WO2023062807A1 - Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium - Google Patents

Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium Download PDF

Info

Publication number
WO2023062807A1
WO2023062807A1 PCT/JP2021/038180 JP2021038180W WO2023062807A1 WO 2023062807 A1 WO2023062807 A1 WO 2023062807A1 JP 2021038180 W JP2021038180 W JP 2021038180W WO 2023062807 A1 WO2023062807 A1 WO 2023062807A1
Authority
WO
WIPO (PCT)
Prior art keywords
worker
physical condition
unit
condition management
information
Prior art date
Application number
PCT/JP2021/038180
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 國井
茂央 鈴木
次朗 安倍
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/038180 priority Critical patent/WO2023062807A1/en
Publication of WO2023062807A1 publication Critical patent/WO2023062807A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Definitions

  • the present disclosure relates to a physical condition management device, a mobile body, a physical condition management method, a program, and the like.
  • Sensors such as LiDAR (Light Detection and Ranging) irradiate each measurement point on the object to be measured with a laser, and calculate the distance to each measurement point based on the time it takes to receive the light after irradiating the laser. be able to. By using these sensors while moving, it is possible to obtain the distance to and shape of objects to be measured, such as waterways and tunnels.
  • LiDAR Light Detection and Ranging
  • Patent Document 1 discloses a monitoring system capable of confirming an abnormality when an abnormality occurs in a person to be monitored.
  • a monitoring system when an abnormality occurs in a monitoring subject wearing a biological information acquisition device, a mobile robot moves toward the monitoring subject with the abnormality.
  • the present disclosure has been made in order to solve such problems. , physical condition management methods, programs, etc.
  • the physical condition management device includes: a communication position storage unit that stores communicable positions; a physical condition management unit that acquires and manages the physical condition information of the worker using the sensor unit; a worker position acquisition unit that acquires the position information of the worker; a drive control unit that controls autonomous movement of the mobile body; and a transmitting unit configured to transmit the acquired location information of the worker when the mobile body is at the stored communicable location.
  • a moving body includes the physical condition management device; a sensor unit that acquires physical condition information of a worker; a point cloud data acquisition unit that acquires point cloud data.
  • a physical condition management method includes: memorize the communicable position, Acquire and manage the physical condition information of the worker using the sensor unit, Acquiring location information of the worker; control the autonomous movement of mobile bodies, When the mobile body is at the stored communicable position, the acquired position information of the worker is transmitted.
  • a non-transitory computer-readable medium comprises: a process of storing communicable positions; A process of acquiring and managing the physical condition information of the worker using the sensor unit; a process of acquiring location information of the worker; a process of controlling autonomous movement of a mobile body; A physical condition management program for causing a computer to execute a process of transmitting the acquired position information of the worker when the mobile body is at the stored communicable position is stored.
  • a physical condition management device a mobile body, a physical condition management method, a program, etc. that can manage the physical condition of workers even in areas where mobile radio waves do not reach, and can transmit to the outside when the physical condition is abnormal.
  • FIG. 1 is a block diagram showing the configuration of a physical condition management apparatus according to Embodiment 1;
  • FIG. 2 is a flowchart showing a physical condition management method according to Embodiment 1;
  • FIG. 10 is a diagram showing an example of measuring the inner wall of a tunnel with a sensor mounted on a moving object according to the second embodiment;
  • FIG. 10 is a control block diagram of a moving body according to the second embodiment;
  • 9 is a flowchart showing a control method according to Embodiment 2; It is a block diagram showing an example of hardware constitutions, such as a physical condition management device, in some embodiments.
  • FIG. 1 is a block diagram showing the configuration of a physical condition management apparatus according to a first embodiment;
  • the physical condition management device 20 is implemented by a computer having a processor, memory, and the like.
  • the physical condition management device 20 can be used by being mounted on a mobile object or the like.
  • the moving body referred to here can include various moving bodies such as carts, transport robots, drones, and water surface drones.
  • the mobile body includes a sensor unit (e.g., temperature sensor) for acquiring physical condition information of the worker, and a sensor unit (e.g., LiDAR (Light Detection and Ranging)).
  • a sensor unit e.g., LiDAR (Light Detection and Ranging)
  • the worker may possess a worker portable terminal (eg, wearable device) having a sensor unit (eg, temperature sensor) for acquiring the physical condition information of the worker.
  • the physical condition management device 20 includes a communication location storage unit 221 that stores communicable locations, a physical condition management unit 201 that acquires and manages physical condition information of the worker using a sensor unit, and a worker that acquires the location information of the worker.
  • the communication location storage unit 221 can store one or more locations with which the mobile can communicate using the mobile phone communication network.
  • the operator may store the communicable position information in the communication position storage unit 221 by registering the communicable position of the mobile body in advance.
  • the communicable positions and the communicable positions may be automatically registered and stored in association with the map information.
  • the physical condition management unit 201 can acquire the physical condition information of the worker obtained using various sensor units such as a temperature sensor, and manage the physical condition of the worker over time.
  • the physical condition management unit 201 detects the worker's posture based on three-dimensional data acquired using a distance measuring sensor (for example, LiDAR (Light Detection and Ranging)), and detects the worker's physical condition based on the worker's posture. can be estimated. For example, if the worker's posture is lying down or crouching, it can be estimated that the worker's physical condition is abnormal. Further, when the distance between the worker and the distance measuring sensor of the moving body is greater than a certain distance (for example, outside the monitoring range), it may be determined that the worker has become abnormal.
  • a distance measuring sensor for example, LiDAR (Light Detection and Ranging)
  • the physical condition management unit 201 acquires physical condition information (eg, body temperature, heart rate, etc.) of the worker via a wearable device (eg, smart watch, etc.) worn by the worker.
  • physical condition information eg, body temperature, heart rate, etc.
  • a wearable device eg, smart watch, etc.
  • the worker position acquisition unit 202 for example, based on the position information of the mobile body using GPS (global positioning system) etc. and the distance between the mobile body and the worker measured by the range sensor, Location information can be acquired.
  • the worker position acquisition unit 202 can acquire position information of the worker in association with the acquired time and the acquired position information of the moving body, and store them in the storage unit.
  • the drive control unit 203 controls the drive unit of the moving body and controls the autonomous movement of the moving body.
  • the drive control unit 203 can control autonomous movement of the mobile object based on map information and position information of the mobile object.
  • the drive control unit 203 can control the autonomous movement of the mobile object based on the image captured by the camera mounted on the mobile object.
  • the transmission unit 204 uses the mobile phone communication network to send one or both of the acquired worker position information and worker physical condition information to an external device.
  • the transmission unit 204 can be wirelessly transmitted to a server or the like.
  • FIG. 2 is a flow chart showing the physical condition management method according to the first embodiment.
  • the communication position storage unit 221 stores (or registers) the communicable position (step S11).
  • the physical condition management unit 201 acquires and manages the physical condition information of the worker using the sensor unit (step S12).
  • the worker position acquisition unit 202 acquires the position information of the worker (step S13).
  • the drive control unit 203 controls autonomous movement of the moving body (step S14).
  • the transmitting unit 204 transmits the acquired position information of the worker when the mobile body is at the stored communicable position (step S15).
  • the program according to the present embodiment is a program for causing a computer to execute the physical condition management method as shown in FIG.
  • the physical condition management device, physical condition management method, program, etc. according to the first embodiment described above can manage the physical condition of the worker even in areas where mobile radio waves do not reach, and can transmit to the outside when the physical condition is abnormal.
  • the worker position acquiring unit 202 of the physical condition management device 20 can acquire the worker position information at a position where communication is impossible using a mobile phone communication network (for example, inside a tunnel, in a mountainous area, etc.).
  • the worker position acquisition unit 202 of the physical condition management device 20 can detect a GPS (global positioning system) signal, a global navigation satellite system (GLONASS) signal, or a similar Satellite-based positioning system signals can be received to obtain location information for the mobile.
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • the worker position acquisition unit 202 of the physical condition management device 20 can acquire the distance between the mobile object and the worker using a distance measuring sensor (for example, LiDAR) and calculate the position information of the worker. .
  • a distance measuring sensor for example, LiDAR
  • Various known methods can be used to acquire the position information of the worker.
  • the drive control unit 203 moves the moving body to a (preliminarily registered) communicable position (for example, outside a tunnel or in a mountainous area). (near the base station near the top). When a plurality of communicable positions are registered, the drive control unit 203 may move the moving body to the nearest communicable position.
  • a communicable position for example, outside a tunnel or in a mountainous area.
  • the drive control unit 203 uses a range sensor (for example, LiDAR (Light Detection and Ranging)) when an abnormality in the physical condition of the worker is determined while the mobile body is moving autonomously for inspection work. It is possible to stop the inspection work and the autonomous movement accompanying the inspection work. After that, the drive control unit 203 can autonomously move the moving body to a communicable position (registered in advance).
  • a range sensor for example, LiDAR (Light Detection and Ranging)
  • the transmitting unit 204 can transmit at least one of the worker's physical condition abnormality information and location information after the mobile body has moved to a pre-registered communicable position.
  • the transmission unit 204 can wirelessly transmit one or both of the physical condition information and the location information of the worker to an external server or the like using a mobile phone communication network.
  • FIG. 3 is a diagram for explaining an example of detecting an abnormality in a water conduit by a moving object equipped with a sensor according to the second embodiment;
  • a moving object 2 for example, a vehicle, a water surface drone, etc.
  • a temperature sensor 4 and a LiDAR sensor 5 travels in the water conduit (in the direction of the arrow in FIG. 3), and from the sensor 5
  • the inner wall of the water conduit (measurement object 6) is irradiated with the laser in various directions.
  • the sensor receives the reflected laser light from the object to be measured.
  • the sensor may laser almost continuously with a very short period.
  • the movable body 2 may move to any position and irradiate the laser at each position.
  • the sensor measures the distance to each measurement point based on the time it takes from irradiating multiple lasers in the peripheral direction to receiving the reflected light.
  • the sensor can obtain the brightness value of the reflected light, from which the material of the measurement object (eg, metal, fabric, etc.) can be estimated.
  • the ranging sensor 5 can acquire point cloud data including measurement data at a plurality of measurement points measured by the ranging sensor 5 .
  • measurement data may include coordinate values on the x-axis, y-axis, and z-axis at each measurement point.
  • the conduit is elongated in shape and its length can be 50m or longer, 100m or longer, 300m or longer, or 1km or longer, and the like.
  • abnormal points such as the inner wall of the water conduit are detected.
  • the abnormal location can be determined from the difference in the distance measured by the sensor, that is, the shape of the abnormal location (eg, dent, hole, crack).
  • An abnormal point can be detected using a known abnormal point detection program.
  • the ranging sensor 5 may be a LiDAR equipped with a device for detecting three-dimensional inertial motion called an IMU (Inertial Measurement Unit). Position information (trajectory data) can be recorded in chronological order.
  • the mobile object 2 can be an autonomously mobile robot or drone.
  • the operator 3 walks after the mobile body 2 autonomously moves, confirms whether or not there is a problem with the autonomous movement of the mobile body 2 and the inspection work, and provides support.
  • the worker 3 may be injured or lose consciousness for some reason and cannot move. In such a case, the operator himself/herself cannot call for help from a remote person.
  • the moving object 2 has a ranging sensor 5 such as LiDAR and a camera 4 with a temperature sensor.
  • the distance measurement sensor 5 can acquire point cloud data of the measurement object 6 by the autonomous movement of the mobile body 2 .
  • the ranging sensor 5 can also be called a point cloud data acquisition unit.
  • the distance measurement sensor 5 can also detect the worker's posture (for example, lying down, crouching, standing, etc.) by irradiating the worker with a laser beam.
  • the distance sensor 5 can also measure the distance to the operator.
  • the camera 4 with a temperature sensor may be an infrared thermography camera, or may be a camera with a built-in other suitable temperature sensor function.
  • the camera 4 with a temperature sensor may be, for example, a celestial camera capable of photographing the moving object 2 in all directions (360 degrees).
  • the vehicle may have separate temperature sensors and video cameras.
  • the mobile object may have a microphone as a sensor and be configured to receive an acoustic response from a measurement object or the like.
  • the camera 4 with a temperature sensor can photograph the worker 3 walking behind the moving body 2 and measure the worker's body temperature.
  • the worker 3 has a worker portable terminal 30 .
  • Worker portable terminal 30 may be a smart phone, mobile phone, tablet computer, laptop computer, wearable device (eg, smart watch, smart band), or other suitable portable terminal.
  • Worker handheld device 30 may include one or more biometric monitoring devices such as pulse sensors, temperature sensors, or moisture (eg, perspiration) sensors.
  • the worker portable terminal 30 can acquire physical condition information of the worker, such as the user's body temperature, heart rate, and pulse, and transmit the information to the control unit 200 of the mobile body 2 via wireless communication.
  • the worker portable terminal 30 has a position information receiver (not shown) and receives the position information of the worker portable terminal 30 .
  • the location information receiver may, for example, receive global positioning system (GPS) signals, Global Navigation Satellite System (GLONASS) signals, or similar satellite-based positioning system signals.
  • the worker portable terminal 30 can be configured to communicate
  • FIG. 4 is a control block diagram of a mobile object according to the second embodiment.
  • the control unit 200 is, for example, a CPU (Central Processing Unit) and is stored in the control unit of the moving body 2 .
  • the moving body drive section 210 may include a drive circuit, a motor, and the like for driving the drive wheels.
  • the control unit 200 can execute rotation control of the drive wheels by sending a drive signal to the moving body drive unit 210 . Further, the control unit 200 can receive a feedback signal from an encoder or the like from the moving body driving unit 210 and grasp the moving direction of the moving body 2 .
  • the sensor units 4 and 5 include a distance sensor for measuring the distance and shape of the object to be measured, a temperature sensor for measuring the body temperature of the worker, various sensors for detecting obstacles during movement (e.g., camera, optical sensor, etc.). , proximity sensors, etc.), and other sensors (eg, microphones), which may be distributed in the mobile body 2 .
  • the control unit 200 drives various sensors and acquires their output signals.
  • the memory 220 is a non-volatile storage medium, such as a solid state drive.
  • the memory 220 stores various parameter values, functions, lookup tables, etc. used for control in addition to the control program for controlling the moving body 2 .
  • the memory 220 has a communication location storage unit 221 that stores locations where the mobile unit 2 can or cannot communicate using the mobile phone communication network.
  • the memory 220 may store environment map information that expresses the environment in which the mobile body 2 autonomously travels.
  • the communication position storage unit 221 may receive registration of communicable position information of the mobile body from the worker via the worker portable terminal 30 or the user IF 240 and hold the position information.
  • the memory 220 also has a worker position storage unit 222 that stores and holds worker position information.
  • the worker position storage unit 222 can hold the worker position information in association with the time when the worker position information was acquired.
  • the communication IF 230 is a communication interface for transmitting and receiving various types of information and control signals to and from external devices (eg, the server 10, the worker's portable terminal 30, etc.) under the control of the control unit 200.
  • Communication IF 230 is, for example, a wireless LAN unit. In order to move autonomously, it may receive environmental map data created in advance by an external device. Also, in some embodiments, control signals for autonomous movement may be received from a server.
  • the user IF 240 is a display panel or the like, and is a user interface for providing information to a user (worker) under the control of the control unit 200 and receiving instructions from the user (worker). The control unit 200 may receive the route for autonomous movement from the worker via the user IF 240 .
  • the location information receiver 250 receives the location information of the moving object 2.
  • Position information receiver 250 may receive, for example, global positioning system (GPS) signals, Global Navigation Satellite System (GLONASS) signals, or similar satellite-based positioning system signals.
  • GPS global positioning system
  • GLONASS Global Navigation Satellite System
  • the position information of the moving body 2 is sent to the control section 200 .
  • the mobile body can have a speaker for transmitting voice to the worker and a notification unit such as a lamp that notifies the worker by blinking.
  • the control unit 200 also serves as a functional calculation unit that executes various calculations related to control.
  • the physical condition management unit 201 acquires the physical condition of the worker using the physical condition detection information from the various sensors 4 and 5 or the worker portable terminal 30 .
  • the physical condition management unit 201 can detect an abnormality in the physical condition of the worker.
  • the physical condition management unit 201 can use the camera 4 with a temperature sensor to recognize an abnormality in the physical condition of the worker when the worker's body temperature has significantly decreased or increased significantly.
  • the physical condition management unit 201 can recognize an abnormality in the physical condition of the operator when the distance measuring sensor 5 detects the posture of the operator, such as lying down or crouching. In another embodiment, by comparing the heart rate, pulse rate, etc. of the worker with a threshold value, it is possible to recognize an abnormality in the worker's physical condition.
  • the worker position acquisition unit 202 can acquire the position information of the moving object based on the signal from the position information receiver 250. Also, the worker position acquisition unit 202 can acquire the worker position information based on the position information of the position information receiver 250 of the moving body 2, the distance information to the worker from the distance measuring sensor 5, and the like. When the physical condition management unit 201 recognizes that the physical condition of the worker is abnormal, the worker position acquiring unit 202 can acquire the position information of the worker who has the abnormal physical condition. The acquired worker position information is stored in the worker position storage unit 222 of the memory 220 in association with the acquired time. Various known methods can be used to acquire the position information of the worker.
  • the ranging sensor 5 is a LiDAR equipped with a device for detecting three-dimensional inertial motion called an IMU (Inertial Measurement Unit), position information (trajectory data) when acquiring point cloud data can be used.
  • IMU Inertial Measurement Unit
  • the drive control unit 203 transmits a control signal for controlling the movement of the mobile unit 2 to the drive unit 210 of the mobile unit 2 based on the physical condition information of the worker from the physical condition management unit 201 .
  • the drive control unit 203 receives from the physical condition management unit 201 an abnormality in the physical condition of the worker (for example, an abnormality in body temperature, the worker has fallen down, etc.)
  • the drive control unit 203 sends the mobile body 2 to the cellular phone communication. It can be moved to a pre-registered location where communication is possible using the network.
  • the moving body 2 can notify the worker 3 of the abnormality by notifying the worker by voice and lighting the lamp.
  • the mobile body 2 can be stopped by canceling the detection of the mobile body 2 via the user IF. After that, the operator 3 can restart the moving body 2 on the spot and have the moving body 2 continue the inspection work. If the worker determines that the physical condition is not a false detection, after a certain period of time (about 10 seconds), the worker can move to the nearest location within the reach of the radio wave of the mobile phone registered in advance. .
  • the transmission unit 204 can transmit at least one of the worker's status and location information to the outside (for example, a server that manages safety of the worker) via the communication IF 230 using a mobile phone communication network. .
  • control unit 200 may be configured to analyze the acoustic response from the measurement object or the like and detect the position of the measurement object.
  • FIG. 5 is a sequence diagram showing a control method according to the second embodiment.
  • a point to which radio waves reach is registered (step S101).
  • a position where communication is possible via a mobile phone communication network for example, a position outside the water conduit in FIG. 3
  • the worker 3 registers communicable position information by the mobile phone communication network in the communication position storage unit 221 of the mobile body 2 via the user IF 240 of the mobile body 2 or the worker portable terminal 30. good.
  • One or more pieces of communicable location information pre-registered in this manner are stored in the storage unit of the mobile unit 2 .
  • the worker 3 uses the moving body 2 to perform field work such as acquiring point cloud data of the object to be measured (step S103).
  • the moving body 2 is moved inside the water conduit, and the point cloud data of the inner wall of the water conduit, which is the object 6 to be measured, is acquired.
  • the inside of the water conduit in FIG. 3 is an area where communication of the mobile phone communication network is impossible, but it is an area where position information such as GPS signals can be acquired.
  • the moving body 2 can move autonomously while avoiding obstacles in the water conduit using various sensor units, and can acquire point cloud data of the measurement object 6 .
  • the worker 3 walks after the moving body 2 and confirms whether there is any problem in the operation of the moving body 2. - ⁇
  • the various sensor units 4 and 5 or the worker portable terminal 30 can acquire the physical condition information of the worker 3 and transmit it to the physical condition management unit 201 of the control unit 200 of the moving body 2 .
  • the physical condition management unit 201 detects abnormal physical condition of the worker 3 from the various sensors 4, 5 or the worker portable terminal 30 (YES in step S105)
  • the physical condition management unit 201 detects the various sensors 4, 5 or
  • the state (physical condition) of the worker 3 and the location information of the worker 3 are recorded from the worker portable terminal 30 (step S107).
  • the state (physical condition) of the worker 3, the location information of the worker 3, and the acquisition time can be recorded as time-series data.
  • the notification unit when the physical condition management unit 201 detects an abnormality in the physical condition of the worker 3 from the various sensors 4, 5 or the worker portable terminal 30 (step S105), the notification unit ( For example, the operator 3 may be notified by a flashing lamp or a speaker).
  • the worker 3 determines that the physical condition abnormality is falsely detected (NO in step S105 and step S108)
  • the mobile body 2 is stopped by canceling the detection via the user IF 240 or the worker portable terminal 30 (step S109).
  • the worker 3 can restart the moving body 2 on the spot and have the moving body 2 continue the inspection work (for example, the measurement work of the inner wall of the water conduit).
  • the physical condition management unit 201 of the control unit 200 of the moving body 2 detects the physical condition of the worker after a certain period of time (for example, after about 10 seconds have passed). It may be determined that an abnormality has occurred.
  • the moving body 2 autonomously moves to a position where radio waves of the pre-registered mobile phone communication network reach (step S111).
  • the drive control unit 203 can drive the drive unit 210 of the mobile object 2 to move the mobile object 2 to a communicable position stored in the communication position storage unit 221 .
  • the control unit 200 may temporarily stop the point cloud data acquisition process.
  • the transmission unit 204 of the control unit 200 wirelessly communicates the status and position information of the worker to the server 10 that manages the safety of the worker using the mobile phone communication network. (step S112).
  • the server 10 receives the worker's state and position information (step S113), it notifies the worker's state and position information to the server of the rescue center or the like (step S115).
  • the rescuer can go to the site where the worker is to rescue and check the worker's situation (step S117).
  • the sequence diagram of FIG. 5 is an example and that various variations and modifications are possible.
  • the program according to the present embodiment is a program for causing a computer to execute the physical condition management method as shown in FIG.
  • the physical condition management apparatus and the like according to the second embodiment described above manage the physical condition of workers even in areas where mobile radio waves do not reach. can be sent. As a result, the worker's physical condition abnormality and the worker's position can be notified to the outside, and the rescue team can go to the site to rescue the worker in order to confirm the worker's condition.
  • the mobile body 2 may wait at the communicable position as it is after transmitting the worker's state and position information to the server 10 of the rescue sensor at the communicable position.
  • the rescuer may first go to a communicable position where the mobile body 2 is waiting, and then the mobile body 2 may autonomously move to the worker's position and guide the rescuer.
  • the mobile body 2 may move autonomously and return to the worker's position after transmitting the worker's state and position information to the server 10 of the relief sensor at a communicable position. After returning to the position of the worker, the mobile body 2 may continue to manage the physical condition of the worker. That is, the physical condition management unit 201 can continuously record the condition (physical condition) of the worker 3 and the position information of the worker 3 from the various sensors 4 and 5 or the worker portable terminal 30 . After that, when the physical condition management unit 201 determines that the physical condition of the worker who has once experienced an abnormality in physical condition has recovered, the mobile body 2 autonomously moves again to a position where communication is possible, and indicates that the physical condition of the worker has recovered. The information may be transmitted to the server 10 of the rescue sensor.
  • FIG. 6 is a block diagram showing a hardware configuration example of the physical condition management device 20 of the mobile body 2 and the server 10 (information processing device).
  • the physical condition management device 20 and the server 10 include a network interface 1201 , a processor 1202 and a memory 1203 .
  • the network interface 1201 is used to communicate with other network node devices that make up the communication system.
  • Network interface 1201 may be used to conduct wireless communications.
  • the network interface 1201 may be used for wireless LAN communication defined in IEEE 802.11 series or mobile communication defined in 3GPP (3rd Generation Partnership Project).
  • network interface 1201 may include, for example, an IEEE 802.3 series compliant network interface card (NIC).
  • NIC network interface card
  • the processor 1202 reads and executes software (computer program) from the memory 1203 to perform the processing of the display device 100 described using the flowcharts or sequences in the above embodiments.
  • Processor 1202 may be, for example, a microprocessor, MPU (Micro Processing Unit), or CPU (Central Processing Unit).
  • Processor 1202 may include multiple processors.
  • the memory 1203 is composed of a combination of volatile memory and non-volatile memory.
  • Memory 1203 may include storage remotely located from processor 1202 .
  • processor 1202 may access memory 1203 via an I/O interface, not shown.
  • memory 1203 is used to store software modules.
  • the processor 1202 reads and executes these software modules from the memory 1203, thereby performing the processing of the physical condition management apparatus and the like described in the above embodiments.
  • each of the processors of the physical condition management device 20 and the like executes one or more programs containing instruction groups for causing the computer to execute the algorithm described using the drawings.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, Includes CD-R/W, DVD (Digital Versatile Disc), semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • magnetic recording media e.g., flexible discs, magnetic tapes, hard disk drives
  • magneto-optical recording media e.g., magneto-optical discs
  • CD-ROMs Read Only Memory
  • CD-Rs Includes CD-R/W
  • DVD Digital Versatile Disc
  • semiconductor memory eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM,
  • the program may also be delivered to the computer on various types of transitory computer readable medium.
  • Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the scope.
  • a mobile object such as a drone that flies in the air can also be used in mountainous areas.
  • the present disclosure may be implemented by appropriately combining each embodiment.
  • (Appendix 1) a communication position storage unit that stores communicable positions; a physical condition management unit that acquires and manages the physical condition information of the worker using the sensor unit; a worker position acquisition unit that acquires the position information of the worker; a drive control unit that controls autonomous movement of the mobile body; and a transmission unit configured to transmit the acquired location information of the worker when the mobile body is at the stored communicable location.
  • Appendix 2 The physical condition management device according to appendix 1, wherein the worker position acquisition unit acquires the position information of the worker at a position where communication is not possible.
  • the physical condition management apparatus according to appendix 1 or 2, wherein the drive control unit moves the mobile body to the communicable position when the physical condition management unit determines that the physical condition of the worker is abnormal.
  • Appendix 4 Any one of appendices 1 to 3, wherein after the mobile body moves to the stored communicable position, the transmission unit transmits at least one of the worker's physical condition abnormality information and the location information.
  • (Appendix 5) Further comprising a notification unit that, when the physical condition management unit detects an abnormality in the physical condition of the worker, notifies the worker of the detection of the abnormality, After the notification, the physical condition management unit determines that the abnormality detection is an erroneous detection according to an instruction from the operator regarding the abnormality detection, The physical condition management unit determines that the physical condition abnormality of the worker has occurred after a certain period of time has passed without an instruction from the operator regarding the detection of the abnormality after the notification.
  • the physical condition management device described in . (Appendix 6) 6. The physical condition management device according to any one of appendices 1 to 5, wherein the communication location storage unit stores locations where communication is possible using a mobile phone communication network. (Appendix 7) 7.
  • the physical condition management device according to any one of appendices 1 to 6, wherein the transmission unit transmits the acquired location information of the worker using a mobile phone communication network at the communicable location.
  • Appendix 8 A physical condition management device according to any one of Appendices 1 to 7; a sensor unit that acquires physical condition information of a worker; and a point cloud data acquisition unit that acquires point cloud data.
  • Appendix 9) memorize the communicable position, Acquire and manage the physical condition information of the worker using the sensor unit, Acquiring location information of the worker; control the autonomous movement of mobile bodies, A physical condition management method, wherein the obtained location information of the worker is transmitted when the mobile body is at the stored communicable location.
  • Appendix 10 a process of storing communicable positions; A process of acquiring and managing the physical condition information of the worker using the sensor unit; a process of acquiring location information of the worker; a process of controlling autonomous movement of a mobile body; A non-temporary computer-readable program storing a physical condition management program that causes a computer to execute a process of transmitting the acquired position information of the worker when the mobile body is at the stored communicable position. medium.

Abstract

Provided is, for example, a physical condition management device (20) that, even in an area beyond the reach of mobile radio waves, manages the physical condition of a worker and is capable of transmitting to the outside when the physical condition is abnormal. The physical condition management device (20) comprises: a communication position storage unit (221) that stores a position at which communication is possible; a physical condition management unit (201) that uses a sensor unit to acquire and manage physical condition information pertaining to the worker; a worker position acquisition unit (202) that acquires position information of the worker; a drive control unit (203) that controls autonomous movement of the mobile body; and a transmission unit (204) that, when the mobile body is at a stored position at which communication is possible, transmits the acquired position information of the worker.

Description

体調管理装置、移動体、体調管理方法、及び非一時的なコンピュータ可読媒体Physical condition management device, mobile object, physical condition management method, and non-temporary computer-readable medium
 本開示は、体調管理装置、移動体、体調管理方法、及びプログラム等に関する。 The present disclosure relates to a physical condition management device, a mobile body, a physical condition management method, a program, and the like.
 LiDAR(Light Detection and Ranging)などのセンサは、測定対象物の各測定点にレーザを照射し、レーザを照射してから、受光するまでの時間に基づいて、各測定点までの距離を算出することができる。こうしたセンサを移動しながら利用して、導水路やトンネルなど測定対象物までの距離やその形状を得ることができる。 Sensors such as LiDAR (Light Detection and Ranging) irradiate each measurement point on the object to be measured with a laser, and calculate the distance to each measurement point based on the time it takes to receive the light after irradiating the laser. be able to. By using these sensors while moving, it is possible to obtain the distance to and shape of objects to be measured, such as waterways and tunnels.
 山間部や地下施設など、携帯電波が届かないエリアにおいて作業者がこうした測距センサを搭載した移動ロボットとともに導水路やトンネルなど測定対象物の点検作業を行う場合がある。 In areas where mobile radio waves do not reach, such as mountainous areas and underground facilities, there are cases where workers inspect objects to be measured, such as waterways and tunnels, together with mobile robots equipped with such distance measuring sensors.
 特許文献1では、監視対象者に異常が生じた場合にその異常を確認することが可能な監視システムが開示されている。当該監視システムにおいて、生体情報取得装置を装着している監視対象者に異常が生じた場合、移動ロボットが、その異常が生じた監視対象者を目指して移動する。 Patent Document 1 discloses a monitoring system capable of confirming an abnormality when an abnormality occurs in a person to be monitored. In this monitoring system, when an abnormality occurs in a monitoring subject wearing a biological information acquisition device, a mobile robot moves toward the monitoring subject with the abnormality.
特開2020-181589号Japanese Patent Application Laid-Open No. 2020-181589
 携帯電波が届かないエリアにおいて、ロボットと作業員で作業する場合、作業者が体調不良で倒れた際に、誰も作業者の状況を把握できない。また、倒れた作業者を救助するために必要な作業者の位置情報を把握することができない。 When working with a robot and a worker in an area where mobile radio waves do not reach, no one can grasp the worker's situation when the worker collapses due to poor physical condition. In addition, it is impossible to grasp the positional information of the worker necessary for rescuing the fallen worker.
 本開示は、このような問題点を解決するためになされたものであり、携帯電波が届かないエリアにおいても、作業者の体調管理を行い、異常時には外部へ送信可能な体調管理装置、移動体、体調管理方法、プログラム等を提供することを目的とする。 The present disclosure has been made in order to solve such problems. , physical condition management methods, programs, etc.
 本開示の第1の態様にかかる体調管理装置は、
 通信可能位置を記憶する通信位置記憶部と、
 センサ部を用いて作業者の体調情報を取得し管理する体調管理部と、
 前記作業者の位置情報を取得する作業者位置取得部と、
 移動体の自律移動を制御する駆動制御部と、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する送信部と、を備える。
The physical condition management device according to the first aspect of the present disclosure includes:
a communication position storage unit that stores communicable positions;
a physical condition management unit that acquires and manages the physical condition information of the worker using the sensor unit;
a worker position acquisition unit that acquires the position information of the worker;
a drive control unit that controls autonomous movement of the mobile body;
and a transmitting unit configured to transmit the acquired location information of the worker when the mobile body is at the stored communicable location.
 本開示の第2の態様にかかる移動体は、
 上記の体調管理装置と、
 作業者の体調情報を取得するセンサ部と、
 点群データを取得する点群データ取得部と、を備える。
A moving body according to a second aspect of the present disclosure includes
the physical condition management device;
a sensor unit that acquires physical condition information of a worker;
a point cloud data acquisition unit that acquires point cloud data.
 本開示の第3の態様にかかる体調管理方法は、
 通信可能位置を記憶し、
 センサ部を用いて作業者の体調情報を取得し管理し、
 前記作業者の位置情報を取得し、
 移動体の自律移動を制御し、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する。
A physical condition management method according to a third aspect of the present disclosure includes:
memorize the communicable position,
Acquire and manage the physical condition information of the worker using the sensor unit,
Acquiring location information of the worker;
control the autonomous movement of mobile bodies,
When the mobile body is at the stored communicable position, the acquired position information of the worker is transmitted.
 本開示の第4の態様にかかる非一時的コンピュータ可読媒体は、
 通信可能位置を記憶する処理と、
 センサ部を用いて作業者の体調情報を取得し管理する処理と、
 前記作業者の位置情報を取得する処理と、
 移動体の自律移動を制御する処理と、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する処理と、をコンピュータに実行させる体調管理プログラムを格納している。
A non-transitory computer-readable medium according to a fourth aspect of the present disclosure comprises:
a process of storing communicable positions;
A process of acquiring and managing the physical condition information of the worker using the sensor unit;
a process of acquiring location information of the worker;
a process of controlling autonomous movement of a mobile body;
A physical condition management program for causing a computer to execute a process of transmitting the acquired position information of the worker when the mobile body is at the stored communicable position is stored.
 本開示により、携帯電波が届かないエリアにおいても、作業者の体調管理を行い、体調異常時には外部へ送信可能な体調管理装置、移動体、体調管理方法、プログラム等を提供することができる。 With this disclosure, it is possible to provide a physical condition management device, a mobile body, a physical condition management method, a program, etc. that can manage the physical condition of workers even in areas where mobile radio waves do not reach, and can transmit to the outside when the physical condition is abnormal.
実施形態1にかかる体調管理装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a physical condition management apparatus according to Embodiment 1; FIG. 実施形態1にかかる体調管理方法を示すフローチャートである。2 is a flowchart showing a physical condition management method according to Embodiment 1; 実施形態2にかかる移動体に搭載したセンサでトンネルの内壁を測定する例を示す図である。FIG. 10 is a diagram showing an example of measuring the inner wall of a tunnel with a sensor mounted on a moving object according to the second embodiment; 実施形態2にかかる移動体の制御ブロック図である。FIG. 10 is a control block diagram of a moving body according to the second embodiment; 実施形態2にかかる制御方法を示すフローチャートである。9 is a flowchart showing a control method according to Embodiment 2; いくつかの実施形態における体調管理装置等のハードウェア構成例を示すブロック図である。It is a block diagram showing an example of hardware constitutions, such as a physical condition management device, in some embodiments.
 以下では、本開示の実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. In each drawing, the same reference numerals are given to the same or corresponding elements, and redundant description will be omitted as necessary for clarity of description.
<実施形態1>
 図1は、実施形態1にかかる体調管理装置の構成を示すブロック図である。
 体調管理装置20は、プロセッサ、メモリなどを有するコンピュータにより実現される。体調管理装置20は、移動体等に搭載されて利用され得る。ここでいう移動体は、台車、搬送ロボット、ドローン、水面ドローンなど様々な移動体を含み得る。
<Embodiment 1>
1 is a block diagram showing the configuration of a physical condition management apparatus according to a first embodiment; FIG.
The physical condition management device 20 is implemented by a computer having a processor, memory, and the like. The physical condition management device 20 can be used by being mounted on a mobile object or the like. The moving body referred to here can include various moving bodies such as carts, transport robots, drones, and water surface drones.
 いくつかの実施形態では、移動体は、作業者の体調情報を取得するためのセンサ部(例えば、温度センサ)と、測定対象物等の点群データを取得するためのセンサ部(例えば、LiDAR(Light Detection and Ranging))を有することができる。他の実施形態では、作業者は、作業者の体調情報を取得するためのセンサ部(例えば、温度センサ)を有する作業者携帯端末(例えば、ウェアラブルデバイス)を所持する場合がある。 In some embodiments, the mobile body includes a sensor unit (e.g., temperature sensor) for acquiring physical condition information of the worker, and a sensor unit (e.g., LiDAR (Light Detection and Ranging)). In another embodiment, the worker may possess a worker portable terminal (eg, wearable device) having a sensor unit (eg, temperature sensor) for acquiring the physical condition information of the worker.
 体調管理装置20は、通信可能位置を記憶する通信位置記憶部221と、センサ部を用いて作業者の体調情報を取得し管理する体調管理部201と、作業者の位置情報を取得する作業者位置取得部202と、移動体の自律移動を制御する駆動制御部203と、移動体が記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する送信部204と、を備える。 The physical condition management device 20 includes a communication location storage unit 221 that stores communicable locations, a physical condition management unit 201 that acquires and manages physical condition information of the worker using a sensor unit, and a worker that acquires the location information of the worker. A position acquisition unit 202, a drive control unit 203 that controls autonomous movement of the mobile body, and a transmission unit that transmits the acquired position information of the worker when the mobile body is at the stored communicable position. 204;
 通信位置記憶部221は、移動体が携帯電話通信網を用いて通信可能な、1つ以上の位置を記憶することができる。作業者が、予め、移動体の通信可能位置を登録することで、前記通信可能な位置情報を通信位置記憶部221に記憶してもよい。いくつかの実施形態では、移動体が地図情報を基づき自律移動している間に、当該地図情報と関連付けて通信可能位置と通信不能位置を自動的に登録及び記憶してもよい。 The communication location storage unit 221 can store one or more locations with which the mobile can communicate using the mobile phone communication network. The operator may store the communicable position information in the communication position storage unit 221 by registering the communicable position of the mobile body in advance. In some embodiments, while the mobile body is moving autonomously based on the map information, the communicable positions and the communicable positions may be automatically registered and stored in association with the map information.
 体調管理部201は、温度センサなど各種センサ部を用いて取得した作業者の体調情報を取得し、作業者の体調管理を経時的に行うことができる。体調管理部201は、測距センサ(例えば、LiDAR(Light Detection and Ranging))を用いて取得した三次元データに基づき、作業者の姿勢を検知し、作業者の姿勢に基づき、作業者の体調を推定してもよい。例えば、作業者の姿勢が、倒れている又はうずくまっているなどの場合、作業者の体調に異常があると推定することができる。また、作業者と移動体の測距センサとの距離が一定距離以上(例えば、監視範囲外)に離れた場合は、作業者の異常が発生したと判断してもよい。一方、作業者の姿勢が、直立している又は歩いているなどの場合、作業者の体調は正常があると推定することができる。また、いくつかの実施形態では、体調管理部201は、作業者が着用したウェアラブルデバイス(例えば、スマートウォッチなど)を介して、作業者の体調情報(例えば、体温、心拍数など)を取得してもよい。 The physical condition management unit 201 can acquire the physical condition information of the worker obtained using various sensor units such as a temperature sensor, and manage the physical condition of the worker over time. The physical condition management unit 201 detects the worker's posture based on three-dimensional data acquired using a distance measuring sensor (for example, LiDAR (Light Detection and Ranging)), and detects the worker's physical condition based on the worker's posture. can be estimated. For example, if the worker's posture is lying down or crouching, it can be estimated that the worker's physical condition is abnormal. Further, when the distance between the worker and the distance measuring sensor of the moving body is greater than a certain distance (for example, outside the monitoring range), it may be determined that the worker has become abnormal. On the other hand, if the worker is standing upright or walking, it can be estimated that the worker's physical condition is normal. In some embodiments, the physical condition management unit 201 acquires physical condition information (eg, body temperature, heart rate, etc.) of the worker via a wearable device (eg, smart watch, etc.) worn by the worker. may
 作業者位置取得部202は、例えば、GPS(global positioning system)等を用いた移動体の位置情報および測距センサにより測定された移動体と作業者との間の距離に基づいて、作業者の位置情報を取得することができる。作業者位置取得部202は、取得した時間および取得した移動体の位置情報と関連付けて、作業者の位置情報を取得し、それらを記憶部に記憶することができる。 The worker position acquisition unit 202, for example, based on the position information of the mobile body using GPS (global positioning system) etc. and the distance between the mobile body and the worker measured by the range sensor, Location information can be acquired. The worker position acquisition unit 202 can acquire position information of the worker in association with the acquired time and the acquired position information of the moving body, and store them in the storage unit.
 駆動制御部203は、移動体の駆動部を制御し、移動体の自律移動を制御する。いくつかの実施形態では、駆動制御部203は、地図情報および移動体の位置情報に基づき、移動体の自律移動を制御することができる。駆動制御部203は、移動体に搭載されたカメラによる撮影画像に基づき、移動体の自律移動を制御することができる。 The drive control unit 203 controls the drive unit of the moving body and controls the autonomous movement of the moving body. In some embodiments, the drive control unit 203 can control autonomous movement of the mobile object based on map information and position information of the mobile object. The drive control unit 203 can control the autonomous movement of the mobile object based on the image captured by the camera mounted on the mobile object.
 送信部204は、移動体が記憶された通信可能位置にある場合に、携帯電話通信網を用いて、前述の取得した作業者の位置情報および作業者の体調情報のうち一方又は両方を、外部のサーバなどに無線送信することができる。 When the mobile body is at the stored communicable position, the transmission unit 204 uses the mobile phone communication network to send one or both of the acquired worker position information and worker physical condition information to an external device. can be wirelessly transmitted to a server or the like.
 図2は、実施形態1にかかる体調管理方法を示すフローチャートである。
 通信位置記憶部221は、通信可能位置を記憶(又は登録)する(ステップS11)。体調管理部201は、センサ部を用いて作業者の体調情報を取得し管理する(ステップS12)。作業者位置取得部202は、作業者の位置情報を取得する(ステップS13)。駆動制御部203は、移動体の自律移動を制御する(ステップS14)。送信部204は移動体が記憶された通信可能位置にある場合に、前記取得された作業者の位置情報を送信する(ステップS15)。また、本実施形態に係るプログラムは、コンピュータに図2に示すような体調管理方法を実行させるためのプログラムである。
FIG. 2 is a flow chart showing the physical condition management method according to the first embodiment.
The communication position storage unit 221 stores (or registers) the communicable position (step S11). The physical condition management unit 201 acquires and manages the physical condition information of the worker using the sensor unit (step S12). The worker position acquisition unit 202 acquires the position information of the worker (step S13). The drive control unit 203 controls autonomous movement of the moving body (step S14). The transmitting unit 204 transmits the acquired position information of the worker when the mobile body is at the stored communicable position (step S15). Also, the program according to the present embodiment is a program for causing a computer to execute the physical condition management method as shown in FIG.
 以上説明した実施形態1にかかる体調管理装置、体調管理方法、プログラム等は、携帯電波が届かないエリアにおいても、作業者の体調管理を行い、体調異常時には外部へ送信することができる。 The physical condition management device, physical condition management method, program, etc. according to the first embodiment described above can manage the physical condition of the worker even in areas where mobile radio waves do not reach, and can transmit to the outside when the physical condition is abnormal.
<他の実施形態>
 他の実施形態では、上記した実施形態1の変形が想定される。例えば、体調管理装置20の作業者位置取得部202は、携帯電話通信網を用いて通信不能な位置(例えば、トンネル内、山岳部など)において、作業者の位置情報を取得することができる。例えば、体調管理装置20の作業者位置取得部202は、携帯電話通信網を用いて通信不能な位置において、GPS(global positioning system)信号、全地球航法衛星システム(GLONASS)の信号、又は類似の人工衛星ベースの位置決定システムの信号を受信して、移動体の位置情報を取得することができる。さらに、体調管理装置20の作業者位置取得部202は、測距センサ(例えば、LiDAR)を用いて、移動体と作業者との距離を取得し、作業者の位置情報を算出することができる。作業者の位置情報を取得する方法は、既知の様々な方法を使用することができる。
<Other embodiments>
Other embodiments envision variations of the first embodiment described above. For example, the worker position acquiring unit 202 of the physical condition management device 20 can acquire the worker position information at a position where communication is impossible using a mobile phone communication network (for example, inside a tunnel, in a mountainous area, etc.). For example, the worker position acquisition unit 202 of the physical condition management device 20 can detect a GPS (global positioning system) signal, a global navigation satellite system (GLONASS) signal, or a similar Satellite-based positioning system signals can be received to obtain location information for the mobile. Furthermore, the worker position acquisition unit 202 of the physical condition management device 20 can acquire the distance between the mobile object and the worker using a distance measuring sensor (for example, LiDAR) and calculate the position information of the worker. . Various known methods can be used to acquire the position information of the worker.
 他の実施形態では、体調管理部201は、作業者の体調の異常を判定した場合、駆動制御部203は、移動体を(事前に登録した)通信可能位置(例えば、トンネル外、山岳部の頂上付近の基地局の近く)まで移動させることができる。複数の通信可能位置が登録されている場合は、駆動制御部203は、移動体を最も近い通信可能位置まで移動させてもよい。 In another embodiment, when the physical condition management unit 201 determines that the physical condition of the worker is abnormal, the drive control unit 203 moves the moving body to a (preliminarily registered) communicable position (for example, outside a tunnel or in a mountainous area). (near the base station near the top). When a plurality of communicable positions are registered, the drive control unit 203 may move the moving body to the nearest communicable position.
 駆動制御部203は、移動体が点検作業に伴う自律移動を行っていた場合に、作業者の体調の異常が判定されると、測距センサ(例えば、LiDAR(Light Detection and Ranging))を用いた点検作業および、点検作業に伴う自律移動を停止することができる。その後、駆動制御部203は、移動体を(事前に登録した)通信可能位置まで自律移動させることができる。 The drive control unit 203 uses a range sensor (for example, LiDAR (Light Detection and Ranging)) when an abnormality in the physical condition of the worker is determined while the mobile body is moving autonomously for inspection work. It is possible to stop the inspection work and the autonomous movement accompanying the inspection work. After that, the drive control unit 203 can autonomously move the moving body to a communicable position (registered in advance).
 他の実施形態では、移動体が事前登録した通信可能位置に移動した後に、送信部204は、作業者の体調異常情報および位置情報のうち少なくとも1つを送信することができる。送信部204は、携帯電話通信網を用いて、作業者の体調異常情報および位置情報のうち、片方又は両方を、外部のサーバなどに無線送信することができる。 In another embodiment, the transmitting unit 204 can transmit at least one of the worker's physical condition abnormality information and location information after the mobile body has moved to a pre-registered communicable position. The transmission unit 204 can wirelessly transmit one or both of the physical condition information and the location information of the worker to an external server or the like using a mobile phone communication network.
<実施形態2>
 図3は、実施形態2にかかる、センサを搭載した移動体により導水路内の異常を検知する例を説明する図である。図3では、温度センサ4とLiDARであるセンサ5を搭載した移動体2(例えば、車両、水面ドローンなど)が導水路内を(図3の矢印の方向に)進行しながら、当該センサ5からレーザを様々な方向に向けて導水路の内壁(測定対象物6)に照射させる。その後、当該センサは測定対象物からのレーザの反射光を受光する。センサは、非常に短い周期でほぼ連続的にレーザを照射してもよい。あるいは、移動体2が任意の位置まで移動し、各位置でレーザを照射してもよい。センサは、周囲方向に多数のレーザを照射してから反射光を受光するまでの時間に基づいて、各測定点までの距離を測定する。あるいは、センサは、反射光の輝度値を取得することができ、それにより測定対象物の材質(例えば、金属か、織物か、など)を推定することができる。このように、測距センサ5は、測距センサ5により測定された複数の測定点における測定データを含む点群データを取得することができる。例えば、測定データは、各測定点におけるx軸、y軸、およびz軸上の座標値を含み得る。図示するように、導水路は、細長い形状であり、その長さは、50m以上、100m以上、300m以上、又は1km以上などであり得る。
<Embodiment 2>
FIG. 3 is a diagram for explaining an example of detecting an abnormality in a water conduit by a moving object equipped with a sensor according to the second embodiment; In FIG. 3, a moving object 2 (for example, a vehicle, a water surface drone, etc.) equipped with a temperature sensor 4 and a LiDAR sensor 5 travels in the water conduit (in the direction of the arrow in FIG. 3), and from the sensor 5 The inner wall of the water conduit (measurement object 6) is irradiated with the laser in various directions. The sensor then receives the reflected laser light from the object to be measured. The sensor may laser almost continuously with a very short period. Alternatively, the movable body 2 may move to any position and irradiate the laser at each position. The sensor measures the distance to each measurement point based on the time it takes from irradiating multiple lasers in the peripheral direction to receiving the reflected light. Alternatively, the sensor can obtain the brightness value of the reflected light, from which the material of the measurement object (eg, metal, fabric, etc.) can be estimated. Thus, the ranging sensor 5 can acquire point cloud data including measurement data at a plurality of measurement points measured by the ranging sensor 5 . For example, measurement data may include coordinate values on the x-axis, y-axis, and z-axis at each measurement point. As shown, the conduit is elongated in shape and its length can be 50m or longer, 100m or longer, 300m or longer, or 1km or longer, and the like.
 本例では、取得した点群データに基づいて、導水路の内壁などの異常箇所を検知する。例えば、センサにより測定される距離の相違、すなわち、異常箇所(例えば、凹み、穴、ひび)の形状から異常箇所を判別することができる。既知の異常箇所検出プログラムを用いて異常箇所を検出することができる。また、いくつかの実施形態では、測距センサ5は、IMU(Inertial Measurement Unit)と呼ばれる3次元の慣性運動を検出する装置が搭載されているLiDARであってもよく、点群データ取得時の位置情報(軌跡データ)を時系列で記録することができる。 In this example, based on the acquired point cloud data, abnormal points such as the inner wall of the water conduit are detected. For example, the abnormal location can be determined from the difference in the distance measured by the sensor, that is, the shape of the abnormal location (eg, dent, hole, crack). An abnormal point can be detected using a known abnormal point detection program. In some embodiments, the ranging sensor 5 may be a LiDAR equipped with a device for detecting three-dimensional inertial motion called an IMU (Inertial Measurement Unit). Position information (trajectory data) can be recorded in chronological order.
 本例では、移動体2は、自律移動可能なロボットやドローンであり得る。以上説明した導水路の点検作業において、作業者3が移動体2の自律移動に続いてそのあとを歩き、移動体2の自律移動や点検作業に問題がないかを確認しサポートする。しかし、作業が長時間にわたる場合など、作業者3がなんらかの理由で負傷や意識を失うなどして、移動が出来なくなる場合がある。こうした場合、作業者自身は、遠隔にいる者に救助を求めることが出来ない。また、作業者を救助する場合にも携帯電話の電波が届かないエリアにおいては作業者が携帯電話を持っていたとしても作業者の位置を特定できず、救助は極めて困難である。上記のようなエリアで作業を行う場合には、これまで、複数の作業者が通信不能エリア内の作業を行うよう配慮することが一般的である。すなわち、一人の作業者が負傷して移動できなくなった場合でも、残りの作業者が負傷者の状態や位置を知らせることにより、救助や迅速な捜索を可能にしてきた。しかし、複数人の作業者で作業を行う場合であっても、有毒ガスを吸入するなどの事故が発生した場合には、全員が移動できなくなり救助を求められないケースがあった。 In this example, the mobile object 2 can be an autonomously mobile robot or drone. In the water conduit inspection work described above, the operator 3 walks after the mobile body 2 autonomously moves, confirms whether or not there is a problem with the autonomous movement of the mobile body 2 and the inspection work, and provides support. However, when the work takes a long time, the worker 3 may be injured or lose consciousness for some reason and cannot move. In such a case, the operator himself/herself cannot call for help from a remote person. Also, when rescuing a worker, it is extremely difficult to locate the worker in an area where mobile phone radio waves do not reach, even if the worker has a mobile phone. When working in the area as described above, it has been common practice so far to ensure that a plurality of workers work in the area where communication is not possible. In other words, even if one worker is injured and cannot move, the rest of the workers can inform the injured person of the condition and position, thereby enabling rescue and prompt search. However, even when multiple workers are involved in the work, in the event of an accident such as inhalation of toxic gas, there have been cases where all workers are unable to move and cannot seek help.
 上記したように、自律移動可能な移動体(例えば、ロボットやドローン)が開発されており、中にはカメラやLiDAR、温度センサ等のセンサを搭載している。図3に示すように、本実施形態にかかる移動体2は、LiDARなどの測距センサ5、および温度センサ付きカメラ4を有する。測距センサ5は、前述した通り、移動体2の自律移動により、測定対象物6の点群データを取得することができる。測距センサ5は、点群データ取得部とも呼ばれ得る。また、測距センサ5は、作業者に対しても、レーザを照射し、作業者の姿勢(例えば、倒れている、うずくまっている、立っているなど)も検知することができる。また、測距センサ5は、作業者までの距離も測定することができる。いくつかの実施形態では、測定対象物用の測距センサと、作業者監視用の測距センサを別々に設けられる場合もある。温度センサ付きカメラ4は、赤外線サーモグラフィカメラであってもよいし、他の好適な温度センサ機能を内蔵したカメラであってもよい。温度センサ付きカメラ4は、例えば、移動体2の全方位(360度)を撮影することができる天球カメラであってもよい。他の実施形態では、移動体は、温度センサとビデオカメラを別々に有している場合もある。いくつかの実施形態では、移動体は、センサとして、マイクロフォンを有し、測定対象物等からの音響応答を受け取るように構成されてもよい。 As mentioned above, mobile objects that can move autonomously (for example, robots and drones) have been developed, and some of them are equipped with sensors such as cameras, LiDAR, and temperature sensors. As shown in FIG. 3, the moving object 2 according to the present embodiment has a ranging sensor 5 such as LiDAR and a camera 4 with a temperature sensor. As described above, the distance measurement sensor 5 can acquire point cloud data of the measurement object 6 by the autonomous movement of the mobile body 2 . The ranging sensor 5 can also be called a point cloud data acquisition unit. The distance measurement sensor 5 can also detect the worker's posture (for example, lying down, crouching, standing, etc.) by irradiating the worker with a laser beam. The distance sensor 5 can also measure the distance to the operator. In some embodiments, there may be separate distance sensors for measuring objects and for worker monitoring. The camera 4 with a temperature sensor may be an infrared thermography camera, or may be a camera with a built-in other suitable temperature sensor function. The camera 4 with a temperature sensor may be, for example, a celestial camera capable of photographing the moving object 2 in all directions (360 degrees). In other embodiments, the vehicle may have separate temperature sensors and video cameras. In some embodiments, the mobile object may have a microphone as a sensor and be configured to receive an acoustic response from a measurement object or the like.
 温度センサ付きカメラ4は、移動体2の後方を歩く作業者3を撮影し、作業者の体温を測定することができる。また、作業者3は、作業者携帯端末30を有する。作業者携帯端末30は、スマートフォン、携帯電話、タブレットコンピュータ、ラップトップコンピュータ、ウェアラブルデバイス(例えば、スマートウォッチ、スマートバンド)、その他の好適な携帯端末であり得る。作業者携帯端末30は、パルスセンサ、温度センサ、又は水分(例えば、発汗)センサなどの1つ以上のバイオメトリック監視デバイスを含むことができる。作業者携帯端末30は、ユーザの体温や心拍数、脈泊など、作業者の体調情報を取得し、移動体2の制御部200に無線通信を介して送信することができる。作業者携帯端末30は、位置情報受信機(図示せず)を有し、作業者携帯端末30の位置情報を受信する。位置情報受信機は、例えば、GPS(global positioning system)信号、全地球航法衛星システム(GLONASS)の信号、又は類似の人工衛星ベースの位置決定システムの信号を受信することができる。作業者携帯端末30は、移動体2と有線又は無線で通信可能に構成され得る。 The camera 4 with a temperature sensor can photograph the worker 3 walking behind the moving body 2 and measure the worker's body temperature. Also, the worker 3 has a worker portable terminal 30 . Worker portable terminal 30 may be a smart phone, mobile phone, tablet computer, laptop computer, wearable device (eg, smart watch, smart band), or other suitable portable terminal. Worker handheld device 30 may include one or more biometric monitoring devices such as pulse sensors, temperature sensors, or moisture (eg, perspiration) sensors. The worker portable terminal 30 can acquire physical condition information of the worker, such as the user's body temperature, heart rate, and pulse, and transmit the information to the control unit 200 of the mobile body 2 via wireless communication. The worker portable terminal 30 has a position information receiver (not shown) and receives the position information of the worker portable terminal 30 . The location information receiver may, for example, receive global positioning system (GPS) signals, Global Navigation Satellite System (GLONASS) signals, or similar satellite-based positioning system signals. The worker portable terminal 30 can be configured to communicate with the mobile object 2 by wire or wirelessly.
 図4は、実施形態2にかかる移動体の制御ブロック図である。
 制御部200は、例えばCPU(Central Processing Unit)であり、移動体2のコントロールユニットに格納されている。移動体駆動部210は、駆動輪を駆動するための駆動回路やモータなどを含み得る。制御部200は、移動体駆動部210へ駆動信号を送ることにより、駆動輪の回転制御を実行することができる。また、制御部200は、移動体駆動部210からエンコーダ等のフィードバック信号を受け取って、移動体2の移動方向を把握することができる。
FIG. 4 is a control block diagram of a mobile object according to the second embodiment.
The control unit 200 is, for example, a CPU (Central Processing Unit) and is stored in the control unit of the moving body 2 . The moving body drive section 210 may include a drive circuit, a motor, and the like for driving the drive wheels. The control unit 200 can execute rotation control of the drive wheels by sending a drive signal to the moving body drive unit 210 . Further, the control unit 200 can receive a feedback signal from an encoder or the like from the moving body driving unit 210 and grasp the moving direction of the moving body 2 .
 センサ部4,5は、測定対象物の距離や形状を測定するための測距センサ、作業者の体温を測定する温度センサ、移動中に障害物を検出する各種センサ(例えば、カメラ、光学センサ、近接センサなど)、その他のセンサ(例えば、マイクロフォン)を含むことができ、移動体2に分散して配置され得る。制御部200は、センサ部4,5に制御信号を送ることにより、各種センサを駆動してその出力信号を取得する。 The sensor units 4 and 5 include a distance sensor for measuring the distance and shape of the object to be measured, a temperature sensor for measuring the body temperature of the worker, various sensors for detecting obstacles during movement (e.g., camera, optical sensor, etc.). , proximity sensors, etc.), and other sensors (eg, microphones), which may be distributed in the mobile body 2 . By sending control signals to the sensor units 4 and 5, the control unit 200 drives various sensors and acquires their output signals.
 メモリ220は、不揮発性の記憶媒体であり、例えばソリッドステートドライブが用いられる。メモリ220は、移動体2を制御するための制御プログラムの他にも、制御に用いられる様々なパラメータ値、関数、ルックアップテーブル等を記憶している。メモリ220は、移動体2が携帯電話通信網を用いて通信可能な位置又は通信不能な位置などを記憶する通信位置記憶部221を有する。メモリ220は、移動体2が自律走行する環境を表現する環境地図情報を格納していてもよい。通信位置記憶部221は、作業者携帯端末30又はユーザIF240を介して、作業者から、移動体の通信可能な位置情報の登録を受け付け、当該位置情報を保持してもよい。 The memory 220 is a non-volatile storage medium, such as a solid state drive. The memory 220 stores various parameter values, functions, lookup tables, etc. used for control in addition to the control program for controlling the moving body 2 . The memory 220 has a communication location storage unit 221 that stores locations where the mobile unit 2 can or cannot communicate using the mobile phone communication network. The memory 220 may store environment map information that expresses the environment in which the mobile body 2 autonomously travels. The communication position storage unit 221 may receive registration of communicable position information of the mobile body from the worker via the worker portable terminal 30 or the user IF 240 and hold the position information.
 また、メモリ220は、作業者の位置情報を記憶し保持する作業者位置記憶部222を有する。作業者位置記憶部222は、作業者の位置情報を取得した時間と関連付けて、作業者の位置情報を保持することができる。 The memory 220 also has a worker position storage unit 222 that stores and holds worker position information. The worker position storage unit 222 can hold the worker position information in association with the time when the worker position information was acquired.
 通信IF230は、制御部200の制御に従って外部機器(例えば、サーバ10、作業者携帯端末30など)と各種情報や制御信号を送受信するための通信インタフェースである。通信IF230は、例えば無線LANユニットである。自律移動するために、外部機器で予め作成された環境地図データを受信してもよい。また、いくつかの実施形態では、自律移動するための制御信号を、サーバから受け取ってもよい。ユーザIF240は、表示パネルなどであり、制御部200の制御に従ってユーザ(作業者)に情報を提供したり、ユーザ(作業者)の指示を受け付けたりするためのユーザインタフェースである。制御部200は、自律移動する経路を、ユーザIF240を介して作業者から受け取ってもよい。 The communication IF 230 is a communication interface for transmitting and receiving various types of information and control signals to and from external devices (eg, the server 10, the worker's portable terminal 30, etc.) under the control of the control unit 200. Communication IF 230 is, for example, a wireless LAN unit. In order to move autonomously, it may receive environmental map data created in advance by an external device. Also, in some embodiments, control signals for autonomous movement may be received from a server. The user IF 240 is a display panel or the like, and is a user interface for providing information to a user (worker) under the control of the control unit 200 and receiving instructions from the user (worker). The control unit 200 may receive the route for autonomous movement from the worker via the user IF 240 .
 位置情報受信機250は、移動体2の位置情報を受信する。位置情報受信機250は、例えば、GPS(global positioning system)信号、全地球航法衛星システム(GLONASS)の信号、又は類似の人工衛星ベースの位置決定システムの信号を受信することができる。移動体2の位置情報は、制御部200に送られる。 The location information receiver 250 receives the location information of the moving object 2. Position information receiver 250 may receive, for example, global positioning system (GPS) signals, Global Navigation Satellite System (GLONASS) signals, or similar satellite-based positioning system signals. The position information of the moving body 2 is sent to the control section 200 .
 いくつかの実施形態では、移動体は、作業者に音声で伝達するためのスピーカや、作業者に点滅などで報知するランプなどの報知部を有することができる。 In some embodiments, the mobile body can have a speaker for transmitting voice to the worker and a notification unit such as a lamp that notifies the worker by blinking.
 制御部200は、制御に関わる様々な演算を実行する機能演算部としての役割も担う。体調管理部201は、各種センサ部4,5又は作業者携帯端末30からの体調検知情報を用いて作業者の体調の状況を取得する。体調管理部201は、作業者の体調異常を検出することができる。例えば、体調管理部201は、温度センサ付きカメラ4を用いて、作業者の体温が著しく低下している、又は著しく上昇している場合、作業者の体調異常を認識することができる。体調管理部201は、測距センサ5を用いて、作業者が倒れている、又はうずくまっているなどの姿勢を検出した場合、作業者の体調異常を認識することができる。他の実施形態では、作業者の心拍数、脈拍数などについて閾値と比較することで、作業者の体調異常を認識することができる。 The control unit 200 also serves as a functional calculation unit that executes various calculations related to control. The physical condition management unit 201 acquires the physical condition of the worker using the physical condition detection information from the various sensors 4 and 5 or the worker portable terminal 30 . The physical condition management unit 201 can detect an abnormality in the physical condition of the worker. For example, the physical condition management unit 201 can use the camera 4 with a temperature sensor to recognize an abnormality in the physical condition of the worker when the worker's body temperature has significantly decreased or increased significantly. The physical condition management unit 201 can recognize an abnormality in the physical condition of the operator when the distance measuring sensor 5 detects the posture of the operator, such as lying down or crouching. In another embodiment, by comparing the heart rate, pulse rate, etc. of the worker with a threshold value, it is possible to recognize an abnormality in the worker's physical condition.
 作業者位置取得部202は、位置情報受信機250からの信号に基づき、移動体の位置情報を取得することができる。また、作業者位置取得部202は、移動体2の位置情報受信機250の位置情報、測距センサ5の作業者までの距離情報などに基づき、作業者の位置情報を取得することができる。作業者位置取得部202は、体調管理部201が作業者の体調異常を認識した場合、当該体調異常が発生した作業者の位置情報を取得することができる。取得した作業者の位置情報は、取得した時間と関連付けて、メモリ220の作業者位置記憶部222に記憶される。なお、作業者の位置情報を取得する方法は、既知の様々な方法を使用することができる。例えば、測距センサ5は、IMU(Inertial Measurement Unit)と呼ばれる3次元の慣性運動を検出する装置が搭載されているLiDARである場合、点群データ取得時の位置情報(軌跡データ)を用いることもできる。 The worker position acquisition unit 202 can acquire the position information of the moving object based on the signal from the position information receiver 250. Also, the worker position acquisition unit 202 can acquire the worker position information based on the position information of the position information receiver 250 of the moving body 2, the distance information to the worker from the distance measuring sensor 5, and the like. When the physical condition management unit 201 recognizes that the physical condition of the worker is abnormal, the worker position acquiring unit 202 can acquire the position information of the worker who has the abnormal physical condition. The acquired worker position information is stored in the worker position storage unit 222 of the memory 220 in association with the acquired time. Various known methods can be used to acquire the position information of the worker. For example, if the ranging sensor 5 is a LiDAR equipped with a device for detecting three-dimensional inertial motion called an IMU (Inertial Measurement Unit), position information (trajectory data) when acquiring point cloud data can be used. can also
 駆動制御部203は、体調管理部201から作業者の体調情報に基づいて、移動体2の移動を制御する制御信号を、移動体2の駆動部210へ送信する。具体的には、駆動制御部203は、体調管理部201から作業者の体調異常(例えば、体温異常、作業者が倒れているなど)を受け取った場合には、移動体2を、携帯電話通信網を用いて通信可能な、事前に登録位置まで移動させることができる。また、いくつかの実施形態では、各種センサで作業者の異常を検知した場合、移動体2は、音声による通知およびランプの点灯を行うことで作業者3に知らせることができる。作業者3が体調異常を誤検知と判断した場合、移動体2の当該検出をユーザIFを介してキャンセルすることで移動体2を停止することができる。その後、作業者3は、移動体2をその場で再度起動させ移動体2に継続して点検作業を行わせることができる。作業者が、体調異常が誤検知でないと判断した場合には、一定時間後(10秒程度)に事前に登録した携帯電話の通信電波の届く箇所の中で最も近い箇所へ移動することができる。 The drive control unit 203 transmits a control signal for controlling the movement of the mobile unit 2 to the drive unit 210 of the mobile unit 2 based on the physical condition information of the worker from the physical condition management unit 201 . Specifically, when the drive control unit 203 receives from the physical condition management unit 201 an abnormality in the physical condition of the worker (for example, an abnormality in body temperature, the worker has fallen down, etc.), the drive control unit 203 sends the mobile body 2 to the cellular phone communication. It can be moved to a pre-registered location where communication is possible using the network. Further, in some embodiments, when various sensors detect an abnormality of the worker, the moving body 2 can notify the worker 3 of the abnormality by notifying the worker by voice and lighting the lamp. When the worker 3 determines that the physical condition is abnormally detected, the mobile body 2 can be stopped by canceling the detection of the mobile body 2 via the user IF. After that, the operator 3 can restart the moving body 2 on the spot and have the moving body 2 continue the inspection work. If the worker determines that the physical condition is not a false detection, after a certain period of time (about 10 seconds), the worker can move to the nearest location within the reach of the radio wave of the mobile phone registered in advance. .
 送信部204は、携帯電話通信網を用いて、作業者の状態および位置情報のうち少なくとも1つを外部(例えば、作業者の安全管理を行うサーバ)に通信IF230を介して送信することができる。 The transmission unit 204 can transmit at least one of the worker's status and location information to the outside (for example, a server that manages safety of the worker) via the communication IF 230 using a mobile phone communication network. .
 他の実施形態では、制御部200は、測定対象物等からの音響応答を分析し、測定対象物の位置を検知するように構成されてもよい。 In another embodiment, the control unit 200 may be configured to analyze the acoustic response from the measurement object or the like and detect the position of the measurement object.
 図5は、実施形態2にかかる制御方法を示すシーケンス図である。
 まず、移動体2において、電波の届く地点を登録する(ステップS101)。いくつかの実施形態では、移動体2が自律移動している際、携帯電話通信網による通信可能な位置(例えば、図3の導水路の外部の位置)を登録してもよい。他の実施形態では、作業者3が移動体2のユーザIF240又は作業者携帯端末30を介して移動体2の通信位置記憶部221に携帯電話通信網による通信可能な位置情報を登録してもよい。このように事前登録された1つ以上の通信可能位置情報は、移動体2の記憶部に記憶される。
FIG. 5 is a sequence diagram showing a control method according to the second embodiment;
First, in the mobile unit 2, a point to which radio waves reach is registered (step S101). In some embodiments, when the mobile body 2 is moving autonomously, a position where communication is possible via a mobile phone communication network (for example, a position outside the water conduit in FIG. 3) may be registered. In another embodiment, even if the worker 3 registers communicable position information by the mobile phone communication network in the communication position storage unit 221 of the mobile body 2 via the user IF 240 of the mobile body 2 or the worker portable terminal 30. good. One or more pieces of communicable location information pre-registered in this manner are stored in the storage unit of the mobile unit 2 .
 次に、作業者3は、移動体2を用いて、測定対象物の点群データを取得するなどの現場作業を行う(ステップS103)。例えば、図3に示すように、移動体2を導水路の内部で移動させて、測定対象物6である導水路の内壁の点群データを取得する。図3の導水路の内部は、携帯電話通信網の通信が不能なエリアであるが、GPS信号等の位置情報を取得することができるエリアである。移動体2は、各種センサ部を用いて導水路内の障害物を回避しながら、自律移動し、測定対象物6の点群データを取得することができる。この際、作業者3は、移動体2のあとを歩き、移動体2の動作に問題がないかを確認する。 Next, the worker 3 uses the moving body 2 to perform field work such as acquiring point cloud data of the object to be measured (step S103). For example, as shown in FIG. 3, the moving body 2 is moved inside the water conduit, and the point cloud data of the inner wall of the water conduit, which is the object 6 to be measured, is acquired. The inside of the water conduit in FIG. 3 is an area where communication of the mobile phone communication network is impossible, but it is an area where position information such as GPS signals can be acquired. The moving body 2 can move autonomously while avoiding obstacles in the water conduit using various sensor units, and can acquire point cloud data of the measurement object 6 . At this time, the worker 3 walks after the moving body 2 and confirms whether there is any problem in the operation of the moving body 2. - 特許庁
 この際、各種センサ部4,5又は作業者携帯端末30は、作業者3の体調情報を取得し、移動体2の制御部200の体調管理部201に送信することができる。体調管理部201は、各種センサ部4,5又は作業者携帯端末30からの作業者3の体調異常を検知した場合(ステップS105でYES)、体調管理部201は、各種センサ部4,5又は作業者携帯端末30からの作業者3の状態(体調)、および作業者3の位置情報を記録する(ステップS107)。作業者3の状態(体調)、作業者3の位置情報および取得時刻は、時系列データとして記録され得る。 At this time, the various sensor units 4 and 5 or the worker portable terminal 30 can acquire the physical condition information of the worker 3 and transmit it to the physical condition management unit 201 of the control unit 200 of the moving body 2 . When the physical condition management unit 201 detects abnormal physical condition of the worker 3 from the various sensors 4, 5 or the worker portable terminal 30 (YES in step S105), the physical condition management unit 201 detects the various sensors 4, 5 or The state (physical condition) of the worker 3 and the location information of the worker 3 are recorded from the worker portable terminal 30 (step S107). The state (physical condition) of the worker 3, the location information of the worker 3, and the acquisition time can be recorded as time-series data.
 また、いくつかの実施形態では、体調管理部201は、各種センサ部4,5又は作業者携帯端末30からの作業者3の体調異常を検知した場合(ステップS105)、移動体の報知部(例えば、点滅ランプ、スピーカ)により作業者3に知らせてもよい。作業者3が体調異常を誤検知と判断した場合(ステップS105でNO、およびステップS108)、当該検出をユーザIF240又は作業者携帯端末30を介してキャンセルすることで移動体2を停止する(ステップS109)。作業者3は、移動体2をその場で再度起動させ移動体2に継続して点検作業(例えば、導水路の内壁の計測作業)を行わせることができる。一方、作業者が、体調異常が誤検知でないと判断した場合には、一定時間後(例えば、10秒程度経過後)に移動体2の制御部200の体調管理部201は、作業者の体調異常が発生したと判定してもよい。 Further, in some embodiments, when the physical condition management unit 201 detects an abnormality in the physical condition of the worker 3 from the various sensors 4, 5 or the worker portable terminal 30 (step S105), the notification unit ( For example, the operator 3 may be notified by a flashing lamp or a speaker). When the worker 3 determines that the physical condition abnormality is falsely detected (NO in step S105 and step S108), the mobile body 2 is stopped by canceling the detection via the user IF 240 or the worker portable terminal 30 (step S109). The worker 3 can restart the moving body 2 on the spot and have the moving body 2 continue the inspection work (for example, the measurement work of the inner wall of the water conduit). On the other hand, when the worker determines that the physical condition abnormality is not an erroneous detection, the physical condition management unit 201 of the control unit 200 of the moving body 2 detects the physical condition of the worker after a certain period of time (for example, after about 10 seconds have passed). It may be determined that an abnormality has occurred.
 体調管理部201は、作業者の体調異常を判定した場合、移動体2は、事前に登録された携帯電話通信網の電波の届く位置まで自律的に移動する(ステップS111)。駆動制御部203は、移動体2の駆動部210を駆動させ、通信位置記憶部221に記憶された通信可能な位置まで、移動体2を移動させることができる。この際、制御部200は、点群データ取得プロセスを一旦停止してもよい。 When the physical condition management unit 201 determines that the physical condition of the worker is abnormal, the moving body 2 autonomously moves to a position where radio waves of the pre-registered mobile phone communication network reach (step S111). The drive control unit 203 can drive the drive unit 210 of the mobile object 2 to move the mobile object 2 to a communicable position stored in the communication position storage unit 221 . At this time, the control unit 200 may temporarily stop the point cloud data acquisition process.
 移動体2が通信可能な位置に到達すると、制御部200の送信部204は、携帯電話通信網を用いて、作業者の状態および位置情報を、作業者の安全管理を行うサーバ10に無線通信する(ステップS112)。サーバ10は、作業者の状態および位置情報を受信すると(ステップS113)、作業者の状態および位置情報を救援センタのサーバ等に連絡する(ステップS115)。救助隊員は、作業者の状態および位置情報を用いて、作業者のいる現場まで救援に行き、作業者の状況確認を行うことができる(ステップS117)。図5のシーケンス図は例示であり、様々な変形及び修正が可能であることを理解されたい。なお、本実施形態に係るプログラムは、コンピュータに図5に示すような体調管理方法を実行させるためのプログラムである。 When the mobile body 2 reaches a position where communication is possible, the transmission unit 204 of the control unit 200 wirelessly communicates the status and position information of the worker to the server 10 that manages the safety of the worker using the mobile phone communication network. (step S112). When the server 10 receives the worker's state and position information (step S113), it notifies the worker's state and position information to the server of the rescue center or the like (step S115). Using the worker's state and position information, the rescuer can go to the site where the worker is to rescue and check the worker's situation (step S117). It should be understood that the sequence diagram of FIG. 5 is an example and that various variations and modifications are possible. Note that the program according to the present embodiment is a program for causing a computer to execute the physical condition management method as shown in FIG.
 以上説明した実施形態2にかかる体調管理装置等は、携帯電波が届かないエリアにおいても、作業者の体調管理を行い、体調異常時には移動体を通信可能位置まで移動させ、外部へ必要な情報を送信することができる。その結果、作業者の体調の異常と作業者の位置を外部に知らせることができ、救助隊員は、作業者の状況を確認するため、現場まで救助に行くことができる。 The physical condition management apparatus and the like according to the second embodiment described above manage the physical condition of workers even in areas where mobile radio waves do not reach. can be sent. As a result, the worker's physical condition abnormality and the worker's position can be notified to the outside, and the rescue team can go to the site to rescue the worker in order to confirm the worker's condition.
<他の実施形態>
 前述して実施形態2は、様々な変形及び修正が行われ得る。例えば、移動体2は、通信可能位置で、作業者の状態および位置情報を救援センサのサーバ10に送信した後、移動体2は、通信可能位置にそのまま待機してもよい。救助隊員はまず、移動体2が待機している通信可能位置まで行き、その後、移動体2が、作業者の位置まで自律移動して、救助隊員を案内してもよい。
<Other embodiments>
Various modifications and modifications may be made to the second embodiment described above. For example, the mobile body 2 may wait at the communicable position as it is after transmitting the worker's state and position information to the server 10 of the rescue sensor at the communicable position. The rescuer may first go to a communicable position where the mobile body 2 is waiting, and then the mobile body 2 may autonomously move to the worker's position and guide the rescuer.
 他の実施形態では、移動体2は、通信可能位置で、作業者の状態および位置情報を救援センサのサーバ10に送信した後、自律移動して作業者の位置まで戻ってもよい。移動体2は、作業者の位置まで戻った後、引き続き、作業者の体調管理を行ってもよい。すなわち、体調管理部201は、継続して、各種センサ部4,5又は作業者携帯端末30からの作業者3の状態(体調)、および作業者3の位置情報を記録することができる。その後、体調管理部201は、一度体調異常が発生した作業者の体調が回復したことを判定した場合、移動体2を再び通信可能位置まで自律移動させ、作業者の体調が回復した旨を示す情報を、救援センサのサーバ10に送信してもよい。 In another embodiment, the mobile body 2 may move autonomously and return to the worker's position after transmitting the worker's state and position information to the server 10 of the relief sensor at a communicable position. After returning to the position of the worker, the mobile body 2 may continue to manage the physical condition of the worker. That is, the physical condition management unit 201 can continuously record the condition (physical condition) of the worker 3 and the position information of the worker 3 from the various sensors 4 and 5 or the worker portable terminal 30 . After that, when the physical condition management unit 201 determines that the physical condition of the worker who has once experienced an abnormality in physical condition has recovered, the mobile body 2 autonomously moves again to a position where communication is possible, and indicates that the physical condition of the worker has recovered. The information may be transmitted to the server 10 of the rescue sensor.
 図6は、移動体2の体調管理装置20およびサーバ10(情報処理装置)のハードウェア構成例を示すブロック図である。図6を参照すると、体調管理装置20およびサーバ10(以下、体調管理装置20等と称する)は、ネットワーク・インターフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワーク・インターフェース1201は、通信システムを構成する他のネットワークノード装置と通信するために使用される。ネットワーク・インターフェース1201は、無線通信を行うために使用されてもよい。例えば、ネットワーク・インターフェース1201は、IEEE 802.11 seriesにおいて規定された無線LAN通信、もしくは3GPP(3rd Generation Partnership Project)において規定されたモバイル通信を行うために使用されてもよい。もしくは、ネットワーク・インターフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。 FIG. 6 is a block diagram showing a hardware configuration example of the physical condition management device 20 of the mobile body 2 and the server 10 (information processing device). Referring to FIG. 6 , the physical condition management device 20 and the server 10 (hereinafter referred to as the physical condition management device 20 and the like) include a network interface 1201 , a processor 1202 and a memory 1203 . The network interface 1201 is used to communicate with other network node devices that make up the communication system. Network interface 1201 may be used to conduct wireless communications. For example, the network interface 1201 may be used for wireless LAN communication defined in IEEE 802.11 series or mobile communication defined in 3GPP (3rd Generation Partnership Project). Alternatively, network interface 1201 may include, for example, an IEEE 802.3 series compliant network interface card (NIC).
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてフローチャートもしくはシーケンスを用いて説明された表示装置100の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、又はCPU(Central Processing Unit)であってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。 The processor 1202 reads and executes software (computer program) from the memory 1203 to perform the processing of the display device 100 described using the flowcharts or sequences in the above embodiments. Processor 1202 may be, for example, a microprocessor, MPU (Micro Processing Unit), or CPU (Central Processing Unit). Processor 1202 may include multiple processors.
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/Oインタフェースを介してメモリ1203にアクセスしてもよい。 The memory 1203 is composed of a combination of volatile memory and non-volatile memory. Memory 1203 may include storage remotely located from processor 1202 . In this case, processor 1202 may access memory 1203 via an I/O interface, not shown.
 図6の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明された体調管理装置等の処理を行うことができる。 In the example of FIG. 6, memory 1203 is used to store software modules. The processor 1202 reads and executes these software modules from the memory 1203, thereby performing the processing of the physical condition management apparatus and the like described in the above embodiments.
 図6を用いて説明したように、体調管理装置20等が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。 As described using FIG. 6, each of the processors of the physical condition management device 20 and the like executes one or more programs containing instruction groups for causing the computer to execute the algorithm described using the drawings.
<その他の実施形態>
 尚、上述の実施形態では、ハードウェアの構成として説明したが、これに限定されるものではない。本開示は、任意の処理を、CPUにコンピュータプログラムを実行させることにより実現することも可能である。
<Other embodiments>
In the above-described embodiment, the hardware configuration is described, but the configuration is not limited to this. The present disclosure can also implement arbitrary processing by causing a CPU to execute a computer program.
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、DVD(Digital Versatile Disc)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above example, the program can be stored and supplied to the computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, Includes CD-R/W, DVD (Digital Versatile Disc), semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
 なお、本開示は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施形態では、地上を走行する移動体の例を用いて説明したが、山岳部などにおいて、空中を飛行するドローンのような移動体も使用することができる。また、本開示は、それぞれの実施形態を適宜組み合わせて実施されてもよい。 It should be noted that the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the scope. For example, in the above-described embodiment, an example of a mobile object that travels on the ground was used, but a mobile object such as a drone that flies in the air can also be used in mountainous areas. In addition, the present disclosure may be implemented by appropriately combining each embodiment.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
   (付記1)
 通信可能位置を記憶する通信位置記憶部と、
 センサ部を用いて作業者の体調情報を取得し管理する体調管理部と、
 前記作業者の位置情報を取得する作業者位置取得部と、
 移動体の自律移動を制御する駆動制御部と、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する送信部と、を備える体調管理装置。
   (付記2)
 前記作業者位置取得部は、通信不能位置において、前記作業者の位置情報を取得する、付記1に記載の体調管理装置。
   (付記3)
 前記体調管理部は、前記作業者の体調の異常を判定した場合、前記駆動制御部は、前記移動体を前記通信可能位置まで移動させる、付記1又は2に記載の体調管理装置。
   (付記4)
 前記移動体が前記記憶された通信可能位置に移動した後に、前記送信部は、前記作業者の体調異常情報および前記位置情報のうち少なくとも1つを送信する、付記1~3のいずれか一項に記載の体調管理装置。
   (付記5)
 前記体調管理部が前記作業者の体調の異常を検知した場合に、前記作業者に当該異常の検知を報知する報知部を更に備え、
 前記体調管理部は、前記報知の後、前記異常検知に対する前記作業者からの指示により、前記異常検知が誤検知であると判定し、
 前記体調管理部は、前記報知の後、前記異常検知に対する前記作業者からの指示なしに一定時間経過後、前記作業者の体調異常が発生したと判定する、付記1~4のいずれか一項に記載の体調管理装置。
   (付記6)
 前記通信位置記憶部は、携帯電話通信網を用いて通信可能な位置を記憶する、付記1~5のいずれか一項に記載の体調管理装置。
   (付記7)
 前記送信部は、前記通信可能位置において、携帯電話通信網を用いて、前記取得された前記作業者の前記位置情報を送信する、付記1~6のいずれか一項に記載の体調管理装置。
   (付記8)
 付記1~7のいずれか一項に記載の体調管理装置と、
 作業者の体調情報を取得するセンサ部と、
 点群データを取得する点群データ取得部と、を備える移動体。
   (付記9)
 通信可能位置を記憶し、
 センサ部を用いて作業者の体調情報を取得し管理し、
 前記作業者の位置情報を取得し、
 移動体の自律移動を制御し、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する、体調管理方法。
   (付記10)
 通信可能位置を記憶する処理と、
 センサ部を用いて作業者の体調情報を取得し管理する処理と、
 前記作業者の位置情報を取得する処理と、
 移動体の自律移動を制御する処理と、
 前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する処理と、をコンピュータに実行させる体調管理プログラムを格納した非一時的なコンピュータ可読媒体。
Some or all of the above embodiments may also be described in the following additional remarks, but are not limited to the following.
(Appendix 1)
a communication position storage unit that stores communicable positions;
a physical condition management unit that acquires and manages the physical condition information of the worker using the sensor unit;
a worker position acquisition unit that acquires the position information of the worker;
a drive control unit that controls autonomous movement of the mobile body;
and a transmission unit configured to transmit the acquired location information of the worker when the mobile body is at the stored communicable location.
(Appendix 2)
The physical condition management device according to appendix 1, wherein the worker position acquisition unit acquires the position information of the worker at a position where communication is not possible.
(Appendix 3)
3. The physical condition management apparatus according to appendix 1 or 2, wherein the drive control unit moves the mobile body to the communicable position when the physical condition management unit determines that the physical condition of the worker is abnormal.
(Appendix 4)
Any one of appendices 1 to 3, wherein after the mobile body moves to the stored communicable position, the transmission unit transmits at least one of the worker's physical condition abnormality information and the location information. The physical condition management device described in .
(Appendix 5)
Further comprising a notification unit that, when the physical condition management unit detects an abnormality in the physical condition of the worker, notifies the worker of the detection of the abnormality,
After the notification, the physical condition management unit determines that the abnormality detection is an erroneous detection according to an instruction from the operator regarding the abnormality detection,
The physical condition management unit determines that the physical condition abnormality of the worker has occurred after a certain period of time has passed without an instruction from the operator regarding the detection of the abnormality after the notification. The physical condition management device described in .
(Appendix 6)
6. The physical condition management device according to any one of appendices 1 to 5, wherein the communication location storage unit stores locations where communication is possible using a mobile phone communication network.
(Appendix 7)
7. The physical condition management device according to any one of appendices 1 to 6, wherein the transmission unit transmits the acquired location information of the worker using a mobile phone communication network at the communicable location.
(Appendix 8)
A physical condition management device according to any one of Appendices 1 to 7;
a sensor unit that acquires physical condition information of a worker;
and a point cloud data acquisition unit that acquires point cloud data.
(Appendix 9)
memorize the communicable position,
Acquire and manage the physical condition information of the worker using the sensor unit,
Acquiring location information of the worker;
control the autonomous movement of mobile bodies,
A physical condition management method, wherein the obtained location information of the worker is transmitted when the mobile body is at the stored communicable location.
(Appendix 10)
a process of storing communicable positions;
A process of acquiring and managing the physical condition information of the worker using the sensor unit;
a process of acquiring location information of the worker;
a process of controlling autonomous movement of a mobile body;
A non-temporary computer-readable program storing a physical condition management program that causes a computer to execute a process of transmitting the acquired position information of the worker when the mobile body is at the stored communicable position. medium.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above-described embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 2 移動体
 4 温度センサ付きカメラ
 5 測距センサ
 6 測定対象物
 10 サーバ
 20 体調管理装置
 30 作業者携帯端末
 200 制御部
 201 体調管理部
 202 作業者位置取得部
 203 駆動制御部
 204 送信部
 210 移動体駆動部
 220 メモリ
 221 通信位置記憶部
 222 作業者位置記憶部
 230 通信IF
 240 ユーザIF
 250 位置情報受信機
 1201 ネットワーク・インターフェース
 1202 プロセッサ
 1203 メモリ
2 moving body 4 camera with temperature sensor 5 ranging sensor 6 object to be measured 10 server 20 physical condition management device 30 worker portable terminal 200 control unit 201 physical condition management unit 202 worker position acquisition unit 203 drive control unit 204 transmission unit 210 moving object Drive unit 220 Memory 221 Communication position storage unit 222 Worker position storage unit 230 Communication IF
240 User interface
250 location information receiver 1201 network interface 1202 processor 1203 memory

Claims (10)

  1.  通信可能位置を記憶する通信位置記憶部と、
     センサ部を用いて作業者の体調情報を取得し管理する体調管理部と、
     前記作業者の位置情報を取得する作業者位置取得部と、
     移動体の自律移動を制御する駆動制御部と、
     前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する送信部と、を備える体調管理装置。
    a communication position storage unit that stores communicable positions;
    a physical condition management unit that acquires and manages the physical condition information of the worker using the sensor unit;
    a worker position acquisition unit that acquires the position information of the worker;
    a drive control unit that controls autonomous movement of the mobile body;
    and a transmission unit configured to transmit the acquired location information of the worker when the mobile body is at the stored communicable location.
  2.  前記作業者位置取得部は、通信不能位置において、前記作業者の位置情報を取得する、請求項1に記載の体調管理装置。 The physical condition management device according to claim 1, wherein the worker position acquisition unit acquires position information of the worker at a position where communication is not possible.
  3.  前記体調管理部は、前記作業者の体調の異常を判定した場合、前記駆動制御部は、前記移動体を前記通信可能位置まで移動させる、請求項1又は2に記載の体調管理装置。 The physical condition management device according to claim 1 or 2, wherein, when the physical condition management unit determines that the physical condition of the worker is abnormal, the drive control unit moves the mobile body to the communicable position.
  4.  前記移動体が前記記憶された通信可能位置に移動した後に、前記送信部は、前記作業者の体調異常情報および前記位置情報のうち少なくとも1つを送信する、請求項1~3のいずれか一項に記載の体調管理装置。 4. The transmitter according to any one of claims 1 to 3, wherein after the moving object moves to the stored communicable position, the transmitting unit transmits at least one of the worker's physical condition abnormality information and the position information. The physical condition management device according to the item.
  5.  前記体調管理部が前記作業者の体調の異常を検知した場合に、前記作業者に当該異常の検知を報知する報知部を更に備え、
     前記体調管理部は、前記報知の後、前記異常の検知に対する前記作業者からの指示により、前記異常検知が誤検知であると判定し、
     前記体調管理部は、前記報知の後、前記異常の検知に対する前記作業者からの指示なしに一定時間経過後、前記作業者の体調異常が発生したと判定する、請求項1~4のいずれか一項に記載の体調管理装置。
    Further comprising a notification unit that, when the physical condition management unit detects an abnormality in the physical condition of the worker, notifies the worker of the detection of the abnormality,
    After the notification, the physical condition management unit determines that the abnormality detection is an erroneous detection according to an instruction from the operator regarding the detection of the abnormality,
    5. The physical condition management unit determines that an abnormality in the physical condition of the worker has occurred after a certain period of time has passed without an instruction from the operator regarding the detection of the abnormality after the notification. The physical condition management device according to item 1.
  6.  前記通信位置記憶部は、携帯電話通信網を用いて通信可能な位置を記憶する、請求項1~5のいずれか一項に記載の体調管理装置。 The physical condition management device according to any one of claims 1 to 5, wherein the communication location storage unit stores locations where communication is possible using a mobile phone communication network.
  7.  前記送信部は、前記通信可能位置において、携帯電話通信網を用いて、前記取得された前記作業者の前記位置情報を送信する、請求項1~6のいずれか一項に記載の体調管理装置。 The physical condition management device according to any one of claims 1 to 6, wherein the transmission unit transmits the acquired location information of the worker using a mobile phone communication network at the communicable location. .
  8.  請求項1~7のいずれか一項に記載の体調管理装置と、
     作業者の体調情報を取得するセンサ部と、
     点群データを取得する点群データ取得部と、を備える移動体。
    The physical condition management device according to any one of claims 1 to 7,
    a sensor unit that acquires physical condition information of a worker;
    and a point cloud data acquisition unit that acquires point cloud data.
  9.  通信可能位置を記憶し、
     センサ部を用いて作業者の体調情報を取得し管理し、
     前記作業者の位置情報を取得し、
     移動体の自律移動を制御し、
     前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する、体調管理方法。
    memorize the communicable position,
    Acquire and manage the physical condition information of the worker using the sensor unit,
    Acquiring location information of the worker;
    control the autonomous movement of mobile bodies,
    A physical condition management method, wherein the obtained location information of the worker is transmitted when the mobile body is at the stored communicable location.
  10.  通信可能位置を記憶する処理と、
     センサ部を用いて作業者の体調情報を取得し管理する処理と、
     前記作業者の位置情報を取得する処理と、
     移動体の自律移動を制御する処理と、
     前記移動体が前記記憶された通信可能位置にある場合に、前記取得された前記作業者の前記位置情報を送信する処理と、をコンピュータに実行させる体調管理プログラムを格納した非一時的なコンピュータ可読媒体。
    a process of storing communicable positions;
    A process of acquiring and managing the physical condition information of the worker using the sensor unit;
    a process of acquiring location information of the worker;
    a process of controlling autonomous movement of a mobile body;
    A non-temporary computer-readable program storing a physical condition management program that causes a computer to execute a process of transmitting the acquired position information of the worker when the mobile body is at the stored communicable position. medium.
PCT/JP2021/038180 2021-10-15 2021-10-15 Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium WO2023062807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038180 WO2023062807A1 (en) 2021-10-15 2021-10-15 Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038180 WO2023062807A1 (en) 2021-10-15 2021-10-15 Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium

Publications (1)

Publication Number Publication Date
WO2023062807A1 true WO2023062807A1 (en) 2023-04-20

Family

ID=85988202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038180 WO2023062807A1 (en) 2021-10-15 2021-10-15 Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium

Country Status (1)

Country Link
WO (1) WO2023062807A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129654A (en) * 2005-11-07 2007-05-24 Sesura:Kk Mobile individual management system
CN204028698U (en) * 2014-05-30 2014-12-17 宣东 A kind ofly guard the intelligent robot of serving the elderly
JP2015207149A (en) * 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
JP2017016249A (en) * 2015-06-29 2017-01-19 シャープ株式会社 Autonomous travel apparatus
JP2017116994A (en) * 2015-12-21 2017-06-29 公立大学法人秋田県立大学 Watching system for elderly who lives alone
JP2018094983A (en) * 2016-12-09 2018-06-21 Kddi株式会社 Flying device, reporting method and program
JP2019125092A (en) * 2018-01-15 2019-07-25 Necプラットフォームズ株式会社 Rescue request device, rescue request method, and program
JP2020166353A (en) * 2019-03-28 2020-10-08 Kddi株式会社 Robot control device, robot control method, and robot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129654A (en) * 2005-11-07 2007-05-24 Sesura:Kk Mobile individual management system
JP2015207149A (en) * 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
CN204028698U (en) * 2014-05-30 2014-12-17 宣东 A kind ofly guard the intelligent robot of serving the elderly
JP2017016249A (en) * 2015-06-29 2017-01-19 シャープ株式会社 Autonomous travel apparatus
JP2017116994A (en) * 2015-12-21 2017-06-29 公立大学法人秋田県立大学 Watching system for elderly who lives alone
JP2018094983A (en) * 2016-12-09 2018-06-21 Kddi株式会社 Flying device, reporting method and program
JP2019125092A (en) * 2018-01-15 2019-07-25 Necプラットフォームズ株式会社 Rescue request device, rescue request method, and program
JP2020166353A (en) * 2019-03-28 2020-10-08 Kddi株式会社 Robot control device, robot control method, and robot

Similar Documents

Publication Publication Date Title
US20200278209A1 (en) Emergency drone guidance device
KR101914228B1 (en) IOT Based Safety Management System for Construction Site Using the RTLS and Video Control Technology
US10489649B2 (en) Drone data locker system
CN109275097B (en) Indoor positioning and monitoring system based on UWB
JP6635529B2 (en) Monitoring system and mobile robot device
KR101774872B1 (en) A safe monitoring system for workers
KR20190101356A (en) Automated Detection of Firefighter Teams
EP3422039B1 (en) First responder tracking breadcrumbs
KR101720857B1 (en) Safety control system
US11908306B2 (en) Rescue request apparatus, rescue request method, and non-transitory computer readable medium
JP2014146288A (en) Surveillance system
WO2023062807A1 (en) Physical condition management device, mobile body, physical condition management method, and non-transitory computer-readable medium
KR101906324B1 (en) Device for position tracking and monitoring of endangered rescue personnel in indoor diseaster environment using wireless communication and method thereof
KR20210057694A (en) Moving security robot for outdoor guard, and method thereof
JP2007264950A (en) Autonomously moving robot
US10587805B2 (en) Wearable camera and method for using wearable camera
JP2007296586A (en) Autonomously moving robot
JP6861094B2 (en) Transmitter replacement work support system
CN114200495B (en) Accurate positioning method and system for firefighter in full-task scene
US9858791B1 (en) Tracking and accountability device and system
JP6877176B2 (en) Monitoring system
JP2019125374A (en) Rescue request device
KR102629060B1 (en) Control system regulating data transmission cycle
CN117152593B (en) Fire scene searching method, fire scene searching device, terminal equipment and storage medium
KR102468933B1 (en) Successive building information management system based on drone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960664

Country of ref document: EP

Kind code of ref document: A1