WO2023062772A1 - Engine intake system structure - Google Patents

Engine intake system structure Download PDF

Info

Publication number
WO2023062772A1
WO2023062772A1 PCT/JP2021/038040 JP2021038040W WO2023062772A1 WO 2023062772 A1 WO2023062772 A1 WO 2023062772A1 JP 2021038040 W JP2021038040 W JP 2021038040W WO 2023062772 A1 WO2023062772 A1 WO 2023062772A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
passage
surge tank
intake
engine
Prior art date
Application number
PCT/JP2021/038040
Other languages
French (fr)
Japanese (ja)
Inventor
肇 石井
光高 小島
健一朗 飛田
洋之 木村
慎司 新海
幸二 竹内
健吾 前田
則夫 高安
勝 西川
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2021/038040 priority Critical patent/WO2023062772A1/en
Publication of WO2023062772A1 publication Critical patent/WO2023062772A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the structure of the exhaust recirculated gas introduction part in the intake passage of a vehicle.
  • the EGR device includes an EGR passage that communicates an exhaust passage and an intake passage, recirculates a portion of the exhaust gas (EGR gas) from the exhaust passage to the intake passage, and reduces the oxygen concentration of the intake air. As a result, the temperature in the combustion chamber of the engine is lowered and NOx emissions from the engine are suppressed.
  • EGR gas exhaust gas
  • an EGR passage is connected to a branch passage (branch pipe) of an intake manifold provided at the most downstream side of the intake passage, and EGR gas (exhaust gas recirculation gas) is connected to each branch passage. ) are introduced respectively.
  • Patent Document 1 a plurality of branch passages are arranged in parallel, and an EGR passage is provided so as to extend in a direction intersecting the branch passages.
  • a gas supply port to each branch passage is provided side by side.
  • the flow passage cross-sectional area of the EGR passage at a position immediately before connecting to each branch passage is configured to decrease from the upstream side to the downstream side, and EGR gas flows into each branch passage. It has a structure that makes it easy to flow in approximately evenly.
  • Patent Document 1 since EGR gas is supplied to the intake air in each branch passage, even if the flow passage cross-sectional area of the EGR passage is set to decrease toward the downstream side, Also, for example, when the operation of the engine fluctuates, the EGR gas may not properly flow into each branch passage with respect to the amount of intake air, and the concentration of EGR gas in each cylinder may differ or fluctuate.
  • the present invention has been made in view of these problems, and its object is to provide an engine intake system structure capable of homogenizing the concentration of exhaust gas recirculated in the intake air introduced into a plurality of cylinders. to do.
  • an engine intake system structure includes a first surge tank in an intake passage, a branch passage for diverting intake air from the first surge tank to each cylinder, and an exhaust gas. part of the exhaust gas is recirculated to the intake passage on the upstream side of the branch passage, wherein the exhaust gas recirculation passage transfers the exhaust gas to the intake passage. It is characterized by having a second surge tank that is connected to the introduction part for introducing and stores the exhaust recirculated gas.
  • the second surge tank is provided in the exhaust gas recirculation passage, the exhaust gas recirculation gas is temporarily stored before being introduced into the intake passage, and the exhaust gas recirculation gas is stably supplied to the intake passage, Mixing of the intake air and the exhaust recirculated gas can be promoted in the intake passage. Furthermore, by temporarily storing the intake air mixed with the supplied exhaust gas recirculation gas in the first surge tank, the first surge tank promotes mixing of the intake air and the exhaust gas recirculation gas, and exhaust gas recirculation during intake. Gas can be homogenized and supplied to each branch passage.
  • the second surge tank has a smaller volume than the first surge tank.
  • the pressure of the exhaust gas recirculated can be increased by the second surge tank, and the exhaust gas recirculated can be stably supplied to the intake passage.
  • the first surge tank and the second surge tank are integrally formed.
  • the first surge tank and the second surge tank can be configured compactly.
  • the first surge tank has a wall surface connected to the intake passage and extending in a plane, and the second surge tank is formed along the wall surface of the first surge tank. I hope you are.
  • the second surge tank can be configured compactly along the wall surface of the first surge tank with a simple configuration.
  • the second surge tank is formed by a tubular introduction passage portion that closes a downstream end of the exhaust gas recirculation passage, the introduction portion has the intake passage therein, and a peripheral wall thereof defines the introduction passage.
  • the introduction portion has the intake passage therein, and a peripheral wall thereof defines the introduction passage.
  • a tubular intake pipe forming a part of the inner wall on the downstream end side of the portion and having an opening in the peripheral wall.
  • the introduction portion for introducing the exhaust gas recirculation gas into the intake passage and the second surge tank can be realized with a simple configuration.
  • the intake pipe is arranged offset to one side in the flow path width direction with respect to a center position of the introduction passage portion in the flow path width direction, and is arranged on one side of the introduction passage portion in the flow path width direction. and the peripheral wall, and the opening is at least on the front side of the introduction passage portion in the flow direction of the exhaust gas recirculation gas, or the one side in the width direction of the flow passage.
  • the exhaust gas recirculation gas flowing through the introduction passage reaches the intake pipe, and along the peripheral wall of the intake pipe, the gap between the inner wall of the introduction passage on one side in the flow path width direction and the peripheral wall of the intake pipe is increased. wrap around Since it is introduced into the intake passage in the intake pipe from the opening, it is possible to generate a swirl flow of the exhaust gas recirculated in the intake pipe and promote mixing of the intake air and the exhaust gas recirculated.
  • the exhaust gas recirculation gas is temporarily stored in the second surge tank, and the exhaust gas recirculation gas is stably supplied to the intake pipe. Concentration can be stabilized. Furthermore, by temporarily storing the intake air mixed with the supplied exhaust gas recirculation gas in the first surge tank, the first surge tank promotes mixing of the intake air and the exhaust gas recirculation gas, and the exhaust gas recirculation gas being sucked. can be homogenized and uniformly supplied to each branch passage. As a result, it is possible to introduce the intake air in which the concentration of the exhaust gas recirculated is homogenized into each cylinder of the engine, and to improve the effect of the exhaust gas recirculation.
  • FIG. 1 is a schematic configuration diagram of a front portion of a vehicle according to an embodiment of the present invention
  • FIG. FIG. 2 is a vertical cross-sectional view of an engine intake system accessory
  • FIG. 2 is a vertical cross-sectional view of an engine intake system accessory
  • FIG. 3 is a cross-sectional view of an engine intake system accessory
  • It is a longitudinal cross-sectional view of an intake system accessory of another embodiment.
  • FIG. 1 is a schematic structural diagram of the front portion of a vehicle 1 that employs an intake system structure for an engine 3 according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the auxiliary equipment of the intake system arranged in front of the engine 3, and is a view seen from the left side in the vehicle width direction when mounted on the vehicle.
  • FIG. 3 is a vertical cross-sectional view of an intake system accessory of the engine 3.
  • FIG. 4 is a cross-sectional view of an intake system accessory of the engine 3.
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line BB shown in FIG.
  • a vehicle 1 that employs the present invention is equipped with a power unit 4 including an engine 3 in a front engine room 2 .
  • a vehicle 1 is a plug-in hybrid vehicle capable of EV mode, series mode, and parallel mode.
  • the power unit 4 is equipped with the engine 3, a travel drive motor (not shown), and a power generation motor generator.
  • the traveling drive motor and the power generation motor generator are arranged on the left side of the engine 3 in the vehicle width direction.
  • the power generation motor generator is also used as a starter motor for the engine 3 .
  • the engine 3 is a 4-cylinder engine and is horizontally mounted on the vehicle 1 .
  • An intake manifold 5 is provided on the front surface 3a of the engine 3, and an intake passage 6 is arranged.
  • an exhaust manifold 7 is provided on the rear side of the engine 3, and an exhaust passage 8 is arranged.
  • a throttle valve 10 is provided in the intake passage 6 .
  • a surge tank 11 (first surge tank) is provided between the throttle valve 10 and the intake manifold 5 in the intake passage 6 .
  • the throttle valve 10 is located in the upper part of the front surface 3a side of the engine 3, and has a branch pipe 12 (branch passage) connected to the No. 2 cylinder located at the center in the vehicle width direction of the engine 3, and a branch pipe 12 connected to the No. 3 cylinder. is placed between
  • the surge tank 11 is provided along the front surface 3a of the engine 3 and arranged below the throttle valve 10.
  • a branch pipe 12 of the intake manifold 5 is connected from the surge tank 11 toward each cylinder.
  • the branch pipe 12 bends toward the vehicle front side from the lower surface of the surge tank 11, extends upward adjacent to the front side of the surge tank 11, and is connected to an intake port 13 of each cylinder provided at the upper portion of the front surface 3a of the engine 3.
  • the exhaust passage 8 is provided with a front catalyst 20 downstream of the exhaust manifold 7 .
  • a rear catalyst 21 is provided downstream of the front catalyst 20 in the exhaust passage 8 .
  • the front catalyst 20 and the rear catalyst 21 are exhaust purification catalysts such as three-way catalysts.
  • the front catalyst 20 is relatively small and is arranged adjacent to the rear surface of the engine 3 .
  • the front catalyst 20 is arranged near the engine 3 so that the exhaust gas flows immediately from the engine 3 in order to improve the purification performance of the exhaust gas during cold operation such as immediately after starting the engine.
  • the rear catalyst 21 is relatively large and is arranged under the floor of the vehicle 1, for example.
  • the engine 3 is equipped with an EGR device 30 (exhaust gas recirculation device).
  • the EGR device 30 reduces the oxygen concentration of the intake air by recirculating part of the exhaust gas to the intake passage 6 to suppress the temperature rise in the combustion chamber of the engine 3 . This reduces NOx in the exhaust gas from the engine 3 .
  • the EGR device 30 includes an EGR passage 31 (exhaust recirculation passage) that connects the intake passage 6 and the exhaust passage 8, an EGR valve 34 that is interposed in the EGR passage 31 and adjusts the opening area of the EGR passage 31, the EGR passage 31 It has an EGR cooler 32 provided in.
  • EGR passage 31 exhaust recirculation passage
  • EGR valve 34 that is interposed in the EGR passage 31 and adjusts the opening area of the EGR passage 31, the EGR passage 31 It has an EGR cooler 32 provided in.
  • the EGR cooler 32 is a water-cooled cooler that lowers the temperature of EGR gas (exhaust gas recirculation gas) that is the exhaust gas passing through the EGR passage 31, and is arranged along the rear surface of the engine 3. By lowering the temperature of the EGR gas, the EGR cooler 32 further suppresses the temperature rise of the intake air into which the EGR gas is introduced, thereby improving the NOx reducing effect of the EGR device 30 .
  • EGR gas exhaust gas recirculation gas
  • the EGR passage 31 passes through the EGR cooler 32 from the vicinity of the exhaust outlet of the front catalyst 20, extends upward from the rear left portion of the engine, wraps around the front side of the engine 3, and is arranged at the upper left portion of the engine. 34 and is connected to the intake passage 6 between the throttle valve 10 and the surge tank 11 .
  • an adapter 40 and an EGR ring 41 are provided between the throttle valve 10 and the surge tank 11. .
  • the adapter 40 and the EGR ring 41 have substantially the same diameter circular tube shape.
  • the upper end of the EGR ring 41 is connected to the throttle valve 10
  • the lower end of the EGR ring 41 is connected to a tank inlet 42 provided in the upper wall 11 a of the surge tank 11 .
  • the surge tank 11 is formed in a substantially rectangular box shape, and a tank inlet 42 is provided at a substantially central position in the left-right direction of the upper wall 11a and at the front part of the vehicle.
  • tank outlets 43 corresponding to the number of cylinders of the engine 3 are arranged side by side in the left-right direction at a position on the vehicle rear side of the lower wall 11b of the surge tank 11 . That is, in the surge tank 11, the tank inlet 42 and the tank outlet 43 are offset in the longitudinal direction of the vehicle.
  • branch pipes 12 of the intake manifold 5 extend adjacent to the lower side and the front side of the surge tank 11 toward the intake ports 13 of the corresponding left and right cylinders.
  • a connection point between the EGR passage 31 and the intake passage 6 in the EGR device 30 that is, a point where EGR gas is introduced into the intake passage 6 is located between the throttle valve 10 and the surge tank 11 .
  • the EGR passage 31 on the downstream side of the EGR valve 34 extends from the left side in the vehicle width direction to the right side in the vehicle width direction along the upper wall 11 a of the surge tank 11 and is formed so as to surround the side surface of the EGR ring 41 . It has an EGR introduction passage portion 45 (introduction passage portion, second surge tank).
  • the EGR introduction passage portion 45 has a tubular shape with a rectangular cross section in the vertical direction, and has a front-to-rear width (for example, several centimeters) substantially equal to or slightly larger than the diameter of the EGR ring 41, and has a rectangular shape with a vertical width smaller than the horizontal width. It's becoming
  • the EGR introduction passage portion 45 extends rightward in the vehicle width direction from the outer wall surface of the EGR ring 41 on the right side in the vehicle width direction.
  • the EGR introduction passage portion 45 is arranged so as to be offset to the rear side of the vehicle with respect to the axis of the EGR ring 41 .
  • the right inner wall surface of the EGR introduction passage portion 45 on the leading end side in the extension direction (the forward side in the flow direction) and the right outer wall surface of the EGR ring 41 , and the rear inner wall surface of the EGR introduction passage portion 45 and the rear outer wall surface of the EGR ring 41 are formed with an interval of about 1 cm, for example.
  • the front outer wall surface of the EGR ring 41 is in contact with the front inner wall surface of the EGR introduction passage portion 45 . That is, the internal space of the EGR introduction passage portion 45 faces the right, rear, and left portions of the outer wall surface (surrounding wall) of the EGR ring 41 .
  • a ring hole 50 (opening) is provided in the rear portion of the outer wall surface of the EGR ring 41 facing the internal space of the EGR introduction passage portion 45, and a ring hole 51 (opening) is provided in the right portion. is provided.
  • the EGR gas that has passed through the EGR valve 34 is formed to pass through the ring holes 50 and 51 from the EGR introduction passage portion 45 and be introduced into the intake passage in the EGR ring 41 .
  • the vertical cross-sectional area of the EGR introduction passage portion 45 that is, the passage area is formed larger than the passage area of the EGR passage 31 on the upstream side of the EGR introduction passage portion 45.
  • the EGR introduction passage portion 45 is adjacent to the upstream side of the ring holes 50 and 51 of the EGR ring 41 and has the function of a surge tank (second surge tank) that temporarily stores EGR gas.
  • the volume of the internal space that functions as a surge tank in the EGR introduction passage portion 45 is set smaller than the volume of the surge tank 11 .
  • the throttle valve 10 and the intake manifold 5, which are devices of the intake system, are provided on the front surface 3a side of the engine 3 mounted horizontally in the vehicle 1.
  • a surge tank 11 is provided between the throttle valve 10 and the intake manifold 5 .
  • a branch pipe 12 of the intake manifold 5 is connected from the surge tank 11 to each cylinder.
  • the intake passage 6 is provided with an EGR device 30 that supplies EGR gas, which is a part of the exhaust gas. EGR gas is introduced.
  • EGR gas is supplied to the EGR passage 31 adjacent to the upstream side of the ring holes 50 and 51 of the EGR ring 41, that is, adjacent to the upstream side of the introduction position of the EGR gas from the EGR passage 31 to the intake passage 6.
  • An EGR introduction passage portion 45 having a function of a surge tank for storing is provided.
  • the EGR gas is temporarily stored in the EGR introduction passage portion 45 before being introduced into the intake passage 6, and is stably supplied to the intake passage 6.
  • the surge tank 11 promotes mixing of the intake air and the EGR gas and homogenizes the EGR gas in the intake air.
  • the branch pipe 12 can be supplied homogeneously.
  • the EGR introduction passage portion 45 has a smaller volume than the surge tank 11, the EGR gas pressure is increased in the EGR introduction passage portion 45 even in an engine operating state or a transient operation state in which the amount of EGR gas supplied is small. , the EGR gas can be stably supplied to the intake passage 6 .
  • the surge tank 11 and the EGR introduction passage portion 45 are integrally formed, the surge tank 11 and the second surge tank in the EGR introduction passage portion 45 can be configured compactly.
  • the surge tank 11 has an upper wall 11a extending in a plane while being connected to the intake passage 6, and the EGR introduction passage portion 45 is formed along the upper wall 11a of the surge tank 11. can be configured compactly along the wall surface of the surge tank 11 with a simple configuration.
  • a tubular EGR introduction passage portion 45 with a closed tip is provided at the downstream end portion of the EGR passage 31, and the EGR ring 41 forms a part of the inner wall of the EGR introduction passage portion 45 on the tip portion side. . That is, by penetrating the tubular EGR ring 41 having the ring holes 50 and 51 in the vicinity of the tip of the EGR introduction passage portion 45, an EGR gas introduction portion for introducing EGR gas into the intake passage can be realized with a simple structure. can be done.
  • the EGR ring 41 is offset toward the rear of the vehicle, which is one side of the flow path width direction, with respect to the central position of the EGR introduction passage portion 45 in the flow path width direction (vehicle front-rear direction).
  • a space is provided between the inner wall of the EGR ring 41 on the vehicle rear side, which is one side in the flow path width direction, of the ring 45 and the peripheral wall of the EGR ring 41 .
  • the ring holes 50 and 51 of the EGR ring 41 are provided on the right side in the vehicle width direction and the rear side of the vehicle in the peripheral wall of the EGR ring 41 .
  • the EGR gas flowing through the EGR introduction passage portion 45 reaches the EGR ring 41 and flows along the outer wall of the EGR ring 41 between the inner wall of the EGR introduction passage portion 45 on the vehicle rear side and the EGR ring 41 . Since the EGR gas is introduced into the intake passage 6 in the EGR ring 41 through the ring holes 50 and 51 of the EGR ring 41, a swirling flow of the EGR gas is generated in the intake passage 6 to promote mixing of the intake air and the EGR gas. can be done.
  • the present invention is not limited to the above embodiments.
  • the lower end of the EGR ring 41 is at substantially the same vertical position as the inner wall surface of the upper wall 11 a of the surge tank 11 .
  • the EGR ring 41 may be extended downward so that the lower end 41a of the EGR ring 41 protrudes below the inner wall surface of the top wall 11a of the surge tank 11 .
  • the distance from the ring holes 50 and 51, which are the EGR gas introduction positions in the EGR ring 41, to the inside of the surge tank 11 is extended. Mixing with EGR gas can be promoted.
  • the distance between the lower end of the EGR ring 41 and the lower wall 11b of the surge tank 11 is shortened, the intake air containing the EGR gas flowing into the surge tank 11 from the EGR ring 41 collides with the lower wall 11b of the surge tank 11. becomes easier. As a result, mixing of the EGR gas in the surge tank 11 can be promoted, and unevenness in concentration of the EGR gas in the intake air supplied to the cylinders from the tank discharge ports 43 can be further suppressed.
  • the adapter 40 and the EGR ring 41 have separate structures, but the adapter 40 and the EGR ring 41 may have an integral structure.
  • the present invention is applied to the engine 3 mounted on a plug-in hybrid vehicle, but it can also be applied to an engine mounted on a hybrid vehicle or a gasoline vehicle, or an engine other than a vehicle. .
  • the present invention can be widely applied to engines equipped with an EGR device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

This engine intake system structure is provided with an EGR passage 31 which includes a surge tank 11 in an intake passage 6, has branch pipes 12 that divert intake air from the surge tank 11 to each cylinder, and which recirculates a portion of exhaust gas, serving as EGR gas, to the intake passage 6 inside an EGR ring 41 on an upstream side of the surge tank 11, wherein a tubular EGR introduction passage portion 45 provided in a downstream end portion of the EGR passage 31 is connected to the EGR ring 41 to recirculate the EGR gas to the intake passage 6 inside the EGR ring 41, and is provided with a second surge tank for temporarily storing the EGR gas.

Description

エンジンの吸気系構造Engine intake system structure
 本発明は車両の吸気通路における排気還流ガスの導入部の構造に関する。 The present invention relates to the structure of the exhaust recirculated gas introduction part in the intake passage of a vehicle.
 車両に搭載されたエンジンの多くには、排気性能を向上させるために、EGR装置(排気還流装置)が備えられている。EGR装置は、排気通路と吸気通路とを連通するEGR通路を備え、排気通路から排気の一部(EGRガス)を吸気通路に還流し、吸気の酸素濃度を低下させる。これにより、エンジンの燃焼室内の温度を低下させ、エンジンからのNOxの排出を抑制する。 Many of the engines installed in vehicles are equipped with an EGR device (exhaust gas recirculation device) to improve exhaust performance. The EGR device includes an EGR passage that communicates an exhaust passage and an intake passage, recirculates a portion of the exhaust gas (EGR gas) from the exhaust passage to the intake passage, and reduces the oxygen concentration of the intake air. As a result, the temperature in the combustion chamber of the engine is lowered and NOx emissions from the engine are suppressed.
 特許文献1に記載された多気筒のエンジンでは、吸気通路の最下流に設けられた吸気マニホールドの分岐通路(ブランチ管)にEGR通路が接続されており、各分岐通路にEGRガス(排気還流ガス)を夫々導入する構造になっている。 In the multi-cylinder engine described in Patent Document 1, an EGR passage is connected to a branch passage (branch pipe) of an intake manifold provided at the most downstream side of the intake passage, and EGR gas (exhaust gas recirculation gas) is connected to each branch passage. ) are introduced respectively.
 また、特許文献1では、複数の分岐通路を平行に並べて配置し、分岐通路と交差する方向に延びるようにEGR通路が設けられており、EGR通路の下流側端部においてEGR通路の延長方向に並んで各分岐通路へのガス供給口が設けられている。 Further, in Patent Document 1, a plurality of branch passages are arranged in parallel, and an EGR passage is provided so as to extend in a direction intersecting the branch passages. A gas supply port to each branch passage is provided side by side.
 更に、特許文献1では、各分岐通路に接続する直前位置でのEGR通路の流路断面積が上流側から下流側に向かうにしたがって小さくなるように構成されており、各分岐通路にEGRガスが略均等に流入し易い構造になっている。 Furthermore, in Patent Document 1, the flow passage cross-sectional area of the EGR passage at a position immediately before connecting to each branch passage is configured to decrease from the upstream side to the downstream side, and EGR gas flows into each branch passage. It has a structure that makes it easy to flow in approximately evenly.
特開2016-121540号公報JP 2016-121540 A
 しかしながら、特許文献1では、各分岐通路内の吸気に夫々EGRガスを供給する構造になっているので、例えEGR通路の流路断面積が下流側に向かって小さくなるように設定していたとしても、例えばエンジンの運転が変動しているときに、吸気量に対して各分岐通路にEGRガスが適切に流入せずに、各気筒でのEGRガスの濃度が異なったり変動したりする可能性がある。 However, in Patent Document 1, since EGR gas is supplied to the intake air in each branch passage, even if the flow passage cross-sectional area of the EGR passage is set to decrease toward the downstream side, Also, for example, when the operation of the engine fluctuates, the EGR gas may not properly flow into each branch passage with respect to the amount of intake air, and the concentration of EGR gas in each cylinder may differ or fluctuate. There is
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、複数の気筒に導入する吸気の排気還流ガスの濃度を均質化させることができるエンジンの吸気系構造を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of these problems, and its object is to provide an engine intake system structure capable of homogenizing the concentration of exhaust gas recirculated in the intake air introduced into a plurality of cylinders. to do.
 上記目的を達成するため、本発明に係るエンジンの吸気系構造は、吸気通路に第1のサージタンクを備え、当該第1のサージタンクから各気筒へ吸気を分流する分岐通路を有するとともに、排気の一部を排気還流ガスとして前記分岐通路の上流側の前記吸気通路に還流する排気還流通路を有するエンジンの吸気系構造であって、前記排気還流通路は、前記吸気通路へ前記排気還流ガスを導入する導入部に接続されるとともに前記排気還流ガスを貯留する第2のサージタンクを有することを特徴とする。 To achieve the above object, an engine intake system structure according to the present invention includes a first surge tank in an intake passage, a branch passage for diverting intake air from the first surge tank to each cylinder, and an exhaust gas. part of the exhaust gas is recirculated to the intake passage on the upstream side of the branch passage, wherein the exhaust gas recirculation passage transfers the exhaust gas to the intake passage. It is characterized by having a second surge tank that is connected to the introduction part for introducing and stores the exhaust recirculated gas.
 これにより、排気還流通路に第2のサージタンクが備えられているので、吸気通路への導入前に排気還流ガスを一時的に貯留して、吸気通路へ排気還流ガスを安定して供給し、吸気通路内で吸気と排気還流ガスとの混合を促すことができる。更に、この排気還流ガスが供給されて混合した吸気を第1のサージタンクにおいて一時的に貯留することで、第1のサージタンクにおいて吸気と排気還流ガスとの混合を促し、吸気中の排気還流ガスを均質化して各分岐通路に供給することができる。 Accordingly, since the second surge tank is provided in the exhaust gas recirculation passage, the exhaust gas recirculation gas is temporarily stored before being introduced into the intake passage, and the exhaust gas recirculation gas is stably supplied to the intake passage, Mixing of the intake air and the exhaust recirculated gas can be promoted in the intake passage. Furthermore, by temporarily storing the intake air mixed with the supplied exhaust gas recirculation gas in the first surge tank, the first surge tank promotes mixing of the intake air and the exhaust gas recirculation gas, and exhaust gas recirculation during intake. Gas can be homogenized and supplied to each branch passage.
 好ましくは、第2のサージタンクは、前記第1のサージタンクより容積が小さいとよい。 Preferably, the second surge tank has a smaller volume than the first surge tank.
 これにより、排気還流ガスの供給量が少ない場合でも、第2のサージタンクで排気還流ガスの圧力を高め、吸気通路に排気還流ガスを安定して供給することができる。 As a result, even when the amount of exhaust gas recirculated is small, the pressure of the exhaust gas recirculated can be increased by the second surge tank, and the exhaust gas recirculated can be stably supplied to the intake passage.
 好ましくは、前記第1のサージタンクと前記第2のサージタンクとは、一体的に形成されているとよい。 Preferably, the first surge tank and the second surge tank are integrally formed.
 これにより、第1のサージタンク及び第2のサージタンクをコンパクトに構成することができる。 Thereby, the first surge tank and the second surge tank can be configured compactly.
 好ましくは、前記第1のサージタンクは、前記吸気通路が接続されるとともに平面状に延びる壁面を有し、前記第2のサージタンクは、前記第1のサージタンクの前記壁面に沿って形成されているとよい。 Preferably, the first surge tank has a wall surface connected to the intake passage and extending in a plane, and the second surge tank is formed along the wall surface of the first surge tank. I hope you are.
 これにより、第2のサージタンクを第1のサージタンクの壁面に沿って簡単な構成でコンパクトに構成することができる。 Thereby, the second surge tank can be configured compactly along the wall surface of the first surge tank with a simple configuration.
 好ましくは、前記第2のサージタンクは、前記排気還流通路の下流端部を閉塞した管状の導入通路部によって形成され、前記導入部は、内部に前記吸気通路を有するとともに、周壁が前記導入通路部の前記下流端部側となる内壁の一部を形成し、前記周壁に開口部を有する管状の吸気管によって形成されているとよい。 Preferably, the second surge tank is formed by a tubular introduction passage portion that closes a downstream end of the exhaust gas recirculation passage, the introduction portion has the intake passage therein, and a peripheral wall thereof defines the introduction passage. preferably formed by a tubular intake pipe forming a part of the inner wall on the downstream end side of the portion and having an opening in the peripheral wall.
 これにより、吸気通路に排気還流ガスを導入する導入部と、第2のサージタンクと、を簡単な構成で実現させることができる。 As a result, the introduction portion for introducing the exhaust gas recirculation gas into the intake passage and the second surge tank can be realized with a simple configuration.
 好ましくは、前記吸気管は、前記導入通路部の流路幅方向の中央位置に対して当該流路幅方向の一方にオフセットして配置され、前記導入通路部の前記流路幅方向の一方側の内壁と前記周壁との間に間隔を有し、前記開口部は、前記周壁のうち、少なくとも前記導入通路部における前記排気還流ガスの流通方向先方側、または前記流路幅方向の前記一方側に設けられているとよい。 Preferably, the intake pipe is arranged offset to one side in the flow path width direction with respect to a center position of the introduction passage portion in the flow path width direction, and is arranged on one side of the introduction passage portion in the flow path width direction. and the peripheral wall, and the opening is at least on the front side of the introduction passage portion in the flow direction of the exhaust gas recirculation gas, or the one side in the width direction of the flow passage. should be provided in
 これにより、導入通路部内を流れる排気還流ガスは、吸気管に到達し、吸気管の周壁に沿って導入通路部の流路幅方向の一方側の内壁と吸気管の周壁との間の間隔を回り込む。そして、開口部から吸気管内の吸気通路に導入されるので、吸気管内で排気還流ガスの旋回流を発生させ、吸気と排気還流ガスとの混合を促すことができる。 As a result, the exhaust gas recirculation gas flowing through the introduction passage reaches the intake pipe, and along the peripheral wall of the intake pipe, the gap between the inner wall of the introduction passage on one side in the flow path width direction and the peripheral wall of the intake pipe is increased. wrap around Since it is introduced into the intake passage in the intake pipe from the opening, it is possible to generate a swirl flow of the exhaust gas recirculated in the intake pipe and promote mixing of the intake air and the exhaust gas recirculated.
 本発明に係るエンジンの吸気系構造によれば、第2のサージタンクにおいて排気還流ガスを一時的に貯留して、吸気管へ排気還流ガスを安定して供給し、吸気中の排気還流ガスの濃度を安定させることができる。更に、この排気還流ガスが供給されて混合した吸気を第1のサージタンクにおいて一時的に貯留することで、第1のサージタンクにおいて吸気と排気還流ガスとの混合を促し吸気中の排気還流ガスを均質化して、各分岐通路に均質に供給することができる。
 これにより、エンジンの各気筒へ排気還流ガスの濃度を均質化した吸気を導入させることができ、排気還流の効果を向上させることができる。
According to the intake system structure of the engine according to the present invention, the exhaust gas recirculation gas is temporarily stored in the second surge tank, and the exhaust gas recirculation gas is stably supplied to the intake pipe. Concentration can be stabilized. Furthermore, by temporarily storing the intake air mixed with the supplied exhaust gas recirculation gas in the first surge tank, the first surge tank promotes mixing of the intake air and the exhaust gas recirculation gas, and the exhaust gas recirculation gas being sucked. can be homogenized and uniformly supplied to each branch passage.
As a result, it is possible to introduce the intake air in which the concentration of the exhaust gas recirculated is homogenized into each cylinder of the engine, and to improve the effect of the exhaust gas recirculation.
本発明の実施形態に係る車両の前部の概略構成図である。1 is a schematic configuration diagram of a front portion of a vehicle according to an embodiment of the present invention; FIG. エンジンの吸気系補機の縦断面図である。FIG. 2 is a vertical cross-sectional view of an engine intake system accessory; エンジンの吸気系補機の縦断面図である。FIG. 2 is a vertical cross-sectional view of an engine intake system accessory; エンジンの吸気系補機の横断面図である。FIG. 3 is a cross-sectional view of an engine intake system accessory; 他の実施形態の吸気系補機の縦断面図である。It is a longitudinal cross-sectional view of an intake system accessory of another embodiment.
 以下、図面に基づき本発明の実施形態について説明する。
 図1は、本発明の実施形態に係るエンジン3の吸気系構造を採用した車両1の前部の概略構造図である。図2は、エンジン3の前面に配置された吸気系の補機の縦断面図であり、車両に搭載された際の車幅方向左側から視た図である。図3は、エンジン3の吸気系補機の縦断面図である。図4は、エンジン3の吸気系補機の横断面図である。図3は、図2中に記載したA-A部の断面図である。図4は、図3中に記載したB-B部の断面図である。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic structural diagram of the front portion of a vehicle 1 that employs an intake system structure for an engine 3 according to an embodiment of the present invention. FIG. 2 is a vertical cross-sectional view of the auxiliary equipment of the intake system arranged in front of the engine 3, and is a view seen from the left side in the vehicle width direction when mounted on the vehicle. FIG. 3 is a vertical cross-sectional view of an intake system accessory of the engine 3. As shown in FIG. FIG. 4 is a cross-sectional view of an intake system accessory of the engine 3. As shown in FIG. FIG. 3 is a cross-sectional view taken along line AA shown in FIG. FIG. 4 is a cross-sectional view taken along line BB shown in FIG.
 図1に示すように、本発明を採用した車両1は、前部のエンジンルーム2にエンジン3を含むパワーユニット4を搭載している。車両1は、EVモード、シリーズモード、パラレルモードが可能なプラグインハイブリッド車である。 As shown in FIG. 1, a vehicle 1 that employs the present invention is equipped with a power unit 4 including an engine 3 in a front engine room 2 . A vehicle 1 is a plug-in hybrid vehicle capable of EV mode, series mode, and parallel mode.
 パワーユニット4は、エンジン3と図示しない走行駆動用モータ及び発電用モータジェネレータを備えている。走行駆動用モータ及び発電用モータジェネレータは、エンジン3の車幅方向左方に配置されている。発電用モータジェネレータは、エンジン3のスタータモータとしても使用される。 The power unit 4 is equipped with the engine 3, a travel drive motor (not shown), and a power generation motor generator. The traveling drive motor and the power generation motor generator are arranged on the left side of the engine 3 in the vehicle width direction. The power generation motor generator is also used as a starter motor for the engine 3 .
 エンジン3は、4気筒であり、車両1に横置きに搭載されている。エンジン3の前面3aに吸気マニホールド5が備えられ、吸気通路6が配置されている。一方、エンジン3の後面側に排気マニホールド7が備えられ、排気通路8が配置されている。 The engine 3 is a 4-cylinder engine and is horizontally mounted on the vehicle 1 . An intake manifold 5 is provided on the front surface 3a of the engine 3, and an intake passage 6 is arranged. On the other hand, an exhaust manifold 7 is provided on the rear side of the engine 3, and an exhaust passage 8 is arranged.
 吸気通路6には、スロットルバルブ10が備えられている。また、吸気通路6のスロットルバルブ10と吸気マニホールド5との間には、サージタンク11(第1のサージタンク)が備えられている。 A throttle valve 10 is provided in the intake passage 6 . A surge tank 11 (first surge tank) is provided between the throttle valve 10 and the intake manifold 5 in the intake passage 6 .
 スロットルバルブ10は、エンジン3の前面3a側の上部に位置し、エンジン3の車幅方向中央に位置する2番気筒に連結するブランチ管12(分岐通路)と3番気筒に連結するブランチ管12との間に配置されている。 The throttle valve 10 is located in the upper part of the front surface 3a side of the engine 3, and has a branch pipe 12 (branch passage) connected to the No. 2 cylinder located at the center in the vehicle width direction of the engine 3, and a branch pipe 12 connected to the No. 3 cylinder. is placed between
 サージタンク11は、エンジン3の前面3aに沿って備えられ、スロットルバルブ10の下方に配置されている。サージタンク11から各気筒に向けて吸気マニホールド5のブランチ管12が夫々接続されている。ブランチ管12はサージタンク11の下面から車両前側に屈曲しサージタンク11の前面側に隣接して上方に延び、エンジン3の前面3aの上部に設けられた各気筒の吸気ポート13に接続されている。 The surge tank 11 is provided along the front surface 3a of the engine 3 and arranged below the throttle valve 10. A branch pipe 12 of the intake manifold 5 is connected from the surge tank 11 toward each cylinder. The branch pipe 12 bends toward the vehicle front side from the lower surface of the surge tank 11, extends upward adjacent to the front side of the surge tank 11, and is connected to an intake port 13 of each cylinder provided at the upper portion of the front surface 3a of the engine 3. there is
 一方、排気通路8には、排気マニホールド7の下流側にフロント触媒20が備えられている。また、排気通路8のフロント触媒20より下流側にリヤ触媒21が備えられている。フロント触媒20及びリヤ触媒21は、例えば三元触媒のような排気浄化触媒である。フロント触媒20は比較的小型であり、エンジン3の後面に隣接して配置されている。フロント触媒20は、エンジン始動直後のような冷態運転時において排気の浄化性能を向上させるために、エンジン3からすぐに排気が流入するようにエンジン3の近くに配置されている。リヤ触媒21は比較的大型であり、例えば車両1のフロア下に配置されている。 On the other hand, the exhaust passage 8 is provided with a front catalyst 20 downstream of the exhaust manifold 7 . A rear catalyst 21 is provided downstream of the front catalyst 20 in the exhaust passage 8 . The front catalyst 20 and the rear catalyst 21 are exhaust purification catalysts such as three-way catalysts. The front catalyst 20 is relatively small and is arranged adjacent to the rear surface of the engine 3 . The front catalyst 20 is arranged near the engine 3 so that the exhaust gas flows immediately from the engine 3 in order to improve the purification performance of the exhaust gas during cold operation such as immediately after starting the engine. The rear catalyst 21 is relatively large and is arranged under the floor of the vehicle 1, for example.
 更に、エンジン3には、EGR装置30(排気還流装置)が備えられている。EGR装置30は、排気の一部を吸気通路6に還流することで、吸気の酸素濃度を低下させてエンジン3の燃焼室内の温度上昇を抑える。これにより、エンジン3の排気中におけるNOxを低減させる。 Furthermore, the engine 3 is equipped with an EGR device 30 (exhaust gas recirculation device). The EGR device 30 reduces the oxygen concentration of the intake air by recirculating part of the exhaust gas to the intake passage 6 to suppress the temperature rise in the combustion chamber of the engine 3 . This reduces NOx in the exhaust gas from the engine 3 .
 EGR装置30は、吸気通路6と排気通路8とを接続するEGR通路31(排気還流通路)と、EGR通路31に介装されEGR通路31の開口面積を調節するEGRバルブ34と、EGR通路31に備えられたEGRクーラー32を有している。 The EGR device 30 includes an EGR passage 31 (exhaust recirculation passage) that connects the intake passage 6 and the exhaust passage 8, an EGR valve 34 that is interposed in the EGR passage 31 and adjusts the opening area of the EGR passage 31, the EGR passage 31 It has an EGR cooler 32 provided in.
 EGRクーラー32は、EGR通路31を通過する排気であるEGRガス(排気還流ガス)の温度を低下させる水冷式の冷却器であり、エンジン3の後面に沿って配置されている。EGRクーラー32は、EGRガスの温度を低下させることで、EGRガスを導入した吸気の温度の上昇を更に抑え、EGR装置30によるNOx低減効果を向上させる。 The EGR cooler 32 is a water-cooled cooler that lowers the temperature of EGR gas (exhaust gas recirculation gas) that is the exhaust gas passing through the EGR passage 31, and is arranged along the rear surface of the engine 3. By lowering the temperature of the EGR gas, the EGR cooler 32 further suppresses the temperature rise of the intake air into which the EGR gas is introduced, thereby improving the NOx reducing effect of the EGR device 30 .
 EGR通路31は、フロント触媒20の排気出口の近傍からEGRクーラー32を通過して、エンジンの後左部から上方に延びてエンジン3の前側に回り込み、エンジンの上左部に配置されたEGRバルブ34を通過して、スロットルバルブ10とサージタンク11との間の吸気通路6に接続されている。 The EGR passage 31 passes through the EGR cooler 32 from the vicinity of the exhaust outlet of the front catalyst 20, extends upward from the rear left portion of the engine, wraps around the front side of the engine 3, and is arranged at the upper left portion of the engine. 34 and is connected to the intake passage 6 between the throttle valve 10 and the surge tank 11 .
 図2~4に示すように、エンジン3の吸気通路6の一部として、スロットルバルブ10とサージタンク11との間に、アダプタ40及びEGRリング41(導入部・吸気管)が備えられている。アダプタ40及びEGRリング41は、略同一径の円管形状であって、アダプタ40の下端とEGRリング41の上端とが接続して、エンジン3の前面に沿って上下方向に延び、アダプタ40の上端がスロットルバルブ10に接続し、EGRリング41の下端がサージタンク11の上壁11aに設けられたタンク流入口42に接続されている。 As shown in FIGS. 2 to 4, as part of the intake passage 6 of the engine 3, an adapter 40 and an EGR ring 41 (introduction portion/intake pipe) are provided between the throttle valve 10 and the surge tank 11. . The adapter 40 and the EGR ring 41 have substantially the same diameter circular tube shape. The upper end of the EGR ring 41 is connected to the throttle valve 10 , and the lower end of the EGR ring 41 is connected to a tank inlet 42 provided in the upper wall 11 a of the surge tank 11 .
 サージタンク11は、略矩形箱状に形成されており、上壁11aの左右方向略中央位置かつ車両前方部にタンク流入口42が設けられている。 The surge tank 11 is formed in a substantially rectangular box shape, and a tank inlet 42 is provided at a substantially central position in the left-right direction of the upper wall 11a and at the front part of the vehicle.
 サージタンク11の下壁11bの車両後方部側の位置には、エンジン3の気筒数に対応して4個のタンク排出口43が左右方向に並んで配置されている。即ち、サージタンク11において、タンク流入口42とタンク排出口43とは車両前後方向にオフセットして配置されている。 Four tank outlets 43 corresponding to the number of cylinders of the engine 3 are arranged side by side in the left-right direction at a position on the vehicle rear side of the lower wall 11b of the surge tank 11 . That is, in the surge tank 11, the tank inlet 42 and the tank outlet 43 are offset in the longitudinal direction of the vehicle.
 サージタンク11の各タンク排出口43からは、対応する左右位置の気筒の吸気ポート13に向かって、吸気マニホールド5のブランチ管12がサージタンク11の下側及び前側に隣接して延びている。 From each tank discharge port 43 of the surge tank 11, the branch pipes 12 of the intake manifold 5 extend adjacent to the lower side and the front side of the surge tank 11 toward the intake ports 13 of the corresponding left and right cylinders.
 EGR装置30におけるEGR通路31と吸気通路6との接続箇所、即ちEGRガスの吸気通路6への導入箇所は、スロットルバルブ10とサージタンク11との間に位置している。 A connection point between the EGR passage 31 and the intake passage 6 in the EGR device 30 , that is, a point where EGR gas is introduced into the intake passage 6 is located between the throttle valve 10 and the surge tank 11 .
 EGRバルブ34より下流側のEGR通路31は、サージタンク11の上壁11aに沿って車幅方向左方から車幅方向右方に向かって延び、EGRリング41の側面を囲むように形成されたEGR導入通路部45(導入通路部、第2のサージタンク)を有している。 The EGR passage 31 on the downstream side of the EGR valve 34 extends from the left side in the vehicle width direction to the right side in the vehicle width direction along the upper wall 11 a of the surge tank 11 and is formed so as to surround the side surface of the EGR ring 41 . It has an EGR introduction passage portion 45 (introduction passage portion, second surge tank).
 EGR導入通路部45は、上下方向断面が矩形の管状であって、EGRリング41の直径と略同一あるいはやや大きい前後幅(例えば数cm)を有し、上下幅が左右幅より小さい長方形状になっている。 The EGR introduction passage portion 45 has a tubular shape with a rectangular cross section in the vertical direction, and has a front-to-rear width (for example, several centimeters) substantially equal to or slightly larger than the diameter of the EGR ring 41, and has a rectangular shape with a vertical width smaller than the horizontal width. It's becoming
 EGR導入通路部45は、EGRリング41の車幅方向右側の外壁面よりも車幅方向右方に延びている。また、EGR導入通路部45は、EGRリング41の軸線に対し、車両後方側にオフセットして配置されている。更に、EGR導入通路部45の延長方向先端側(流通方向先方側)にある右内壁面とEGRリング41の右外壁面、及びEGR導入通路部45の後内壁面とEGRリング41の後外壁面とは、夫々例えば1cm程度の間隔が形成されている。また、EGRリング41の前外壁面はEGR導入通路部45の前内壁面と当接している。即ち、EGR導入通路部45の内部の空間は、EGRリング41の外壁面(周壁)のうち、右部、後部及び左部に面している。 The EGR introduction passage portion 45 extends rightward in the vehicle width direction from the outer wall surface of the EGR ring 41 on the right side in the vehicle width direction. In addition, the EGR introduction passage portion 45 is arranged so as to be offset to the rear side of the vehicle with respect to the axis of the EGR ring 41 . Further, the right inner wall surface of the EGR introduction passage portion 45 on the leading end side in the extension direction (the forward side in the flow direction) and the right outer wall surface of the EGR ring 41 , and the rear inner wall surface of the EGR introduction passage portion 45 and the rear outer wall surface of the EGR ring 41 . are formed with an interval of about 1 cm, for example. Further, the front outer wall surface of the EGR ring 41 is in contact with the front inner wall surface of the EGR introduction passage portion 45 . That is, the internal space of the EGR introduction passage portion 45 faces the right, rear, and left portions of the outer wall surface (surrounding wall) of the EGR ring 41 .
 更に、EGR導入通路部45の内部空間に面して、EGRリング41の外壁面のうち、後部にリング穴50(開口部)が設けられているとともに、右部にリング穴51(開口部)が設けられている。これにより、EGRバルブ34を通過したEGRガスは、EGR導入通路部45からリング穴50、51を通過してEGRリング41内の吸気通路に導入されるように形成されている。 Further, a ring hole 50 (opening) is provided in the rear portion of the outer wall surface of the EGR ring 41 facing the internal space of the EGR introduction passage portion 45, and a ring hole 51 (opening) is provided in the right portion. is provided. As a result, the EGR gas that has passed through the EGR valve 34 is formed to pass through the ring holes 50 and 51 from the EGR introduction passage portion 45 and be introduced into the intake passage in the EGR ring 41 .
 EGR導入通路部45の縦方向断面積、即ち流路面積は、EGR導入通路部45より上流側のEGR通路31の流路面積よりも大きく形成されている。これにより、EGR導入通路部45は、EGRリング41のリング穴50、51の上流側に隣接して、EGRガスを一時的に貯留するサージタンク(第2のサージタンク)の機能を有する。 The vertical cross-sectional area of the EGR introduction passage portion 45, that is, the passage area is formed larger than the passage area of the EGR passage 31 on the upstream side of the EGR introduction passage portion 45. Thus, the EGR introduction passage portion 45 is adjacent to the upstream side of the ring holes 50 and 51 of the EGR ring 41 and has the function of a surge tank (second surge tank) that temporarily stores EGR gas.
 また、EGR導入通路部45においてサージタンクとして機能する内部空間の容積は、サージタンク11の容積よりも小さく設定されている。 Also, the volume of the internal space that functions as a surge tank in the EGR introduction passage portion 45 is set smaller than the volume of the surge tank 11 .
 以上のように、本実施形態では、車両1に横置きに搭載されたエンジン3の前面3a側に、吸気系の機器であるスロットルバルブ10及び吸気マニホールド5が備えられている。また、スロットルバルブ10と吸気マニホールド5との間には、サージタンク11が備えられている。サージタンク11から各気筒へ吸気マニホールド5のブランチ管12が接続されており、サージタンク11内において吸気が分流して各ブランチ管12を介して各気筒へ供給される。 As described above, in the present embodiment, the throttle valve 10 and the intake manifold 5, which are devices of the intake system, are provided on the front surface 3a side of the engine 3 mounted horizontally in the vehicle 1. A surge tank 11 is provided between the throttle valve 10 and the intake manifold 5 . A branch pipe 12 of the intake manifold 5 is connected from the surge tank 11 to each cylinder.
 更に、吸気通路6に排気の一部であるEGRガスを供給するEGR装置30を備えており、スロットルバルブ10とサージタンク11との間の吸気通路6に設けられたEGRリング41において、吸気にEGRガスが導入される。 Furthermore, the intake passage 6 is provided with an EGR device 30 that supplies EGR gas, which is a part of the exhaust gas. EGR gas is introduced.
 また、EGRリング41のリング穴50、51の上流側に隣接して、即ちEGR通路31から吸気通路6へのEGRガスの導入位置の上流側に隣接して、EGR通路31にはEGRガスを貯留するサージタンクの機能を有するEGR導入通路部45が備えられている。 EGR gas is supplied to the EGR passage 31 adjacent to the upstream side of the ring holes 50 and 51 of the EGR ring 41, that is, adjacent to the upstream side of the introduction position of the EGR gas from the EGR passage 31 to the intake passage 6. An EGR introduction passage portion 45 having a function of a surge tank for storing is provided.
 したがって、吸気通路6への導入前にEGR導入通路部45においてEGRガスを一時的に貯留して、吸気通路6へEGRガスを安定して供給し、吸気通路6内で吸気と排気還流ガスとの混合を促すことができる。更に、この排気還流ガスが供給されて混合した吸気をサージタンク11において一時的に貯留することで、サージタンク11において吸気とEGRガスとの混合を促し吸気中のEGRガスを均質化して、各ブランチ管12に均質に供給することができる。 Therefore, the EGR gas is temporarily stored in the EGR introduction passage portion 45 before being introduced into the intake passage 6, and is stably supplied to the intake passage 6. can encourage mixing of Furthermore, by temporarily storing the intake air mixed with the supplied exhaust gas recirculation gas in the surge tank 11, the surge tank 11 promotes mixing of the intake air and the EGR gas and homogenizes the EGR gas in the intake air. The branch pipe 12 can be supplied homogeneously.
 これにより、エンジン3の各気筒へEGRガスの濃度を均質化した吸気を導入させることができ、EGR装置30の効果を向上させることができる。 As a result, intake air with a homogenized concentration of EGR gas can be introduced into each cylinder of the engine 3, and the effect of the EGR device 30 can be improved.
 また、EGR導入通路部45は、サージタンク11より容積が小さいので、EGRガスの供給量が少ないエンジン運転状態や過渡運転状態のような場合でも、EGR導入通路部45でEGRガスの圧力を高め、吸気通路6にEGRガスを安定して供給することができる。 In addition, since the EGR introduction passage portion 45 has a smaller volume than the surge tank 11, the EGR gas pressure is increased in the EGR introduction passage portion 45 even in an engine operating state or a transient operation state in which the amount of EGR gas supplied is small. , the EGR gas can be stably supplied to the intake passage 6 .
 また、 サージタンク11とEGR導入通路部45とが一体的に形成されているので、サージタンク11とEGR導入通路部45内の第2のサージタンクをコンパクトに構成することができる。 Also, since the surge tank 11 and the EGR introduction passage portion 45 are integrally formed, the surge tank 11 and the second surge tank in the EGR introduction passage portion 45 can be configured compactly.
 また、サージタンク11は、吸気通路6が接続されるとともに平面状に延びる上壁11aを有し、EGR導入通路部45はサージタンク11の上壁11aに沿って形成されているので、第2のサージタンクをサージタンク11の壁面に沿って簡単な構成でコンパクトに構成することができる。 In addition, the surge tank 11 has an upper wall 11a extending in a plane while being connected to the intake passage 6, and the EGR introduction passage portion 45 is formed along the upper wall 11a of the surge tank 11. can be configured compactly along the wall surface of the surge tank 11 with a simple configuration.
 また、EGR通路31の下流端部に、先端が閉塞した管状のEGR導入通路部45を備え、EGRリング41がこのEGR導入通路部45の先端部側となる内壁の一部を形成している。つまり、EGR導入通路部45の先端部近傍にリング穴50,51を有する管状のEGRリング41を貫通させることで、吸気通路にEGRガスを導入するEGRガス導入部を簡単な構成で実現させることができる。 A tubular EGR introduction passage portion 45 with a closed tip is provided at the downstream end portion of the EGR passage 31, and the EGR ring 41 forms a part of the inner wall of the EGR introduction passage portion 45 on the tip portion side. . That is, by penetrating the tubular EGR ring 41 having the ring holes 50 and 51 in the vicinity of the tip of the EGR introduction passage portion 45, an EGR gas introduction portion for introducing EGR gas into the intake passage can be realized with a simple structure. can be done.
 また、EGRリング41は、EGR導入通路部45の流路幅方向(車両前後方向)の中央位置に対して当該流路幅方向の一方である車両後方にオフセットして配置され、EGR導入通路部45の流路幅方向の一方側である車両後方側の内壁とEGRリング41の周壁との間に間隔を有している。そして、EGRリング41のリング穴50、51は、EGRリング41の周壁のうち、車幅方向右方側及び車両後方側に設けられている。 In addition, the EGR ring 41 is offset toward the rear of the vehicle, which is one side of the flow path width direction, with respect to the central position of the EGR introduction passage portion 45 in the flow path width direction (vehicle front-rear direction). A space is provided between the inner wall of the EGR ring 41 on the vehicle rear side, which is one side in the flow path width direction, of the ring 45 and the peripheral wall of the EGR ring 41 . The ring holes 50 and 51 of the EGR ring 41 are provided on the right side in the vehicle width direction and the rear side of the vehicle in the peripheral wall of the EGR ring 41 .
 これにより、EGR導入通路部45を流れるEGRガスは、EGRリング41に到達し、EGRリング41の外壁に沿ってEGR導入通路部45の車両後方側の内壁とEGRリング41との間を回り込む。そして、EGRリング41のリング穴50、51からEGRリング41内の吸気通路6に導入されるので、吸気通路6内でEGRガスの旋回流を発生させ、吸気とEGRガスとの混合を促すことができる。 As a result, the EGR gas flowing through the EGR introduction passage portion 45 reaches the EGR ring 41 and flows along the outer wall of the EGR ring 41 between the inner wall of the EGR introduction passage portion 45 on the vehicle rear side and the EGR ring 41 . Since the EGR gas is introduced into the intake passage 6 in the EGR ring 41 through the ring holes 50 and 51 of the EGR ring 41, a swirling flow of the EGR gas is generated in the intake passage 6 to promote mixing of the intake air and the EGR gas. can be done.
 なお、本発明は上記実施形態に限定するものではない。例えば、上記実施形態では、EGRリング41の下端が、サージタンク11の上壁11aの内壁面と略同一の上下位置となっている。これに対し、図5に示すように、EGRリング41を下方に延ばして、EGRリング41の下端41aがサージタンク11の上壁11aの内壁面よりも下方に突出するようにしてもよい。 The present invention is not limited to the above embodiments. For example, in the above-described embodiment, the lower end of the EGR ring 41 is at substantially the same vertical position as the inner wall surface of the upper wall 11 a of the surge tank 11 . On the other hand, as shown in FIG. 5, the EGR ring 41 may be extended downward so that the lower end 41a of the EGR ring 41 protrudes below the inner wall surface of the top wall 11a of the surge tank 11 .
 このように、EGRリング41を下方に延ばすことで、EGRリング41におけるEGRガス導入位置であるリング穴50、51からサージタンク11内までの距離を延長して、EGRリング41内での吸気とEGRガスとの混合を促すことができる。また、EGRリング41の下端とサージタンク11の下壁11bとの距離が短くなるので、EGRリング41からサージタンク11内に流入したEGRガスを含む吸気がサージタンク11の下壁11bに衝突し易くなる。これにより、サージタンク11内でのEGRガスの混合を促すとともに、各タンク排出口43から各気筒に供給される吸気のEGRガス濃度の偏りを更に抑制することができる。 By extending the EGR ring 41 downward in this way, the distance from the ring holes 50 and 51, which are the EGR gas introduction positions in the EGR ring 41, to the inside of the surge tank 11 is extended. Mixing with EGR gas can be promoted. In addition, since the distance between the lower end of the EGR ring 41 and the lower wall 11b of the surge tank 11 is shortened, the intake air containing the EGR gas flowing into the surge tank 11 from the EGR ring 41 collides with the lower wall 11b of the surge tank 11. becomes easier. As a result, mixing of the EGR gas in the surge tank 11 can be promoted, and unevenness in concentration of the EGR gas in the intake air supplied to the cylinders from the tank discharge ports 43 can be further suppressed.
 あるいは、上記実施形態では、アダプタ40とEGRリング41とが別体構造になっているが、アダプタ40とEGRリング41とを一体構造にしてもよい。 Alternatively, in the above embodiment, the adapter 40 and the EGR ring 41 have separate structures, but the adapter 40 and the EGR ring 41 may have an integral structure.
 また、本実施形態では、プラグインハイブリッド車に搭載したエンジン3に本発明を適用しているが、ハイブリッド車やガソリン車に搭載されたエンジン、あるいは車両搭載以外のエンジンにも適用することができる。本発明は、EGR装置を備えたエンジンに本発明を広く適用することができる。 Further, in this embodiment, the present invention is applied to the engine 3 mounted on a plug-in hybrid vehicle, but it can also be applied to an engine mounted on a hybrid vehicle or a gasoline vehicle, or an engine other than a vehicle. . The present invention can be widely applied to engines equipped with an EGR device.
 3 エンジン
 6 吸気通路
 11 サージタンク(第1のサージタンク)
 12 ブランチ管(分岐通路)
 31 EGR通路(排気還流通路)
 45 EGR導入通路部(導入通路部、第2のサージタンク)
 41 EGRリング(導入部、吸気管)
 50、51 リング穴(開口部)

 
3 engine 6 intake passage 11 surge tank (first surge tank)
12 branch pipe (branch passage)
31 EGR passage (exhaust recirculation passage)
45 EGR introduction passage (introduction passage, second surge tank)
41 EGR ring (introduction part, intake pipe)
50, 51 Ring hole (opening)

Claims (6)

  1.  吸気通路に第1のサージタンクを備え、当該第1のサージタンクから各気筒へ吸気を分流する分岐通路を有するとともに、排気の一部を排気還流ガスとして前記吸気通路に還流する排気還流通路を有するエンジンの吸気系構造であって、
     前記排気還流通路は、前記吸気通路へ前記排気還流ガスを導入する導入部に接続されるとともに前記排気還流ガスを貯留する第2のサージタンクを有することを特徴とするエンジンの吸気系構造。
    A first surge tank is provided in an intake passage, a branch passage is provided for diverting intake air from the first surge tank to each cylinder, and a part of exhaust gas is recirculated to the intake passage as exhaust gas recirculation gas. An intake system structure of an engine having
    An intake system structure for an engine, wherein the exhaust gas recirculation passage has a second surge tank connected to an introduction portion for introducing the exhaust gas recirculation gas into the intake passage and storing the exhaust gas recirculation gas.
  2.  前記第1のサージタンクは、前記第2のサージタンクより容積が大きいことを特徴とする請求項1に記載のエンジンの吸気系構造。 The intake system structure for an engine according to claim 1, wherein the first surge tank has a larger volume than the second surge tank.
  3.  前記第1のサージタンクと前記第2のサージタンクとは、一体的に形成されていることを特徴とする請求項1または2に記載のエンジンの吸気系構造。 The engine intake system structure according to claim 1 or 2, wherein the first surge tank and the second surge tank are integrally formed.
  4.  前記第1のサージタンクは、前記吸気通路が接続されるとともに平面状に延びる壁面を有し、
     前記第2のサージタンクは、前記第1のサージタンクの前記壁面に沿って形成されていることを特徴とする請求項3に記載のエンジンの吸気系構造。
    The first surge tank has a wall surface to which the intake passage is connected and which extends in a plane,
    4. The intake system structure for an engine according to claim 3, wherein said second surge tank is formed along said wall surface of said first surge tank.
  5.  前記第2のサージタンクは、前記排気還流通路の下流端部を閉塞した管状の導入通路部によって形成され、
     前記導入部は、内部に前記吸気通路を有するとともに、周壁が前記導入通路部の前記下流端部側となる内壁の一部を形成し、前記周壁に開口部を有する管状の吸気管によって形成されていることを特徴とする請求項1から4のいずれか1項に記載のエンジンの吸気系構造。
    The second surge tank is formed by a tubular introduction passage portion that closes the downstream end of the exhaust gas recirculation passage,
    The introduction portion has the intake passage therein, and the peripheral wall forms a part of the inner wall on the downstream end side of the introduction passage portion, and is formed by a tubular intake pipe having an opening in the peripheral wall. 5. The intake system structure for an engine according to any one of claims 1 to 4, characterized in that:
  6.  前記吸気管は、前記導入通路部の流路幅方向の中央位置に対して当該流路幅方向の一方にオフセットして配置され、
     前記導入通路部の前記流路幅方向の一方側の内壁と前記周壁との間に間隔を有し、
     前記開口部は、前記周壁のうち、少なくとも前記導入通路部における前記排気還流ガスの流通方向先方側、または前記流路幅方向の前記一方側に設けられていることを特徴とする請求項5に記載のエンジンの吸気系構造。

     
    the intake pipe is arranged offset in one direction in the width direction of the flow passage with respect to a center position in the width direction of the introduction passage,
    a space is provided between an inner wall on one side in the flow path width direction of the introduction passage portion and the peripheral wall;
    6. The apparatus according to claim 5, wherein the opening is provided at least on the front side of the introduction passage portion in the flow direction of the exhaust gas recirculation gas, or on the one side in the width direction of the flow passage, in the peripheral wall. Intake system structure of the described engine.

PCT/JP2021/038040 2021-10-14 2021-10-14 Engine intake system structure WO2023062772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038040 WO2023062772A1 (en) 2021-10-14 2021-10-14 Engine intake system structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038040 WO2023062772A1 (en) 2021-10-14 2021-10-14 Engine intake system structure

Publications (1)

Publication Number Publication Date
WO2023062772A1 true WO2023062772A1 (en) 2023-04-20

Family

ID=85987326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038040 WO2023062772A1 (en) 2021-10-14 2021-10-14 Engine intake system structure

Country Status (1)

Country Link
WO (1) WO2023062772A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147010A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas reflux device for turbosupercharging engine
JP2009156043A (en) * 2007-12-25 2009-07-16 Nissan Diesel Motor Co Ltd Intake manifold
US7568340B2 (en) * 2006-05-24 2009-08-04 Honeywell International, Inc. Exhaust gas recirculation mixer
JP2010255599A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Egr device for internal combustion engine
JP2011080394A (en) * 2009-10-06 2011-04-21 Denso Corp Intake device for multiple cylinder engine
JP2013011185A (en) * 2011-06-28 2013-01-17 Aisin Seiki Co Ltd Air intake device for internal combustion engine
JP2013151906A (en) * 2012-01-25 2013-08-08 Aisin Seiki Co Ltd Freezing prevention structure for pcv passage, and intake manifold
CN204371531U (en) * 2015-01-08 2015-06-03 广西玉柴机器股份有限公司 The intake manifold of EGR engine
JP2017141689A (en) * 2016-02-08 2017-08-17 株式会社Subaru Gas recirculation device
JP2017180261A (en) * 2016-03-30 2017-10-05 ダイハツ工業株式会社 Surge tank integrated intake manifold
JP2019044644A (en) * 2017-08-31 2019-03-22 愛三工業株式会社 Intake system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147010A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas reflux device for turbosupercharging engine
US7568340B2 (en) * 2006-05-24 2009-08-04 Honeywell International, Inc. Exhaust gas recirculation mixer
JP2009156043A (en) * 2007-12-25 2009-07-16 Nissan Diesel Motor Co Ltd Intake manifold
JP2010255599A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Egr device for internal combustion engine
JP2011080394A (en) * 2009-10-06 2011-04-21 Denso Corp Intake device for multiple cylinder engine
JP2013011185A (en) * 2011-06-28 2013-01-17 Aisin Seiki Co Ltd Air intake device for internal combustion engine
JP2013151906A (en) * 2012-01-25 2013-08-08 Aisin Seiki Co Ltd Freezing prevention structure for pcv passage, and intake manifold
CN204371531U (en) * 2015-01-08 2015-06-03 广西玉柴机器股份有限公司 The intake manifold of EGR engine
JP2017141689A (en) * 2016-02-08 2017-08-17 株式会社Subaru Gas recirculation device
JP2017180261A (en) * 2016-03-30 2017-10-05 ダイハツ工業株式会社 Surge tank integrated intake manifold
JP2019044644A (en) * 2017-08-31 2019-03-22 愛三工業株式会社 Intake system

Similar Documents

Publication Publication Date Title
US10746080B2 (en) Exhaust system device for vehicle
US8967127B2 (en) Intake apparatus for internal combustion engine
JP2009156264A5 (en)
US9650999B2 (en) Recirculated exhaust gases distribution device, corresponding inlet manifold and corresponding inlet module
US9938934B2 (en) Exhaust gas recirculation
KR20080098843A (en) Exhaust gas recirculation system of vehicle
EP1681460B1 (en) Fuel supply device and vehicle with the same
WO2023062772A1 (en) Engine intake system structure
CN107178445B (en) Gas reflux device
JP2006233859A (en) Intake device for engine
JPH08319900A (en) Exhaust gas recirculation device of engine
WO2023062775A1 (en) Engine intake system structure
US11008984B2 (en) Motor vehicle on which a vehicle engine is mounted
JP2007247612A (en) Control unit for internal-combustion engine
CN111075613A (en) Exhaust gas recirculation mixer and exhaust gas recirculation system
JP5447128B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2023105518A (en) Intake system structure for engine
KR0173355B1 (en) Intake manifold unit of an internal combustion engine
JP2014234789A (en) Surge tank
JP6417585B2 (en) Exhaust gas recirculation gas introduction device for internal combustion engine
GB2487591A (en) An EGR cooler located in an air intake manifold
JPH1077913A (en) Intake device for internal combustion engine
JPWO2023062772A5 (en)
JP4027547B2 (en) EGR device
WO2023062774A1 (en) Auxiliary component arrangement structure for vehicle engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960630

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023553840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401001664

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE