the drawer 46 existing at a predetermined position. In this embodiment, the drawer detection sensor 60 is electrically connected to the oscillator 52 . While the oscillator 52 receives a detection signal from the drawer detection sensor 60 indicating that the drawer 46 exists at a predetermined position, the oscillator 52 waits in a state in which an AC voltage can be generated. Upon receiving a heating start signal from the control unit 30, the oscillation unit 52 in the standby state starts generating AC voltage. On the other hand, while the detection signal is not received from the drawer detection sensor 60 , the oscillation section 52 does not generate an AC voltage even if the heating start signal is received from the control section 30 .
 したがって、本実施の形態においては、扉開閉センサ32Bが閉じた状態の扉12hを検出している状態であって、且つ、引き出し検出センサ60が所定の位置に存在する引き出し46を検出している状態であるとき、発振部32は、第1の電極48と第2の電極50との間に印加する交流電圧を発生させる。これにより、扉12hが閉じた状態であっても、引き出し46が所定の位置に存在せず、それにより加熱対象の食品が第1の電極48と第2の電極50との間の加熱空間HZに適切に配置されていないときには、誘電加熱の開始が抑制される。その結果、食品の解凍不足や無駄な電力消費が抑制される。 Therefore, in the present embodiment, the door opening/closing sensor 32B detects the closed door 12h, and the drawer detection sensor 60 detects the drawer 46 existing at a predetermined position. When in the state, the oscillator 32 generates an alternating voltage to be applied between the first electrode 48 and the second electrode 50 . As a result, even when the door 12h is closed, the drawer 46 does not exist in a predetermined position, so that the food to be heated is placed in the heating space HZ between the first electrode 48 and the second electrode 50. is not properly positioned, the onset of dielectric heating is inhibited. As a result, insufficient thawing of food and wasteful power consumption are suppressed.
 発振部52の交流電圧の発生中(すなわち食品の誘電加熱中)、引き出し46が所定の位置から引き出されると、すなわち引き出し検出センサ60が所定の位置に存在する引き出し46を検出できなくなると、交流電圧を発生中の発振部52が、その交流電圧の発生を停止する。本実施の形態の場合、引き出し検出センサ60からの検出信号を受信できなくなると、発振部52が交流電圧の発生を停止する。 When the drawer 46 is pulled out from a predetermined position while the oscillator 52 is generating AC voltage (that is, during dielectric heating of the food), the AC voltage is generated when the drawer detection sensor 60 becomes unable to detect the drawer 46 existing at the predetermined position. The oscillator 52 that is generating the voltage stops generating the AC voltage. In the case of this embodiment, when the detection signal from the drawer detection sensor 60 can no longer be received, the oscillator 52 stops generating the AC voltage.
 本実施の形態の場合、発振部52の交流電圧の発生中(すなわち食品の誘電加熱中)、引き出し46を所定の位置から引き出すためには、まず扉12hを開ける必要がある。したがって、扉12hを開けた時点で、扉開閉センサ32Bが閉じた状態の扉12hを検出できずに、発振部52が交流電圧の発生を停止する。 In the case of the present embodiment, the door 12h must first be opened in order to pull out the drawer 46 from the predetermined position while the oscillator 52 is generating AC voltage (that is, during the dielectric heating of the food). Therefore, when the door 12h is opened, the door opening/closing sensor 32B cannot detect the closed door 12h, and the oscillator 52 stops generating the AC voltage.
 しかしながら、扉12hが開いた状態であるにもかかわらず、何らかの原因で、例えば扉開閉センサ32Bの誤検出などで、発振部52が交流電圧を発生する場合がある。この場合、引き出し46が所定の位置から引き出され、それにより引き出し検出センサ60が所定の位置に存在する引き出し46を検出できなくなると、発振部52が交流電圧の発生を停止する。 However, even though the door 12h is open, the oscillator 52 may generate AC voltage for some reason, for example, due to an erroneous detection of the door open/close sensor 32B. In this case, when the drawer 46 is pulled out from the predetermined position and the drawer detection sensor 60 cannot detect the drawer 46 existing at the predetermined position, the oscillator 52 stops generating the AC voltage.
 なお、図4に示すように、引き出し検出センサ60は、冷凍/解凍室12bの外部、すなわちインナーケース42の開口縁42eに設けられ、引き出し46の前端46cを検出する(接触する)。引き出し検出センサ60は、インナーケース42の開口縁42e以外の位置に設けることも可能である。すなわち、引き出し検出センサ60は、所定の位置に配置された引き出し46を検出できる位置にあればよい。ただし、引き出し検出センサ60自体およびそのセンサから延在する信号線などの配線がシールドケース44内に発生する交番電界から大きな影響を受けない位置に、引き出し検出センサ60を配置するのが好ましい。それにより、交番電界によって引き出し検出センサ60が誤動作することが抑制される。 As shown in FIG. 4, the drawer detection sensor 60 is provided outside the freezing/thawing chamber 12b, that is, at the opening edge 42e of the inner case 42, and detects (contacts) the front end 46c of the drawer 46. The drawer detection sensor 60 can also be provided at a position other than the opening edge 42 e of the inner case 42 . That is, the drawer detection sensor 60 should be located at a position where it can detect the drawer 46 arranged at a predetermined position. However, it is preferable to arrange the drawer detection sensor 60 at a position where the drawer detection sensor 60 itself and wiring such as signal lines extending from the sensor are not greatly affected by the alternating electric field generated in the shield case 44 . This suppresses malfunction of the drawer detection sensor 60 due to the alternating electric field.
 交番電界の影響に関して、図1に示すように、扉開閉センサ32B、制御部30、および発振部52は、交番電界が発生する加熱モジュール40のシールドケース44の外部に位置するので、シールドケース44内に発生する交番電界の影響を受けにくい。それにより、扉開閉センサ32B、制御部30、および発振部52が、交番電界によって誤動作することが抑制されている。 Regarding the influence of the alternating electric field, as shown in FIG. It is less susceptible to the alternating electric field generated inside. This prevents the door open/close sensor 32B, the controller 30, and the oscillator 52 from malfunctioning due to the alternating electric field.
 さらに言えば、扉12hが開いた状態であるにもかかわらず、且つ、引き出し46が所定の位置に存在しないにもかかわらず、何らかの原因で発振部52が交流電圧を発生する可能性がある。それによるシールドケース44(冷凍室/加熱室12b)の外部への交番電界の漏出を抑制するために、第1の電極48と第2の電極50のシールドケース44内における位置が規定されている。具体的には、図4に示すように、第2の電極50の前端50aからシールドケース44の開口部44cまでの距離D1が規定されている。この距離D1について具体的に説明する。 Furthermore, even though the door 12h is open and the drawer 46 is not in the predetermined position, the oscillator 52 may generate AC voltage for some reason. In order to suppress leakage of the alternating electric field to the outside of the shield case 44 (freezing chamber/heating chamber 12b), the positions of the first electrode 48 and the second electrode 50 in the shield case 44 are defined. . Specifically, as shown in FIG. 4, a distance D1 from the front end 50a of the second electrode 50 to the opening 44c of the shield case 44 is defined. This distance D1 will be specifically described.
 図7Aは、交番電界の前後方向の拡がりのシミュレーション結果を示す図である。また、図7Bは、交番電界の左右方向の拡がりのシミュレーション結果を示す図である。 FIG. 7A is a diagram showing a simulation result of the spread of the alternating electric field in the front-rear direction. FIG. 7B is a diagram showing a simulation result of horizontal expansion of the alternating electric field.
 図7Aに示すように、第1の電極48と第2の電極50との間に印加された交流電圧によって発生する交番電界は、シールドケース44内を前後方向(X軸方向)に拡がる。また、図7B示すように、第1の電極48と第2の電極50との間に印加された交流電圧によって発生する交番電界は、シールドケース44内を左右方向(Y軸方向)に拡がる。 As shown in FIG. 7A, the alternating electric field generated by the AC voltage applied between the first electrode 48 and the second electrode 50 spreads in the front-rear direction (X-axis direction) inside the shield case 44 . Also, as shown in FIG. 7B, an alternating electric field generated by the AC voltage applied between the first electrode 48 and the second electrode 50 spreads in the shield case 44 in the horizontal direction (Y-axis direction).
 第1の電極48と第2の電極50との間に発生する交番電界の電界強度E[V/mm]は、数式1に示すように、第1の電極48と第2の電極50との間の電圧V[V]と、第1の電極48と第2の電極50との間の対向方向(Z軸方向)の距離D[mm]とで簡略的に表すことができる。
Figure JPOXMLDOC01-appb-M000006
The electric field strength E [V/mm] of the alternating electric field generated between the first electrode 48 and the second electrode 50 is, as shown in Equation 1, the difference between the first electrode 48 and the second electrode 50 It can be simply represented by the voltage V [V] between the first electrode 48 and the second electrode 50 and the distance D [mm] in the opposing direction (Z-axis direction) between the first electrode 48 and the second electrode 50 .
Figure JPOXMLDOC01-appb-M000006
 電圧Vは、発振部52の出力電力W[w]と、インピーダンスZ[Ω]で、数式2のように表すことができる。インピーダンスZは、整合回路56で調節すべき目標のインピーダンス値であって、固定値である。発振部52の出力インピーダンスと整合回路56によって調節したインピーダンスZとを等しくすることにより、電波の反射を抑制することができる。例えば、インピーダンスZは、一般的に、50Ωである。
Figure JPOXMLDOC01-appb-M000007
The voltage V can be expressed by Equation 2 using the output power W [w] of the oscillator 52 and the impedance Z [Ω]. The impedance Z is a target impedance value to be adjusted by the matching circuit 56 and is a fixed value. By equalizing the output impedance of the oscillator 52 and the impedance Z adjusted by the matching circuit 56, reflection of radio waves can be suppressed. For example, impedance Z is typically 50Ω.
Figure JPOXMLDOC01-appb-M000007
 したがって、電界強度Eを、数式3のように表すことができる。
Figure JPOXMLDOC01-appb-M000008
Therefore, the electric field intensity E can be expressed as in Equation 3.
Figure JPOXMLDOC01-appb-M000008
 発明者は、第1の電極48と第2の電極50との間に交流電圧を印加することによって発生する交番電界の開口部44cを介するシールドケース44の外部への漏出を抑制する条件式として、数式4を実験によって見出した。
Figure JPOXMLDOC01-appb-M000009
The inventor has established a conditional expression for suppressing leakage of an alternating electric field generated by applying an alternating voltage between the first electrode 48 and the second electrode 50 to the outside of the shield case 44 through the opening 44c. , Equation 4 was found by experiment.
Figure JPOXMLDOC01-appb-M000009
 数式4を満足するように、発振部52の出力電力Wと出力インピーダンスZとに基づいて、第2の電極50の前端50aからシールドケース44の開口部44cまでの距離D1が決定される。このように決定された距離D1により、シールドケース44外部、すなわち冷凍/加熱室12bの外部への交番電界の漏出を抑制することができる。 A distance D1 from the front end 50a of the second electrode 50 to the opening 44c of the shield case 44 is determined based on the output power W and the output impedance Z of the oscillator 52 so as to satisfy Equation 4. The distance D1 determined in this way can suppress leakage of the alternating electric field to the outside of the shield case 44, that is, the freezing/heating chamber 12b.
 例えば、インピーダンスZ(発振部52の出力インピーダンス)が50Ω、出力電力Wが100W、電極間距離Dが100mmである場合、D1は、17.67mmより大きくすると、シールドケース44外部、すなわち冷凍/加熱室12bの外部への交番電界の漏出を抑制することができる。 For example, when the impedance Z (the output impedance of the oscillation unit 52) is 50Ω, the output power W is 100W, and the distance D between the electrodes is 100mm, D1 is larger than 17.67mm. Leakage of the alternating electric field to the outside of the chamber 12b can be suppressed.
 なお、図4および図7Aに示すように、シールドケース44の開口部44cに近い側の端である第1の電極48の前端48a近傍には、相対的に高い強度の電界が発生する。これは、第1の電極48が、第2の電極50と異なり、グランドに接続されていない電極であるために生じる。このような相対的に高い強度の高い電界がシールドケース44の開口部44cを介してシールドケース44の外部に漏出しないように、図4に示すように、第1の電極48の前端48aが、第2の電極50の前端50aに比べて、シールドケース44の開口部44cから離れている。 As shown in FIGS. 4 and 7A, a relatively high intensity electric field is generated near the front end 48a of the first electrode 48, which is the end of the shield case 44 near the opening 44c. This occurs because the first electrode 48, unlike the second electrode 50, is an electrode that is not connected to ground. In order to prevent such a relatively high-intensity electric field from leaking out of the shield case 44 through the opening 44c of the shield case 44, as shown in FIG. It is farther from the opening 44c of the shield case 44 than the front end 50a of the second electrode 50 is.
 また、本実施の形態の場合、図5に示すように、第2の電極50の左右方向(Y軸方向)の側端50bからシールドケース44の内壁面44dまでの距離D2も、距離D1と同様に規定されている。距離D2は、距離D1と同様に発振部52の出力電力Wと出力インピーダンスZとに基づいて、数式5を満足するよう決定される。
Figure JPOXMLDOC01-appb-M000010
In the case of the present embodiment, as shown in FIG. 5, the distance D2 from the left-right direction (Y-axis direction) side end 50b of the second electrode 50 to the inner wall surface 44d of the shield case 44 is also equal to the distance D1. similarly stipulated. The distance D2 is determined based on the output power W and the output impedance Z of the oscillation section 52 so as to satisfy Equation 5, like the distance D1.
Figure JPOXMLDOC01-appb-M000010
 距離D1と距離D2とを決定するための数式4および数式5は同一である。しかしながら、数式5は、数式4と異なり、シールドケース44外部への交番電界の漏出を抑制するための条件式ではない。数式5は、第2の電極50の側端50bとシールドケース44の内壁面44dとの間に容量が形成されることを抑制するための条件式である。距離D2が数式5を満足しない場合、第2の電極50の側端50bとシールドケース44の内壁面44dとの間に大きな容量が形成される。すなわち、第2の電極50の側端50bで発生した電界がシールドケース44の内壁面44dに到達する。その結果、電波がシールドケース44を介して漏洩するとともに、発振部52の出力電力の一部が、食品を誘電加熱するための交番電界の発生以外に浪費される。それにより、食品の誘電加熱の効率が低下する。このような電波の漏洩と誘電加熱の効率低下とを抑制するために、距離D2が、数式5を満足するように決定される。 Equations 4 and 5 for determining the distance D1 and the distance D2 are the same. However, unlike Expression 4, Expression 5 is not a conditional expression for suppressing leakage of the alternating electric field to the outside of shield case 44 . Equation 5 is a conditional expression for suppressing formation of capacitance between the side end 50 b of the second electrode 50 and the inner wall surface 44 d of the shield case 44 . If the distance D2 does not satisfy Equation 5, a large capacitance is formed between the side end 50b of the second electrode 50 and the inner wall surface 44d of the shield case 44. That is, the electric field generated at the side end 50b of the second electrode 50 reaches the inner wall surface 44d of the shield case 44. As shown in FIG. As a result, radio waves leak through the shield case 44, and part of the output power of the oscillator 52 is wasted for purposes other than generating the alternating electric field for dielectrically heating the food. This reduces the efficiency of dielectric heating of food. In order to suppress such radio wave leakage and dielectric heating efficiency reduction, the distance D2 is determined so as to satisfy Equation (5).
 なお、本実施の形態の場合、図5および図7Bに示すように、第1の電極48の側端48b近傍には、相対的に高い強度の電界が発生する。このような相対的に高い強度の高い電界が発生する第1の電極48の側端48bがシールドケース44の内壁面44dに近づきすぎると、その側端48bと内壁面44dとの間に非常に大きな容量が形成される。非常に大きな容量が形成されないように、第1の電極48の側端48bが、前記第2の電極50の側端50bに比べて、シールドケース44の内壁面44dから離れている。 In addition, in the case of the present embodiment, a relatively high intensity electric field is generated in the vicinity of the side end 48b of the first electrode 48, as shown in FIGS. 5 and 7B. If the side edge 48b of the first electrode 48, which generates such a relatively high-intensity electric field, comes too close to the inner wall surface 44d of the shield case 44, there will be a large gap between the side edge 48b and the inner wall surface 44d. A large capacity is formed. The side edge 48b of the first electrode 48 is farther from the inner wall surface 44d of the shield case 44 than the side edge 50b of the second electrode 50 so as not to form a very large capacitance.
 以上のような本実施の形態によれば、食品を誘電加熱する冷蔵庫の加熱空間から外部への交番電界の漏出を抑制することができる。 According to the present embodiment as described above, leakage of an alternating electric field to the outside from the heating space of a refrigerator that dielectrically heats food can be suppressed.
 以上、上述の実施の形態を挙げて本発明を説明してきたが、本発明は上述の実施の形態に限らない。 Although the present invention has been described with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments.
 例えば、図1に示すように、上述の実施の形態の場合、扉12hと引き出し46とは連結されていない。しかしながら、本発明の実施の形態はこれに限らない。 For example, as shown in FIG. 1, the door 12h and the drawer 46 are not connected in the above embodiment. However, embodiments of the present invention are not limited to this.
 図8は、本発明の別の実施の形態に係る冷蔵庫の一部分の縦断面図である。 FIG. 8 is a longitudinal sectional view of part of a refrigerator according to another embodiment of the present invention.
 図8に示すように、別の実施の形態に係る冷蔵庫110において、加熱空間HZとシールドケース44の外部とを連絡するまたは分断する扉112hは、加熱空間HZに出し入れ可能な引き出し46に連結されている。したがって、扉112hが開くと、引き出し46が前方に移動する。この場合、扉112hは、上下方向(Z軸方向)に延在する回転中心線を回転する扉ではなく、前後方向(X軸方向)に平行移動可能な扉である。また、この実施の形態の場合、引き出し検出センサが省略される。その代わりに、扉開閉センサ32Bが、扉112hの開閉検出のみならず、引き出し検出センサとしても機能する。 As shown in FIG. 8, in a refrigerator 110 according to another embodiment, a door 112h that connects or separates the heating space HZ and the outside of the shield case 44 is connected to a drawer 46 that can be put into and taken out of the heating space HZ. ing. Therefore, when the door 112h opens, the drawer 46 moves forward. In this case, the door 112h is not a door that rotates about a rotation center line extending in the vertical direction (Z-axis direction), but a door that can move in parallel in the front-rear direction (X-axis direction). Also, in this embodiment, the drawer detection sensor is omitted. Instead, the door opening/closing sensor 32B functions not only to detect opening/closing of the door 112h, but also as a drawer detection sensor.
 また、上述の実施の形態の場合、図5に示すように、食品を解凍するための加熱空間HZは、食品を冷凍する冷凍/解凍室12bの一部分である。しかしながら、本発明の実施の形態はこれに限らない。冷凍/解凍室12b全体が加熱空間HZであってもよい。 Also, in the case of the above embodiment, as shown in FIG. 5, the heating space HZ for thawing food is a part of the freeze/thaw chamber 12b for freezing food. However, embodiments of the present invention are not limited to this. The entire freezing/thawing chamber 12b may be the heating space HZ.
 さらに、上述の実施の形態の場合、第1の電極48と第2の電極50は、図4および図5に示すように、上下方向(Z軸方向)に対向している。また、下側に位置する第2の電極50が、図6に示すようにグランドに接続されている。しかしながら、本実施の形態はこれに限らない。例えば、第1の電極と第2の電極とが上下方向に対向し、上側の第1の電極がグランドに接続されてもよい。また例えば、第1の電極と第2の電極とが、左右方向(冷蔵庫の幅方向)に対向してもよい。 Furthermore, in the case of the above embodiment, the first electrode 48 and the second electrode 50 face each other in the vertical direction (Z-axis direction), as shown in FIGS. Also, the second electrode 50 located on the lower side is connected to the ground as shown in FIG. However, this embodiment is not limited to this. For example, the first electrode and the second electrode may face each other in the vertical direction, and the upper first electrode may be connected to the ground. Further, for example, the first electrode and the second electrode may face each other in the left-right direction (the width direction of the refrigerator).
 さらに、上述の実施の形態の場合、加熱モジュール40内に冷凍/解凍室12bが設けられている。すなわち、加熱モジュール40は、食品を誘電加熱することに加えて、食品を冷凍保存可能に構成されている。しかしながら、本発明の実施の形態はこれに限らない。加熱モジュール40は、食品の誘電加熱のみに使用されてもよい。この場合、加熱モジュール40内に冷気を導入する必要がなくなる。 Furthermore, in the case of the above embodiment, the heating module 40 is provided with the freezing/thawing chamber 12b. In other words, the heating module 40 is configured to permit food to be stored frozen in addition to dielectrically heating the food. However, embodiments of the present invention are not limited to this. Heating module 40 may be used only for dielectric heating of food products. In this case, there is no need to introduce cold air into the heating module 40 .
 すなわち、本発明の実施の形態に係る冷蔵庫は、広義には、内部と外部とを連通する開口部を前側に備え、金属材料から作製されたシールドケースと、前記シールドケース内に配置された平板状の第1の電極と、前記第1の電極に間隔をあけて対向するように前記シールドケース内に配置され、前記第1の電極との間に食品を誘電加熱する加熱空間を形成し、且つグランドに接続された平板状の第2の電極と、前記第1の電極と前記第2の電極との間に印加する交流電圧を発生させる発振部と、を有し、前記第1の電極と前記第2の電極との対向方向距離D、前記発振部の出力電力W、前記発振部の出力インピーダンスZ、および前記第2の電極の前端から前記シールドケースの前記開口部までの距離D1が、
Figure JPOXMLDOC01-appb-M000011
を満足する。
That is, in a broad sense, the refrigerator according to the embodiment of the present invention includes a shield case having an opening on the front side that communicates the inside and the outside, made of a metal material, and a flat plate disposed in the shield case. A first electrode having a shape and a heating space disposed in the shield case so as to face the first electrode with a gap, and forming a heating space for dielectrically heating food between the first electrode and the first electrode, and a flat plate-like second electrode connected to the ground, and an oscillator for generating an AC voltage applied between the first electrode and the second electrode, wherein the first electrode and the second electrode, the output power W of the oscillator, the output impedance Z of the oscillator, and the distance D1 from the front end of the second electrode to the opening of the shield case ,
Figure JPOXMLDOC01-appb-M000011
satisfy.
 本発明は、食品を誘電加熱可能な冷蔵庫に適用可能である。 The present invention is applicable to refrigerators that can dielectrically heat food.

Claims (5)

  1.  内部と外部とを連通する開口部を前側に備え、金属材料から作製されたシールドケースと、
     前記シールドケース内に配置された平板状の第1の電極と、
     前記第1の電極に間隔をあけて対向するように前記シールドケース内に配置され、前記第1の電極との間に食品を誘電加熱する加熱空間を形成し、且つグランドに接続された平板状の第2の電極と、
     前記第1の電極と前記第2の電極との間に印加する交流電圧を発生させる発振部と、を有し、
     前記第1の電極と前記第2の電極との対向方向距離D、前記発振部の出力電力W、前記発振部の出力インピーダンスZ、および前記第2の電極の前端から前記シールドケースの前記開口部までの距離D1が、
    Figure JPOXMLDOC01-appb-M000001
    を満足する、冷蔵庫。
    a shield case made of a metal material and having an opening on the front side that communicates between the inside and the outside;
    a flat plate-like first electrode arranged in the shield case;
    A plate-shaped plate disposed in the shield case so as to face the first electrode with a gap, forming a heating space for dielectrically heating food between the first electrode and the first electrode, and connected to the ground a second electrode of
    an oscillation unit that generates an alternating voltage to be applied between the first electrode and the second electrode;
    The distance D between the first electrode and the second electrode in the facing direction, the output power W of the oscillator, the output impedance Z of the oscillator, and the opening of the shield case from the front end of the second electrode The distance D1 to
    Figure JPOXMLDOC01-appb-M000001
    A refrigerator that satisfies.
  2.  前記第1の電極の前端が、前記第2の電極の前端に比べて、前記シールドケースの前記開口部から離れている、請求項1に記載の冷蔵庫。
    2. The refrigerator according to claim 1, wherein the front end of said first electrode is farther from said opening of said shield case than the front end of said second electrode.
  3.  前記対向方向距離D、前記出力電力W、前記インピーダンスZ、および前記第2の電極の側端から前記シールドケースの内壁面までの距離D2が、
    Figure JPOXMLDOC01-appb-M000002
    を満足する、請求項1または2に記載の冷蔵庫。
    The facing direction distance D, the output power W, the impedance Z, and the distance D2 from the side end of the second electrode to the inner wall surface of the shield case are
    Figure JPOXMLDOC01-appb-M000002
    3. The refrigerator according to claim 1 or 2, which satisfies
  4.  前記第1の電極の側端が、前記第2の電極の側端に比べて、前記シールドケースの内壁面から離れている、請求項3に記載の冷蔵庫。
    4. The refrigerator according to claim 3, wherein a side edge of said first electrode is further away from an inner wall surface of said shield case than a side edge of said second electrode.
  5.  前記加熱空間が、食品を冷凍する冷凍室の少なくとも一部である、請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the heating space is at least part of a freezer compartment that freezes food.
PCT/JP2022/036921 2021-10-12 2022-10-03 Refrigerator WO2023063135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-167543 2021-10-12
JP2021167543A JP2023057842A (en) 2021-10-12 2021-10-12 refrigerator

Publications (1)

Publication Number Publication Date
WO2023063135A1 true WO2023063135A1 (en) 2023-04-20

Family

ID=85988577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036921 WO2023063135A1 (en) 2021-10-12 2022-10-03 Refrigerator

Country Status (2)

Country Link
JP (1) JP2023057842A (en)
WO (1) WO2023063135A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202952A1 (en) * 2018-04-18 2019-10-24 パナソニックIpマネジメント株式会社 Refrigerator
CN209893781U (en) * 2019-01-23 2020-01-03 青岛海尔股份有限公司 Heating device and refrigerator
JP2021060174A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202952A1 (en) * 2018-04-18 2019-10-24 パナソニックIpマネジメント株式会社 Refrigerator
CN209893781U (en) * 2019-01-23 2020-01-03 青岛海尔股份有限公司 Heating device and refrigerator
JP2021060174A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP2023057842A (en) 2023-04-24

Similar Documents

Publication Publication Date Title
AU2018280466B2 (en) Refrigerator
CN109000397B (en) Thawing method for thawing device
KR20140134645A (en) Regrigeration device with a regsion for storing food items in a generated field
CN112912676B (en) Cold storage
CN112648775A (en) Refrigerator with a door
CN109000401B (en) Refrigerator with a door
CN109990564A (en) Wind cooling refrigerator
US11933537B2 (en) Refrigerator
CN109000400B (en) Side by side combination refrigerator
WO2023063135A1 (en) Refrigerator
WO2023063134A1 (en) Refrigerator
CN109990552A (en) Refrigerator
EP3910272B1 (en) Heating apparatus and refrigerator
CN109990521A (en) Wind cooling refrigerator
CN109990563A (en) Wind cooling refrigerator and its control method
JP7199052B2 (en) refrigerator
JP7308427B2 (en) refrigerator
JP7157955B2 (en) refrigerator
WO2020084865A1 (en) Refrigerator and control method thereof
US20220252335A1 (en) Refrigerator
CN213811288U (en) Refrigerator with a door
JP7422287B2 (en) refrigerator
US20220252339A1 (en) Refrigerator
WO2023210355A1 (en) Refrigerator
RU2777607C1 (en) Refrigerating and freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880831

Country of ref document: EP

Kind code of ref document: A1